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Sommario

Vogliamo dare una breve introduzione sul metodo del gruppo di Rinormaliz-
zazione Funzionale nella teoria quantistica dei campi, che é intrinsecamente un
metodo non perturbativo, in termini dell’equazione di Polchinski per l’azione ‘Wilso-
niana’ e dell’equazione di Wetterich per il generatore dei vertici propri. Nell’ultimo
caso mostriamo una semplice applicazione per una teoria con un singolo campo
scalare reale nelle approsimazioni LPA e LPA’. Nel primo caso invece, mostriamo
una versione “Hamiltoniana” dell’equazione di Polchinski che consiste nel fare una
trasformazione di Legendre per il flusso della corrispondente Lagrangiana effettiva,
sostituendo le derivate dei campi di ordine qualsisasi con i relativi momenti. Questo
approccio é utile per studiare nuovi troncamenti nelle espansioni derivative. Ap-
plichiamo poi questa formulazione ad una teoria con un singolo campo scalare reale
e, come nuovo risultato, deriviamo l’equazione di flusso per una teoria con N campi
scalari reali con una simmetria interna O(N). All’interno di questo nuovo approccio
analizziamo numericamente le soluzioni invarianti di scala per N = 1 e d = 3
(ovvero il modello critico di Ising), al primo ordine dell’espansione derivative e con
un numero infinito di costanti di accoppiamento, codificate da due funzioni V (φ) e
Z(φ), ottenendo cosí una stima per la dimensione anomala con un’accuratezza del
10% (confrontata con i risultati del Monte Carlo).
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Abstract

We give a brief review of the Functional Renormalization method in quantum
field theory, which is intrinsically non perturbative, in terms of both the Polchinski
equation for the Wilsonian action and the Wetterich equation for the generator of
the proper verteces. For the latter case we show a simple application for a theory
with one real scalar field within the LPA and LPA’ approximations. For the first
case, instead, we give a covariant “Hamiltonian” version of the Polchinski equation
which consists in doing a Legendre transform of the flow for the corresponding
effective Lagrangian replacing arbitrary high order derivative of fields with momenta
fields. This approach is suitable for studying new truncations in the derivative
expansion. We apply this formulation for a theory with one real scalar field and, as
a novel result, derive the flow equations for a theory with N real scalar fields with
the O(N) internal symmetry. Within this new approach we analyze numerically
the scaling solutions for N = 1 in d = 3 (critical Ising model), at the leading
order in the derivative expansion with an infinite number of couplings, encoded in
two functions V (φ) and Z(φ), obtaining an estimate for the quantum anomalous
dimension with a 10% accuracy (confronting with Monte Carlo results).
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Introduction

Quantum field theory and Statistical field theory are the two main stones of the
modern physics developed in the XX century. The Standard Model of fundamental
interactions, for example, is formulated entirely within the framework of QFT.
One of the extraordinary results of the QFT is that the coupling constants for the
interactions are not constants at all but they are running constants depending on
the energy scale at with we are studying the physical system, measuring different
observables. Renormalization is one of the central tool that allows to deal with
this concept and coherently derive measurable quantities, relating phenomena at
different scales of observations and being intrinsically associated to the related
concept of effective theories. The one who gave the strongest impulse towards
the modern paradigm of renormalization was K. Wilson leading to the so called
Wilson’s renormalization group [35]. The basic idea is to study the correlation
functions (or their generators) after integrating quantum or thermal fluctuations
not all at once but with some coarse-graining procedure. In the case one wants
to employ this in a continuous way a popular approach is based on integrating
out fluctuations momentum shell by momentum shell. The continuous procedures
generate the so called exact renormalization group equations, which can be used
to describe, at least in principle, all kinds of non-perturbative quantum/statistical
field theories, i.e. where there are no small parameters one can fruitfully expand in.
This approach has the merit to give tools to studying both the universal (critical
properties) and non universal of a given theory given its content in term of degrees
of freedom and symmetries and can deal with infinitely many couplings.

There is a clear need for such approaches within the archetypal example of low
energy QCD, but perhaps more importantly in the need to better understand the
possibilities to access to several features of the standard model, which are just
started to be investigated pertubatively in a systematic way at the level of effective
theories with the inclusion of 6 dimensional operators. At the level of fundamental
physics they may be also useful go get more insights in the SSB sector up to
the Planck scale. In fact, it is well known that General Relativity cannot admit
within perturbation theory a coherent formulation in terms of a quantum field, but
this methods open the road to non perturbative studies within the paradigm of
asymptotic safety introduced by S. Weinberg [28]. Such scenario could give possible
UV complete models for fundamental physics including gravity without invoking as
the only viable solution models like string theory whose aim is also to give a more
unified picture.

Every exact RG equation has to be truncated, choosing some approximation,
into a solvable set of equations that encode the wanted pieces of information.

ix
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Since any truncation induces errors that can be very hard to estimate, keep under
control and reduce, it is important to have a rich pool of approximation schemes
available. The goal of this thesis is precisely to show an alternative covariant
Hamiltonian formulation of the Polchinski equation that can be useful for studying
new truncation methods in the derivative expansion.

The plain of the work is as follow. In Chapter 1 we give a brief review of the
Functional Renormalization method in terms of the Wetterich equation for the
generator of the proper verteces and discuss some of the approximation schemes
generally involved in calculations. In Chapter 2 we show one example, using
the Wetterich equation to find a simple flow equation for a theory of one real
Z2 symmetric scalar field theory in the local potential approximation (LPA) and
successively with the introduction of an approximate estimate for the anomalous
dimension (LPA’). Moreover we analyze this simple theory in d = 3 with various
techniques: spike-plot method, shooting from large field value and polynomial
analysis near the origin to show how to extract the leading critical exponent ν of the
critical Ising model. In Chapter 3 we review a new covariant Hamiltonian version
of the Polchinski equation obtained from a generalized Legendre transform of the
corresponding effective Lagrangian and introducing generalized covariant momenta
fields as recently proposed in [36]. This method is giving a more powerful way to
systematically generate different families of schemes for the derivative expansions.
As a novel result we extend this formulation for the case of the O(N) system with
a Wilsonian action truncated at the leading order of the derivative expansion i.e.
O(∂2) and some resummations of it, which can be easily extended to higher orders.
We also make some consideration for the large N limit case. In Chapter 4 we
analyze numerically the fixed point equations for the case of N = 1 and d = 3, that
corresponds to the continuum QFT description of the critical Ising model. We use
the shooting method from large field value and compare it with the polynomial
analysis near the origin and the spike-plot method. Finally we arrive at a numerical
estimate for the anomalous dimension ηφ to be compared with the result obtained
by Monte Carlo simulation.



Chapter 1

The Functional RG method

Modern physics is based upon two main theories: Quantum Field Theory and
Statistical Field Theory. These two theories are intimately bound together, for
example they have been molded by the concept of the renormalization group and
the description of one theory is tied to the other via the Wick rotation. The
renormalization group deals with the physics of scales. A central theme is the
understanding of the macroscopic physics at long distances (low energy) in term of
the fundamental microscopic interactions. Bridging this gap from micro to macro
scales requires a thorough understanding of quantum or statistical fluctuations on
all the scales in between. All particle physics is described by gauge theories and
these theories, during the transition from micro to macro scales, turn from weak to
strong coupling. In the regime of weak coupling we can use analytical perturbative
methods and in the regime of strong coupling we need other techniques like lattice
gauge theories. Functional methods begin to bridge the gap since they are not
restricted to weak couplings and can still largely be treated analytically. This is the
great advantage of functional methods. In particular Functional Renormalization
Group combines this functional methods with the renormalization group idea of
treating the fluctuation not all at once but successively from scale to scale. In
other words it means that the correlations functions are not studied after having
averaged over all fluctuations but it is considered only the change of the correlation
functions induced by integration of fluctuations over a momentum shell. From the
mathematical viewpoint this allows to transform the functional-integral structure
of standard field theory into a functional differential structure.
The central tool of the FRG is given by a flow equation, a functional differential
equation that describes the evolution of the correlations functions or their generating
functional under the influence of fluctuations at different momentum scales. This
equation connects the microscopic correlation functions in a perturbative domain in
an exact manner with the desired full correlation functions after having integrated
out all the fluctuations. Hence solving the flow equation is equivalent to solve the
full theory.
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2 The Functional RG method

1.1 Basics of Euclidean QFT
Now we are going to give a brief introduction to functional method, a necessary

tool for the further developments we want to build [21]. From now on we will
assume to be in the framework of euclidean field theory, it means that we will
deal with fields φA on an Euclidean spacetimeM. Throughout all this thesis, the
natural system of units will be used: c = ~ = 1. As in QFTs, that are used to
describe particle physics, the spacetime is Minkowskian, we will also assume that a
Wick rotation to imaginary time can always be done.

In field theory all physical informations are stored in objects called n-point
correlation functions

G
(n)
A1,...,An

=
〈
φA1 . . . φAn

〉
(1.1)

where the labels Ai are written in hyper condensed form (deWitt condensed form)
and are of the form Ai = (ai, xi) where xi are coordinates onM and ai contains
information about the geometric nature of the field. As usual Einstein summation
convention will be adopted when repeated indexes appear. For example if we have
two fields φ and ψ with the same type of indexes their inner product is

φAψA =

∫
dx
∑
a

φa(x)ψa(x) (1.2)

We will concentrate on cases in which φ is a map φ :M→N with N a Riemann
manifold, thus, in this case, ai are indexes in some coordinate basis of N .

In order to compute the expectation value of a general field configuration O[φ]
we need a measure

Dφ
on the space of all possible fields and a probability density

P [φ]

for φ. Now we can write the mean value as

〈O[φ]〉 =
1

Z

∫
DφP [φ]O[φ] (1.3)

where Z is a normalization factor for our probability such that 〈1〉 = 1. Our
correlation functions is obtained as〈

φA1 . . . φAn
〉

=
1

Z

∫
DφP [φ]φA1 . . . φAn (1.4)

In classical field theory the configuration of φ is assumed to be known once enough
boundary conditions are specified and the equation of motion are solved. If we call
this field configuration φAclassical then it is obvious that the probability density must
be a delta functional

Pclassical[φ] = δ[φ− φclassical] (1.5)

with respect to the measure Dφ. In the general quantum case the field configurations
are weighted with an exponential of the action S[φ]

Pquantum[φ] = e−S[φ] (1.6)
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An elegant and systematic way to compute the correlation functions is obtained
introducing source current JA coupled to our fields φA and define a generating
functional as follows [25]:

Z[J ] =

∫
Dφ e−S[φ]+JAφ

A

= Z
〈
eJAφ

A
〉

(1.7)

where second equality is obtained defining the probability density as

P [φ] =
e−S[φ]

Z
(1.8)

where
Z =

∫
Dφ e−S[φ] (1.9)

is also called partition function. It is clear that Z[J ] is the generating functional of
all the correlation functions

G
(n)
A1,...,An

=
〈
φA1 . . . φAn

〉
=

1

Z

δnZ[J ]

δJAn . . . δJA1

∣∣∣∣∣
J=0

(1.10)

in fact
δZ[J ]

δJA
=

∫
Dφ e−S[φ]+JBφ

B

φA (1.11)

More interesting from the physical point of view are the connected correlation
functions that are obtained from another generating functional defined as follows

Z[J ] ≡ eW [J ] (1.12)

taking J functional derivatives

G
(n)
c, A1,...,An

=
δnW [J ]

δJAn . . . δJA1

∣∣∣∣∣
J=0

(1.13)

Example

Consider a free action with only the kinetic term

S0[φ] =
1

2
φAKABφB (1.14)

The J-dependent partition function is

Z0[J ] =

∫
Dφ e−

1
2
φAKABφB+JAφ

A

(1.15)

=

∫
Dφ̃ e−

1
2
φ̃AKAB φ̃B e

1
2
JAKABJB (1.16)

= C e
1
2
JAKABJB (1.17)

where φ̃A = φA − KABJB and KAB is the inverse of the kinetic operator i.e.
KABKBC = δCA .
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We can see that in the free case only the two points correlation function is
different from zero

GAB
0 = lim

J→0

1

Z0[J ]

δ2Z0[J ]

δJAδJB
= KAB (1.18)

and it represents the propagation of field φ from state A to state B. If one looks at
the associated functional

W0[J ] =
1

2
JAKABJB (1.19)

one easily realizes that it is the generator of the (only) connected function of the
system.

Now we want to introduce some interaction encoded in a potential V [φ]

S[φ] = S0[φ] + V [φ] (1.20)

it’s not difficul to believe that the J-dependent partition function is

Z[J ] =

∫
Dφ e−S0[φ]−V [φ]+JAφ

A

= e−V [ δ
δJ

] Z0[J ] ≡ eW [J ] (1.21)

This is the starting point for all the perturbative expansion: if we expand the pre-
factor e−V we obtain a combinations of free propagators and vertexes that depend
on the type of potential. It is possible to show that the n-point correlation functions
generated by W [J ] are those of Z[J ] provided one removes all the diagrams that
are disconnected.

Now we want to introduce a third functional, probably the most important one
in quantum field theory.
First of all we define a new field called classical field

φAc` ≡
〈
φA
〉
J

=
δW [J ]

δJA
(1.22)

in fact

〈
φA
〉
J

=

∫
Dφe−S[φ]+J ·φ φA∫
Dφe−S[φ]+J ·φ =

1

Z[J ]

δZ[J ]

δJA
=

δ

δJA
lnZ[J ] =

δW [J ]

δJA

that is the normalized vacuum expectation value of the self-interacting local quantum
field operator φA in the presence of an external classical source J . Thus φAc` is a
quantum object in spite of the name. Note that in the limit of vanishing external
source, if there is translation invariance in the theory, we have

φAc` |J=0 = constant

with constant equal to zero if and only if the spontaneous symmetry breaking does
not occur.
We can now suitably define the Legendre functional transformation:

Γ[φc`] ≡ φAc` JA −W [J ] (1.23)
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where we assume that the functional φAc` = φAc` [J ] is invertible so that J = J [φc`]
and Γ becomes a functional of φAc`. The Legendre transformed functional Γ is called
Effective Action and it is the generator of the so called one particle irreducible
correlation functions (1PI) or proper verteces. The Effective Action has a very
important interpretation: it is a classical action that can reproduce the quantum
correlations, in other words it encodes all the quantum behavior of the system.
Property of the effective action is to be convex i.e. the matrix

δ2 Γ

δφA δφB

must have positive semidefinite eigenvalues. As we can see from the eq.(1.23)

δΓ

JA
= 0 ⇒ φAc` =

δW [J ]

δJA
(1.24)

the effective action is an extreme in the function J .
We define proper verteces the non-local coefficients in the expansion of Γ[φc`] in

powers of φc`. In fact we can write

Γ[φc`] =
∞∑
n=1

1

n!

[
n∏
j=1

∫
dDxj φc`(xj)

]
Γ(n)(x1. · · · , xn) (1.25)

where

Γ(n)(x1. · · · , xn) =
δΓ[φc`]

δφc`(xn) · · · δφc`(x1)

∣∣∣∣∣
φc`=0

(1.26)

In momentum space they read

Γ(n)
x1,··· ,xn =

∫
dDp1

(2π)D
· · ·
∫

dDpn
(2π)D

e−ip1·x1...−ipn·xnΓ̃(n)
p1,...,pn

(2π)Dδ(p1 + . . .+ pn)

(1.27)
where we have emphasized the translational invariance. For example the two point
proper vertex reads

Γ(2)(x− y) =

∫
dDp

(2π)D
e−ip·(x−y) Γ̃(2)(k) (1.28)

1.2 Wilson Approach

One of the extraordinary result of the technique of perturbative renormalization
is that, in nature, the couplings manifest themselves through scale dependence
[24][14]. In QFT this aspect emerges when we need to renormalize the theory, so in
the development of the theory, we want to add this feature from the very beginning
defining scale dependent functional so that this characteristic is built-in in the
formalism. The first who tried to implement this idea in field theory was Wilson
[33][34].
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Suppose to deal with a scalar field in an euclidean manifold RD, and suppose to
expand the field in the momentum space

φ(x) =

∫
dDq

(2π)D
φq e

−iq·x (1.29)

The natural functional measure for our field integration is in this case∫
Dφ =

∏
q∈RD

dφq (1.30)

so the partition function is

Z =
∏
q∈RD

∫
dφqe

−S[φ] (1.31)

We know that this integral is ill defined because it is divergent, for this reason we
have to introduce a cutoff Λ and a certain action SΛ[φ] to regularize the integral
and deal with finite correlations. The modifications of both the measure and the
action must be such as to reproduce the same partition function.

Z =
∏
q≤Λ

∫
dφqe

−SΛ[φ] (1.32)

We can give a physical interpretation to the new action and think at SΛ[φ] as an
UV action that contains all the information of the theory at energies greater than
Λ. Following the same trick we can introduce a scale k and define a new action
Sk[φ] in this way

Z =
∏
q∈RD
|q|≤k

∫
dφq

∏
q∈RD
k≤|q|≤Λ

∫
dφq e

−SΛ[φ]

︸ ︷︷ ︸
≡ e−Sk[φ]

=
∏
q∈RD
|q|≤k

∫
dφq e

−Sk[φ]

(1.33)

where
e−Sk[φ] =

∏
q∈RD
k≤|q|≤Λ

∫
dφq e

−SΛ[φ] (1.34)

We thus interpret Sk[φ] as the result that comes integrating all modes with k ≤
|q| ≤ Λ. Moving k towards zero means that we are moving us in the direction of
a theory in which all scales contribute to our effective theory. This new action is
called Wilson effective action and describes the physics at the associated scale k,
in other words only modes with |q| ' k are active at that scale. We can understand
this even from another point of view using a blocking procedure.
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This procedure was first used by Kadanoff in the study of scaling behavior
of spin chain systems [8]. The idea was to divide the spin chain into blocks and
perform a local average in order to obtain an “effective spin” for each block. This
new effective-spin-chain has to be rescaled at the original lattice scale in order to
compare the two systems. In this way we can construct an effective Hamiltonian
for the system made of block spins. To be more precise lets start from the initial
partition function

Z =
∑
σi

e−βH[σi] (1.35)

and taking into account the procedure of “decimation” we can write this relation∑
σA

∏
A

δ
(
σA −

1

αD

∑
i∈A

σi
)

= 1 (1.36)

because in the sum
∑

σA
only one particular configuration of spin {σA} correspond

to that of block spins. So we get the result

Z =
∑
σi

e−βH[σi] =
∑
σA

e−βHeff[σA] (1.37)

where
e−βHeff[σA] =

∑
σi

∏
A

δ
(
σA −

1

αD

∑
i∈A

σi
)
e−βH[σi] (1.38)

This procedure can be iterated an infinite number of times, obtaining from each
step a new effective Hamiltonian at larger scale. Therefore this technique is useful
in the study of systems near phase transition where the correlation length ξ →∞
tends to infinite and collective behaviors emerge.

Wilson extended this idea for system with an infinite number of degree of
freedom i.e. for fields. We can define in a similar way a “blocked” field as the
convolution product of the scalar field φ with a “smearing function” ρk(x) [10]

φk(x) =

∫
dy ρk(x− y)φ(y) (1.39)

that has to provide an averaging of our field over a region of typical size k−D.
We define also a coarse grained functional

e−Sk[Φ] =

∫
Λ

Dφ δ(Φ− φk)e−S[φ] (1.40)

that is the continuum case of eq.(1.38) where we have stressed the cutoff Λ, necessary
for the convergence of the integral (in a certain sense we can say that Λ can be
related to a−1 with a be the size of the spin lattice). If we choose for the smearing
function, the step function

ρ̃k(q) = θ(k − q) (1.41)

we have a clear separation between slow modes

Φ(x) ≡ φ<(x) =

∫
dDy φ(y)

∫
dDq

(2π)D
e−q·(x−y) θ(k − |q|) (1.42)
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and fast modes
φ>(x) = φ(x)− φ<(x) (1.43)

therefore we can write

e−Sk[Φ] =

∫
Λ

Dφ>
∫

Λ

Dφ< δ(Φ− φ<) e−S[φ<+φ>] =

∫
Dφ> e−S[Φ+φ>] (1.44)

that morally is the same as eq.(1.34) and tells us that after integrating out fast
modes we obtain an effective action for slow modes. It’s important to note that, as
always happens in coarse–graining procedures, there is a hidden scheme dependence
in the method. Therefore we have been capable to build a theory for φk(x) and
construct an effective theory that describes effects of energies of order k or less.

The equation describing the evolution of Sk[Φ] was derived by Polchinscki [23]
and it reads

∂Sk[Φ]

∂k
=

1

2

∫
dDq

(2π)D
∂Rk(q)

∂k

(
δ2Sk

δΦ̃(q)δΦ̃(−q)
− δSk

δΦ̃(q)

δSk

δΦ̃(−q)

)
(1.45)

where Rk(q) is a certain cutoff function (we will discuss exhaustively this equation
in the third chapter).

1.3 Wetterich’s non perturbative FRG equation

Wetterich in 1993 formulated an alternative approach to functional renormaliza-
tion based on a scale dependent effective action Γk rather than a scale dependent
action Sk [32].

In terms of Γ we are looking for an interpolating action Γk, which is called
Effective Average Action, with a momentum-shell parameter k such that it
satisfies {

Γk→Λ = Sbare

Γk→0 = Γ
(1.46)

The bare action is the microscopic classical action to be quantized and Γ is the full
quantum effective action that includes all quantum fluctuations for all momenta.
Λ is an ultraviolet cutoff which represents the physical energy scale beyond which
QFT loses its validity. The theory is said UV complete if Λ can be sent to ∞. Γk
is an effective action for average fields, this average is taken over a volume ≈ k−D

so only the degree of freedom with momenta greater than the coarse-graining scale
k are effectively integrated out. We want to obtain a differential equation that
describes the flow of Γk compared to k. These are exactly the same goals of the
Wilson approach.

The key idea is to modify the partition function adding an infrared cutoff
term, depending on the coarse-graining scale k, that has the property to kill the
propagation of “slow” modes and keep unaltered “fast” modes. So we have

Zk[J ] =

∫
Dφ e−S[φ]+J ·φ−∆Sk[φ] (1.47)
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where the IR cutoff term has to satisfy the condition

∆Sk=0[φ] = 0 ⇒ Zk=0[J ] = Z[J ] (1.48)

moreover, since it modifies the propagation of φA modes, it must be quadratic in
the fields

∆Sk[φ] =
1

2
φARk

ABφ
B (1.49)

Let KAB be the kinetic operator of the action and ψBi its eigen-fields

KAB ψBi = λ2
iψ

A
i (1.50)

now we can separate “fast” modes (λ2
i & k2) from “slow” modes (λ2

i . k2). We ask
the kernel Rk

AB to be a function of K such that moving to the eigen-fields we have

KAB +Rk,A
B [K]→ λ2

i +Rk[λ
2
i ] (1.51)

The conditions that Rk[λ
2] has to satisfy are:

• limk→0Rk[λ
2] = 0 equivalent to the condition Zk=0[J ] = Z[J ];

• Rk[λ
2] > 0 for λ2 < k2 which implements the IR regularization i.e. the

regulator screens the IR modes in a mass-like fashion;

• Rk[λ
2] ' 0 for λ2 > k2 which implies that rapid modes are unaffected by the

coarse-graining and are integrated out;

• limk→∞Rk[λ
2] =∞ so that no modes are propagating and quantum fluctua-

tions are exponentially suppressed in the path integral (the stationary point
of the classical action S becomes dominant).

As before we first define the generator of connected Green functions

Wk[J ] = lnZk[J ] (1.52)

and the classical field which will be now k-dependent

φAcl,k ≡
δWk[J ]

δJA
=

1

Zk[J ]

δZk[J ]

δJA
=
〈
φA
〉
k,J

(1.53)

It is important to notice that if we keep J fixed then φc` will depend on the scale k
and viceversa, if we keep φc` fixed then J will depend on the scale k. In this case
the effective average action takes the following form

Γk[φc`] ≡ JAφ
A
c` −Wk[J ]︸ ︷︷ ︸
≡ Γ̂k[φc`]

−∆Sk[φc`] (1.54)

where again J has to be inverted as a functional of φc`. Another important obser-
vation is that, because of the last term, eq.(1.54) is not a Legendre transformation
so the effective average action is still not convex, convexity is restored in the limit
k → 0.
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Now we want to derive the equations that governs the behavior of the functionals
that we have introduced before, respect the sliding scale k [32][1][4].

∂Zk[J ]

∂k

∣∣∣∣∣
J fix

=

∫
Dφ e−S[φ]+J ·φ−∆Sk[φ]

(
− ∂

∂k
∆Sk[φ]

)
(1.55)

=

∫
Dφ e−S[φ]+J ·φ−∆Sk[φ]

(
−1

2
φA∂kR

k
ABφ

B

)
(1.56)

= −1

2

δ

δJA

(
∂kR

k
AB

) δ

δJB
Zk[J ] (1.57)

∂Wk[J ]

∂k

∣∣∣∣∣
J fix

=
1

Zk[J ]
∂kZk[J ] (1.58)

= −1

2
∂kR

k
AB

(
δWk

δJA

δWk

δJB
+

δ2Wk

δJAδJB

)
(1.59)

This is a functional differential equation for Wk[J ] and is related to the Polchinski
equation [23] which has been presented in eq.(1.45).

δΓ̂k[φc`]

δφAc`
=

δJB
δφAc`

φBc` + JA −
δWk

δJB

δJB
δφAc`

= JA (1.60)

=
δΓk
δφAc`

+
δ∆Sk
δφAc`

(1.61)

=
δΓk
δφAc`

+Rk
ABφ

B
c` (1.62)

Now we want to compute the k-derivative at J fixed of the eq. (1.54), to do this
we have to take into account that [4]

∂

∂k

∣∣∣∣
Jfix

=
∂

∂k

∣∣∣∣
φfix

+
∂φA

∂k

∣∣∣∣
Jfix

δ

δφA
(1.63)

so we get

∂Γk
∂k

∣∣∣∣
J

=
∂Γk
∂k

∣∣∣∣
φ

+
∂φA

∂k

∣∣∣∣
J

δΓk
δφA

= JA
∂φA

∂k

∣∣∣∣
J

− ∂Wk

∂k

∣∣∣∣
J

− ∂∆Sk
∂k

∣∣∣∣
J

(1.64)

∂Γk
∂k

∣∣∣∣
φ

=

(
JA −

δΓk
δφA

)
∂φA

∂k

∣∣∣∣
J

− ∂Wk

∂k

∣∣∣∣
J

− ∂∆Sk
∂k

∣∣∣∣
J

(1.65)

= Rk
ABφ

B ∂φ
A

∂k

∣∣∣∣
J

+
1

2
∂kR

k
AB

(
δWk

δJA

δWk

δJB
+

δ2Wk

δJAδJB

)
(1.66)

−1

2

∂Rk
AB

∂k

∣∣∣∣
J

φAφB −Rk
ABφ

A∂φ
B

∂k

∣∣∣∣
J

(1.67)

where we have used the eq.(1.59) and eq.(1.62). Now, by definition of φAc` we obtain

∂Γk
∂k

∣∣∣∣
φ

=
1

2
∂kR

k
AB

δ2Wk

δJAδJB
(1.68)
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Γk=Λ = Sbare

Γk=0 ≡ Γ

Figure 1.1: Sketch of the RG flow in the theory space. Each axis correspond to a different
operator which spans the effective action.

The last step is to find a relation between the second derivative of Wk and Γk.

G
(2)
k,AB ≡

δ2Wk

δJAδJB
=
δφA

δJB
=

(
δJB
δφA

)−1

=

(
δ2Γ̂k

δφAδφB

)−1

=
(

Γ
(2)
k,AB +Rk,AB

)−1

(1.69)
We can see that the propagator is modified by the presence of the cutoff term Rk.
If we define a new variable, the “time” of the renormalization flow

t = ln
k

Λ
⇒ ∂t = k∂k (1.70)

we conclude that the exact renormalization group equation (ERGE) is

Γ̇k[φc`] =
1

2
Tr
(
Gk[φc`]Ṙk

)
=

1

2
Tr
[(

Γ
(2)
k,AB +Rk,AB

)−1
Ṙk

]
(1.71)

Now I want to spend a few words on this equation enunciating its properties [5]:

• The flow equation is a functional differential equation for Γk[φc`] and not an
integral-differential equation as we shall see in the next section. This equation
is not approximate so in principle the results are exact.

• The solution of the ERGE is an RG trajectory in the theory space i.e. in the
space of all the action functional spanned by all possible invariant operators of
fields. Start and end of the trajectory are the bare action and the full action
respectively. Note that there is a built-in dependence of the ERGE on the
choice of the regulator so even the trajectory will depend on the particular
shape of Rk (see fig.1.1).

• The ERGE can be interpreted as a 1-loop equation, where the modified
propagator performs a loop with a single insertion of the derivative of the
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p
2k

2

k
2

R
k

(d/dt) R
k

Figure 1.2: Sketch of a regulator function Rk(p2) and its derivative Ṙk.We can see that the
derivative implements the Wilsonian idea of integration out fluctuations within a
momentum shell near p2 ' k2. Moreover we see that the regulator provides for an
IR regulator for all modes with p2 . k2

cutoff term. The one loop structure derives from the choice of ∆Sk to be
quadratic in the fields [12].

Γ̇k[φ] =
1

2
Ṙk (1.72)

• The purpose of the regulator is twofold: by construction it is an IR reg-
ulator as we can see in the occurrence of Rk in the denominator of the
ERGE and moreover, Ṙk acts as an UV regulator thanks to the conditions
limq2/k2→0Rk(q

2) > 0, limk2/q2→0Rk(q
2) = 0 and thanks to the fact that its

predominant support lies on a smeared momentum shell near p2 ∼ k2. A
typical shape of the regulator and of its derivative is given in fig.1.2. The
peaked structure of Ṙk implements the Wilsonian idea of integrating over
momentum shells and implies that the flow is localized in momentum space.

