
Alma Mater Studiorum · Università di
Bologna

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI

Corso di Laurea Magistrale in Matematica

A COMPACTNESS THEOREM
IN GROUP INVARIANT

PERSISTENT HOMOLOGY

Tesi di Laurea in Topologia Computazionale

Relatore:
Chiar.mo Prof.
Patrizio Frosini

Presentata da:
Nicola Quercioli

Sessione Unica
Anno Accademico 2015-2016



2



Contents

1 Introduction 5

2 Mathematical settings 13

2.1 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Strongly Group-invariant Comparison . . . . . . . . . . . . . . 27
2.3 Approximating D

W′,k
match . . . . . . . . . . . . . . . . . . . . . . 28

3 Main results 31

3



4 CONTENTS



Chapter 1

Introduction

In topological data analysis datasets are frequently represented by Rm-
valued continuous functions defined on a topological space X. As simple
examples among many others, these functions can describe the coloring of
3D objects, the coordinates of the points in a planar curve, or the grey-levels
in X-ray CT images. Therefore, we want to compare these datasets and
see if they are similar and how much they are similar. For this purpose,
we can use two mathematical tools: the natural pseudo-distance and group
invariant persistent homology. Let Φ be a set of functions from X to Rm

and G a subgroup of the group Homeo(X) of all self-homeomorphisms of
X. We assume that the group G acts on Φ by composition on the right.
Hence, we can define the natural pseudo-distance dG on Φ. In plain words,
the definition of this pseudo-metric is based on the attempt of finding the
best correspondence between two functions of Φ. The natural pseudo-distance
represents our ground truth. Unfortunately, in many cases dG is difficult
to compute. This is also a consequence of the fact that we can easily find
subgroups G of Homeo(X) that cannot be approximated with arbitrary pre-
cision by finite subgroups of G. Nevertheless, dG can be approximated with
arbitrary precision by means of a dual approach based on persistent homology
and group invariant non-expansive operators. This approach is known as
group invariant persistent homology.
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Persistent homology consists in the study of the properties of filtered topologi-
cal spaces. Each continuous function ϕ : X → Rm is called a filtering function
and naturally induces a (multi)filtration on X, made by the sublevel sets of
ϕ. Hence, we analyse the data represented by a filtering function examining
how much the topological properties of its sublevel sets “persist” when we go
through the filtration. The main mathematical tool to perform this analysis is
given by persistent homology. This theory describes the birth and the death
of k-dimensional holes when we move along the considered filtration of the
space X. When the filtering function is real-valued we can look at it as a time,
and the distance between the times of birth and death of a hole is defined to
be its persistence. The more persistent is a hole, the more important it is for
shape comparison, since holes with small persistence are usually due to noise.
Moreover, if the function is real-valued, persistent homology is described by
suitable collections of points called persistence diagrams. These diagrams
can be compared by a suitable metric dmatch, called bottleneck (or matching)
distance. We observe that dmatch gives us a lower bound for the natural
pseudo-distance. For the sake of simplicity, in the rest of this thesis we will
assume that filtering functions are real-valued. An important property of
classical persistent homology consists in the fact that if a self-homeomorphism
g is given, then the filtering functions ϕ, ϕ ◦ g cannot be distinguished from
each other by computing the persistent homology of the filtrations induced by
ϕ and ϕ ◦ g. This is a relevant issue in the applications where the functions
ϕ, ϕ◦g cannot be considered equivalent. At first we present a possible solution
for the previously described problem. It consists in changing the direct study
of the group G into the study of how the operators that are invariant under
the action of G act on classical persistent homology. These operators are
functors between suitable categories. The objects of those categories are the
filtering functions and their arrows are the self-homeomorphisms in G. This
change of perspective allows us to treat G as a variable in our applications.
The use of operators allows to combine persistent homology and the invariance
with respect to the group G. In particular, the main result of this thesis is the
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proof of a compactness theorem for the set of these operators, under suitable
hypotheses. Moreover, this theorem has a corollary that allows us to find an
arbitrary good approximation for the natural pseudo-distance.

Outline of the thesis

Our work is organized as follows. In the second chapter we introduce the
mathematical setting that will be used in the thesis. Moreover, we recall some
basic concepts about persistent homology. In the third chapter we prove the
compactness theorem and some related results.
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Introduzione

Negli ultimi anni si è affermata in analisi topologica dei dati l’esigenza
di studiare insiemi di funzioni continue a valori reali su uno spazio topo-
logico. Tale esigenza nasce dal fatto che spesso nelle applicazioni abbiamo
solo misurazioni dello spazio topologico X che possono essere interpretate
come funzioni continue a valori reali o più in generale a valori in un opportuno
Rm. Semplici esempi possono essere: le funzioni che descrivono la colorazione
degli oggetti 3D, le coordinate dei punti di una curva piana oppure i livelli di
grigio di una immagine tomografica ottenuta tramite raggi X. Alla luce di
tutto ciò, vogliamo poter confrontare questi insiemi di dati, capire se sono
simili e quanto sono simili. A tal fine i due strumenti utilizzati nella tesi sono:
la pseudo-distanza naturale e l’omologia persistente invariante per gruppi.
Se Φ è un insieme di funzioni, su cui agisce per composizione a destra un sot-
togruppo G del gruppo Homeo(X) di tutti gli omeomorfismi di X, possiamo
definire la pseudo-distanza naturale dG su Φ. Tale distanza nasce dall’idea
di trovare l’omeomorfismo di “minor costo” che trasformi una nell’altra due
funzioni di Φ. Questa pseudo-metrica è lo strumento scelto per stabilire la
similitudine fra due funzioni, ma sfortunatamente in molti casi è difficile da
calcolare. Ciò è conseguenza del fatto che possiamo facilmente trovare sot-
togruppi di Homeo(X) che non possono essere arbitrariamente approssimati
da sottogruppi finiti.
In realtà, ed è proprio questo lo scopo della tesi, possiamo approssimare
dG con arbitraria precisione tramite un approccio duale basato su omologia
persistente e operatori non-espansivi invarianti per gruppi. Chiameremo tale
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10 CHAPTER 1. INTRODUCTION

