Development of a Predictive Control Function for a Plug-in Hybrid Electric Vehicle with Electrically-heated Catalyst

Canè, Stella (2021) Development of a Predictive Control Function for a Plug-in Hybrid Electric Vehicle with Electrically-heated Catalyst. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria meccanica [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (5MB)


This master thesis work is focused on the development of a predictive EHC control function for a diesel plug-in hybrid electric vehicle equipped with a EURO 7 compliant exhaust aftertreatment system (EATS), with the purpose of showing the advantages provided by the implementation of a predictive control strategy with respect to a rule-based one. A preliminary step will be the definition of an accurate powertrain and EATS physical model, starting from already existing and validated applications. Then, a rule-based control strategy managing the torque split between the electric motor (EM) and the internal combustion engine (ICE) will be developed and calibrated, with the main target of limiting tailpipe NOx emission by taking into account EM and ICE operating conditions together with EATS conversion efficiency. The information available from vehicle connectivity will be used to reconstruct the future driving scenario, also referred to as electronic horizon (eHorizon), and in particular to predict ICE first start. Based on this knowledge, an EATS pre-heating phase can be planned to avoid low pollutant conversion efficiencies, thus preventing high NOx emission due to engine cold start. Consequently, the final NOx emission over the complete driving cycle will be strongly reduced, allowing to comply with the limits potentially set by the incoming EURO 7 regulation. Moreover, given the same NOx emission target, the gain achieved thanks to the implementation of an EHC predictive control function will allow to consider a simplified EATS layout, thus reducing the related manufacturing cost. The promising results achieved in terms of NOx emission reduction show the effectiveness of the application of a predictive control strategy focused on EATS thermal management and highlight the potential of a complete integration and parallel development of involved vehicle physical systems, control software and connectivity data management.

Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Canè, Stella
Relatore della tesi
Correlatore della tesi
Corso di studio
Ordinamento Cds
Parole chiave
PHEV,predictive functions,eHorizon,electrically-heated catalyst,pollutant emission control
Data di discussione della Tesi
8 Ottobre 2021

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento