Documenti full-text disponibili:
|
Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (4MB)
|
Abstract
The term “Additive Manufacturing” is described as the layered production of parts from a 3D file. Over the past century, this technology has evolved from a complement tool for conventional product development into an independent production method. Whereas high technology industries such as aerospace and medicine were already embraced additive manufacturing, structural engineering and architecture are lagging. Additive manufacturing has the potential to revolutionize the construction and restoration of historic buildings, with foreseeable benefits including highly complex and efficient structures with the reduction in material use and wastage, streamlining and expedition of the design-build process, improved customization. However, there are also challenges and demands: a new way of thinking for design and verifications for stability and serviceability of printed elements, the cost, the need for well-educated engineers.
In this dissertation, the current state of additive manufacturing in construction and historic building restoration/rehabilitation is reviewed as a combination of qualitative and quantitative-based studies. The research aims to give confidence to additive manufacturing applicability in these fields and stimulate further research. The opportunities and challenges are discussed by analysing concrete, polymer, and metal-based processes and their applications of additive manufacturing in the construction sector. A review of structural and non-structural applications in restoration projects, possible future applications in terms of structural strengthening are analysed and opportunities and challenges are identified and discussed. Based on the literature review and experimental lab tests, the outcome was obtained as the tensile mechanical properties are adequate for structural engineering applications. However, further interdisciplinary research on additive manufacturing is necessary to build confidence in structural engineers and architects.
Abstract
The term “Additive Manufacturing” is described as the layered production of parts from a 3D file. Over the past century, this technology has evolved from a complement tool for conventional product development into an independent production method. Whereas high technology industries such as aerospace and medicine were already embraced additive manufacturing, structural engineering and architecture are lagging. Additive manufacturing has the potential to revolutionize the construction and restoration of historic buildings, with foreseeable benefits including highly complex and efficient structures with the reduction in material use and wastage, streamlining and expedition of the design-build process, improved customization. However, there are also challenges and demands: a new way of thinking for design and verifications for stability and serviceability of printed elements, the cost, the need for well-educated engineers.
In this dissertation, the current state of additive manufacturing in construction and historic building restoration/rehabilitation is reviewed as a combination of qualitative and quantitative-based studies. The research aims to give confidence to additive manufacturing applicability in these fields and stimulate further research. The opportunities and challenges are discussed by analysing concrete, polymer, and metal-based processes and their applications of additive manufacturing in the construction sector. A review of structural and non-structural applications in restoration projects, possible future applications in terms of structural strengthening are analysed and opportunities and challenges are identified and discussed. Based on the literature review and experimental lab tests, the outcome was obtained as the tensile mechanical properties are adequate for structural engineering applications. However, further interdisciplinary research on additive manufacturing is necessary to build confidence in structural engineers and architects.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Kaya, Fuat Emre
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Historic buildings rehabilitation
Ordinamento Cds
DM270
Parole chiave
3D printing,Additive manufacturing,Applications,Concrete,Construction,Historic buildings,Large scale,Metal,Polymers,Rehabilitation,Restoration,Structural engineering,Wire-and-arc
Data di discussione della Tesi
15 Marzo 2021
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Kaya, Fuat Emre
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Historic buildings rehabilitation
Ordinamento Cds
DM270
Parole chiave
3D printing,Additive manufacturing,Applications,Concrete,Construction,Historic buildings,Large scale,Metal,Polymers,Rehabilitation,Restoration,Structural engineering,Wire-and-arc
Data di discussione della Tesi
15 Marzo 2021
URI
Statistica sui download
Gestione del documento: