A Gaussian Process Learning Method for Nonlinear Optimal Control

Rosato, Andrea (2021) A Gaussian Process Learning Method for Nonlinear Optimal Control. [Laurea magistrale], Università di Bologna, Corso di Studio in Automation engineering / ingegneria dell’automazione [LM-DM270], Documento ad accesso riservato.
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Full-text accessibile solo agli utenti istituzionali dell'Ateneo
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (7MB) | Contatta l'autore

Abstract

This thesis is focused on discrete-time nonlinear optimal control techniques enhanced via a supervised learning approach based on Gaussian Process regression. Since optimal control strategies are strongly model-based, a perfect knowledge of the real system is required in order to obtain the best performances; however, it is not always possible to satisfy these requirements, since model uncertainties due to, e.g., unavailable information or hard to model dynamical effects may be present leading to a suboptimal solution for the real problem. The basic idea is to exploit measurement data to reduce (and possibly mitigate) model uncertainty. In this context, a machine learning tool, Gaussian Processes, provides a flexible and easy tool to directly assess the residual model uncertainty and to enhance the control performances. In this work, Sequential Open Loop and Differential Dynamic Programming, two well-known optimal control strategies, are adapted such that to include Gaussian Process regression. The resulting strategies adopt a simultaneous approach: at each iteration, an optimization step is executed such that a trajectory with a lower cost than the previous one is obtained. Then a learning step is performed, in order to collect data which improve the regression for next iterations. Thanks to Gaussian Process regression, the new strategies are able to solve optimal control problems when model uncertainties are present. Furthermore, the learning part is enhanced by including a selection policy which rejects not useful measurements, such that to speed-up the resolution and to assure more stability to the algorithm.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Rosato, Andrea
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
Nonlinear Optimal Control,Gaussian Process
Data di discussione della Tesi
10 Marzo 2021
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^