1.3.1 Alternative form of the ERGE

From the eq.(1.47) and the definition of Γ̂k (1.54) we have

e−Γ̂k[φc`] =

∫
Dφ e−S[φ]−∆Sk[φ]+

∫
J ·(φ−φc`) (1.73)

that is an integro-differential equation for Γ̂k[φc`] because

JA =
δΓ̂k[φc`]

δφAc`
(1.74)

We want to obtain a similar equation for Γk[φc`]. First of all we expand the eq.(1.73)

e−Γk[φc`]−∆Sk[φc`] =

∫
Dφ e−S[φ]−∆Sk[φ]+

∫ δ(Γk+∆Sk)[φc`]

δφc`
·(φ−φc`) (1.75)
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e−Γk[φc`] =

∫
Dφ e−S[φ]−∆Sk[φ]+∆Sk[φc`]+

∫ δ(Γk+∆Sk)[φc`]

δφc`
·(φ−φc`) (1.76)

Now we introduce the fluctuation field χ ≡ φ− φc` and taking into account that
the IR cutoff term is quadratic in the fields

∆Sk[φ] = ∆Sk[φc`] + ∆Sk[χ] + χARk
ABφ

B
c` (1.77)

= ∆Sk[φc`] + ∆Sk[χ] + χA
δ∆Sk[φ]

δφA

∣∣∣∣∣
φc`

(1.78)

and that the path integral is invariant under translation, we finally obtain the
following integro-differential equation for Γk[φc`]

e−Γk[φc`] =

∫
Dχ e−S[φc`+χ]−∆Sk[χ]+

∫
χ
δΓk
δφc` (1.79)

=

∫
Dφ e−S[φ]−∆Sk[φ−φc`]+

∫
(φ−φc`)

δΓk
δφc` (1.80)

Now suppose to start from a general theory which has an effective action defined
as in eq.(1.80) where φc` is an unknown field configuration. Taking the functional
derivative respect φc` we get(

Rk
AB +

δ2Γk
δφAc`δφ

B
c`

)∫
DφP [φ](φ− φc`)B = 0 (1.81)

and provided that Γ
(2)
k +Rk has a null kernel i.e. invertible, we can say that

φAc` =
〈
φA
〉

=

∫
DφP [φ]φA (1.82)

where

P [φ] =
e
−S[φ]−∆Sk[φ−φc`]+

∫
(φ−φc`)

δΓk
δφc`∫

Dφ e−S[φ]−∆Sk[φ−φc`]+
∫

(φ−φc`)
δΓk
δφc`

(1.83)

so we obtained that the classical field is exactly the average of the field φ.
Taking again another derivative we get

δAB =

∫
DφφA δ

δφBc`
P [φ] (1.84)

if we expand

δAB

∫
Dφe[... ] + φAc`

∫
Dφ e[... ]

{
(φ− φc`)C

(
Rk
CB +

δ2Γk
δφBc`δφ

C
c`

)
− δΓk
δφBc`

}
=

=

∫
DφφA e[... ]

{
(φ− φc`)C

(
Rk
CB +

δ2Γk
δφBc`δφ

C
c`

)
− δΓk
δφBc`

}
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δAB =

∫
DφP [φ]

{
(φAφC − φAc`φC)

(
Rk
CB +

δ2Γk
δφBc`δφ

C
c`

)}
(1.85)

=
(〈
φAφC

〉
− φAc`φCc`

)(
Rk
CB +

δ2Γk
δφBc`δφ

C
c`

)
(1.86)

=
(〈
φAφC

〉
−
〈
φA
〉 〈
φC
〉)(

Rk
CB +

δ2Γk
δφBc`δφ

C
c`

)
(1.87)

= GAC
k

(
Rk
CB +

δ2Γk
δφBc`δφ

C
c`

)
(1.88)

again we have that the full connected two-points propagator is

Gk =
(
Rk + Γ

(2)
k

)−1

(1.89)

We are ready to deduce the ERGE: taking the k-derivative of the eq.(1.79) at φc`
constant we get

∂kΓk[φc`] =
1

2
∂kR

k
AB

∫
DχP [χ]χAχB − ∂k

δΓk
δφAc`

∫
DχP [χ]χA (1.90)

but
〈
χA
〉

= 0 and
〈
χAχB

〉
= GAB

k . The final result is exactly the same as before

∂kΓk[φc`] =
1

2
Tr [Gk∂kRk] (1.91)

1.3.2 Truncation methods

The Wetterich’s equation cannot be solved exactly for an arbitrary Γk therefore
some approximations on the effective action have to be taken. There are two main
truncation methods used in the literature: the derivative expansion and the vertex
expansion. The last one was introduced and extensively investigated by Tim R.
Morris [17] and it is widely used in condensed matter physics and in low energy
QCD physics.

It is very important to emphasize that, because these methods are not based on
expansions in some small coupling parameters, they are essentially non perturbative.
The consequence of making these approximation is to transform the ERGE into a
system of differential equations sometimes much more easy to solve.

The derivative expansion consists in expanding the effective action in powers
of derivative of the fields. This methods is often applied to problems where one is
interested in low momenta or when the local dynamics is known to dominate. This
is the most used approximation technique and its convergence properties have been
largely discussed (see for example [19]). We will use this approximation in a rather
different way in the third chapter.

The vertex expansion consists in expanding the effective action in powers of the
field.

Γk[φc`] =
∞∑
n=0

1

n!

∫
dDx1 . . .

∫
dDxn Γ

(n)
k (x1, . . . , xn)φc`(x1) . . . φc`(xn) (1.92)
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Upon inserting this expansion into the ERGE we obtain an infinite tower of
functional equations that describe the flow of the n-points function.

Lets show the first three terms

Γ̇
(1)
k [φc`] =

δ

δφc`
Γ̇k[φc`] = −1

2
Tr

{
Ṙk

1

Γ
(2)
k +Rk

δΓ
(2)
k

δφc`

1

Γ
(2)
k +Rk

}

= −1

2
Tr

{
Ṙk

1

Γ
(2)
k +Rk

Γ
(3)
k

1

Γ
(2)
k +Rk

} (1.93)

Γ̇
(2)
k [φc`] =

δ2

δφc`δφc`
Γ̇k[φc`] =2× 1

2
Tr

{
Ṙk

1

Γ
(2)
k +Rk

Γ
(3)
k

1

Γ
(2)
k +Rk

Γ
(3)
k

1

Γ
(2)
k +Rk

}

− 1

2
Tr

{
Ṙk

1

Γ
(2)
k +Rk

Γ
(4)
k

1

Γ
(2)
k +Rk

}
(1.94)

Γ̇
(3)
k [φc`] =− 1

2
Tr

{
Ṙk

1

Γ
(2)
k +Rk

Γ
(5)
k

1

Γ
(2)
k +Rk

}

+ 6× 1

2
Tr

{
Ṙk

1

Γ
(2)
k +Rk

Γ
(4)
k

1

Γ
(2)
k +Rk

Γ
(3)
k

1

Γ
(2)
k +Rk

}

− 6× 1

2
Tr

{
Ṙk

1

Γ
(2)
k +Rk

Γ
(3)
k

1

Γ
(2)
k +Rk

Γ
(3)
k

1

Γ
(2)
k +Rk

Γ
(3)
k

1

Γ
(2)
k +Rk

}
(1.95)

What we can see is that

Γ̇
(n)
k [φc`] = Fn

[
φc`,Γ

(2)
k , . . . ,Γ

(n+2)
k

]
(1.96)

so we have a hierarchy of the flow equations and this is the problem. How we can
do meaningful calculations? We need to truncate the effective action and restrict it
to correlations on nmax fields but, in doing so, we no longer have a closed system of
equations. First we need to write down a most general ansatz for the effective action
that must contain all invariants that are compatible with the symmetries of the
theory. Than one truncates by reducing higher n-point functions to contact terms
or to a simplified momentum dependence or neglecting even higher correlations
outright. For practical applications this is obviously the most problematic part,
and it requires a lot of physical insight to make the correct physical choices.

We finally remember again that these approximations are not expansions in
some small parameters although, of course, the assumption is that higher order
operators will be irrelevant and suppressed due to the existence of a large scale.
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1.4 Asymptotic Safety

The effective average action Γk[φc`] can be parametrized with a basis of operators
Oi,k[φc`] that are compatible with the symmetries of the system. These operators
can be interpreted as coordinates in the space of all allowed field theories.

Γk[φc`] =
∑
i

gi,kOi,k[φc`] (1.97)

where gi,k are the couplings and form the dual space of the operator space. We
can keep the basis fixed or not exactly as in quantum mechanics we have the
Heisenberg or Schroedinger representations. For simplicity we shall take the basis
fixed (k-independent) so when we consider the derivative respect the RG time we
have

Γ̇k[φc`] =
∑
i

ġi,kOi[φc`] =
∑
i

βiOi[φc`] (1.98)

where βi,k are called beta functions for the couplings gi,k. From the ERGE we
have that Γ̇k[φc`] is a function of Γk[φc`] so the beta function has this natural
parametrization

βi = βi(g, k) (1.99)

If the operators Oi,k[φc`] have a canonical dimension cmdi than the corresponding
couplings gi have the canonical dimension cm−di so the naive scaling is gi,k ∼ kdi .
However we are looking for dimensionless couplings, because from the point of view
of experimental physics it is clear that we always measure quantities compared to
some reference scale, so we define

g̃i,k ≡ gi,k k
−di (1.100)

that corresponds to the Kadanoff rescaling after blocking. The relative beta
functions are

β̃i = −di g̃i,k + k−diβi (1.101)

and because of the dimensionless of β̃i, they must be functions only of g̃

β̃i = β̃i(g̃) (1.102)

Having chosen the basis of operators fixed with the scale, the knowledge of the
RG flow for the effective average action is equivalent to the knowledge of the flow
for the beta functions. The theory space is infinite dimensional so even the dual
space of couplings is infinite dimensional but a problem rises because we are not
capable to do infinite experiments to measure all the couplings. For this reason we
want a theory to be predictive and so we have to consistently constrain the initial
condition SΛ to some finite dimensional subset of the coupling space (the RG flow
doesn’t change the number of parameters).

We define a fixed point for the beta functions as the set of dimensionless
parameters g̃∗i such that

β̃i(g̃
∗) = 0 (1.103)



1.4 Asymptotic Safety 17

so if we start with a theory at a fixed point than the RG flow doesn’t modify the
theory that will remain there at every scale. The study of the behavior of the flow
near a given fixed point is usually done defining the stability matrix

Mij ≡
∂β̃i
∂g̃j

(1.104)

This matrix at the FP can be diagonalized

Mij

∣∣
g̃∗

= diag(λ(1), λ(2), . . . ) (1.105)

in order to obtain a set of eigenvectors {v(a)} and eigenvalues{λ(a)} that can be
separated into two classes

• λ(a) > 0 means that the FP is repulsive in the corresponding direction;

• λ(a) < 0 means that the FP is attractive in the corresponding direction.

The flow near a fixed point along the ith direction can be expressed as

g̃i(t) = g̃∗i + δg̃i(t) (1.106)

where δg̃i is a small fluctuation around the fixed point. The flow equation can now
be linearized

β̃i(g) = β̃i(g
∗) +

∂β̃i
∂g̃j

∣∣∣∣∣
g∗

δg̃j =Mij

∣∣
g̃∗
δg̃j

= ∂t(g̃
∗
i + δg̃i) = ∂t(δg̃i)

(1.107)

=⇒ ∂t(δg̃i) =Mij

∣∣
g̃∗
δg̃j (1.108)

After solving the eigenvalue problem

Mij

∣∣
g̃∗
v

(a)
j = λ(a)v

(a)
i (1.109)

we can expand the fluctuation in term of the eigenvectors

δg̃i(t) =
∑
(a)

c(a)(t) v
(a)
i (1.110)

and substituting in eq.(1.108) we get∑
(a)

ċ(a) v
(a)
i =Mij

∣∣
g̃∗

∑
(a)

c(a) v
(a)
j =

∑
(a)

c(a) λ(a)v
(a)
i (1.111)

=⇒ ċ(a) = λ(a) c(a) (1.112)

that has a power law solution

c(a)(t) = c(a)(0) eλ(a)t = c(a)(0)

(
k

k0

)λ(a)

(1.113)
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Therefore the behavior of the couplings near a FP in the linearized problem is

g̃i(t) = g̃∗i +
∑
(a)

c(a)(0)

(
k

k0

)λ(a)

v
(a)
i (1.114)

The critical exponents of the model are defined as

ν(a) ≡ −λ(a) (1.115)

and can be separated into three classes

• relevant if ν(a) > 0;

• marginal if ν(a) = 0;

• irrelevant if ν(a) < 0.

An attractive FP has a very important physical meaning because it may represent
the ending of the limit Λ→∞ (interpreted as an extension of k integration from Λ
to ∞), in fact along the attractive direction g̃i −−−→

k→∞
g̃∗i . Therefore, in this case, we

can consistently take the UV limit and the theory is said to be asymptotically
safe and renormalizable [28]. Asymptotic freedom is a special case of asymptotic
safety.

In such a case the fixed point is characterized by g̃∗i = 0, the fixed point is said
Gaussian. QCD, for example, is a one coupling gs asymptotically free theory with
fixed point g∗s = 0.

However there is another important thing necessary for the theory to be predic-
tive: the number of attractive directions must be finite. The UV limit is also called
“continuum limit” because it corresponds in lattice theory to the limit a→ 0 with a
the size of the lattice. In cutoff-regulated theories and theories with a sliding scale,
if we want our theory to be a low energy manifestation of a more fundamental action
with the same degrees of freedom, it is necessary that a FP, with the mentioned
properties, exists. Otherwise no meaningful UV-limit is possible.



Chapter 2

The scalar model

In this chapter we will apply the exact renormalization group equation for the
effective average action in a simple but nontrivial example: the scalar model in D
dimensions with an arbitrary local potential and an anomalous dimension encoded
in the presence of a wave function renormalization.

2.1 Local potential approximation (LPA)
We start our study of the scalar model from an effective average action that we

truncate in a local potential form [17] [15] i.e.

Γk[φ] =

∫
dDx

(
1

2
Zφ ∂µφ ∂µφ+ V [φ]

)
(2.1)

Remember that we are in euclidean spacetime and that V [φ] can be an arbitrary
functional of the real scalar field φ. We have also omitted the subscript c` in the
field for sake of simplicity. The scalar field has the canonical engineering dimension
[φ] = cm−

D
2

+1 and [V ] = cm−D.
Now we have to do some general steps before using the ERGE. As it is usual in

renormalization procedures we define the renormalized field

φR ≡
√
Zφφ (2.2)

and because in the asymptotic safety scenario we want to study the flow of dimen-
sionless couplings, we need to deal with dimensionless objects.

φ∗ ≡ k−D/2+1
√
Zφ φ (2.3)

V∗[φ∗] ≡ k−D V

[
φ∗

k−D/2+1
√
Zφ

]
(2.4)

The coefficients in a power law expansion of the potential V∗ are called dimensionless
renormalized couplings. From now on, k-derivatives are always performed at fixed
φ so when applied to the dimensionless field we obtain

k∂kφ∗ = ∂tφ∗ = −
(
D

2
− 1 +

ηφ
2

)
φ∗ (2.5)

19
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where we have defined the anomalous dimension

ηφ = −Żφ
Zφ

(2.6)

The reason of the name is that from the eq.(2.6) we can see immediately that

φ∗ ∼ kD/2−1+ηφ/2 (2.7)

so the anomalous dimension changes the scaling one naively expects for the field φ∗.
Taking the total derivative with respect to t of the eq.(2.4) we have to stress

that there are two contributes, one given by the built-in dependence on k through
its expansion coefficients and another given by the argument φ∗

V̇∗[φ∗] + V ′∗ [φ∗]

(
−φ∗

[
D

2
− 1 +

ηφ
2

])
= −DV∗[φ∗] + k−DV̇ [φ] (2.8)

but we are interested only in the variation of dimensionless renormalized couplings
so

V̇∗[φ∗] = −DV∗[φ∗] + V ′∗ [φ∗]φ∗

[
D

2
− 1 +

ηφ
2

]
+ k−DV̇ [φ] (2.9)

From the ERGE we have

∂tΓk
∣∣
φ const =

∫
dDx V̇ [φ] =

1

2
Tr
{
ṘK [Rk − Zφ2 + V ′′ ]−1

}
(2.10)

Now, because Rk is an IR regulator, it must have the following form

Rk = ZφRk (2.11)

so we get ∫
dDx V̇ [φ] =

1

2
Tr

{
(ṘK − ηφRk)

[
Rk −2 +

V ′′

Zφ

]−1
}

(2.12)

and moving to momentum space

V̇ [φ] =
1

2

∫
dDp

(2π)D
(
ṘK(p2)− ηφRk(p

2)
) [

Rk(p
2) + p2 +

V ′′[φ]

Zφ

]−1

(2.13)

The “optimized” cut-off kernel is [11]

Rk(p
2) = (k2 − p2)θ(k2 − p2) (2.14)
∂kRk(p

2) = 2k2θ(k2 − p2) (2.15)

where the assumption of regularity in k2 = p2 is taken. From the relation

1

Rk(p2) + p2 + V ′′

Zφ

=
θ(k2 − p2)

k2 + V ′′

Zφ

+
θ(p2 − k2)

p2 + V ′′

Zφ

(2.16)
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we have

V̇ [φ] =
1

2

∫
dDp

(2π)D
θ(k2 − p2)

k2(2− ηφ) + ηφp
2

k2 + V ′′

Zφ

(2.17)

and passing to spherical coordinates

V̇ [φ] =
ΩD

2(2π)D

∫ ∞
0

dp pD−1 θ(k2 − p2)
k2(2− ηφ) + ηφp

2

k2 + V ′′

Zφ

(2.18)

=
ΩDk

D+2

D(2π)D
1− ηφ

D+2

k2 + V ′′

Zφ

(2.19)

where ΩD = 2π
D
2 /Γ[D

2
]. Moreover in term of the dimensionless potential, taking

into account that V ′′∗ [φ∗] = k−DV ′′[φ]
(
dφ
dφ∗

)2
= 1

k2Zφ
V ′′[φ] and substituting eq.(2.19)

in eq.(2.9) we have the final result

V̇∗[φ∗] = −DV∗[φ∗] +
D − 2 + ηφ

2
φ∗ V

′
∗ [φ∗] + CD

1− ηφ
D+2

1 + V ′′∗ [φ∗]
(2.20)

where C−1
D = 2D−1πD/2D Γ[D/2]. This is the ERGE for the scalar model in

the local potential approximation. It is important to note that this equation is non
linear due to the presence of the last term where we have the second derivative in
the denominator.

2.2 Scalar anomalous dimension (LPA’)

When we have calculated the flow equation for the effective average action we
have taken φc`=const, so the kinetic term does not play any role and it is not
possible to evaluate the anomalous dimension. Therefore we want to obtain an
equation that shows how Zφ changes under the flow of the renormalization ‘time’.
The key idea is that we have to look at the flow of the two-point function rather
than at the flow of the effective action itself. In momentum space the two-point
function, for the choice made in eq.(2.1), is

Γ
(2)
k (p) = Zφp

2 + V ′′[φ] (2.21)

so in the flow of Γ̇
(2)
K (p) the coefficient ∝ p2 will be our beta-function Żφ. An

important observation to do is that to evaluate the anomalous dimension we have
to take a particular field configuration which we choose to be constant.

The n-point vertex is [24]

Γ
(n)
k;x1,...,xn

=
δnΓk

δφ(x1) . . . δφ(xn)
(2.22)

and in the momentum space

Γ̃
(n)
k;p1,...,pn

= Γ
(n)
k;p1,...,pn

δp1+···+pn (2.23)
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where we have factorized the momentum conservation at each vertex due to trans-
lation invariance. For this reason Γ

(n)
k is a function of n− 1 momenta, for example

Γ
(2)
k;x1,x2

= Γ
(2)
k (x1 − x2) =⇒ Γ

(2)
k;p,−p ≡ Γ

(2)
k;p (2.24)

The exact renormalization group equation in momentum space is

Γ̇k[φ] =
1

2

∫
p

Gk;pṘk;p (2.25)

Gk;p =
(

Γ
(2)
k;p +Rk;p

)−1

(2.26)

where Rk;p = Rk(p
2). Now we have to take derivative of the eq.(2.25) with respect

to φ

Γ̇
(1)
k;x[φ] =

1

2
Tr
(
Ṙk

δ

δφx

1

Γ(2) +Rk

)
(2.27)

Form the formal equality

∂xO−1 = −O−1 [∂xO]O−1 (2.28)

we get

Γ̇
(1)
k;x[φ] = −1

2
Tr
(
ṘkGkΓ

(3)
k Gk

)
= −1

2

(
Ṙk;z1,z2Gk;z1y1Γ

(3)
k;xy1y2

Gk;y2z2

)
(2.29)

Taking another derivative and using again this formal equality

∂x∂yO−1 = −O−1 [∂x∂yO]O−1+O−1 [∂xO]O−1 [∂yO]O−1+O−1 [∂yO]O−1 [∂xO]O−1

(2.30)
we get

Γ̇
(2)
k;x,y[φ] =− 1

2
Ṙk;z4,z3Gk;z3z1Γ

(4)
k;xyz1z2

Gk;z2z4

+ Ṙk;y2y1Gk;y1z1Γ
(3)
k;xz1z2

Gk;z2z3Γ
(3)
k;yz3z4

Gk;Z4y2

(2.31)

and after taking the Fourier transformation

Γ̇
(2)
k [p] =− 1

2

∫
dDq

(2π)D
Ṙk(q)G̃k(q)G̃k(q)Γ

(4)
k (p, q,−p,−q)

+

∫
dDq

(2π)D
Ṙk(q)G̃k(q)G̃k(q)G̃k(q + p)Γ

(3)
k (p, q,−p− q)Γ(3)

k (−p,−q, p+ q)

(2.32)

Proof. ∫
dDyOx1,y [O−1]y,x2

= δx1,x2

now let’s take the functional derivative respect φx∫
y

δOx1,y

δφx
[O−1]y,x2 +Ox1,y

δ[O−1]y,x2

δφx
= 0
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moltiply by Ox2,x4
and integrate in x2∫
x2

∫
y

δOx1,y

δφx
[O−1]y,x2Ox2,x4 +Ox1,y

δ[O−1]y,x2

δφx
Ox2,x4 = 0

δOx1,x4

δφx
+

∫
x2

∫
y

Ox1,y
δ[O−1]y,x2

δφx
Ox2,x4 = 0

now we have to multiply by [O−1]x4,z2 [O−1]z1,x1
and integrate in x1, x4∫

x1

∫
x4

[O−1]z1,x1

δOx1,x4

δφx
[O−1]x4,z2+

∫
x1

∫
x4

∫
x2

∫
y

[O−1]z1,x1Ox1,y
δ[O−1]y,x2

δφx
Ox2,x4 [O−1]x4,z2 = 0

=⇒
∫
x1

∫
x2

[O−1]z1,x1

δOx1,x2

δφx
[O−1]x2,z2 +

δ[O−1]z1,z2
δφx

= 0

that is excatly the eq.(2.30).
Let’s start from the first term of (2.32)

− 1

2

∫
dDz1 . . .

∫
dDz4

∫
p1

. . .

∫
p7

e−ip1·(z3−z1)G̃k(p1)e−ip2·(z2−z4)G̃k(p2)e−ip7·(z4−z3)Ṙk(p7)×

× e−ip3·x−ip4·y−ip5·z1−ip6·z2 Γ̃
(4)
k (p3, . . . , p6)(2π)Dδ(p3 + · · ·+ p6) =

= −1

2

∫
p1

. . .

∫
p7

(2π)4Dδ(−p1 + p5)δ(p6 + p2)δ(p1 − p7)δ(p7 − p2)e−ip3·x−ip4·yG̃k(p1)G̃k(p2)Ṙk(p7)×

× Γ̃
(4)
k (p3, . . . , p6)(2π)Dδ(p3 + · · ·+ p6) =

= −1

2

∫
p

∫
q

e−ip·(x−y)G̃2
k(q)Ṙk(q)Γ̃

(4)
k (p,−p, q,−q)

The second term is∫
dDx1 . . .

∫
dDx6

∫
p1

. . .

∫
p4

∫
q1

. . .

∫
q6

e−ip1·(x1−x2)G̃k(p1)e−ip2·(x3−x4)G̃k(p2)e−ip3·(x5−x6)G̃k(p3)×

× e−ip4·(x6−x1)Ṙk(p4)e−iq1·x−iq2·x2−iq3·x3 Γ̃
(3)
k (q1, q2, q3)(2π)Dδ(q1 + q2 + q3)×

× e−iq6·y−iq5·x5−iq4·x4 Γ̃
(3)
k (q4, q5, q6)(2π)Dδ(q4 + q5 + q6) =

=

∫
p1

. . .

∫
p4

∫
q1

. . .

∫
q6

(2π)6Dδ(p1 − p4)δ(−p1 + q2)δ(p2 + q3)δ(−p2 + q4)δ(p3 + q5)δ(−p3 + p4)×

× (2π)Dδ(q1 + q2 + q3)(2π)Dδ(q4 + q5 + q6)e−iq1·x−iq6·yG̃k(p1)G̃k(p2)G̃k(p3)Ṙk(p4)Γ̃
(3)
k (q1, q2, q3)×

× Γ̃
(3)
k (q4, q5, q6) =

=

∫
q

∫
`

e−iq·(x−y)G̃2
k(`)G̃k(`+ q)Ṙk(`)Γ̃

(3)
k (q, `,−q − `)Γ̃(3)

k (−q,−`, `+ q)

this equation can be expressed in term of Feynman diagrams

Γ̇
(2)
k (p) = −1

2

 p

p
q

q

Ṙk


+


p

p+ q

p
q

q

Ṙk


(2.33)

In our LPA approach, all correlation functions for n > 2 points depends only on
the potential V , therefore

Γ
(n)
k; p1,...,pn

= V (n)[φ] n > 2 (2.34)
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and the flow equation for the two point function becomes

Żφp
2 + V̇ ′′[φ] = −1

2
V (4)[φ]

∫
q

Ṙk(q)G̃
2
k(q) +

(
V (3)[φ]

)2
∫
q

Ṙk(q)G̃
2
k(q)G̃k(q + p)

(2.35)
If we take pµ = 0

V̇ ′′[φ] = −1

2
V (4)[φ]

∫
q

Ṙk(q)G̃
2
k(q) +

(
V (3)[φ]

)2
∫
q

Ṙk(q)G̃
3
k(q) (2.36)

we have an expression for V̇ ′′[φ] that we have to subtract from eq.(2.35) to obtain

Żφp
2 =

(
V (3)[φ]

)2
∫
q

Ṙk(q)G̃
2
k(q)

(
G̃k(q + p)− G̃k(q)

)
(2.37)

where of course this equality is not consistent, we have to project the right hand
side on the sector quadratic in p to obtain Zφ. It’s important to note that from the
eq.(2.13) we have

V̇ ′[φ] = −1

2
V (3)[φ]

∫
q

G̃2
k(q)Ṙk

V̇ ′′[φ] = −1

2
V (4)[φ]

∫
q

G̃2
k(q)Ṙk +

(
V (3)[φ]

)2
∫
q

G̃3
k(q)Ṙk

(2.38)

that is consistent with the last derivation. Now taking into account that ∂
∂p2p

2 =
1

2D
∂2

∂pµ∂pµ
p2 = 1 we have

Żφ =
∂

∂p2

∣∣∣∣∣
0

(
Żφp

2

)
=

1

2D

∂2

∂pµ∂pµ

∣∣∣∣∣
0

(
Żφp

2

)

=
(
V ′′′[φ]

)2
∫
q

Ṙk(q)G̃
2
k(q)

1

2D

∂2

∂pµ∂pµ

∣∣∣∣∣
0

G̃k(q + p)

=
(
V ′′′[φ]

)2
∫
q

Ṙk(q)G̃
2
k(q)

1

2D

∂2

∂qµ∂qµ
G̃k(q)

=
(
V ′′′[φ]

)2
∫
q

Ṙk(q
2)G̃2

k(q
2)

(
G̃′k(q

2) +
q2

D/2
G̃′′k(q

2)

)
(2.39)

where the second equality is necessary to commute the derivative with the integration.
As before we take the following IR regulator

Rk(q
2) = Zφ(k2 − q2)θ(k2 − q2) (2.40)

so we get

Ṙk(q
2) = Zφ

[
−ηφ(k2 − q2) + 2k2

]
θ(k2 − q2) + Zφ(k2 − q2)2k2δ(k2 − q2)

G̃k(q
2) =

1

Γ
(2)
k;q +Rk;q

= θ(k2 − q2)
1

Zφk2 + V ′′[φ]
+ θ(q2 − k2)

1

Zφq2 + V ′′
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∂

∂qµ
G̃k(q

2) = −θ(q2 − k2)
Zφ2qµ

(Zφq2 + V ′′)2
− 2qµ

δ(k2 − q2)

Zφk2 + V ′′
+ 2qµ

δ(q2 − k2)

Zφq2 + V ′′

= −θ(q2 − k2)
Zφ2qµ

(Zφq2 + V ′′)2

∂2

∂qµ∂qν
G̃k(q

2) = −4qµqνZφδ(q
2 − k2)

1

(Zφq2 + V ′′)2
− θ(q2 − k2)

∂

∂qν
Zφ2qµ

(Zφq2 + V ′′)2

Taking into account the assumption of regularity at k2 = q2, the flow equation for
the anomalous dimension is

Żφ = −
(
V ′′′[φ]

)2
∫
q

Zφ
[
−ηφ(k2 − q2) + 2k2

] [θ(k2 − q2)]3(
Zφk2 + V ′′[φ]

)2

1

2D

4q2Zφδ(q
2 − k2)

(Zφq2 + V ′′)2

(2.41)
but this equation would be wrong because in the ERGE for the effective action
only two theta function (or their derivatives) are present, one from the propagator
and the other from the cutoff. This tells us that the integral of interest is actually

Żφ = −
(
V ′′′[φ]

)2
Z2
φ

4(k2)2

D

1

(Zφk2 + V ′′[φ])4

∫
dDq

(2π)D
δ(q2 − k2)θ(k2 − q2)

= −
(
V ′′′[φ]

)2
Z2
φ

4(k2)2

D

1

(Zφk2 + V ′′[φ])4

ΩD

(2π)D

∫ ∞
0

drrD−1δ(r − k2)θ(k2 − r)

= −
(
V ′′′[φ]

)2
Z2
φ

4(k2)2

D

1

(Zφk2 + V ′′[φ])4

ΩD

(2π)D
kD−2

4
(2.42)

(remember that
∫
dxδ(x)θ(x) = 1/2).

Now using V∗[φ∗] and noting that V ′′′∗ [φ∗] = V ′′′[φ]kD/2−3 1

Z
3/2
φ

we get the final

result

ηφ = −Żφ
Zφ

= CD

(
V ′′′∗ [φ∗]

)2(
1 + V ′′∗ [φ∗]

)4 (2.43)

Due to the approximation in the definition of anomalous dimension we adopted,
it is always necessary to specify the field configuration one uses to calculate it.
One usually works with the ground state φ = 0 so, in this case, ηφ = 0 because
V ′′′∗ [φ∗ = 0] = 0.

We can conclude that the complete flow of the renormalized dimensionless
potential is

V̇∗[φ∗] = −DV∗[φ∗] +
D − 2 + ηφ

2
φ∗ V

′
∗ [φ∗] + CD

1− ηφ
D+2

1 + V ′′∗ [φ∗]

ηφ = CD

(
V ′′′∗ [φ∗]

)2(
1 + V ′′∗ [φ∗]

)4

C−1
D = 2D−1πD/2D Γ[D/2]

(2.44)

(2.45)

(2.46)

2.3 Example: study of the FP equation
As we said before in section 1.4 a fixed point is defined as that point where all

the beta functions are zero i.e. the effective average action doesn’t flow and remains



26 The scalar model

the same at different scales k. In our LPA’ scalar example we are looking for a
dimensionless potential v(ϕ) (the field ϕ being constant can be treated as a real
number) that satisfies the following non-linear second order differential equation

0 = −D v(ϕ) +
D − 2 + ηφ

2
ϕv′(ϕ) + CD

1− ηφ
D+2

1 + v′′(ϕ)
(2.47)

In the case of a conventional Z2 symmetry, the potential is even and a function of
ϕ2 so setting ρ = ϕ2 the equation can be written as

0 = −D v(ρ) + (D − 2 + ηφ) ρ v′(ρ) + CD
1− ηφ

D+2

1 + 4ρv′′(ρ) + 2v′(ρ)
(2.48)

2.3.1 Numerical solution for ηφ = 0 and D generic

We start our analysis in the LPA approximation neglecting the flow equation
for the wave function renormalization. The equation is

−D v(ϕ) +
D − 2

2
ϕv′(ϕ) +

CD
1 + v′′(ϕ)

= 0 (2.49)

with a condition due to the Z2 symmetry

v′(0) = 0 =⇒ v(0) =
CD/D

1 + v′′(0)
(2.50)

Therefore starting from a non-linear second order differential equation, due to the
symmetry condition there is one parameter left, v′′(0) ≡ σ and we want to study the
problem in the space of this parameter. We want to follow the strategy developed in
[7], [17] which consists in solving the differential equation with a numerical shooting
method varying the initial condition in the space of parameters that in this simple
case is one dimensional.

Trying to numerically solve the non-linear differential equation imposing the
two Cauchy initial conditions (2.50), one typically encounters a singularity at some
value of ϕcritic where the algorithm stops. Such a value increases in a steep way
close to the initial condition which correspond to a global solution, even if the
numerical errors mask partially this behavior. Hence the strategy is to plot ϕcritic(σ)
for different values of dimension. This is very useful to gain a first understanding
of the positions of the possible FPs (for application of this strategy for a more
complicated system such as a multi-meson Yukawa interactions see [30]).

It is called critical dimension that dimension for which the operator ϕ2n has
the engineering dimension of cm−D so its coupling is dimensionless. It happens for

dc(n ≥ 2) =
2n

n− 1
= 4, 3,

8

3
,
5

2
,
12

5
, . . . (2.51)

A theory perturbatively renormalizable by power counting cannot have couplings
with a dimension of the inverse of a mass so the term ϕ2n with zero dimension is the
last relevant term that can be present in such a theory. For example, in D = 4 the
last term is ϕ4 because ϕ ∼ cm−1, in D = 3 the last term is ϕ6 because ϕ ∼ cm−1/2,
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in D = 8/3 the last term is ϕ8 because ϕ ∼ cm−1/3 and so on. Hence, what we
expect is that below the threshold of the critical dimensions, new operators become
relevant and new universality classes appear below these dimensions.

In fig. 2.1 we show the results of this analysis for various dimensions: D =
4, 3.5, 3, 2.8, 8

3
, 8

3
− 1

10
, 5

2
, 12

5
. For D = 4 we see a single spike for σ = 0 which

corresponds to the Gaussian solution. For 4 > D ≥ 3 we have crossed the threshold
below which the operator ϕ6 becomes relevant so another spike with σ 6= 0 appears.
For 3 > D ≥ 8

3
we have crossed the threshold below which the operator ϕ8 becomes

relevant so a second spike with σ 6= 0 appears. Similar observations can be gathered
for the other dimensions, every time ones crosses a critical dimension one more
spike appears. For 5

2
> D ≥ 12

5
we have crossed the threshold below which the

operator ϕ12 becomes relevant so in total there are five spikes (two are very close
to zero). In some cases these new spikes are too close to σ = 0 that a zoom near
this region is needed, for example see fig.2.2 where we have zoomed the plot for
D = 8

3
− 1

10
and D = 12

5
.

2.3.2 Numerical solution for ηφ = 0 and D = 3: asymptotic
analysis

Now we want to construct the numerical solution for v(ϕ) in the special case of
three dimensions and with zero anomalous dimension in a domain that covers the
asymptotic region. This might be call global scaling solution and its knowledge will
be important for the study of the quality of polynomial expansion presented in the
next section. The latter approach is very useful especially in the case of the LPA’
which gives us access to a self-consistent computation of the anomalous dimension.

The fixed point equation in this case is

− 3 v(ϕ) +
1

2
ϕv′(ϕ) +

1

6π2

1

1 + v′′(ϕ)
(2.52)

In the asymptotic region we can neglect the non linear term so we have

− 3 v(ϕ) +
1

2
ϕv′(ϕ) = 0 =⇒ v(ϕ) = aϕ6 (2.53)

this is the leading term of the potential so we can write the asymptotic behavior as

vas(ϕ) = aϕ6 + ε(ϕ) (2.54)

where a is a parameter that we will have to choose in a consistently way. Taking
into account a polynomial ansatz for ε(ϕ)

ε(ϕ) =
2∑

k=−N

λ2kϕ
2k (2.55)
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and solving analytically the eq.(2.52) we get the solution up to the order ϕ−24

vas(ϕ) = aϕ6 +
1

900 a π2 ϕ4
− 1

37800 a2 π2 ϕ8
+

1

1458000 a3 π2 ϕ12

− 1

2430000 a3 π4 ϕ14
− 1

53460000 a4 π2 ϕ16
+

1

19136250 a4 π4 ϕ18

+
1

1895400000 a5 π2 ϕ20
− 131

32148900000 a5 π4 ϕ22

+
250 a− 3 π4

196830000000 a6 π6 ϕ24
+O

(
1

ϕ26

)
(2.56)

Once the asymptotic expansion is determined we proceed with a shooting method
i.e. with a numerical integration from the asymptotic region toward the origin. The
properties of the solutions which reach the origin depend on the free parameter a in
the asymptotic expansion. In principle there is also a second parameter (as expected
in the Cauchy problem) which is associated to a negligible contribution characterized
by an essential singularity at ϕ→∞ like e−bϕ2 . By requiring the solution to be Z2

symmetric (with v′(0) = 0) one can uniquely fix the latter parameter to its fixed
point value a∗ [15].

First of all we have to choose a point ϕmax from which starting the numerical
integration towards the origin φ = 0 and secondly, we have to choose a range of
the asymptotic parameter a such that the numerical integration itself can reach
the origin because, in general, this does not happen for all values of a. For this
particular case we have chosen ϕmax = 3 and a in the range [10−3, 100.8]. In fig.2.3a
we have shown a parametric plot where on the x and y-axis there are v(0) and
v′(0) respectively. We are interested on the right intersection of the x-axis that
corresponds to a non trivial solution of the fixed point equation, in other words
it corresponds to a potential with the right shape for a Wilson Fisher fixed point.
Taking the corresponding value of a∗ (that in our case is a∗ = 3.50759) we have
solved numerically again the differential equation for that particular value and
plotted the corresponding global scaling solution in fig.2.3b.

In fig.2.4a it is shown instead, the numerical solution obtained from the previous
analysis of spike plots: the value of σ = v′′(0) corresponding to a non Gaussian
solution in D = 3 is σ∗ = −0.1860664. It is important to note that, whereas the
numerical integration starting from the origin breaks down for a value of ϕ ∼ 0.426,
with the asymptotic behavior method we can construct a global scaling solution for
all values of the scalar field. In fig.2.4b the two solutions, the one obtained from
the spike plot method and the other one obtained from the asymptotic method, are
shown in a zoomed area near the origin: we can see that there is a perfect overlap
of the two solutions.

2.3.3 Polynomial analysis for ηφ = 0 and D = 3

In this section we are going to discuss the use of polynomial parametrization
and consequent truncations of the function v(ϕ). First of all we will present the
results obtained within the LPA which can be directly compared to the analysis in
the previous section, secondly we will push forward the analysis to a self consistent
inclusion of the wave function renormalization of the field.
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Expansion around φ = 0

In the symmetric regime, the physically meaningful parametrization of the scalar
potential is a Taylor expansion around vanishing field

v(ρ) =
N∑
n=0

λn(t) ρn (2.57)

where as usual ρ = ϕ2.
To study the FP equation we have to find all the beta functions in this truncations

{β0, β1, β2, . . . , βN} and set all of these equal to zero. The FP equation presents
itself in the form of

v̇(ρ) = F [v(ρ)] (2.58)

where F [v] is the right hand side of the eq.(2.48) with ηφ = 0

−D v(ρ) + (D − 2) ρ v′(ρ) + CD
1

1 + 4ρv′′(ρ) + 2v′(ρ)
= F [v(ρ)] (2.59)

therefore our beta functions can be written as

βn = λ̇n =
1

n!

dn

dρn
F [v(ρ)] (2.60)

and the fixed point equation for the potential becomes now a system of N equations
in N variables: 

β0(λ0, λ1, . . . , λN) = 0
β1(λ0, λ1, . . . , λN) = 0
...
βN(λ0, λ1, . . . , λN) = 0

(2.61)

We have studied the polynomial solution of the FP equation for a potential
expanded in powers of ρ = φ2 till the order ρ8. We found the following expression

v(ϕ) =− 93.0524ρ8 − 39.5308ρ7 − 4.836ρ6 + 3.36645ρ5 + 2.80432ρ4

+ 1.38007ρ3 + 0.607516ρ2 − 0.0928136ρ1 + 0.00691201

and with this solution, we have also studied the stability matrix at the corresponding
fixed point

Mij

∣∣
λ∗

=
∂βi
∂λj

∣∣∣
λ∗
. (2.62)

Among all the eigenvalues, there is one that is non trivial and negative (λ
(−)
∗ =

−1.54051), corresponding to the attractive direction in the couplings space. From
this eigenvalue we can obtain the ν critical exponent of the Ising model in D = 3
defined as

ν ≡ − 1

λ
(−)
∗

that in our case is ν = 0.649136 rather close to that obtain from the Monte-Carlo
simulation ν ∼ 0.62998.
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Expansion around ϕ = κ

In the regime of spontaneous symmetry breaking (SSB), the potential v(ρ)
develops a non trivial minimum at κ = ϕ2

0 which becomes the preferred reference
point for a different Taylor expansion

v(ρ) = λ0(t) +
N∑
n=2

λn(t) (ρ− κ(t))n (2.63)

The sum starts from n = 2 because we want the potential to satisfy the condition

∂v

∂ρ

∣∣∣∣∣
ρ=κ(t)

= 0 (2.64)

In this case to gain the beta functions we have to be a bit more careful because we
have to consider even the flow of κ(t).

The fixed point equation now reads

v̇(ρ) = λ̇0 +
N∑
n=2

λ̇n (ρ− κ)n −
N∑
n=2

λn n (ρ− κ)n−1 κ̇ = F [v(ρ)] (2.65)

where F is expanded in ρ around κ up to order N

F [v(ρ)] =
N∑
m=0

1

m!

dmF (ρ)

dρm

∣∣∣∣∣
ρ=κ

(ρ− κ)m (2.66)

The condition of κ as a minimum must be true even when the renormalization
‘’time” flows, therefore

0 =
d

dt

(
∂v

∂ρ

∣∣
κ(t)

)
=

d

dρ

∣∣∣
κ

dv

dt
+
d2v

dρ2

∣∣
κ
κ̇ (2.67)

from which we can obtain the beta function for the non trivial minimum

=⇒ κ̇ = −
d
dρ

∣∣∣
κ
v̇

d2v
dρ2

∣∣∣
κ

= −F ′(ρ = κ)

v′′(ρ = κ)
= −F ′(κ)

2λ2

(2.68)

Substituting eq.(2.68) in eq.(2.65) we have

λ̇0 +
N∑
n=2

λ̇n (ρ− κ)n = F (κ) +
N∑
n=2

(ρ− κ)n
(

1

n!
F (n)(κ)− 1

2
(n+ 1)

λn+1

λ2

F ′(κ)

)
(2.69)

Therefore our beta functions are
β0 = λ̇0 = F (κ)

βn = λ̇n = 1
n!

F (n)(κ)− 1
2
(n+ 1)λn+1

λ2
F ′(κ)

κ̇ = −F ′(κ)
2λ2

(2.70)
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and solving the kernel of this system in the variables {κ, λ0, λ2, λ3, . . . , λN} we
obtain the fixed point solution for our potential.

We have studied this system of equations for a potential expanded in powers of(
ρ− κ(t)

)n till the order n = 8. The FP solution that we have obtained is

v(ρ) =236.194 (ρ− 0.0612931)8 − 5.15436 (ρ− 0.0612931)7 (2.71)

− 17.7191 (ρ− 0.0612931)6 − 0.896651 (ρ− 0.0612931)5 (2.72)

+ 3.38833 (ρ− 0.0612931)4 + 2.17835 (ρ− 0.0612931)3 (2.73)

+ 0.933984 (ρ− 0.0612931)2 + 0.00386081 (2.74)

and again, as before, we have studied the stability matrix for this solution and
founded a non trivial negative eigenvalue (λ

(−)
∗ = −1.53969) corresponding to the

critical exponent ν = 0.649481 that is slightly different from that one obtained with
a polynomial expansion around the origin.

In fig.2.5 we have plotted the polynomial solutions for the FP equation: on the
left panel there is the one obtained from an expansion around the origin ϕ = 0 and
on the right panel there is the one obtained from an expansion around the non
trivial minimum ϕ = κ. In fig.2.6 we have shown a comparison of these solutions
with the global scaling solution obtained from the asymptotic method. What one
can deduce is that the polynomial expansion around a non trivial minimum is a
better approximation for the FP potential than the polynomial expansion around
null field, in other words it has a greater convergence ray. But even in this better
case there is a deviation from the global scaling solution from a certain field value
onwards.

2.3.4 Polynomial analysis for ηφ 6= 0 and D = 3

The polynomial expansion presented in the previews section, as we said, gives
us access to a self-consistent computation of the anomalous dimensions in some
approximation. It can be computed using an iterative method or a direct method.
We will use in both cases the expansion around the κ minimum because it is a
better approximation.

Iterative method

In this case we start from the fixed point equation without the anomalous
dimension.

0 = −D v(ρ) + (D − 2) ρ v′(ρ) + CD
1

1 + 4ρv′′(ρ) + 2v′(ρ)
(2.75)

As we stressed in section 2.2 the expression for ηφ must be evaluated for a certain
field configuration and we choose the non trivial minimum. Now we have a non-zero
anomalous dimension ηφ(κ0) and we repeat the polynomial analysis of the FP
equation but now with the insertion of ηφ(κ0).

0 = −D v(ρ) + (D − 2 + ηφ(κ0)) ρ v′(ρ) + CD
1− ηφ(κ0)

D+2

1 + 4ρv′′(ρ) + 2v′(ρ)
(2.76)
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This second step will provide us with a new value for the non trivial minimum, say
κ1 and we repeat the study of the FP equation with ηφ(k1). Proceeding iteratively
we will arrive at a convergent value for the anomalous dimension

η∗φ = lim
j→∞

ηφ(κj) (2.77)

where j denotes the j-th step in this iterative method.

Non iterative method

In this case we start directly from the eq.(2.76) where the anomalous dimension
is expressed by the eq.(2.45)

ηφ = CD
(v′′′(ϕ))2

(1 + v′′(ϕ))4

∣∣∣∣∣
ϕ0

= CD 16 ρ
(2ρv′′′(ρ) + 3v′′(ρ))2

(1 + 4ρv′′(ρ) + 2v′(ρ))4 (2.78)

Choosing ϕ2
0 = κ and taking into account the expansion (2.63) we have

ηφ =
1

6π2

16 · 36κ (λ2 + 2κλ3)2

(1 + 8κλ2)4
(2.79)

The beta functions are exactly the same as in eq.(2.70) but with a more complicated
function F (ρ).

In both cases the value for the anomalous dimension at the FP solution, with a
truncation up to the order (ρ− κ)6 is ηφ = 0.111948 that is three times the right
value, but with this approximation we cannot do better.

In fig.2.7 we have shown the solution of the potential at the FP with anomalous
dimension and a comparison with the solution in absence of the anomalous dimension,
what we can see is a slightly chance of the minimum position and of the value v(0).
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(a) D = 4

(b) D = 3.5 (c) D = 3

(d) D = 2.8 (e) D = 8
3

(f) D = 2.42 (g) D = 5
2

Figure 2.1: For different values of dimension we have plotted φcritic (the point at which the
numerical integration from the origin breaks down) as a function of the parameter
σ = v′′(0).
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(a) Spike plot of φcritic(σ) at dimension D =
8
3 −

1
10

(b) Zoomed area around the origin σ = 0 for
the spike plot on the left.

(c) Spike plot of φcritic(σ) at dimension D = 12
5 (d) Zoomed area around the origin σ = 0 for

the spike plot on the left.

Figure 2.2

(a) Parametric plot of v′(0) as a function of v(0)
for 10−3 < a < 100.8

(b) The potential v(ϕ) for the global scaling
solution corresponding to that value of a∗
for which v′(0) = 0

Figure 2.3
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(a) Numerical solution of the fixed point equa-
tion in LPA for the potential v(ϕ) obtained
with the spike-plot-method.

(b) Comparison between the two potentials ob-
tained from the spike-plot method and from
the asymptotic method in LPA.

Figure 2.4

(a) Potential v(ϕ) in the LPA with a polynomial
expansion around the origin up to the order
ρ8.

(b) Potential v(ϕ) in the LPA with a polynomial
expansion around a non trivial minimum
up to the order (ρ− κ)8.

Figure 2.5

(a) Comparison between the solutions of the
FP equation in LPA obtain from the expan-
sion around the origin (orange line), the
expansion around a minimum κ 6= 0 (green
line) and the global scaling solution (red
line).

(b) Zoomed area (of the figure on the left) near
the region of deviation from the global scal-
ing solution.

Figure 2.6
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(a) FP solution for the potential v(ϕ) in LPA’
using polynomial expansion around the non
trivial minimum up to the order (ρ − κ)6

(iterative and direct method gives the same
result).

(b) Comparison between the global scaling so-
lution with ηφ = 0 and the polynomial ex-
pansion for ηφ 6= 0.

Figure 2.7



Chapter 3

A covariant “Hamiltonian” approach
for the FRG equation

In this chapter we are going to follow a different approach for the study of the
Functional Renormalization Group equation in the framework of a theory with one
real scalar field.

The starting point is the Polchinski equation that is the flow equation for a
Wilsonian effective action depending on the effective scale Λ. From this equation we
can obtain the flow for the corresponding effective Lagrangian and for a covariant
effective Hamiltonian doing the Legendre transform of the previous one as proposed
in [36]. In a leading order of the derivative expansion for this Hamiltonian, we will
obtain the flow equation for an arbitrary φ-dependent potential V (φ) and for the
wave function renormalization Z(φ).

Finally, we shall obtain a novel result by applying this approach to the O(N)
scalar model with N real scalar fields ϕa, a = 1, 2, . . . , N , to obtain for the first
time the flow equation for the arbitrary potential V (ρ) and the two wave function
renormalization Z(ρ) and Y (ρ) in this formulation.

3.1 Polchinski’s non perturbative FRG equation
As we have already learned in the previous chapter, the basic idea behind the

continuous RG is the following: rather than integrated over all momentum modes
p in one go, one first integrates out modes between a cutoff scale Λ0 and a very
much lower energy scale Λ [16]. The remaining integral from Λ to zero may again
be expressed as a partition function, but the bare action SΛ0 is replaced by a
complicated effective action SΛ and the overall cutoff Λ0 by the effective cutoff Λ.
We can regard the cutoff Λ as an infrared cutoff for the modes q > Λ i.e for the
modes that have already been integrated out or as an ultraviolet cutoff for the
modes q < Λ. The fundamental aspect of this idea is that all the Green functions
must be the same so that all the physics must be the same under this procedure of
integrating out modes.

We can introduce the effective cutoff by modifying the euclidean propagator as
follow

1

q2
=
CUV (q,Λ)

q2
+
CIR(q,Λ)

q2
(3.1)

37
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where CUV (q,Λ) acts as an UV cutoff i.e. limq→∞CUV = 0 and limq→0CUV = 1
forbidding the propagation of fast modes whereas CIR(q,Λ) acts as an IR cutoff i.e.
limq→0CIR = 0 and limq→∞CIR = 1 forbidding the propagation of slow modes [23].

The partition function for a theory with one scalar field is expressed by the
functional integral

Z[J ] =

∫
Dφ e−

1
2
φ·q2·φ−SΛ0

[φ]+J ·φ (3.2)

where −1
2
φ · q2 ·φ = −1

2

∫
q
φ(q)q2φ(−q) = −1

2

∫
dx∂µφ∂µφ and J ·φ =

∫
dxJ(x)φ(x).

Now we want to show that the functional integral can be split into two integrals,
one for the fast modes that we call φ> and one for the slow modes that we call φ<,
so that the partition function can be written as [18]

Z[J ] =

∫
Dφ>

∫
Dφ< e−

1
2
φ>·∆−1

IR·φ>−
1
2
φ<·∆−1

UV ·φ<−SΛ0
[φ>+φ<]+J ·(φ>+φ<) (3.3)

Proof. Let’s split the propagator for φ as D = D1 + D2 and the kinetic term as K1 = D−1
1 ,

K2 = D−1
2 , K = D−1 = 1

D1+D2
. We want to find the modes propagated by K1 and K2.

D1

D1 +D2
= 1−D2D

−1 =⇒ D−1 = D−1
1 −D−1

1 D−1D2 = K1 −K1KD2

D2

D1 +D2
= 1−D1D

−1 =⇒ D−1 = D−1
2 −D−1

2 D−1D1 = K2 −K2KD1

the kinetic term becomes

1

2
φ ·D−1 · φ =

1

4
φK1(1−KD2)φ+

1

4
φK2(1−KD1)φ

and if we define φ1 ≡ (1−KD2)φ, φ2 ≡ (1−KD1)φ we have

1

2
φ ·D−1 · φ =

1

4
φ1K1φ1 +

1

4
φ2K2φ2 +

1

4
φ2K1φ1 +

1

4
φ1K2φ2

=
1

4
φ1K1φ1 +

1

4
φ2K2φ2 +

1

4
{φ(1−KD1)K1(1−KD2)φ+ φ(1−KD2)K2(1−KD1)φ}

=
1

4
φ1K1φ1 +

1

4
φ2K2φ2 +

1

4
{φ(K1 +K2)φ− φKφ− φ(K1KD2 +K2KD1)φ}

=
1

4
φ1K1φ1 +

1

4
φ2K2φ2 +

1

4
φKφ

and this implies that
φKφ = φ1K1φ1 + φ2K2φ2

Turning back to the original notation we have

φ> ≡(1− q2∆UV )φ = (1− CUV )φ = CIRφ = q2∆IRφ

φ< ≡(1− q2∆IR)φ = (1− CIR)φ = CUV φ = q2∆UV φ

Now consider only the integration over fast modes

Z[J ] =

∫
Dφ< e−

1
2
φ<·∆−1

UV ·φ<
∫
Dφ> e−

1
2
φ>·∆−1

IR·φ>−SΛ0
[φ>+φ<]+J ·(φ>+φ<)

Z[J ] =

∫
Dφ< e−

1
2
φ<·∆−1

UV ·φ<ZΛ[J, φ<]

(3.4)
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and doing the following shift φ′> ≡ φ> −∆IR · J we trivially get

ZΛ[J, φ<] =e
1
2
J ·∆IR·J+J ·φ<

∫
Dφ′> e−

1
2
φ′>·∆

−1
IR·φ

′
>−SΛ0

[φ′>+∆IR·J+φ<]

≡e
1
2
J ·∆IR·J+J ·φ< e−SΛ[∆IR·J+φ<]

(3.5)

for some functional SΛ. It is straightforward to note that ZΛ and SΛ do not depend
on both J and φ< independently but on the sum Φ = φ< + ∆IR · J . The partition
function will be:

Z[J ] = e
1
2
J ·∆IR·J

∫
Dφ<e−

1
2
φ<·∆−1

UV ·φ<−SΛ[Φ]+J ·φ< (3.6)

so we see that SΛ is nothing but the interaction part of the Wilsonian effective
action StotΛ .

To obtain the RG equation for the effective action SΛ we have to differentiate
ZΛ with respect Λ. From the eq.(3.4) and eq.(3.5), taking into account that the
dependence on Λ is present only through ∆−1

IR [18] , we obtain

∂SΛ[Φ]

∂Λ

∣∣∣∣∣
Φ

=
1

2

δSΛ

δΦ
· ∂∆UV

∂Λ

δSΛ

δΦ
− 1

2

δ

δΦ
· ∂∆UV

∂Λ

δSΛ

δΦ
(3.7)

Proof.

∂

∂Λ
ZΛ[J, φ<] =

∫
Dφ> (−)

1

2
φ> ·

∆−1
IR

∂Λ
· φ> e−

1
2φ>·∆−1

IR·φ>−SΛ0 [φ>+φ<]+J·(φ>+φ<

=− 1

2

(
δ

δJ
− φ<

)
∂∆−1

IR

∂∆

(
δ

δJ
− φ<

)
ZΛ[J, φ<]

From the definition of the effective action ZΛ[Φ] = e
1
2J·∆IR·J+J·φ<−SΛ[Φ] we have

∂

∂Λ
ZΛ = ZΛ

(
1

2
J · ∂∆IR

∂Λ
· J − ∂SΛ

∂Λ

∣∣∣∣∣
Φ

− δSΛ

δΦ
· ∂∆IR

∂Λ
· J

)
(
δ

δJ
− φ<

)
ZΛ =ZΛ

(
∆IR · J −

δSΛ

δΦ
·∆IR

)
(
δ

δJ
− φ<

)2

ZΛ =− φ<ZΛ

(
∆IR · J −

δSΛ

δΦ
·∆IR

)
+ ZΛ

(
∆IR −

δ2SΛ

δΦ2
·∆2

IR

)
+ ZΛ

(
∆IR · J −

δSΛ

δΦ
·∆IR

)(
∆IR · J + φ< −

δSΛ

δΦ
·∆IR

)
therefore we obtain the final equality

ZΛ

(
1

2
J · ∂∆IR

∂Λ
· J − ∂SΛ

∂Λ

∣∣∣∣∣
Φ

− δSΛ

δΦ
· ∂∆IR

∂Λ
· J

)
=

1

2

1

∆2
IR

∂∆IR

∂Λ
ZΛ

(
∆2
IR

δSΛ

δΦ

δSΛ

δΦ
− δ2SΛ

δΦ2
∆2
IR + ∆IR + ∆2

IRJ
2 − 2J∆2

IR

δSΛ

δΦ

)
that implies

−∂SΛ

∂Λ

∣∣∣∣∣
Φ

=
1

2

∂∆IR

∂Λ

(
δSΛ

δΦ

)2

− 1

2

∂∆IR

∂Λ

δ2SΛ

δΦ2
+

1

2

∂

∂Λ
ln ∆IR

Taking into account that ∆IR + ∆UV = 1/q2 so ∂Λ∆IR + ∂Λ∆UV = 0 and dropping the constant
term field-independent we gain the final result (3.7)
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3.2 Momenta fields and the derivative expansion
In this section we would like to develop a new method, as showed in [36], to

construct approximate solutions of functional renormalization group equations.
We already know that the two main approximation strategies to truncate the
FRG equations into a solvable set of equations are the vertex expansion and the
derivative expansion. The first is an expansion in field variables while retaining
the full momentum dependence whereas the second is an expansion in powers of
momenta while retaining the full field dependence. This last approximation makes
use of local actions with definite given powers of field derivative and it relies on the
assumption that the system have one mass scale m such that high powers of ∂2

m2

play a progressive less important role.
Apart convergence the problem of the DE is essentially a combinatoric compu-

tational difficulty in obtaining the flow equations for a hight order of the DE. The
standard way to deal with such a problem is to compute the flow of a full function
of p2. Moreover, in a DE setup one have to keep φ generic and constant in order to
describe infinitely many vertices. The traditional way to take into account these
two aspects simultaneously is by means of an Hamiltonian formalism.

We restrict ourselves to the case of a Z2 real scalar field theory. First of all
we want to find the RG equation for the effective Lagrangian starting from the
Polchinski’s equation [23] and taking a truncation that is essentially an arbitrary
high order of the DE. At a later time we want to translate this equation into a RG
equation for the Hamiltonian density replacing the arbitrary-order derivative

dn

dxµ1 . . . dxµn
φ(x)→ πµ1...µn

with a symmetric tensor field of arbitrary high rank order. This is the crucial point
that makes this approach different from the DE: for example two terms like −φ∂2φ
and ∂φ∂φ get translated into two different tensorial objects φπµνδµν and πµπµ. We
are interested in an expansion of the Hamiltonian in momenta field of increasing
rank order. Certainly related to this work is the analysis of the FRG equations
of the effective Hamiltonian outlined in [29] but with an important difference in
the present formulation: the Legendre transform is taken after each RG steps thus
obtaining a derivative-free effective Hamiltonian i.e. not depending on derivatives
of φ and π.

3.2.1 Lagrangian flow equation

Let’s start from the Polchinski’s equation for the effective action

Ṡ[φ] =
1

2

∫
dx

∫
dy

(
δS[φ]

δφ(x)
Ċ(x− y)

δS[φ]

δφ(y)
− δ

δφ(x)
Ċ(x− y)

δS[φ]

δφ(y)

)
(3.8)

where Ṡ = −Λ∂ΛS i.e. t = ln Λ0

Λ
and CΛ is the regularized UV propagator that in

the momentum space can be expressed as CΛ(q2) = Λη−2K(q2/Λ2)
q2/Λ2 with K an UV

cutoff function.
It is important to recall that the classic ERG procedure consists of two steps:
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a coarse-graining followed by a rescaling. At the moment we are working with
dimensionfull quantities (with also the possibility for the scalar field to have a non
trivial anomalous dimension) so only the first step has been taken into account.
Only at the end of our treatment we will make the last step rescaling all quantities
to dimensionless ones.

We are interested in a Lagrangian density depending on generically high deriva-
tives of the scalar field φ. Using multi-indices M ≡ (µ1, . . . , µm) with m ∈ N we
denote

φM(x) = φµ1,...,µm(x) =
dm

dxµ1 . . . dxµm
φ(x) =

dM

dxM
φ(x) (3.9)

and our Lagrangian will be
L = L (x, φM(x)) . (3.10)

Now we are ready to write the Polchinski equation as a partial differential equation
for L taking into account of our truncation. The first functional variation of the
effective action S[φ] =

∫
dxL

(
x, φM(x)

)
is

δS[φ] =

∫
dx

[
∂L
∂φ(x)

δφ(x) +
∂L

∂φµ(x)
δφµ(x) +

∂L
∂φµν(x)

δφµν(x) + . . .

· · ·+ ∂L
∂φµ1...µm

δφµ1...µm(x)

]
=

∫
dx

∂L
∂φM(x)

δφM(x)

(3.11)

where the sum over the multi-indices M is understood. Because

δφM(x) = δ
dM

dxM
φ(x) =

dM

dxM
δφ(x) (3.12)

integrating by parts we obtain

δS[φ] =

∫
dxδφ(x)

[
∂L
∂φ(x)

− ∂

∂xµ
δL
∂φµ

+
∂2

∂xµ∂xν
∂L
∂φµν

+ . . .

· · ·+ (−1)m
dm

dxµ1 . . . dxµm
∂L

∂φµ1...µm

]
=

∫
dxδφ(x)(−1)M

dM

dxM
∂L

∂φM(x)

(3.13)

and, for the definition of functional derivative, we gain

δS

δφ(x)
=

∂L
∂φ(x)

− d

dxµ
∂L
∂φµ

+
d2

dxµdxν
∂L
∂φµν

+ · · ·+ (−1)m
dm

dxµ1 . . . dxµm
∂L

∂φµ1...µm

=(−1)M
dM

dxM
∂L

∂φM(x)
(3.14)

To obtain the second order functional derivative it is useful to rewrite the first
derivative as an integral of some Lagrangian density

δS

δφ(x)
= (−1)M

∫
dyδ(y − x)

dM

dyM
∂L

∂φM(y)
=

∫
dy

∂L
∂φM(y)

dM

dyM
δ(y − x) (3.15)
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δ
δS

δφ(x)
=

∫
dy

δ2L
∂φM(y)∂φN(y)

δφN(y)
dM

dyM
δ(y − x)

=

∫
dy

δ2L
∂φM(y)∂φN(y)

(
dN

dyN
δφ(y)

)
dM

dyM
δ(y − x)

=

∫
dy(−1)Nδφ(y)

dN

dyN

[
∂2L

∂φM(y)∂φN(y)
δM(y − x)

] (3.16)

so the second functional derivative is
δ2S[φ]

δφ(x)δφ(y)
= (−1)N

dN

dyN

[
∂2L

∂φM(y)∂φN(y)

dM

dyM
δ(y − x)

]
(3.17)

The Polchinski equation for the present truncation will be

Ṡ =
1

2

∫
x,y

(−1)M
[
dM

dxM
∂L

∂φM(x)

]
Ċ(x− y)(−1)N

[
dN

dyN
∂L

∂φN(y)

]
−1

2

∫
x,y

Ċ(x− y)(−1)N
dN

dyN

[
∂2L

∂φM(y)∂φN(y)

dM

dyM
δ(y − x)

]
=

1

2

∫
x,y

∂L
∂φM(x)

[
dM

dxM
dN

dyN
Ċ(x− y)

]
∂L

∂φN(y)

−1

2

∫
x,y

[
dN

dyN
Ċ(x− y)

]
∂2L

∂φM(y)∂φN(y)

dM

dyM
δ(y − x)

(3.18)

Assuming that the regularized propagator is an even function of the position in
space C(x) = C(−x) than

Ṡ =(−1)N
1

2

∫
x,y

∂L
∂φM(x)

[
dM

dxM
dN

dxN
Ċ(x− y)

]
∂L

∂φN(y)

− 1

2

∫
x,y

[
(−1)N

dN

dxN
Ċ(x− y)

]
∂2L

∂φM(y)∂φN(y)
(−1)M

dM

dxM
δ(y − x)

=(−1)N
1

2

∫
x,y

∂L
∂φM(x)

∂L
∂φN(y)

[
dM+N

dxMdxN
Ċ(x− y)

]
− 1

2

∫
x,y

[
(−1)N

dM+N

dxMdxN
Ċ(x− y)

]
∂2L

∂φM(y)∂φN(y)
δ(y − x)

As a consequence, one can recast the RG equation for the effective action in the
following form:∫
x

L̇(x) =
(−1)N

2

{∫
x,y

∂L
∂φM(x)

∂L
∂φN(y)

ĊMN(x− y)− ĊMN(0)

∫
x

∂2L
∂φM(x)∂φN(x)

}
(3.19)

where we have defined

ĊMN(x− y) ≡ dM+N

dxMdxN
Ċ(x− y) (3.20)

The first term on the r.h.s is a non-local term and to project this onto a local form
we have to expand it about the point x

∂L
∂φN

(y) =
∂L
∂φN

(x) +
∑
L6=0

1

L!
(y − x)L

dL

dxL
∂L
∂φN

(x) (3.21)



3.2 Momenta fields and the derivative expansion 43

where if L is a multi-indices L = (µ1, . . . , µ`) then L! = `! and zL = zµ1 · . . . · zµ` .
Because we want to restrict ourselves to the pointlike interaction limit and so
neglect the explicit x-dependence in the Lagrangian, the total xλ-derivative will be

d

dxµ
=
dφM(x)

dxµ
∂

∂φM(x)
= φMµ(x)

∂

∂φM(x)
(3.22)

the second derivative is

d2

dxµdxν
= φMµ

∂

∂φM

(
φNν

∂

∂φN

)
= φMµ

(
δNν,M

∂

∂φN
+ φNν

∂2

∂φM∂φN

)
= φNµν

∂

∂φN
+ φMµφNν

∂2

∂φM∂φN

the third derivative is

d3

dxµ1dxµ2dxµ3
=φMµ1µ2µ3

∂

∂φM
+

+(φM1µ1φM2µ2µ3 + φM1µ2φM2µ3µ1 + φM1µ3φM2µ1µ2)
∂2

∂φM1∂φM2

+

+φM1µ1φM2µ2φM3µ3

∂3

∂φM1∂φM2∂φM3

the forth derivative is

d4

dxµ1 . . . dxµ4
= φMµ1µ2µ3µ4

∂

∂φM
+

+ (φM1µ1µ2φM2µ3µ4 + φM1µ1µ3φM2µ2µ4 + φM1µ1µ4φM2µ2µ3

+ φM1µ1φM2µ2µ3µ4 + φM1µ2φM2µ1µ3µ4 + φM1µ3φM2µ1µ2µ4 + φM1µ4φM2µ1µ2µ3)
∂2

∂φM1∂φM2

+

+ (φM1µ1µ2φM2µ3φM3µ4 + φM1µ1µ3φM2µ2φM3µ4 + φM1µ1µ4φM2µ2φM3µ3

+ φM1µ2µ3φM2µ1φM3µ4 + φM1µ2µ4φM2µ1φM3µ3 + φM1µ3µ4φM2µ1φM3µ2)
∂3

∂φM1∂φM2∂φM3

+ φM1µ1φM2µ2φM3µ3φM4µ4

∂4

∂φM1∂φM2∂φM3∂φM4

and so on iterating this procedure.
It is straightforward to derive the L− th derivative that can be written as

dL

dxL
=

L∑
i=1

φ(M1φM2 . . . φMi)
∂i

∂φM1∂φM2 . . . ∂φMi

(3.23)

where φ(M1φM2 . . . φMi) denotes a sum over all possible ways of ditributing the
indices inside L on the i−entries φM1φM2 . . . φMi

under the rules that there must
be at least one index out of L per entry, that ordering inside each entry does not
matter and that permutations of M1 . . .Mi do not matter. So the equation (3.19)
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becomes

L̇(x) = −(−1)N

2
ĊMN(0)

∂2L
∂φM∂φN

(x)

+
(−1)N

2

∂L
∂φM

(x)

∫
y

ĊMN(x− y)

[
∂L
∂φN

(x) +
(y − x)L

L!

dL

dxL
∂L
∂φN

(x)

]
= −(−1)N

2
ĊMN(0)

∂2L
∂φM∂φN

(x) +
(−1)N

2

∂L
∂φM

(x)
∂L
∂φN

(x)

∫
y

ĊMN(x− y)

+
(−1)N

2

∂L
∂φM

(x)
1

L!

L∑
i=1

φ(M1 . . . φMi)
∂i+1L

∂φM1 . . . ∂φMi
∂φN

(x)

∫
y

ĊMN(x− y)(y − x)L

(3.24)

where obviously the sum over L is understood. Assuming that the regularized
propagator is an even function of the space position C(z) = C(−z) we have

∫
y

(y − x)L
dM+N

dxMdxN
Ċ(x− y) = (−1)M+N

∫
y

(y − x)L
dM+N

dyMdyN
Ċ(y − x)

= (−1)M+N

∫
z

zL
dM+N

dzMdzN
Ċ(z) ≡ (−1)M+NJL,MN

(3.25)

Whenever M + N > L, integrating by parts and assuming that the regulator is
such that the boundary terms vanish, one gets JL,MN = 0.
Finally to sum up, the projection of the Polchinski equation on the ansatz of a
local effective Lagrangian, depending on arbitrary high order field derivatives, gives

L̇ =− (−1)N

2
ĊMN(0)

∂2L
∂φM∂φN

+
1

2

(
∂L
∂φ

)2
˙̃
C(0)

+
(−1)M

2

∂L
∂φM

JL,MN

L!

L∑
i=1

φ(M1 . . . φMi)
∂i+1L

∂φM1 . . . ∂φMi
∂φN

(3.26)

with L 6= 0 whereas the sum over M,N,M1, . . . ,Mi includes the empty index. We
have introduced C̃(p) as the Fourier transform of C(z).

Now we want to simplify the last equation taking a Lagrangian which is an
arbitrary function of φ and φµ so only the first order derivative of the scalar field is
presented in this truncation. With this ansatz for the Lagrangian

L = L(φ, φµ) (3.27)
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the flow equation becomes

L̇ =
1

2
˙̃
C(0)

(
∂L
∂φ

)2

− 1

2
Ċ(0)

∂2L
∂φ2

+
1

2
Ċµν(0)

∂2L
∂φµ∂φν

+
1

2

∞∑
`=1

1

`!
Jλ1...λ`,µ φλ1 . . . φλ`

(
∂L
∂φ

∂`+1L
∂φ`∂φµ

− ∂L
∂φµ

∂`+1L
∂φ`+1

)
− 1

2

∞∑
`=2

1

`!
Jλ1...λ`,µν φλ1 . . . φλ`

∂L
∂φµ

∂`+1L
∂φ`∂φν

+
1

2

∞∑
`=1

1

`!
Jλ1...λ`,0 φλ1 . . . φλ`

∂L
∂φ

∂`+1L
∂φ`+1

(3.28)

where the second and third terms come from the first term of eq.(3.26) for M =
N = 0 and M = N = 1 (the term from M = 0, N = 1 and M = 1, N = 0 canceled
each other because of the factor (−1)N ). The forth term comes from the third term
of eq.(3.26) for M = 1, N = 0 and M = 0, N = 1. The fifth term comes form the
third term of eq.(3.26) for M = N = 1 and the sixth term comes form the third
term of eq.(3.26) for M = N = 0.
(We have to take into account that in the third term of eq.(3.26), for each L 6= 0,
in the sum over i only the term with i = L survives because all other terms are out
of our truncation).

If we want further to project the flow on the sector quadratic in φµ and neglect
higher powers, the following terms survive

L̇ =
1

2
˙̃
C(0)

(
∂L
∂φ

)2

− 1

2
Ċ(0)

∂2L
∂φ2

+
1

2
Ċµν(0)

∂2L
∂φµ∂φν

+
1

2
Jλ,µ φλ

(
∂L
∂φ

∂2L
∂φ∂φµ

− ∂L
∂φµ

∂2L
∂φ2

)
+

1

4
Jµν,0 φµφν

∂L
∂φ

∂3L
∂φ3

(3.29)

where the last term can be rewritten as

−1

4
Jµν,0φµφν

(
∂2L
∂φ2

)2

because they differ by a total derivative, always taking into account our projection
(φM absent for N > 1). Infact:

Proof.

φµφν
∂L
∂φ

∂3L
∂φ3

= φµφν
∂

∂φ

(
∂L
∂φ

∂2L
∂φ2

)
− φµφν

(
∂2L
∂φ2

)2

but the total xµ derivative, because of our ansatz is

d

dxµ
= φMµ

∂

∂φM
' φµ

∂

∂φ
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therefore

φµφν
∂L
∂φ

∂3L
∂φ3

=φµ
d

dxν

(
∂L
∂φ

∂2L
∂φ2

)
− φµφν

(
∂2L
∂φ2

)2

=
d

dxν

(
φµ
∂L
∂φ

∂2L
∂φ2

)
− φµν

∂L
∂φ

∂2L
∂φ2

− φµφν
(
∂2L
∂φ2

)2

'− φµφν
(
∂2L
∂φ2

)2

Later on we will follow these conventions for the regulator dependent terms as
in [2]

˙̃
C(0) = −2Λη−2K0 (3.30)

Ċµν(0) = 2δνµΛd+η I1

d
(3.31)

Jλ,µ = 2δλµΛη−2K0 (3.32)
Jµν,0 = −4δµνΛη−4K1 (3.33)

Ċ(0) = −2Λd−2+ηI0 (3.34)

where K0, I0, K1, I1 are all positives real constant parameters. We emphasize again
that the presence of the anomalous dimension is because we consider from the
beginning the possibility for the scalar field φ to have a non trivial anomalous
dimension.

3.2.2 Covariant “Hamiltonian” flow equation

Now we want to look for an Hamiltonian translation of the flow equation (3.29).
In the traditional Hamiltonian formalism we deal with the field φ(x) and its momenta
π(x) = ∂L

∂φ̇(x)
defined as the partial derivative of the Lagrangian with respect to

time-derivative of the field itself. Here, for the actual truncation L = L(φ, φM) we
can define a generalized covariant momenta as follow

πM(x) ≡ i
∂L

∂φM(x)
(3.35)

and a generalized Hamiltonian in the euclidean space-time

H(φ, πM) = iπMφM + L(φ, φM) (3.36)

where all the field-derivatives have to be inverted and expressed in term of the
momenta. We again drop the explicit x-dependence in the Lagrangian and also in
the Hamiltonian.

To translate the flow equation for L into flow equation for H we need some
preliminaries formulas

∂L
∂φ

=
∂H
∂φ

,
∂2L
∂φ∂φ

=
∂2H
∂φ∂φ

(3.37)
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∂H
∂πM

= iφM + iπN
∂φN
∂πM

+
∂L
∂φN

∂φN
∂πM

= iφM

therefore
φM = −i ∂H

∂πM
(3.38)

∂2L
∂φM∂φN

=
∂

∂φM
(−iπN) = −i

(
∂φM
∂πN

)−1

=

(
∂2H

∂πN∂πM

)−1

(3.39)

Because the variable φ and φM are independent

0 =
dφM
dφ

=
∂φM
∂φ

+
∂πN
∂φ

∂φM
∂πN

= −i ∂2H
∂φ∂πM

+ i
∂2L

∂φ∂φN
(−i) ∂2H

∂πN∂πM

and multiplying by
(

∂2H
∂πM∂πL

)−1

we have

∂2L
∂φ∂φM

= i
∂2H
∂φ∂πN

(
∂2H

∂πN∂πM

)−1

(3.40)

Neglecting the explicit spacetime, i.e. momentum, dependence of the couplings,
then H depends on the position x only through the fields φ(x) and πM(x) and
this is a good feature because we can study the flow of the Hamiltonian by setting
both fields to constant values. Under this approximation, the RG equation of H
is encoded in a partial differential equation for a function of infinitely many fields
which are symmetric tensors of arbitrary rank order.

Now we could consider a further approximation, for example neglecting the
dynamics of momenta with rank bigger than one, so taking under consideration
an arbitrary function H = H(φ, πµ). This is exactly the case of the eq.(3.29) that
becomes

Ḣ =− Λη−2K0

(
∂H
∂φ

)2

+ Λd−2+ηI0
∂2H
∂φ2

+ Λd+η I1

d

(
∂2H

∂πµ∂πµ

)−1

+ Λη−2K0
∂H
∂πµ

[
∂H
∂φ

∂2H
∂φ∂πν

(
∂2H

∂πµ∂πν

)−1

+ πµ
∂2H
∂φ2

]

+ Λη−4K1
∂H
∂πµ

∂H
∂πµ

∂H
∂φ

∂3H
∂φ3

(3.41)

where the conventions (3.34) are taken. Our Hamiltonian, because of the Lorentz
symmetry, depends only on two scalar variables: φ and σ ≡ πµπµ

2
.

Our task is now to compute the previous equation in term of these new scalar
variables. To invert the second derivative in the third and forth term we introduce
two projectors

P⊥µν ≡ δµν −
πµπν
π2

(3.42)

PL
µν ≡

πµπν
π2

(3.43)

which have the properties: P⊥π = 0, PLπ = π, (P⊥)2 = P⊥, (PL)2 = PL, PLP⊥ =
P⊥PL = 0, P⊥ + PL = 1

∂H
∂πµ

=
∂H
∂σ

∂σ

∂πµ
= H′σπµ (3.44)
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∂2H
∂πµ∂πν

=
∂2H
∂σ2

∂σ

∂πµ

∂σ

∂πν
+
∂H
∂σ

∂2σ

∂πµ∂πν
= P⊥µνH′σ + PL

µν(H′σ + 2σH′′σ) (3.45)

and the inverse can be written as(
∂2H

∂πµ∂πν

)−1

=
P⊥µν
H′σ

+
PL
µν

H′σ + 2σH′′σ
(3.46)

where with the notation H′σ we mean the first derivative of the Hamiltonian with
respect the variable σ and so on for the others.
The last second derivative we need is

∂2H
∂φ∂πµ

= πµ
∂2H
∂σ∂φ

= πµH′′σφ (3.47)

and the eq.(3.41), multiplying by Λ−d, can be rewritten as

Λ−dḢ =− Λη−d−2K0(H′φ)2 + Λη−2I0H′′φ + Λη I1

d

(
d− 1

H′σ
+

1

H′σ + 2σH′′σ

)
+ Λη−d−2K0

[
2σ
H′φH′σH′′φσ
H′σ + 2σH′′σ

+ 2σH′σH′′φ
]

+ Λη−d−4K12σ(H′σ)2H′φH′′′φ

(3.48)

Suppose now to rescale H, φ, σ in this way: H = aH̄, φ = bφ̄, σ = cσ̄. Then
we have

Λ−da ˙̄H =Λη−2aI0

b2
H̄′′φ̄ + Λη acI1

a2d

(
d− 1

H̄′σ̄
+

1

H̄′σ̄ + 2σ̄H̄′′σ̄

)
+ Λη−d−2a

2K0

b2

[
−(H̄′φ̄)2 + 2σ̄H̄′σ̄H̄′′φ̄ + 2σ̄

H̄′
φ̄
H̄′σ̄H̄′′φ̄σ̄

H̄′σ̄ + 2σ̄H̄′′σ̄

]

+ Λη−d−4K1a
4

cb4
2σ̄(H̄′σ̄)2H̄′φ̄H̄

′′′
φ̄

(3.49)

and it is easy to see that we can absorb the three regulator dependent parameters
K0, I0, I1 but not the parameter K1 in the last term. In details, the appropriate
choice for the parameters is:

a =
I0

K0

, b2 = I0, c =
I2

0

K2
0I1

. (3.50)

After this rescaling and dropping the bar for the sake of brevity we obtain

Λ−dḢ =Λη−2H′′φ + Λη 1

d

(
d− 1

H′σ
+

1

H′σ + 2σH′′σ

)
+ Λη−d−2

[
−(H′φ)2 + 2σH′σH′′φ + 2σ

H′φH′σH′′φσ
H′σ + 2σH′′σ

]
+ Λη−d−4K1I1

K0I0

2σ(H′σ)2H′φH′′′φ

(3.51)

where as usual the last term can be rewritten, apart from a boundary term, as

− Λη−d−4K1I1

K0I0

2σ(H′σ)2(H′′φ)2 (3.52)

where the pre-factor Λη−d−4 is the correct one because of the full quantum dimension
of the fields so that the term has zero dimension as Λ−dḢ.
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The second step in the RG procedure: rescaling

Before employing further approximations, we have to write down the right flow
equation for the dimensionless fields. At criticality the fields φ and σ scale with
Λ according to their full quantum dimension that we call Dφ and Dσ respectively.
The full dimensionality of πµ is such that the term πµφµ in the definition of the
Hamiltonian should have the same dimension as H, in other words it should scale
with Λd. For this reason Dπ = d−Dφ − 1 so, knowing that Dφ = (d− 2 + η)/2 we
get Dπ = (d− η)/2. The rescaling we have to do is:

H = ΛdH̃, φ = ΛDφφ̃, σ = Λ2Dπ σ̃ (3.53)

where with tilde we denote dimensionless Hamiltonian and fields. Now we have to
start from this equality

H̃(φ̃, σ̃) = Λ−dH(φ, σ) (3.54)

and apply a total derivative with respect to the RG time on both side of this
equality.

−Λ
d

dΛ
H̃(φ̃, σ̃) = −Λ∂Λ

∣∣∣
φ̃,σ̃
H̃ − Λ

∂φ̃

∂Λ
H̃′
φ̃
− Λ

∂σ̃

∂Λ
H̃′σ̃ = dΛ−dH− Λ−dΛ

d

dΛ
H

(3.55)

=⇒ −Λ∂Λ

∣∣∣
φ̃,σ̃
H̃ = Λ

∂φ̃

∂Λ
H̃′
φ̃

+ Λ
∂σ̃

∂Λ
H̃′σ̃ + dH̃ + Λ−dḢ (3.56)

Recalling that φ̃ = Λ−Dφφ = Λ−(d−2+η)/2φ, σ̃ = Λ−2Dπσ = Λ−(d−η)σ we gain

∂t
∣∣
φ̃,σ̃
H̃ = −d− 2 + η

2
φ̃H̃′

φ̃
− (d− η)σ̃H̃′σ̃ + dH̃ + Λ−dḢ (3.57)

where the last term is exactly the eq.(3.51) that must be expressed as a function of
the new variables. To sum up the final result is

∂t
∣∣
φ̃,σ̃
H̃ =− d− 2 + η

2
φ̃H̃′

φ̃
− (d− η)σ̃H̃′σ̃ + dH̃

+ H̃′′
φ̃

+
1

d

(
d− 1

H̃′σ̃
+

1

H̃′σ̃ + 2σ̃H̃′′σ̃

)

− (H̃′
φ̃
)2 + 2σ̃H̃′σ̃H̃′′φ̃ + 2σ̃

H̃′
φ̃
H̃′σ̃H̃′′φ̃σ̃

H̃′σ̃ + 2σ̃H̃′′σ̃
+
K1I1

K0I0

2σ̃(H̃′σ̃)2H̃′
φ̃
H̃′′′
φ̃

(3.58)

The left hand side of this equation is the time derivative acting only on the intrinsic
time dependence therefore only on the couplings. Finally it is important to note
that if one choose a family of cutoff functions such that K1 = 0 then the equation
will become regulator independent.
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3.2.3 RG equations for Ṽ (φ̃) and Z̃(φ̃)

Now we want to do a further approximation and project the previous equation
on the sector quadratic in the first derivative of the scalar field. The most general
Lagrangian will be:

L = V (φ) +
1

2
Z(φ)∂µφ∂µφ (3.59)

(from now on we will deal with dimensionless quantities so we drop the tilde for
sake of brevity). With this ansatz the momenta field will be

πµ = i
∂L
∂φµ

= iZ(φ)φµ (3.60)

and so it is trivial to invert it and express the first derivative of the field in term of
the momenta

φµ = −i πµ
Z(φ)

(3.61)

Using the Legendre transform we get

H = iπµφµ + L = V (φ) +
σ

Z(φ)
(3.62)

As we can see H′′σ = 0 so the eq.(3.58) simplifies and becomes (dropping the tildes)

Ḣ =− d− 2 + η

2
φH′φ − (d− η)σH′σ + dH

+H′′φ +
1

H′σ
− (H′φ)2 + 2σH′σH′′φ + 2σH′φH′′φσ

+
K1I1

K0I0

2σ(H′σ)2H′φH′′′φ

(3.63)

As we have said before the left hand side is the intrinsic time derivative so it is

Ḣ = V̇ − Ż

Z2
σ (3.64)

whereas in the right hand side we have to replace our Hamiltonian H(φ, σ):

H =V (φ) +
σ

Z(φ)

H′φ =V ′ − Z ′

Z2
σ

H′′φ =V ′′ − Z ′′Z − 2(Z ′)2

Z3

H′σ =
1

Z

H′′φσ =− Z ′

Z2

Projecting the r.h.s, one more time, on the sector linear in the momenta field σ
we gain two flow equations for the dimensionless potential and renormalization
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function

V̇ =dV − 1

2
(d− 2 + η)φV ′ − (V ′)2 + V ′′ + Z (3.65)

Ż =− ηZ − 1

2
(d− 2 + η)φZ ′ − 2ZV ′′ + Z ′′ − 2

(Z ′)2

Z
− 2bV ′V ′′′ (3.66)

=̇− ηZ − 1

2
(d− 2 + η)φZ ′ − 2ZV ′′ + Z ′′ − 2

(Z ′)2

Z
+ 2b(V ′′)2 (3.67)

where as usual with the notation =̇ we mean that the two equations are the same
apart from an overall boundary term and the coefficient b is the regulator dependent
pre-factor present in the last term of the eq.(3.63) i.e. b = K1I1

K0I0
.

These equations differ from the ones obtained by a first order of the DE using
the Polchinski flow equation in a Lagrangian approach [2]. The equation for V̇ is
the same apart for the fact that in the DE there is a regulator dependent coefficient
multiplying Z that cannot be removed by rescaling. Here, this coefficient can safely
set equal to one. The equation for Ż is rather different: the first four terms and
the last one are morally the same but others are different. We rewrite here the
equations derived in [2]

V̇ =dV − 1

2
(d− 2 + η)φV ′ − (V ′)2 + V ′′ + 2

I1K0

I0

Z

=̇− ηZ − 1

2
(d− 2 + η)φZ ′ − 4ZV ′′ + Z ′′ − 2Z ′V ′ +

K1

K2
0

(V ′′)2 − η

2

In the next section, we shall analyze the scaling solutions of equations (3.65)
and (3.67) with b = 0 and b 6= 0, which describe for d = 3 the critical Ising model.
Once we will get the scaling solutions for the potential V∗(φ) and the wave function
renormalization Z∗(φ), i.e. the solutions at the fixed point, we can linearize the
system and study small variations from the fixed point solutions. Setting

V (φ) =V∗(φ) + v(φ) (3.68)
Z(φ) =Z∗(φ) + z(φ) (3.69)

where v(φ) and z(φ) are the small variations, we have to substitute them in the
previous equations and take only the first order in v and z. Therefore we will arrive
at the following equations

v̇ =dv − d− 2 + η

2
φv′ − 2V ′∗v

′ + v′′ + z (3.70)

ż =− ηz − d− 2 + η

2
φz′ − 2Z∗v

′′ − 2Z∗V
′′
∗ z + z′′ + 2

(Z ′∗)
2

Z2
∗
z − 4

Z ′∗
Z∗
z′ + 4bV ′′∗ v

′′

(3.71)

that is linear because it can be rewrite in a matrix-like form as(
v̇
ż

)
=Mφ

(
v
z

)
(3.72)

whereMφ is a matrix whose entries are differential operators acting on the small
function variations v and z. Studying the eigenvalue problem of this system we can
obtain, for example, the value of ν which is one of the critical exponents in the
Ising model.
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3.3 O(N) model
In this section we want to apply the strategy explained previously for the case

of N real scalar fields with an internal O(N) symmetry. As we have done before we
will start from the Polchinski equation to derive a renormalization group equation
for a Lagrangian that will depend on arbitrary high order derivatives of the N fields.
Subsequently we will translate this equation into a RG equation for the covariant
Hamiltonian density replacing the arbitrary-order derivative

dn

dxµ1 . . . dxµn
ϕa(x)→ πaµ1...µn

(3.73)

with a symmetric tensor field that will contain, in this case, an internal index. At
the end, we will project this equation (depending on momenta field with arbitrary
high rank order) on the sector quadratic in momenta itself so dropping all that
with rank bigger than two.

3.3.1 Lagrangian flow equation

Now we are ready to apply the previous ideas for a scalar theory with O(N)
symmetry. The extension of the Polchinski equation (3.8) to the O(N) model is
straightforward

Ṡ[ϕ] =
1

2

∫
x

∫
y

(
δS[ϕ]

δϕa(x)
Ċab(x− y)

δS[ϕ]

δϕb(y)
− δ

δϕa(x)
Ċab(x− y)

δS[ϕ]

δϕb(y)

)
(3.74)

but for the O(N) symmetry the regularized propagator is diagonal

Ċab(x− y) = δabĊ(x− y) (3.75)

We are now interested in local truncations which correspond to a Lagrangian density
depending on generically high derivatives of the fields, in other words our effective
action is

SΛ[ϕ] =

∫
ddxL (x, ϕaM(x)) (3.76)

Following exactly the same calculations of the previous section we have

δS[ϕ]

δϕa(x)
= (−1)M

dM

dxM
∂L

∂ϕaM(x)
(3.77)

δ2S[ϕ]

δϕa(x)δϕb(y)
= (−1)N

dN

dyN

[
∂2L

∂ϕaM(y)∂ϕbN(y)

dM

dyM
δ(y − x)

]
. (3.78)

Substituting these in the former equation and doing some integrations by part we
have

Ṡ =(−1)N
1

2

∫
x

∫
y

∂L
∂ϕaM(x)

∂L
∂ϕaN(y)

dM+N

dxMdxN
Ċ(x− y)

− (−1)N
1

2

∫
x

∂2L
∂ϕaM(x)∂ϕaN(x)

dM+N

dzMdzN
Ċ(z)

∣∣∣
z=0

.

(3.79)
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The first term is non local so we take a Taylor expansion around the x point

∂L
∂ϕaN

(y) =
∂L
∂ϕaN

(x) +
∑
L6=0

1

L!
(y − x)L

dL

dxL
∂L
∂ϕaN

(x)

=
∂L
∂ϕaN

(x) +
∑
L6=0

1

L!
(y − x)L

L∑
i=1

ϕa1

(M1
. . . ϕaiMi)L

∂i+1L
∂ϕa1

M1
. . . ∂ϕaiMi

∂ϕaN
(x)

(3.80)

and therefore the flow equation for the Lagrangian takes the form:

L̇ =− (−1)N

2
ĊMN(0)

∂2L
∂ϕaM∂ϕ

a
N

+
1

2

∂L
∂ϕa

∂L
∂ϕa

˙̃
C(0)

+
(−1)M

2

∂L
∂ϕaM

JL,MN

L!

L∑
i=1

ϕa1

(M1
. . . ϕaiMi)L

∂i+1L
∂ϕa1

M1
. . . ∂ϕaiMi

∂ϕaN
.

(3.81)

This is the straightforward generalization to O(N) case of eq.(3.26) with L 6= 0
(sum over L is implicit here) whereas the sum over M,N,M1, . . . ,Mi includes the
empty index. Now we want to simplify the last equation taking a Lagrangian which
is an arbitrary function of ϕa and ϕaµ so only the first order derivative is present in
this truncation.
With this ansatz for the Lagrangian

L = L(ϕa, ϕaµ) (3.82)

the flow equation becomes

L̇ =
1

2
˙̃
C(0)

∂L
∂ϕa

∂L
∂ϕa
− 1

2
Ċ(0)

∂2L
∂ϕa∂ϕa

+
1

2
Ċµν(0)

∂2L
∂ϕaµ∂ϕ

a
ν

+
1

2

∞∑
`=1

1

`!
Jλ1...λ`,µ ϕ

a1
λ1
. . . ϕa`λ`

(
∂L
∂ϕb

∂`+1L
∂ϕa1 . . . ∂ϕa`∂ϕbµ

− ∂L
∂ϕbµ

∂`+1L
∂ϕa1 . . . ∂ϕa`∂ϕb

)
− 1

2

∞∑
`=2

1

`!
Jλ1...λ`,µν ϕ

a1
λ1
. . . ϕa`λ`

∂L
∂ϕbµ

∂`+1L
∂ϕa1 . . . ∂ϕa`∂ϕbν

+
1

2

∞∑
`=1

1

`!
Jλ1...λ`,0 ϕ

a1
λ1
. . . ϕa`λ`

∂L
∂ϕb

∂`+1L
∂ϕa1 . . . ∂ϕa`∂ϕb

(3.83)

where the second and third term come from the first one of eq.(3.81) forM = N = 0
and M = N = 1 respectively (because of the factor (−1)N the cases M = 0, N = 1
and M = 1, N = 1 have opposite sign). The two terms in the second line come
from the sum in the eq. (3.81) for the cases N = 1,M = 0 and N = 0,M = 1. The
terms in the third and forth lines come from the former sum corresponding to the
cases N = 1,M = 1 and M = N = 0 respectively. (Remember that in eq.(3.81),
for each L 6= 0, in the sum over i only the term with i = L survives because all
other terms are out of our truncation i.e. have derivatives of the field greater than
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one). Note that we still have a sum of infinitely many terms but this is no longer
the case if one further projects the flow on the sector quadratic in ϕaµ which select
the following terms

L̇ =
1

2
˙̃
C(0)

∂L
∂ϕa

∂L
∂ϕa
− 1

2
Ċ(0)

∂2L
∂ϕa∂ϕa

+
1

2
Ċµν(0)

∂2L
∂ϕaµ∂ϕ

a
ν

+
1

2
Jν,µ ϕ

a
ν

(
∂L
∂ϕb

∂2L
∂ϕa∂ϕbµ

− ∂L
∂ϕbµ

∂2L
∂ϕa∂ϕb

)
+

1

4
Jµν,0 ϕ

a
µϕ

c
ν

∂L
∂ϕb

∂3L
∂ϕa∂ϕc∂ϕb

(3.84)

Again the last term can be expressed, apart from a boundary term, as

− 1

4
Jµν,0ϕ

a
µϕ

c
ν

∂2L
∂ϕa∂ϕb

∂2L
∂ϕb∂ϕc

(3.85)

3.3.2 Hamiltonian flow equation

As we did in the previous section, we look for an Hamiltonian translation of
this discussion. First of all we define the momenta fields for the O(N) case that
have an internal ‘’color” index

πaM(x) ≡ i
∂L

∂ϕaM(x)
(3.86)

and an Hamiltonian density

H(ϕa, πaM) = iπaMϕ
a
M + L(ϕa, ϕaM) (3.87)

that depends on the N fields and on arbitrary high order rank momenta. Moreover
we need the following relations

∂L
∂ϕa

=
∂H
∂ϕa

ϕaM =− i ∂H
∂πaM

∂2L
∂ϕaM∂ϕ

b
N

=

(
∂2H

∂πbN∂π
a
M

)−1

∂2L
∂ϕa∂ϕbM

=i
∂2H

∂ϕa∂πcN

(
∂2H

∂πcN∂π
b
M

)−1

(3.88)

where the last one comes from the independence of ϕaM and ϕb i.e. dϕaM
dϕb

=
∂ϕaM
∂ϕb

+
∂πcN
∂ϕb

∂φaM
∂πcN

= 0.
In a straightforward manner, neglecting the dynamics of momenta with rank

bigger than two and taking moreover the quadratic sector of the Lagrangian flow
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equation, eq.(3.84) becomes

Ḣ =Λd−2+ηI0
∂2H

∂ϕa∂ϕa
+ Λd+η I1

d

(
∂2H

∂πaµ∂π
a
µ

)−1

+ Λη−2K0
∂H
∂πaµ

[
− ∂H
∂ϕa

∂H
∂ϕa

+
∂H
∂ϕb

∂2H
∂ϕa∂πcν

(
∂2H

∂πcν∂π
b
µ

)−1

+ πbµ
∂2H

∂ϕa∂ϕb

]

+ Λη−4K1
∂H
∂πaµ

∂H
∂πcµ

∂H
∂ϕb

∂3H
∂ϕa∂ϕb∂ϕc

(3.89)

where the last term can be expressed, apart for a boundary term, as

− Λη−4K1
∂H
∂πaµ

∂H
∂πcµ

∂2H
∂ϕa∂ϕb

∂2H
∂ϕb∂ϕc

(3.90)

Because of the O(N) symmetry the most general quadratic Lagrangian we can take
is [20]

L = V (ρ) +
1

2
Z(ρ)∂µϕ

a∂µϕ
a +

1

2
Y (ρ)ϕa∂µϕ

aϕb∂µϕ
b (3.91)

(where ρ = ϕaϕa

2
) that correspond to the O(∂2) of the derivative expansion. Note

that there is one more renormalization function Y (ρ) in spite of the case of one
single scalar field.

With N scalar fields we can define two projectors

P ab
L =

ϕaϕb

ϕ2
and P ab

⊥ = δab − ϕaϕb

ϕ2
(3.92)

which have the properties: PLϕ = ϕ, P⊥ϕ = 0, P 2
L = PL, P 2

⊥ = P⊥, PLP⊥ =
P⊥PL = 0, PL + P⊥ = 1. With this truncation the momenta fields will be

∂L
∂ϕaµ

= (ZP⊥ +XPL)abϕbµ ≡ −iπaµ (3.93)

where we have definedX(ρ) = Z(ρ)+2ρY (ρ). Thanks to the properties of projectors
we can readily invert the last relation and express the derivative field as a function
of momenta

ϕaµ = −iπbµ
(
P⊥
Z

+
PL
X

)ba
(3.94)

Substituting this inverse relation into the definition of the Hamiltonian we get

H = V (ρ) +
σ⊥
Z(ρ)

+
σL
X(ρ)

= H(ρ, σL, σ⊥) (3.95)

where σL = 1
2
P ab
L π

a
µπ

b
µ and σ⊥ = 1

2
P ab
⊥ π

a
µπ

b
µ = σ − σL with σ =

πaµπ
a
µ

2
.

Proof.
∂µϕ

a∂µϕ
a = ∂µϕ

aδab∂µϕ
b = ϕaµ(PL + P⊥)abϕbµ

ϕa∂µϕ
aϕb∂µϕ

b =
ϕaϕb

ϕ2
ϕaµϕ

b
µϕ

2 = P abL 2ρϕaµϕ
b
µ
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H =iπaµϕ
a
µ + L

=iπaµ(−i)πbµ
(
P abL
X

+
P ab⊥
Z

)
+ V +

1

2
Zϕaµ(PL + P⊥)abϕbµ +

1

2
Y P abL 2ρϕaµϕ

b
µ

=πaµπ
b
µ

(
P abL
X

+
P ab⊥
Z

)
+ V − 1

2
Z(PL + P⊥)ab

(
P⊥
Z

+
PL
X

)ac
πcµ

(
P⊥
Z

+
PL
X

)bd
πdµ

− ρY P abL
(
P⊥
Z

+
PL
X

)ac
πcµ

(
P⊥
Z

+
PL
X

)bd
πdµ

=V + σL

(
2

X
− Z

X2
− 2ρY

X2

)
+ σ⊥

(
2

Z
− 1

Z

)
=V +

σ⊥
Z

+
σL
X

Now we want to express the flow equation for H in terms of the new scalar
variables ρ, σL, σ⊥. Let’s start from the first and second derivative of the Hamiltonian
with respect the momenta field:

∂H
∂πaµ

=
∂H
∂σ⊥

∣∣∣∣∣
σL

∂σ⊥
∂πaµ

+
∂H
∂σL

∣∣∣∣∣
σ⊥

∂σL
∂πaµ

= (H′⊥P⊥ +H′LPL)
ab
πbµ (3.96)

∂2H
∂πaµ∂π

b
ν

=
∂H
∂σ⊥

∣∣∣∣∣
σL

∂2σ⊥
∂πaµ∂π

b
ν

+
∂H
∂σL

∣∣∣∣∣
σ⊥

∂2σL
∂πaµ∂π

b
ν

= δµν (H′⊥P⊥ +H′LPL)
ab (3.97)

Using the projectors it is immediate to write down the inverse of the second
derivative (

∂2H
∂πaµ∂π

b
ν

)−1

= δµν
(
P⊥
H′⊥

+
PL
H′L

)ab
(3.98)

Now let’s consider derivatives involving scalar fields

∂H
∂ϕa

=
∂H
∂ρ

∣∣∣∣∣
σL,σ⊥

∂ρ

∂ϕa
+
∂H
∂σL

∣∣∣∣∣
ρ,σ⊥

∂σL
∂ϕa

+
∂H
∂σ⊥

∣∣∣∣∣
ρ,σL

∂σL
∂ϕa

=
∂H
∂ρ

ϕa +
∂σL
∂ϕa

(
∂H
∂σL
− ∂H
∂σ⊥

)
= H′ρϕa + (H′L −H′⊥)

(
πaµ

(ϕ · πµ)

2ρ
− σL

ϕa

ρ

) (3.99)

∂2H
∂ϕb∂πaµ

=
∂H
∂σ⊥

∂2σ⊥
∂ϕb∂πaµ

+
∂H
∂σL

∂2σL
∂ϕb∂πaµ

+
∂σ⊥
∂πaµ

(
∂2H
∂ρ∂σ⊥

ϕb
)

+
∂σL
∂πaµ

(
∂2H
∂ρ∂σL

ϕb
)

= (H′L −H′⊥)

[
(ϕ · πµ)

2ρ
(P⊥ − PL)ab +

ϕaπbµ
2ρ

]
+ ϕbπcµ

(
P⊥H′′ρ⊥ + PLH′′ρL

)ac
(3.100)
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∂2H
∂ϕa∂ϕb

=H′ρδab + ϕa
(
H′′ρϕb +H′′ρ⊥

∂σ⊥
∂ϕb

+H′′ρL
∂σL
∂ϕb

)
+H′′ρLϕb

∂σL
∂ϕa

+H′L
∂2σL
∂ϕa∂ϕb

+H′′ρ⊥ϕb
∂σ⊥
∂ϕa

+H′⊥
∂2σ⊥
∂ϕa∂ϕb

= δabH′ρ +H′′ρ2ρP ab
L

+
(
H′′ρL −H′′ρ⊥

) [ϕaπbµ
2ρ

(ϕ · πµ) +
ϕbπaµ
2ρ

(ϕ · πµ)− 4σLP
ab
L

]

+ (H′L −H′⊥)

[
πaµπ

b
µ

2ρ
−
ϕbπaµ + ϕaπbµ

2ρ2
(ϕ · πµ)− σL

ρ
(P ab
⊥ − 3P ab

L )

]
(3.101)

∂3H
∂ϕa∂ϕb∂ϕc

=
∂

∂ϕc
(
H′ρδab +H′′ρϕaϕb + . . .

)
=H′′ρϕcδab +H′′ρϕbδac +H′′ρϕaδbc +H′′′ρ ϕaϕbϕc + . . .

(3.102)

where we have left out all those terms that have quadratic momenta fields (the
reason will be clear later on).

Now we have to substitute these derivatives into the flow equation for H and
truncate all to the quadratic sector on the momenta πaµ. Let’s start from the first
term of the eq.(3.89)

∂H
∂ϕa

∂H
∂ϕa

=

{
H′ρϕa + (H′L −H′⊥)

[
πaµ

(ϕ · πµ)

2ρ
− σL

ϕa

ρ

]}2

=̇2ρ(H′ρ)2 (3.103)

where the symbol =̇ stands for up to term more than quadratic in the momenta.
In the second and third term we have to trace over the inner-space indices

∂2H
∂ϕa∂ϕa

= NH′ρ + 2ρH′′ρ + (H′L −H′⊥)

(
σL + σ⊥

ρ
−N σL

ρ

)
(3.104)

(
∂2H

∂πaµ∂π
a
µ

)−1

= d

(
N − 1

H′⊥
+

1

H′L

)
(3.105)

The forth term is

∂H
∂πaµ

∂H
∂ϕb

∂2H
∂ϕa∂πcν

(
∂2H

∂πcν∂π
b
µ

)−1

=
(
H′⊥P ab

⊥ π
b
µ +H′LP ab

L π
b
µ

)
·

·
[
H′ρϕb + (H′L −H′⊥)

(
πbµ

(ϕ · πµ)

2ρ
− σL

ϕb

ρ

)]
·

·
[
(H′L −H′⊥)

(
(ϕ · πν)

2ρ
(P⊥ − PL)ac +

ϕcπaν
2ρ

)
+ ϕaπdν

(
P⊥H′′ρ⊥ + PLH′′ρL

)dc] ·
· δµν

(
P⊥
H′⊥

+
PL
H′L

)cb
=̇

=̇ (H′L −H′⊥) 2σ⊥
H′⊥H′ρ
H′L

+ 4ρσLH′LH′ρH′′ρL
(3.106)
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The fifth term is
∂H
∂πaµ

πbµ
∂2H

∂ϕa∂ϕb
= (H′⊥P⊥ +H′LPL)

ac
πcµπ

b
µ·

·

[
δabH′ρ +H′′ρ2ρP ab

L +
(
H′′ρL −H′′ρ⊥

)(ϕaπbµ
2ρ

(ϕ · πµ) +
ϕbπaµ
2ρ

(ϕ · πµ)− 4σLP
ab
L

)

+ (H′L −H′⊥)

(
πaµπ

b
µ

2ρ
−
ϕbπaµ + ϕaπbµ

2ρ2
(ϕ · πµ)− σL

ρ
(P ab
⊥ − 3P ab

L )

)]
=̇

=̇2σL
(
H′ρH′L + 2ρH′′ρH′L

)
+ 2σ⊥H′ρH′⊥

(3.107)

Finally the last term is

∂H
∂πaµ

∂H
∂πcµ

∂H
∂ϕb

∂3H
∂ϕa∂ϕb∂ϕc

=

= (H′⊥P⊥ +H′LPL)
ad
πdµ (H′⊥P⊥ +H′LPL)

ce
πeµ ·

∂H
∂ϕb

∂3H
∂ϕa∂ϕb∂ϕc

=̇12ρσLH′ρ(H′L)2H′′ρ + 8ρ2σLH′ρ(H′L)2H′′′ρ + 4ρH′ρH′′ρσ⊥(H′⊥)2

(3.108)

and the corresponding one apart from a boundary term is

− ∂H
∂πaµ

∂H
∂πcµ

∂2H
∂ϕa∂ϕb

∂2H
∂ϕb∂ϕc

=

=− (H′⊥P⊥ +H′LPL)
ad
πdµ (H′⊥P⊥ +H′LPL)

ce
πeµ·

· (H′ρδab +H′′ρ2ρP ab
L + . . . )(H′ρδbc +H′′ρ2ρP bc

L + . . . )

=̇− (H′ρ)2
(
2σ⊥(H′⊥)2 + 2σL(H′L)2

)
− 8ρσL(H′L)2H′′ρ(H′ρ + ρH′′ρ)

(3.109)

We can finally collect all these intermediate results and rewrite down the flow
equation for the Hamiltonian density within the truncation for a quadratic functional
of the momenta:

Λ−dḢ =Λ−2+ηI0

{
NH′ρ + 2ρH′′ρ + (H′L −H′⊥)

(
σL + σ⊥

ρ
−N σL

ρ

)}
+ ΛηI1

(
N − 1

H′⊥
+

1

H′L

)
+ Λ−d+η−2K0

{
−2ρ(H′ρ)2 + (H′L −H′⊥) 2σ⊥

H′⊥H′ρ
H′L

+ 4ρσLH′ρH′′ρL

+ 2σL
(
H′ρH′L + 2ρH′′ρH′L

)
+ 2σ⊥H′ρH′⊥

}
+ Λ−d+η−4K1

{
12ρσLH′ρ(H′L)2H′′ρ + 8ρ2σLH′ρ(H′L)2H′′′ρ + 4ρH′ρH′′ρσ⊥(H′⊥)2

}
(3.110)

where the last term can be also written as

− Λ−d+η−4K1

{
(H′ρ)2

[
2σ⊥(H′⊥)2 + 2σL(H′L)2

]
+ 8ρσL(H′L)2H′′ρ(H′ρ + ρH′′ρ)

}
(3.111)
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Suppose now to rescale H, φ, σ in this way: H → aH, φ→ bφ, σ → cσ. Then we
have

Λ−daḢ = Λ−2+η I0a

b

{
NH′ρ + 2ρH′′ρ + (H′L −H′⊥)

(
σL + σ⊥

ρ
−N σL

ρ

)}
+ Λη I1c

a

(
N − 1

H′⊥
+

1

H′L

)
+ Λ−d+η−2K0a

2

b

{
−2ρ(H′ρ)2 + (H′L −H′⊥) 2σ⊥

H′⊥H′ρ
H′L

+ 4ρσLH′ρH′′ρL

+ 2σL
(
H′ρH′L + 2ρH′′ρH′L

)
+ 2σ⊥H′ρH′⊥

}

+ Λ−d+η−4K1a
4

b2c

{
12ρσLH′ρ(H′L)2H′′ρ + 8ρ2σLH′ρ(H′L)2H′′′ρ + 4ρH′ρH′′ρσ⊥(H′⊥)2

}
(3.112)

and it is easy to see that we can absorb the three regulator dependent parameters
K0, I0, I1 but not the parameter K1 in the last term. In details, the appropriate
choice for these parameters is:

a =
I0

K0

, b = I0, c =
I2

0

K2
0I1

. (3.113)

whereas the last term will remain regulator dependent

Λ−d+η−4K1I1

K0I0

{
12ρσLH′ρ(H′L)2H′′ρ + 8ρ2σLH′ρ(H′L)2H′′′ρ + 4ρH′ρH′′ρσ⊥(H′⊥)2

}
=̇− Λ−d+η−4K1I1

K0I0

{
(H′ρ)2

[
2σ⊥(H′⊥)2 + 2σL(H′L)2

]
+ 8ρσL(H′L)2H′′ρ(H′ρ + ρH′′ρ)

}
(3.114)

3.3.3 Rescaling and RG equations for Ṽ (ρ̃), Z̃(ρ̃) and Ỹ (ρ̃)

At criticality the fields ρ and σ = σL + σ⊥ scale with Λ according to their full
quantum dimension that we call Dρ and Dσ respectively. The full dimensionality
of πaµ is such that the term πaµφ

a
µ in the definition of the Hamiltonian should have

the same dimension as H, in other words it should scale with Λd. For this reason
Dπ = d−Dφ− 1 so, knowing that Dφ = (d− 2 + η)/2 we get Dπ = (d− η)/2. The
rescaling we have to do is:

H = ΛdH̃, ρ = Λ2Dφ ρ̃, σ = Λ2Dπ σ̃ (3.115)

where with tilde we denote dimensionless Hamiltonian and fields. Now we have to
start from this equality

H̃(ρ̃, σ̃L, σ̃⊥) = Λ−dH(ρ, σL, σ⊥) (3.116)

and apply a total derivative with respect the RG time on both side of this equality.
It is not hard to believe that the implicit time derivative of the Hamiltonian is

∂t
∣∣
ρ̃,σ̃L,σ̃⊥

H̃ = −(d− 2 + η)ρ̃H̃′ρ̃ − (d− η)(σ̃LH̃′σ̃L + σ̃⊥H̃′σ̃⊥) + dH̃+ Λ−dḢ (3.117)
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where the last term is exactly the eq.(3.112) that must be expressed as a function
of the new dimensionless variables. To sum up the final result will be (dropping
the tilde for sake of brevity):

∂t
∣∣
φ,σL,σ⊥

H = −(d− 2 + η)ρH′ρ − (d− η)(σLH′L + σ⊥H′⊥) + dH

+NH′ρ + 2ρH′′ρ + (H′L −H′⊥)

(
σL + σ⊥

ρ
−N σL

ρ

)
+
N − 1

H′⊥
+

1

H′L

− 2ρ(H′ρ)2 + (H′L −H′⊥) 2σ⊥
H′⊥H′ρ
H′L

+ 4ρσLH′ρH′′ρL

+ 2σL
(
H′ρH′L + 2ρH′′ρH′L

)
+ 2σ⊥H′ρH′⊥

+
K1I1

K0I0

{
12ρσLH′ρ(H′L)2H′′ρ + 8ρ2σLH′ρ(H′L)2H′′′ρ + 4ρH′ρH′′ρσ⊥(H′⊥)2

}
(3.118)

where the last term can be expressed also as

− K1I1

K0I0

{
(H′ρ)2

[
2σ⊥(H′⊥)2 + 2σL(H′L)2

]
+ 8ρσL(H′L)2H′′ρ(H′ρ + ρH′′ρ)

}
(3.119)

Finally it is important to note that if one choose a family of cutoff functions such
that K1 = 0 then the equation will become regulator independent.

The left hand side of this equation is the RG ‘’time” derivative acting only on
the intrinsic RG time dependence which reads:

Ḣ = V̇ − Ż

Z2
σ⊥ −

Ẋ

X2
σL (3.120)

where Ẋ = Ż + 2ρẎ . Projecting the right hand side of eq.(3.118) on the ansatz

H(ρ, σ⊥, σL) = V (ρ) +
σ⊥
Z(ρ)

+
σL
X(ρ)

(3.121)

and using these relations

H′ρ = V ′ − Z ′

Z2
σ⊥ −

X ′

X2
σL

H′′ρ = V ′′ + σ⊥

(
−Z

′′

Z2
− 2

(Z ′)2

Z3

)
+ σL

(
−X

′′

X2
− 2

(X ′)2

X3

)
H′′′ρ = V ′′′ + σL

(
−X

′′′

X2
− 6

(X ′)3

X4
+ 6

X′X ′′

X3

)
+ σ⊥

(
−Z

3

Z2
− 6

(Z ′)3

Z4
+ 6

Z ′Z ′′

Z3

)
H′⊥ = Z−1

H′L = X−1

H′′Lρ = −X
′

X2

(3.122)

we obtain the final result

V̇ =dV − ρ(d+ η − 2)V ′ + 2ρV ′′ +NV ′ − 2ρ(V ′)2 + 2ρY +NZ (3.123)
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Ż =− 2V ′(Z − 2ρY ) + ρZ ′(2− d− η)− 4ρV ′Z ′ − ηZ +NZ ′

− 4ρ
(Z ′)2

Z
+

2Y Z

Z + 2ρY
+ 2ρZ ′′ − 4bρV ′V ′′

(3.124)

Ẏ =− 2V ′′(Z − 2ρY )− 8
ρV ′′Y Z

Z + 2ρY
− 2N

Y 2

Z
+ ρY ′(2− d− η) + Y (2− d− 2η)

− 4Y V ′ + 2V ′Z ′ +NY ′ + 2ρY ′′ − 8ρY ′
Z ′ + ρY ′

Z + 2ρY
+ 4Y ′

Z − 2ρY

Z + 2ρY

+ 4Y Z ′
ρZ ′ − 2Z

Z(Z + 2ρY )
− 4Y 2 Z − ρY

Z(Z + 2ρY )
− 4bV ′(V ′′ + ρV ′′′)

(3.125)

where the coefficient b is the regulator dependent coefficient that comes from the
last term of the RG equation for the Hamiltonian i.e. b = K1I1

K0I0
. Instead if we take

under our consideration the flow different from this one apart from the boundary
term, we gain in this case

V̇ =dV − ρ(d+ η − 2)V ′ + 2ρV ′′ +NV ′ − 2ρ(V ′)2 + 2ρY +NZ (3.126)

Ż =− 2V ′(Z − 2ρY ) + ρZ ′(2− d− η)− 4ρV ′Z ′ − ηZ +NZ ′

− 4ρ
(Z ′)2

Z
+

2Y Z

Z + 2ρY
+ 2ρZ ′′ + 2b(V ′)2

(3.127)

Ẏ =− 2V ′′(Z − 2ρY )− 8
ρV ′′Y Z

Z + 2ρY
− 2N

Y 2

Z
+ ρY ′(2− d− η) + Y (2− d− 2η)

− 4Y V ′ + 2V ′Z ′ +NY ′ + 2ρY ′′ − 8ρY ′
Z ′ + ρY ′

Z + 2ρY
+ 4Y ′

Z − 2ρY

Z + 2ρY

+ 4Y Z ′
ρZ ′ − 2Z

Z(Z + 2ρY )
− 4Y 2 Z − ρY

Z(Z + 2ρY )
+ 4bV ′′(V ′ + ρV ′′)

(3.128)

3.3.4 Large N limit

We are interested now in making some consideration for the large N limit case,
when essentially only the transverse modes are involved in the dynamic of the
system. In d = 3 this problem has been first studied, with a power-law cutoff and
for the the average effective action (Wetterich’s equations), in [20]. From these
earlier studies we know that the contribution of YΛ to the running of VΛ and ZΛ is
of the order 1/N , so that it can be neglected in the large N limit. Moreover, in the
same limit, the only known solutions of the fixed point equations for V and Z have
a field-independent Z with anomalous dimension η = 0. No other solutions, with a
non vanishing η at N =∞, are known up to now.

For this reason it is interesting to study the N = ∞ limit of the Wilsonian
action, which is different from the generator of the average proper vertices, within
our new formalism and see if we can obtain different results. In order to perform
the limit it is convenient to do the following rescaling

ρ = Nρ̃, V = NṼ , Y =
1

N
Ỹ . (3.129)
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and substituting them into the flow equation and dropping all sub-leading terms in
the large N limit we obtain

˙̃V =dṼ + Z̃ + Ṽ ′ + (2− d− η)ρ̃Ṽ ′ − 2ρ̃(Ṽ ′)2 (3.130)
˙̃Z =ρ̃Z̃ ′(2− d− η)− 4ρ̃Ṽ ′Z̃ ′ − ηZ̃ + Z̃ ′ − 2Ṽ ′(Z̃ − 2ρ̃Ỹ )− 4bρ̃Ṽ ′Ṽ ′′ (3.131)

˙̃Y =ρ̃Ỹ ′(2− d− η) + Ỹ (2− d− 2η)− 2
Ỹ 2

Z̃
+ Ỹ ′ + 2Ṽ ′Z̃ ′ − 4Ỹ Ṽ ′

− 2Ṽ ′′(Z̃ − 2ρ̃Ỹ )− 8
ρ̃Ṽ ′′Ỹ Z̃

Z̃ + 2ρ̃Ỹ
− 4bṼ ′(Ṽ ′′ + ρ̃Ṽ ′′′) (3.132)

A first important observation is that the equations for Ṽ and Z̃ do not decouple
from that one for Ỹ .

Some comments

Suppose now to be in d = 3 and in the special case of b = 0. We want to ask if
there is a quadratic solution for the potential, therefore we make this ansatz

Ṽ (ρ) = v0 + v1ρ (3.133)

Substituting this into the eq.(3.130), at the fixed point we have

0 = 3(v0 + v1ρ) + Z̃ + v1 − (1 + η)ρv1 − 2ρv2
1

therefore there are two possible solutions if Z=const{
v1 = 0, ∨ v1 = 1− η

2

v0 = −Z+v1

3

the eq.(3.131) at the fixed point gives

0 = −ηZ̃ − 2v1(Z̃ − 2ρ̃Ỹ )

that implies {
v1 = 0 =⇒ Z̃ = 0 ∨ η = 0

v1 6= 0 =⇒ Z̃ = ρ̃Ỹ 4v1

η+2v1
=⇒ Ỹ = a

ρ̃

If we take Ỹ = a/ρ the eq.(3.132) at the fixed point gives

0 = (1 + η)
a

ρ̃
− a

ρ̃
(1 + 2η)− 2a2

ρ̃2Z̃
− a

ρ̃2
− 4v1

a

ρ̃

that implies

a = −Z̃
2

∧

{
a = 0

v1 = −η
4

instead, if we take v1 = 0 the fixed point equation for Ỹ becomes

Ỹ (2Ỹ + Z̃) = Ỹ ′Z̃(1− ρ̃) =⇒ Ỹ = − αZ̃

2(α− Z̃ + ρ̃Z̃)
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where α is a constant of integration.
To sum up we have three possible solutions if we make the assumption of a

quadratic potential:

• Ṽ = (1− η
2
)(ρ− 1

3
) and Z̃ = Ỹ = 0 that is non physical

• η = 0, Ṽ = v0 = − Z̃
3
, Ỹ = − αZ̃

2(α−Z̃+ρ̃Z̃)
that may be possible

• η = 4, Ṽ = 2a+1
3
− ρ, Z̃ = −2a and Ỹ = a

ρ̃
that is again non physical.





Chapter 4

Numerical analysis for N = 1 in d = 3

In this chapter we want to give a detailed description of a numerical analysis that
we have done for the case of one real scalar field in d = 3. The model corresponds to
the continuum QFT description of the critical Ising model for which some accurate
results for the critical exponents are known from numerical Monte Carlo analysis
[6], many loop perturbative computations, from conformal bootstrap approach [27]
and also from many functional RG analysis (see for example [3][22][13]). We chose
the method of shooting from large field value [20]. To this end we have to find the
leading asymptotic solutions for the fixed point equations, that will be parametrized
by η itself and other parameters that govern the asymptotic behavior of solutions,
and make some checks also from the origin. Successively we will follow this strategy:
because of the Z2 symmetry we know from the principle that we must find an
even solution with zero first derivative at the origin; for this reason, if we have
two extra parameters A,B parametrizing the asymptotic solutions, we will than
plot a discrete set of point in the (V ′(0), A)-plain and (Z ′(0), B)-plain for different
value of η. If there are solutions for some value of the anomalous dimension, they
should correspond to a couple of value (Afp, Bfp) for which the first derivatives at
the origin can set to zero at arbitrary high precision.

We have studied eqs. (3.65),(3.66) and (3.67) that are two coupled second order
non linear differential equations. At a first time we have set the parameter b = 0,
in this way we have two equations that do not depend on the particular choice of
the cutoff function, even if a choice is actually made: all those regulator functions
K(q2/Λ2) such that K1 = 0 are possible choices. In other words we have to impose
the condition

Jµν,0 = 0 =⇒
∫
d3zz2Ċ(z2) = 0 (4.1)

In this case we will see that the only solutions obtained from the numerical analysis
have a negative wave function renormalization corresponding to a ghost field.
We will conclude that for b = 0 there isn’t any interesting physical solutions.
Nevertheless we want to start from this case because it is easier than the case with
b 6= 0. We shall then analyze the case where the cutoff is more generic leading
to b > 0. In this case we found that physical scaling solutions with positive Z(φ)
exist if the parameter b lies in the range 0 < b ≤ bmax ∼ 3 and that the variation
of the anomalous dimension in this range presents a minimum: this property is in
agreement with the principle of minimum sensitivity.

65
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4.1 Asymptotic expansions for b = 0

To find the asymptotic expansion for V and Z we have to find first the leading
term as some power in the field φ and than take corrections to this one adding powers
in the field that are sub-leading. At each steps we have to set the coefficient of the
higher power equal to zero, this implies an algebraic equation for the coefficient of
the i-th correction.

Let’s take a first look at the fixed point equations

0 =dV − 1

2
(d− 2 + η)φV ′ − (V ′)2 + V ′′ + Z (4.2)

0 =− ηZ − 1

2
(d− 2 + η)φZ ′ − 2ZV ′′ + Z ′′ − 2

(Z ′)2

Z
(4.3)

for large field value we can safely say that V � Z and taking the ansatz Vas = A0φ
α0

also the second derivative can be neglected. We obtain the equation

0 = dA0φ
α0 − d− 2 + η

2
α0A0φ

α0 − A2
0α

2
0φ

2α0−2

To avoid the square of the first derivative having a power bigger than V we must
impose the condition

α0 = 2α0 − 2 =⇒ α0 = 2

and the relative coefficient is a second order algebraic equation that has to be solved
in A0

dA0 −
d− 2 + η

2
α0A0 − α2

0A
2
0 = 0 =⇒ A0 =

1

2

(
1− η

2

)
Therefore the leading behavior of the potential is

Vas(φ) =
1

2

(
1− η

2

)
φ2 + . . . (4.4)

Consider now the fixed point equation for Y = 1/Z

0 = −ηY +
d− 2 + η

2
φY ′ − 2V ′′Y − Y ′′ (4.5)

and taking into account the leading term for Vas(φ) and the ansatz Yas(φ) = Bφβ

we have

0 = −ηBφβ +
d− 2 + η

2
Bβφβ − 2

(
1− η

2

)
Bφβ −Bβ(β − 1)φβ−2

The last term is sub-leading so we remain with the condition that the coefficient of
φβ must be zero and this fixes the leading power behavior for Yas(φ)

0 = −ηB +
d− 2 + η

2
Bβ − 2

(
1− η

2

)
B =⇒ β =

4

d− 2 + η

therefore we have

Yas(φ) = Bφ
4

d−2+η + . . .

Zas(φ) =
1

B
φ−

4
d−2+η + . . .

(4.6)
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4.1.1 First two corrections for Vas(φ)

Now consider the first correction for the potential

Vas =
1

2

(
1− η

2

)
φ2 + Aφα

the leading terms in eq.(4.2) will be those of power φα because α < 2 =⇒ 2α−2 < α

0 = φα
[
dA− Ad− 2 + η

2
− 2Aα

(
1− η

2

)]
−A2α2φ2α−2 +Aα(α− 1)φα−2 + 1− η

2

and setting the coefficient of φα equal to zero we find α = 2d
d+2−η thus we have

Vas(φ) =
1

2

(
1− η

2

)
φ2 + Aφ

2d
d+2−η + . . . (4.7)

where A is the free parameter that governs the behavior of V for large field values.
Setting d = 3 and η = 0.03 we see that α ' 1.28 and β ' 3.08 so till we reach the
power φ−β in the expansion for the potential we can neglect the presence of Z in
eq.(4.2).

Now let’s take a bit of attention for the second correction

Vas = A0φ
2 + Aφα + A1φ

α1

Substituting this into the previous equation, the survived terms are

0 =da1φ
α1 − d− 2 + η

2
a1α1φ

α1 − A2α2φ2α−2 − α2
1a

2
1φ

2α1−2 − 4A0a1α1φ
α1 − 2Aαα1φ

α+α1−2

+ 1− η

2
+ Aα(α− 1)φα−2 + a1α1(α1 − 1)φα1−2

and the maximum exponent must be set equal to α1. Therefore

α1 = max{2α− 2, α− 2, 0} = 2α− 2 = 2
d− 2 + η

d+ 2− η

and setting equal to zero the relative coefficient we can solve the algebraic equation
for A1 as a function of d and η

A1 =
4A2d2

(2− η)(d+ 2− η)2

This is the philosophy to find all powers and coefficients for the asymptotic expansion.
Iterating this procedure we arrive to the final form

Vas(φ) =
1

2

(
1− η

2

)
φ2 + Aφ

2d
d+2−η +

13∑
i=1

Ai(A, d, η)φαi(A,d,η) +
18∑
i=14

Ai(A,B, d, η)φαi(A,B,d,η)

(4.8)

where we have emphasized that till the 13-th term there isn’t any contribution from
Zas(φ) so powers and coefficients do not depend on the free parameter B. See the
full expansion in the Appendix 4.4.1.
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4.1.2 First two corrections for Yas(φ)

Now consider the first correction for the inverse of the wave function renormal-
ization

Yas = Bφ
4

d−2+η +B1φ
β1

and substitute this into eq.(4.5) that gives

0 =− ηB1φ
β1 +

d− 2 + η

2
β1B1φ

β1 − β(β − 1)Bφβ−2 − β1(β1 − 1)B1φ
β1−2

− 2Bφβ

[
Aα(α− 1)φα−2 +

i=n∑
i=1

Aiαi(αi − 1)φαi−2

]

− 2B1φ
β1

[
2A0 + Aα(α− 1)φα−2 +

i=n∑
i=1

Aiαi(αi − 1)φαi−2

]
It is immediate to see that the biggest exponent apart from β1 is β+α− 2 therefore
we have found the exponent of the first correction

β1 = β + α− 2 =
4

d− 2 + η
+

2d

d+ 2− η
− 2

and setting equal to zero the corresponding coefficient we can find the correct value
of B1

−ηB1 +
d+ 2− η

2
B1β1−4A0B1−2BAα(α−1) = 0 =⇒ B1 =

4ABd

(d+ 2− η)(η − 2)

In the same way we can find the second exponent and coefficient. For the ansatz

Yas = Bφ
4

d−2+η +B1φ
β1 +B2φ

β2

eq.(4.5) becomes

0 =− ηB2φ
β2 +

d− 2 + η

2
β2B2φ

β2 − β(β − 1)Bφβ−2 − β1(β1 − 1)B1φ
β1−2

− β2(β2 − 1)B2φ
β2−2 − 2Bφβ

i=n∑
i=1

Aiαi(αi − 1)φαi−2

− 2B1φ
β1

[
Aα(α− 1)φα−2 +

i=n∑
i=1

Aiαi(αi − 1)φαi−2

]

− 2B2φ
β2

[
2A0 + Aα(α− 1)φα−2 +

i=n∑
i=1

Aiαi(αi − 1)φαi−2

]
where the exponent of the second correction will be

β2 = max{β − 2, β +α1− 2, β1 +α− 2} = β1 +α− 2 =
4

d− 2 + η
+

4d

d+ 2− η
− 4

and setting equal to zero the corresponding coefficient

−ηB2 +
d− 2 + η

2
B2β2 − 4B2A0 − 2B1Aα(α− 1)− 2B1A1α1(α1 − 1) = 0
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we find

B2 =
32d2A2B

(d+ 2− η)3(2− η)

Iterating this procedure we have found the following form

Yas(φ) = Bφβ(d,η) +
21∑
i=1

Bi(A,B, d, η)φβi(d,η) (4.9)

where all the coefficients till the 15-th are linear in B whereas the following terms
became non linear in B because of the contribution due to Aj and αj with j ≥ 14.
Again see the Appendix 4.4.1 for the full expansion.

4.1.3 Asymptotic expansion for Zas(φ)

The shooting method from large field value needs some expansions, up to n
terms, for the potential V (φ) and Y (φ) but the series of Y (φ) and Z(φ) are the
same only in the limit n → ∞. For this reason it is important to solve the two
coupled differential equations for both (V, Y ) and (V, Z) as a check for the numerical
integration itself.

If the expansion for Yas is

Yas(φ) = Bφβ +
n∑
i=1

Biφ
βi (4.10)

then that for Zas will be

Zas(φ) =
1

B
φ−β

(
1 +

n∑
i=1

Bi

B
φβi−β

)−1

(4.11)

thus expanding in series power (1 + x)−1 we have

Zas(φ)Bφβ =1−
n∑
i=1

Bi

B
φβi−β +

n∑
i,j=1

BiBj

B2
φβi+βj−2β −

n∑
i,j,k=1

BiBjBk

B3
φβi+βj+βk−3β+

· · ·+ (−1)m
n∑

i1,...im=1

Bi1 . . . Bim

Bm
φβi1+···+βim−mβ + . . . (4.12)

Taking under consideration the previous asymptotic expansion for Yas(φ) it is not
difficult to believe that the first fifth terms are

Zas(φ) =
1

B
φ−β − B1

B2
φβ1−2β +

(
B2

1

B3
− B2

B2

)
φβ2−2β − B3

B2
φβ3−2β

+

(
−B4

B2
+ 2

B1B2

B3
− B3

1

B4

)
φβ4−2β + . . . (4.13)

See Appendix 4.4.1 for the successive terms till the 14-th term.
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4.2 Numerical analysis for b = 0

We are now ready to integrate our two fixed point equations for V (φ) and Y (φ)
that we rewrite here

0 =dV − d− 2 + η

2
φV ′ − (V ′)2 + V ′′ +

1

Y
(4.14a)

0 =− ηY +
d− 2 + η

2
φY ′ − 2V ′′Y − Y ′′ (4.14b)

This is a system of two second order non-linear differential equations therefore
we have to give four Cauchy initial conditions to numerically solve it. This condition
are given by our asymptotic expansions and they reads

V (φmax) = Vas(φmax, A,B, d, η)

V ′(φmax) = V ′as(φmax, A,B, d, η)

Y (φmax) = Yas(φmax, A,B, d, η)

Y ′(φmax) = Y ′as(φmax, A,B, d, η)

where φmax is the starting point of the shooting. We have therefore three parameters
A,B, η (d has been fixed to 3) and in the space of all their possible values we must
try to integrate the system from φmax to the origin and find the domain inside which
we can reach φ = 0. The full asymptotic expansion for V and Z or Y contains
actually also other two parameters, according to the fact of dealing with a system
of two second order differential equations. However it is suspected that these are
associated to corrections characterized by an essential singularity at φ→∞ which
are sub-leading compared to any power like correction.

Before going on we have to take into account some issues that are important to
make a consistently numerical integration. These problems are essentially about
the asymptotic expansions. First of all it is not difficult to see that there is a
maximum value of η beyond which our asymptotic expansions lose their validity
because the powers of φ are not ordered any more: this value is for d = 3 exactly
0.2. Secondly the value of φmax is not arbitrary but it is actually a function of A
and B: we have to choose it in a range of φ where the first derivatives of Vas and
Yas change very slowly and where the convergence for the asymptotic expansion is
quite good. However the value of φmax cannot be to high because the numerical
integration could become less reliable due to numerical errors.

For this last reason it is important to plot the asymptotic expansions at various
order for different value of the parameters (A,B) and look at the change in the
convergence. For example, taking the values of A = {−2,−3,−5,−7} and B =
{−0.002,−0.02,−0.2,−2} and plotting Vas(φ) for different maximum order, say
from the the 10-th to the 18-th order, it is easily to see that only the parameter A
heavily affects the convergence of Vas: near A = −2 one can safely set φmax ' 5.5
instead near A = −7 one have to increase the starting point of integration at
φmax ' 12. Taking the same values of A and B and plotting Yas(φ) for different
maximum order, say from the 16-th to the 21-th order, it easily to see that varying
the parameter B there is simply a scaling of Yas so, even in this case, only the
parameter A heavily affect the convergence of Yas: near A = −2 one can safely set
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φmax ' 4 but near A = −7 one have to increase the starting point of integration at
φmax ' 13. Same considerations can be deduced if one consider B > 0.

Since the interesting solutions are in the negative sector of A and not smaller
than −5 we can set φmax = 8. Then we start by fixing an arbitrary initial η, for
instance η = 0.036 which correspond to the best numerical estimates for the critica
Ising model, and plot V ′(0) and Z ′(0) as a functions of A, for several values of B.
In fig.4.1 we have plotted V ′(0) (blue dots) and Y ′(0) (purple dots) in the range
−6 < A < −3 for B = {−0.05,−0.01,−0.005,−0.001} looking from left to right
of the panel. For A > −3 the integration fails in reaching the origin. We can see
that there is one zero for V ′(0) for all range of B investigated but two zeros for
Y ′(0) appear only if the value of B is sufficiently small B . −0.0045. We call with
A∗V the zero for V ′(0), with A∗Y the right zero for Y ′(0) and with ∆A∗ = A∗V − A∗Y
the difference between them. Reducing B we have found that there is a value B∗
at with limB→B∗ ∆A∗ = 0 and we call A∗ = limB→B∗ A

∗
V. In other words, fixing

η = 0.036, we have found a couple of value (A∗, B∗) corresponding to a global
solution which reaches the origin with a zero first derivative, as required by the Z2

symmetry.
In fig.4.3 we have plotted the solution founded for η = 0.036 and A = A∗, B = B∗.

In the upper left panel there is the numerical solution found with the method of
shooting from large field values (blue line) compared with the asymptotic expansion
(red line). In the upper right panel there is the numerical solution compared with
the polynomial solution (green line). In the lower left panel there is the numerical
solution for the wave function renormalization (purple line) compared with the
asymptotic expansion (red line) and again in the lower right panel there is the
comparison with the polynomial solution (black line). We have already explained
how the polynomial analysis works in Chapter 2.3.3 so we won’t say anything more
about it.

Successively we have repeated all this procedure for different values of η and we
have collected a set of points in the space of the parameters (η, A,B) each of them
correspond to a global scaling solution for our two differential equations eq.(4.14).
In fig.4.2 we have plotted the final result that corresponds to a family of FP global
solution for the two equations under consideration. On the left side there is A∗ as
a function of η whereas on the right side there is B∗ as a function of η.

4.2.1 Final comments

• We started our analysis from two coupled differential equations obtained
setting to zero the regulator-dependent parameter b = K1I1

K0I0
. Thanks to this

trick our equations do not contain any terms depending on the cutoff function
but implicitly we have made a choice because we have restricted ourselves to
a family of cutoff functions such that K1 = 0. Therefore, strictly speaking,
it is not true that our equations are universal. On the other hand this is
expected since Wilsonian action depends on the coarse-graining scheme.

• The global scaling solution for the potential presents a non trivial minimum
so it has the right shape for a Wilson-Fisher Fixed Point. But the solution
for the wave function renormalization poses a problem because it is negative
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so it should represent propagation of a ghost field, being negative the kinetic
term in the Lagrangian. The reason is that the only solutions that we have
found are for negative values of B. We have analyzed even the case for B > 0
but no points (A∗, B∗) with V ′(0) = 0 = Y ′(0) has been found.

• The line of FPs solution in the parameter space seems pretty flat and suggests
that there isn’t any privilege value for the anomalous dimension, in particular
there isn’t any special behavior around η expected (0.03612).

These results show that the numerical construction from the asymptotic region is
not able to lead to physical solutions for the special case of b = 0. For this reason a
more systematic analysis from the origin should be done.

LPA case

We want to give finally the numerical result for the very simple case of the
local potential approximation where the wave function renormalization is set to a
constant and only the flow equation for the potential is considered. Therefore the
equation that we have to study is

V̇ = dV − d− 2 + η

2
φV ′ − (V ′)2 + V ′′ + C (4.15)

where η = 0 since we are in LPA and C a constant that we firstly set to zero.
We have used the method of shooting from large field value therefore the

asymptotic expansion for the potential is exactly that one obtained before but
truncated up to the 13-th order correction. We have chosen φmax = 10 as the
starting point for the numerical integration and, as usual, in fig.4.4 (left panel) we
have plotted the first derivative of the potential at the origin as a function of the
parameter A. We can see two zeros for V ′(0): one for A = A∗1 = 0 and another for
some value A = A∗2 < 0. The solution for the potential at A∗1 corresponds to a free
theory because it is exactly the quadratic leading term of the asymptotic expansion,
whereas the numerical solution for A∗2 is a non trivial solution corresponding to a
Wilson Fisher fixed point. We have plotted the last one on the right panel of fig.4.4.

If we add a constant C 6= 0 in the equation, there is a shift of the two zeros A∗1
and A∗2, positive if C < 0 and negative if C > 0. The solutions are again of the two
types described before but simply shifted of some constant.

4.3 Asymptotic expansions for b 6= 0

In the previous section we have studied numerically the fixed point equations
for V (φ) and Y (φ) and we have gathered that no physical solutions exist in all
range of parameter space. For this reason we want now to relax the assumption
that we have made i.e. we want to take under consideration the possibility for the
regulator dependent cutoff K1 to be non zero. In this case, only the flow equation
for the wave function renormalization change and acquires one more term that can
be written in two different and equivalent ways (equivalent because they differs
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apart for a boundary term but within the truncation of a quadratic Lagrangian in
the first derivative of the scalar field). The equations under consideration are:

V̇ =dV − d− 2 + η

2
φV ′ − (V ′)2 + V ′′ + Y −1 (4.16a)

Ẏ =ηY − d− 2 + η

2
φY ′ + 2Y V ′′ + Y ′′ + 2bV ′V ′′′Y 2 (4.16b)

=ηY − d− 2 + η

2
φY ′ + 2Y V ′′ + Y ′′ − 2b(V ′′)2Y 2 (4.16c)

We have studied both the eqs. (4.16b) and (4.16c) but in this thesis we want to
show only the analysis made for the second equation because it is that one which
has a physical solution.

We want to start finding the asymptotic expansion for the fixed point solutions.
Let’s start from the leading terms for the potential Vas = A0φ

α0 + Aφα then we
have

0 =φα0

(
dA0 −

d− 2 + η

2
A0α0

)
+ φα

(
dA− d− 2 + η

2
Aα

)
− A2

0α
2
0φ

2α0−2

− 2A0Aα0αφ
α0+α−2 − A2α2φ2α−2 + A0α0(α0 − 1)φα0−2 + Aα(α− 1)φα−2

again the condition α0 = 2α0 − 2 fixes the first power α0 = 2, setting to zero
the relative coefficient implies A0 = 2−η

4
and setting to zero the coefficient of φα

fixes the second power α = 2d
d+2−η . Therefore we have the leading behavior for the

potential

Vas(φ) =
(

1− η

2

) φ2

2
+ Aφ

2d
d−η+2 + . . . (4.17)

To obtain the leading term for Yas we have to substitute these two terms into the
eq.(4.16c) giving

0 =ηBφβ − d− 2 + η

2
βBφβ + 2Bφβ

(
2A0 + Aα(α− 1)φα−2

)
+Bβ(β − 1)φβ−2

− 2bB2φ2β
(
2A0 + Aα(α− 1)φα−2

)2

and because of the last term Y 2(V ′′)2 with 2β as the higher power we have to set
β = 2β so β = 0. Setting to zero the relative coefficient

ηB + 4BA0 − 8bB2A2
0 = 0 =⇒ B =

4

b(2− η)2

we can see two important differences with the case discussed in the previous section.
First of all the free parameter B in the leading term of the asymptotic behavior
of Yas has been fixed by the leading power condition so we still have again two
parameters but the second one is the regulator coefficient b; secondly the function
Y asymptotically converges to a constant and does not diverge to infinity as some
power in the field.

The leading behavior for Y will be simply a constant

Yas(φ) =
4

b(2− η)2
+ . . . (4.18)
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4.3.1 First correction for Yas(φ)

Now consider the first correction for the inverse of the wave function renormal-
ization

Yas(φ) = B +B1φ
β1 (4.19)

then the FP equation for Y imposes

0 =ηB1φ
β1 − d− 2 + η

2
β1B1φ

β1

+ 2BAα(α− 1)φα−2 + 2B1φ
β1
(
2A0 + Aα(α− 1)φα−2

)
+B1β1(β1 − 1)φβ1−2

− 2bB2
(
4A0Aα(α− 1)φα−2 + A2α2(α− 1)2φ2α−4

)
− 2b

(
2BB1φ

β1 +B2
1φ

2β1
) (

2A0 + Aα(α− 1)φα−2
)2

where the leading power fixes the value of the first correction exponent β1 = α− 2
and setting to zero the relative coefficient

ηB1 −
d− 2 + η

2
β1B1 + 2BAα(α− 1) + 4B1A0 − 8bB2A0Aα(α− 1)− 16bBB1A

2
0 = 0

fixes the values of the first correction coefficient. The expansion up to the first
order is

Yas(φ) =
4

b(2− η)2
+

16Ad(2 + η)(d− 2 + η)

b(2 + d− η)(η − 2)3(8 + η(d− 6) + η2)
φ

2η−4
d+2−η + . . . (4.20)

In general, taking the following ansatz for the asymptotic expansions

Vas(φ) =
∑
j=1

Ajφ
αj

Yas(φ) =B +
∑
i=1

Biφ
βi

the FP equation for Y becomes

0 =η
(
B +Biφ

βi
)
− d− 2 + η

2
Biβiφ

βi

+ 2
(
B +Biφ

βi
)
Ajαj(αj − 1)φαj−2 +Bjβj(βj − 1)φβj−2

− 2bAiAjαi(αi − 1)αj(αj − 1)φαi+αj−4
(
B2 + 2BBkφ

βk +BkB`φ
βk+β`

)
and iterating this procedure we have arrived till the 13-th correction in the expansion
for Yas(φ) (See Appendix 4.4.1 for the full expansion).

4.3.2 First two corrections for Vas(φ)

Now we want to show explicitly the first two corrections to the leading behavior
for the potential because in this case Zas contributes to Vas from the second
correction. Let’s take

Vas = A0φ
2 + Aφα + A1φ

α1 + A2φ
α2
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and Zas = Z0 because asymptotically it should be a constant so the FP point
equation for V implies

0 =d(A0φ
2 + Aφα + A1φ

α1 + A2φ
α2)

− d− 2 + η

2
(2A0φ

2 + Aαφα + A1α1φ
α1 + A2α2φ

α2)

−
(

2A0φ+ Aαφα−1 + A1α1φ
α1−1 + A2α2φ

α2−1
)2

+ 2A0 + Aα(α− 1)φα−2 + A1α1(α1 − 1)φα1−2 + A2α2(α2 − 1)φα2−2 + Z0

=d(A1φ
α1 + A2φ

α2)− d− 2 + η

2
(A1α1φ

α1 + A2α2φ
α2)

− 4A0A1α1φ
α1 − 4A0A2α2φ

α2

− 2AA1αα1φ
α+α1−2 − 2AA2αα2φ

α+α2−2 − 2A1A2α1α2φ
α1+α2−2

− A2α2φ2α−2 − A2
1α

2
1φ

2α1−2 − A2
2α

2
2φ

2α2−2

+ 2A0 + Aα(α− 1)φα−2 + A1α1(α1 − 1)φα1−2 + A2α2(α2 − 1)φα2−2 + Z0

the highest power of this expression 2α− 2 fixes the value of α1 and setting to zero
the corresponding coefficient gives

A1 = − 4A2d2

(η − 2)(d− η + 2)2

The survived terms are

0 =dA2φ
α2 − d− 2 + η

2
A2α2φ

α2 − 4A0A2α2φ
α2

− 2AA1αα1φ
α+α1−2 − 2AA2αα2φ

α+α2−2 − 2A1A2α1α2φ
α1+α2−2

− A2
1α

2
1φ

2α1−2 − A2
2α

2
2φ

2α2−2

+ 2A0 + Aα(α− 1)φα−2 + A1α1(α1 − 1)φα1−2 + A2α2(α2 − 1)φα2−2 + Z0

where the highest power is zero because α + α1 − 2, 2α1 − 2, α− 2, α1 − 2 are all
negative, therefore to the second correction contributes the leading term of Zas

dA2 + 2A0 + Z0 = 0 =⇒ A2 = −(η − 2)(b(η − 2)− 2)

4d

Iterating this procedure in a straightforward way we have found an expansion for
Vas(φ) up to 12-th correction. (See Appendix 4.4.1 for the full expansion).

4.3.3 Asymptotic expansion for Zas(φ)

As we said before it is important to solve numerically the two coupled differential
equations for both (V, Y ) and (V, Z). Our expansion for Yas is

Yas(φ) = B +
n∑
i=1

Biφ
βi

then that for Zas will be

Zas(φ) =
1

B

(
1 +

n∑
i=1

Bi

B
φβi

)−1
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thus expanding in series power (1 + x)−1 we have

Zas(φ) =1−
n∑
i=1

Bi

B
φβi +

n∑
i,j=1

BiBj

B2
φβi+βj −

n∑
i,j,k=1

BiBjBk

B3
φβi+βj+βk + . . .

Taking under consideration the previous asymptotic expansion for Yas(φ) it is not
difficult to obtain the first fifth terms

Zas(φ) =
1

B
− B1

B2
φβ1 +

(
B2

1

B3
− B2

B2

)
φβ2 − B3

B2
φβ3 +

(
−B4

B2
+ 2

B1B2

B3
− B3

1

B4

)
φβ4 + . . .

See Appendix 4.4.1 for the full expansion till the 14-th term.

4.4 Numerical analysis for b 6= 0

Differently from the previous analysis, in this case we have studied the FP
equations for U ≡ V ′ and Z that reads

0 =dU − d− 2 + η

2
U − d− 2 + η

2
φU ′ − 2UU ′ + U ′′ + Z ′ (4.21a)

0 =− ηZ2 − d− 2 + η

2
φZZ ′ − 2Z2U ′ + ZZ ′′ − 2(Z ′)2 + 2bZ(U ′)2 (4.21b)

but the same results can be obtained from integration in V and Y . This choice is
also useful because in this way we can overcome the problem of throwing away the
constant in the Polchinski equation: in fact adding some constant from the very
beginning of Polchinski’ s flow equation affects only the equation for V but we can
alway shift the potential of some constant.

The Cauchy initial conditions that we have to impose are as usual four
U(φmax) = V ′as(φmax, A, b, d, η)

U ′(φmax) = V ′′as(φmax, A, b, d, η)

Z(φmax) = Zas(φmax, A, b, d, η)

Z ′(φmax) = Z ′as(φmax, A, b, d, η)

with A, b, η our three free parameters (again we neglect the other two parameters
associated to an essential singularity at φ→∞) and we shall restrict to the three
dimensional case d = 3. As we have previously discussed, the starting point for
the numerical shooting method φmax is, in principle, a function of all the three
parameters and we have to chose it sufficiently large (but not to much) such that
the convergence of the asymptotic expansion is pretty good. For this reason, as
an example, we have plotted in figure 4.5 the asymptotic expansions of Yas(φ) for
the last ten orders. We have fixed η = 0.041 and varied the other two parameter:
A = {−4,−3,−2,−1} and b = {0.01, 0.5, 2.2, 3.5}. It is like putting the cart before
the horse, but we have chosen these values because it is in this domain that we
have seen a family of interesting physical solutions. What we can see from these
figures is that only the parameter A has a strong influence on the convergence of
the asymptotic expansions, in particular the greater its absolute value is, the worst
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the convergence. Moreover the expansion of Vas is much better then that of Yas.
Same considerations can be done for different value of η. Because the interesting
solutions are in the negative sector of A and not smaller than -2 we can safely set
φmax = 20.

Now the philosophy in searching for a solution is exactly the same as before but
with a difference: before we fixed η and tried to find a couple of values (A∗, B∗) at
which V ′(0) and Z ′(0) could set to zero with arbitrary high precision; here we fixe b
and try to find a couple of value (A∗, η∗) at which V ′(0) and Z ′(0) manage to set to
zero with arbitrary high precision. The reason for this choice can be seen in fig.4.6
where we have plotted (U(0), A) (blue dots) and (Z ′(0), A) (purple dots) for b = 2
and different values of η. The parameter η has a great influence on Z ′(0) in fact
for η = 0.025 there is only two zeros, one for A∗Z = 0 and another for A∗Z ' −0.8
but growing η appears two more zeros, for example for η = 0.04 there is one zero
at A∗Z ' −1.55 and another at A∗Z ' −1.3. It is indeed the one on the right that
has the property limη→η∗ A

∗
Z = A∗U for some value of η∗, as can be seen in the fig.

4.7, because there is a crossing of the two plots i.e. for η = 0.040 A∗Z < A∗U and for
η = 0.046 A∗Z > A∗U. This is the method that we have used to find the solution for
our two differential equations.

Successively we have repeated this procedure for different values of b and we
have found a range 0 < b . 3 within it there is a family F ∗ of FPs (η∗, b∗) each of
them is a possible physical solution. For 3 . b we have found no solutions in fact,
as we can see in fig.4.8, fixing a value of η ∈ F ∗ and growing b there is some value
bmax such that for b > bmax only one zero is present in the plot of (Z ′(0), A) and
correspond to A = 0.

4.4.1 Final comments

• The family of fixed point solutions F ∗ has been plotted in fig.4.10. The
potential, for each point, has the the right shape for a Wilson-Fisher FP i.e.
it has a non trivial minimum for a value of the scalar field different from zero
and so it can give rise to a SSB phase in the IR depending of the bare action
chosen as a starting point of the flow. The solution for the wave function
renormalization is positive and so it represents the propagation of a physical
scalar field because now the kinetic term in the Lagrangian has the right sign.

• In fig.4.9 we have plotted the solution for one particular point, the one
corresponding to b = 2.3. In the upper panel there is on the left side the first
derivative of the potential U(φ) compared with the asymptotic expansion
V ′as(φ) and on the right side the wave function renormalization Z(φ) compared
with the asymptotic expansion Zas(φ). As suspected the convergence to the
asymptotic behavior V is faster than those of Z. In the bottom panel there
is a zoom area near the origin where we can see the non trivial minimum at
φ ' 1.12.

• As a check for our numerical results, we have tried to analyzed the two fixed
point equations with a polynomial approach exactly as we did in the previous
case with b = 0 or in the chapter 2.3.3 but unfortunately we didn’t find any
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solution. Probably the polynomial solution has a zero convergence radius.
For this reason we followed a more functional strategy which shows us in
a graphical way the existence of our solutions [30]. Suppose to fix b (for
example b = 2.3) and also η and numerical integrate our equations from the
origin to φ = 3, for example. Two Cauchy conditions are imposed by the
Z2 symmetry (U(0) = 0 = Z ′(0)) whereas the left two are undetermined.
If we choose U ′(0) = U ′numeric(0) and Z(0) = Znumeric(0) (at the fixed value
of b) then we expect that our numerical integration can reach φ = 3. In
fact it is so, but if we slightly vary these two values the integration stops at
some φcritic < 3. Therefore the strategy is to plot φcritic as a function of the
two left parameters and see where there is a steep increase of it. The point
(U ′numeric(0), Znumeric(0)) should correspond to a spike in the 3D plot and this
is exactly what we found in fig.4.11 (bottom panel), in particular in fig.4.11a
and fig.4.11b we have plotted the sections corresponding to U ′(0) = U ′numeric(0)
and Z(0) = Znumeric(0) respectively.

• The family F ∗ has a minimum (at η = 0.04126) and this is a nice result
because it is in agreement with the principle of minimum sensitivity, in other
words we can choose the value of b = b∗0 corresponding to that minimum
and in this way, having a small variation of η near b∗0, we can evaluate the
anomalous dimension with a good approximation. For example if we choose
the range 2.0 < b < 2.6 then the variation of the anomalous dimension is
about 3% therefore we can finally say that our result is η = 0.0413± 0.0012.

We have found solutions even for small values of b, the last point we have
analyzed is for b = 0.005 but we suppose that we could go further on as long
as b 6= 0 , in fact for b = 0 there is a singularity in the asymptotic expansion
and the numerical integration will fail of course.

• As a final comment that shows one more time the consistency of this numerical
analysis is that for all (b, η) there is also a trivial Gaussian solution correspond
to A = 0. In this case the numerical solutions coincide exactly with the
asymptotic expansions that reduce to their leading behavior, quadratic for
the potential and constant for the wave function renormalization:

V (φ) =
1

4
(2− η)φ2 − (η − 2)(b(η − 2)− 2)

4d
(4.22)

Z(φ) =
1

4
b(2− η)2 (4.23)

but these are actually analytic solutions for the two fixed point equations.

Now we understand why in the previous section we studied the simple LPA
case. The shape of the function V ′

∣∣
0
(A) in the LPA for b = 0 is essentially

the same as in this case with b 6= 0 even if the asymptotic solutions for
the potential are quite different already from the 4-th term. In fact there
is a trivial Gaussian solution for the potential corresponding to A∗1 = 0
and a Wilson Fisher solution corresponding to some A∗2 < 0. Moreover the
presence of the function Z(φ) in the fixed point equation for V (φ) ensures the
stability of the FP parameter A∗1 at the zero value even if the wave function
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renormalization tends asymptotically to a constant different from zero i.e.
limφ→∞ Z(φ) = const 6= 0.

All our numerical analysis in finding the family of fixed points F ∗ has been
done with a double machine precision because we have seen that our two equations
are very sensible to the initial conditions. The reason is essentially because the
convergence of Zas(φ) is not so good even at φmax = 20 (for example the relative
difference between the 7-th order and the 13-th order is about 0.017%). To overcome
this problem we can increase the starting point of integration or increase the order
of the asymptotic expansion. Letting the last way for a future study we have tried
to increase φmax for the fixed value of b = 2.3 and what we have seen (see fig.4.12)
is that the value of η∗ decreases and seems to converge to a value of η ' 0.04078
(about 0.8% of the initial value) which is though different from the expected value
of 0.0361(2).
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(a) B = −0.05 (b) B = −0.01 (c) B = −0.005 (d) B = −0.001

(e) B = −0.05 (f) B = −0.01 (g) B = −0.005 (h) B = −0.001

(i) B = −0.0032 (j) B = −0.0028 (k) B = −0.0025 (l) B = −0.0018

Figure 4.1: (V ′(0), A) (upper panel) and (Y ′(0), A) (middle panel) for different value of B at
fixed η = 0.036. In the lower panel there is an overlap of the two functions to show
graphically the existence of a B∗-value at with V ′(0) and Y ′(0) are zero for the
same value of A∗.

(a) (b)

Figure 4.2: On the left the parameter A∗ corresponding to the zeros for V ′(0) and Z ′(0) as
a function of η and on the right the parameter B∗ with the same property as a
function of η.
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(a) (b)

(c) (d)

Figure 4.3: Upper panel: the function V (φ) and Z(φ) for η = 0.036, at the values of A =
A∗, B = B∗ corresponding to the zeros for V ′(0) and Z ′(0) (the red lines are
the asymptotic behaviors). These solutions are obtained by numerical shooting
integration from φ = 8 to φ = 0.
Bottom panel: the functions V (φ) and Z(φ) are compared with the polynomial
solutions founded for an order of φ14 (green line for the potential and black line
for the wave function renormalization).

(a) (b)

Figure 4.4: On the left panel the first derivative of the potential in the origin V ′(0) as a
function of the asymptotic parameter A in the LPA case for b = 0. On the right
panel the global scaling solution corresponding to the left zero for V ′(0).
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(a) A=-4,b=0.01 (b) A=-3,b=0.01 (c) A=-2,b=0.01 (d) A=-1,b=0.01

(e) A=-4,b=0.5 (f) A=-3,b=0.5 (g) A=-2,b=0.5 (h) A=-1,b=0.5

(i) A=-4,b=2.2 (j) A=-3,b=2.2 (k) A=-2,b=2.2 (l) A=-1,b=2.2

(m) A=-4,b=3.5 (n) A=-3,b=3.5 (o) A=-2,b=3.5 (p) A=-1,b=3.5

Figure 4.5: We have plotted in a matrix-like form for different values of A = {−4,−3,−2,−1}
and b = {0.01, 0.5, 2.2, 3.5} the asymptotic expansions of Yas(φ) from the 6-th order
to the 14-th order. The convergence becomes worst for decreasing value of A and
it is essentially unaffected by variation of b. Since the interesting values of A are
not smaller than −2 we can safely set the starting point of numerical integration
at φmax = 20.

(a) η = 0.025 (b) η = 0.035 (c) η = 0.040 (d) η = 0.055

(e) η = 0.025 (f) η = 0.035 (g) η = 0.040 (h) η = 0.055

Figure 4.6: V ′(0) in the upper panel and Z ′(0) in the bottom panel at fixed b = 2 for different
values of η = {0.025, 0.035, 0.04, 0.055}
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(a) η = 0.037 (b) η = 0.040 (c) η = 0.042 (d) η = 0.046

Figure 4.7: V ′(0) and Z ′(0) at fixed b = 2 for different values of η = {0.037, 0.040, 0.042, 0.046}

(a) b=3.1 (b) b=3.3 (c) b=3.5 (d) b=3.8

(e) b=3.1 (f) b=3.3 (g) b=3.5 (h) b=3.8

Figure 4.8: V ′(0) in the upper panel and Z ′(0) in the bottom panel at fixed η = 0.048 for
different values of b = {3.1, 3.3, 3.5, 3.8}
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(a) (b)

(c) (d)

Figure 4.9: Upper panel: the function U(φ) = V ′(φ) and Z(φ) for b = 2.3, at the values of
A = A∗, η = η∗ = 0.04127 corresponding to the zeros for V ′(0) and Z ′(0) (red lines
are the asymptotic behaviors). These solutions are obtained by numerical shooting
integration from φ = 20 to φ = 0.
Bottom panel: the functions U(φ) and Z(φ) near the origin.

(a)

Figure 4.10: The anomalous dimension η∗ as a function of the regulator-dependent coefficient
b. Each point corresponds to a Wilson Fisher FP solution for the Polchinski flow
equations.
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(a) Spike plot of φcritic as a function of Z(0) for the
value of V ′′(0) corresponding to the global solution.

(b) Spike plot of φcritic as a function of V ′′(0) for the
value of Z(0) corresponding to the global solution.

(c) Spike plot of φcritic as a function of
(
Z(0), V ′′(0)

)
in a neighborhood of the values corresponding to
the global solution.

(d) Zoom area near the global solution.

Figure 4.11: From the numerical solution founded with the shooting method for b = 2.3 and
η = 0.04127(4) we have obtained that Z(0) = 2.294(2) and V ′′(0) = −0.3969(7).
Fixing (b, η) we can do a numerical integration from the origin and plot φcritic as
a function of the parameters

(
Z(0), V ′′(0)

)
: near the values corresponding to the

global solution φcritic increases in a steep way and we can see a spike.

(a)

Figure 4.12: Variation of the anomalous dimension η∗ as a function of φmax, the starting point
of numerical integration, for the fixed value b = 2.3.





Conclusion

In this thesis we have presented a covariant “Hamiltonian” version of the Polchin-
ski equation for the Wilson action, as proposed in [36]. We have applied this
formulation for a theory with only one real scalar field and also for a theory with N
real scalar fields with the O(N) internal symmetry. In both cases we have finally
truncated the RG flow equation of the Hamiltonian at the quadratic order in the
covariant momentum fields that, in some sense, corresponds to the leading order
O(∂2) in the derivative expansion, with a full “Hamiltonian flow” which can include
also a resummed family of contributions. For the former case without resummation,
we have obtained the flow equations in the N = 1 case for an arbitrary potential
V (φ) and for the wave function renormalization Z(φ) whereas in the O(N) for an
arbitrary potential V (φ) and for the two wave functions Z(φ) and Y (φ). These
coupled equations are all of the second order but highly non linear.

In the latter case we have observed that, despite the usually partial decoupling
present in the truncated 1PI vertex generator in the large N limit, the flow equations
of the Wilsonian action for V (φ) and Z(φ) do not decouple from that one for Y (φ).
In this limit we have found a special analytic scaling solutions, with a quadratic
potential which may be interesting. A more general analysis could be carried on in
this direction.

In the case of N = 1 real scalar field we have analyzed numerically, using a
numerical shooting method from large field value, the scaling solutions in d = 3
which corresponds to the critical Ising model. In the equation for Ż there is a
regulator dependent term with a non negative coefficient b.

We have analyzed firstly the case b = 0 and we have found a family of Wilson
Fisher fixed points but with a negative solution for the wave function renormalization
Z(φ) (see fig.4.3), which are therefore unphysical since the scalar field would be a
ghost. Moreover we have found no special behavior, for values of the anomalous
dimension η close to the correct 0.036, in the parameter space (η, A,B) (see fig.4.2)
where A,B are the parameters that govern the asymptotic expansion for the scaling
solutions (neglecting the parameters which parametrize deformations from it with
an essential singular behavior at φ =∞). Moreover we have done also a polynomial
analysis around the origin that confirms the existence of these spurious unphysical
solutions (see again fig.4.3), at least up to some order of the polynomial truncation
∼ φ14. The polynomial analysis around the origin could be probably improved
on performing a conformal mapping from a wedge region which avoid the closest
singularity on a complex φ onto a disk. In the new variables the polynomial
truncations should present better convergence properties. In conclusion a more
systematic numerical analysis from the origin should be done.

87
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Secondly we have analyzed the case of b > 0 taking under consideration a more
general cutoff. We have found a family of Wilson Fisher fixed points in the range
of 0 < b ≤ bmax ∼ 3 with a positive Z(φ) so describing in this case the propagation
of a physical scalar field (see fig.4.12a). Moreover in the parameter space (η, b)
we have found a minimum at η = 0.04126 for a certain value b0 and this is in
agreement with the principle of minimum sensitivity, in other words we can choose
a particular cutoff regulator such that the variation for the anomalous dimension is
minimized. In this case with b > 0 the starting point for the shooting method that
we have chosen is φmax = 20. Since the convergence of Vas(φ) and Zas(φ) is faster if
we increase φmax we expect that µ is a function of φmax itself. For this reason we
have taken the particular value b = 2.3 and analyzed the variation of µ increasing
φmax (see fig.4.12). We have seen that the anomalous dimension from the value of
µ ' 0.04110 converges to the value of ' 0.04077 and this convergence is important
because tells us that the numerical problem of having µ = µ(φmax) is under control.
Despite the previous case, the polynomial analysis around the origin made for b > 0
seems to have a zero convergence radius but a more systematic analysis has to
be done especially for high order polynomials. In this case clearly the conformal
mapping techniques mentioned above can help to find a polynomial representation
around the origin. Waiting to perform such an analysis we have used an alternative
way: a 3D-spike plot method based upon integrating the two fixed point equations
from the origin, on varying the two left initial conditions (the other two are fixed
by the Z2 symmetry condition) near some fixed point solution previously founded.
The existence of a spike for the right values of the two parameters confirms the
existence of the global solution obtained from the large field method (see fig.4.11).

Obvious lines of developments which may follow our work also include:

1. study the O(N) model described by the V, Z, Y truncation;

2. perform an analysis in fractional dimensions to see the appearing of multi-
critical scaling solutions;

3. one should also perform, as illustrated, a linear analysis around the fixed
point to extract the critical exponent ν;

4. investigate the resummed covariant Hamiltonian equation at all orders in the
momenta πµπµ which may lead to better numerical results;

5. derive the Lagrangian equation at quartic order in φµ, which would add other
three terms to the flow equation, depending only on K1, i.e. to a specific class
of coarse-graining procedures and the corresponding covariant Hamiltonian
formulation.

In the steps 4 and 5 it is expected to obtain results with a better accuracy for
estimate of the anomalous dimension.



Asymptotic expansion for
Vas(φ), Yas(φ), Zas(φ) in the case of
b = 0

Vas(φ) = A0φ
2 + Aφα +

18∑
i=1

Aiφ
αi (24)

We have stopped the Vas(φ) expansion up to the 18-th term which correspond to that one
involving the second term in the expansion for Zas(φ) i.e Z1φ

ζ1 .

A0 =
2− η

4
(25)

A1 = − 4A2d2

(η − 2)(d− η + 2)2
(26)

A2 =
η − 2

2d
(27)

A3 =
16A3d3(d+ η − 2)

(η − 2)2(d− η + 2)4
(28)

A4 = −2Ad(d+ η − 2)

(d− η + 2)3
(29)

A5 = −64A4d4(3d+ 5(η − 2))(d+ η − 2)

3(η − 2)3(d− η + 2)6
(30)

A6 =
8A2d2

(
d2 + 2d(η − 2)− 5(η − 2)2

)
(d+ η − 2)

(η − 2)(d− 2η + 4)(d− η + 2)5
(31)

A7 =
128A5d5

(
6d2 + 23d(η − 2) + 21(η − 2)2

)
(d+ η − 2)

3(η − 2)4(d− η + 2)8
(32)

A8 = −
32A3d3

(
d4 + 4d3(η − 2)− 15d2(η − 2)2 − 22d(η − 2)3 + 44(η − 2)4

)
(d+ η − 2)

(η − 2)2(d− 3η + 6)(d− 2η + 4)(d− η + 2)7
(33)
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A9 = −
1024A6d6

(
5d3 + 32d2(η − 2) + 65d(η − 2)2 + 42(η − 2)3

)
(d+ η − 2)

5(η − 2)5(d− η + 2)10
(34)

A10 = −2Ad(η − 2)(d− 3η + 6)(d+ η − 2)

(d− η + 2)6
(35)

A11 =
{

128A4d4
(
3d6 + 17d5(η − 2)− 100d4(η − 2)2 − 266d3(η − 2)3 + 859d2(η − 2)4 (36)

+ 777d(η − 2)5 − 1674(η − 2)6
)
(d+ η − 2)

}
/
{

3(η − 2)3(d− 4η + 8)(d− 3η + 6)(d− 2η + 4)(d− η + 2)9
}

(37)

A12 =
{

2048A7d7
(
90d4 + 837d3(η − 2) + 2780d2(η − 2)2 + 3917d(η − 2)3

+ 1980(η − 2)4
)
(d+ η − 2)

}
/
{

45(η − 2)6(d− η + 2)12
}

(38)

A13 =
16A2d2

(
2d4 − 7d3(η − 2)− 30d2(η − 2)2 + 95d(η − 2)3 − 64(η − 2)4

)
(d+ η − 2)

(2d− 3η + 6)(d− 2η + 4)(d− η + 2)8
(39)

A14 = − d+ η − 2

B (d2 + dη − 2η + 4)
(40)

A15 =−
{

256A5d5
(
6d8 + 41d7(η − 2)− 384d6(η − 2)2 − 1244d5(η − 2)3 + 6980d4(η − 2)4

+ 9435d3(η − 2)5 − 38906d2(η − 2)6 − 19512d(η − 2)7 + 55584(η − 2)8
)
(d+ η − 2)

}
/
{

3(η − 2)4(d− 5η + 10)(d− 4η + 8)(d− 3η + 6)(d− 2η + 4)(d− η + 2)11
}

(41)

A16 =−
{

16384A8d8
(
315d5 + 3933d4(η − 2) + 18718d3(η − 2)2 + 42538d2(η − 2)3

+ 46263d(η − 2)4 + 19305(η − 2)5
)
(d+ η − 2)

}
/
{

315(η − 2)7(d− η + 2)14
}

(42)

A17 =−
{

96A3d3
(
2d7 − 9d6(η − 2)− 85d5(η − 2)2 + 415d4(η − 2)3 − 81d3(η − 2)4

− 1894d2(η − 2)5 + 3032d(η − 2)6 − 1404(η − 2)7
)
(d+ η − 2)

}
/
{

(η − 2)(d− 3η + 6)(2d− 3η + 6)(d− 2η + 4)2(d− η + 2)10
}

(43)

A18 =
4Ad(d+ 2)(d+ η − 2)2

B(η − 2)(d− η + 2)2(d+ η) (d2 + dη − 2η + 4)
(44)

α =
2d

d− η + 2
(45)

α1 =
4d

d− η + 2
− 2 (46)

α2 = 0 (47)

α3 =
6d

d− η + 2
− 4 (48)

α4 =
2(η − 2)

d− η + 2
(49)
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α5 =
2(d+ 3η − 6)

d− η + 2
(50)

α6 =
4(η − 2)

d− η + 2
(51)

α7 =
2(d+ 4η − 8)

d− η + 2
(52)

α8 =
6(η − 2)

d− η + 2
(53)

α9 =
2(d+ 5(η − 2))

d− η + 2
(54)

α10 =
2(η − 2)

d− η + 2
− 2 (55)

α11 =
8(η − 2)

d− η + 2
(56)

α12 =
2(d+ 6(η − 2))

d− η + 2
(57)

α13 =
4(η − 2)

d− η + 2
− 2 (58)

α14 = −β = − 4

d+ η − 2
(59)

α15 =
10(η − 2)

d− η + 2
(60)

α16 =
2(d+ 7(η − 2))

d− η + 2
(61)

α17 =
6(η − 2)

d− η + 2
− 2 (62)

α18 = β1 − 2β =
2d

d− η + 2
− 4

d+ η − 2
− 2 (63)

Yas(φ) = Bφβ +

23∑
i=1

Biφ
βi (64)

We have stopped the Yas(φ) expansion up to the 21-th term which correspond to that one
involving the last term in the expansion for Vas(φ) i.e A18φ

α18 .
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B1 =
4ABd

(η − 2)(d− η + 2)
(65)

B2 = − 32A2Bd2

(η − 2)(d− η + 2)3
(66)

B3 =
4B(d+ η − 6)

(d+ η − 2)3
(67)

B4 =
64A3Bd3(d+ 5(η − 2))

(η − 2)2(d− η + 2)5
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d5η − 4d4
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η2 − 2

)
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)}

/
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(η − 2)(d− 2η + 4)(d− η + 2)4(d+ η − 2)3
}

(69)

B6 = −512A4Bd4(d+ 7(η − 2))(d+ 3η − 6)

3(η − 2)3(d− η + 2)7
(70)

B7 =6−
{

128A2Bd2
(
d6(η − 1) + d5((19− 9η)η − 6) + 2d4(η − 2)(9(η − 1)η − 2)

+ 2d3(η − 2)2(η(17η − 91) + 66)− d2(η − 2)3(31(η − 3)η − 74)

− d(η − 2)4(η(41η − 227) + 382)− 4(η − 2)5(η(η + 2)− 14)
)}

/
{

(η − 2)(d− 3η + 6)(d− 2η + 4)(d− η + 2)6(d+ η − 2)3
}

(71)

B8 =
512A5Bd5(3d+ 7(η − 2))(d+ 9(η − 2))(d+ 4η − 8)

3(η − 2)4(d− η + 2)9
(72)

B9 = −4B(d+ η − 6)(d+ η − 4)(3d+ 3η − 10)

(d+ η − 2)6
(73)

B10 =6
{

128A3Bd3(d8(3η − 4)− 4d7(η(7η − 17) + 8)− d6(η − 2)(η(11η − 54) + 8)

+ 2d5(η − 2)2(η(491η − 1466) + 984)− d4(η − 2)3(η(1219η − 1986) + 296)

− 4d3(η − 2)4(η(794η − 3703) + 3248) + d2(η − 2)5(η(1595η − 4606)− 2744)

+ 2d(η − 2)6(η(1543η − 7702) + 11096) + 16(η − 2)7(η(31η − 55)− 74))
}

/
{

(η − 2)2(d− 4η + 8)(d− 3η + 6)(d− 2η + 4)(d− η + 2)8(d+ η − 2)3
}

(74)

B11 = −8192A6Bd6(d+ 5(η − 2))(d+ 11(η − 2))(d+ 2η − 4)(d+ 3η − 6)

5(η − 2)5(d− η + 2)11
(75)

B12 =−
{

8ABd
(
6d11η + d10(η(30− 49η) + 48) + 2d9(η(η(46η + 75)− 378) + 184)

+ 4d8(η(η(η(39η − 545) + 1428)− 892)− 224)− 8d7(η − 2)(η(η(η(61η − 360)− 8)

+ 1484)− 1184)− 2d6(η − 2)2(η(η(3η(35η − 874) + 13364)− 18296) + 4928)

+ 4d5(η − 2)3(7η(η(η(31η − 293) + 652) + 356)− 7408)

+ 8d4(η − 2)4(η(η(5η(7η − 142) + 4806)− 11628) + 7072)

− 2d3(η − 2)5(η(η(η(271η − 3530) + 14884)− 18792)− 5632)

− d2(η − 2)6(η(η(η(245η − 2706) + 16684)− 55576) + 70720)

− 2d(η − 2)7(η(η(η(32η + 321)− 4680) + 16708)− 19152)

− 12(η − 3)(η − 2)8(5η − 14)((η − 6)η + 16)
)}

/
{

(η − 2)(2d− 3η + 6)(d− 2η + 4)(d− η + 2)7(d+ η − 2)6
}

(76)
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B13 =−
{

2048A4Bd4
(
d10(2η − 3) + d9

(
−21η2 + 56η − 32

)
− 2d8

(
19η3 − 84η2 + 94η − 4

)
+ 2d7(η − 2)2

(
835η2 − 2614η + 1954

)
− 6d6(η − 2)3

(
329η2 − 865η + 676

)
− 4d5(η − 2)4

(
4937η2 − 17387η + 14171

)
+ 2d4(η − 2)5

(
11073η2 − 27062η + 12658

)
+ 2d3(η − 2)6

(
28485η2 − 127354η + 123622

)
− d2(η − 2)7

(
21972η2 − 68793η − 5234

)
− 3d(η − 2)8

(
17053η2 − 79828η + 104236

)
− 12(η − 2)9

(
871η2 − 2434η + 544

))}
/
{

3(η − 2)3(d− 5η + 10)(d− 4η + 8)(d− 3η + 6)(d− 2η + 4)(d− η + 2)10(d+ η − 2)3
}

(77)

B14 =6
{

8192A7Bd7
(
30d5 + 809d4(η − 2) + 7489d3(η − 2)2 + 30689d2(η − 2)3

+ 56829d(η − 2)4 + 38610(η − 2)5
)}
/
{

45(η − 2)6(d− η + 2)13
}

(78)

B15 =
{

128A2Bd2
(
6d13(η − 1) + d12

(
−102η2 + 229η − 94

)
+ d11

(
637η3 − 2252η2 + 2274η − 540

)
+ d10

(
−1448η4 + 5397η3 − 4268η2 − 2972η + 2944

)
+ d9

(
−827η5 + 18600η4 − 92008η3 + 182592η2 − 154384η + 43328

)
+ 2d8(η − 2)2

(
3647η4 − 28069η3 + 59598η2 − 37436η − 280

)
− 2d7(η − 2)3

(
1591η4 + 3090η3 − 68106η2 + 144944η − 78600

)
− 2d6(η − 2)4

(
6752η4 − 69641η3 + 230436η2 − 257204η + 67888

)
+ 2d5(η − 2)5

(
3384η4 − 18503η3 − 19966η2 + 209292η − 202872

)
+ d4(η − 2)6

(
12246η4 − 140447η3 + 598974η2 − 1043588η + 526792

)
− d3(η − 2)7

(
2495η4 − 31386η3 + 97054η2 + 6080η − 257528

)
− d2(η − 2)8

(
4152η4 − 47577η3 + 234620η2 − 567924η + 544352

)
− d(η − 2)9

(
1419η4 − 2518η3 − 39716η2 + 167384η − 187680

)
− 6(η − 2)10

(
141η4 − 1298η3 + 4880η2 − 9032η + 6864

))}
/
{

(η − 2)(d− 3η + 6)(2d− 3η + 6)(d− 2η + 4)2(d− η + 2)9(d+ η − 2)6
}

(79)

B16 =
8(d+ η + 2)

(d+ η − 2)(d+ η)
(
d2 + dη − 2η + 4

) (80)

B17 =
{

1024A5Bd5
(
3d12(5η − 8)− 8d11

(
23η2 − 66η + 43

)
− 2d10

(
227η3 − 950η2 + 984η + 16

)
+ 2d9(η − 2)2

(
12797η2 − 41744η + 33120

)
− 36d8(η − 2)3

(
1248η2 − 4315η + 4168

)
− 18d7(η − 2)4

(
33743η2 − 116960η

+ 97400
)

+ 2d6(η − 2)5
(
561839η2 − 1770692η + 1422128

)
+ 2d5(η − 2)6

(
2250831η2

− 8669872η + 7836128
)
− d4(η − 2)7

(
5753615η2 − 17904442η + 12319504

)
− 2d3(η − 2)8

(
6105729η2 − 26803992η + 27485308

)
+ 8d2(η − 2)9

(
573661η2

− 2011669η + 853426
)

+ 48d(η − 2)10
(
222745η2 − 997720η + 1215148

)
+ 1152(η − 2)11

(
2158η2 − 6967η + 4042

))}
/
{

3(η − 2)4(d− 6η + 12)·
· (d− 5η + 10)(d− 4η + 8)(d− 3η + 6)(d− 2η + 4)(d− η + 2)12(d+ η − 2)3

}
(81)

B18 =
16B(d+ η − 6)(d+ η − 4)(d+ η − 3)(3d+ 3η − 10)(5d+ 5η − 14)

3(d+ η − 2)9
(82)

B19 =−
{

131072A8Bd8
(
45d6 + 1494d5(η − 2) + 17839d4(η − 2)2 + 100964d3(η − 2)3

+ 291259d2(η − 2)4 + 411750d(η − 2)5 + 225225(η − 2)6
)}

/
{

315(η − 2)7(d− η + 2)15
}

(83)
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B20 =−
{

128A3Bd3
(
12d16(3η − 4)− 8d15

(
95η2 − 253η + 148

)
+ d14

(
5595η3 − 23688η2 + 32380η − 14384

)
+ d13

(
−3046η4 + 1066η3 + 31216η2

− 47992η + 11072
)

+ d12
(
−160013η5 + 1413768η4 − 4865536η3 + 8113392η2 − 6502576η

+ 1976000
)

+ 2d11(η − 2)2
(
375680η4 − 2257697η3 + 4891828η2 − 4519476η + 1510592

)
− 2d10(η − 2)3

(
389927η4 − 1010082η3 − 1016572η2 + 4189800η − 2484928

)
− 4d9(η − 2)4

(
587953η4 − 5652599η3 + 16705576η2 − 19253964η + 7404704

)
+ 2d8(η − 2)5

(
2522577η4 − 16982006η3 + 33509204η2 − 19306952η − 1181856

)
+ 4d7(η − 2)6

(
585868η4 − 9011479η3 + 39997956η2 − 63700076η + 32180000

)
− d6(η − 2)7

(
9429049η4 − 83097418η3 + 244302500η2 − 257663416η + 69210784

)
− 2d5(η − 2)8

(
530051η4 − 11507921η3 + 73568760η2 − 173719732η + 124478176

)
+ d4(η − 2)9

(
7661863η4 − 77899386η3 + 292034348η2 − 455102648η + 218332448

)
+ 2d3(η − 2)10

(
620380η4 − 4807909η3 + 22007860η2 − 64637764η + 78059328

)
− 4d2(η − 2)11

(
495645η4 − 5656948η3 + 25985752η2 − 56295024η + 47817936

)
− 8d(η − 2)12

(
130536η4 − 692511η3 + 354532η2 + 3415508η − 5040992

)
− 96(η − 2)13

(
5058η4 − 42237η3 + 137800η2 − 214132η + 136432

))}
/
{

(η − 2)2(2d− 5η + 10)(d− 4η + 8)(d− 3η + 6)(2d− 3η + 6)(d− 2η + 4)2·
· (d− η + 2)11(d+ η − 2)6

}
(84)

B21 =
{

16Ad
(
d5 + 6d4 + d3

(
−6η2 + 32η − 48

)
− 4d2

(
2η3 − 9η2 + 2η + 24

)
+ d
(
−3η4 + 80η2 − 160η + 48

)
− 2(η − 2)2

(
5η2 − 4

))}
/
{

(d− η + 2)3·
(d+ η − 2)(d+ η)

(
d2 + dη − 2η + 4

)(
d2 − dη + 4d− 2η2 + 6η − 4

)}
(85)

β =
4

d+ η − 2
(86)

β1 =
2d

d− η + 2
+

4

d+ η − 2
− 2 (87)

β2 = 4

(
d

d− η + 2
+

1

d+ η − 2
− 1

)
(88)

β3 =
4

d+ η − 2
− 2 (89)

β4 =
6d

d− η + 2
+

4

d+ η − 2
− 6 (90)

β5 =
2d

d− η + 2
+

4

d+ η − 2
− 4 (91)

β6 =
8d

d− η + 2
+

4

d+ η − 2
− 8 (92)

β7 =
4d

d− η + 2
+

4

d+ η − 2
− 6 (93)
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β8 =
10d

d− η + 2
+

4

d+ η − 2
− 10 (94)

β9 =
4

d+ η − 2
− 4 (95)

β10 =
6d

d− η + 2
+

4

d+ η − 2
− 8 (96)

β11 = 4

(
3d

d− η + 2
+

1

d+ η − 2
− 3

)
(97)

β12 =
2d

d− η + 2
+

4

d+ η − 2
− 6 (98)

β13 =
8d

d− η + 2
+

4

d+ η − 2
− 10 (99)

β14 =
14d

d− η + 2
+

4

d+ η − 2
− 14 (100)

β15 = 4

(
d

d− η + 2
+

1

d+ η − 2
− 2

)
(101)

β16 = α14 + β − 2 = −2 (102)

β17 =
10d

d− η + 2
+ 4

(
1

d+ η − 2
− 3

)
(103)

β18 =
4

d+ η − 2
− 6 (104)

β19 = 4

(
4d

d− η + 2
+

1

d+ η − 2
− 4

)
(105)

β20 =
6d

d− η + 2
+

4

d+ η − 2
− 10 (106)

β21 = α18 + β − 2 =
2d

d− η + 2
− 4 (107)
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Zas(φ) = Z0φ
ζ0 +

14∑
i=1

Ziφ
ζi (108)

Z0 =
1

B
(109)

Z1 = −B1

B2
(110)

Z2 =
B2

1

B3
− B2

B2
(111)

Z3 = −B3

B2
(112)

Z4 = −B
3
1

B4
+

2B1B2

B3
− B4

B2
(113)

Z5 =
2(B1B3)

B3
− B5

B2
(114)

Z6 =
B4

1

B5
−

3
(
B2

1B2

)
B4

+
2B1B4

B3
+
B2

2

B3
− B6

B2
(115)

Z7 = −
3
(
B2

1B3

)
B4

+
2B1B5

B3
+

2B2B3

B3
− B7

B2
(116)

Z8 = −B
5
1

B6
+

4B3
1B2

B5
−

3
(
B2

1B4

)
B4

−
3
(
B1B

2
2

)
B4

+
2B1B6

B3
+

2B2B4

B3
− B8

B2
(117)

Z9 =
B2

3

B3
− B9

B2
(118)

Z10 =
4B3

1B3

B5
−

3
(
B2

1B5

)
B4

− 6(B1B2B3)

B4
+

2B1B7

B3
+

2B2B5

B3
+

2B3B4

B3
− B10

B2
(119)

Z11 =
B6

1

B7
−

5
(
B4

1B2

)
B6

+
4B3

1B4

B5
+

6B2
1B

2
2

B5
−

3
(
B2

1B6

)
B4

− 6(B1B2B4)

B4
− B3

2

B4

+
2B1B8

B3
+

2B2B6

B3
+
B2

4

B3
− B11

B2
(120)

Z12 = −
3
(
B1B

2
3

)
B4

+
2B1B9

B3
+

2B3B5

B3
− B12

B2
(121)

Z13 =−
5
(
B4

1B3

)
B6

+
4B3

1B5

B5
+

12B2
1B2B3

B5
−

3
(
B2

1B7

)
B4

− 6(B1B2B5)

B4
− 6(B1B3B4)

B4

−
3
(
B2

2B3

)
B4

+
2B1B10

B3
+

2B2B7

B3
+

2B3B6

B3
+

2B4B5

B3
− B13

B2
(122)
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Z14 =− B7
1

B8
+

6B5
1B2

B7
−

5
(
B4

1B4

)
B6

−
10
(
B3

1B
2
2

)
B6

+
4B3

1B6

B5
+

12B2
1B2B4

B5
+

4B1B
3
2

B5

−
3
(
B2

1B8

)
B4

− 6(B1B2B6)

B4
−

3
(
B1B

2
4

)
B4

−
3
(
B2

2B4

)
B4

+
2B1B11

B3

+
2B2B8

B3
+

2B4B6

B3
− B14

B2
(123)

ζ0 = −β (124)

ζ1 = β1 − 2β (125)

ζ2 = β2 − 2β (126)

ζ3 = β3 − 2β (127)

ζ4 = β4 − 2β (128)

ζ5 = β5 − 2β (129)

ζ6 = β6 − 2β (130)

ζ7 = β7 − 2β (131)

ζ8 = β8 − 2β (132)

ζ9 = β9 − 2β (133)

ζ10 = β10 − 2β (134)

ζ11 = β11 − 2β (135)

ζ12 = β12 − 2β (136)

ζ13 = β13 − 2β (137)

ζ14 = β14 − 2β (138)





Asymptotic expansion for
Vas(φ), Yas(φ), Zas(φ) in the case of
b 6= 0

Vas(φ) = A0φ
2 + Aφα +

12∑
i=1

Aiφ
αi (139)

We have stopped the Vas(φ) expansion up to the 12-th term which correspond to that one
involving the 6-th term in the expansion for Zas(φ) i.e Z6φ

ζ6 .

A0 =
2− η

4
(140)

A1 = − 4A2d2

(η − 2)(d− η + 2)2
(141)

A2 = − (η − 2)(b(η − 2)− 2)

4d
(142)

A3 =
16A3d3(d+ η − 2)

(η − 2)2(d− η + 2)4
(143)

A4 =
Ad(d+ η − 2)

(
b
(
η2 − 4

)
(d− η + 2)− 2

(
(d− 6)η + η2 + 8

))
(d− η + 2)3 ((d− 6)η + η2 + 8)

(144)

A5 = −64A4d4(3d+ 5(η − 2))(d+ η − 2)

3(η − 2)3(d− η + 2)6
(145)

A6 =−
{

4A2d2(d+ η − 2)
(
b(η − 2)

(
d4
(
η2 + 2η − 2

)
− 4d3(η − 2)− 2d2(η − 2)2

(
2η2 + 5η − 2

)
+ 4d(η − 2)3(3η + 7) + (η − 2)4

(
3η2 − 4η − 26

))
− 2
(
d4(η − 1)η + 2d3(η − 2)2(2η − 1)− 2d2(η − 2)2(9η − 10)

− 2d(η − 2)3
(
4η2 − 13η − 2

)
− 5(η − 2)4

(
η2 − 7η + 12

)))}
/
{

(η − 2)(d− 2η + 4)(d− η + 2)5
(
d(η − 1) + η2 − 5η + 6

) (
(d− 6)η + η2 + 8

)}
(146)

A7 =
128A5d5

(
6d2 + 23d(η − 2) + 21(η − 2)2

)
(d+ η − 2)

3(η − 2)4(d− η + 2)8
(147)
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A8 = 0 (148)

A9 =
{

16A3d3(d+ η − 2)
(
−b(η − 2)

(
−d7

(
3η3 + 4η2 − 16η + 8

)
+ d6

(
−3η4 + η3 + 52η2 − 116η + 64

)
+ d5(η − 2)2

(
36η3 + 57η2 − 134η + 16

)
+ 2d4(η − 2)3

(
15η3 − 22η2 − 244η + 208

)
− d3(η − 2)4

(
99η3 + 142η2 − 332η − 344

)
− d2(η − 2)5

(
87η3 − 287η2 − 1218η + 1280

)
+ d(η − 2)6

(
66η3 + 89η2 − 598η − 1120

)
+ 2(η − 2)7

(
30η3 − 119η2 − 194η + 832

))
− 2
(
d7η

(
3η2 − 7η + 4

)
+ d6

(
21η4 − 113η3 + 210η2 − 152η + 32

)
− 12d5(η − 2)2

(
11η2 − 24η + 12

)
− 2d4(η − 2)3

(
81η3 − 255η2 + 108η + 88

)
− d3(η − 2)4

(
189η3 − 1497η2 + 2700η − 1168

)
+ 3d2(η − 2)5

(
51η3 − 9η2 − 724η + 832

)
+ 22d(η − 2)6

(
15η3 − 101η2 + 188η − 64

)
+ 44(η − 2)7

(
3η3 − 29η2 + 92η − 96

)))}
/
{

(η − 2)2(d− 3η + 6)(d− 2η + 4)(d− η + 2)7(
d(η − 1) + η2 − 5η + 6

) (
(d− 6)η + η2 + 8

) (
d(3η − 4) + 3η2 − 14η + 16

)}
(149)

A10 = −
1024A6d6

(
5d3 + 32d2(η − 2) + 65d(η − 2)2 + 42(η − 2)3

)
(d+ η − 2)

5(η − 2)5(d− η + 2)10
(150)

A11 =
{
Ad(η − 2)(d+ η − 2)

(
b(η − 2)(η + 2)(d− 3η + 6)(d− η + 2)

(
b
(
η2 − 4

)
(d− η + 2)

+ 2
(
d2 − 3dη + 4d+ 2η − 4

)))}
/
{(

2(d− η + 2)6
(
(d− 6)η + η2 + 8

)) (
d2 − dη − 2

(
η2 − 5η + 6

))}
+
{
Ad(η − 2)(d+ η − 2)

(
2(d− η + 2)

(
b
(
η2 − 4

)
(d− η + 2)

− 2
(
(d− 6)η + η2 + 8

))
− 4(η − 2)

(
b
(
η2 − 4

)
(d− η + 2)− 2

(
(d− 6)η + η2 + 8

)))}
/
{

2(d− η + 2)6
(
(d− 6)η + η2 + 8

)}
(151)

A12 =− {64A4d4(d+ η − 2)
(
b(η − 2)

(
3
(
6η4 + 2η3 − 51η2 + 68η − 24

)
d10

+
(
30η5 − 34η4 − 569η3 + 1894η2 − 2104η + 768

)
d9

− 4(η − 2)2
(
117η4 + 49η3 − 791η2 + 779η − 136

)
d8

− 2(η − 2)3
(
336η4 − 252η3 − 5595η2 + 10606η − 4720

)
d7

+ 4(η − 2)4
(
795η4 + 366η3 − 3858η2 − 547η + 3508

)
d6

+ 4(η − 2)5
(
1299η4 − 2655η3 − 16965η2 + 35719η − 14656

)
d5

− 2(η − 2)6
(
2928η4 + 4026η3 − 7725η2 − 69394η + 74656

)
d4

− 2(η − 2)7
(
6552η4 − 19028η3 − 59309η2 + 148970η − 43120

)
d3

− (η − 2)8
(
654η4 − 30898η3 + 10895η2 + 346160η − 383352

)
d2

+ 3(η − 2)9
(
2850η4 − 9322η3 − 20477η2 + 66152η + 3136

)
d

+ 18(η − 2)10
(
210η4 − 1340η3 + 437η2 + 10524η − 16368

))
+

− 2
(
3η
(
6η3 − 23η2 + 29η − 12

)
d10

+
(
174η5 − 1165η4 + 2955η3 − 3470η2 + 1800η − 288

)
d9

− 2(η − 2)2
(
42η4 + 489η3 − 2087η2 + 2476η − 888

)
d8

− 4(η − 2)3
(
828η4 − 3674η3 + 4797η2 − 1296η − 676

)
d7

− 2(η − 2)4
(
2202η4 − 21241η3 + 56013η2 − 53844η + 15816

)
d6

+ 2(η − 2)5
(
6702η4 − 20141η3 − 16797η2 + 82836η − 52264

)
d5

+ 4(η − 2)6
(
8136η4 − 61888η3 + 145509η2 − 118032η + 20292

)
d4
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+ 4(η − 2)7
(
1704η4 − 43632η3 + 204971η2 − 324168η + 157900

)
d3

− (η − 2)8
(
36462η4 − 231371η3 + 365893η2 + 132196η − 411216

)
d2

− 3(η − 2)9
(
11838η4 − 116129η3 + 403597η2 − 572156η + 259584

)
d

− 1674(η − 2)10
(
6η4 − 73η3 + 329η2 − 652η + 480

)))}
/
{

3(d− 4η + 8)(d− 3η + 6)(d− 2η + 4)(d− η + 2)9(η − 2)3·
·
(
η2 − 5η + d(η − 1) + 6

)(
η2 + (d− 6)η + 8

)(
2η2 − 9η + d(2η − 3) + 10

)
·

·
(
3η2 − 14η + d(3η − 4) + 16

)}
(152)

α =
2d

d− η + 2
(153)

α1 =
4d

d− η + 2
− 2 (154)

α2 = ζ0 = 0 (155)

α3 =
6d

d− η + 2
− 4 (156)

α4 = ζ1 =
2(η − 2)

d− η + 2
(157)

α5 =
8d

d− η + 2
− 6 (158)

α6 = ζ2 =
4(η − 2)

d− η + 2
(159)

α7 =
10d

d− η + 2
− 8 (160)

α8 = ζ3 = −2 (161)

α9 =
6(η − 2)

d− η + 2
(162)

α10 =
2(d+ 5(η − 2))

d− η + 2
(163)

α11 = ζ5 =
2(η − 2)

d− η + 2
− 2 (164)

α12 = ζ6 =
8(η − 2)

d− η + 2
(165)

Yas(φ) = B +

13∑
i=1

Biφ
βi (166)
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B =
4

b(2− η)2
(167)

B1 =
16Ad(η + 2)(d+ η − 2)

b(η − 2)3(d− η + 2) ((d− 6)η + η2 + 8)
(168)

B2 =
{

64A2d2
(
d4
(
η2 + 2η − 4

)
− 2d3

(
η4 − 2η3 − 6η2 + 24η − 24

)
− 2d2(η − 2)2

(
3η3 − η2 − 24η + 24

)
− 2d(η − 2)3

(
3η3 − 4η2 − 26η + 36

)
− (η − 2)4

(
2η3 − 5η2 − 14η + 44

))}
/
{
b(η − 2)4(d− η + 2)3

(
d(η − 1) + η2 − 5η + 6

) (
(d− 6)η + η2 + 8

)2} (169)

B3 = 0 (170)

B4 =−
{

256A3d3
(
d7(η − 2)2(η + 4) + d6

(
−3η5 + 16η4 + 20η3 − 212η2 + 440η − 320

)
+ d5

(
−30η6 + 141η5 + 72η4 − 1896η3 + 5168η2 − 5936η + 2624

)
− d4(η − 2)2

(
105η5 − 296η4 − 952η3 + 4892η2 − 7224η + 3520

)
− d3(η − 2)3

(
180η5 − 659η4 − 1554η3 + 9780η2 − 14456η + 7136

)
− d2(η − 2)4

(
165η5 − 792η4 − 948η3 + 10700η2 − 18792η + 10048

)
− d(η − 2)5

(
78η5 − 475η4 − 6η3 + 5676η2 − 13400η + 8928

)
− (η − 2)6

(
15η5 − 112η4 + 128η3 + 1092η2 − 3752η + 3520

))}{
b(η − 2)4(d− η + 2)5

(
d(η − 1) + η2 − 5η + 6

) (
(d− 6)η + η2 + 8

)3 ·
·
(
d(3η − 4) + 3η2 − 14η + 16

)}
(171)

B5 =
16Ad(η + 2)(d− 3η + 6)(d+ η − 2)

(
b
(
η2 − 4

)
(d− η + 2) + 2

(
d2 − 3dη + 4d+ 2η − 4

))
b(η − 2)2(d− η + 2)4 ((d− 6)η + η2 + 8) (d2 − dη − 2 (η2 − 5η + 6))

(172)

B6 =
{

1024A4d4
(
3d11(η − 2)2

(
η4 − 12η2 + 34η − 24

)
+ d10

(
−12η8 + 121η7 − 276η6 − 1146η5 + 8558η4 − 23652η3 + 35400η2 − 28464η + 9600

)
− d9

(
216η9 − 1933η8 + 4552η7 + 15972η6 − 136074η5

+ 425896η4 − 765712η3 + 835008η2 − 518304η + 141696
)

− d8(η − 2)2
(
1548η8 − 9935η7 + 5748η6 + 140518η5 − 631666η4

+ 1354604η3 − 1655736η2 + 1115088η − 324480
)

− 2d7(η − 2)3
(
3024η8 − 20495η7 + 12386η6 + 294824η5 − 1303646η4

+ 2699468η3 − 3144312η2 + 2000464η − 544320
)

− 2d6(η − 2)4
(
7308η8 − 55405η7 + 53372η6 + 766522η5 − 3624294η4

+ 7631348η3 − 8823656η2 + 5481584η − 1442944
)

− 2d5(η − 2)5
(
11592η8 − 100205η7 + 154038η6 + 1258888η5 − 6886922η4

+ 15463444η3 − 18529256η2 + 11693168η − 3080128
)

− 2d4(η − 2)6
(
12348η8 − 121903η7 + 273580η6 + 1278526η5 − 8847570η4

+ 22134252η3 − 28621880η2 + 19114320η − 5234816
)

− d3(η − 2)7
(
17568η8 − 196975η7 + 597578η6 + 1478128η5 − 14884286η4
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+ 43113164η3 − 62383096η2 + 45772752η − 13577536
)

− d2(η − 2)8
(
8028η8 − 101405η7 + 393012η6 + 357298η5 − 7714662η4

+ 26783988η3 − 44644456η2 + 37238000η − 12417408
)

− d(η − 2)9
(
2136η8 − 30137η7 + 143206η6 − 45776η5 − 2182594η4

+ 9442436η3 − 18513352η2 + 18037296η − 7020480
)

− 3(η − 2)10
(
84η8 − 1313η7 + 7420η6 − 10070η5 − 82542η4

+ 473044η3 − 1108168η2 + 1283120η − 603776
))}

/
{

3b(η − 2)5(d− η + 2)7
(
d(η − 1) + η2 − 5η + 6

)2 (
(d− 6)η + η2 + 8

)4 ·
·
(
d(2η − 3) + 2η2 − 9η + 10

) (
d(3η − 4) + 3η2 − 14η + 16

)}
(173)

B7 =−
{

64A2d2(d+ η − 2)
(
b(η − 2)2(η + 2)

(
d8
(
η2 + 3η − 6

)
− 3d7

(
η3 − η2 − 8η + 4

)
+ d6

(
−25η4 − 19η3 + 286η2 − 508η + 408

)
+ d5

(
49η5 + 7η4 − 344η3 + 160η2 − 48η + 528

)
+ d4(η − 2)2

(
93η4 − 261η3 − 1894η2 + 3196η − 1080

)
− d3(η − 2)3

(
121η4 + 141η3 − 1750η2 − 1612η + 1464

)
− d2(η − 2)4

(
147η4 − 679η3 − 1834η2 + 9172η − 2184

)
+ d(η − 2)5

(
75η4 + 27η3 − 1634η2 + 860η + 6312

)
+ 2(η − 2)6

(
39η4 − 199η3 − 106η2 + 2072η − 3048

))
− 4
(
d9
(
η2 + 2η − 4

)
+ d8

(
−2η4 − 9η3 + 8η2 + 48η − 40

)
+ d7

(
20η5 − 13η4 − 130η3 + 220η2 − 264η + 272

)
+ d6

(
−50η6 + 97η5 + 214η4 − 628η3 + 1328η2 − 2944η + 2272

)
− d5(η − 2)2

(
68η5 − 493η4 − 634η3 + 3732η2 − 2616η + 80

)
+ d4(η − 2)3

(
202η5 − 341η4 − 2588η3 + 3484η2 + 1416η − 336

)
+ d3(η − 2)4

(
156η5 − 1447η4 + 938η3 + 11764η2 − 15928η + 1072

)
− d2(η − 2)5

(
198η5 − 375η4 − 3568η3 + 8380η2 + 6152η − 12336

)
− 2d(η − 2)6

(
86η5 − 643η4 + 720η3 + 4250η2 − 10488η + 4464

)
− 2(η − 2)7

(
8η5 − 147η4 + 607η3 − 106η2 − 3392η + 4704

)))}
/
{
b(η − 2)3(d− 2η + 4)(d− η + 2)6

(
d2 − 2d(η − 1)− 3η2 + 14η − 16

)
·

·
(
d(η − 1) + η2 − 5η + 6

) (
(d− 6)η + η2 + 8

)2 (
d2 − dη − 2

(
η2 − 5η + 6

))}
(174)

B8 =−
{

2048A5d5
(
6(η − 2)2

(
3η6 − 8η5 − 32η4 + 244η3 − 628η2 + 784η − 384

)
d14

+
(
−90η10 + 1167η9 − 4748η8 − 3255η7 + 107870η6 − 501440η5 + 1298480η4

− 2134272η3 + 2230272η2 − 1362432η + 371712
)
d13

− 2
(
1140η11 − 13124η10 + 50537η9 + 36024η8 − 1163696η7 + 5633136η6 − 15708208η5

+ 29048912η4 − 36517568η3 + 30290880η2 − 15059712η + 3416064
)
d12

− 4(η − 2)2
(
5955η10 − 51798η9 + 107863η8 + 588161η7 − 4703270η6 + 15909908η5

− 33051848η4 + 45132288η3 − 39914880η2 + 20900352η − 4948992
)
d11

− 2(η − 2)3
(
70080η10 − 614584η9 + 1193366η8 + 7696497η7 − 57212574η6 + 184262828η5

− 363122408η4 + 468042384η3 − 389141920η2 + 190884736η − 42153984
)
d10

− (η − 2)4
(
528750η10 − 4920951η9 + 10297728η8 + 62107635η7 − 474680326η6

+ 1521805360η5 − 2936969104η4 + 3662826496η3 − 2920374272η2 + 1365180928η

− 286198784
)
d9 − 2(η − 2)5

(
684540η10 − 6937497η9 + 17001465η8 + 82024785η7
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− 697508538η6 + 2310425136η5 − 4501744768η4 + 5579117712η3 − 4366978720η2

+ 1986212224η − 402809856
)
d8 − 8(η − 2)6

(
315945η10 − 3526077η9 + 10427319η8

+ 35843748η7 − 369180748η6 + 1305084756η5 − 2641084088η4 + 3342404032η3

− 2635437824η2 + 1194036736η − 239083520
)
d7 − 2(η − 2)7

(
1696320η10 − 20913297η9

+ 74670114η8 + 159310158η7 − 2258277760η6 + 8770800796η5 − 18902896248η4

+ 25063392880η3 − 20434638944η2 + 9460439680η − 1915020288
)
d6 − (η − 2)8

(
3328470η10

− 45277101η9 + 192926220η8 + 186940941η7 − 4943047242η6 + 21678782112η5

− 50828042064η4 + 72203157248η3 − 62367859712η2 + 30270651904η − 6356632576
)
d5

− 2(η − 2)9
(
1183500η10 − 17703654η9 + 88664611η8 − 6279924η7 − 1891906800η6

+ 9646241464η5 − 25040424448η4 + 38812564848η3 − 36262979936η2 + 18890163328η

− 4222298112
)
d4 − 4(η − 2)10

(
297435η10 − 4871488η9 + 28243883η8 − 28647785η7

− 484835394η6 + 2982562308η5 − 8699658312η4 + 14923099776η3 − 15334032512η2

+ 8744577536η − 2129386496
)
d3 − 2(η − 2)11

(
200640η10 − 3581214η9 + 23705402η8

− 44725715η7 − 306312910η6 + 2411774452η5 − 8012648952η4 + 15372092464η3

− 17590214112η2 + 11158657664η − 3019505664
)
d2 − (η − 2)12

(
81570η10 − 1579277η9

+ 11790376η8 − 31920183η7 − 99831890η6 + 1135028080η5 − 4359384816η4

+ 9427465216η3 − 12118823936η2 + 8658089472η − 2649375744
)
d− 6(η − 2)13

(
1260η10

− 26343η9 + 219473η8 − 765933η7 − 812734η6 + 19383136η5 − 87798976η4 + 215420944η3

− 312826272η2 + 253892992η − 89263104
))}

/
{

3b(d− η + 2)9(η − 2)6·

·
(
η2 − 5η + d(η − 1) + 6

)2 (
η2 + (d− 6)η + 8

)5 (
2η2 − 9η + d(2η − 3) + 10

)
·

·
(
3η2 − 14η + d(3η − 4) + 16

) (
5η2 − 22η + d(5η − 8) + 24

)}
(175)

B9 = 0 (176)

B10 =−
{

256A3d3(d+ η − 2)
(
2
(
3(η − 2)2(η + 4)d15 − 3

(
3η5 + 5η4 − 56η3 − 40η2 + 328η − 256

)
d14

+
(
93η6 − 439η5 − 940η4 + 5680η3 − 8408η2 + 8000η − 5248

)
d13

+
(
21η7 + 1381η6 − 3424η5 − 2640η4 + 23304η3 − 78848η2 + 135872η − 80896

)
d12

+
(
− 3633η8 + 19022η7 − 14080η6 − 182000η5 + 796856η4 − 1503136η3 + 1389376η2

− 576448η + 90368
)
d11 + 2

(
3009η9 − 10434η8 − 10254η7 + 76810η6 − 89472η5

+ 64760η4 − 371280η3 + 1207680η2 − 1688896η + 871424
)
d10 + 2(η − 2)2

(
15315η8

− 122773η7 + 111680η6 + 1154676η5 − 4306304η4 + 7097128η3 − 6185872η2 + 2260672η

+ 11264
)
d9 − 2(η − 2)3

(
17787η8 + 8909η7 − 594942η6 + 902992η5 + 2971176η4

− 9513152η3 + 10233632η2 − 4852096η + 581632
)
d8 − (η − 2)4

(
136962η8 − 1250687η7

+ 1588424η6 + 13164508η5 − 48178784η4 + 63004784η3 − 35736192η2 + 5415872η + 3091200
)
d7

+ (η − 2)5
(
33387η8 + 733895η7 − 6618610η6 + 8275060η5 + 48173088η4 − 157777360η3

+ 176265824η2 − 83899072η + 15777792
)
d6 + (η − 2)6

(
298905η8 − 2559239η7 + 2118516η6

+ 36086612η5 − 118610120η4 + 98855808η3 + 62180064η2 − 112882688η + 35882496
)
d5

+ (η − 2)7
(
152049η8 − 2867745η7 + 14760686η6 − 7966736η5 − 143437048η4 + 442132080η3

− 494152384η2 + 197655168η − 12683264
)
d4 − (η − 2)8

(
188157η8 − 994208η7 − 5058880η6

+ 45643032η5 − 85449208η4 − 86244288η3 + 448092864η2 − 459290560η + 132708608
)
d3

− 2(η − 2)9
(
114954η8 − 1400369η7 + 5063876η6 + 4105142η5 − 74403516η4 + 194326400η3

− 192112560η2 + 31123360η + 34762240
)
d2 − 4(η − 2)10

(
20955η8 − 347387η7 + 2094974η6



105

− 4372320η5 − 8530052η4 + 63645964η3 − 132479304η2 + 119866912η − 37342464
)
d

− 48(η − 2)11
(
186η8 − 4297η7 + 36260η6 − 136060η5 + 131618η4 + 717178η3

− 2761676η2 + 3899456η − 2062080
))
− b(η − 2)

((
3η5 + 11η4 − 36η3 − 16η2

+ 152η − 160
)
d14 +

(
−9η6 + 23η5 + 54η4 − 244η3 + 88η2 + 576η − 448

)
d13

−
(
219η7 + 277η6 − 4070η5 + 4700η4 + 10016η3 − 31216η2 + 37184η − 19840

)
d12

+
(
453η8 + 29η7 − 1314η6 − 12296η5 + 13120η4 + 71920η3 − 129248η2 + 26752η

+ 36096
)
d11 + 2

(
1521η9 − 5366η8 − 29893η7 + 171496η6 − 180960η5 − 483704η4

+ 1548800η3 − 1815200η2 + 1069632η − 293376
)
d10 − 2(η − 2)2

(
1977η8 + 5861η7

− 6272η6 − 162748η5 + 230288η4 + 582160η3 − 1512704η2 + 1030336η − 100096
)
d9

− 2(η − 2)3
(
9375η8 − 27449η7 − 235752η6 + 735208η5 + 362408η4 − 3095376η3

+ 3711648η2 − 1619200η + 128768
)
d8 + 2(η − 2)4

(
4509η8 + 43613η7 − 48954η6

− 1331880η5 + 2249504η4 + 4333808η3 − 12298720η2 + 9310336η − 2011904
)
d7

+ (η − 2)5
(
58503η8 − 212615η7 − 1393030η6 + 5236908η5 + 4090912η4 − 23024336η3

+ 13160288η2 + 7448896η − 6622976
)
d6 + (η − 2)6

(
11283η8 − 316937η7 + 151302η6

+ 8593664η5 − 18649984η4 − 26237488η3 + 90780832η2 − 66535168η + 14042368
)
d5

− (η − 2)7
(
81567η8 − 292765η7 − 1909936η6 + 7318824η5 + 9897672η4 − 44741104η3

− 7335776η2 + 73806336η − 35301632
)
d4 − (η − 2)8

(
56751η8 − 547609η7 + 15178η6

+ 12425000η5 − 30364288η4 − 27726896η3 + 146096480η2 − 107116160η + 11085568
)
d3

+ 2(η − 2)9
(
13986η8 − 7965η7 − 585903η6 + 934338η5 + 7490556η4 − 18737968η3

− 17217632η2 + 72052768η − 36087808
)
d2 + 4(η − 2)10

(
9990η8 − 76566η7 − 12343η6

+ 1545566η5 − 3941784η4 − 2265968η3 + 18665008η2 − 16652256η − 2151168
)
d

+ 24(η − 2)11
(
459η8 − 4776η7 + 10330η6 + 62140η5 − 354016η4 + 432920η3

+ 936032η2 − 2946560η + 2205696
)))}

/
{
b(d− 3η + 6)(d− 2η + 4)(d− η + 2)8·

· (η − 2)3
(
d2 + (4− 3η)d− 4η2 + 18η − 20

)(
d2 − 2(η − 1)d− 3η2 + 14η − 16

)
·

·
(
η2 − 5η + d(η − 1) + 6

)(
η2 + (d− 6)η + 8

)3(
3η2 − 14η + d(3η − 4) + 16

)
·

·
(
d2 − ηd− 2

(
η2 − 5η + 6

))}
(177)

B11 =
{

16384A6d6
(
5(η − 2)2

(
18η10 − 135η9 + 195η8 + 2084η7

− 14688η6 + 49584η5 − 104992η4 + 146136η3 − 130304η2 + 67456η − 15360
)
d19

+
(
−540η14 + 9864η13 − 70584η12 + 194270η11 + 576959η10 − 7852575η9

+ 38515162η8 − 121100604η7 + 271712168η6 − 448919440η5 + 546269920η4 − 478288960η3

+ 285735680η2 − 104330240η + 17551360
)
d18 +

(
−18900η15 + 313092η14

− 2110239η13 + 5524481η12 + 17879918η11 − 235613022η10 + 1178042264η9

− 3858889920η8 + 9219265256η7 − 16644527264η6 + 22883417024η5 − 23711884800η4

+ 17996035200η3 − 9460633600η2 + 3081973760η − 468828160
)
d17 − (η − 2)2

(
284040η14

− 3868722η13 + 19696698η12 − 16201666η11 − 366422163η10 + 2572537287η9

− 9883654234η8 + 26209938236η7 − 51201200424η6 + 75114418928η5 − 82374329120η4

+ 65836041920η3 − 36343038720η2 + 12416102400η − 1980866560
)
d16 − 4(η − 2)3

(
623700η14

− 8452656η13 + 41596293η12 − 19202185η11 − 871965036η10 + 5695768936η9

− 20892994500η8 + 53072643632η7 − 99360828392η6 + 139742217360η5 − 147005032800η4

+ 112806563520η3 − 59857182720η2 + 19683133440η − 3027650560
)
d15

− 4(η − 2)4
(
3645000η14 − 50796414η13 + 253646154η12 − 98709930η11
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− 5561697549η10 + 35797123311η9 − 129093731726η8 + 320658081164η7 − 584252693432η6

+ 796879209744η5 − 811027077280η4 + 601207286080η3 − 307901646080η2 + 97673994240η

− 14489036800
)
d14 − 4(η − 2)5

(
15218280η14 − 222235074η13 + 1163055177η12

− 626390751η11 − 25325980202η10 + 167129052666η9 − 606435798040η8 + 1500014934904η7

− 2700141925736η6 + 3615814802672η5 − 3595960710560η4 + 2595724293952η3

− 1291298020864η2 + 397204292608η − 57059993600
)
d13 − 4(η − 2)6

(
47420100η14

− 733503888η13 + 4106114868η12 − 3478943974η11 − 85253778733η10 + 595839146179η9

− 2217911020662η8 + 5553388714780η7 − 10022457366808η6 + 13350832227248η5

− 13123071387232η4 + 9314810237120η3 − 4538744792320η2 + 1363520224256η

− 190905833472
)
d12 − 2(η − 2)7

(
226872360η14 − 3738797010η13 + 22650329277η12

− 28629766871η11 − 432262251846η10 + 3298683209628η9 − 12807415882384η8

+ 32942816212096η7 − 60453232360616η6 + 81192016903728η5 − 79873866612064η4

+ 56386225942848η3 − 27183693036032η2 + 8046889294848η − 1106728103936
)
d11

− 2(η − 2)8
(
424323900η14 − 7469866404η13 + 49254074892η12 − 86261346490η11

− 830748035309η10 + 7156115125569η9 − 29407728273326η8 + 78714803198308η7

− 148796117820408η6 + 204154924105840η5 − 203649624706208η4 + 144785724178880η3

− 69870766151936η2 + 20596142908416η − 2808779776000
)
d10 − 2(η − 2)9

(
627412500η14

− 11806690896η13 + 84881868621η12 − 193872945365η11 − 1203591269656η10

+ 12212330953634η9 − 53831454121068η8 + 151625891406712η7 − 298651382251528η6

+ 423735605386128η5 − 434100636830368η4 + 314878120233408η3 − 154057660608512η2

+ 45770867920896η − 6258118848512
)
d9 − 2(η − 2)10

(
737296560η14 − 14822923050η13

+ 116114538042η12 − 330420403654η11 − 1283487614577η10 + 16375661936049η9

− 78426936583678η8 + 234690464813188η7 − 486390250898488η6 + 721305200077200η5

− 767833754078048η4 + 575405513955648η3 − 289165297623296η2 + 87729990756352η

− 12179092148224
)
d8 − 4(η − 2)11

(
344295900η14 − 7385296932η13

+ 62902201221η12 − 215492902501η11 − 471471044976η10 + 8572996046784η9

− 45212321002876η8 + 144930991369744η7 − 318611422705640η6 + 498299397633488η5

− 556787266338144η4 + 435981746150336η3 − 227849284858880η2 + 71524917760000η

− 10218973337600
)
d7 − 4(η − 2)12

(
254152080η14 − 5806420506η13 + 53614593246η12

− 215432117194η11 − 187558247805η10 + 6922706181379η9 − 40834160649774η8

+ 141250766819452η7 − 331558812621496η6 + 550839114930128η5 − 651474321562784η4

+ 538187227898432η3 − 295722971589888η2 + 97233474783232η − 14488600385536
)
d6

− 4(η − 2)13
(
146512800η14 − 3557932686η13 + 35498611233η12 − 163952653515η11

+ 33723868074η10 + 4222044106746η9 − 28425431299808η8 + 106845263734712η7

− 269227888472872η6 + 477836778396720η5 − 602128208030624η4 + 528900285871168η3

− 308380454969856η2 + 107339416337408η − 16884317681664
)
d5 − 4(η − 2)14

(
64597500η14

− 1663892244η13 + 17876468304η12 − 93395759910η11 + 104833630171η10

+ 1879304461071η9 − 14877527865958η8 + 61205071143212η7 − 166296405425112η6

+ 316683328937840η5 − 427322137341024η4 + 401542558988736η3 − 250268793527552η2

+ 93035589628928η − 15609633458176
)
d4 − (η − 2)15

(
84173040η14 − 2294762418η13

+ 26457490335η12 − 154362906049η11 + 297903785570η10 + 2303542424284η9

− 22528764900408η8 + 102283959891104η7 − 300842349667640η6 + 616738132496592η5
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− 894464615915296η4 + 903273818400960η3 − 605271148161536η2 + 242021183499264η

− 43689575825408
)
d3 − (η − 2)16

(
19097100η14 − 549877968η13 + 6780930192η12

− 43717465054η11 + 116294662593η10 + 434719460247η9 − 5785729506266η8

+ 29299298634716η7 − 93642779618984η6 + 207188777133072η5 − 323825446045408η4

+ 352605081399872η3 − 255135604574976η2 + 110361365980160η − 21591994331136
)
d2

− (η − 2)17
(
2695140η14 − 81793476η13 + 1075420503η12 − 7594679675η11

+ 25324801284η10 + 38292423222η9 − 894073315612η8 + 5126099874792η7

− 17876555760536η6 + 42777393075184η5 − 72183405054688η4 + 84943402257984η3

− 66583099165696η2 + 31300539725824η − 6679882547200
)
d− 5(η − 2)18

(
35640η14

− 1137762η13 + 15901914η12 − 122106394η11 + 484476249η10 + 14360963η9

− 12389304946η8 + 82281543404η7 − 314677444744η6 + 815953310384η5 − 1488362674336η4

+ 1895615890880η3 − 1613311153920η2 + 827272577024η − 193730101248
))}

/
{

5b(d− η + 2)11(η − 2)7
(
η2 − 5η + d(η − 1) + 6

)3(
η2 + (d− 6)η + 8

)6(
2η2 − 9η + d(2η − 3) + 10

)(
3η2 − 13η + d(3η − 5) + 14

)
·

·
(
3η2 − 14η + d(3η − 4) + 16

)2(
5η2 − 22η + d(5η − 8) + 24

)}
(178)

B12 =−
{

8Ad(η + 2)(3d− 5η + 10)(d− 3η + 6)(d− 2η + 4)(d+ η − 2)
(
b2
(
η2 − 4

)2
(d− η + 2)2

+ 8b
(
η2 − 4

)(
d3 + d2(5− 3η) + 2d

(
η2 − 3η + 2

)
− (η − 2)2

)
+ 4
(
2d4 + d3(16− 11η)

+ 2d2
(
7η2 − 19η + 12

)
+ dη

(
−3η2 + 8η − 4

)
+ 2(η − 2)2

(
η2 − 5η + 8

)))}
/
{
b(η − 2)2(d− η + 2)7

(
2d2 − dη − 3η2 + 14η − 16

)(
(d− 6)η + η2 + 8

)(
d2 − dη

− 2
(
η2 − 5η + 6

))}
(179)

B13 = 0 (180)

β1 =
2(η − 2)

d− η + 2
(181)

β2 =
4(η − 2)

d− η + 2
(182)

β3 = −2 (183)

β4 =
6(η − 2)

d− η + 2
(184)

β5 =
2(η − 2)

d− η + 2
− 2 (185)

β6 =
8(η − 2)

d− η + 2
(186)

β7 =
4(η − 2)

d− η + 2
− 2 (187)
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β8 =
10(η − 2)

d− η + 2
(188)

β9 = −4 (189)

β10 =
6(η − 2)

d− η + 2
− 2 (190)

β11 =
12(η − 2)

d− η + 2
(191)

β12 =
2(η − 2)

d− η + 2
− 4 (192)

β13 =
8(η − 2)

d− η + 2
− 2 (193)

Zas =
1

B
+

13∑
i=1

Ziφ
ζi (194)

Z1 = −B1

B2
(195)

Z2 =
B1

2

B3
− B2

B2
(196)

Z3 = −B3

B2
(197)

Z4 = −B
3
1

B4
+ 2

B1B2

B3
− B4

B2
(198)

Z5 = 2
B1B3

B3
− B5

B2
(199)

Z6 =
B4

1

B5
− 3

B2
1B2

B4
+ 2

B1B4

B3
+
B2

2

B3
− B6

B2
(200)

Z7 = −3
B2

1B3

B4
+ 2

B1B5

B3
− B7

B2
(201)

Z8 = −B
5
1

B6
+ 4

B3
1B2

B5
− 3

B2
1B4

B4
− 3

B1B
2
2

B4
+ 2

B1B6

B3
+ 2

B2B4

B3
− B8

B2
(202)

Z9 =
B2

3

B3
(203)
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Z10 = 4
B3

1B3

B5
− 3

B2
1B5

B4
− B1B2B3

B4
+ 2

B1B7

B3
+ 2

B2B5

B3
− B10

B2
(204)

Z11 =
B6

1

B7
− 5

B4
1B2

B6
+ 4

B3
1B4

B5
+ 6

B2
1B

2
2

B5
− 3

B2
1B6

B4
− 6

B1B2B4

B4
− B3

2

B4

+ 2
B1B8

B3
+ 2

B2B6

B3
+
B2

4

B3
− B11

B2
(205)

Z12 = −3
B1B

2
3

B4
+ 2

B9B1

B3
− B12

B2
(206)

Z13 = 4
B3

1B5

B5
− 3

B2
1B7

B4
− 6

B1B2B5

B4
+ 2

B10B1

B3
+ 2

B2B7

B3
+ 2

B4B5

B3
− B13

B2
(207)

ζ1 = β1 (208)

ζ2 = β2 (209)

ζ3 = β3 (210)

ζ4 = β4 (211)

ζ5 = β5 (212)

ζ6 = β6 (213)

ζ7 = β7 (214)

ζ8 = β8 (215)

ζ9 = β9 (216)

ζ10 = β10 (217)

ζ11 = β11 (218)

ζ12 = β12 (219)

ζ13 = β13 (220)
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