Ferrari, Edoardo
(2022)

*LQG control policy design against agent identity privacy problem.*
[Laurea magistrale], Università di Bologna, Corso di Studio in

Telecommunications engineering [LM-DM270], Documento full-text non disponibile

Il full-text non è disponibile per scelta dell'autore.
(

Contatta l'autore)

## Abstract

This thesis project studies the agent identity privacy problem in the scalar linear quadratic Gaussian (LQG) control system. For the agent identity privacy problem in the LQG control, privacy models and privacy measures have to be established first. It depends on a trajectory of correlated data rather than a single observation. I propose here privacy models and the corresponding privacy measures by taking into account the two characteristics. The agent identity is a binary hypothesis: Agent A or Agent B. An eavesdropper is assumed to make a hypothesis testing on the agent identity based on the intercepted environment state sequence. The privacy risk is measured by the Kullback-Leibler divergence between the probability distributions of state sequences under two hypotheses. By taking into account both the accumulative control reward and privacy risk, an optimization problem of the policy of Agent B is formulated. The optimal deterministic privacy-preserving LQG policy of Agent B is a linear mapping. A sufficient condition is given to guarantee that the optimal deterministic privacy-preserving policy is time-invariant in the asymptotic regime. An independent Gaussian random variable cannot improve the performance of Agent B. The numerical experiments justify the theoretic results and illustrate the reward-privacy trade-off. Based on the privacy model and the LQG control model, I have formulated the mathematical problems for the agent identity privacy problem in LQG. The formulated problems address the two design objectives: to maximize the control reward and to minimize the privacy risk. I have conducted theoretic analysis on the LQG control policy in the agent identity privacy problem and the trade-off between the control reward and the privacy risk.Finally, the theoretic results are justified by numerical experiments. From the numerical results, I expected to have some interesting observations and insights, which are explained in the last chapter.

Abstract

This thesis project studies the agent identity privacy problem in the scalar linear quadratic Gaussian (LQG) control system. For the agent identity privacy problem in the LQG control, privacy models and privacy measures have to be established first. It depends on a trajectory of correlated data rather than a single observation. I propose here privacy models and the corresponding privacy measures by taking into account the two characteristics. The agent identity is a binary hypothesis: Agent A or Agent B. An eavesdropper is assumed to make a hypothesis testing on the agent identity based on the intercepted environment state sequence. The privacy risk is measured by the Kullback-Leibler divergence between the probability distributions of state sequences under two hypotheses. By taking into account both the accumulative control reward and privacy risk, an optimization problem of the policy of Agent B is formulated. The optimal deterministic privacy-preserving LQG policy of Agent B is a linear mapping. A sufficient condition is given to guarantee that the optimal deterministic privacy-preserving policy is time-invariant in the asymptotic regime. An independent Gaussian random variable cannot improve the performance of Agent B. The numerical experiments justify the theoretic results and illustrate the reward-privacy trade-off. Based on the privacy model and the LQG control model, I have formulated the mathematical problems for the agent identity privacy problem in LQG. The formulated problems address the two design objectives: to maximize the control reward and to minimize the privacy risk. I have conducted theoretic analysis on the LQG control policy in the agent identity privacy problem and the trade-off between the control reward and the privacy risk.Finally, the theoretic results are justified by numerical experiments. From the numerical results, I expected to have some interesting observations and insights, which are explained in the last chapter.

Tipologia del documento

Tesi di laurea
(Laurea magistrale)

Autore della tesi

Ferrari, Edoardo

Relatore della tesi

Correlatore della tesi

Scuola

Corso di studio

Ordinamento Cds

DM270

Parole chiave

LQG,Privacy,Agent identity,Reward

Data di discussione della Tesi

27 Maggio 2022

URI

## Altri metadati

Tipologia del documento

Tesi di laurea
(NON SPECIFICATO)

Autore della tesi

Ferrari, Edoardo

Relatore della tesi

Correlatore della tesi

Scuola

Corso di studio

Ordinamento Cds

DM270

Parole chiave

LQG,Privacy,Agent identity,Reward

Data di discussione della Tesi

27 Maggio 2022

URI

Gestione del documento: