Development of innovative calibration methodologies for particle number reduction on a highly boosted GDI engine during catalyst heating with an artificial neural network

Procopio, Emanuele (2023) Development of innovative calibration methodologies for particle number reduction on a highly boosted GDI engine during catalyst heating with an artificial neural network. [Laurea magistrale], Università di Bologna, Corso di Studio in Ingegneria meccanica [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[thumbnail of Thesis] Documento PDF (Thesis)
Full-text non accessibile fino al 27 Marzo 2028.
Disponibile con Licenza: Creative Commons: Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (1MB) | Contatta l'autore

Abstract

Since particle number emissions are going to be one of the main concerns for automotive companies due to the new legislations, this thesis describe an innovative method to reduce this type of pollutant. To do that, an Artificial Neural Network have been developed and trained on a dataset acquired with Design of Experiment method. In the end, the results achieved have been used to propose an optimized calibration.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Procopio, Emanuele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
CURRICULUM MOTOVEICOLO
Ordinamento Cds
DM270
Parole chiave
Artificial Neural Network,Design of Experiment,GDI engine,calibration,Particle number,turbocharged,high performance engine
Data di discussione della Tesi
24 Marzo 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^