approccio omologia persistente invariante per gruppi.
La persistenza omologica consiste nello studio delle proprietà delle filtrazioni
degli spazi topologici. Ogni funzione continua ϕ : X → Rm è chiamata
funzione filtrante e induce naturalmente una (multi)filtrazione su X, co-
stituita dagli insiemi di sottolivello di ϕ. Dunque andiamo ad analizzare i
dati rappresentati da ogni funzione filtrante esaminando quanto le proprietà
topologiche dei suoi insiemi di sottolivello “persistono” quando procediamo
con la filtrazione. Lo strumento matematico principale per questa analisi è
l’omologia persistente. Questa teoria ci descrive la nascita e la morte delle
classi omologiche k-dimensionali quando ci muoviamo lungo la filtrazione dello
spazio X presa in considerazione. Nel caso in cui la funzione filtrante prenda
valori reali, possiamo guardare ad essa come se fosse il tempo e la distanza
tra la nascita di una classe omologica e la sua morte è definita come la sua
persistenza. Tanto più è persistente una classe, quanto è più importante ai fini
del confronto di forma, dato che solitamente le classi con piccola persistenza
sono dovute al rumore. Inoltre se la funzione filtrante prende valori reali,
l’omologia persistente può essere descritta tramite un’opportuna collezione
di punti chiamata diagramma di persistenza. Tali diagrammi possono essere
messi a confronto tramite una metrica dmatch che viene detta distanza di
matching. È interessante osservare che la distanza di matching fornisce una
limitazione inferiore per la pseudo-distanza naturale. Per semplicità, per il
resto della tesi considereremo solo funzioni filtranti a valori reali.
Un’importante proprietà dell’omologia persistente è l’invarianza sotto l’azione
di omeomorfismi, cioè dati un omeomorfismo g : X → X e una funzione
filtrante ϕ, si ha che l’omologia persistente calcolata sulle filtrazioni indotte
da ϕ e ϕ◦g è la stessa. Nelle applicazioni ciò diventa un problema se ϕ e ϕ◦g
non possono essere considerate equivalenti. Quindi in primo luogo cerchiamo
di fornire una possibile risposta a tale problema, che consiste nel cambiare
l’oggetto di studio. Passiamo, dunque, all’analisi di come gli operatori in-
varianti rispetto a un certo sottogruppo G del gruppo degli Homeo(X) degli
omeomorfismi agiscono sulla persistenza omologica classica. Gli operatori
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che andremo a utilizzare, saranno più propriamente funtori definiti sulle
categorie che hanno per oggetti le funzioni filtranti ammissibili e come frecce
gli omeomorfismi del gruppo G. Questo cambio di prospettiva, ci permette
inoltre di utilizzare G come una variabile nelle nostre applicazioni. L’utilizzo
dei suddetti operatori ci consente di combinare l’omologia persistente classica
con l’invarianza rispetto a G. In particolare, il risultato principale della tesi
è la dimostrazione di un teorema di compattezza per l’insieme di tali opera-
tori, sotto opportune ipotesi. Tale teorema ci permetterà anche di fornire
sotto opportune condizioni una approssimazione arbitrariamente precisa della
pseudo-distanza naturale.
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Chapter 2

Mathematical settings

Let us consider a set X 6= ∅ and a compact topological subspace Φ of
the set of all bounded functions from X to R (equipped with the Euclidean
topology), denoted by RX

b and endowed with the topology induced by the
sup-norm ‖·‖∞. Since Φ is compact, we have that the normed real vector space
Φ is bounded, i.e., there exists a positive real value L, such that ||ϕ||∞ < L

for every ϕ ∈ Φ. Moreover, we suppose that every positive constant function
c, such that there exists ϕ ∈ Φ with c ≤ ||ϕ||∞, belongs to Φ.
Now we endow X with the initial topology with respect to Φ. We recall the
definition of initial topology [8]:

Definition 2.0.1. Let X be a set, I be an indexing set.
Let ((Yi, µi))i∈I be an indexed family of topological spaces indexed by I.
Let (fi : X → Yi)i∈I be an indexed family of mappings indexed by I.
Let µ be the coarsest topology on X such that each fi : X → Yi is (µ, µi)-
continuous. Then τ is known as the initial topology on X with respect to
(fi)i∈ I .

A base for X with this topology is

B = {
⋂
i∈I

ϕ−1
i (Ui), ∀I finite, ϕi ∈ Φ, ∀ Ui ⊆ R open set}.
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We can define a function

d(x1, x2) = sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)|

from X ×X to R.

Proposition 2.0.2. The function d is a pseudo-metric on X.

Remark 2.0.3. We recall that a pseudo-metric is just a distance d without the
property: if d(a, b) = 0, then a = b.

Proof. • The value d(x1, x2) is finite for every x1, x2 ∈ X , because Φ is
bounded. Indeed, a finite constant L exists such that ‖ϕ‖∞ ≤ L for
every ϕ ∈ Φ. Hence, |ϕ(x1) − ϕ(x2)| ≤ ‖ϕ‖∞ + ‖ϕ‖∞ ≤ 2L for any
ϕ ∈ Φ and any x1, x2 ∈ X. This implies that d(x1, x2) ≤ 2L for every
x1, x2 ∈ X.

• d is obviously symmetrical.

• The definition of d immediately implies that d(x, x) = 0 for any x ∈ X.

• The triangle inequality holds, since

d(x1, x2) = sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)|

≤ sup
ϕ∈Φ

(|ϕ(x1)− ϕ(x3)|+ |ϕ(x3)− ϕ(x2)|)

≤ sup
ϕ∈Φ
|ϕ(x1)− ϕ(x3)|+ sup

ϕ∈Φ
|ϕ(x3)− ϕ(x2)|

= d(x1, x3) + d(x3, x2)

for any x1, x2, x3 ∈ X.

Moreover, every pseudometric space (X, d) can be considered as a topo-
logical space by choosing as a base Bd the set of all the sets

B(x, ε) = {x′ ∈ X : d(x, x′) < ε}
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where ε > 0 and x ∈ X (see, [6]).

We can find a method to approximate d:

Proposition 2.0.4. Let x1, x2 ∈ X. Then for any δ > 0 there exists Φδ,
finite subset of Φ, such that

| sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| − sup

ϕ∈Φδ
|ϕ(x1)− ϕ(x2)|| ≤ 2δ

Proof. Let fix x1, x2 ∈ X. Since Φ is compact, we can find a finite subset
Φδ = {ϕ1, . . . , ϕn} such that for each ϕ ∈ Φ there exists ϕi ∈ Φδ, for which
||ϕ−ϕi||∞ ≤ δ and it follows that for any x ∈ X, |ϕ(x)−ϕi(x)| ≤ δ. Because
of the definition of supremum of a subset of the set R+ of all positive real
numbers, for any ε > 0 we can choose a ϕ̄ ∈ Φ such that

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| − |ϕ̄(x1)− ϕ̄(x2)| ≤ ε.

Now, if we take an index i, for which ||ϕ̄− ϕi||∞ ≤ δ, we have that:

|ϕ̄(x1)− ϕ̄(x2)| = |ϕ̄(x1)− ϕi(x1) + ϕi(x1)− ϕi(x2) + ϕi(x2)− ϕ̄(x2)|

= |ϕ̄(x1)− ϕi(x1)|+ |ϕi(x1)− ϕi(x2)|+ |ϕi(x2)− ϕ̄(x2)|

≤ |ϕi(x1)− ϕi(x2)|+ 2δ

≤ sup
ϕj∈Φδ

|ϕj(x1)− ϕj(x2)|+ 2δ

Hence,

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| − ε ≤ |ϕ̄(x1)− ϕ̄(x2)| ≤ sup

ϕj∈Φδ
|ϕj(x1)− ϕj(x2)|+ 2δ.

Finally, as ε goes to zero, we have that

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| ≤ sup

ϕj∈Φδ
|ϕj(x1)− ϕj(x2)|+ 2δ.
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On the other hand, since Φδ ⊆ Φ:

sup
ϕ∈Φ
|ϕ(x1)− ϕ(x2)| ≥ sup

ϕj∈Φδ
|ϕj(x1)− ϕj(x2)|.

Therefore we proved the statement.

Now we want to say something more about the connection between these
two topologies on X.

Proposition 2.0.5. The initial topology µ on X with respect to Φ is finer than
the topology τ on X induced by the pseudo-metric d(x1, x2) = supϕ∈Φ |ϕ(x1)−
ϕ(x2)|.

Proof. Let B = B(x, ε) be an open ball in τ . It is sufficient to show that
B is an open set in the initial topology. This is true if we prove that
B =

⋃
(
⋂
i∈I ϕ

−1
i (Ui)), where I is a finite set.

By the definition of an open set in τ , ∀y ∈ B, there exist a positive δ and
a positive ε′ < ε − 2δ such that B(y, ε′) ⊆ B. Let us consider a finite set
Φδ ⊆ Φ so that for all ϕ ∈ Φ, there exists a ϕi ∈ Φδ for which ||ϕ−ϕi||∞ ≤ δ.
Moreover, ∀x, x′ ∈ X:

sup
ϕ′∈Φδ

|ϕ′(x)− ϕ′(x′)| ≤ sup
ϕ∈Φ
|ϕ(x)− ϕ(x′)|.

Hence, we can define

Bδ(y, ε′) = {x̄ ∈ X| sup
ϕ∈Φδ
|ϕ(y)− ϕ(x̄)| < ε′} ⊆ B(y, ε′ + 2δ).

We claim that Uy =
⋂
ϕ̃∈Φδ ϕ̃

−1( ]ϕ̃(y) − ε′, ϕ̃(y) + ε′[ ) ⊆ Bδ(y, ε′). Surely,
Uy 6= ∅ because at least y belongs to the set.
If z ∈ Uy, then |ϕ̃(z)− ϕ̃(y)| < ε′ for every ϕ̃ ∈ Φδ. Therefore, z ∈ Bδ(y, ε′).
Therefore, Uy ⊆ Bδ(y, ε′) ⊆ B(y, ε) ⊆ B, because of Proposition 2.0.4. Hence,⋃
y Uy = B.

In conclusion, we wrote B = B(x, ε) as an open set in the initial topology.
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Proposition 2.0.6. The topology τ on X induced by the pseudo-metric
d(x1, x2) = supϕ∈Φ |ϕ(x1) − ϕ(x2)| is finer than the initial topology µ on X

with respect to Φ.

Proof. It is sufficient to show that ϕ1(U1) ∩ ϕ2(U2) ∩ · · · ∩ ϕt(Ut) is an open
set in the pseudometric topology τ , where t ∈ N, ϕi ∈ Φ for all i = 1, . . . , t

and Ui ⊂ R is an open set for all i = 1, . . . , t. This is true if we prove that
ϕ−1
i (Ui) =

⋃
j Bj(xj, rj).

Without loss of generality, we can consider ϕ−1
1 (U1), but U1 =

⋃
i]ai, bi[, ai, bi ∈

R for any i and ϕ−1
1 (
⋃
i]ai, bi[) =

⋃
i(ϕ
−1
1 ( ]ai, bi[ ), so we can focus on showing

that ϕ−1
1 ( ]a, b[ ) =

⋃
k Bk(xk, rk). If y ∈ ϕ−1

1 ( ]a, b[ ), then there exists
c ∈]a, b[ such that ϕ(y) = c.
Now let us consider my = min{c− a, b− c}.
Let Uy = B(y,my); Uy 6= ∅ because at least y ∈ Uy. For any y′ ∈ Uy it holds
that supϕ∈Φ |ϕ(y)− ϕ(y′)| < my, and hence |ϕ1(y)− ϕ1(y′)| < my, that is

a < ϕ1(y)−my < ϕ1(y′) < ϕ1(y) +my < b.

Therefore, Uy ⊆ ϕ−1
1 ( ]a, b[ ). As a consequence, ϕ−1

1 ( ]a, b[ ) =
⋃
y Uy and our

statement is proved.

Consequently, we can claim the following result:

Theorem 2.0.7. The topology τ induced by the pseudo-metric d and the
initial topology are equivalent.

Remark 2.0.8. (X, τ) could not be a T0-space. For example, if Φ = {f |f
constant , a ≤ f ≤ b, a, b ∈ R}, then the elements of X are not distinct
points for their images through those function are the same.

Remark 2.0.9. In general X is not compact. In fact, if X is a real interval and
Φ = {id : X → X}, the induced topology is simply the Euclidean topology.

From now on we suppose that X is compact.
Let us consider SX = {g : X → X, g bijective} the group with respect to the
composition whose elements are bijective functions. Let G be a subgroup of
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SX , such that ∀ g ∈ G, ∀ ϕ ∈ Φ we have that ϕ ◦ g ∈ Φ. We observe that at
least the identity group verifies the property we request.

Proposition 2.0.10. G is a subgroup of the group Homeo(X) of all homeo-
morphisms from X onto X.

Proof. If all g ∈ G are continuous functions, then all g−1 are continuous (since
G is a group), so they are homeomorphisms. Hence, it’s sufficient to prove
that every g is continuous.
Let xn be a sequence in X converging to x ∈ X.
If g ∈ G

d(g(xn), g(x)) = sup
ϕ∈Φ
|ϕ(g(xn))− ϕ(g(x))|

= sup
ϕ∈Φ
|(ϕ ◦ g)(xn)− (ϕ ◦ g)(x)|

= sup
ψ∈Φ
|ψ(xn)− ψ(x)| = d(xn, x)

Since xn converges to x, g is continuous.

We do not require G to be a proper subgroup ofHomeo(X), so the equality
G = Homeo(X) can possibly hold.
Now, we can define the function

d1(g1, g2) = sup
ϕ∈Φ
‖ϕ ◦ g1 − ϕ ◦ g2‖∞

from G×G to R.

Proposition 2.0.11. The function d1 is a pseudo-metric on G.

Proof. • The value d1(g1, g2) is finite for every g1, g2 ∈ G , because Φ is
compact and hence bounded. Indeed, a finite constant L exists such
that ‖ϕ‖∞ ≤ L for every ϕ ∈ Φ. Hence, ‖ϕ ◦ g1 − ϕ ◦ g2‖∞ ≤ ‖ϕ‖∞ +

‖ϕ‖∞ ≤ 2L for any ϕ ∈ Φ and any g1, g2 ∈ G, since ϕ ◦ g1, ϕ ◦ g2 ∈ Φ.
This implies that d1(g1, g2) ≤ 2L for every g1, g2 ∈ G.
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• d1 is obviously symmetrical.

• The definition of d1 immediately implies that d1(g, g) = 0 for any g ∈ G.

• The triangle inequality holds, since

d1(g1, g2) = sup
ϕ∈Φ
‖ϕ ◦ g1 − ϕ ◦ g2‖∞

≤ sup
ϕ∈Φ

(‖ϕ ◦ g1 − ϕ ◦ g3‖∞ + ‖ϕ ◦ g3 − ϕ ◦ g2‖∞)

sup
ϕ∈Φ
‖ϕ ◦ g1 − ϕ ◦ g3‖∞ + sup

ϕ∈Φ
‖ϕ ◦ g3 − ϕ ◦ g2‖∞

= d1(g1, g3) + d1(g3, g2)

for any g1, g2, g3 ∈ G.

Now, d∞ in defined by setting d∞(ϕ1, ϕ2) := ||ϕ1 − ϕ2||∞ and we can
prove the following property:

Theorem 2.0.12. Homeo(X) is a topological group with respect to the
pseudo-metric topology.

Proof. It will suffice to prove that if f = limi→+∞ fi and g = limi→+∞ gi

with respect of the pseudo-metric topology, then g ◦ f = limi→+∞ gi ◦ fi and
f−1 = limi→+∞ f

−1
i .

We have that

d1(gi ◦ fi, g ◦ f) ≤ d1(gi ◦ fi, g ◦ fi) + d1(g ◦ fi, g ◦ f) =

= sup
ϕ∈Φ
‖ϕ ◦ (gi ◦ fi)− ϕ ◦ (g ◦ fi)‖∞ + sup

ϕ∈Φ
‖ϕ ◦ (g ◦ fi)− ϕ ◦ (g ◦ f)‖∞

= sup
ϕ∈Φ

sup
x∈X
|ϕ(gi(fi(x))− ϕ(g(fi(x))|+ sup

ϕ∈Φ
sup
x∈X
|ϕ(g(fi(x))− ϕ(g(f(x))|
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= sup
ϕ∈Φ

sup
y∈X
|ϕ(gi(y))− ϕ(g(y))|+ sup

ϕ∈Φ
sup
x∈X
|ϕ(g(fi(x))− ϕ(g(f(x))|

≤ sup
ϕ∈Φδ

sup
y∈X
|ϕ(gi(y))− ϕ(g(y))|+ sup

ϕ∈Φδ
sup
x∈X
|ϕ(g(fi(x))− ϕ(g(f(x))|+ 4δ

because of compactness of Φ and Proposition 2.0.4. Since g = limi→+∞ gi,
the limit of the first addend as i approaches infinity is 0; given that g is
a uniformly continuous function and f = limi→+∞ fi, the second addend
converges to 0, too.
Therefore, g ◦ f = limi→+∞ gi ◦ fi.
We want to prove that f−1 = limi→+∞ f

−1
i . By contradiction, if we had not

that limi→∞ d1(f
−1
i , f−1) = 0, then there would exist a constant c > 0 and

a subsequence (fij) of (fi) such that d1(f
−1
ij
, f−1) ≥ c > 0, ∀j. Indeed we

should still have limj→∞ d1(fij , f) = 0 because (fij) is a subsequence of (fi).
d1(f−1

i , f−1) ≥ c > 0, ∀j would imply the existence, for any j, of ϕj ∈ Φ such
that ||ϕj ◦ f−1

ij
− ϕj ◦ f−1||∞ ≥ c > 0.

Because of compactness of Φ, it would not be restrictive to assume (possibly by
considering subsequences) the existence of the following limits: ϕ̄ = limj→∞ ϕj

and ϕ̂ = limj→∞ ϕj ◦ f−1
ij

.
Obviously we would have:

d∞(ϕ̂, ϕ̄ ◦ f−1) = d∞( lim
j→∞

ϕj ◦ f−1
ij
, lim
j→∞

ϕj ◦ f−1)

= lim
j→∞

d∞(ϕj ◦ f−1
ij
, ϕj ◦ f−1) ≥ c > 0

so that ϕ̂ 6= ϕ̄ ◦ f−1.
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On the other hand, we should have

d∞(ϕ̂ ◦ f, ϕ̄) = d∞(( lim
j→∞

ϕj ◦ f−1
ij

) ◦ f, lim
j→∞

ϕj)

= lim
j→∞

d∞((ϕj ◦ f−1
ij

) ◦ f, (ϕj ◦ f−1
ij

) ◦ fij)

≤ lim
j→∞

d1(fij , f) = 0.

Finally ϕ̂ ◦ f = ϕ̄, that is absurd since we know that ϕ̂ 6= ϕ̄ ◦ f−1. We just
proved that limi→∞ f

−1
i = f−1

Proposition 2.0.13. The action of G on Φ through right composition is
continuous.

Proof. We have to prove that for every ε > 0, there exists δ > 0 such that, if
||ϕ− ψ||∞ ≤ δ and d1(f, g) ≤ δ, then ||ϕ ◦ f − ψ ◦ g||∞ ≤ ε.
Now,

||ϕ ◦ f − ψ ◦ g||∞ ≤ ||ϕ ◦ f − ϕ ◦ g||∞ + ||ϕ ◦ g − ψ ◦ g||∞.

Since d1(f, g) = supϕ′∈Φ ||ϕ′ ◦ f − ϕ′ ◦ g||∞, it follows that

||ϕ ◦ f − ϕ ◦ g||∞ ≤ sup
ϕ′∈Φ
||ϕ′ ◦ f − ϕ′ ◦ g||∞ ≤ δ.

Moreover,
||ϕ ◦ g − ψ ◦ g||∞ = sup

x∈X
|ϕ(g(x))− ψ(g(x))|

and, setting y = g(x):

sup
x∈X
|ϕ(g(x))− ψ(g(x))| = sup

y∈X
|ϕ(y)− ψ(y)| = ||ϕ− ψ||∞ ≤ δ.

Hence, ∀ε > 0, there exists 0 < δ < ε/2:

||ϕ ◦ f − ψ ◦ g||∞ ≤ ||ϕ ◦ f − ϕ ◦ g||∞ + ||ϕ ◦ g − ψ ◦ g||∞ ≤ 2δ ≤ ε.

We can consider the natural pseudo-distance dG on the space Φ:
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Definition 2.0.14. The pseudo-distance dG : Φ×Φ→ R is defined by setting

dG(ϕ1, ϕ2) = inf
g∈G

max
x∈X
|ϕ1(x)− ϕ2(g(x))|.

It is called the natural pseudo-distance associated with the group G acting
on Φ.

By the definition, when G = {Id : x 7→ x}, then dG equals the sup-norm
distance d∞ on Φ. If G1 and G2 are subgroups of Homeo(X) that preserve Φ
and G1 ⊆ G2, then the definition of dG implies that dG2(ϕ1, ϕ2) ≤ dG1(ϕ1, ϕ2)

for every ϕ1, ϕ2 ∈ Φ. Therefore, it follows that

dHomeo(X)(ϕ1, ϕ2) ≤ dG(ϕ1, ϕ2) ≤ d∞(ϕ1, ϕ2)

for every G ⊆ Homeo(X) that preserves Φ and every ϕ1, ϕ2 ∈ Φ.
In order to proceed, we define a category F

Φ,G
X , whose objects are the

elements of Φ, which is a compact subspace of RX
b , and arrows are the elements

of G, a topological subgroup of Homeo(X) that preserves Φ by composition
on the right. It’s easy to check that this category is well defined and we call
it a perception category.

Definition 2.0.15. Assume that F
Φ,G
X , FΨ,HY are two perception categories.

Each functor F : FΦ,GX → F
Ψ,H
Y is called a Group Invariant Non-expansive

Operator (GINO) if:

1. F is Group Invariant: F (ϕ ◦ g) = F (ϕ) ◦ F (g), ∀ϕ, ∀g;

2. F is non-expansive on Φ: ‖F (ϕ1)− F (ϕ2)‖∞ ≤ ‖ϕ1 − ϕ2‖∞ , ∀ϕ1, ϕ2;

3. F is non-expansive on G: dH1 (F (g1), F (g2)) ≤ dG1 (g1, g2), ∀g1, g2.

This simple statement holds:

Proposition 2.0.16. For every F ∈ W and every ϕ ∈ Φ: ||F (ϕ)||∞ ≤
||ϕ||∞+ ||F (0)||∞, where 0 denotes the function taking the value 0 everywhere.
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Proof. Since F is non-expansive, we have that

||F (ϕ)||∞ = ||F (ϕ)− F (0) + F (0)||∞

≤ ||F (ϕ)− F (0)||∞ + ||F (0)||∞

≤ ||ϕ− 0||∞ + ||F (0)||∞ = ||ϕ||∞ + ||F (0)||∞

In order to proceed, we consider the set W of all operators that verify the
previous properties.
Let FΦ,GX , FΨ,HY be two perception categories; if W′ 6= ∅ is a subset of W, by
recalling Φ is compact and hence bounded with respect to d∞, then we can
consider the function

dW′(F1, F2) := sup
ϕ∈Φ
‖F1(ϕ)− F2(ϕ)‖∞

from W′ ×W′ to R.

Remark 2.0.17. We observe that dW′ = supg∈G supϕ∈Φ ‖F1(ϕ) ◦ F1(g)− F2(ϕ) ◦ F2(g)‖∞,
since Φ ◦G = Φ.

Proposition 2.0.18. If W′ is a non-empty subset of W, then dW′ is a pseudo-
distance on W′.

Proof. • The value dW′(F1, F2) is finite for every F1, F2 ∈ W , because
Ψ is compact and hence bounded. Indeed, a finite constant L exists
such that ‖ψ‖∞ ≤ L for every ψ ∈ Ψ. Hence, ‖F1(ϕ)− F2(ϕ)‖∞ ≤
‖F1(ϕ)‖∞ + ‖F2(ϕ)‖∞ ≤ 2L for any ϕ ∈ Φ, since F1(ϕ), F2(ϕ) ∈ Ψ.
This implies that dW′(F1, F2) ≤ 2L for every F1, F2 ∈W.

• dW′ is obviously symmetrical.

• The definition of dW′ immediately implies that dW′(F, F ) = 0 for any
F ∈W′.
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• The triangle inequality holds, since

dW′(F1, F2) = sup
ϕ∈Φ
‖F1(ϕ)− F2(ϕ)‖∞

≤ sup
ϕ∈Φ

(‖F1(ϕ)− F3(ϕ)‖∞ + ‖F3(ϕ)− F2(ϕ)‖∞)

≤ sup
ϕ∈Φ
‖F1(ϕ)− F3(ϕ)‖∞ + sup

ϕ∈Φ
‖F3(ϕ)− F2(ϕ)‖∞

= dW′(F1, F3) + dW(F3, F2)

for any F1, F2, F3 ∈W′.

Remark 2.0.19. In general G is not compact. In fact, if X = S1 and Φ =

{f(x, y) = xcos(α)+ysen(α) : 0 ≤ α ≤ 2π} (which is compact), G = {ρ2πq ∈
Q, q > 0} (where ρ2πq is the rotation of angle 2πq) is a subgroup of Homeo(X)

but it is not sequentially compact and so it is not compact.

2.1 Persistent Homology

Before proceeding, we recall some basic definitions and facts in persistent
homology. For further and more detailed information, we refer the reader to
[1, 2, 5].
Let ϕ be a real-valued continuous function on a topological space X. We
can say that persistent homology represents the changes of the homology
groups of the sub-level set Xt = ϕ−1((−∞, t]) varying t in R. We can see the
parameter t as an increasing time, whose changes produce the birth and the
death of k-dimensional holes in the sub-level set Xt. For example the number
of 0-dimensional holes equals the number of the connected components of
X, 1-dimensional holes refer to tunnels and 2-dimensional holes to voids.
Persistent homology can be introduced in different ways and settings. In this
thesis, we chose to consider the topological settings and the simplicial and
singular homology functor H. The reader can find an elementary introduction
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to singular homology in [7].
Now we can define the persistent homology group with respect to the function
ϕ : X → R and some related concepts. We will refer to singular homology.

Definition 2.1.1. If u, v ∈ R and u < v, we can consider the inclusion i

of Xu into Xv. Such an inclusion induces a homomorphism ik : Hk(Xu) →
Hk(Xv) between the homology groups of Xu and Xv in degree k. The group
PHϕ

k (u, v) := ik(Hk(Xu)) is called the kth persistent homology group with
respect to the function ϕ : X → R, computed at the point (u, v).

Moreover, the rank rk(ϕ)(u, v) of PHϕ
k (u, v) is said the kth persistent

Betti number function with respect to the function ϕ : X → R, computed at
the point (u, v).

Remark 2.1.2. Let X and Y be two homeomorphic spaces and let h : Y → X

be a homeomorphism. Then the persistent homology group with respect to
the function ϕ : X → R and the persistent homology group with respect to
the function ϕ ◦ h : Y → R are isomorphic at each point (u, v) in the domain.
More precisely, the isomorphism is the one that maps each homology class
[c =

∑r
i=1 ai ·σi] ∈ PH

ϕ
k (u, v) to the homology class [c′ =

∑r
i=1 ai ·(h−1◦σi)] ∈

PHϕ◦h
k (u, v), where each σi is a singular simplex involved in the representation

of the cycle c. Therefore we can say that the persistent homology groups
and the persistent Betti number functions are invariant under the action of
Homeo(X).

Now we want to present a classical description of persistent Betti number
functions given by multisets called persistence diagrams.
The kth persistence diagram is the multiset of all the pairs pj = (bj, dj),
where bj and dj are the times of birth and death of the jth k-dimensional
hole, respectively. When a hole never dies, we set its time to death equal to
∞. The multiplicity m(pj) says how many holes share both the time of birth
bj and the time of death dj. For technical reasons, the points (t, t) are added
to each persistence diagram, each one with infinite multiplicity.
We can compare persistence diagram by means of the bottleneck distance or



26 CHAPTER 2. MATHEMATICAL SETTINGS

matching distance δmatch. We are recalling its formal definition later.
Each persistence diagram D can contain an infinite number of points, and
the multiplicity of each point is m(p) ≥ 1. Now we set:

• ∆ := {(x, y) ∈ R2 : x = y};

• ∆+ := {(x, y) ∈ R2 : x < y};

• ∆̄+ := {(x, y) ∈ R2 : x ≤ y};

• ∆∗ := ∆+ ∪ {(x,∞) : x ∈ R};

• ∆̄∗ := ∆̄+ ∪ {(x,∞) : x ∈ R}.

For every q ∈ ∆∗, the equality m(q) = 0 means that q does not belong to the
persistence diagram D. We define on ∆̄∗ a pseudo-metric as follows

d∗((x, y), (x′, y′)) := min

{
max{|x− x′|, |y − y′|},max

{
y − x

2
,
y′ − x′

2

}}
by agreeing that ∞− y =∞, y −∞ = −∞ for y 6=∞, ∞−∞ = 0, ∞

2
=

∞, | ±∞| =∞, min{∞, c} = c, max{∞, c} =∞.
The pseudo-metric d∗ between two points p and p′ takes the smaller value
between the cost of moving p to p′ and the cost of moving p′ and p onto
∆. Obviously, d∗(p, p′) = 0 for every p, p′ ∈ ∆. If p ∈ ∆+ and p′ ∈ ∆, then
d∗(p, p′) equals the distance, endowed by the max-norm, between p and ∆.
Points at infinity have a finite distance only to the other points at infinity,
and their distance equals the Euclidean distance between abscissas.

Definition 2.1.3. Let D, D′ be two persistence diagrams. We define the
bottleneck distance δmatch between D and D′ by setting

δmatch(D,D′) := inf
σ

sup
x∈D

d∗(x, σ(x)),

where σ : D → D′ is a bijection.

For further informations about persistence diagrams and bottleneck dis-
tance, we refer the reader to [5, 4]. Each persistent Betti number function
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is associated with exactly one persistence diagram. Then the metric δmatch

induces a pseudo-metric dmatch on the sets of the persistent Betti number
functions. For more details, we refer the reader to [3]. The following result
shows the stability of the pseudo-distance dmatch with respect to d∞ and
dHomeo(X).

Theorem 2.1.4. If k is a natural number and ϕ1, ϕ2 ∈ Φ, then

dmatch(rk(ϕ1), rk(ϕ2)) ≤ dHomeo(X)(ϕ1, ϕ2) ≤ d∞(ϕ1, ϕ2)

The proof of the first inequality dmatch(rk(ϕ1), rk(ϕ2)) ≤ dHomeo(X)(ϕ1, ϕ2)

in Theorem 2.1.4 can be found in [3]. Instead, the second inequality dHomeo(X)(ϕ1, ϕ2) ≤
d∞(ϕ1, ϕ2) follows from the definition of dHomeo(X).

2.2 Strongly Group-invariant Comparison of Fil-

tering Functions Via Persistent Homology

Let us consider a subset W′ 6= ∅ of W. For every fixed k, we can consider
the following pseudo-metric D

W′,k
match on Φ:

D
W′,k
match(ϕ1, ϕ2) := sup

F∈W′
dmatch(rk(F (ϕ1)), rk(F (ϕ2)))

for every ϕ1ϕ2 ∈ Φ, where rk(ϕ) denotes the kth persistent Betti number
function with respect to the function ϕ : X → R.
In this work, we will say that a pseudo-metric d̂ on Φ is strongly G-invariant
if it is invariant under the action of G with respect to each variable, that
is, if d̂(ϕ1, ϕ2) = d̂(ϕ1 ◦ g, ϕ2) = d̂(ϕ1, ϕ2 ◦ g) = d̂(ϕ1 ◦ g, ϕ2 ◦ g) for every
ϕ1, ϕ2 ∈ Φ and every g ∈ G.

Remark 2.2.1. It is easily seen that the natural pseudo-distance dG is strongly
G-invariant.

Proposition 2.2.2. DW′,k
match is a strongly G-invariant pseudo-metric on Φ.
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Proof. Theorem 2.1.4 and the non-expansivity of every F ∈W′ imply that

dmatch(rk(F (ϕ1)), rk(F (ϕ2))) ≤ ||F (ϕ1)− F (ϕ2)||∞

≤ ||ϕ1 − ϕ2||∞.

Therefore D
W′,k
match is a pseudo-metric, since it is the supremum of a family of

pseudometrics that are bounded at each pair (ϕ1, ϕ2). Moreover, for every
ϕ1, ϕ2 ∈ Φ and every g ∈ G

D
W′,k
match(ϕ1, ϕ2 ◦ g) := sup

F∈W′
dmatch(rk(F (ϕ1)), rk(F (ϕ2 ◦ g)))

= sup
F∈W′

dmatch(rk(F (ϕ1)), rk(F (ϕ2) ◦ F (g)))

= sup
F∈W′

dmatch(rk(F (ϕ1)), rk(F (ϕ2))

= D
W′,k
match(ϕ1, ϕ2)

because F (ϕ ◦ g) = F (ϕ) ◦ F (g) for every ϕ ∈ Φ and every g ∈ G and
the invariance of persistent homology under the action of the homeomor-
phisms(metterci il label del remark su sta cosa). Due to the fact the function
D

W′,k
match is symmetric, thi is sufficient to guarantee that D

W′,k
match is strongly

G-invariant.

2.3 Approximating D
W′,k
match

We give a method to approximate D
W′,k
match as follows:

Proposition 2.3.1. Let W∗ = {F1, . . . , Fm} be a finite subset of W′ ⊆ W.
If for every F ∈ W′ at least one index i ∈ {1, . . . ,m} exists, such that
dW′(Fi, F ) ≤ ε, then

|DF∗,k
match(ϕ1, ϕ2)−D

W′,k
match(ϕ1, ϕ2)| ≤ 2ε
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for every ϕ1, ϕ2 ∈ Φ.

Proof. Let us assume F ∈ W′ and dW′ ≤ ε. Because of the definition of
dW′ , for any ϕ1, ϕ2 ∈ Φ we have the inequalities ||Fi(ϕ1)− F (ϕ1)||∞ ≤ ε and
||Fi(ϕ2)− F (ϕ2)||∞ ≤ ε. Hence

dmatch(rk(Fi(ϕ1)), rk(F (ϕ1)) ≤ ε

and
dmatch(rk(Fi(ϕ2)), rk(F (ϕ2)) ≤ ε

because of the stability of the persistent homology (Theorem 2.1.4).
It follows that

|dmatch(rk(Fi(ϕ1)), rk(Fi(ϕ2))− dmatch(rk(F (ϕ1)), rk(F (ϕ2))| ≤ 2ε.

The statement immediately follows from the definitions of DW′,k
match and D

F∗,k
match.

Therefore, if we can cover W′ by a finite set of balls of radius ε, centered
at points of W′ the approximation of DW′,k

match(ϕ1, ϕ2) can be reduced to the
computation of the maximum of a finite set of bottleneck distances between
persistence diagrams, which are well-known to be computable by means of
efficient algorithms.
This fact lead us to study the properties of the topological space W.
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Chapter 3

Main results

At first we want to show that the pseudo-metric D
W′,k
match is stable with

respect to both the natural pseudo-distance associated with group G and the
sup-nom.

Theorem 3.0.1. If W′ is a non-empty subset of W, then

D
W′,k
match ≤ dG ≤ d∞

Proof. For every F ∈ D
W′,k
match, every g ∈ G and every ϕ1, ϕ2 ∈ Φ, we have that

dmatch(rk(F (ϕ1)), rk(F (ϕ2))) = dmatch(rk(F (ϕ1)), rk(F (ϕ2) ◦ F (g)))

= dmatch(rk(F (ϕ1)), rk(F (ϕ2 ◦ g)))

≤ ||F (ϕ1)− F (ϕ2 ◦ g)||∞ ≤ ||ϕ1 − ϕ2 ◦ g||∞.

The first equality follows from the invariance of persistent homology under
action of Homeo(X) (see Remark 2.1.2), and the second equality follows from
the fact F is a Group-invariant operator. The first inequality follows from the
stability of persistent homology (Theorem 2.1.4), while the second inequality
follows from the non-expansivity of F .
It follows that, if W′ ⊆W, then for every g ∈ G and every ϕ1, ϕ2 ∈ Φ

D
W′,k
match(ϕ1, ϕ) ≤ ||ϕ1 − ϕ2 ◦ g||∞.

31
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Hence,

D
W′,k
match(ϕ1, ϕ2) ≤ inf

g∈G
||ϕ1 − ϕ2 ◦ g||∞

≤ ||ϕ1 − ϕ2||∞ = d∞(ϕ1, ϕ2)

for every ϕ1, ϕ2 ∈ Φ.

The definitions of the natural pseudo-distance dG and the pseudo-distance
D

W′,k
match come from different theoretical concepts. The former is based on a

variation approach involving the set of all homeomorphisms G, while the
latter refers only to a comparison of persistent homologies depending on a
family of Group-invariant operators. Given those comments, the next result
may appear unexpected.

Theorem 3.0.2. Let us consider W = {F : FΦ,GX → F
Φ,G
X , F is a GINO}.

Then D
W,k
match = dG.

Proof. For every ψ ∈ Φ let us consider the operator Fψ : FΦ,GX → F
Φ,G
X defined

by setting Fψ(ϕ) equal to the constant function taking everywhere the value
dG(ϕ, ψ) for every ϕ ∈ Φ (i.e., Fψ(ϕ)(x) = dG(ϕ, ψ) for any x ∈ X) and
Fψ(g) = g for every g ∈ G.
We observe that

1. Fψ is a Group-invariant operator on Φ, because the strong invariance of
the natural pseudo-distance dG with respect to the group G (Remark
2.2.1) implies that if ϕ ∈ Φ and g ∈ G, then Fψ(ϕ◦g)(x) = dG(ϕ◦g, ψ) =

Fψ(ϕ)(g(x)) = (Fψ(ϕ) ◦ g)(x) = (Fψ(ϕ) ◦ Fψ(g))(x), for every x ∈ X.

2. Fψ is non-expansive on Φ, because for every ϕ1, ϕ2 ∈ Φ

||Fψ(ϕ1)− Fψ(ϕ2)||∞ = |dG(ϕ1, ψ)− dG(ϕ2, ψ)|

≤ dG(ϕ1, ϕ2) ≤ ||ϕ1 − ϕ2||∞
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3. Fψ is non-expansive on G: in fact for every g1, g2 ∈ G

d1(Fψ(g1), Fψ(g2)) = d1(g1, g2)

Therefore, Fψ ∈W.
For every ϕ1, ϕ2, ψ ∈ Φ we have that

dmatch(rk(Fψ(ϕ1)), rk(Fψ(ϕ2))) = |dG(ϕ1, ψ)− dG(ϕ2, ψ)|.

Indeed, apart from the trivial points on the line {(u, v) ∈ R2 : u =

v}, the persistence diagram associated with rk(Fψ(ϕ1) contains only the
point (dG(ϕ1, ψ),∞), while the persistence diagram associated with rk(Fψ(ϕ2)

contains only the point (dG(ϕ2, ψ),∞). Both the points have the same
multiplicity, which equals the (non-null) k-th Betti number of X.
Setting ψ = ϕ2, we have that

dmatch(rk(Fψ(ϕ1)), rk(Fψ(ϕ2))) = dG(ϕ1, ϕ2).

As a consequence, we have that

D
W,k
match(ϕ1, ϕ2) ≥ dG(ϕ1, ϕ2)

. By applying Theorem 3.0.1, we get

D
W,k
match(ϕ1, ϕ2) = dG(ϕ1, ϕ2)

for every ϕ1, ϕ2.

Now we are ready to expose the main results of the thesis:

Theorem 3.0.3. Let FΦ,GX , FΨ,HY be two perception categories; if Φ, G , Ψ , H
are compact with respect to their topologies, then W is compact with respect
to the pseudo-metric topology endowed by dW.

Proof. Because of our hypothesis, we have that (W, dW) is a pseudo-metric
space. Therefore it will suffice to prove that W is sequentially compact.
In order to do this, let us assume that a sequence (Fi) in W is given.
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Given that Φ is a compact (and hence separable) metric space, we can find a
countable and dense subset Φ∗ = {ϕj}j∈N. In the same way, we can find a
countable and dense subset G∗ = {gk}k∈N of G.
Now we want to extract a subsequence (Fih) from (Fi), such that for every
pair of indeces (j, k) the sequence (Fih(ϕj)) converges to a function in Ψ

with respect to the sup-norm and the sequence (Fih(gk)) converges to a
homeomorphism in H with respect to d1. We will show it as follows. Since
Ψ is compact, the sequence (Fi(ϕ1)) admits a subsequence (F

(1)
i (ϕ1)) that

converges in Ψ. Again, since Ψ is compact, the sequence (Fi(ϕ2)) admits
a subsequence (F

(2)
i (ϕ2)) that converges in Ψ. Recursively, we can build a

family of subsequences (F
(k)
i )i∈N, k ∈ N such that (F

(k+1)
i )i∈N is a subsequence

of (F
(k)
i )i∈N and (F

(k)
i (ϕk)) converges in Ψ for every k ∈ N.

Now we set Fih = F
(h)
h . It results that Fih = F

(h)
h ∈ {F (k)

m | m ∈ N} for every
h ≥ k. Therefore, (Fih)h≥k is a subsequence of (F

(k)
m ), for every k ∈ N. Since

(F
(k)
i (ϕk)) converges for every k, Fih(ϕk) converges for every k.

Similarly, (Fih) admits a subsequence (Fiht ) that converges in G, because G
is compact. For the sake of simplicity, we set Fiht = Fih .
Now, let us consider the functor F̄ : FΦ,GX → F

Ψ,H
Y defined as follow.

We define F̄ on Φ∗ by setting F̄ (ϕj) := limh→∞ Fih(ϕj) for each ϕj ∈ Φ∗; in a
similar way, we can define on G∗ F̄ (gk) := limh→∞ Fih(gk). Then we want to
extend F̄ to Φ and G.
First we extend F̄ to Φ as follows. ∀ ϕ ∈ Φ we choose a sequence (ϕjr) in
Φ∗, converging to ϕ ∈ Φ, and set F̄ := limr→∞ F̄ (ϕjr). We claim that such a
limit exists in Ψ and does not depend on the sequence that we have chosen,
converging to ϕ ∈ Φ. In order to prove that the previous limit exists, we
observe that for every r, s ∈ N

||F̄ (ϕjr)− F̄ (ϕjs)||∞ = || lim
h→∞

Fih(ϕjr)− lim
h→∞

Fih(ϕjs)||∞

= lim
h→∞
||Fih(ϕjr)− Fih(ϕjs)||∞

≤ lim
h→∞
||ϕjr − ϕjs||∞ = ||ϕjr − ϕjs||∞,
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because each functor Fih is non-expansive.
Since the sequence (ϕjr) converges to ϕ ∈ Φ, it follows that (F̄ (ϕjr)) is a
Cauchy sequence. The compactness of Ψ implies that (F̄ (ϕjr)) converges in
Ψ.
If another sequence (ϕkr) in given in Φ∗, converging to ϕ ∈ Φ, then for every
index r ∈ N

||F̄ (ϕjr)− F̄ (ϕkr)||∞ = || lim
h→∞

Fih(ϕjr)− lim
h→∞

Fih(ϕkr)||∞

= lim
h→∞
||Fih(ϕjr)− Fih(ϕkr)||∞

≤ lim
h→∞
||ϕjr − ϕkr ||∞

= ||ϕjr − ϕkr ||∞.

Since both (ϕjr) and (ϕkr) converge to ϕ it follows that limr→∞ F̄ (ϕjr) =

limr→∞ F̄ (ϕkr). Therefore the definition of F̄ (ϕ) does not depend on the
sequence (ϕjr) that we have chosen, converging to ϕ.
Just as we have done, we extend F̄ to G.
For each g ∈ G, we choose a sequence (gjr) in G∗, converging to g ∈ G, and
set F̄ := limr→∞ F̄ (gjr). We claim that such a limit exists in G and does not
depend on the sequence that we have chosen, converging to g ∈ G. In order
to prove that the previous limit exists, we observe that for every r, s ∈ N

dH1 (F̄ (gjr), F̄ (gjs)) = sup
ψ∈Ψ
||ψ ◦ ( lim

h→∞
Fih(gjr))− ψ ◦ ( lim

h→∞
Fih(gjs))||∞

= lim
h→∞

sup
ψ∈Ψ
||ψ ◦ Fih(gjr)− ψ ◦ Fih(gjs)||∞

≤ lim
h→∞

sup
ϕ∈Φ
||ϕ ◦ gjr − ϕ ◦ gjs||∞

= sup
ϕ∈Φ
||ϕ ◦ gjr − ϕ ◦ gjs||∞ = dG1 (gjr , gjs)

because each functor Fih is non-expansive.
Since the sequence (gjr) converges to g ∈ G, it follows that (F̄ (gjr)) is a
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Cauchy sequence. The compactness of H implies that (F̄ (gjr)) converges in
H.
If another sequence (gkr) is given in G∗, converging to g ∈ G, then for every
index r ∈ N

dH1 (F̄ (gjr), F̄ (gkr)) = sup
ψ∈Ψ
||ψ ◦ ( lim

h→∞
Fih(gjr))− ψ ◦ ( lim

h→∞
Fih(gkr))||∞

= lim
h→∞

sup
ψ∈Ψ
||ψ ◦ Fih(gjr)− ψ ◦ Fih(gkr)||∞

≤ lim
h→∞

sup
ϕ∈Φ
||ϕ ◦ gjr − ϕ ◦ gkr ||∞

= sup
ϕ∈Φ
||ϕ ◦ gjr − ϕ ◦ gkr ||∞ = dG1 (gjr , gkr).

