Analysis of evening and morning transitions in complex terrain: MATERHORN campaign 2013

Barbano, Francesco (2016) Analysis of evening and morning transitions in complex terrain: MATERHORN campaign 2013. [Laurea magistrale], Università di Bologna, Corso di Studio in Fisica del sistema terra [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of FB_tesi.pdf] Documento PDF
Full-text non accessibile

Download (23MB) | Contatta l'autore

Abstract

A field study of thermal circulation over very gentle slope is described for a specific day characterised by weak synoptic conditions. The emphasis was on morning and evening transitions, but measurements cover the entire day; therefore a brief analysis is performed to represent the general thermal circulation pattern. Both transition periods are characterised by complex dynamic behaviours. During evening transition, the upslope flow has got through a stagnation condition characterised by wind velocity U<0:5 m=s. Only when the stagnating air has become negative buoyant, the flow is allowed to pour downslope like a slab. Some features of front formation has been found during the transition development, such as delay time of downslope flow start up along the slope, and the presence of positive turbulent kinetic energy at the onset of the motion. Eventually the observed evening transition has followed a mixed mechanisms, with features from different models. Therefore the Rayleigh number seems not to be a good criterion by which parametrise evening transition itself. Morning transition is characterised by destruction of nocturnal temperature inversion and the onset of upslope flow. Inversion destruction can be described in terms of CBL growth at surface and inversion decent from the top of the layer. KH has found to be a good indicator of inversion breakup, if used as parameter to study the inversion breakup in terms of temperature reversal. After the inversion breakup, buoyancy and mechanical productions supply the flow with the necessary energy to start the upslope wind. More quantitative analysis are provided by the study of stability parameters and turbulent kinetic energy budgets. Gradient Richardson number has been used in this terms, finding that a mixed SBL-CBL behaviour dominates the most of the observed layers. Tke budget has shown high turbulent behaviour during morning transition while the evening transition has developed entirely in laminar condition, apart from short intermittent turbulent events.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Barbano, Francesco
Relatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
evening transition morning thermal circulation
Data di discussione della Tesi
31 Marzo 2016
URI

Altri metadati

Gestione del documento: Visualizza il documento

^