Entanglement entropy in 1-d quantum spin chains

Palazzo, David (2014) Entanglement entropy in 1-d quantum spin chains. [Laurea magistrale], Università di Bologna, Corso di Studio in Fisica [LM-DM270]
Documenti full-text disponibili:
[thumbnail of Palazzo_David_Tesi.pdf]
Anteprima
Documento PDF
Download (1MB) | Anteprima

Abstract

In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Palazzo, David
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Teorico generale
Ordinamento Cds
DM270
Parole chiave
Conformal Field Theory, Entanglement Entropy, Integrable systems
Data di discussione della Tesi
24 Ottobre 2014
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^