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INTRODUZIONE 

Gli eventi naturali estremi, quali portate di piena, siccità, forti piogge, mareggiate, 

terremoti  o venti di particolare intensità, possono generare conseguenze 

catastrofiche per l’uomo e per la società. E’ pertanto evidente come la stima della 

frequenza di accadimento di un particolare evento sia un problema di grande 

importanza ed interesse scientifico.  

Le attività di pianificazione e controllo di emergenze climatiche, le attività di 

protezione civile, il progetto di strutture di ingegneria civile, la gestione delle riserve 

naturali, il controllo ambientale e il calcolo per la protezione da rischi ambientali si 

fondano in buona misura sulla conoscenza del regime di frequenza di eventi estremi. 

La stima di tali frequenze non risulta però agevole in quanto gli eventi estremi sono 

rari per definizione e la loro osservazione è assai sporadica, a ciò va sommato il fatto 

che molto spesso le serie storiche disponibili hanno lunghezza assai limitata. 

In particolare la valutazione di eventi pluviometrici di progetto è una problematica 

che desta molto interesse nell’idrologia. La comunità scientifica negli ultimi anni, ha 

dedicato numerosi sforzi alla messa a punto di tecniche affidabili, per la stima di 

portate fluviali o di altezze di precipitazione aventi assegnato livello di rischio.  

Gli eventi idrologici di progetto (ad esempio portate e precipitazioni) 

rappresentano ipotetici eventi associati a una data probabilità di superamento, in 

genere espressa in termini di tempo di ritorno. Per esempio, l’informazione relativa 

alla portata di progetto è necessaria al fine di identificare le misure di protezione del 

territorio e delle costruzioni idrauliche dal rischio di esondazione.  

Per quanto riguarda le portate estreme la letteratura documenta la diffusa 

utilizzazione di curve inviluppo regionali (RECs). Tali curve riassumono l’attuale 

limite di portate estreme verificatesi in una data regione. L’idea di limitare le portate 

sperimentate tramite una curva inviluppo è classica  nell’ambito dell’idrologia e, per 

gli Stati Uniti, si rifà a Jarvis (1925), che presentò una REC basata sulle portate 

registrate su 888 siti 
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Solo 50 anni più tardi, Crippen e Blue, 1977, e Crippen, 1982 aggiorono lo studio 

fatto da Jarvis nel 1925 creando 17 diverse REC, una per ogni diversa regione 

idrologica statunitense, basate su un totale di 883 siti. Matalas, 1997 e Vogel, 2001 

hanno mostrato come le REC identificate da Crippen e Blue, 1977, e Crippen, 1982 

rappresentino il limite delle portate estreme anche nel periodo che va dal 1977 al 

1994 per 740 dei 883 siti analizzati da Crippen e Blue.  

Enzel et al., 1993 esaminarono le serie storiche di portate limitate da una REC per 

il bacino del fiume Colorado e videro che la stessa REC corrispondeva anche al 

limite delle stime delle paleo-portate disponibili per il bacino. 

Lo sviluppo e la costruzione delle RECs non è rimasto confinato agli Stati Uniti; 

sono state sviluppate per l’ Italia (Marchetti, 1955), per la Grecia occidentale 

(Mimihou, 1984), per il Giappone (Kadoya, 1992) e per altre regioni. Le RECs sono 

state usate per confrontare le portate manifestatesi negli Stati Uniti, in Cina e nel 

mondo da Costa, 1987 e, più recentemente, da Herschy, 2002.  

Le RECs hanno continuato ad essere costruite e viste soprattutto quali resoconto 

delle portate manifestatesi, piuttosto quali strumento conoscitivo per il progetto di 

misure di tutela nei confronti di portate “catastrofiche”.  Si pensava che non ci fosse 

la possibilità di associare a una REC un valore di probabilità (Crippen e Blue, 1977; 

Crippen, 1982; Vogel et al., 2001). 

Water Science and Technology Board, Commission on Geosciences, Environment 

and Resources (1999) sancirono che la determinazione della probabilità di 

superamento di una REC era difficile principalmente a causa della correlazione 

spaziale tra i siti. Di conseguenza le REC non avevano grande utilità nonostante l’ 

U.S. Interagency Advisory Committee on Water Data (1986) ne riconobbero la 

necessità per “mostrare e riassumere i dati di portata estremi attualmente in 

accadimento”.  

Sarebbe pertanto interessante fornire un’interpretazione probabilistica di una 

REC, considerato anche il fatto che negli 80 anni passati da quando Jarvis (1925) ha 

proposto una curva inviluppo, nessuna interpretazione probabilistica è mai stata presa 

in esame. 
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Le precipitazioni costituiscono la componente del ciclo idrologico che 

maggiormente concorre alla formazione del deflusso superficiale, pertanto lo studio 

del loro regime di frequenza è un requisito essenziale per valutare il rischio 

idrogeologico in una determinata regione. 

 

Scopo del presente lavoro di Tesi è l’estensione dell’interpretazione delle curve 

inviluppo probabilistiche agli eventi di precipitazione estremi, nei bacini italiani e 

austriaci. Il primo obiettivo dello studio consiste nell’identificazione di un’affidabile 

metodologia di valutazione, che ci consenta di fornire la stima accurata, in una 

regione precisa, dell’altezza di precipitazione relativa ad una data durata e posizione, 

per un assegnato tempo di ritorno, elevato o molto elevato.  

In particolare tale analisi punta l’attenzione sulle curve inviluppo regionali, già 

sviluppate per le portate da Castellarin et al. (2003 e 2007). Gli autori hanno 

sviluppato uno stimatore empirico del tempo di ritorno T associato a una determinata 

REC che, il linea di principio, consente l’utilizzo delle RECs a fini ingegneristici di 

progetto in bacini strumentati e non. 

Il seguente lavoro propone l’estensione del concetto di REC agli eventi estremi di 

precipitazione introducendo la Curva di Durata-Altezza di precipitazione (DDEC), 

definita come il limite superiore regionale di tutti gli eventi meteorici registrati per 

diverse durate di precipitazione (qui i dati rappresentano massimi annuali).  

Si adatterà inoltre l’interpretazione probabilistica proposta per le REc alle DDEC 

e all’adattamento di tali curve per la stima dell’evento di pioggia corrispondente ad 

un elevato tempo di ritorno T e a una assegnata durata. 

Saranno due i datasets nazionali considerati, la serie di picchi di precipitazione al 

di sopra di una soglia (POT) per le durate di 30 minuti, 1, 3, 6, 9, 12 e 24 ore ottenuti 

da 700 stazioni di registrazione in Austria, e le serie dei massimi annuali (AMS) per 

gli eventi meteorici di durata compresa tra i 15 minuti e le 24 ore raccolti da 220 

stazioni di registrazione nell’ Italia centro-settentrionale. 

L’approccio alla REC proposto sarà diverso per le due distinte regioni, così come 

saranno diverse le modifiche apportate al metodo per la stima empirica della 

probabilità di superamento p.  
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1 INTRODUCTION 

 

Extreme environmental events, such as floods, droughts, rainstorms, and high 

winds, may have severe consequences for human society. How frequently an event 

of a given magnitude may be expected to occur is of great importance. Planning for 

weather-related emergencies, design of civil engineering structures, reservoir 

management, pollution control, and insurance risk calculations, all rely on 

knowledge of the frequency of these extreme events. Estimation of these frequencies 

is difficult because extreme events are rare by definition and, therefore, available 

information are often very sparse or short.  

In particular the evaluation of extreme design hydrological events is a 

fundamental and highly debated topic in hydrology. The scientific community gave 

great importance to the optimization of reliable techniques for the estimation of 

extreme rainfall events and resulting floods in the last decades.  

Design hydrological events (e.g., floods and rainstorms) are hypothetical events 

associated with a given exceedance probability, generally expressed in terms of 

recurrence interval. For instance, design flood information is needed for the 

identification of flood protection measures in a river basin and the design of the 

related structures, such as levee systems that need to be designed in order to prevent 

failure or overtopping (hydrologic failure). Design floods are also required for 

planning measures and structures as well as for safety control of existing structures. 

Concerning extreme floods, the literature documents the diffuse utilization of 

regional envelope curves (RECs). These curves summarize the current bound on our 

experience of extreme floods in a region. The idea of bounding our flood experience 

with an envelope curve is classical in hydrology and, for Unites States dates back to 

Jarvis [1925], who presented a REC based on record floods at 888 sites in the 

conterminous United States. Roughly 50 years later, Crippen and Bue, 1977 and 

Crippen, 1982 updated the study by Jarvis, 1925 by creating 17 different RECs, each 
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for a different hydrologic region within the United States, based on a total of 883 

sites. Matalas, 1997 and Vogel et al., 2001 document that the 

RECs identified by Crippen and Bue, 1977 and Crippen, 1982 still bound our 

flood experience gained from 1977– 1994 at 740 of the 883 sites compiled by 

Crippen and Bue. Enzel et al., 1993 examine the REC bounding the historical flood 

experience for the Colorado river basin and show that the same REC also bounds the 

paleoflood discharge estimates available for the basin. 

The construction of RECs is not confined to the United States; they have been 

developed for Italy (Marchetti, 1955), western Greece (Mimikou, 1984), Japan 

(Kadoya, 1992), and elsewhere. RECs have been used to compare record flood 

experience in the United States, China, and the world by Costa, 1987 and, more 

recently, by Herschy, 2002. 

The REC provides an effective summary of our regional flood experience. The 

pioneering work of Hazen, 1914, who formalized flood frequency analysis, a 

formalism still in use, and who was among the first to suggest a method for 

improving information at a site through the transfer of information from other sites 

(i.e., substitution of space for time), has tempered the use of a flood magnitude as a 

design flood without an accompanying probability statement. Our objective is to 

provide a probabilistic interpretation of the REC. In the almost 80 years since Jarvis 

[1925] introduced the envelope curve, a probabilistic interpretation of a REC has 

never been seriously addressed. 

RECs have continued to be constructed and viewed mainly as summary accounts 

of record floods, rather than as meaningful tools for the design of measures to protect 

against ‘‘catastrophic’’ floods. It has been suggested that there is no obvious way to 

assign a probabilistic statement to a REC (see, e.g., Crippen and Bue, 1977; Crippen, 

1982; Vogel et al., 2001). Water Science and Technology Board, Commission on 

Geosciences, Environment and Resources (1999) argued that the determination of the 

exceedance probability of a REC is difficult due to the impact of intersite correlation. 

As a consequence, RECs are assumed to have little utility beyond the suggestion of 

the U.S. Interagency Advisory Committee on Water Data (1986) that they are useful 

for ‘‘displaying and summarizing data on the actual occurrence of extreme floods.’’ 

A probabilistic interpretation of the REC offers opportunities for several engineering 
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applications which seek to exploit regional flood information to augment the 

effective record length associated with design flood estimates. 

A potential advantage of assigning a probabilistic statement to a REC is that this 

approach avoids the need to extrapolate an assumed at-site flood frequency 

distribution hen estimating a design event. 

Rain is the most important component of the water cycle with respect to the 

formation of runoff for a wide portion of European climates, the analysis of its 

frequency regime is fundamental for the assessment of flooding potential of a given 

area.  

 

Aim of this work is the extension of the probabilistic interpretation of regional 

envelope curves to extremes rainfall events in Italian and Austrian catchments. The 

primary objective of the present study is the identification of a reliable methodology 

that enables us to accurately evaluate the rainfall depth for a given duration and 

location associated with high and very high recurrence intervals. 

In particular this study focuses on probabilistic regional envelope curves proposed 

by Castellarin et al., (2005) and Castellarin (2007) for flood flows. The authors 

formulated an empirical estimator of the recurrence interval T associated with a 

given REC, which, in principle, enables us to use RECs for design purposes in 

ungauged basins. 

This work extends the REC concept to extreme rainstorm events by introducing 

the Depth-Duration Envelope Curves (DDECs). DDECs are defined as the regional 

upper bounds on all the record rainfall depths at present for various rainfall duration 

(here record indicates historical maxima). It also adapts the probabilistic 

interpretation proposed for RECs to DDECs and it assesses the suitability of these 

curves for estimating the T-year rainfall event associated with a given duration and 

large T values 

The study focuses on two different national datasets, the peak over threshold 

(POT) series of rainfall depths with duration 30 minutes, 1, 3, 6, 9 and 24 hours 

obtained for 700 Austrian raingauges and the Annual Maximum Series (AMS) of 

rainfall depths with duration spanning from 15 minutes to 24 hours collected at 220 
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raingauges located in northern-central Italy. The approach to the REC is different for 

the two catchments as well as the adjustment of the empirical estimator for the 

exceedance probability p. 
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2 METHODOLOGIES FOR THE 

DESIGN FLOOD ESTIMATION 

This paragraph aims to presenting the possible methodologies for the design-flood 

estimation. This task, as already mentioned, is fundamental in the evaluation of 

hydrologic risk, and in particular, of flooding potential of a given site. 

Both floods and rainfall data can be used as hydrological variables for the 

estimation of the design flood. The identification of an hydrological variable is 

developed by two different methodologies, the direct methods that directly calculate 

the floods and the indirect methods that identify the rainfalls to be given as input in a 

rainfall-runoff model, able to convert the rainfalls into floods thanks to appropriate 

calibrations. 

Although this work gives particular attention to rainfall events, we are going to 

illustrate the common methodologies for the design flood estimation. 

A common approach for estimating design flood consists of modeling 

hydrological events as random variables, allowing the determination of the flood 

exceeded with given probability. Usually the problem is that of information: if one 

had a sufficiently long record of flood flows, rainfall, low flows or pollutant 

loadings, then a frequency distribution for a site could be precisely determined, so 

long as change over time due to urbanization or natural processes did not alter the 

relationship of concern. In most situations, available data are not sufficient to 

precisely define the risk of large floods, rainfall, pollutant loadings or low flows. 

A fundamental step for the identification of a design event is the evaluation of the 

relation x = x(T). Then the design event is identified by selecting the return period T 

believed to be adapt to the importance of the structure itself and to the implications 

that its failure would involve. 

The direct methods determine the expression x = x(T), from the available rainfall 

data analysis in neighbourhood catchments, otherwise from the extrapolation of 
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statistical analysis known for neighbourhood catchments, similar from the 

hydrological point of view.  

The indirect methods derive the same expression from the statistical analysis of 

the extreme rainfall events occurring in the hydrographical catchment, applying later 

a transformation of these rainfall events in superficial runoff, that means they 

evaluate the design flood from extreme rainfall events. 

The choice between the two methods can be made according to the reliability and 

validity of the available rainfall data. The use of direct methods requires 

hydrometrical observations of annual maxima floods for a sufficiently long period of 

time; this information is later analysed by statistical techniques in order to indentify 

the probability distribution that better represents the collected data. As described 

direct methods seem to be the more suitable for their validity and simplicity in 

application: the variable on which the measurement are mead is the flood itself that is 

the variable to be estimate for design purposes. 

In practical the problem stands in their application: measures are often uncertain 

or related to hydrometric sections different from that of design, thus their utilization 

requires extrapolations and hypothesis not easy to formulate. 

Moreover, rarely it is possible to arrange sufficiently long flood data sets (20-30 

years) able to allow the analysis of return periods connected with the design. If is T 

larger than the mean length of the available series, the error in the corresponding 

flood estimation can be significant and consequentially the extrapolations became to 

have uncertain reliability (it would be better not to have estimations of T greater than 

2-3 times the series length (Cunnane, 1986)). Series of limited length can be 

represented by different probability distributions, from which the obtained 

extrapolations are very different.  

As said, a possible alternative is the recurs to the indirect methods which, based 

on the rainfall-runoff transformation, are strong of the statistical distributions of the 

rainfall data, much more than the hydrometrical data. Anyway, the transformation of 

the design rainfall event in design flood needs the formulation and estimation of 

model parameters which have the aim of simulating soil infiltration, storage in 

surface and interception by vegetation.  Such complex models introduce great 



Design Flood Estimation 

Page 16 of 122 

uncertainty being a  rough approximation of realty. It is for this reason important, for 

the using of indirect methods, the accurate knowledge of the hydrological 

characteristics of the analysed catchment. 

Definitely, the indirect methodology has the power of being correct for a great 

number of cases, much more than the direct methods, thank to the density of the 

rainfall net. This typology presents all the same some limiting factors: 

• The difficult in arranging sufficient rainfall data for the calibration of the 

rainfall-runoff model, model that can be very complex; 

•  Supposing the same frequency for rainfall events and floods, the method gives 

the same probability to floods and rainfall events, assumption that can be 

criticised; 

In spite of these critics, the indirect one is by now a valid methodology, 

fundamental for drainage systems and hydrographical nets. 

Next paragraph focuses on the indirect methodology. 

2.1 INDIRECT METHODS 

A different approach is to view flood flows as the product of a deterministic 

transformation of rainfall events, seen as random variables. Because is rain cause of 

floods, it is also supposed to be strictly related to them.  

The consequent transformation of rainfall in floods will then entrusted to rainfall-

runoff models. Several are the typologies of models, all able to represent 

hydrological phenomena that make the basin as a deterministic system by which 

rainfall events and floods becomes inputs and outputs. 

Different models can be distinguished according to the applied transformation 

model (event-based or continuous simulation) and to the way the design rainfall 

event is represented.  

We will focus on this representation of rainfall events, without giving importance 

to the rainfall-runoff simulation. 
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2.2 ESTIMATION OF THE DESIGN RAINFALL EVENT  

Input to a rainfall-runoff model can be design hyetographs, historical series of 

rainfall data, or synthetic series of rainfall events generated by stochastic rainfall 

models: each input is connected to a different probabilistic structure thus a different 

bond between x and T. According to the defined input indirect methods can be 

classified as: 

• Methods based on depth-duration-frequency curves 

• Methods derived by simulation 

• Analytic-derived methods 

The first ones consist of using a single event model as input to the rainfall-runoff 

model; these give the bond between the rainfall depth h with occurrence period T and 

duration t, and the duration t itself. These methods can be found by statistical 

interference methods by the analysis of the extreme historical series in the 

neighbourhood of the region of concern. Data are supplied by the National 

Hydrographical Service of Italy (SIMN) that provide series of maximum rainfall 

depth data for durations of days or less than a day. For each duration are estimated 

the parameters of the suitable probability distribution, so to identify the correct 

quantiles of rainfall depth. Rainfall depths for durations different from the estimates 

ones, will be calculated by interpolation of the obtained data. 

Some other lows are useful for expressing this expression, in Italy we find an 

exponential relation that describes the grow of the expected rainfall in a certain site 

with the growing of the duration t, function of the return period T: 

h(t,T) = aT ·t 
n

T  (2.2-1) 

where h represents the rainfall depth, and aT and nT are the parameters to be 

estimates as function of the return period. 

Figure 2.2-1 shows that equation (2.2-1) assumes a convex exponential form on a 

t/h graph, actually for a given frequency the rainfall rate decreases with duration and 

the cumulative rain also progressively decreases whit the duration itself. 
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Figure 3.2.1-1 Representation of the rainfall depth versus duration for different values of 

return period, it is easily recognizable a convex exponential form 

 

Limit of this method is that for each single site is important to define a depth-

duration-frequency curve that require the estimation of many parameters: two 

parameters for each duration, and two for deriving the exponential law. Considering 

that the length of the series and the available data are not sufficient, usually smaller 

than 50-60 years of registration, the estimation of the parameters is not possible.  

In order to supply the lack of information, some simplifications can be introduced. 

For example an constant scale that means rainfall depth for the duration t equal to 

one corresponding to a given duration, simply multiplied by an estimated scale 

factor. Although this assumption, not always applicable and to be verified, there is 

the problem of obtaining rainfall data for ungauged basins: we need a more general 

expression applicable on regional scale. The introduction of envelope curves let the 

extension of information to ungauged basins, in the next paragraphs this concept will 

be studied in depth. 

Methods derived by simulation use the rainfall data for a limited number of years 

to generate, by appropriate rainfall stochastic models, synthetic rainfall series of 

greater dimensions to be used as input in rainfall-runoff models that give as output 
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simulated series of floods. By applying to these series the usual statistical techniques 

we will obtain estimations of design floods. Definitely the design flood is estimated 

by a simulated series of rainfall data, not really observed. Thus the method can be 

applied to generate simulated series of given length , also 1000 years, without having 

such a complete database. 

Analytic-derived methods use simplified assumptions for the transformation 

process of rainfall in runoff, in order to be able to analytically derive the statistical 

proprieties of the runoffs as functions of similar proprieties in rainfall events. 

2.3 OTHER FLOOD ESTIMATION METHODS 

Besides the methods mentioned above, many others methodologies have been 

developed for estimating design floods. Another approach that can be very useful is 

based on consideration of the largest floods that have been observed in the region of 

interest. The usual procedure is to draw an envelope curve on a regional plot of 

maximum recorded flood at each gauging station against drainage basin area. 

Logarithmic values are normally plotted with discharge in m3/km2. The graph 

provides a useful summary of flood experience in a region. Plotting and labelling of 

the maximum flood for each drainage basin makes the scatter of the data obvious. 

Trends in flood characteristics in a region can be examined, as with elevation, 

latitude, stream slope, distance from the ocean and other moisture source, or different 

record length.  

It may be possible to draw envelope curves for different subregions. However, as 

time proceeds, higher floods are recorded and the envelope curve moves to higher 

discharges. Probabilities of floods can not be estimated objectively by this method. 

Anyway where data are sparse and other methods can not be used, envelope curves 

are better employed for either checking that estimates by other methods are of the 

correct order of magnitude of providing preliminary estimates. 
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3 FREQUENCY ANALYSIS OF 

EXTREME EVENTS 

At present the description of design flood derives from a probabilistic approach 

that models hydrological events as random variable, allowing the determination of 

the flood exceeded with given probability. Usually the problem is that of 

information: in most situations, available data are not sufficient to precisely define 

the risk of large floods, rainfall, pollutant loadings or low flows 

Frequency analysis is an information problem: in order to supply the lack of 

information explained above, such as a not sufficiently long record of flood flows or 

rainfall, hydrologist are forced to use practical knowledge of the processes involved 

and efficient and robust statistical techniques, to develop the best estimator they can.  

These techniques generally restricted, with 10 to 100 sample observations to 

estimate events exceedance with a chance of  at least 1 in 100, corresponding to 

exceedance probability of 1 per cent or more. 

The hydrologist should be aware that in practice the true probability distribution 

of phenomena in question are not known. Even if they were , their functional 

representation would likely have too many parameters to be of much practical use. 

The practical issue is how to select a reasonable and simple distribution to 

describe the phenomena of interest, to estimate that distribution’s parameters, and 

thus to obtain risk estimates of satisfactory accuracy for the problem at hand. 

3.1 PROBABILITY CONCEPTS 

We introduce here some probabilistic concepts that stands at the basis of 

frequency analysis. 
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Let the upper case letter X denote a random variable, and the lower case letter x 

be a possible value of X. For a random variable X, its Cumulative Distribution 

Function (cdf), denoted Fx(x), is the probability the random variable X is less than or 

equal to x:  

)()( xXPxFx ≤=  

Fx(x) is the nonexceedance probability for the value x. 

Continuous random variables take on values in continuum. For example, the 

magnitude of floods and low flows is described by positive real values, so that X ≥ 0. 

The Probability Density Function (pdf) describes the relative likelihood that a 

continuous random variable X takes on different values, and is the derivative of the 

cumulative distribution function: 

dx

xdFx
xfx

)(
)( =  

In hydrology the percentiles or quantiles of a distribution are often used as design 

events. The 100p percentile or the pth quantile xp is the value with cumulative 

probability p: 

pxFx =)(  

The 100p percentile xp is often called the 100(1-p) percent exceedance event 

because it will be exceeded with probability 1-p. 

The Return Period (sometimes called Recurrence Interval) is often specified 

rather than the exceedance probability. For example, the annual maximum flood-

flow exceedance with a 1 percent probability in any year, or chance 1 in 100, is 

called the 100-year flood. In general, xp is the T-year flood for 

p
T

−
=

1

1
 

Here are two ways that the return period can be understood. First , in a fixed xp T-

year period the expected number of exceedance of the T-year event is exactly 1, if 

the distribution of floods does not changeover that period; thus on average one flood 

greater than the T-year flood level occurs in a T-years period. 
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Alternatively, if floods are independent from year to year, the probability that the 

first exceedance of level xp occurs in year k is the probability of (k-1) years without 

an exceedance followed by a year in which the value of X exceeds xp: 

P (exactly k years until X ≥  xp) = p k-1 (1-p) 

This is a geometrical distribution with mean 1 / (1-p). Thus the average time until 

the level xp is exceeded equals T years. However, the probability that xp is not 

exceeded in a T-year period is pT = (1-1/T)T , which for 1/(1-p) = T ≥ 25 is 

approximately 36,7 percent, or about a chance of 1 in 3. 

Return period is a means of expressing the exceedance probability. Hydrologists 

pften speak of the 20-year flood or of the 1000-year rainfall, rather than events 

exceeded with probabilities of 5 or 0,1 percent in any year, corresponding to chances 

of 1 in 20, or 1 in 1000. Return period has been incorrectly understood to mean that 

one and only one T-year event should occur every T years. Actually , the probability 

of the T-year flood being exceeded is 1/T in every year. The awkwardness of small 

probabilities and the incorrect implication of return periods can both be avoided by 

reporting odds ratios: thus the 1 percent exceedance event can be described as a 

value with a 1 in 100 chance of being exceeded each year. 

Several summary statistics can describe the character of the probability 

distribution of a random variable. Moments and quantiles are used to describe the 

location or central tendency of a random variable, and its spread.  

The mean of a random variable X is defined as 

µx=E[X] 

The second moment about the mean is the variance, denoted Var(X) or σx2 where  

σx
2 = Var (X) = E[(X- µx)2] 

The standard deviation σx is the square root of the variance and describes the 

width of scale of a distribution. These are examples of product moments because 

they depend upon powers of X. 

A dimensionless measure of the variability in X, appropriate for use with positive 

random variables X≥0, is the coefficient of variation defined as 

x

x
CVx

µ
σ=   (3.1) 
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Also the coefficient of skewness γx is a dimensionless measure that describes the 

relative asymmetry of a distribution, it is defined as 

3

3)(

x

xXE
x

σ
µγ −=   (3.12) 

and the coefficient of kurtosis which describes the thickness of a distribution’s 

tails: 

4

4)(

x

xxE

σ
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 (2.1.3) 

From a set of observations (X1, …, Xn) the moments of a distribution can be 

estimated. Estimators of the mean, variance and coefficient of skewnwss are 
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When data vary widely in magnitude, as often happens, the sample product 

moments of the logarithms of the data are often employed to summarize the 

characteristics of a data set or to estimate parameters of distributions. A logarithmic 

transformation is an effective vehicle for normalizing values which vary by orders of 

magnitude, and also for keeping occasionally large values from dominating the 

calculation of product-moments estimators. However, the danger with use of 

logarithmic transformations is that unusually small observations (or low outliers) are 

given greatly increased weight. This is a concern if it is the large events that are of 

interest, small values are poorly measured, small values reflect rounding, or small 

values are reported as zero if they fall below some threshold. 
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3.2 PROBABILITY DISTRIBUTIONS FOR EXTREME EVENTS 

This paragraph provides descriptions of several families of distributions 

commonly used in hydrology. These include the normal/lognormal family, the 

Gumbel/Weibull generalized extreme value family, and the exponential/Pearson/log 

Pearson type 3 family. Table 2.1-1 in Appendix provides a summary of the pdf and 

cdf of these probability distributions, and their means and variances.  

Many other distributions have also been successfully employed in hydrologic 

applications. 

3.2.1 The Normal Distribution 

The normal distribution is useful in hydrology for describing well-behaved 

phenomena such as average annual stream flow, or average annual pollutant 

loadings. The central limit theorem demonstrated that if a random variable X in the 

sum of n independent and identically distributed random variables with a finite 

variance, then with increasing n the distribution of X becomes normal regardless of 

the distribution of the original random variables. 

The pdf for a normal random variable X is 
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X is unbounded both above and below, with mean µx and variance σx2. The 

normal distribution’s skew coefficient is zero because the distribution is symmetric. 

The product-moment coefficient of kurtosis, E[(X- µx)4]/ σ4, equals 3. 

The two moments of the normal distribution, µx and σx2 are its natural 

parameters. They are generally estimates by the sample mean and variance in Eq. 

(2.1.4) and (2.1.5); these are the maximum likelihood estimates if (n-1) is replaced 

by n in the denominator of the sample variance. The cdf of the normal distribution is 

not available in closed form. Selected points zp for the standard normal distribution 
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with zero mean and unit variance are given in Table 2.1-1; because the normal 

distribution is symmetric, zp=-z1-p. 

 

p 0.5 0.6 0.75 0.8 0.9 0.95 0.975 0.99 0.998 0.999 

zp 0.000 0.253 0.675 0.842 1.282 1.645 1.960 2.326 2.878 3.090 

Table 3.2-1 Quantiles of the Standard Normal Distribution 

 

Figure 3.2.1-1 Effect of parameters on the Normal pdf, we consider (1) μ = 0, σ = 1; (2) 
μ = 10, σ = 1; (3) μ = 0, σ = 5. 
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3.2.2 The Lognormal Distribution 

Many hydrologic processes are positively skewed and are not normally 

distributed. However, in many case for strictly positive random variables X>0, their 

logarithm 

Y = ln (X) 

is described by a normal distribution. This is particularly true if the hydrologic 

sample results from some multiplicative processes, such as dilution.  

Inverting the equation above: 

X = exp (Y) 

If X has a lognormal distribution, the cdf for X is 


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where Φ is the cdf of the standard normal distribution. 

As a function of the coefficient of variation CVx, the skew coefficient is  

γx = 3CVx + CV 
3
 x 

As the coefficient of variation and skewness go to zero, the lognormal distribution 

approaches a normal distribution. 

The sample mean and variance of the observed (yi) obtained by using Eq. (2.1.4) 

and (2.1.5) are the maximum likelihood estimators of the lognormal distribution’s 

parameters if (n-1) is replaced by n in the denominator of S3y.  
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Figure 3.2.2-1 2 Effect of parameters on the Normal pdf, we consider (1) ξ = 2, α = 1, k 

= 0; (2) ξ = 2, α = 1, k = 0.5; (3) ξ = 2, α = 1, k = − 0.5; (4) ξ = 2, α = 3, k =− 0.5. 

3.2.3  The Gumbel Distribution 

Many random variables in hydrology correspond to the maximum of several 

similar processes, such as the maximum rainfall or flood discharge in a year. The 

physical origin of such random variables suggest that their distribution is likely to be 

one of several extreme value (EV) distributions described by Gumbel. The cdf of the 

largest of n independent variates with common cdf F(x) is simply F(x)n. For large n 

and many choices for F(x), F(x)n converges to one of three extreme value 

distributions, called type I,II and III. Unfortunately, for many hydrologic variables 

this convergence is too slow for this argument alone to justify adoption of an extreme 

value distribution as a model of annual maxima and minima. 

The EV type I distribution is called Gumbel Distribution.  
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Let M1, …, Mn be a set of daily rainfall data, and let the random variable 

X=max(Mi) be the maximum for he year. If the Mi are independent and identically 

distributed random variables unbounded above, with an exponential like upper tail, 

then for large n the variate X has an extreme value type Gumbel distribution. For 

example the annual maximum 24-h rainfall depth are often described by a Gumbel 

distribution. 

The Gumbel distribution has the cdf, mean and variance described in Appendix,  

the Gumbel pdf is 

α
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α
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α
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e
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eexf
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)(  

where ξ is the location parameter and α is the scale parameter. 

The case where ξ =0 and α =1 is called the standard Gumbel distribution. The 

equation for the standard Gumbel distribution (minimum) reduces to  

xexeexf −=)(  

The Gumbel distribution’s density function is very similar to that of the lognormal 

distribution with γ=1,13. Changing ξ and α moves the centre of the Gumbel pdf and 

changes its width, but does not change the shape of the distribution. The Gumbel 

distribution is asymptotically equivalent to the exponential distribution with cdf : 
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The following is the plot of the Gumbel cumulative distribution function for the 

maximum case. 
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While the following is the plot of the Gumbel percent point function for the 

minimum case. 

 

 

The cdf is easily inverted to obtain  

[ ])ln(ln pxp −−= αξ  (3.2.3-1) 

The estimator of α obtained by using the second sample L moment is 
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2
2 ˆ443,1

)2ln(

ˆ
ˆ λλα ==  (3.2.3-2) 

If the sample variance s2 was employed, one obtains 

s
s

7797,0
6

ˆ ==
π

α  (3.2.3-3) 

The corresponding estimator of ξ in either case is 

αξ ˆ5772,0ˆ −= x  (3.2.3-4) 

The form of the Gumbel probability paper is based on a linearization of the cdf. 

From Equation (3.2.3-5), the Gumbel probability paper resulting from this linearized 

cdf function is shown next. 

 

L-moments estimators for the Gumbel distribution are generally so good or better 

than method-of-moment estimators when the observations are actually drawn from 

case. However, L-moments estimators have been shown to be robust , providing 

more accurate quantile estimators than product moment and maximum-likelihood 

estimators when observations are drown from a range of reasonable distributions for 

flood flows. 

Some of the specific characteristics of the Gumbel distribution are the following: 
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• The shape of the Gumbel distribution is skewed to the left. The Gumbel pdf 

(Gumbel probability density function) has no shape parameter. This means 

that the Gumbel pdf has only one shape, which does not change. 

• The Gumbel pdf has location parameter µ, which is equal to the mode, but it 

differs from median and mean. This is because the Gumbel distribution is not 

symmetrical about its ξ. 

• As ξ decreases, the pdf is shifted to the left. 

• As ξ increases, the pdf is shifted to the right.  

 

• As σ increases, the pdf spreads out and becomes shallower. 

• As σ decreases, the pdf becomes taller and narrower. 

• For ±∞=T , pdf = 0. For T = ξ, the pdf reaches its maximum point 








eσ
1  
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Figure 3.2.3-1 Effect of parameters on Gumbel pdf, we consider  (1)ξ = 5, α = 1; (2) 

ξ = 5, α = 1.5; (3) ξ = 7, α = 1.5 

3.2.4 The Generalized Gumbel Distribution (GEV) 

The Generalized Extreme Value (GEV) Distribution is a general mathematical 

formulation which incorporates Gumbel’s type I,II and III extreme value 

distributions for maxima. The GEV distribution’s cdf can be written  
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The Gumbel distribution is obtained when k=0. For |k|<0,3 the general shape of 

the GEV distribution is similar to the Gumbel distribution, though the right-hand tail 

is thicker for k<0 and thinner for k>0. 
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Here ξ is a local parameter, α is a scale parameter and k is the important shape 

parameter. For k>0 the distribution has a finite upper bound at ξ+α/k and 

corresponds to the EV type III distribution for maxima that are bounded above;  for 

k<0, the distribution has a thicker right-hand tail and correspond to the EV type II 

distribution for maxima from thick-tailed distributions like the generalized Pareto 

distribution with k<0. 

The moments of the GEV distribution can be expressed in terms of the gamma 

function Γ(·), or k>-1/3 the mean and variance are given in Appendix.  

 

Figure 3.2.4-1 Effect of parameters on GEV pdf, we consider (1) ξ = 1, α = 1.7, k = 0; (2) 

ξ = 2, α = 1, k = 0.5; (3) ξ = 2, α = 1, k = −0.5. 
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3.2.5 The Weibull Distribution 

The Weibull Distribution is developed as the extreme value type III distribution 

for minima bounded below by zero. 

If Wi are the minimum stream flows in different days of the year, then the annual 

minimum is the smallest of the Wi, each of which is bounded below by zero. In this 

case the random variable X=min(Wi) may be well described by the EV type III 

distribution for minima, the Weibull distribution’s cdf, mean and variance are 

included in Appendix. The skewness coefficient is the negative of that of GEV 

distribution, the second L moment is 

λ2 = α(1-2-1/k) Γ(1+1/k) 

There are important relationship between the Weibull, Gumbel and GEV 

distributions. If X has a Weibull distribution, then Y= -ln(X) has a Gumbel 

distribution. This allows parameter estimation procedures and goodness-on-fit tests 

available for the Gumbel distribution to be used for the Weibull, thus if ln(X) has 

mean λ1,(lnX) and L-moment λ2,(lnX), X has Weibull parameters 

k=ln(2)/ λ2,(lnX)  and  α = exp(λ1,(lnX) + 0,5772/k) 

3.3 PLOTTING POSITIONS AND PROBABILITY PLOTS 

Probabilistic plots are extremely useful visually revealing the character of data 

sets. The graphical evaluation of the adequacy of a fitted distribution is generally 

performed by plotting the observations so that they would fall approximately on a 

straight line if a postulated distribution were the true distribution from which the 

observations were drown. This can be done with the use of special commercially 

available probability papers for some distributions, or with the more general 

techniques presented here, on which such special papers are based. 

Let {Xi} denote the observed values and X(i) the ith largest value in a sample, so 

that X(n)≤X(n-1)≤ … ≤X(i). The random variable Ui defined as  

Ui = 1-Fx[X(i)] (2.1.3.1) 
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correspond to the the exceedance probability associated with the ith largest 

observation. If the original observations were independent, in repeated sampling the 

Ui have beta distribution with mean 

E[Ui] = i/(n+1) (2.1.3.2) 

and variance  

)2()1(

)1(
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2 ++
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nn

ini
UiVar  (2.1.3.3) 

Knowing the distribution of the exceedance probability Ui, one can develop 

estimators qi of their values which can be used to plot each X(i ) against a probability 

scale.  

Let G(x) be a proposed cdf for the events. A visual comparison of the data and a 

fitted distribution is provided by a plot of the ith largest observed event X(i) versus an 

estimate of what its true value should be. If G(x) is the distribution of X, the value of 

X(i) = G-1(1- Ui) should be nearly G-1(1-qi), where the probability plotting position qi 

is our estimate of Ui. Thus the points [G-1(1-qi), X(i )] when plotted would, apart from 

sampling fluctuation, lie on a straight line through the origin. 

The exceedance probability of the ith largest event is often estimated using the 

Weibull plotting position: 

1+
=

n

i
qi  (2.1.3.4) 

corresponding to the mean of Ui. 

3.3.1 Choice of Plotting Position 

Hazen originally developed probability paper and imagined the probability scale 

divided into n equal intervals with midpoints qi = (i-0,5)/n, i=1, …, n; these served as 

his plotting positions. Gumbel rejected this formula in part because it assigned a 

return period of 2n years to the largest observation, Gumbel promoted Eq. (2.1.3.4). 

Cunanne argued that plotting positions qi should be assigned so that on average 

X(i ) would equal G-1(1-qi), that is qi would capture the mean of X(i ) so that 
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E[X(i )] ≈ G-1(1-qi) 

Such plotting position would be almost quantile-unbiased. The Weibull plotting 

position i/(n+1) equal the average exceedance probability of the ranked observation 

X(i), and hence are probability-unbiased plotting positions. The two criteria are 

different because of the nonlinear relationship between X(i) and Ui. 

Different plotting positions attempt to achieve almost quantile-unbiasedness for 

different distributions; many can be written 

an

ai
qi

21−+
−=  

which is symmetric so that qi = 1-qn+1-i. Cunanne recommended a=0,40 for 

obtaining nearly quantile-unbiased plotting positions for a range of distributions. 

Other alternatives are Blom’s plottin position (a=3/8) which gives nearly unbiased 

quantiles for the normal distribution, and the Gringorten position (a=0,44) which 

yields optimized plotting positions for the largest observations from a Gumbel 

distribution. These are summarized in Table 2.1.-2, which also reports the return 

period T1 = 1/q1 , assigned to the largest observation. 

The difference between the Hazen formula, Cunanne’s recommendation and the 

Weibull formula is modest for i of 1 of 3 or more. However, differences can be 

appreciable for i=1, corresponding to the largest observation. It is important to 

remember that the actual exceedance probability associated with the largest 

observation is a random variable with mean 1/(n+1) and a standard deviation of 

nearly 1/(n+1), see Eq. (2.1.3.2) and (2.1.3.3). Thus all plotting positions give crude 

estimates of the unknown exceedance probabilities associated with the largest (and 

smallest) event. 
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Table 3.3-1 Alternative Plotting Positions 

Name Formula a T1 Motivation 

Weibull 

1+n

i
 

0 n+1 Unbiased exceedance 
probability for all 

distributions 

Median 

365.0

3175.0

+
−

n

i
 

0.3175 1.47n+0.5 Median exceedance 
probability for all 

distributions 

APL 

n

i 35.0−
 

0.35 1.54n Used with PWMs 

Blom 

4/1

8/3

+
−

n

i
 

0.375 1.60n+0.4 Unbiased normal quantiles 

Cunnane 

2.0

40.0

+
−

n

i
 

0.40 1.67n+0.3 Approximately quantile-
unbiased 

Gringorten 

12.0

44.0

+
−

n

i
 

0.44 1.79n+0.2 Optimized for Gumbel 
distribution 

Hazen 

n

i 5.0−
 

0.50 2n A traditional choice 
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4 PROBABLE MAXIMUM 

PRECIPITATION 

For design of high-hazard structures as spillways on large dams it is necessary to 

use precipitation values with very low risk of exceedance. Ideally a hydrologist 

would like to choose design storms for which there is no risk of exceedance. A 

theoretical problem that has plagued the search for such a storm is determining 

whether there is indeed an upper limit of rainfall amount.  

The existence of an upper limit on rainfall is both mathematically and physically 

realistic (Gilman,1964). The spatial and temporal context of the upper bond on 

rainfall amount is incorporated into the definition of probable maximum precipitation 

(PMP), which is defined as “theoretically the greatest depth of precipitation for a 

given duration that is physically possible over a given size storm area at a particular 

geographical location at a certain time of year.” A more troublesome problem than 

ascertaining whether an upper bond exists is determining what it is. 

Observed rainfall totals worldwide provide a broad indication of maximum 

possible rainfall totals at a point as function of duration. 

The estimation of probable maximum precipitation was developed and has 

evolved in the United States as a hydrometeorological procedure. Three 

meteorological components determine maximum probable precipitation:  

1. amount of precipitable water 

2. rate of convergence 

3. vertical motion 

Meteorological models representing all three components have been developed, 

but it has proved quite difficult to specify maximum rates of areal convergence and 

vertical motions for the models. In the standard approach to estimating PMP 

observed storm totals for extreme storms are used as indicators of the maximum 

values of convergence and vertical motions. The two major components of the 
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standard approach to the PMP computation are moisture maximization and storm 

transposition. In the first step of moisture maximization, the goal is to increase storm 

rainfall amounts to reflect the maximum possible moisture availability. In the storm 

transposition step, it is determined whether a given storm, which occurred in a broad 

region around the basin of interest, can be transposed to represent rainfall over the 

basin. 

The principal data required for standard PMP computations are: 

1. a catalogue for extreme storms 

2. surface dew-point temperature observations 

The storm catalogue for Austria and Italy contains storm date, location and depth. 

Additional meteorological information, including surface and upper-air maps, is 

typically used subjectively in determining storm transposition regions and for other 

quality-control purpose. Surface dew-point is used as a moisture index for moisture 

maximization . Precipitable water can be computed from surface dew-point values 

under the assumption that saturation levels extend to the ground. 

Storm transposition is based on the assumption that for a given storm 

meteorologically homogeneous regions exist over which the storm is equally likely 

to occur. The transposition procedure involves meteorological analysis of the strom 

to be transposed, determination of transposition limits, and application of 

adjustments for changes in storm location. Meteorological analysis provides a 

characterization of key aspects of storm type. Transposition limits are determined 

from a long series of daily weather charts by identifying the boundary of the region 

over which meteorologically similar storm type have occurred. Adjustments account 

for differences in moisture maxima for the storm location and transposition sites. 

Adjustments are sometimes also made for topographic effects, although objective 

procedures for determining  orographic adjustments are not widely accepted. 

Having obtained a series of storms, PMP is determined by envelopment. 

Envelopment entails selection of the storm which has the largest maximised storm 

rainfall for a given time interval. 

The envelopment process is used because a single historical storm is generally not 

the critical event the entire range of time scales required. 
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5 PROBABILISTIC ENVELOPE 

CURVES FOR EXTREME FLOODS 

This chapter wants to introduce the method developed by Castellarin et.al, 2005 

for the estimation of extreme floods by envelope curves and for the assumption of 

their connected probability. This method has been rearranged in order to make it 

applicable to extreme rainfall events, both to annual maximum series and peaks-

over-threshold series . The following methodology will be then applied not to floods 

as explained, but to extreme rainfall events in different ways for Austrian and Italian 

catchments, as discussed in Chapter 7. 

Next paragraphs propose the original probabilistic interpretation of envelope 

curves and the formulation of an empirical estimator of the recurrence interval T 

associated with a REC.  

5.1 DEFINITION OF REGIONAL ENVELOPE CURVES 

A regional envelope curve (REC) summarizes the current bound on our 

experience of extreme floods in a region. Although RECs are available for many 

regions of the world, their traditional deterministic interpretation limits the use of the 

curves for design purposes, as magnitude, but not frequency of extreme flood events, 

can be quantified. A probabilistic interpretation of a REC is introduced via an 

estimate of its exceedance probability. 

The bound on our experience of extreme floods gained up to the present through 

systematic observation of flood discharges in a region is defined in terms of the 

largest floods observed at all gauging stations in a region. Herein, the largest flood is 

termed the record flood, and gauging stations are referred to as sites. An example of 

a REC is illustrated in Figure 5-1 which plots, for each site, the normalized record 

flood, defined as the logarithm of the ratio of the record flood to its basin area, versus 
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the logarithm of the basin area. The REC is the line drawn on Figure 5-1 which 

provides an upper bound on all the normalized record floods at present.  

 

Figure 5-3.3.1-1 Q in feet3/s (1foot=0.3048 m) and A in miles2 (1 mile=1.609km) [Jarvis, 

1925]: elements of experience (pluses) and element of experience (circle) defining the 

intercept of the envelope curve (shaded line). 

 

The idea of bounding our flood experience dates back to Jarvis [1925], who 

presented a REC based on record floods at 888 sites in the conterminous United 

States. Roughly 50 years later, Crippen and Bue [1977] and Crippen [1982] updated 

the study by Jarvis [1925] by creating 17 different RECs, each for a different 

hydrologic region within the United States, based on a total of 883 sites. Matalas 

[1997] and Vogel et al. [2001] document that the 

RECs identified by Crippen and Bue [1977] and Crippen [1982] still bound our 

flood experience gained from 1977– 1994 at 740 of the 883 sites compiled by 

Crippen and Bue. Enzel et al. [1993] examine the REC bounding the historical flood 

experience for the Colorado river basin and show that the same REC also bounds the 

paleoflood discharge estimates available for the basin. 

The development of RECs is not confined to the United States; they have been 

developed for Italy [Marchetti, 1955], western Greece [Mimikou, 1984], Japan 
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[Kadoya, 1992], and elsewhere. RECs have been used to compare record flood 

experience in the United States, China, and the world by Costa [1987] and, more 

recently, by Herschy [2002]. 

The REC provides an effective summary of our regional flood experience. The 

pioneering work of Hazen [1914], who formalized flood frequency analysis, a 

formalism still in use, and who was among the first to suggest a method for 

improving information at a site through the transfer of information from other sites 

(i.e., substitution of space for time), has tempered the use of a flood magnitude as a 

design flood without an accompanying probability statement. Our objective is to 

provide a probabilistic interpretation of the REC. In the almost 80 years since Jarvis 

[1925] introduced the envelope curve, a probabilistic interpretation of a REC has 

never been seriously addressed. 

RECs have continued to be constructed and viewed mainly as summary accounts 

of record floods, rather than as meaningful tools for the design of measures to protect 

against ‘‘catastrophic’’ floods. It has been suggested that there is no obvious way to 

assign a probabilistic statement to a REC [see, e.g., Crippen and Bue, 1977; Crippen, 

1982; Vogel et al., 2001]. Water Science and Technology Board, Commission on 

Geosciences, Environment and Resources [1999] argued that the determination of the 

exceedance probability of a REC is difficult due to the impact of intersite correlation. 

As a consequence, RECs are assumed to have little utility beyond the suggestion of 

the U.S. Interagency Advisory Committee on Water Data [1986] that they are useful 

for ‘‘displaying and summarizing data on the actual occurrence of extreme floods.’’ 

A probabilistic interpretation of the REC offers opportunities for several engineering 

applications which seek to exploit regional flood information to augment the 

effective record length associated with design flood estimates. 

A potential advantage of assigning a probabilistic statement to a REC is that this 

approach avoids the need to extrapolate an assumed at-site flood frequency 

distribution hen estimating a design event. 

This work would provide a probabilistic interpretation of the REC, to approximate 

its exceedance probability, and to quantify the effect of intersite correlation on 

estimates of the exceedance probability and extend their utilisation from floods to 

rainfall events. 
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5.2  A PROBABILISTIC INTERPRETATION OF ENVELOPE 

CURVES 

It is common practice to construct a REC, as in Figure 5-1, which plots the 

logarithm of the ratio of the record flood to the drainage area, ln(Q/A) versus ln(A). 

Jarvis [1925] suggested modeling the REC for the United States using, 

)ln(ln Aba
A

Q +=  (5.1-1) 

with a = 9.37 (or a = 4.07 if log is used in (5.1-1) instead of ln) and b = -0.50, 

where Q and A are in cubic feet per second and square miles, respectively. Together 

with Jarvis [1925], other empirical studies showed that b is negative and greater than 

2/3 for various portions of the world [Linsley et al., 1949; Marchetti, 1955; Crippen 

and Bue, 1977; Matalas, 1997; Herschy, 2002]. 

Assuming a fixed value of b, the intercept a in (5.1.1) may be estimated by forcing 

the REC to bound all record floods to the present, say up to the year n. Let Xj i  denote 

the annual maximum flood in year i = 1, 2, . . .,n at site j = 1, 2, . . .M, where M is 

the number of sites in the region.  

Let Xj (i) denote the flood flow of rank (i) at site j, where ranking is from smallest 

(1) to largest (n). The REC’s intercept up to the year n can then be expressed as 
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where Aj is the area of site j = 1, 2, . . .M. 

5.3 DESCRIPTION OF THE METHOD  

The probabilistic regional envelope curves (PRECs) developed by Castellarin et 

al, 2005 presented a probabilistic interpretation of the envelope curve presented in 

equation (5.1-1). The proposed probabilistic regional envelope curves (PRECs) 

are based upon two fundamental assumptions:  
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1. the group of river basins (i.e., geographical region or pooling group of sites is 

homogeneous in the sense of the index flood hypothesis  

2. the relationship between the index flood µx (e.g. mean annual flood) and A is 

of the form, 

1+= bCAxµ  

where b and C are constants and b is the same as in equation (5.1-1).  

Under these assumptions has been developed an empirical estimator of the 

exceedance probability p of the expected PREC. The expected PREC is the envelope 

curve that, on average, is expected to bound the flooding experience for a region of 

given characteristics (i.e., M sites with record length n and mean intersite correlation 

ρ ). The expected PREC is identified through a series of Monte Carlo simulations 

experiments by generating a number of synthetic cross-correlated regions consisting 

of M concurrent sequences of annual maximum flood with record length n. It is 

proposed an estimator of p of the expected PREC that is a function of the effective 

number of sites, MEC ≤ M (i.e., number of independent flood series with an 

equivalent information content). 

The recurrence interval of the expected PREC can then be computed as the 

inverse of p. Assigning an exceedance probability, or equivalently a recurrence 

interval, to a PREC makes it a practical tool for estimating a design event at gauged 

and ungauged river basins. 

We present an algorithm for the application of the empirical estimator of p to 

historical annual maximum series of unequal length. 

5.3.1 Estimating the Effective Number of Sites 

The problem of estimating the exceedance probability p of the expected PREC 

reduces to estimating the exceedance probability of the largest value in a regional 

sample of standardized annual maximum peak flows. 
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The proposed estimator of p considers the spatial correlation between the regional 

data. The estimator evaluates the equivalent number of independent sequences MEC 

for M concurrent and cross-correlated series of annual maxima with length n.  

The estimators reads, 
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 (5.3-1) 

where βρ  and 376.0)1( ρ−  are average values of the corresponding functions of 

the correlation coefficients (i.e. βρ is the average of the M(M-1)/2 values of ρβ
k,j , 

where ρk,j is the correlation coefficient between sites k and j, with 1 ≤ k < j ≤ M). 

Equation (5.3-1) was identified by referring to MEC values obtained through 

Monte Carlo simulations, Var [ρΜ], is a function of M. The empirical values of Var 

[ρΜ] are computed for M concurrent and cross-correlated synthetic series with length 

n generated from the multivariate normal distribution with zero mean, unit variance 

and average correlation among the series ρ . Then are computed MEC values relative 

to a number of combinations of M, n and ρ  values by finding the zeros of the 

theoretical expression of Var [ρΜ]  for the corresponding empirical values obtained 

trough Monte Carlo simulation. Finally equation (5.3-1) is referred to these zeros. 

The p value of the expected PREC can be computed by estimating MEC trough 

equation (5.3-1) and using a suitable plotting position by setting the overall sample 

years of data to the equivalent number of independent annual maxima n· MEC. 

5.3.2 Evaluation of the Intersite Correlation  

The application of equation (5.3-1) requires the representation of the distribution 

of theoretical correlation coefficients for the study region through a suitable cross-

correlated formula. 

A possible approach to modelling cross-correlation between rainfall events is to 

compute the sample correlation coefficients using sample estimators proposed in the 

scientific literature (Stedinger, 1981) and, in absence of more specific information 
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about the spatial structure of the intersite correlation model, to approximate the true 

correlation coefficient ρk,j through empirical correlation functions of the distance dk,j 

among sites k and j (see, Tasker and Stedinger, 1989: Hosking and Wallis, 1988; 

Troutman and Karlinger, 2003). 

A simple correlation function that can been used is as follow: 
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where λ1 > 0 and λ2 ≥ 0 are the formula regional parameters of the formula. 

5.3.3 Estimating the Effective Sample Years of Data 

The condition of equal length for all series is seldom encountered in real-world 

data sets, hence equation (5.3-1) is generally inapplicable. 

In order to supply this problem let us suppose that the actual regional data sets 

consist of M AMS and globally spans n years. First, one identifies the number of 

years n1, for which the original data set includes only one observation of the annual 

maxima discharge, that is the years in which M-1 observations are missing. These n1 

observations are effective by definition. Then, the data set containing the n-n1 

remaining years is subdivided into Nsub ≤ ( n-n1) subsets; each one of them (say 

subset s) is selected in such a way that all its Ls ≤ M sequences are concurrent and of 

equal length ls and therefore suitable for the application of the estimator in equation 

(5.3-1). The overall effective sample of years of data, neff, coincides with the sum of 

n1 and the effective sample of years of data of all Ns subsets. 

Therefore effn̂  can be calculated as  
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where the notation [ ]Ls⋅  indicates that the average terms βρ  and ( ) 376.01 ρ− , which 

have the same meaning as in equation (5.3-1), are to be computed with respect to the 

Ls > 1 annual flood sequences which form subset s. Also β exponent in equation 

(5.3.3.-1) coincides formally with β in equation (5.3-1). 

This is consistent with the fact that the Ls sequences forming each subset s are 

concurrent and of equal length ls, which was the condition adopted for the 

identification of the empirical relationship in equation (5.3-1). 
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6 STUDY REGIONS AND LOCAL 

REGIME OF RAINFALL EXTREMES 

6.1 CLIMATE AND MORPHOLOGY OF AUSTRIA  

The study region is Austria which is hydrologically quite diverse, ranging from 

lowlands in the east to high alpine catchments in the west. Elevations range from less 

than 200 m above sea level (asl) to more than 3000m asl. Mean annual precipitation 

is less than 400 mm/year in the east and almost 3000 mm/year in the west. Land use 

is mainly agricultural in the lowlands, forested in the medium elevation ranges, while 

alpine vegetation and rocks prevail in the highest catchments. 

The analysis of timing of floods (Merz and Blöschl, 2003) outlines that in the high 

alpine catchments in the west of the country floods tend to occur in summer showing 

strong seasonality, which suggest the presence of snow and glacier melt floods. In 

the north, weak seasonality suggests that there is no single dominant process for a 

given catchment. The spring floods in the very north of the country suggest that both 

early snowmelt and rain-on-snow are likely to occur in these catchments. In 

Carinthia, in the very south of Austria, floods tends to occur in late autumn which 

may be related to the advection of most air from the Mediterranean south of Austria. 

Considering the storm duration it is outlined that short-durations of storms 

causing floods mainly occur in the south-eastern Austria where short convective 

storms are known to be important for flood generation. In contrast, long duration 

storms occur in the north-western Austria at the northern fringe of the Alps. As most 

flood producing weather system approach from the north-west, this zone is an area of 

orographic enhancement effects where synoptic rainfalls tend to be most important 

for flood generation. 
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From the point of view of rainfall depth and snowmelt, rainfall depths are usually 

largest in the north west of the country, mainly as result of the orographic effects 

mentioned above.  

Figures 6.1-1a and 6.1-1b show the spatial patterns of the frequency of long-rain 

floods, short-rain floods, flash-floods and snowmelt floods in Austria. This frequency 

is the number of years a maximum annual flood is classified as a certain process 

type, scaled by the total number of years for each catchment. Figure 6.1-1 indicates 

that long rain floods are the main causative process type of annual maximum floods 

in most catchments in Austria, as the frequencies are on the order of 0.5 (see Table 

6.1-1 below).  

Process Type 

Long-

rain 

floods 

Short-

rain 

floods 

Flash-

floods 

Rain-on-

snow 

floods 

Snowmelt 

floods 
All types 

Number of events 783 597 302 430 154 2266 

Number of peaks < MAF 
2511 

(56.6%) 

1281 

(39.7%) 

274 

(50.3%) 

1398 

(57.4%) 

248 

(71.5%) 

5712 

(49.6%) 

Number of peaks > MAF 

and < 10 yr flood 

2051 

(41.3%) 

1541 

(47.8%) 

225 

(41.3%) 

957 

(39.3%) 

94 

(27.1%) 

4868 

(42.3%) 

Number of peaks > 10 yr 

flood 

404 

(8.1%) 

403 

(12.5%) 

46 

(8.4%) 

80 

(3.3%) 

5  

(1.4%) 

938 

(8.1%) 

Total number of flood 

peaks 

4966 

(100%) 

3225 

(100%) 

545 

(100%) 

2435 

(100%) 

347 

(100%) 

11518 

(100%) 

Table 6.1-1 Flood type classification of annual maximum flood in Austria, MAF is the 

mean annual precipitation 

In catchments at the northern fringe of the high Alps, long rain floods are 

particularly common. The high Alps tend to act a as a topographic barrier to north-

westerly airflows, and orographic enhancement often produces persistent rainfall 

which can result in floods. The regions of the highest relative importance of long-

rain floods are identical with the regions of the highest mean annual rainfall in 

Austria. Short-rain floods, see Figure 6.1-1b, also occur quite commonly with a 

frequency of the order of 0.3.  
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There are, again, significant spatial differences. Short-rain floods occur more 

frequently in southern Austria than north of the Alps. This is likely due to two 

mechanism. The main ridge of the Alps tends to block weather systems approaching 

from the northwest which reduces the advection of moist air and hence the 

persistence of the rainfall. Also, in the south of the Alps southern airflows may 

produce floods that are associated with high-intensity short-duration storms. There is 

likely the tendency for a quicker response of some of the catchments in the south of 

the main Alpine ridges as compared to the north of it, which tends to enhance the 

role of short duration storms in flood generation.  

Flash floods occur significantly, see Figure 6.1-1c, than long-rain and short-rain 

floods. Flash floods are only important in eastern Austria, specifically in the hilly 

region of Styria in south-eastern Austria and in the hilly region of Waldviertel in 

north-eastern Austria. The hilly terrain appears to increase the instability of the 

boundary layer and hence the likelihood of convective storm. Throughout Austria, 

the spatial pattern in Figure 6.1-1c is rather patchy which reflects the random and 

local nature of flash floods causing maximum annual floods. 

Rain-on-snow floods Figure 6.1-1d rarely produce the  maximum annual flood. 

Those catchments with frequency of snowmelt floods of more than 0.1 are mainly 

located in the high Alps where both snow and glacier melt can be important for 

flooding, and in the northern Austria where early spring snowmelt may produce 

floods. However, these are usually minor floods. 
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Figure 5.3.3-1 Regional patterns of the frequency of flood process types. A frequency of 
unity indicates that in a catchment all the maximum annual floods are due to one particular 
process while a frequency of zero indicates that this process never leads to a maximum 
annual flood. (a) Long-rain floods, (b) short-rain floods, (c) flash floods, (d) rain-on-snow 
floods, and (e) snowmelt floods. For nested catchments the frequencies of the smaller 
catchments have been plotted on top of those of the larger catchments, and only catchments 
smaller than 5000 km2 are shown. 

 

Considering seasonality it is possible to assume that long-rain floods occur 

throughout the year but there is a tendency for more events and more extreme events 

to occur in summer, particularly in June and July. This is because heavy rainfall 

events occur more frequently in the summer month than in the rest of the year. 

Short-rain floods also mainly occur in summer and there is a tendency for soe of 

the major events to also occur in autumn. These are events that have occurred in 

southern Austria, see Figure 6.1-2. 

Flash-floods only occur in summer when enough energy is available for 

convective storms. 
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Rain-on-snow floods occur throughout the year with the exception of late summer 

and early autumn. The largest Rain-on-snow floods occur in late December. 

Similarly snowmelt floods occur throughout the year with the exception of late 

summer and autumn when all the catchments are snow free. 

The seasonal pattern of the flood occurrence is mainly related to the annual 

fluctuation in air temperature. Air temperature also exhibits a strong altitudinal 

dependence. There is a very pronounced seasonal patterns for all floods types. Long-

rain floods and short-rain floods exhibits an upper envelope of about 1000 m als 

from January to April. In late spring and summer these floods can occur in 

catchments of any elevation. At the end of the year the upper envelope gradually 

decreases to 100 m asl. This pattern of the upper envelope closely follows the snow 

fall line. In the high altitude catchments no annual maximum flood occur in the cold 

months of the year as most of the precipitation falls as snow.  

Flash floods exhibitts a strong seasonal pattern following the annual pattern of 

global radiation. It is interesting that, in July and August, flash floods can occur in 

catchments with elevation of up to 3000 m als. These are likely a result of convective 

storms that can occur at any altitude during summer. 

Rain-on-snow floods and snowmelt floods exhibits a narrow altitudinal range of 

occurrence which varies with time of the year. In winter both types occur in 

catchments lower than 1000 m als. 

This pattern is clearly related to the seasonal pattern of air temperature. Both 

Rain-on-snow floods and snowmelt floods appear to occur only within a limited 

range of temperature conditions for which a snow cover exists, but snowmelt and/or 

rain may occur.  

6.2 AVAILABLE RAINFALL DATA  

Hydrologic processes such as precipitations evolve on a continuous time scale. 

However, most hydrologic processes of practical interest are defined in a discrete 

time scale. The considered data derive from a discrete time series by sampling the 

continuous process of rainfall at discrete points in time. Hydrologic time series may 
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also be classified into categories depending on a number of factors, in particular this 

work will give importance to Uncorrelated and Correlated time series, the discussed 

is reported in Paragraphs 7.1.1 and 7.1.2. 

The analysed data are the rainfall daily data with duration 30 minutes, 1 hour, 3 

hours, 9 hours and 24 hours (1948-1997) recorded in 700 hydrological stations in 

Austria and obtained by applying a filtered peak over threshold procedure to the 

daily time series. 

Actually two general approaches are available for modelling flood, rainfall and 

many other hydrological series. Using an annual maximum series, one considers the 

largest event in each year; using a partial duration (PDS) series or peaks-over-

threshold (POT) approach, the analysis includes all peaks above a truncation or 

threshold level. 

6.2.1 Peaks-Over-Threshold Procedure 

Partial duration series considers all independent peaks which exceed a specific 

threshold: a threshold is applied to the sequence to retain only the large peaks.  

Fortunately one can estimate annual exceedance probability from the analysis of 

POT by empirical relationships or equations. The basic idea is to extract from the 

daily discharge sequences a sample of peaks containing more than one flood peak per 

year, in order to increase the available information with respect to the annual maxima 

analysis. However, in the practical applications ambiguous criteria for peak selection 

affect the efficiency of the method: for example, the average number of peaks per 

year, λ, is usually forced to remain in the range between 2 and 3 in order to preserve 

independence among subsequent flood peaks (e.g., Lang et al., 1999; Madsen et al., 

1997), despite the fact that such low values contrast with physical and statistical 

considerations. 

However usually POT series are relatively long and reliable POT records are often 

available and, if the arrival rate for peaks over threshold is large enough, POT 

analysis should yield very accurate estimates of extreme quantiles. Still, a drawback 
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of POT analysis is that one must have criteria to identify only independent peaks 

(and not multiple peaks of the same event). 

The appropriate threshold is given for this study by the Wussow Criteria. There 

are several deterministic criteria for heavy rain in common use, Wussow (1922) 

gives a simple analytical expression for identifying the critical rainfall depth Ncr so 

that the inequality rainfall depth N ≥ Ncr can be used as a criterion to assess heavy 

point rainfall. Ncr is function of several physical parameters; in particularly 

assuming geometrically similar catchments, the critical rainfall depth Ncr during the 

time of duration D appears to depend on the acceleration of gravity g, a coefficient K 

of turbulent diffusion of water in air and the precipitation intensity Rcr   

The estimate of Ncr can be determined as  

2

1

CDNcr =  

where C is the Wussow’s empirical value: 2

1

min5
−

⋅= mmC  

The adopted criterion fixes the threshold including all peaks which rainfall depth 

is larger than the square root of 5 times the corresponding duration. 

(min)5)( DmmN ≥  
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6.2.2 Identification of Regions 

We have identified circular subregions centred on points located as to create a 

grid, 6000 gridpoints derive by the subdivision of the region in 100 parts on x 

(dx=5.6 km) and in 60 parts on y (dy=4.8 km). This grid covers the entire analysed 

area and will be fundamental in following studies. The available data are taken by 

700 rainfall stations distributed on Austria and span by the duration of 30 minutes to 

24 hours, considering durations as belonging to a range of time as shown in Table 

2.2.1-1  below. 

Table 6.2.1-6.2-1 Considered duration classes for the rainfall data 

Duration Class (min) From (min) To (min) 

30 1 44 

60 45 89 

180 90 358 

360 90 899 

540 365 899 

1440 900 4310 

 

The rainfall stations position and the 6000 gridpoints analysed are showed in 

Figure 6.2.2-1.  
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Figure 6.2.2-1– Location of the 693 stations in Austria. On the entire area a grid has been created, 6000 gridpoints are so defined with 

spacing of 5,6 km on X coordinates and 0,5 km on Y.  
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The first representation of the available data is given by looking for the largest 

rainfall event in given distance by each gridpoint. 50 km has been selected as the 

reference distance in which to consider stations, so to create circular regions with 

radius 50 km and consequent approximate area of 8000km2. Only the rainfall stations 

belonging to the region are considered, and the first analysis consist of selecting the 

stations for each region and then considering in it the maximum rainfall data.  

This procedure is extended to each region and the maximum selected data are 

plotted in order to generate, by using the spatial interpolating Technique of Kriging, a 

Surfer colour scaled map. 

Kriging is a group of geostatistical techniques to interpolate the value Z(x0) of a 

random field Z(x) (e.g. the rainfall depth as a function of the geographic location x) at 

an unobserved location x0 from observations nixZz ii ,...,1),( ==  of the random 

field at nearby locations nxx ,...,1 . Kriging computes the best linear unbiased 

estimator )(ˆ
0xZ of Z(x0) based on a stochastic model of the spatial dependence 

quantified either by the variogram γ(x,y) or by expectation µ(x) = E[Z(x)] and the 

covariance function c(x,y) of the random field. 

The kriging estimator is given by a linear combinationf the observed values zi = 

Z(xi) with weights nixwi ,...,1),( 0 =  chosen such that the variance (also called kriging 

variance or kriging error): is minimized subject to the unbiasedness condition: 

[ ] ∑
=

=−=−
n

i
oii xxxwxZxZE

1
0 0)()()()()(ˆ µµ  

Figure 6.2.2-2 represents the used rainfall data for the duration class of 1 hour, 

collected by all stations and the maximum rainfall event recorded in distance 50 km 

from each gridpoint: 
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Figure 6.2.2-2 Representation of the available rainfall data (mm) for the duration class of 

1 hour; top: pointy collected data by each rainfall station – bottom: maximum rainfall in 

distance 50 km by each gridpoint.  

In Annexes(1) and (2) show the other durations, as the pointy data and as 

maximum rainfall in distance 50 km.  

The length in years of the series of data vary significantly among stations, this 

tendency is showed in Annexes (3). 

6.3 CLIMATE AND MORPHOLOGY OF ITALIAN REGION  

The study area includes the administrative Districts of Emilia-Romagna and 

Marche, in northern central Italy, and occupies 37.200 km2. The area is bounded by 

the Po River to the north, the Adriatic Sea to the east, and the divide of the 

Apennines to the southwest (see Figure 6.3-1). The north-eastern portion of the study 
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region is mainly flat, whereas the south-western and coastal parts are predominantly 

hilly and mountainous. 

The mean annual precipitation (MAP) varies on the study region from about 500 

to 2500 mm. Altitude is the factor that most affects the MAP, which exceeds 1500 

mm starting from altitudes higher than 400 m above sea level (asl) and exhibits the 

highest values along the divide of the Apennines (see Figure 6.3-1). 

The storm duration range spans from the short and localized convective events to 

the long and large areal coverage storms associated with large cyclonic weather 

systems. A regional analysis of the dates of occurrence of short-duration rainfall 

extremes (i.e., t equal to 1,…,3 hours) showed remarkable consistency and a mean 

timing which virtually coincided with the beginning of August for the entire study 

area; the dates of occurrence of long-duration rainfall extremes (i.e., t equal to 24 

hours or 1 day) showed, for the same area, less consistency and a mean timing which 

varied from the beginning of September to the beginning of November [Castellarin 

and Brath, 2002]. 

Several regional frequency analyses of rainfall extremes were performed over the 

study area. These studies, according to the logic of the traditional ‘‘index flood’’ 

hypothesis [Dalrymple, 1960], proposed subdivisions of the region shown in Figure 

6.4-1 into homogeneous climatic regions, within which the statistics of rainfall 

extremes for a given storm duration t are assumed to be constant [Brath et al., 1998; 

Brath and Franchini, 1999; Brath and Castellarin, 2001]. This assumption contrasts 

with the findings of other studies, which demonstrated for different geographical 

areas and climatic contexts that the statistics of rainfall extremes vary systematically 

with location [Schaefer, 1990; Alila, 1999]. These studies also identified statistically 

significant relationships between these statistics and the MAP, which was used as a 

surrogate of geographical location. Schaefer [1990] and Alila [1999] showed, for two 

rather large geographical areas, that the coefficients of variation and skewness of 

rainfall extremes tend to decrease as the local value of MAP increases, and they 

proposed to enhance the index flood hypothesis for the regional frequency analysis 

of rainfall extremes by dispensing with the delineation of geographical areas and 

defining, instead, as climatically homogeneous subregions those areas which have a 

small MAP range. 
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The applicability of the findings of Schaefer [1990] and Alila [1999] to the 

particular geographical and climatic context considered herein was investigated, and 

the available annual maximum series (AMS) of rainfall depth were analyzed, making 

use of a rain gage network with a higher resolution than the networks considered in 

the above mentioned studies. In particular, the variability of the sample L moment 

ratios [Hosking, 1990] of skewness (L-Cs) and variation (L-Cv) was examined against 

the variability of MAP. The results of the analysis show that the findings of Schaefer 

[1990] and Alila [1999] hold for a rather large portion of the study region, as the 

values of L-Cv and L-Cs of rainfall extremes are low in humid areas, while both 

statistics tend to increase, more or less markedly depending on the considered storm 

duration, as the local MAP value decreases. Nevertheless, the merger of two river 

basins indicated in Figure 6.3-1 as the Tyrrhenian Region, due to its closeness to the 

Tyrrhenian coast, exhibits a conflicting behaviour. The region is mountainous and 

therefore humid (average MAP ≈1400 mm), yet it shows high L-Cv and L-Cs values 

for all the storm durations considered in this study. This anomaly is illustrated in 

Figure 2 for the annual maxima of daily rainfall.  

The figure shows 

1. the sample L moment ratios against the MAP for 179 rain gages with at least 

30 years of observations;  

2. the weighted average MAP against the weighted average L-Cv and L-Cs for 

the Tyrrhenian Region;  

3. the relationship between L-Cv and MAP identified by Alila for a storm 

duration of 24 hours; 

4. the moving weighted average curves of L-Cv and L-Cs, based on a moving 

window including 15 data points outside the Tyrrhenian Region (shaded 

curve). The average MAP, L-Cv, or L-Cs values are obtained by weighing 

each measure proportionally to the recorded length of the corresponding rain 

gage [see Hosking and Wallis, 1997]. Figure 2 shows the anomalous behavior 

of the Tyrrhenian Region and the consistency with the results obtained by 

Schaefer [1990] and Alila [1999] for the remainder of the region. 
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The anomaly of the Tyrrhenian Region was already pointed out by Castellarin et 

al. [2001] and Castellarin and Brath [2002]. This atypical behavior may be accounted 

for by the proximity of the region to the Tyrrhenian shoreline and two windows in 

the Apennine divide, which locally drops below 1000 m asl, being normally above 

1400–1500 m asl. These windows, known in literature as the Genoa gap, produce a 

fundamental topographic control, channelling the most severe disturbances coming 

from the south and originating over the Tyrrhenian Sea, and allowing them to have 

significant climatic control beyond the Apennine divide [Tripoli et al., 2002]. The 

fact that the northern coastal area of the Tyrrhenian Sea exhibits a maritime rainfall 

regime and rather high coefficients of variation and skewness of rainfall extremes 

[Brath and Rosso, 1995] may partly explain the high L-Cv and L-Cs values observed 

for the Tyrrhenian Region, despite its rather high MAP values.  

Because of its particular behaviour, the Tyrrhenian Region has been excluded 

from this study . 
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Figure 6.2.2-1 Emilia-Romagna and Marche administrative regions; location of recording 

gages for different values of the minimum record length; Tyrrhenian Region; isoline maps of 

MAP and R10yr,24hr. 
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6.4 AVAILABLE RAINFALL DATA  

This second paragraph focuses on Italy, it analyzes the annual series of 

precipitation maxima observed by a rather dense gaging network located in a wide 

geographical area of northern central Italy with duration spanning from 15 minutes to 

24 hours.  

This work adapts the probabilistic interpretation proposed for RECs to DDECs 

and it assesses the suitability of these curves for estimating the T-year rainfall event 

associated with a given duration and large T values. 

The available extreme rainfall data consist of the annual series of precipitation 

maxima with duration t equal to 1, 3, 6, 12, 24 hours and 1 day (i.e., from 9:00 A.M. 

to 9:00 a.m. of the following day) that were obtained for a rather dense network of 

recording (hourly rainfall) and observational-day (daily rainfall) rain gages from the 

National Hydrographic Service of Italy (SIMN). Table 6.4-1 summarizes the 

available rainfall data, whereas Figure 6.4-1 shows the location of the recording 

gages, along with a subset of 226 nonrecording gages for which recent observation of 

MAP values are available (i.e., 1950–1991). 

 

Table 6.4-1 Study Area: Number of raingauges and number of observations for 

different durations. 

Duration (min) Number of Sites Number of Observations 

1440 223 8052 

720 223 8059 

360 223 6667 

180 223 7090 

60 223 8047 

45 189 941 

30 222 3766 

15 220 2187 
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Figure 6.2.2-1 Study area and location of stations for different values of the minimum 

record length. 
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7 METHODOLOGY 

7.1 AUSTRIAN CATCHMENTS  

This first part focuses on Austria, in that Region has been analysed the peak over 

threshold (POT) series of rainfall depths, in order to find out the recurrence interval 

T and create a REC for the region Austria in which 6000 points are analysed so to 

define a grid covering the entire area. 

The first analysis considers no spatial correlation between the rainfall data but a 

suitable plotting position is applied on the all sample years of data; the effect of 

intersite correlation on the exceedance probability is later discussed in order to make 

the probabilistic interpretation of envelope curves actually applicable to the real 

world data sets 

A single time series xt is correlated in time if the x at time t depend (linearly) on 

the x at time t-k, for k=1,2,…Time series of precipitation are usually uncorrelated, 

but several combinations of cross-correlation may exist. Let us consider the two 

series xt and yt, if the y at time t depend (linearly) on the x at time t-k, for k=02,1,… 

then the two time series are cross-correlated. It is possible that each series can be not 

correlated in time but cross-correlated between them. Examples are precipitation 

series at two nearby sites, one would expect that the time series will be cross-

correlated because the sites are relatively close to each other and therefore subject to 

similar climatic and hydrologic events. 

Next paragraphs deal with two different cases: the first one does not consider 

cross-correlation among series while the second deal with the searching for 

significant correlation among series and consequently revises the methodology of 

analysis. 



Methodology 

Page 66 of 122 

7.1.1 Uncorrelated Case 

If we consider no correlation between rainfall data collected by stations, the 

evaluation of the recurrence interval in years consist in the applying of a suitable 

plotting position. The chosen one is the Hazen plotting position. 

If one considers the relation between the T-year event and the return period T as a 

representation of the frequency curve, one needs to attribute a return period to each 

measured peak value. This is done by assigning to the j-th peak in the ordered sample 

(j is then the rank of the peak) a return period [Claps and Laio, 2003]: 










−+⋅
=

jtqq

tq
T j 5.0λ

 

where tq is the record length in years, λq the average number of flood peaks per 

year, and the 0.5 value comes from assuming the Hazen plotting position. 

The rank of the peak, j, goes from 1, smallest event, to (λq tq)for the largest one. 

This formula changes, considering a region, in: 
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where tq is the record length in years, k the number of stations in the region, λq 

the average number of flood peaks per year, and the 0.5 value comes from assuming 

the Hazen plotting position. The rank of the peak, j, goes from 1, smallest event, to 

(λq tq·k) for the largest one. 

We consider actually separated circular regions constructed around each gridpoint 

with radius 50 km. In order to apply the plotting position to a region is important to 

refer to the total number of station as they would be one. For this reason instead of 

tq, the record length in years for the single station, we refer to tq·k, equivalent length 

in year given by all stations. 

In a single region let us suppose k = 10 stations, tq = 20 years as record length for 

each of the k stations and λq = 5 events/year. 

• For the largest event, the rank is  j = λq tq·k = 20·10·5  and the return period 

becames: 

T rj = (20·10) / (20·10·5 + 0,5 - 20·10·5 + 0,5) = 400 years 
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• For the smallest event, the rank is  j = 1 and the return period becames: 

T rj = (20·10) / (20·10·5 + 0,5 - 1) = 0,2 years 

 

The Hazen plotting position, if applied to each point of the grid, gives for the 

maximum rainfall event, the results showed in Annexes (4). 

The following Figure 7.1.1-1 shows the return period in years for the all study 

region for the duration class of 24 hours. 

 

 

Figure 7.1.1-1 Daily rainfall depth (mm) and corresponding return period (years). 

The REC concept is extended to extreme rainstorm events by introducing the 

Depth-Duration Envelope Curves (DDEC), which is defined as the regional upper 

bound on all the record rainfall depths at present for various rainfall duration. 

Figure 7.1.1-2 presents the DDEC for the Austrian study region. 
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Figure 7.1.1-2 Depth-Duration Envelope Curve (red line); annual maximum rainfall 

depths (black +); trend-line for log(duration)-log(average rainfall depth). 

7.1.2 Correlated Case 

The estimation of the recurrence interval for cross-correlated series requires the 

quantification of the equivalent number of independent data which, in turn, is a 

function of the cross-correlation among sequences. 

The effect of intersite correlation on the exceedance probability is discussed in 

order to make the probabilistic interpretation of envelope curves applicable to the 

real world data sets. This point is important because real world data sets generally 
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consist of sequences of rainfall data that are not concurrent nor with equal record 

lengths. 

It is well known that intersite correlation leads to increases in the variance of 

flood statistics [see, e.g., Hosking and Wallis, 1988], thus the probabilistic 

interpretation of envelope curves has to be corrected considering a suitable 

correlation and plotting position formula. 

Castellarin et al., [2005] proposed an empirical estimator of the exceedance 

probability p that considers the spatial correlation between the regional data. The 

estimator evaluates the equivalent number of independent sequences MEC for M 

concurrent and correlated sequences with equal length n. 

The estimator reads, 
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 (7.1.2-1) 

where βρ  and 376.0)1( ρ−  are average values of the corresponding functions of 

the correlation coefficients (i.e. βρ is the average of the M(M-1)/2 values of ρβ
k,j , 

where ρk,j is the correlation coefficient between sites k and j, with 1 ≤ k < j ≤ M). 

The p value of the expected PREC can be computed by estimating MEC through 

equation (7.1.2-1) and using an appropriate plotting position by setting the overall 

sample years of data to the equivalent number of independent years n·MEC. 

A possible approach to modelling cross-correlation between rainfall events is to 

compute the sample correlation coefficients using sample estimators proposed in the 

scientific literature [Stedinger, 1981] and, in absence of more specific information 

about the spatial structure of the intersite correlation model, to approximate the true 

correlation coefficient ρk,j through empirical correlation functions of the distance dk,j 

among sites k and j [see, Tasker and Stedinger, 1989: Hosking and Wallis, 1988; 

Troutman and Karlinger, 2003]. 

A simple correlation function that can be used is as follow: 


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where α is the formula regional parameter. 
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From the regression of the empirical values of ρk,j and dk,j we assume α = 100km 

for the duration of 24 hours and α = 10km for the duration of 1 hour. Figure 7.1.2-1 

and Figure 7.1.2-1 show the correlation coefficient trend for the durations of 1 hour 

and 24 hours. 

 

Figure 7.1.2-1 Empirical correlation coefficients, considered duration of 1 hour 

 

Figure 7.1.2-2 Empirical correlation coefficients, considered duration of 24 hours. 

The parameter α for different durations will be extrapolated by a graph as in 

Figure 7.1.2-3: 
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Figure 7.1.2-3 Visualisation the parameter α to be used in (7.1.2-2) for different durations 

in hours. 

 

Table 7.1-1 Estimates of the parameter α for 

different durations 

 

 

 

 

 

 

The Hazen plotting position, if applied to each point of the grid and considering 

the intersite correlation, gives for the maximum rainfall event, the results showed in  

(5) and (6) in Annexes. 

 

Duration 

(d) 

Parameter 

α 

0.5 8 

1 10 

3 18 

9 42 

24 100 
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Figure 7.1.2-3: Daily rainfall depth (mm) and corresponding return period (years). 

The following Figure 7.1.2-3 and Figure 7.1.2-4 show the return period in years 

for the all study region for the duration class of 24 hours, considering the intersite 

correlation, and the reduction in return period between the uncorrelated and 

correlated case. 

 

Figure 7.1.2-4: Return period in years for the duration class of 24 hours. Top: not 

correlated case; Bottom: correlated case. 

Considering the spatial correlation between the series and the effective number 

MEC of uncorrelated series in the region, the return period decreases. 

This reduction will be higher with the increasing of the correlation between 

stations, that means that high durations will have higher reductions in terms of return 

period while low durations will have less reductions, for instance for the duration 

class of 30 minutes the recurrence interval in almost the same both in uncorrelated 

case and the correlated one.  

The following Table 7.1.2-2 illustrates the effects of spatial correlation on the 

recurrence interval: 
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Table 7.1-2 Comparison for return periods between the not correlated and the correlated 

case, the effects of intersite correlation increase with high durations.  

7.2 ITALIAN CATCHMENTS  

For Italian catchments the procedure described in Paragraph 5.3 for flood flows 

probabilistic envelope curves is modified and reviewed in order to make it applicable 

to extremes rainfall events. 

Instead of plotting for each site the normalized record flood, defined as the 

logarithm of the ratio of the record flood to its basin area versus the logarithm of the 

basin area, we plot for each site the normalized annual maxima rainfall versus the 

logarithm of the mean annual precipitation (MAP). This PREC considers also the 

intersite correlation among stations by using the Tasker and Stedinger regional cross-

correlation formula. 

The construction of the empirical PREC and the estimation of p starts by the 

definition of a homogeneous region, we consider a unique homogeneous region 

corresponding to the entire study region. An estimate of the PREC slope b̂  is 

Duration class 

(minutes) 

Uncorrelated case: 

maximum T (years) 

Correlated case: 

maximum T 

(years) 

Decrease 

(%) 

30 2960 2866 3,2 

60 3040 2902 4,5 

180 3240 2672 17 

360 3560 2094 41 

540 2400 1155 52 

1440 3200 418 87 
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obtained by regressing the empirical values of rainfall against the MAP value of the 

corresponding site. The value of the intercept a in equation (5.1-1) is computed as  
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where hj denotes the maximum rainfall depth observed at site j=1,…,M and M is 

the number of sites in the region while MAPj is the mean annual precipitation 

associated t site j. A suitable regional cross-correlation function is identified (the 

estimation of coefficients λ1 and λ2 of equation (5.3.2-1) is studied in deep in 

paragraph 7.2.1). Then effn̂  is computed trough equation (5.3.3-1). A suitable 

regional parental distribution is chosen and a quantile-unbiased plotting position 

suitable for this distribution is utilized for estimating p as a function of effn̂ . 

The GEV distribution was shown to be a suitable probabilistic model for 

representing the annual maximum rainfall event sequences in the study area. 

Table 7.2-1 reports the estimates of the parameters λ1 and λ2 of the cross-

correlation formula in equation (5.3.2-1) obtained for the hole study area and for 

each duration class. The estimates were obtained by applying a weighted least 

squares regression algorithm that uses, as weight for each sample cross-correlation 

coefficient between two sequences (sites), for the corresponding number of 

concurrent rainfall events, see Figure 7.2-1. Table 7.2-1 also reports the estimates of 

the PREC’s slope, b̂ , along with the values of the intercept a. Finally Table 7.2-1 

lists the plotting position parameters and the number of total observations and 

effective observations, out coming by the application of equation (5.3-1). 

Figure 7.2-2 illustrate the envelope curves for the region for the duration class of 

24 hours. 
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Table 7.2-1 Characteristics of the study region 

 

Figure 7.1.2-1  Tasker & Stedinger cross-correlation model (red line); empirical values (grey 

dots); moving average with width = 100 (black thick line) 

Duration (min) 1440 720 360 180 60 45 30 20 15 

No. Of sites 223 223 223 223 223 189 222 213 220 

No. Of observations 8052 8059 6667 7090 8047 941 3766 2057 2187 

No. Of single observations 1 1 7 8 1 4 0 0 0 

No. Of effective observations 3241.6 4769.6 5225.0 6283.3 7558.9 844.90 3645.60 1933.40 2044.90 

Tasker & Stedinger λ1 0.0359 0.0562 0.0948 0.1460 0.2060 0.1960 0.3290 0.8520 0.2120 

Tasker & Stedinger λ2 0.0100 0.0175 0.0329 0.0508 0.0665 0.0622 0.1040 0.3520 0.0662 

Mean cross-correlation (model) 0.1736 0.1349 0.1087 0.0912 0.0703 0.1178 0.0645 0.0966 0.0719 

Recurence interval (years) 6483 9539 10450 12567 15118 1690 7291 3867 4090 

Plotting-position parameter 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

DDEC slope -0.282 -0.361 -0.530 -0.581 -0.763 -0.962 -0.9132 -0.038 -0.9866 

DDEC intercept 1.0555 1.3645 2.2719 2.5417 3.1724 4.2034 3.5763 4.0452 3.8419 
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Figure 7.1.2-2 Empirical regional envelope curve for the study area and for the duration of 

24 hours. 

In Annexes (7) and (8) show the empirical envelope curves and the empirical 

cross-correlation coefficient for couple of stations in the hole study area, for all 

durations. 

It has also been analysed the trends for DDEC intercept and slope with duration. 

While the DDEC slope increases, that means that the absolute value decreases, the 

intercept increases with the increasing of duration. Figures 7.1.2-3 and 7.1.2-4 

present slopes and intercepts for hourly durations, it is possible in this way to 

extrapolate slope and intercept for every other duration. The two analysed DDEC 

parameters are approximated by a logarithmic model that minimize the gap between 

the empirical and values (grey dots) and the mathematically modelled values (black 

logarithmic line).  
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Figure 7.1.2-3 Empirical DDEC intercept (grey dots) versus duration, logarithmic 

modelling (continuous black line). 

 

Figure 7.1.2-4 Empirical DDEC slope (grey dots) versus duration, logarithmic modelling 

(continuous black line). 
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7.2.1 Analysis and Modelling of Intersite Correlation 

Regional frequency analysis usually assumes that records from different sites are 

statistically independent. This assumption is unlikely to be valid in practice so it is 

important to know how intersite dependence affects the estimates. We have 

computed sample estimators to modelling cross-correlation between rainfall events 

and the effective number of independent sites in our region. 

This cross-correlation obviously is function of the storm duration, let us consider 

precipitation series at two nearby sites. One would expect that the time series will be 

cross-correlated because the sites are relatively close to each other and therefore 

subject  to similar climatic and hydrological events. As the sites considered become 

farther apart their cross-correlation decrease. This tendency also decrease with slow 

durations, because the probability of having similar hydrological events decreases 

with the duration of the event itself.  

Figure 7.2.1-1 shows this trend for all the analysed durations. 

 

Figure 7.2.1-1 Tendency of the empirical cross-correlation coefficient with distance for all 

the rainfall durations, moving weighted average curve. 
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The figure above illustrates the tendency of the empirical correlation coefficient 

for all durations with distance. The trend of correlation coefficients with distance can 

be modelled by considering a suitable regional cross-correlation function.  

The proposed modelling (see Tasker and Stedinger, 1989). approximate the true 

correlation coefficient ρk,j through empirical correlation functions of the distance dk,j 

among sites k and j . The used correlation function is as follow: 


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where λ1 > 0 and λ2 ≥ 0 are the formula regional parameters of the formula. 

The estimates of the parameters λ1 and λ2 are obtained by applying a weighted 

least squares regression algorithm that uses, as weight for each sample cross-

correlation coefficient between two sequences (sites), for the corresponding number 

of concurrent rainfall events.  

The estimated parameters λ1 and λ2 are plotted in Figure 7.2.1-2 as function of the 

duration, both in natural and logarithmic scale.  
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Figure 7.2.1-2  Parameters λ1 and λ2 to be used in equation (5.3.2-1), for couple of 

catchments (grey dots), exponential modelling (dashed line) and potential modelling 

(continuous black line) in natural and log-log scale. 

Finding a trend for the two parameters of equation (5.3.2-1) would allow their 

extrapolation for every other duration, would be interesting to find the best 

estimation and at this aim two different tendencies have been analysed: the 

exponential and potential trends are shown in Figure 7.2.1-2. 

The parameters λ1 and λ2 estimated from the two different modelling are used in 

equation (5.3.2-1) giving different values of correlation coefficients: the following 

Figure 7.2.1-3 presents the obtained cross-correlation coefficients together with the 

values of cross-correlation given by applying a weighted least squares regression 

algorithm and the original moving weighted average curve for the duration of 24 

hours. 

In conclusion, the estimation of λ1 and λ2, at first given by applying a weighted 

least squares regression algorithm, is then obtained by an exponential and potential 

model. It is possible to conclude that the potential model has a better approximation 

of the parameters, because of the higher value of the Nash-Sutcliffe efficiencies E.  
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Figure 7.2.1-3 Moving weighted average curve for empirical cross-correlation coefficients 

(blue line), correlation formula (5.3.2-1) calibrated for the whole study area (pink line), 

correlation exponential formula (black line) and correlation potential formula (green line) 

calibrated for the whole study area. 

The same Figure is present in Annexes for all other durations as (9). 

The reliability of these estimates has been quantified trough the Nash-Sutcliffe 

formula, that defines the efficiency E as: 
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where empi ,ρ  is the empirical estimated correlation coefficient, modρ  is the 

corresponding correlation coefficient estimated by the model which efficiency we 

want to analyse, and empi ,ρ  is the mean of all the empirical empi ,ρ . 

The Nash-Sutcliffe model efficiency coefficient is used to assess the predictive 

power of hydrological models and gives us the idea of the accuracy of the model 

estimates. Nash-Sutcliffe efficiencies can range from -∞ to 1. An efficiency of 1 

(E=1) corresponds to a perfect match of modelled variable to the observed data. An 

efficiency of 0 (E=0) indicates that the model predictions are as accurate as the mean 



Methodology 

Page 83 of 122 

of the observed data, whereas an efficiency less than zero (-∞<E<0) occurs when the 

observed mean is a better predictor than the model. Essentially, the closer the model 

efficiency is to 1, the more accurate the model is.  

This method can be used to describe the predicative accuracy of other models as 

long as there is observed data to compare the model results to. In other applications, 

the measure may be known as the Coefficient of determination, or R2. For example, 

Nash-Sutcliffe efficiencies have been reported in scientific literature for model 

simulations of discharge, and water quality constituents such as sediment, nitrogen, 

and phosphorus loadings.  

 

The values of efficiency are calculated for each duration and model, they are 

shown in Table 7.2.1-1 below. 

  E(T&S) E(pot) E(exp) 

d (min)     

1440 0,927 0,896 0,835 

720 0,915 0,906 0,775 

360 0,780 0,759 0,553 

180 0,658 0,607 0,552 

60 0,633 0,602 0,609 

45 0,336 0,334 0,320 

30 0,131 -0,058 -0,035 

20 0,026 -0,315 -0,291 

15 0,192 0,162 0,069 

    

Average E 0,511 0,433 0,376 

Table 7.2-2 Nash-Sutcliffe efficiency for different modelling of intersite correlation. 

From the results put in the Table above, it is reasonable to conclude that the 

potential model has a better approximation of the parameters λ1 and λ2, actually the 

efficiency increases for the potential modelling and it is higher on average. 

Small durations, in particularly 20 minutes, have a smaller efficiency. For this 

reason Figure 7.2.1-2 does not consider the 20 minutes duration for the estimation of 

parameters, thus the estimates for the duration 20 minutes, because of the sample 

variability, will be less accurate. 
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7.2.2 Validation Procedure 

The assessment of the accuracy of PREC quantiles needs a comparison term.  

Another regional estimate of the TEC-year rainfall is used as reference value for 

the comparison with the PREC rainfall depth. The rainfall depths obtained by the 

DDEC will be compared with the rainfall depths estimated using regional depth-

duration-frequency equations (RDDFEs) developed for the same catchment in 

northern-central Itlay, see Brath, Castellarin, Montanari, 2003. 

The developed RDDFEs can be used in any location of the study area for 

estimating the T-year storm for values of durations t ranging from 1 to 24 hours.  

We have considered the durations of 1 hour and 24 hours and proceeded with a 

spot analysis in order to check in the neighbourhood of 3 locations the accuracy of 

the PREC estimate. The given rainfall depth is compared with the one obtained by 

the RDDFE. by means of linear regression analyses, regional depth-duration 

equations (RDDEs) of the following type: 

),,(),,( 24,, Θ+Θ= TtBRTtAR hrTtT  (7.2.2-1) 

where RT,t and RT,24hr are the T-year rainfall depths with t- and 24-hour storm 

duration respectively, while A and B are regional coefficients that may be considered 

as varying with the storm duration, recurrence interval, and geographical location, 

expressed in equation (7.2.2-1) by the vector Θ . 

The slope A and intercept B of equation (7.2.2-1) were initially assumed to be 

independent of geographical location and we obtain the following relation (7.2.2-2): 

[ ]951.0)ln(474.0)24(1
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, +−+








+






= Tt
T

fRtR hryrtT  

where RT,t and R10yr,24hr are expressed in mm, f is equal to fTR = 0.259 within the 

Tyrrhenian Region and is expressed as 

)ln(055.0602.0 MAPf −=  
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The rainfall depth to be compared with the obtained one will be calculated by 

equation (7.2.2-2) where RT,24hr is known for a given value of MAP in the study 

region, and T is obtained for the considered duration as seen in paragraph 7.1. 

The considered stations, say stations i = 1,..,3, with relative values of MAPi are 

random selected and 20 stations are identified in its neighbourhood. The comparison 

is developed by a Jackknife Procedure: in turn, the considered gaging stations, say, 

station i, is removed from the set of gages and the T-year storm is estimated by the 

DDEC for the given duration. 

The analysed gaging stations with corresponding values of MAP are shown in 

Table 7.2.2-1 together with a quantitative analysis of the overall reliability of the 

DDEC estimates of the design storm, which relative residuals that has been evaluated 

as follows: 

itT

itTitT
itT R

RR

,,

,,,,
,,

ˆ −
=ε  

where itTR ,,
ˆ  is the jackknifed DDEC estimate of the T-year t-hour design storm 

for a given site i, and itTR ,,  is the corresponding estimate by equation (7.2.2-2). 

t (h) MAP(mm) f T (years) R10yr,24h RT,t,i (mm) itTR ,,
ˆ (mm) ∆ εr 

1 700 0,241691 1315 95,88 77,53376 75,81375 1,720008 0,022687 

1 1100 0,241691 1529 133,85 90,42481 80,88799 9,536823 0,117902 

1 1500 0,241691 1247 141,41 90,69418 82,61627 8,077913 0,097776 

 

Table 7.2-3 Values of considered MAP in which neighbourhood 20 stations have been 

considerate, T and itTR ,,
ˆ  are estimated by the empirical DDEC while itTR ,,

ˆ  is calculated. 

t (h) MAP(mm) f T (years) R10yr,24h RT,t,i (mm) itTR ,,
ˆ (mm) ∆ εr 

24 700 0,241691 978 95,88 202,6084 278,4816 -75,8733 0,272453 

24 1100 0,241691 1085 133,85 286,212 246,3258 39,88619 0,161924 

24 1500 0,241691 741 141,41 289,3106 556,4372 -267,127 0,480066 
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8 DISCUSSIONS AND CONCLUSIONS 

This work deals with the definition of probabilistic envelope curves of extremes 

rainfall events for the Austrian national rainfall dataset and for a wide north-central 

Italian region.  

The evaluation of the frequency regime of extreme rainfall events is a 

fundamental task for the evaluation of the flooding potential in natural catchments 

and urban areas, which, in turn, are required steps for the identification and design of 

flood risk mitigation measures and policies.  

The present study focuses on extreme rainfall events extending in this context the 

idea of a probabilistic interpretation of regional envelope curves (REC) that  was 

recently proposed for record floods by the scientific literature (Castellarin 2007). 

The study is structured in two main parts. First depth-duration envelope curves 

(DDECs) are constructed for Austria and an Italian Region. Then estimates of the 

recurrence interval associated to a particular DDEC are  computed using an 

adaptation of the algorithm proposed by Castellarin (2007). In principle, this makes 

DDECs useful graphical tools that can be employed for estimating design rainstorms 

for a given duration, any location in the study area and high or very high recurrence 

intervals. 

The study analysed a comprehensive national dataset of peaks over threshold 

(POT) series of rainfall depths recorded at roughly 700 rainfall Austrian stations for 

duration spanning from 30 minutes to 24 hours. It is evaluated the maximum 

probable rainfall event for the given duration and the return period T of the expected 

DDEC. At first T is determined for the entire POT series as not spatially correlated 

by applying the Hazen plotting position to each investigated region. The estimation 

of the recurrence interval of the expected DDEC requires the selection of a cross-

correlation formula to model the intersite correlation among the rainfall peak series 

and a plotting position.  
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The estimation of the recurrence interval for cross-correlated series requires the 

quantification of the equivalent number of independent data which, in turn, is a 

function of the cross-correlation among sequences. 

The followed approach for modelling cross-correlation between rainfall events is 

to approximate the true correlation coefficient ρk,j through empirical correlation 

functions of the distance dk,j among sites k and j, as function of the formula regional 

parameter α. From the regression of the empirical values of ρk,j and dk,j for the 

durations of 1 and 24 hours, we extrapolate the value for α for all other duration. It is 

in this way defined for each duration class and site in Austria the return period T 

associated to the maximum probable rainfall event. 

Then a wide geographical region located north-central Italy has been investigated. 

For this region annual maximum series (AMS) of rainfall depths with duration 

spanning from 15 minutes to 24 hours are available for a rather dense gauging 

network (more than 200 gauges). The empirical estimator of the recurrence interval T 

associated with a DDEC, which, in principle, enables us to use DDECs for design 

purposes in ungauged sites is derived by adapting the algorithm proposed for 

probabilistic regional envelopes curves (PRECs) by the scientific literature. The 

DDEC constructed for the Italian study region relative to a particular duration t 

describes the upper bound of the record rainfall depth with duration t divided by the 

local mean annual precipitation (MAP) as a function of the MAP itself. MAP can be 

considered as representative of the spatial location. As a matter of fact, instead of 

considering the physical coordinates for points it is possible to identify the site by the 

value of MAP.  

Intersite correlation among AMS recorder at different raingauges for different 

duration is modelled by using the Tasker and Stedinger regional cross-correlation 

formula which parameters λ1 and λ2 have been deeply analysed in order to make them 

estimable for each duration. The same analysis has been developed for DDEC 

intercept and slope with duration 

The reliability of the rainfall quantiles (rainfall depths associated with a given 

duration and recurrence interval) retrieved from DDEC  is assessed relative to a a 

different estimating method proposed by the scientific literature. The quantitative 
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analysis of the overall reliability of the DDEC estimates of the design storm, includes 

the relative residuals evaluation. 

The results of the analysis seem to indicate that the proposed DDECs represent 

practical tools to determine plausible extreme rainfall events at gauged and ungauged 

sites (deterministic interpretation) and can be used to provide a realistic estimate of 

the recurrence intervals associated with such rainfall events (probabilistic 

interpretation). 
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CONCLUSIONI 

Il presente lavoro considera eventi meteorici estremi ed estende, in tale contesto, 

l’idea dell’interpretazione probabilistica delle curve inviluppo regionali (REC), 

recentemente proposte dalla letteratura scientifica per dati di portate estreme 

(Castellarin, 2007). 

Lo studio è strutturato in due parti principali. Nella prima curve inviluppo di 

durata-altezza di precipitazione (DDECs) sono costruite per l’Austria e l’Italia. In 

seguito è stata valutata la stima del tempo di ritorno associato ad una particolare 

DDEC attraverso l’adattamento dell’algoritmo proposto da Castellarin (2007). In 

linea di principio tale approccio rende le DDECs utili strumenti grafici che possono 

essere usati per la stima degli eventi meteorici di progetto di assegnata durata, per 

ogni punto della regione in analisi e per alti o molto alti tempi di ritorno. 

Tale studio analizza una completa banca dati nazionale di serie di picchi al sopra 

di una soglia (POT) di precipitazioni raccolte da 700 stazioni di registrazione in 

Austria per le durate comprese tra i 30 minuti e le 24 ore. E’ stata valutata la 

precipitazione massima probabile di assegnata durata e periodo di ritorno dalla curva 

inviluppo attesa. Inizialmente il tempo di ritorno T è stato stimato per tutte le POT 

serie come non correlate dal punto di vista spaziale, tramite l’applicazione della 

plotting position di Hazen in ogni regione individuata. La stima del tempo di ritorno 

per la DDEC richiede comunque l’identificazione di una formula di cross-

correlazione, al fine di modellare la correlazione spaziale tra le serie, e la valutazione 

dell’ottimale plotting position. 

La stima del tempo di ritorno per serie correlate implica la quantificazione del 

numero equivalente di dati, che è a sua volta funzione della cross-correlazione tra le 

serie. L’approccio seguito per la modellazione della correlazione spaziale si traduce 

nell’approssimare il coefficiente di correlazione empirico ρk,j tra i siti k e j posti a 

distanza dk,j, mediante modelli di correlazione regionali, a loro volta funzione del 

parametro regionale α. Dalla regressione dei valori empirici di ρk,j  e  dk,j per le durate 

di 1 ora e 24 ore, si sono estrapolati i valori di α per tutte le altre durate. Si è in tal 
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modo definito, per ogni classe di durata e per ogni sito in Austria, il tempo di ritorno 

associato all’evento meteorico massimo probabile. 

Successivamente nelle regioni italiane di Emilia Romagna e Marche sono state 

considerate le serie dei massimi annuali di precipitazione osservati in una rete di 

stazioni per le duarte comprese tra i 15 minuti e le 24 ore. Lo stimatore empirico del 

tempo di ritorno associato alla DDEC, che consente l’uso della DDEC stessa per il 

progetto in bacini non strumentati, è derivato dall’ adattamento, nella regione oggetto 

di studio, dell’algoritmo proposto dalla letteratura scientifica per le curve inviluppo 

regionali probabilistiche (PRECs). La DDEC costruita per la regione di studio 

italiana relativa a una data durata t, descrive il limite superiore delle altezze di 

precipitazione registrate con durata t , divisa per la precipitazione media annua 

(MAP) quale funzione del MAP stesso. Il MAP può infatti essere utilizzato come 

rappresentativo della posizione spaziale. Infatti, invece che valutare le coordinate 

UTM dei siti, si sono identificati gli stessi attraverso valori di MAP. 

La correlazione spaziale tra i siti viene modellata utilizzando la formula di cross-

correlazione regionale di Tasker e Stedinger, i cui parametri λ1 e λ2 ,sono stati 

accuratamente analizzati così da renderli stimabili graficamente per ogni possibile 

durata. La stessa analisi è stata affrontata per la pendenza e l’intercetta della 

DDDEC, così da rendere anche tali grandezze stimabili per ogni durata. 

L’affidabilità dei quantili di precipitazione (altezze di precipitazione associate a 

una certa durata e tempo di ritorno) ricavati dalla DDEC, è infine analizzata tramite il 

confronto con un diverso modello di stima proposto dalla letteratura scientifica. Le 

altezze di precipitazione valutate dalla DDEC sono paragonate con le altezze di 

precipitazione calcolate attraverso curve di possibilità climatica costruite per lo 

stesso bacino italiano. Il risultato dell’analisi sembra indicare che le DDECs proposte 

costituiscano uno strumento pratico per la valutazione di probabili eventi di pioggia, 

da utilizzarsi quali eventi di progetto in siti strumentati e non (interpretazione 

deterministica), e possono inoltre fornire una stima realistica del tempo di ritorno 

associato a tale evento di pioggia (interpretazione probabilistica). 
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APPENDIX 

Table 7.2-1 Commonly Used Frequency Distributions in Hydrology 

Distribution pdf and/or cdf Range Moments 
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ANNEXES 

1. Collected Austrian data for each rainfall station and duration class 
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2.  Maximum rainfall in distance 50 km by each gridpoint 
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3. Length in years of the series of Austrian data 
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4. Return period in years for the maximum rainfall event in mm, it is not 

considerate spatial correlation among sites. 
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5. Return period in years for the maximum rainfall event in mm, it is now 

considerate spatial correlation among sites. 
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6. Comparison between the return period (in years) for the correlated case 

and the uncorrelated one. 
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7. Empirical cross-correlation coefficient for couple of stations in the hole 

study area, for all durations 
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Continue: Empirical cross-correlation coefficient for couple of stations 
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Continue: Empirical cross-correlation coefficient for couple of stations 
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Continue: Empirical cross-correlation coefficient for couple of stations 
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Continue: Empirical cross-correlation coefficient for couple of stations 
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8. Figure 7.2-4 Empirical envelope curves. Depth-Duration Envelope Curve 

(red line); annual maximum rainfall depths (blue +); rainfall depths of 

record for different durations (red dots); trend-line for log(duration)-

log(average rainfall depth). 
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Continue:  empirical envelope curves. 
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Continue:  empirical envelope curves. 
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Continue:  empirical envelope curves. 
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Continue:  empirical envelope curves. 
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9. Moving weighted average curve for empirical cross-correlation 

coefficients (blue line), correlation formula (5.3.2-1) calibrated for the 

whole study area (pink line), correlation exponential formula (black line) 

and correlation potential formula (green line) calibrated for the whole 

study area. 
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Continue: Moving weighted average curve for empirical cross-correlation 

coefficients (blue line), correlation formula (5.3.2-1) calibrated for the whole 

study area (pink line), correlation exponential formula (black line) and 

correlation potential formula (green line) calibrated for the whole study area 

 

 

 



Annexes 

Page 115 of 122 

Moving weighted average curve for empirical cross-correlation coefficients 

(blue line), correlation formula (5.3.2-1) calibrated for the whole study area 

(pink line), correlation exponential formula (black line) and correlation 

potential formula (green line) calibrated for the whole study area 
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Moving weighted average curve for empirical cross-correlation coefficients 

(blue line), correlation formula (5.3.2-1) calibrated for the whole study area 

(pink line), correlation exponential formula (black line) and correlation 

potential formula (green line) calibrated for the whole study area 
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Moving weighted average curve for empirical cross-correlation coefficients 

(blue line), correlation formula (5.3.2-1) calibrated for the whole study area 

(pink line), correlation exponential formula (black line) and correlation 

potential formula (green line) calibrated for the whole study area 
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