
ALMA MATER STUDIORUM − UNIVERSITÀ DI BOLOGNA
CAMPUS DI CESENA

SCUOLA DI INGEGNERIA E ARCHITETTURA

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA
ELETTRONICA E TELECOMUNICAZIONI PER L’ENERGIA

POLAR CODES FOR ERROR CORRECTION:
ANALYSIS AND DECODING ALGORITHMS

Tesi in
Teoria dell’informazione LM

Relatore:
Chiar.mo Prof. Marco Chiani

Presentata da:
Davide Dosio

Correlatori:
Prof. Ing. Enrico Paolini
Dr. Ing. Gianluigi Liva
Dr. Ing. Balazs Matuz
M.Sc. Thomas Jerkovits

SECONDO APPELLO — SESSIONE III
ANNO ACCADEMICO 2014-2015

KEY WORDS

Polar codes
Channel polarization

Successive Cancellation decoding
Successive Cancellation List decoding

Channel selection
AWGN

Contents

Acronyms vii

Abstract ix

1 Introduction 1

2 Introduction to polar codes 5
2.1 Preliminaries and notations 5
2.2 Channel polarization . 8
2.3 Encoding . 10
2.4 BEC as a special case . 14

3 Polar decoding 19
3.1 Successive Cancellation decoder 19
3.2 Successive Cancellation List decoder 24
3.3 SCL implementation . 26

4 Channel polarization for AWGN 29
4.1 Analysis tool for AWGN channel polarization 29
4.2 Importance of J-function for channel selection 36

5 Results 47

6 Conclusions 57

Acknowledgements

v

CONTENTS

vi

Acronyms

APP a posteriori probability

AWGN additive white Gaussian noise

BEC binary erasure channel

B-DMC binary discrete memoryless channel

BPSK binary phase shift keying

CN check node

CRC cyclic redundancy check

EXIT extrinsic information transfer

FER frame error rate

LDPC low density parity check

LLR log-likelihood ratio

LL log-likelihood

LR likelihood ratio

SC successive cancellation

SCL successive cancellation list

SNR signal-to-noise ratio

VN variable node

vii

Acronyms

viii

Abstract

Polar codes are the first class of error-correcting codes that provably achieve
the symmetric capacity of any memoryless channel thanks to a new method
first introduced by Arikan, the channel polarization. In this thesis we de-
scribe in detail the encoding and decoding algorithms. In particular we show
some comparisons between the performances of successive cancellation (SC)
and successive cancellation list (SCL) decoding simulators and literature. Be-
sides, we did a concatenation of the polar code with an outer code to improve
the minimum distance and the performances. We propose a novel technique
to analyze channel polarization on AWGN channels, which are the most
common channels in the field of satellite and deep space communications.
Furthermore, we investigate the importance of an accurate approximation of
the polarization functions.

ix

Abstract

x

Chapter 1

Introduction

Digital communication systems are omnipresent in our daily lives. There
exist many examples like cell phones, digital television, wireless internet con-
nections, etc. These systems fit into a common structure as depicted in
Figure 1.1. The main components of a communication systems are a source
encoder for compressing data, a channel encoder which adds redundancy, a
communication channel that is the channel where the message conveys and
its probabilistic model depends on the application, a channel decoder for
recovering the errors introduced by the noisy channel and a source decoder
for decompressing data. This structure was first introduced by C. Shannon
in his seminal paper in 1948 [12]. We will focus our attention only on the
central blocks, namely the channel coding block shown in Figure 1.2. The
role of the channel encoder is to preserve the message to be transmitted over
a channel subject to noise, distortion and interference.

Source
Source
encoder

Channel
encoder

Channel

Channel
decoder

Source
decoder

Sink

Figure 1.1: General block diagram of a communication system

1

1. Introduction

Definition 1. A Gaussian channel is a time-discrete channel with input
X and output Y = X + Z, where Z models the noise and it is normal
distributed with Z ∼ N (0, σ2). For the binary input additive white Gaussian
noise (AWGN) the input alphabet X ∈ {−1,+1}. The channel transition
probability density function is

PY |X(y|x) = 1
σ
√

2π
e−

(y−x)2

2σ2 .

Usually we want to transmit binary messages composed by only two sym-
bols namely "0" and "1". We want that if a 0 is sent, it is received as a 0 but
it could happen that a 0 will be received as a 1, or viceversa. Thus, for each
transmission the channel encoder adds redundancy and transforms the ini-
tial vector u = (u1, u2, . . . , uK) of length K in a vector c = (c1, c2, . . . , cN) of
length N where the fraction R = K/N is called the code rate. After that, c is
mapped into modulation symbols x. There is a probability that the channel
introduces errors such that it changes a 0 into a 1 in our transmitted message
so an error occurs. The channel decoder receives a vector y = (y1, y2, . . . , yN).
The purpose of the decoder is to recover the input to the channel encoder
from the channel output estimating û. The probability of error after the
decoder is called block error probability PB. Shannon showed that it is pos-
sible to transmit digital datas with high reliability, over noisy channels, by
encoding the message with an error correction code. The channel encoder
maps each vector of K bits into a vector of N bits called codeword. We need
to introduce redundancy for achieving safe and reliable communication over
unreliable channels. According to Shannon, every communication system can
be characterized by a parameter C, called the channel capacity, which is a
measure of how much information the channel can convey [8]. If R < C,
there exists a code with length N such that the probability of error tends to
zero if N →∞. Although his theorem shows the existence of a good channel
code, the major objective after 1948 still is to find practical coding schemes
that could approach channel capacity on different communication channels.

In the past decades, with the discovery of turbo codes [2] and low density
parity check (LDPC) codes [6], the Shannon limit (the maximum rate at
which data can be sent over a channel with zero error) has finally been

2

Encoder Channel Decoder

u

u1 u2... uK

x

x1 x2... xN

y

y1 y2... yN

û

û1 û2... ûK

R = K
N

PB = Pr {û 6= u}

Figure 1.2: Channel coding block diagram

achieved but just in some particular cases with irregular LDPC codes [10]
only for special binary erasure channel (BEC)s.
Polar codes were introduced by Arikan in 2009 in [1]. They are the first
class of error correcting codes that provably achieve the capacity of any
symmetric binary-input discrete memoryless channel (B-DMC) with a very
efficient encoding and decoding algorithms using the technique of channel
polarization. We will discuss different aspects of polar codes in the following
chapters.
I developed my Master’s Thesis at DLR (German Aerospace Center) situated
in Oberpfaffenhofen, Munich (Germany), at the Institute of Communication
and Navigation, Department of Satellite Networks, under the supervision
of Dr. Ing. Gianluigi Liva, Dr. Ing. Balazs Matuz and M.Sc. Thomas
Jerkovits. During this research activity at DLR I had the possibility to
study and work on polar codes. In particular my main purposes were:

• the development of a Matlab/C++ simulator for the SC decoder.

• The development of a further Matlab simulator for an enhanced version
of the SC decoder, the SCL decoder.

• The usage of a concatenation scheme of the polar code with an outer
code to improve the minimum distance and the performances.

• The presentation of a new analysis tool for determining the frozen bit
positions for an AWGN channel.

• Investigate the importance of using different approximations of the J-
function to decide the best frozen bits positions for the transmission of
data.

3

1. Introduction

The thesis is organized as follows. Section 2.1 will give some general infor-
mation about polar codes. In Section 2.2 we will speak on how the process
of channel polarization could permit to achieve capacity. In Section 2.3 we
will focus on polar coding algorithms while in Section 2.4 we will make an
example of channel polarization for BEC. After that, in Section 3.1 and
Section 3.2 we will explain two decoding algorithms for the simulations that
have been put in place during my thesis: SC and SCL decoding algorithms.
Section 3.3 will show a description of SCL implementation with an improve-
ment using the concatenation of a cyclic redundancy check (CRC) and a
polar code. Then, in Section 4.1 we will describe a novel analysis tool for
computing and choosing the channels for transmitting information on the
AWGN channel. In Section 4.2 we will demonstrate the importance of the
J-function for choosing the channels, making some comparisons between two
different approximations. Whereupon, Chapter 5 will show some compar-
isons with state of the art results. Finally, in Chapter 6 we will give some
conclusions about our work on polar codes and provide some possible future
works.

4

Chapter 2

Introduction to polar codes

2.1 Preliminaries and notations

Binary discrete memoryless channels (B-DMC) are an important class of
channels studied in information theory and an important example of this
kind of channels is the BEC, which will be considered for illustrative pur-
poses in the next chapters. The main idea of polar codes is to construct
from N independent copies of a (B-DMC) W, a new set of N channels W (i)

N ,
with 1 ≤ i ≤ N , using a linear transformation. The more N increases, the
more these new channels W (i)

N are polarized (we will describe the concept
of polarization in the Section 2.2). In this thesis we write W : X → Y
to denote a generic binary discrete memoryless channel (B-DMC) with in-
put alphabet X , output alphabet Y and transition probabilities W (y|x),
x ∈ X , y ∈ Y . Considering a BEC, the input alphabet X will always be
a binary input {0, 1} while Y and the transition probabilities may be arbi-
trary. We write WN to denote the channel corresponding to N independent
uses of W; therefore, WN : XN → YN with WN

(
yN1 |xN1

)
= ∏N

i=1 W (yi|xi).
Let yN1 = (y1, y2, . . . , yN) be the observations of the outputs bits xN1 =
(x1, x2, . . . , xN) through N copies of the channel W where the input bits
are uN1 = (u1, u2, . . . , uN).
Given a B-DMC W, we can now define the mutual information.

5

2. Introduction to polar codes

Definition 2. The mutual information of a B-DMC with input alphabet
X = {0, 1} is defined as

I(W) , I(X;Y) =
∑
y∈Y

∑
x∈X

1
2W (y|x) log W (y|x)

1
2W (y|0) + 1

2W (y|1) , (2.1)

where X and Y are two discrete random variables corresponding to input
and output, respectively, and W (y|x) is the channel transition probability for
x ∈ X and y ∈ Y.

The symmetric capacity I(W) equals the Shannon capacity when W is a
symmetric channel, e.g. BEC.
In this thesis we will use log = log2, ⊕ represents mod-2 sum, the binary
field is GF(2), I(W) takes values in [0,1], n is a positive integer and N = 2n.
In the following chapters we will use the following notations.

Definition 3. For matrices A = {ai,j} and B = {bi,j} , A⊗B represent the
Kronecker product defined as

A⊗B ,


a1,1B a1,2B · · ·
a2,1B a2,2B · · ·
...

 . (2.2)

Definition 4. The N×N reverse shuffle permutation matrix RN is given by

(s1, s2, . . . , sN)RN = (s1, s3, . . . , sN−1, s2, s4, . . . , sN) (2.3)

Definition 5. The N×N bit reversal permutation matrix BN can be defined
recursively with RN as

BN = RN

BN/2 0
0 BN/2

 = RN(I2 ⊗BN/2), (2.4)

6

2.1 Preliminaries and notations

with identity matrix I2 and B2 = I2. We will also use the notation aN1

for denoting a row vector (a1, . . . , aN). Given such a vector aN1 , we write aji ,
1 ≤ i, j ≤ N, to denote the subvector (ai, . . . , aj).

7

2. Introduction to polar codes

2.2 Channel polarization

Channel polarization is a new elegant effect observed by Arikan in [1]. It
is an operation by which one yields, from N independent copies of a given
B-DMC WN , a second set of N channels W (i)

N , with 1 ≤ i ≤ N that show a
polarization effect. He shows that for any B-DMC W, the channels

{
W

(i)
N

}
polarize in the sense that the fraction of channels such that I(W (i)

N) tend to
be 1 goes to I(W) while the fraction of channels such that I(W (i)

N) tend to
be 0 goes to 1− I(W), as N →∞.
Restrict now our attention on BEC where xN1 = cN1 . Initially, we have to
combine copies of a given B-DMC W in a recursive manner to produce a
vector channel WN : XN −→ YN , where N = 2n, n ≥ 0. At the 0th level of
the recursion (n = 0), we have only one copy of W and we set W1 , W . The
first level (n = 1) of the recursion combines two copies ofW1 for obtaining the
channel W2: X 2 −→ Y2, as shown in Figure 2.1 with transition probabilities

W2(y2
1|u2

1) = W (y1|u1 ⊕ u2)W (y2|u2). (2.5)

In the second level (n = 2) we obtain W4: X 4 −→ Y4 from two copies of W2

as shown in Figure 2.2. In this case the transition probabilities is

W4(y4
1|u4

1) = W2(y2
1|u1 ⊕ u2, u3 ⊕ u4)W2(y4

3|u2, u4). (2.6)

The mapping u4
1 7→ x4

1 from the input of W4 to the input of W 4 can be
written as x4

1 = u4
1G4 whereGN is the generator matrix. Hence, we obtain the

relation W4(y4
1|u4

1) = W 4(y4
1|u4

1G4) between the two transition probabilities.

u1
x1

u2
x2

W

W

y1

y2

W2

Figure 2.1: The channel W2.

8

2.2 Channel polarization

The general mapping uN1 7→ xN1 can be written by induction and it may
be represented by GN so that xN1 = uN1 GN and the transition probabilities
of the two channels WN and WN are related by

WN(yN1 |uN1) = WN(yN1 |uN1 GN) (2.7)

for all yN1 ∈ YN , uN1 ∈ XN whereWN(yN1 |uN1 GN) is the vector channel which
contains the transformation.

u1

u2

u3

u4

W

W

y1

y2

x1

x2

W2

W

W

y3

y4

x3

x4

W2

W4

Figure 2.2: The channel W4 and its relation to W2 and W .

9

2. Introduction to polar codes

2.3 Encoding

An (N,K) polar code is a block code with K input bits and N output bits.
The polar transform of size N is defined as

GN , BN

1 0
1 1

⊗n = BNG
⊗n
2 , (2.8)

where

G2 ,

1 0
1 1

 . (2.9)

GN is called generator matrix of size N ×N . Its input is a row vector uN1
denoted as uN1 = (u1, u2, . . . , uN), including the frozen bits and the output
is a row vector xN1 denoted as xN1 = (x1, x2, . . . , xN). The main idea of
the transformation in the polar encoder is to create a set of channels with
capacity C → 1 for N → ∞ and put the information bits into these ones
since these channels are almost free of noise; the remaining N − K frozen
bits are transmitted in the noisy channels with C → 0 and they are known
at the transmitter and receiver (usually are fixed to 0’s). Then the codeword
xN1 = uN1 GN is transmitted over the channel W and we obtain yN1 = xN1 +zN1 ,
where z is the noise introduced by the channel. The encoding of 2 bits is
shown in Figure 2.3 where, using the notation introduced before, x2

1 = u2
1G2,

i.e. (x1, x2) = (u1, u2) ·
1 0
1 1

. We have x1 = (u1 ⊕ u2) and x2 = u2.

u1

u2

x1

x2

G2

Figure 2.3: Graph of G2

10

2.3 Encoding

Example 1.1. For encoding N = 4 bits we need to use the matrix G4. We
obtain x4

1 = u4
1G4 where

G4 =


1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

.

In this case we have x1 = (u1⊕u2⊕u3⊕u4), x2 = (u3⊕u4), x3 = (u2⊕u4)
and x4 = u4. Figure 2.4 shows the main block of our polar encoding scheme;
it has two different type of nodes: check node (CN)s and variable node (VN)s.
These particular nodes are the same used for low density parity check (LDPC)
codes. For the CN the output bit is XOR between the two input bits while
for VN the output bit is the repetition of the input bit, as we can see from
the examples above.

CN

V N

Figure 2.4: Main polar code block with a CN and a VN

u1

u2

u3

u4

x1

x2

x3

x4

Figure 2.5: Encoding scheme for N=4

11

2. Introduction to polar codes

Example 1.2. For encoding N = 8 bits we use G8 and we have x8
1 = u8

1G8

where

G8 =



1 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0
1 0 1 0 1 0 1 0
1 1 0 0 0 0 0 0
1 1 0 0 1 1 0 0
1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1



.

Figure 2.5 and Figure 2.6 show the encoding scheme forN = 4 andN = 8,
respectively.

u1

u2

u3

u4

u5

u6

u7

u8

x1

x2

x3

x4

x5

x6

x7

x8

Figure 2.6: Encoding scheme for N=8

From [9] it can be demonstrated that various recursive definitions of GN

12

2.3 Encoding

could be useful for different representations. In our case of study we used

GN = (IN/2 ⊗G2)RN(I2 ⊗GN/2). (2.10)

If we use the recursive formula (2.10) we finally obtain the Figure 2.7, that
is a generalization of Figure 2.5 and Figure 2.6 for N bits. It shows that
computing xN1 = uN1 GN is equivalent to use a diagram with N/2 copies of
G2-butterfly section such in Figure 2.3 and two copies of GN/2. The block
RN in Definition 2.3 is a reverse shuffle permutation matrix where the odd-
numbered inputs are copied in the first N/2 outputs while the even-numbered
inputs are copied to its last N/2 outputs. Let χE(N) the complexity of uN1 GN .
If we assume the complexity of mod-2 sum as one unit and the complexity of
RN as N units, we see from Figure 2.7 that computation of uN1 GN reduces to
N/2 times the mod-2 sum, the complexity of RN and two times computing
GN/2 thus χE(N) ≤ N/2 + N + 2χE(N/2). Starting from χE(2) = 2, by
induction we obtain that χE(N) ≤ 3

2N logN for all N = 2n. Thus, the
encoding complexity is O(N logN).

RN

GN/2

GN/2

GN

u1

u2

uN/2−1

uN/2

uN/2+1

uN/2+2

uN−1

uN

x1

x2

xN/2−1

xN/2

xN/2+1

xN/2+2

xN−1

xN

. .

. .

.

.

.

.

. .

. .

.

.

.

.

. .

. .

.

.

.

.

u . (IN/2 ⊗G2) . RN
. (I2 ⊗GN/2) = x

Figure 2.7: Recursive construction of GN from two copies of GN/2

13

2. Introduction to polar codes

2.4 BEC as a special case

The BEC is a symmetric channel illustrated in Figure 2.8 where ε is the
erasure probability, which indicates the probability of erasure. The receiver
either receives the bit or it receives a symbol "?", that represents that the bit
was erased. For channels with input-output symmetry, the capacity is given
by

C = max
p(x)

I(X;Y) (2.11)

and, for the BEC channel C = 1− ε.

0

1

0

?

1

1− ε

ε

ε

1− ε

Figure 2.8: BEC

Arikan demonstrated that if W is a BEC, the numbers
{
I(W (i)

N)
}
could

be computed using the recursive relations

I(W (2i−1)
N) = I(W (i)

N/2)
2 (2.12)

I(W (2i)
N) = 2I(W (i)

N/2)− I(W (i)
N/2)

2 (2.13)

where I(W (1)
1) = 1 − ε. This transformation means that two independent

BECs are transformed into two polarized channels W− and W+, which we
call the "bad" and the "good" channels respectively. Further, an important

14

2.4 BEC as a special case

property is the conservation of the mutual information, i.e. the sum capaci-
ties of two channels is unchanged, namely I(W−) + I(W+) = 2I(W).
Example 1.3. Let’s take ε = 0.5. We obtain C = 1−ε = 1−0.5 = 0.5 = I(W).
Since we have two recursive formulas (2.12) and (2.13), for I(W) = 0.5
we compute I(W+) = 2I(W) − I(W)2 = 0.75 and I(W−) = I(W)2 =
0.25 and we illustrated that, after the first step W is split into a "good"
W+ and a "bad" W− and the sum of capacities is still preserved indeed
I(W−)+I(W+) = 2I(W) = 0.25+0.75 = 2 · 0.5 = 1. For the second step, we
obtain I(W−−) = I(W−)2 = 0.0625, I(W−+) = 2I(W−)− I(W−)2 = 0.4375
and I(W+−) = I(W+)2 = 0.5625, I(W++) = 2I(W+) − I(W+)2 = 0.9375
and so on for the following steps. This behavior can be seen in the Figure
2.9. By recursively applying such polarization transformation over the re-
sulting channels, the result is that "the good ones get better and the bad
ones get worse". This channel polarization evolution is shown in Figure 2.10
for N = 210. Observing the evolution of channels, we find that the capacities
of most of the new channels tend to either 1, i.e. no noise on BEC, or 0.
Similarly, the error probability of the bad channels or good channels go to 0
or 1. Therefore, the principal idea of polar coding is putting the information
bits on those "good" channels whose capacity tend to be 1 and the frozen bits
on the "bad" ones.

15

2. Introduction to polar codes

0 1 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I(W)=0.5

I(W+) = 0.75

I(W−) = 0.25

I(W++) = 0.9375

I(W+−) = 0.5625

I(W−+) = 0.4375

I(W−−) = 0.0625
Small Comment, γ2

a

Channel index

M
ut

ua
lI

nf
or

m
at

io
n

1
Figure 2.9: Evolution of channel polarization for N=4.

16

2.4 BEC as a special case

Channel index
0 1 2 3 4 5 6 7 8 9 10

M
ut

ua
l I

nf
or

m
at

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.10: Evolution of channel polarization for N=1024.

17

2. Introduction to polar codes

18

Chapter 3

Polar decoding

3.1 Successive Cancellation decoder

Consider the recursive SC decoder for a polar transform of lengthN described
in [1], with N = 2n. The SC decoder generates an estimate ûi of ui by
observing the channel output yN1 and using all past decisions ûi−1

1 . If ui is
a frozen bit, the decoder fixes ûi to its known value (usually 0). If ui is an
information bit, the decoder waits to estimate all the previous bits and then
it may compute one of the three different types of metrics:

• log-likelihood ratio (LLR) where

L
(i)
N (yN1 , ûi−1

1) = ln
W (i)

N (yN1 , ûi−1
1 |ui = 0)

W
(i)
N (yN1 , ûi−1

1 |ui = 1)

 ; (3.1)

• likelihood ratio (LR) where

LR(yN1 , ûi−1
1) =

W (i)
N (yN1 , ûi−1

1 |ui = 0)
W

(i)
N (yN1 , ûi−1

1 |ui = 1)

 ; (3.2)

19

3. Polar decoding

• log-likelihood (LL) where

LL(yN1 , ûi−1
1) =

[
ln
(
W

(i)
N (yN1 , ûi−1

1 |ui = 0)
)
, ln

(
W

(i)
N (yN1 , ûi−1

1 |ui = 1)
)]
.

(3.3)

For reducing the numerical instability due to different type of computations,
we used the LLR metric of (3.1) but we could obtain the same performances
using either (3.2) or (3.3). For W being an binary AWGN channel, its tran-
sition probabilities are given in Definition 1. Hence, for any output yi the
corresponding channel LLR is

Li , ln
[
P (yi|0)
P (yi|1)

]
= ln

 1
σn
√

2π exp(− (y−1)2

2σ2
n

))
1

σn
√

2π exp(− (y+1)2

2σ2
n

)

 = 2
σ2
n

yi. (3.4)

Since yi is normally distributed with mean 1 and variance σ2
n, then L

(i)
N = 2y

σ2
n

is a normally distributed variable with mean 2/σ2
n and variance 4/σ2

n. In
order to calculate each L

(i)
N , the LLRs are combined through the stages of

a decoding graph containing nodes of two types, as we described in the
previous sections. The SC decoding algorithm essentially follows the same
encoder diagram of Figure 2.5 using decoding operations. The LLRs evolve
in the reverse direction from right to left, using a pair of LLR transformation
equations. Then the decisions of the bits are made at the left end of the
circuit and transmitted to the rest of the circuit. In polar code, each node
has two input LLRs which we denote by L(1)

1 and L(2)
1 as in Figure 3.1 and

two output LLR which we denote by L
(1)
2 and L

(2)
2 . From the context of

LDPC decoding [11] adapted to our example of Figure 3.1, we can use the
formulation

L
(1)
2 = 2 tanh−1

(
tanh

(1
2L

(1)
1

)
· tanh

(1
2L

(2)
1

))
(3.5)

and
L

(2)
2 = L

(1)
1 + L

(2)
1 (3.6)

for computing the LLRs with inputs L(1)
1 and L(2)

1 . (3.5) may be rewritten as

L
(1)
2 = α

(1)
1 α

(2)
1 ·φ

(
φ(β(1)

1) ·φ(β(2)
1)

)
(3.7)

20

3.1 Successive Cancellation decoder

where
α

(j)
i = sign(L(j)

i)

β
(j)
i = |L(j)

i |

and
φ(x) = − ln[tanh(x/2)] = ln

(
ex + 1
ex − 1

)
. (3.8)

φ(x) is shown in Figure 3.2. For reducing the complexity of (3.7), it may be
approximated with

L
(1)
2 = α

(1)
1 α

(2)
1 · min[β(1)

1 , β
(2)
1]. (3.9)

L
(1)
2

L
(2)
2

L
(1)
1

L
(2)
1

Figure 3.1: Example of CN and VN operations with N=2

All these formulas can be used in CN and VN of our polar SC decoder.
In our SC decoding implementations, a LLR for the i-th bit is calculated
recursively as

L
(2i−1)
N (yN1 , û2i−2

1)

= sign(L(i)
N/2(y

N/2
1 , û2i−2

1,e ⊕ û2i−2
1,o))sign(L(i)

N/2(y
N
N/2+1, û

2i−2
1,e)) ·

φ
[
φ
(
|L(i)

N/2(y
N/2
1 , û2i−2

1,e ⊕ û2i−2
1,o)|

)
·φ
(
|L(i)

N/2(y
N
N/2+1, û

2i−2
1,e)|

)] (3.10)

L
(2i)
N (yN1 , û2i−1

1) = (−1)û2i−1L
(i)
N/2(y

N/2
1 , û2i−2

1,e ⊕ û2i−2
1,o)

+ L
(i)
N/2(y

N
N/2+1, û

2i−2
1,e)

(3.11)

where ûi1,e and ûi1,o are subvectors of ûi1 with even and odd indices, respec-
tively and L(i)

1 (yi) = ln
[
P (yi|0)
P (yi|1)

]
.

Our Matlab and C++ implementations of the SC decoder used formulas
(3.10) and (3.11). SC decoder computes stage by stage the necessary formulas
and sequentially decides the estimation bit by bit. Thus, for i = 1, 2, . . . , N ,

21

3. Polar decoding

x
0 1 2 3 4 5 6

φ
(x

)

0

1

2

3

4

5

6

Figure 3.2: The φ function

if ui is frozen, set ûi = 0 else generates a decision as:

ûi =

0, if L(i)
N > 0

1, otherwise.
(3.12)

To clarify, we describe the decoding procedure for N = 4 following the
Figure 3.3. At first, the decoder activates node 1 to decide the value of û1;
node 1 needs the LLRs at nodes 5 and 7 so it activates the two branches on
its right. We call them L

(1)
1 and L

(1)
3 respectively using the notations L(j)

i

where i indicates the stage and j the level, with 1 ≤ i ≤ N and 1 ≤ j ≤ n.
Then, nodes 5 and 7 need the values of L1, L2, L3 and L4 from the right
branches, respectively. Therefore, LLRs at node 5 and 7 are computed using
formula (3.10) and from them, LLR at node 1 (L(2)

1) is calculated using the
same formula since it is a CN. Now the decoder can finally decide the value of

22

3.1 Successive Cancellation decoder

û1

û2

û3

û4

1

2

3

4

L1

L2

L3

L4

5

6

7

8

Figure 3.3: Polar decoder process for N = 4

û1 on the basis of (3.12). For computing LLR at node 2, this node activates
nodes 5 and 7 and uses the formula (3.11) on the basis of the previous values
already computed. For instance if û1 = 0 we obtain L

(2)
2 = L

(1)
3 + L

(1)
1

because LLR at node 1 becomes +∞ according to hard decision in (3.1), i.e.
L = ln(1/0)→ +∞; CN make the operation between it and LLR at node 5
and the result flows down to VN where we do the operation with LLR at node
7. Otherwise if û1 = 1 we have L = ln(0/1) → −∞ and L(2)

2 = L
(1)
3 − L

(1)
1

and it decides û2 using always (3.12). Therefore, we have decided û2 using
the previous value of û1. Estimating û1 and û2 update the estimated bits
at nodes 5 and 7. To estimate û3, we activate nodes 6 and 8 and the LLRs
are computed using the values of L1, L2, L3 and L4 alongside the status of
nodes 5 and 7, as previously described. In fact, node 5 determines whether
the LLR L2 should be combined with +L1 or −L1 for computing L(1)

2 ; the
same concept is used for L(1)

4 . Finally, from nodes 6 and 8 we compute L(2)
3 at

node 3 using the formula for the CN and we decide û3; then, û4 is estimating
on the basis of û3 (L(2)

4) and the decoding procedure is completed. Since
the SC algorithm follows the same encoder diagram, the complexity of the
SC decoder is the same as encoder namely O(N logN). We will show some
performances of SC decoding algorithms in terms of frame error rate (FER)
vs Eb/N0 compared with performances of literature in Chapter 5.

23

3. Polar decoding

3.2 Successive Cancellation List decoder

In this section we want to explain a SCL decoder for polar codes, introduced
in [13]. Polar codes have some beautiful properties such as a low encoding and
decoding complexity (O(N logN)) and a recursive structure that makes them
fit for hardware implementations [7]. Although polar codes have beautiful
properties, studies indicate that for short and moderate block lengths, SC
decoding of polar codes does not perform as well as turbo codes or LDPC
codes. Tal and Vardy in [13] proposed an improvement to the SC decoder of
[1]: a SCL decoder. The SCL decoder utilizes a parameter L, called the list
size. As in [1], it decodes the input bits successively one-by-one; the idea of
list decoding was already applied in [5] to Reed-Muller codes. A SCL decoder
keeps track of several decoding results instead of just one, in fact for L = 1
we obtain the SC again. Instead of deciding to set the value of ui, it takes
both options. Since for each information bit it splits the decoding path into
two new paths (one ends with "0" and the other ends in "1"), we must prune
them and the maximum number of paths allowed is the list size L. In order
to keep the best paths at each stage, the pruning criterion will be to keep
the most likely paths.

Let us try now to make an example for L = 4 and following Figure 3.4.
We assume N = 4 and all bits are unfrozen. In (a) the decoding algorithm
starts and the first bit can be either 0 or 1. In the second step (b) the second
bit assumes either 0 or 1 thus the the possible words are {00, 01, 10, 11} but
the number of paths is not greater than L = 4 so we don’t need to prune, yet.
(c) shows the all possible options for the first, second and third bit but now
the paths are 8 so we must keep track of only the L = 4 most likely paths.
(d) shows that we keep only the words {010, 011, 100, 111}. Decoding list
algorithm continues for the fourth bit in (e); however, the paths are 8 which
is too much so it prunes for the best L = 4 paths in (f). Finally, the decoding
algorithm terminates and we obtain the codewords {0100, 0110, 0111, 1111}.
The performance of SCL decoding is very close to that of maximum-likelihood
decoding even for moderate values of the list size. The parameter L is always
a power of two and [13] shows the list decoding performance from L = 2 to

24

3.2 Successive Cancellation List decoder

L = 256 for various N sizes. Unfortunately, the performances of polar codes
are in general worse than turbo and LDPC codes of similar length. However,
they noted that the transmitted codeword is not the most likely codeword
but it is on the list that the decoder generates. Thus, the performance could
be gained using an additional CRC. Using both CRC and SCL decoder, they
discovered that the performance are comparable to state of the art LDPC
and turbo codes. They designed an efficient implementation of SCL decoding
algorithm that runs in time O(LN logN).

0 1

(a)

0 1

0 1 0 1

(b)

0 1

0 1 0 1

0 1 0 1 0 1 0 1

(c)

0 1

0 1 0 1

0 1 0 1 0 1 0 1

(d)

0 1

0 1 0 1

0 1 0 1 0 1 0 1

01 01 01 01

(e)

0 1

0 1 0 1

0 1 0 1 0 1 0 1

01 01 01 01

(f)

Figure 3.4: Evolution of decoding paths for L = 4

25

3. Polar decoding

3.3 SCL implementation

In this section we want to describe our implementation of the SCL decoder. A
high level description of the SCL decoding algorithm is given in Algorithm1.
Let the polar code under consideration have length N with K information
bits and N −K frozen bits. The information bit vector uN1 has length N and
it includes the frozen bits. In words, for each bit i = 1, 2, . . . , N , we must cal-
culate the pair of log-likelihoods ln[W (i)

N (yN1 , ûi−1
1 |0)] and ln[W (i)

N (yN1 , ûi−1
1 |1)],

which correspond to the same channel operations defined above in formula
(3.3). Then, if ui is an information bit we must double the path, as shown
in Figure 3.4. After that, we apply the SC decoding algorithm for each
path and we collect the different pair of probabilities corresponding to each
path. Since in this case we have moved to the LL domain, the CN and VN
operations in the SC algorithm changed.

CN

[p0a, p
1
a] [p0b , p

1
b]

[p̃0c , p̃
1
c]

(a)

VN

[p0a, p
1
a] [p0b , p

1
b]

[p̃0c , p̃
1
c]

(b)

Figure 3.5: Example of CN and VN

Let’s take a and b two bits and p0
a and p1

a are the probability that bit a is
0 and 1, respectively. Furthermore we call p̃0

a = ln(p0
a) and p̃1

a = ln(p1
a) where

−∞ < p̃0
a ≤ 0. After these assumptions, we can define

p̃0
c = max∗(p̃0

a + p̃0
b , p̃

1
a + p̃1

b)

p̃1
c = max∗(p̃0

a + p̃1
b , p̃

1
a + p̃0

b)
(3.13)

26

3.3 SCL implementation

and
p̃0
c = p̃0

a + p̃0
b

p̃1
c = p̃1

a + p̃1
b

(3.14)

for the CN and VN operations, respectively. The bit c is the output bit while
a and b are the input bits as shown in Figure 3.5. The max∗ operator is also
known as the Jacobian logarithm. The operator is defined as follows

max∗(x, y) = ln(ex + ey)

= max(x, y) + ln
(
1 + e−|x−y|

)
.

(3.15)

Following the Algorithm 1, we have to check the number of paths; if they are
more than 2 ·L, we must prune them and take only the L most likely paths
as shown in Figure 3.4d. Namely we take only the higher probabilities and
we continue to double the paths as depicted in Figure 3.4e. At the end of
Algorithm 1, we have L possible information bits vector û and we decide for
the most likely one. Unfortunately, our first straightforward implementation
of the SCL decoder is not efficient as Tal Vardy one but as we will see in
Chapter 5, the results are the same of literature.
Furthermore, we can do much better. We have observed in simulations that
usually the transmitted vector uN1 is on the list we generate, but unfortu-
nately it is not the most likely word on the list so it is not selected from the
decoder. We employed the concatenation of two codes: a CRC code as outer
code for detecting the correct vector and for increasing the minimum distance
of the concatenated code between codewords and a polar code as inner code.
Recall that we have K information bits; instead of setting all of them, for
some constant p, we set the first K − p bits to information bits while the
last p bits will be the parity bits of our CRC (we used an extended Ham-
ming code(64,57)). Note that using this approach the code rate is lowered
and is given by (K − p)/N . Therefore, we changed Algorithm 1 as follows:
a path for which the corresponding codeword is not a possible codeword of
the extended Hamming code can not correspond to the transmitted vector
uN1 . Thus, if at least one path correspond to a possible codeword, we remove
from the list all the invalid paths and we choose the most likely one from
the remained paths. Otherwise, we select the most likely path as in SCL

27

3. Polar decoding

decoding algorithm. We will see the results of this improvement in Chapter
5.

Algorithm 1 High level description of the SCL decoder
Input: the received vector y and list size L
Output: a decoded vector û

for i = 1, 2, . . . , N do
calculate ln[W (i)

N (yN1 , ûi−1
1 |0)] and ln[W (i)

N (yN1 , ûi−1
1 |1)]

if ui is an information bit then
double each path
for j = 1 : Number of paths do
apply SC decoder to each possible path
and collect the probabilities
end for
if Number of paths≥ 2 ·L then
take only the L best paths i.e. paths with
highest likelihoods and prune the other paths
end if

else
set ûi to the frozen value of ui

end if
end for

Encoding and mapping each surviving path.
Take the most likely û.

28

Chapter 4

Channel polarization for
AWGN

4.1 Analysis tool for AWGN channel polar-
ization

In this section we propose and describe a novel analysis tool for computing
the mutual information of channels through the transmission on an AWGN
channel. This channel is the most popular channel in the field of commu-
nications and it is considered a suitable model for many applications such
as satellite and deep space communications. The main idea was to use the
extrinsic information transfer (EXIT) chart technique. EXIT charts are most
used to evaluate performance of any iterative decoder and it can be used in
any type of iterative decoding including LDPC codes, as described in [11].
We use the notation of [15]. An a posteriori probability (APP) decoder con-
verts channel and a priori LLRs into a posteriori LLRs. The a posteriori
LLRs minus the a priori LLRs are the extrinsic LLRs, which are passed
on and interpreted as a priori information. An EXIT chart characterizes
the operation of a decoder; we write IA for the average mutual information
between the bits on the decoder graph edges and the a priori LLRs. Like-
wise, we write IE for the average mutual information between the bits on the

29

4. Channel polarization for AWGN

decoder graph edges and the extrinsic LLRs. Consider the AWGN channel
with binary phase shift keying (BPSK) modulation and noise variance σ2

n.
We define the normalized signal-to-noise ratio (SNR) as Eb/N0 = 1/(2Rσ2

n).
The channel LLR is Li = log [P (y|x = +1)/P (y|x = −1)] = 2y/σ2

n as de-
fined before, where P (y|x) is the channel conditional probability density
function evaluated at the output y given the input x. The variance of Li
is σ2

ch = 4
σ2
n

= 8REb
N0

. For the CNs and VNs the respective extrinsic mutual
information can be computed using the recursive relations

I(W (2i−1)
N) = 1− J

(√
2 ·
[
J−1

(
1− I(W (i)

N/2)
)]2)

(4.1)

I(W (2i)
N) = J

(√
2 ·
[
J−1

(
I(W (i)

N/2)
)]2)

(4.2)

for the CNs and VNs, respectively, as in [15]. I(W (1)
1) =

√
8R(Eb/N0). The

functions J(·) and J−1(·) will be discuss in the next section. Figure 4.1
shows a little example of using the recursive formulas (4.1) and (4.2). It is
numerically verified that the property of sum capacity is still valid.

This evolution for N = 1024 is shown in Figure 4.2. Furthermore, we
can see from the plots below the channel polarization of our new tool; for
example we take a bit channel with C = 0.7 and we compute the polar
transformation. Histogram in Figure 4.3 indicates that for N = 210 we have
∼ 20% of the channels with capacity 0 and ∼ 58% of the channels with
capacity 1. If N increases, we can view from Figure 4.4 that for N = 220 we
have ∼ 28% of the channels with capacity 0 and ∼ 67% of the channels with
capacity 1. Thus, for N → ∞, we will obtain 1 − C = 30% of the channels
with capacity 0 and C = 70% of the channels with capacity 1; it satisfies
the channel polarization theorem of Arikan. The same results with N = 210

could be shown from another point of view in Figure 4.5.

30

4.1 Analysis tool for AWGN channel polarization

0 1 20

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u1

I(W)=0.5

I(W+) = 0.7364

I(W−) = 0.2636

I(W++) = 0.9212

I(W+−) = 0.5519

I(W−+) = 0.4481

I(W−−) = 0.0788

Small Comment, γ2
a

Channel index

M
ut

ua
lI

nf
or

m
at

io
n

1
Figure 4.1: Evolution of channel polarization in an AWGN channel for N=4

31

4. Channel polarization for AWGN

Channel index
0 1 2 3 4 5 6 7 8 9 10

M
ut

ua
l I

nf
or

m
at

io
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.2: Evolution of channel polarization for N=1024 on an AWGN
channel

32

4.1 Analysis tool for AWGN channel polarization

Symmetric capacity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 c
ha

nn
el

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.3: Capacity histogram for N = 210 = 1024 channels

33

4. Channel polarization for AWGN

Symmetric capacity
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
ra

ct
io

n
of

 c
ha

nn
el

s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.4: Capacity histogram for N = 220 = 1048576 channels

34

4.1 Analysis tool for AWGN channel polarization

channel index
0 200 400 600 800 1000

M
ut

ua
l i

nf
or

m
at

io
n

0

0.2

0.4

0.6

0.8

1

Figure 4.5: Mutual information evolution for N = 210 = 1024 channels

35

4. Channel polarization for AWGN

4.2 Importance of J-function for channel se-
lection

In this section we compare two approximations of the J-function and its in-
verse used in [3] and [15]. We illustrate that using dissimilar approximations
involves a very different behaviour in the selection of channels used for the
transmission of information bits. Besides, performance of polar code is sen-
sitive to the choice of channels, as we will show in Table 4.1 and in Chapter
5. Consider Y = X + Z is Gaussian with mean µX, P (X = ±1) = 1/2
and Z ∼ N (0, σ2

n). The Li is a function of y and we write it as Li(y). Re-
member that Li(Y) conditioned on X is Gaussian with Li(Y) ∼ N (µch, σ2

ch)
where µch = 2/σ2

n and σ2
ch = 4/σ2

n. Define J(σch) be the mutual information
I(X;Li(Y)). We have

J(σch) , H(X)−H(X|Li(Y))

= 1− 1√
2πσ2

ch

∫ ∞
−∞

e
−

(ξ−σ2
ch
/2)2

2σ2
ch log2(1 + e−ξ) dξ

(4.3)

where J(·) is defined as [14]. In the formula above, H(X) is the entropy
of X and H(X|Li(Y)) is the entropy of X conditioned on Li(Y). Note that
I(X;Li(Y)) is the same as I(X;Y). The capacity of our Y = X+N channel
is, therefore, J(σch) = J(2/σn).
We compared two different closed forms for J(·) and its inverse from liter-
ature. From [15], the approximation of J(·) is split into two intervals with
σ∗ = 1.6363 and we obtain

J(σ) ≈


aJ,1σ

3 + bJ,1σ
2 + cJ,1σ, 0 ≤ σ ≤ σ∗

1− exp(aJ,2σ3 + bJ,2σ
2 + cJ,2σ + dJ,2), σ∗ < σ < 10

1, σ ≥ 10

(4.4)

where aJ,1 = −0.0421061, bJ,1 = 0.209252, cJ,1 = −0.00640081, aJ,2 =
0.00181491, bJ,2 = −0.142675, cJ,2 = −0.0822054, dJ,2 = 0.0549608.

36

4.2 Importance of J-function for channel selection

For the inverse J(·) we used two intervals with I∗ = 0.3646 and the approx-
imation is

J−1(I) ≈

aσ,1I
2 + bσ,1I + cσ,1

√
I, 0 ≤ I ≤ I∗

−aσ,2 ln[bσ,2(1− I)]− cσ,2I, I∗ < I < 1.
(4.5)

where aσ,1 = 1.09542, bσ,1 = 0.214217, cσ,1 = 2.33727, aσ,2 = 0.706692,
bσ,2 = 0.386013, cσ,2 = −1.75017.
From [3] we obtain other two approximations:

J(σ) ≈
(
1− 2−H1σ2H2

)H3 (4.6)

and
J−1(I) ≈

(
− 1
H2

log2

(
1− I

1
H3

)) 1
2H2 (4.7)

with H1 = 0.3073, H2 = 0.8935 and H3 = 1.1064.

37

4. Channel polarization for AWGN

σ = J-1(I)

0 2 4 6 8 10 12

I =
 J

(σ
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Plot of the J(·) functions (4.4) with magenta stars and (4.6)
with blue square

38

4.2 Importance of J-function for channel selection

I = J(σ)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

σ
 =

 J
-1

(I
)

0

1

2

3

4

5

6

7

8

Figure 4.7: Plot of the inverse J(·) functions (4.5) with magenta stars and
(4.7) with blue square

From Figure 4.6 and 4.7 we can see the both cases of J(·) and its inverse,
respectively. They look very similar but if we plot the difference in magnitude
from (4.4) and (4.6) (Figure 4.8) and from (4.5) and (4.7) (Figure 4.9) they
are very different. They could be seen differences of ' 10−4 for the J(·)
and differences of ' 10−1 for the inverse J(·). These dissimilarities produce
different choices for the selection of the channels and different performances,
accordingly. The losses are shown in Table 4.1 and a particular case is Figure
4.11.

39

4. Channel polarization for AWGN

σ

0 2 4 6 8 10 12

D
iff

er
en

ce
 b

et
w

ee
n

J(
·
)

ap
pr

ox
im

at
io

ns
×10-4

-6

-4

-2

0

2

4

6

8

Figure 4.8: Difference between (4.4) and (4.6)

40

4.2 Importance of J-function for channel selection

I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
iff

er
en

ce
 b

et
w

ee
n

in
ve

rs
e

J(
·
)

ap
pr

ox
im

at
io

ns

0

0.05

0.1

0.15

0.2

Figure 4.9: Difference between (4.5) and (4.7)

Let us try now to compute recursively formulas (4.1) and (4.2) for cal-
culating the mutual information for a polar code of length N = 2048 and
rate R = 1/2. We constructed the resulting vector of the mutual information
using:

• first, J(·) and its inverse formulas (4.6) and (4.7);

• second, J(·) and its inverse formulas (4.4) and (4.5).

Then, we calculated the differences between the mutual information of the
two vectors. For instance, Figure 4.10 shows a code constructed using the
methods above designed for Eb/N0 =3dB. From this figure we can see that
the differences of mutual information are not negligible. After this step, we
sorted the two mutual information vectors and we collected the K higher
mutual information positions. Since the two vectors of K positions differ

41

4. Channel polarization for AWGN

in 134 positions, it implies that the code choose 134 different channels for
transmitting the information bits and therefore we obtain different perfor-
mances. Thus, if we compute the mutual information with the two different
approximations of J-function, we obtain the results in Table 4.1. It reports
the percentage of different channels whether we design the polar code for
different values of Eb/N0; besides, it shows the loss in dB for a FER of 10−3.

Channel indices
0 200 400 600 800 1000 1200 1400 1600 1800 2000

D
iff

er
en

ce
 o

f m
ut

ua
l i

nf
or

m
at

io
n

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

Figure 4.10: Difference of mutual information for a polar code of length
N = 2048, rate R = 1/2 and designed for Eb/N0 =3dB.

42

4.2 Importance of J-function for channel selection

design-Eb
N0

[dB]
% of different
channels (No.)

Eb
N0

[dB] target Loss [dB] at FER=10−3

1 0.1953% (4) 2.9563 0.0605

1.5 0.3906% (8) 2.8380 0.2486

2 0.6836% (14) 2.7359 0.1667

2.5 1.8555% (38) 2.6673 0.5511

3 6.5430% (134) 2.7359 1.47

3.5 14.4531% (296) 2.7507 >1.5

4 23.0468% (472) 2.8837 >1.5

Table 4.1: Loss at FER=10−3 for a polar code of length N = 2048, rate
R = 1/2, variable design-Eb/N0 and using two different approximations.

43

4. Channel polarization for AWGN

1 1.25 1.5 1.75 2 2.25 2.5 2.75 310−4

10−3

10−2

10−1

100

0.1667dB

Eb
N0

[dB]

FE
R

Approx. of [3]
Approx. of [15]

Figure 4.11: Performance of a polar code of length N = 2048, rate R = 1/2,
designed for Eb/N0 =2dB using approximations of [3] and [15].

44

4.2 Importance of J-function for channel selection

1 1.5 2 2.5 3 3.5 4 4.510−4

10−3

10−2

10−1

100

1.47dB

Eb
N0

[dB]

FE
R

Approx. of [3]
Approx. of [15]

Figure 4.12: Performance of a polar code of length N = 2048, rate R =
1/2, designed for Eb/N0 =3dB using different approximations of the J(·)
functions.

45

4. Channel polarization for AWGN

1 1.25 1.5 1.75 2 2.25 2.5 2.75 310−4

10−3

10−2

10−1

100

Eb
N0

[dB]

FE
R

(2048,1024) design 1.5dB
(2048,1024) design 2dB
(2048,1024) design 2.5dB
(2048,1024) design 3dB

Figure 4.13: Performances comparison with different design-Eb
N0

[dB] using
approximation of [3].

We report two examples: Figure 4.11 shows a performance loss of 0.1667dB
for a FER=10−3 using the two different approximations explained above
while Figure 4.12 shows a performance loss ' 1.5dB for a FER=10−3. An-
other indication of the exactness of our analysis tool is illustrated in Figure
4.13: it represents a comparison of SC decoding performances using different
design-Eb

N0
and the approximation [3]. Furthermore, it shows that the best

performances are for the Eb
N0

for which the code is designed. For instance for
Eb
N0

= 3dB, the lowest FER corresponds to the code with design-Eb
N0

= 3dB.

46

Chapter 5

Results

First we compare our FERs results with references from literature to ver-
ify our implementations. For determining the performances, we have always
used a Monte Carlo approach. Figure 5.1 shows a comparison between the re-
sult of list decoding with L = 1 from [13] (which corresponds to SC decoding)
and our simulation for a polar code of length N = 2048, rate R = 1/2 and
designed for Eb/N0 =2dB. Figure 5.2 shows the performances of a polar code
of length N = 8192 with the same characteristics as before. Furthermore, we
found other interesting results from literature with different value of design-
Eb/N0. In particular [16] shows a curve for a code of length N = 2048, rate
R = 1/2 but here it is designed for Eb/N0 =3dB; we compared the perfor-
mances in Figure 5.3. Finally, Figure 5.4 shows the performances of a polar
code under SC decoding with variable lengths, rate R = 1/2 and designed
for Eb/N0 =2dB. From this summary picture we can also understand that
the performances improve with N →∞.

47

5. Results

1 1.25 1.5 1.75 2 2.25 2.5 2.75 310−4

10−3

10−2

10−1

100

Eb
N0

[dB]

FE
R

[13] simulation
My simulation

Figure 5.1: SC decoding performance of a polar code of length N = 2048,
rate R = 1/2, designed for Eb/N0 =2dB. The square markers curve is taken
from [13] while the triangle markers one is the result of our simulation.

48

1 1.25 1.5 1.75 2 2.2510−4

10−3

10−2

10−1

100

Eb
N0

[dB]

FE
R

[13] simulation
My simulation

Figure 5.2: SC decoding performance of a polar code of length N = 8192,
rate R = 1/2, designed for Eb/N0 =2dB. The square markers curve is taken
from [13] while the triangle markers one is the result of our simulation.

49

5. Results

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.510−6

10−5

10−4

10−3

10−2

10−1

100

Eb
N0

[dB]

FE
R

[16] simulation
My simulation

Figure 5.3: SC decoding performance of a polar code of length N = 2048,
rate R = 1/2, designed for Eb/N0 =3dB. The square markers curve is taken
from [16] while the triangle markers one is the result of our simulation.

50

1.25 1.5 1.75 2 2.25 2.5 2.75 310−4

10−3

10−2

10−1

Eb
N0

[dB]

FE
R

N=16
N=64
N=256
N=1024
N=2048
N=8192

Figure 5.4: SC decoding performance of a polar code of rate R = 1/2 and
variable lengths designed for Eb/N0 =2dB.

51

5. Results

Here we report some results about our SCL implementation and the con-
catenation with the CRC. Figure 5.5 and 5.6 show the performances of our
SCL decoder simulator. In particular Figure 5.5 depicts the comparison be-
tween the CCSDS standard (128,64) binary protograph LDPC code used for
deep space applications [4] and our (128,64) polar code for variable list sizes.
The (128,64) polar code is worse than LDPC if we use only the SC decoding
but, if we increase the list size, our performances improve. Furthermore,
we can do much better with the concatenation of two codes as explained in
Section 3.3. As can be seen from Figure 5.6, where we used an extended
Hamming code (64,57) as a CRC, the resulting FER using an SCL inner
code and CRC outer code outperforms both the only SCL decoding and the
binary protograph LDPC code for applications that need FER< 10−4. More-
over, we can see that the concatenation using a CRC implies a decrement
of the error floor, namely it steepens the slope of the curve even if we loose
something in terms of code rate. A summary of the gains introduced by the
only SCL decoder and using both SCL and CRC concatenation compared to
the performance of SC decoder for a FER=10−4 and for a (128,64) code is
reported in Table 5.1. From this table we can also see that with this algo-
rithm concatenation approach we can tune the tradeoff between complexity
and performance depending on the requirements. For example for a FER re-
quirement of 10−4, we obtain similar results both for list size 2 and CRC and
for list size 4 but we will probably choose the first option since the complexity
is lower.

52

2 2.5 3 3.5 4 4.5 5 5.5 610−5

10−4

10−3

10−2

10−1

Eb
N0

[dB]

FE
R

(128,64) LDPC
(128,64) PC
(128,64) PC L=2
(128,64) PC L=4

Figure 5.5: SCL decoding performances of a polar code of length N = 128,
rate R = 1/2 optimized for Eb/N0 =4.5dB for various list sizes compared
with (128,64) binary protograph LDPC code.

53

5. Results

2 2.5 3 3.5 4 4.5 5 5.5 6

10−5

10−4

10−3

10−2

10−1

Eb
N0

[dB]

FE
R

(128,64) LDPC
(128,64) PC
(128,64) PC L=2
(128,57) PC L=2 CRC7
(128,64) PC L=4
(128,57) PC L=4 CRC7

Figure 5.6: SCL decoding performance of a polar code of length N = 128,
rate R = 1/2 optimized for Eb/N0 =4.5dB for various list sizes using a further
CRC outer code.

54

Gain[dB] at FER=10−4

List=2 0.243

List=2 + CRC7 0.582

List=4 0.630

List=4 + CRC7 1.191

Table 5.1: Gains at FER=10−4 using SCL decoder and concatenation for a
(128,64) code compared to using only SC decoder.

55

5. Results

56

Chapter 6

Conclusions

In this thesis the primary concepts of polar coding are reviewed, including
channel polarization, encoding scheme and various decoding algorithms such
as SC and SCL. Furthermore, we implemented a C++ simulator that repro-
duces SC decoding results from literature. We also developed a SCL decoder
simulator that is an enhanced version of the previous one; it takes a list
of possible paths and it decides for the most likely one. It has been fur-
ther improved using a serial concatenation of a CRC and a SCL polar code,
showing that it outperforms the (128,64) binary protograph LDPC code for
applications that need FER< 10−4. The concatenation of two codes involve
a decrease of the error floor. Moreover, we introduced a novel analysis tool
for the choice of the channels for an AWGN channel, demonstrating that
channel polarization behaviour is keeping. We also investigated the impor-
tance of using different approximations of the J-function to decide the best
channels for the transmission of data and we compared two approximations
from literature, showing that polar codes are sensitive in terms of channel
selections with different performances. The results of this thesis will be sub-
mitted for presentation at an international conference. Some possible future
works could be a new polar transformation scheme that may improve the
performance, a more complex decoding concatenation scheme where, after a
fixed number of steps, we check if the list of codewords are partially correct
during the SCL algorithm and we consequently prune the incorrect paths.

57

6. Conclusions

58

List of Figures

1.1 General block diagram of a communication system 1
1.2 Channel coding block diagram 3

2.1 The channel W2. 8
2.2 The channel W4 and its relation to W2 and W 9
2.3 Graph of G2 . 10
2.4 Main polar code block with a CN and a VN 11
2.5 Encoding scheme for N=4 . 11
2.6 Encoding scheme for N=8 . 12
2.7 Recursive construction of GN from two copies of GN/2 13
2.8 BEC . 14
2.9 Evolution of channel polarization for N=4. 16
2.10 Evolution of channel polarization for N=1024. 17

3.1 Example of CN and VN operations with N=2 21
3.2 The φ function . 22
3.3 Polar decoder process for N = 4 23
3.4 Evolution of decoding paths for L = 4 25
3.5 Example of CN and VN . 26

4.1 Evolution of channel polarization in an AWGN channel for N=4 31
4.2 Evolution of channel polarization for N=1024 on an AWGN

channel . 32
4.3 Capacity histogram for N = 210 = 1024 channels 33
4.4 Capacity histogram for N = 220 = 1048576 channels 34
4.5 Mutual information evolution for N = 210 = 1024 channels . . 35

59

LIST OF FIGURES

4.6 Plot of the J(·) functions (4.4) with magenta stars and (4.6)
with blue square . 38

4.7 Plot of the inverse J(·) functions (4.5) with magenta stars and
(4.7) with blue square . 39

4.8 Difference between (4.4) and (4.6) 40
4.9 Difference between (4.5) and (4.7) 41
4.10 Difference of mutual information for a polar code of length

N = 2048, rate R = 1/2 and designed for Eb/N0 =3dB. 42
4.11 Performance of a polar code of lengthN = 2048, rate R = 1/2,

designed for Eb/N0 =2dB using approximations of [3] and [15]. 44
4.12 Performance of a polar code of lengthN = 2048, rate R = 1/2,

designed for Eb/N0 =3dB using different approximations of
the J(·) functions. 45

4.13 Performances comparison with different design-Eb
N0

[dB] using
approximation of [3]. 46

5.1 SC decoding performance of a polar code of length N = 2048,
rate R = 1/2, designed for Eb/N0 =2dB. The square markers
curve is taken from [13] while the triangle markers one is the
result of our simulation. 48

5.2 SC decoding performance of a polar code of length N = 8192,
rate R = 1/2, designed for Eb/N0 =2dB. The square markers
curve is taken from [13] while the triangle markers one is the
result of our simulation. 49

5.3 SC decoding performance of a polar code of length N = 2048,
rate R = 1/2, designed for Eb/N0 =3dB. The square markers
curve is taken from [16] while the triangle markers one is the
result of our simulation. 50

5.4 SC decoding performance of a polar code of rate R = 1/2 and
variable lengths designed for Eb/N0 =2dB. 51

5.5 SCL decoding performances of a polar code of length N = 128,
rate R = 1/2 optimized for Eb/N0 =4.5dB for various list sizes
compared with (128,64) binary protograph LDPC code. 53

60

LIST OF FIGURES

5.6 SCL decoding performance of a polar code of length N = 128,
rate R = 1/2 optimized for Eb/N0 =4.5dB for various list sizes
using a further CRC outer code. 54

61

LIST OF FIGURES

62

List of Tables

4.1 Loss at FER=10−3 for a polar code of length N = 2048, rate
R = 1/2, variable design-Eb/N0 and using two different ap-
proximations. 43

5.1 Gains at FER=10−4 using SCL decoder and concatenation for
a (128,64) code compared to using only SC decoder. 55

63

LIST OF TABLES

64

Bibliography

[1] Erdal Arikan. Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless chan-
nels. Information Theory, IEEE Transactions on, 55(7):3051–3073,
2009.

[2] Claude Berrou and Alain Glavieux. Turbo codes. Encyclopedia of
Telecommunications, 2003.

[3] Fredrik Brännström, Lars K Rasmussen, and Alex J Grant. Conver-
gence analysis and optimal scheduling for multiple concatenated codes.
Information Theory, IEEE Transactions on, 51(9):3354–3364, 2005.

[4] CCSDS. Short block length ldpc codes for tc synchronization and chan-
nel coding. http://public.ccsds.org/publications/archive/231x1o1.pdf,
2014.

[5] Ilya Dumer and Kirill Shabunov. Soft-decision decoding of reed-muller
codes: recursive lists. Information Theory, IEEE Transactions on,
52(3):1260–1266, 2006.

[6] Robert G Gallager. Low-density parity-check codes. Information The-
ory, IRE Transactions on, 8(1):21–28, 1962.

[7] Camille Leroux, Alexandre J Raymond, Gabi Sarkis, Ido Tal, Alexander
Vardy, and Warren J Gross. Hardware implementation of successive-
cancellation decoders for polar codes. Journal of Signal Processing Sys-
tems, 69(3):305–315, 2012.

[8] David JC MacKay. Information theory, inference and learning algo-
rithms. Cambridge university press, 2003.

65

BIBLIOGRAPHY

[9] Henry Pfister. A brief introduction to polar codes.
http://pfister.ee.duke.edu/courses/ecen655/polar.pdf, 2014.

[10] Thomas J Richardson, M Amin Shokrollahi, and Rüdiger L Urbanke.
Design of capacity-approaching irregular low-density parity-check codes.
Information Theory, IEEE Transactions on, 47(2):619–637, 2001.

[11] William Ryan and Shu Lin. Channel codes: classical and modern. Cam-
bridge University Press, 2009.

[12] C.E. Shannon. A Mathematical Theory of Communication. Bell System
Tech. J., 27:379–423, 623–656, 1948.

[13] Ido Tal and Alexander Vardy. List decoding of polar codes. CoRR,
abs/1206.0050, 2012.

[14] Stephan Ten Brink. Convergence behavior of iteratively decoded par-
allel concatenated codes. Communications, IEEE Transactions on,
49(10):1727–1737, 2001.

[15] Stephan Ten Brink, Gerhard Kramer, and Alexei Ashikhmin. Design of
low-density parity-check codes for modulation and detection. Commu-
nications, IEEE Transactions on, 52(4):670–678, 2004.

[16] Peter Trifonov. Efficient design and decoding of polar codes. Commu-
nications, IEEE Transactions on, 60(11):3221–3227, 2012.

66

Acknowledgements

First of all, I would like to express my gratitude to Gianluigi Liva, Balazs
Matuz and Thomas Jerkovits, who helped me a lot and they were always
available for every kind of question. The time spent with you was memo-
rable and also very funny.
I am thankful to my professors Marco Chiani and Enrico Paolini for the won-
derful opportunity to come in a fantastic and important place full of brilliant
people as DLR in Munich. This experience was unforgettable.
Thank you to all the students and people I met during my experience, we
spent a lot of funny and great time together. I hope we will meet again!
Un grazie va di sicuro anche alla mia famiglia, che mi ha supportato e moti-
vato durante questi anni di studio, credendo sempre in me.
Vorrei ringraziare Martina, per aver sopportato ed accettato senza esitazione
questi mesi in cui siamo stati distanti, capendo che sarebbe stata una in-
dimenticabile ed indispensabile esperienza per il mio futuro. La lontananza
non é stata facile, ma sono certo che abbia reso la nostra fantastica relazione
ancora piú forte e la renderá sicuramente piú duratura.
Last but not the least, un grazie va anche a tutti i miei amici forlivesi ed
ai compagni di universitá, per la fedele amicizia ed il continuo supporto in
qualsiasi momento.
Spero di non aver dimenticato nessuno... nel dubbio grazie mille ancora a
tutti quanti!! Thanks to all!!

Davide Dosio
"Polar Codes King"

	Acronyms
	Abstract
	1 Introduction
	2 Introduction to polar codes
	2.1 Preliminaries and notations
	2.2 Channel polarization
	2.3 Encoding
	2.4 BEC as a special case

	3 Polar decoding
	3.1 Successive Cancellation decoder
	3.2 Successive Cancellation List decoder
	3.3 SCL implementation

	4 Channel polarization for AWGN
	4.1 Analysis tool for AWGN channel polarization
	4.2 Importance of J-function for channel selection

	5 Results
	6 Conclusions
	Acknowledgements

