Il full-text non è disponibile per scelta dell'autore.
(
Contatta l'autore)
Abstract
This thesis proposes algorithms for motion planning to navigate robot in cluttered environment and a robust velocity-based tracking controller for Differential Drive Wheel Mobile Robot (DDWMR).
First, the thesis presents, an offline A* path planning algorithm is used to find sequence of optimal waypoints in a two-dimensional occupancy grid also taking in account obstacle avoidance minimum distance criteria and using these waypoints, reference trajectory is generated based on the constraints on DDWMR.
Second, the design of online non-linear back-stepping tracking controller for DDWMR, based on PSO algorithm in the selection of optimal controller gains.
Abstract
This thesis proposes algorithms for motion planning to navigate robot in cluttered environment and a robust velocity-based tracking controller for Differential Drive Wheel Mobile Robot (DDWMR).
First, the thesis presents, an offline A* path planning algorithm is used to find sequence of optimal waypoints in a two-dimensional occupancy grid also taking in account obstacle avoidance minimum distance criteria and using these waypoints, reference trajectory is generated based on the constraints on DDWMR.
Second, the design of online non-linear back-stepping tracking controller for DDWMR, based on PSO algorithm in the selection of optimal controller gains.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Gandhi, Yogesh
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
A*, obstacle avoidance, non-linear controller, PSO, trajectory planner, robotics
Data di discussione della Tesi
14 Dicembre 2017
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Gandhi, Yogesh
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Ordinamento Cds
DM270
Parole chiave
A*, obstacle avoidance, non-linear controller, PSO, trajectory planner, robotics
Data di discussione della Tesi
14 Dicembre 2017
URI
Gestione del documento: