Ugolotti, Alessandro
(2016)
Alternative derivative expansion in Functional RG and application.
[Laurea magistrale], Università di Bologna, Corso di Studio in
Fisica [LM-DM270]
Documenti full-text disponibili:
Anteprima |
|
Documento PDF
Disponibile con Licenza: Salvo eventuali più ampie autorizzazioni dell'autore, la tesi può essere liberamente consultata e può essere effettuato il salvataggio e la stampa di una copia per fini strettamente personali di studio, di ricerca e di insegnamento, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale. Ogni altro diritto sul materiale è riservato
Download (2MB)
| Anteprima
|
Abstract
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces.
For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations.
For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion.
We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).
Abstract
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces.
For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations.
For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion.
We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).
Tipologia del documento
Tesi di laurea
(Laurea magistrale)
Autore della tesi
Ugolotti, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Teorico generale
Ordinamento Cds
DM270
Parole chiave
QFT Wilsonian renormalization group non perturbative approach scalar field approximation schemes numerical analysis
Data di discussione della Tesi
1 Aprile 2016
URI
Altri metadati
Tipologia del documento
Tesi di laurea
(NON SPECIFICATO)
Autore della tesi
Ugolotti, Alessandro
Relatore della tesi
Correlatore della tesi
Scuola
Corso di studio
Indirizzo
Curriculum A: Teorico generale
Ordinamento Cds
DM270
Parole chiave
QFT Wilsonian renormalization group non perturbative approach scalar field approximation schemes numerical analysis
Data di discussione della Tesi
1 Aprile 2016
URI
Statistica sui download
Gestione del documento: