Lamma, Tommaso
(2021)
A mathematical introduction to geometric deep learning.
[Laurea], Università di Bologna, Corso di Studio in Fisica [L-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato Download (1MB) | Contatta l'autore |
Abstract
Lo scopo del geometric deep learning è quello di estendere l'algoritmo di deep learning sviluppato per la classificazione di immagini a domini non euclidei come grafi e complessi simpliciali.In questa tesi ci proponiamo di dare una definizione matematica dei concetti cardine utilizzati nel geometric deep learning quali equivarianza e convoluzione sui grafi. Vedremo inoltre come definire una rete convoluzionale invariante rispetto all'azione di gruppi.
Abstract