Differential calculus in metric measure spaces

Calisti, Matteo (2020) Differential calculus in metric measure spaces. [Laurea magistrale], Università di Bologna, Corso di Studio in Matematica [LM-DM270]
Documenti full-text disponibili:
[img] Documento PDF (Thesis)
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato

Download (617kB)

Abstract

L'obbiettivo di questa tesi è la definizione del calcolo differenziale e dell'operatore di Laplace in spazi metrici di misura. Nel primo capitolo vengono introdotte le definizioni e proprietà principali degli spazi metrici di misura mentre nel secondo quelle riguardanti le funzioni lipschitziane e la derivata metrica di curve assolutamente continue. Nel terzo capitolo quindi viene definito il concetto di p-supergradiente debole e di conseguenza la classe di Sobolev S^p. Nel quarto capitolo viene poi studiata la generalizzazione del concetto di differenziale di f applicato al gradiente di g che da luogo a due funzioni che in generale risultano diverse, ma se coincidono lo spazio verrà detto q-infinitesimamente strettamente convesso. Vengono quindi dimostrate alcune regole della catena per per queste due funzioni attraverso la dualità fra lo spazio S^p e un opportuno spazio di misure dette q-piani test. In particolare mediante l'introduzione del funzionale energia di Cheeger e il suo flusso-gradiente sarà possibile associare un piano di trasporto al gradiente di una funzione in S^p. Nel quinto capitolo viene definito il p-laplaciano e le regole di calcolo provate precedentemente saranno usate per provare quelle per il laplaciano. Verranno poi definiti gli spazi infitesimamente di Hilbert: in questo caso il laplaciano assume un solo valore e risulta linearmente dipendente da g e si dimostra un'identificazione tra differenziali e gradienti. Nell'ultima parte del quinto capitolo infine viene mostrata un'applicazione del calcolo differenziale in spazi metrici di misura al gruppo di Heisenberg, considerandolo uno spazio metrico di misura munito della metrica di Korany e la misura di Lebesgue. Nella prima parte si mostra che il laplaciano metrico coincide con quello subriemanniano. Viene poi considerata nella seconda parte la sottovarietà {x=0} e si dimostra come il laplaciano metrico sia diverso da quello differenziale.

Abstract
Tipologia del documento
Tesi di laurea (Laurea magistrale)
Autore della tesi
Calisti, Matteo
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
metric measure theory spaces laplacian subriemannian manifolds sub-laplacian heisenberg group duality test plan differential gradient radon nikodym calculus chain leibniz rule distance norm hilbert infinitesimally convex strictly
Data di discussione della Tesi
30 Ottobre 2020
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza il documento

^