Framework for anomaly detection on photovoltaic plants

Romito, Francesco (2023) Framework for anomaly detection on photovoltaic plants. [Laurea magistrale], Università di Bologna, Corso di Studio in Artificial intelligence [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore. (Contatta l'autore)

Abstract

Technological advancement has undergone exponential growth in recent years, and this has brought significant improvements in the computational capabilities of computers, which can now perform an enormous amount of calculations per second. Taking advantage of these improvements has made it possible to devise algorithms that are very demanding in terms of the computational resources needed to develop architectures capable of solving the most complex problems: currently the most powerful of these are neural networks and in this thesis I will combine these tecniques with classical computer vision algorithms to improve the speed and accuracy of maintenance in photovoltaic facilities.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Romito, Francesco
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
YOLO,orthomapping,drone,stratified-split
Data di discussione della Tesi
3 Febbraio 2023
URI

Altri metadati

Gestione del documento: Visualizza il documento

^