Since both (gjr) and (gkr) converge to G it follows that limr→∞ F̄ (gjr) =

limr→∞ F̄ (gkr). Therefore the definition of F̄ (g) does not depend on the
sequence (gjr) that we have chosen, converging to g.
Now we have to prove that F̄ ∈W, i.e., that F̄ verifies the three properties
defining this set of functors.
We have already seen that F̄ : FΦ,GX → F

Ψ,H
Y .

∀ ϕ, ϕ′ we can consider two sequences (ϕjr), (ϕkr) in Φ∗, converging to ϕ and
ϕ′, respectively. Due to the fact that the functors Fih are non-expansive, we
have that

||F̄ (ϕ)− F̄ (ϕ′)||∞ = || lim
r→∞

F̄ (ϕjr)− lim
r→∞

F̄ (ϕkr)||∞

= || lim
r→∞

lim
h→∞

Fih(ϕjr)− lim
r→∞

lim
h→∞

Fih(ϕkr)||∞

= lim
r→∞

lim
h→∞
||Fih(ϕjr)− Fih(ϕkr)||∞

≤ lim
r→∞

lim
h→∞
||ϕjr − ϕkr ||∞

= lim
r→∞
||ϕjr − ϕkr ||∞

= ||ϕ− ϕ′||∞.
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Therefore, F̄ is non-expansive in Φ. As a consequence, it is also continuous
in Φ.
Similarly, we want to prove that the functor F̄ is non expansive in G.
∀ g, g′ we can consider two sequences (gjr), (gkr) in G∗, converging to g and
g′, respectively. Due to the fact that the functors Fih are non-expansive, we
have that

dH1 (F̄ (g), F̄ (g′)) = sup
ψ∈Ψ
||ψ ◦ ( lim

r→∞
lim
h→∞

Fih(gjr))− ψ ◦ ( lim
r→∞

lim
h→∞

(Fih(gkr))||∞

= lim
r→∞

lim
h→∞

sup
ψ∈Ψ
||ψ ◦ Fih(gjr)− ψ ◦ Fih(gkr)||∞

≤ lim
r→∞

lim
h→∞

sup
ϕ∈Φ
||ϕ ◦ gjr − ϕ ◦ gkr ||∞

= lim
r→∞

sup
ϕ∈Φ
||ϕ ◦ gjr − ϕ ◦ gkr ||∞

= sup
ϕ∈Φ
||ϕ ◦ g − ϕ ◦ g′||∞

= dG1 (g, g′).

Therefore, F̄ is non-expansive in G. As a consequence, it is also continuous
in G.
Now we can prove that the sequence (Fih) converges to F̄ with respect to dW.
Let us consider an arbitrary small ε > 0. Since Φ is compact and Φ∗ is dense
in Φ, we can find a finite subset {ϕj1 , . . . , ϕjn} of Φ∗ such that ∀ϕ ∈ Φ, there
exists an index r ∈ {1, . . . , n}, for which ||ϕ− ϕjr ||∞ ≤ ε.
Since the sequence (Fih) converges pointwise to F̄ on the set Φ∗, an index h′,
such that ||F̄ (ϕjr) − Fih(ϕjr)||∞ ≤ ε for any h ≥ h′ and any r ∈ {1, . . . , n}.
Therefore, for every ϕ ∈ Φ we can find an index r ∈ {1, . . . , n} such that
||ϕ − ϕjr ||∞ ≤ ε and the following inequalities hold for every index h ≥ h′,
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because of the non-expansivity of F̄ and Fih :

||F̄ (ϕ)− Fih(ϕ)||∞

≤ ||F̄ (ϕ)− F̄ (ϕjr)||∞ + ||F̄ (ϕjr)− Fih(ϕjr)||∞ + ||Fih(ϕjr)− Fih(ϕ)||∞

≤ ||ϕ− ϕjr ||∞ + ||F̄ (ϕjr)− Fih(ϕjr)||∞ + ||ϕjr − ϕ||∞ ≤ 3ε.

We observe that h′ does not depend on ϕ, but only on ε and on the set
{ϕj1 , . . . , ϕjn}. It follows that ||F̄ (ϕ)− Fih(ϕ)||∞ ≤ 3ε for every ϕ ∈ Φ and
every h ≥ h′.
Hence, supϕ∈Φ ||F̄ (ϕ) − Fih(ϕ)||∞ ≤ 3ε for every h ≥ h′ Therefore, the
sequence (Fih) converges to F̄ with respect to dW.
The last thing that we have to show is that F̄ is a group-invariant functor.
Let us consider a ϕ ∈ Φ, a sequence (ϕjr) in Φ∗ converging to ϕ in Φ and a
g ∈ G. Obviously, the sequence (ϕjr ◦ g) converges to ϕ ◦ g in Φ. We recall
that the right action of G on Φ is continuous, F̄ is continuous and each Fih is
a group-invariant functor. Hence, given that the sequence (Fih) converges to
F̄ with respect to dW:

F̄ (ϕ ◦ g) = F̄ ( lim
r→∞

(ϕjr ◦ g))

= lim
r→∞

F̄ (ϕjr ◦ g)

= lim
r→∞

lim
h→∞

Fih(ϕjr ◦ g)

= lim
r→∞

lim
h→∞

Fih(ϕjr) ◦ Fih(g)

= lim
r→∞

F̄ (ϕjr) ◦ F̄ (g)

= F̄ (ϕ) ◦ F̄ (g).

This proves that F̄ is a group-operator.
In conclusion, F̄ ∈W.
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From the fact that the sequence Fih converges to F̄ with respect to dW, it
follows that (W, dW) is sequentially compact.

Corollary 3.0.4. Let W′ be a non-empty subset of W. For every ε > 0, a
finite subset W∗ of W′ exists, such that

|DW∗,k
match(ϕ1, ϕ2)−D

W′,k
match(ϕ1, ϕ2)| ≤ ε

for every ϕ1, ϕ2 ∈ Φ.

Proof. Let us consider the closure W̄′ of W′ in W. Let us also consider the
covering U of W̄′ obtained by taking all the open balls of radius ε

2
centered at

points of W′. Theorem 3.0.3 guarantees that W is compact, henve also W̄′ is
compact. Therefore we can extract a finite covering {B1, . . . , Bm} of W′ from
U. We can set W∗ equal to the set of all the centered balls B1, . . . , Bm. The
statement of our corollary immediately follows from proposition 2.3.1.

The previous corollary shows that, under suitable hypotheses, the compu-
tation of the D

W,k
match can be reduced to the computation of the maximum of

a finite set of bottleneck distances between persistence diagrams, for every
ϕ1, ϕ2 ∈ Φ.
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