Ciobanu, Lia
(2016)
Teoremi di Inversione per la Volatilità Implicita.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Abstract
L'obiettivo di questa tesi è lo studio del legame tra la volatilità implicita e la volatilità attuale del titolo sottostante. In particolare, si cercherà di capire quanto conosciamo della volatilità del titolo sottostante se si osserva sul mercato un numero sufficiente di opzioni Call e Put Europee che dipendono da questo sottostante. Tale relazione è oggetto d'interesse pratico per gli attori dei mercati delle opzioni: si tratta di due grandezze fondamentali usate per prezzare i derivati finanziari.
L'approccio usato verte alla dinamica dei processi e permetterà di mettere in luce nuove caratteristiche della volatilità implicita, nonché trovare una sua approssimazione. La dinamica del suddetto parametro è cruciale nelle operazioni di copertura e gestione del rischio per i portafogli di opzioni. Avendo a disposizione un modello per la dinamica della volatilità implicita, è possibile calcolare in maniera consistente il vega risk. La dinamica è altrettanto importante per la copertura delle opzioni esotiche, quali le opzioni barrier. Per riuscire a raggiungere il fine predisposto, si considera un modello di mercato libero da arbitraggi, il processo spot continuo e alcune assunzioni di non degenerazione. Ciononostante, si cerca di fare meno assunzioni possibili circa la dinamica del suddetto processo, in modo da trattare un modello di mercato generale, in particolare non completo. Attraverso questo approccio si potrà constatare che dai prezzi delle Call si riescono a ricavare interessanti informazioni riguardanti lo spot. Infatti, a partire da alcune condizioni di regolarità, si riesce a ricavare la dinamica della volatilità spot, osservando la dinamica della volatilità implicita.
Abstract
L'obiettivo di questa tesi è lo studio del legame tra la volatilità implicita e la volatilità attuale del titolo sottostante. In particolare, si cercherà di capire quanto conosciamo della volatilità del titolo sottostante se si osserva sul mercato un numero sufficiente di opzioni Call e Put Europee che dipendono da questo sottostante. Tale relazione è oggetto d'interesse pratico per gli attori dei mercati delle opzioni: si tratta di due grandezze fondamentali usate per prezzare i derivati finanziari.
L'approccio usato verte alla dinamica dei processi e permetterà di mettere in luce nuove caratteristiche della volatilità implicita, nonché trovare una sua approssimazione. La dinamica del suddetto parametro è cruciale nelle operazioni di copertura e gestione del rischio per i portafogli di opzioni. Avendo a disposizione un modello per la dinamica della volatilità implicita, è possibile calcolare in maniera consistente il vega risk. La dinamica è altrettanto importante per la copertura delle opzioni esotiche, quali le opzioni barrier. Per riuscire a raggiungere il fine predisposto, si considera un modello di mercato libero da arbitraggi, il processo spot continuo e alcune assunzioni di non degenerazione. Ciononostante, si cerca di fare meno assunzioni possibili circa la dinamica del suddetto processo, in modo da trattare un modello di mercato generale, in particolare non completo. Attraverso questo approccio si potrà constatare che dai prezzi delle Call si riescono a ricavare interessanti informazioni riguardanti lo spot. Infatti, a partire da alcune condizioni di regolarità, si riesce a ricavare la dinamica della volatilità spot, osservando la dinamica della volatilità implicita.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Ciobanu, Lia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Didattico
Ordinamento Cds
DM270
Parole chiave
volatilità implicita volatilità stocastica decomposizione semimartingala opzioni volatilità spot
Data di discussione della Tesi
18 Marzo 2016
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Ciobanu, Lia
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum C: Didattico
Ordinamento Cds
DM270
Parole chiave
volatilità implicita volatilità stocastica decomposizione semimartingala opzioni volatilità spot
Data di discussione della Tesi
18 Marzo 2016
URI
Statistica sui download
Gestione del documento: