Rupnik Boero, Giovanni Battista
 
(2024)
A transformer and novel triggers for the search for Higgs boson pair production in the bbττ final state with the ATLAS detector.
[Laurea magistrale], Università di Bologna, Corso di Studio in 
Physics [LM-DM270], Documento ad accesso riservato.
  
 
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            | ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png) | Documento PDF (Thesis) Full-text accessibile solo agli utenti istituzionali dell'Ateneo
 Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 Download (30MB)
              
              
                | Contatta l'autore
 | 
        
      
    
  
  
    
      Abstract
      The Higgs boson self-interaction is a direct probe of the shape of the Higgs potential, one of the last predictions of the Standard Model awaiting experimental confirmation. A major goal of the ATLAS Experiment for the ongoing Run 3 of the LHC is to investigate the self-interaction via searches for Higgs boson pair production (HH). The HH->bbττ analysis targets one of the most sensitive channels for this search but necessitates refining its strategy for Run 3. Two such refinements are presented in this thesis. In the first study, novel trigger chains are examined to improve the signal efficiency in data-taking, comparing them to baseline triggers used for the Run 2 analysis. The research considers new di-τ triggers with lower transverse momentum thresholds, the jet-only Delayed stream trigger from the HH->4b analysis, and proposed b+τ triggers. Together, the total trigger efficiency can be improved from 55% in Run 2 to up to 85% in Run 3. In the second study, a state-of-the-art machine learning algorithm, a transformer, is employed to separate ggF and VBF HH events. The study achieved a significant enhancement compared to the Run 2 analysis, based on a boosted decision tree. A 15% increase in VBF efficiency for the same ggF contamination, and a 100% increase in ggF rejection (inverted false positive rate) for the same VBF efficiency are found.
     
    
      Abstract
      The Higgs boson self-interaction is a direct probe of the shape of the Higgs potential, one of the last predictions of the Standard Model awaiting experimental confirmation. A major goal of the ATLAS Experiment for the ongoing Run 3 of the LHC is to investigate the self-interaction via searches for Higgs boson pair production (HH). The HH->bbττ analysis targets one of the most sensitive channels for this search but necessitates refining its strategy for Run 3. Two such refinements are presented in this thesis. In the first study, novel trigger chains are examined to improve the signal efficiency in data-taking, comparing them to baseline triggers used for the Run 2 analysis. The research considers new di-τ triggers with lower transverse momentum thresholds, the jet-only Delayed stream trigger from the HH->4b analysis, and proposed b+τ triggers. Together, the total trigger efficiency can be improved from 55% in Run 2 to up to 85% in Run 3. In the second study, a state-of-the-art machine learning algorithm, a transformer, is employed to separate ggF and VBF HH events. The study achieved a significant enhancement compared to the Run 2 analysis, based on a boosted decision tree. A 15% increase in VBF efficiency for the same ggF contamination, and a 100% increase in ggF rejection (inverted false positive rate) for the same VBF efficiency are found.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea magistrale)
      
      
      
      
        
      
        
          Autore della tesi
          Rupnik Boero, Giovanni Battista
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          NUCLEAR AND SUBNUCLEAR PHYSICS
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          transformer,machine learning,trigger,ATLAS,LHC,Higgs boson
          
        
      
        
          Data di discussione della Tesi
          27 Marzo 2024
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Rupnik Boero, Giovanni Battista
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
          Indirizzo
          NUCLEAR AND SUBNUCLEAR PHYSICS
          
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          transformer,machine learning,trigger,ATLAS,LHC,Higgs boson
          
        
      
        
          Data di discussione della Tesi
          27 Marzo 2024
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: 
      
        