Quercioli, Nicola
(2017)
A compactness theorem in group invariant persistent homology.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Matematica [LM-DM270]
Documenti full-text disponibili:
Abstract
In this thesis we present a new result concerning the theory of group invariant persistent homology. This theory adapts persistent homology in the presence of the action on a space of functions Phi of a subgroup G of the group H of all self-homeomorphisms of a topological space X. Its model is based on a space of suitable operators defined on Phi. After describing the mathematical setting and recalling some basic results, we prove that the space of these operators is compact with respect to a suitable topology. In order to prove this result, we require that Phi, G, X are compact.
Abstract
In this thesis we present a new result concerning the theory of group invariant persistent homology. This theory adapts persistent homology in the presence of the action on a space of functions Phi of a subgroup G of the group H of all self-homeomorphisms of a topological space X. Its model is based on a space of suitable operators defined on Phi. After describing the mathematical setting and recalling some basic results, we prove that the space of these operators is compact with respect to a suitable topology. In order to prove this result, we require that Phi, G, X are compact.
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Quercioli, Nicola
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
group invariant persistent homology group invariant non-expansive operator natural pseudo-distance
Data di discussione della Tesi
31 Marzo 2017
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Quercioli, Nicola
Relatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Generale e applicativo
Ordinamento Cds
DM270
Parole chiave
group invariant persistent homology group invariant non-expansive operator natural pseudo-distance
Data di discussione della Tesi
31 Marzo 2017
URI
Statistica sui download
Gestione del documento: