Drusiani, Alberto
 
(2018)
Deep Learning Text Classification for Medical Diagnosis.
[Laurea], Università di Bologna, Corso di Studio in 
Informatica [L-DM270]
   
  
  
        
        
	
  
  
  
  
  
  
  
    
  
    
      Documenti full-text disponibili:
      
        
          
            ![[thumbnail of Thesis]](https://amslaurea.unibo.it/style/images/fileicons/application_pdf.png)  | 
            
              
Documento PDF (Thesis)
   Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
 
              Download (1MB)
              
			  
			  
              
  
              
             | 
          
        
      
    
  
  
    
      Abstract
      The ICD coding is the international standard for the classification of diseases and related disorders, drawn up by the World Health Organization. It was introduced to simplify the exchange of medical data, to speed up statistical analyzes and to make insurance reimbursements efficient.
The manual classification of ICD-9-CM codes still requires a human effort that implies a considerable waste of resources and for this reason several methods have been presented over the years to automate the process.
In this thesis an approach is proposed for the automatic classification of medical diagnoses in ICD-9-CM codes using the Recurrent Neural Networks, in particular the LSTM module, and exploiting the word embedding. The results were satisfactory as we were able to obtain better accuracy than Support Vector Machines, the most used traditional method. Furthermore, we have shown the effectiveness of specific domain embedding models compared to general ones.
     
    
      Abstract
      The ICD coding is the international standard for the classification of diseases and related disorders, drawn up by the World Health Organization. It was introduced to simplify the exchange of medical data, to speed up statistical analyzes and to make insurance reimbursements efficient.
The manual classification of ICD-9-CM codes still requires a human effort that implies a considerable waste of resources and for this reason several methods have been presented over the years to automate the process.
In this thesis an approach is proposed for the automatic classification of medical diagnoses in ICD-9-CM codes using the Recurrent Neural Networks, in particular the LSTM module, and exploiting the word embedding. The results were satisfactory as we were able to obtain better accuracy than Support Vector Machines, the most used traditional method. Furthermore, we have shown the effectiveness of specific domain embedding models compared to general ones.
     
  
  
    
    
      Tipologia del documento
      Tesi di laurea
(Laurea)
      
      
      
      
        
      
        
          Autore della tesi
          Drusiani, Alberto
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Deep learning,text classification,data mining,LSTM,neural networks,ICD,ICD-9-CM,Medical diagnosis,machine learning,recurrent neural networks
          
        
      
        
          Data di discussione della Tesi
          19 Dicembre 2018
          
        
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Tesi di laurea
(NON SPECIFICATO)
      
      
      
      
        
      
        
          Autore della tesi
          Drusiani, Alberto
          
        
      
        
          Relatore della tesi
          
          
        
      
        
          Correlatore della tesi
          
          
        
      
        
          Scuola
          
          
        
      
        
          Corso di studio
          
          
        
      
        
      
        
      
        
          Ordinamento Cds
          DM270
          
        
      
        
          Parole chiave
          Deep learning,text classification,data mining,LSTM,neural networks,ICD,ICD-9-CM,Medical diagnosis,machine learning,recurrent neural networks
          
        
      
        
          Data di discussione della Tesi
          19 Dicembre 2018
          
        
      
      URI
      
      
     
   
  
  
  
  
  
    
    Statistica sui download
    
    
  
  
    
      Gestione del documento: