A myo-controlled wearable manipulation system with tactile sensing for prosthetics studies

Perozzi, Marco (2022) A myo-controlled wearable manipulation system with tactile sensing for prosthetics studies. [Laurea magistrale], Università di Bologna, Corso di Studio in Automation engineering / ingegneria dell’automazione [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (27MB)


The following thesis project aims to study and realize a wearable manipulation system composed by an AR10 robotic hand, controlled via myoelectric signals and tactile sensors for prosthetic studies. The project starts with the kinematic study of the hand via MATLAB and Simulink, in order to obtain a complete insight on the robotic grasping device. Thereafter, a wearable support has been designed and printed to fix the robotic hand around the user forearm. Surface electromyography is acquired using a gForce gesture armband. A Simulink system has been developed to acquire and filter the signals, then the myoelectric data are elaborated to derive the command for the robotic hand. Tactile sensors are added by means of custom 3D-printed support on the fingertips in order to get a force feedback to allow the user to perform the grasp of different objects. Finally, in order to test the whole solution, a subject wearing the whole manipulation system carried out a series of tasks to evaluate the system’s usability during dynamic grasps of different objects. The results of the tests report the accuracy of the manipulation system. The main goal of the project is to test a wearable manipulation system made to be worn by intact subjects, in order to study prosthetic grasping scenarios that can provide results useful for future developments involving amputees.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Perozzi, Marco
Relatore della tesi
Correlatore della tesi
Corso di studio
Ordinamento Cds
Parole chiave
myo-control, robotic hand, tactile, wearable, prosthetic, electromyography, sEMG, muscular synergy, neural drive
Data di discussione della Tesi
3 Febbraio 2022

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento