Perlino, Michele
(2022)
Machine Learning in ambito assicurativo Un caso di studio.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Informatica [LM-DM270], Documento full-text non disponibile
Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
Il Machine Learning si sta rivelando una tecnologia dalle incredibili potenzialità nei settori più disparati. Le diverse tecniche e gli algoritmi che vi fanno capo abilitano analisi dei dati molto più efficaci rispetto al passato.
Anche l’industria assicurativa sta sperimentando l’adozione di soluzioni di Machine Learning e diverse sono le direzioni di innovamento che ne stanno conseguendo, dall’efficientamento dei processi interni all’offerta di prodotti rispondenti in maniera adattiva alle esigenze del cliente.
Questo lavoro di tesi è stato realizzato durante un tirocinio presso Unisalute S.p.A., la prima assicurazione in ambito sanitario in Italia. La criticità intercettata è stata la sovrastima del capitale
da destinare a riserva a fronte dell’impegno nei confronti dell’assicurato: questo capitale immobilizzato va a sottrarre risorse ad investimenti più proficui nel medio e lungo termine, per cui è di valore stimarlo appropriatamente.
All'interno del settore IT di Unisalute, ho lavorato alla progettazione e implementazione di un modello di Machine Learning che riesca a prevedere se un sinistro appena preso in gestione sarà liquidato o meno. Dotare gli uffici impegnati nella determinazione del riservato di questa stima aggiuntiva basata sui dati, sarebbe di notevole supporto.
La progettazione del modello di Machine Learning si è articolata in una Data Pipeline contenente le metodologie più efficienti con riferimento al preprocessamento e alla modellazione dei dati. L’implementazione ha visto Python come linguaggio di programmazione; il dataset, ottenuto a seguito di estrazioni e integrazioni a partire da diversi database Oracle, presenta una cardinalità di oltre 4 milioni di istanze caratterizzate da 32 variabili.
A valle del tuning degli iperparamentri e dei vari addestramenti, si è raggiunta un’accuratezza dell’86% che, nel dominio di specie, è ritenuta più che soddisfacente e sono emersi contributi non noti alla liquidabilità dei sinistri.
Abstract
Il Machine Learning si sta rivelando una tecnologia dalle incredibili potenzialità nei settori più disparati. Le diverse tecniche e gli algoritmi che vi fanno capo abilitano analisi dei dati molto più efficaci rispetto al passato.
Anche l’industria assicurativa sta sperimentando l’adozione di soluzioni di Machine Learning e diverse sono le direzioni di innovamento che ne stanno conseguendo, dall’efficientamento dei processi interni all’offerta di prodotti rispondenti in maniera adattiva alle esigenze del cliente.
Questo lavoro di tesi è stato realizzato durante un tirocinio presso Unisalute S.p.A., la prima assicurazione in ambito sanitario in Italia. La criticità intercettata è stata la sovrastima del capitale
da destinare a riserva a fronte dell’impegno nei confronti dell’assicurato: questo capitale immobilizzato va a sottrarre risorse ad investimenti più proficui nel medio e lungo termine, per cui è di valore stimarlo appropriatamente.
All'interno del settore IT di Unisalute, ho lavorato alla progettazione e implementazione di un modello di Machine Learning che riesca a prevedere se un sinistro appena preso in gestione sarà liquidato o meno. Dotare gli uffici impegnati nella determinazione del riservato di questa stima aggiuntiva basata sui dati, sarebbe di notevole supporto.
La progettazione del modello di Machine Learning si è articolata in una Data Pipeline contenente le metodologie più efficienti con riferimento al preprocessamento e alla modellazione dei dati. L’implementazione ha visto Python come linguaggio di programmazione; il dataset, ottenuto a seguito di estrazioni e integrazioni a partire da diversi database Oracle, presenta una cardinalità di oltre 4 milioni di istanze caratterizzate da 32 variabili.
A valle del tuning degli iperparamentri e dei vari addestramenti, si è raggiunta un’accuratezza dell’86% che, nel dominio di specie, è ritenuta più che soddisfacente e sono emersi contributi non noti alla liquidabilità dei sinistri.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Perlino, Michele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum B: Informatica per il management
Ordinamento Cds
DM270
Parole chiave
Machine Learning,Intelligenza Artificiale,Ensemble Learning,Insurtech
Data di discussione della Tesi
13 Luglio 2022
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Perlino, Michele
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum B: Informatica per il management
Ordinamento Cds
DM270
Parole chiave
Machine Learning,Intelligenza Artificiale,Ensemble Learning,Insurtech
Data di discussione della Tesi
13 Luglio 2022
URI
Gestione del documento: