A Comparative Analysis of Darwinian Asexual and Sexual Reproduction in Evolutionary Robotics

Longhi, Carlo (2023) A Comparative Analysis of Darwinian Asexual and Sexual Reproduction in Evolutionary Robotics. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (2MB)

Abstract

Evolutionary Robotics systems draw inspiration from natural evolution to solve the problem of robot design. A key moment in the evolutionary process is reproduction, when the genotype of one or more parents is inherited by their offspring. Existent approaches have used both sexual and asexual reproduction but a comparison between the two is still missing. In this work, we study the effects of sexual and asexual reproduction on the controllers of an Evolutionary Robotics system. In our system, both morphologies and controllers are jointly evolved to solve two separate tasks. We adopt the Triangle of Life framework, in which the controllers go through a phase of learning before reproduction. Using extensive simulations we show that sexual reproduction of the robots' brains is preferable over asexual reproduction as it obtains better robots in terms of fitness. Moreover, we show that sexually reproducing robots present different morphologies and behaviors than the asexually reproducing ones, even though the reproduction mechanism only affects their brains. Finally, we study the effects of the reproduction mechanism on the robots' learning capabilities. By measuring the difference between the inherited and the learned brain we find that robots that evolved using sexual reproduction have better inherited brains and are also better learners.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Longhi, Carlo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Embodied Intelligence,Machine Learning,Artificial Intelligence,Evolutionary Robotics
Data di discussione della Tesi
23 Marzo 2023
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^