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Sommario

Il presente lavoro studia uno schema di assimilazione dati alla scala del km basato su

un metodo LETKF sviluppato per il modello COSMO.

Lo scopo è di valutare l’impatto dell’assimilazione di due differenti tipi di dati: temper-

atura, umidità, pressione e vento provenienti da reti convenzionali (SYNOP, TEMP,

AIREP) e riflettività 3d da radar. Un ciclo di assimilazione continuo di 3 ore è stato

implementato sul dominio italiano, costituito da 20 membri, con condizioni al contorno

fornite dall’ensemble globale di ECMWF.

Sono stati eseguiti tre diversi esperimenti, in modo da valutare la bontà dell’assimilazione

durante una settimana di ottobre 2014 caratterizzata dalle alluvioni di Genova e Parma:

un primo esperimento di controllo del ciclo di assimilazione, con l’utilizzo di dati solo

da reti convenzionali, un secondo esperimento in cui lo schema SPPT viene attivato

nel modello COSMO, un terzo esperimento in cui è stata assimilata anche la riflettività

proveniente da radar meteorologici.

È stata poi effettuata una valutazione oggettiva degli esperimenti sia su caso di studio

che sull’intera settimana: controllo degli incrementi dell’analisi, calcolando la statis-

tica di Desroziers per dati provenienti da SYNOP, TEMP, AIREP e radar, sul dominio

italiano, verifica dell’analisi rispetto ai dati non assimilati (temperatura al livello più

basso del modello confrontata con i dati SYNOP), e verifica oggettiva delle previsioni

deterministiche inizializzate con le analisi di KENDA per ognuno dei tre esperimenti.





Abstract

The present work studies a km-scale data assimilation scheme based on a LETKF

developed for the COSMO model. The aim is to evaluate the impact of the assimi-

lation of two different types of data: temperature, humidity, pressure and wind data

from conventional networks (SYNOP, TEMP, AIREP reports) and 3d reflectivity from

radar volume. A 3-hourly continuous assimilation cycle has been implemented over an

Italian domain, based on a 20 member ensemble, with boundary conditions provided

from ECMWF ENS.

Three different experiments have been run for evaluating the performance of the as-

similation on one week in October 2014 during which Genova flood and Parma flood

took place: a control run of the data assimilation cycle with assimilation of data from

conventional networks only, a second run in which the SPPT scheme is activated into

the COSMO model, a third run in which also reflectivity volumes from meteorological

radar are assimilated.

Objective evaluation of the experiments has been carried out both on case studies and

on the entire week: check of the analysis increments, computing the Desroziers statis-

tics for SYNOP, TEMP, AIREP and RADAR, over the Italian domain, verification of

the analyses against data not assimilated (temperature at the lowest model level ob-

jectively verified against SYNOP data), and objective verification of the deterministic

forecasts initialised with the KENDA analyses for each of the three experiments.
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Introduction

Forecasting a physical system generally requires both a model for the time evolution

of the system and an estimate of the current state of the system. In some applications,

such as weather forecasting, direct measuraments of the global system state is not fea-

sible, but it must be inferred from available data.

While a reasonable state estimate based on current data may be possible, in general

one can obtain a better estimate by using both current and past data (Hunt et al.,

2007).

Data assimilation is an analysis technique in which the observations are accumulated

into the model state and propagate to all variables of the model. Many assimila-

tion techniques, such as Cressman analysis, Optimal interpolation analysis, Three-

dimensional (3D-Var) and four-dimensional (4D-Var) variational assimilation, Local

Ensemble Transform Kalman Filter (LETKF), have been developed for meteorology

and oceanography. They differ in terms of numerical cost, their optimality and their

suitability for real-time data assimilation (Bouttier and Courtier, 1999).

The aim of this work is to assess the impact of the assimilation of conventional data

and radar data in a LETKF scheme, analizing the dependency on the parameters of

the scheme (localization radius, inflation method, data density).

An experimental kilometer-scale ensemble data assimilation (KENDA) system for the

COnsortium for Small-scale MOdeling (COSMO) forecast model has been developed

at Deutscher Wetterdienst (DWD) (Harnisch and Keil, 2015; Schraff et al., 2016). The

general purpose is to provide initial conditions to the high-resolution applications of

the COSMO model both in deterministic and in ensemble system. The LETKF data

assimilation scheme produces an analysis ensemble that gives a theoretical estimate of

the analysis uncertainty and which can be used to initialize a forecast ensemble (Har-
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nisch and Keil, 2015).

A deterministic analysis is also produced, which can be used as initial condition to the

deterministic model run.

In the present work, some experiments have been done over one week in October 2014,

including 9th and 13th October, when two major flood events took place respectively

in Genova and Parma. The quality of the different analyses as well as their impact

in initializing the deterministic forecast have been evaluated both on case studies and

statistically over the entire period.
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Chapter 1

Data assimilation

1.1 General problem of Data Assimilation

Data assimilation is an iterative approach to the problem of estimating the state of

a dynamical system using both current and past observations of the system together

with a model for the system time evolution.

This model can be used to “forecast” the current state, using a prior state estimate

(which incorporates information from past data) as the initial condition. After that,

current data are used to correct the prior forecast to a current state estimate. This is

the Bayesian approach, that is most effective when the uncertainty (both in the obser-

vations and in the state estimate) is quantified (Hunt et al., 2007). Data assimilation

is an analysis technique in which the observed information is accumulated in time into

the model state, and it propagates to all variables of the model. This technique is

widely used to study and forecast geophysical systems.

An analysis is the production of an accurate image of the true state of the atmosphere,

represented in a model as a collection of numbers (Bouttier and Courtier, 1999).

The basic information used to produce the analysis is a collection of observed values

provided by observations of the true state. In most cases the analysis problem is under-

determined because data is sparse and only indirectly related to the model variables.

In order to make it a well-posed problem, it is necessary to rely on some background

information in the form of a priori estimate of the model state. The background in-

formation can be a climatology state; it can also be generated from the output of a

3



previous analysis, using some assumptions of consistency in time of the model state.

There are two basic approaches to data assimilation: sequential assimilation and non-

sequential (retrospective) assimilation. The first one, only considers observation made

in the past until the time of analysis, that is the case of real-time assimilation system,

while the second one considers observation from the future, for example in a reanal-

ysis exercise. Another distinction can be made between intermittent and continuous

assimilation. In an intermittent assimilation, observations can be processed in a small

batches, which is technically convenient. In a continuous assimilation, observation

batches over longer periods are considered, and the correction to the analysis state is

smooth in time, which is physically more realistic (Bouttier and Courtier, 1999; Daley,

1991; Ghil, 1989).

Data assimilation iteratively alternates between a forecast step and a state estimation

step (also called “analysis”). The analysis step is a statistical procedure involving a

prior estimate (background) of the current state based on past data, and current data

(observations) which are used to improve the state estimate. This procedure requires

quantification of the uncertainty both in the background state and in the observations.

There are two main factors creating background uncertainty: one is the uncertainty

in the initial conditions from the previous analysis, the other is the “model error”, the

unknown discrepancy between the model dynamics and actual system dynamics (Hunt

et al., 2007). The emphasis here is on methodology used in data assimilation.

Ideally, it can be kept track of a probability distribution of system states, propagat-

ing the distribution using the Fokker-Planck-Kolmogorov equation during the forecast

step. This approach provides a theoretical basis for the methods used in practice

(Jazwinski, 1970), but it would be computationally expensive and is not feasible for a

high-dimensional system. Instead, it can be used the Monte Carlo approach, using a

large ensemble of system states to approximate the distribution (Doucet et al., 2001),

or an approach like the Kalman Filter (Kalman, 1960; Kalman et al., 1961) that as-

sumes Gaussian distributions and tracks their mean and covariance.

Ensemble Kalman Filter (Evensen, 1994; Evensen, 2003; Evensen, 2006) has elements

of both approaches: it uses the Gaussian approximation and follows the time evolution

of the mean and the covariance by propagating an ensemble of states.
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The ensemble should be large enough to span the space of possible system states at

a given time, because the analysis determines essentially which linear combination of

the ensemble members forms the best estimate of the current state, given the current

observations.

1.2 Bayesian update

The aim of the Bayesian data assimilation is to estimate the probability density function

(pdf) for the current atmospheric state given all current and past observations. When

considering Bayesian assimilation, assuming that a pdf of the state of the atmosphere

is available, there are two steps to the assimilation: the first step is to assimilate

recent observations, thereby sharpening the pdf, the second step is to propagate the

pdf forward in time until new observations are available. If the pdf is initially sharp

(i.e. the distribution is relatively narrow), chaotic dynamics and model uncertainty will

usually broaden the probability distribution (Anderson and Anderson, 1999; Hamill,

2006).

Assuming that an estimate of the pdf has been propagated forward to a time when

observations are available, the state can be estimate more specifically by incorporating

information from the new observations.

It is now possible to use the following notational convention: xtt−1 denotes the n-

dimensional true model state at time t-1, ψt = [yt, ψt−1] is a collection of observations,

where yt are the observations at the most recent time and ψt−1 are the observations at

all previous times.

The update problem is to accurately estimate P (xtt|ψt), which is the probability density

estimate of the current atmospheric state, given the current and past observations.

According to Bayes’ rule: P (xtt|ψt) α P (ψt|xtt)P (xtt) and P (ψt) = 1.
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Assuming that observation errors are independent from one time to the next:

P (ψt|xtt) = P (yt|xtt)P (ψt−1|xtt),

therefore:

P (xtt|ψt) α P (yt|xtt)P (ψt−1|xtt)P (xtt),

which applying the Bayes’ rule becomes:

P (xtt|ψt) α P (yt|xttP (xtt|ψt−1).

The term on the left-hand side P (xtt|ψt) is the pdf for the current model state given

all the observations (“posterior”). The first term on the right-hand side P (yt|xtt) is

the probability distribution for the current observations. The second term on the

right-hand side P (xtt|ψt−1) is the pdf of the model state at time t given all the past

observations up to time t-1 (“prior” or “background”). Without some simplification, full

Bayesian assimilation is computationally impossible for model state of large dimension.

Assuming normality of error statistics and linearity of error growth, the state and its

error covariance may be predicted using Kalman Filter techniques.

1.3 Ensemble Kalman Filter

Ensemble-based data assimilation techniques are used as possible alternatives to op-

erational analysis techniques such as three-dimensional (3D-Var) or four-dimensional

variational assimilation (4D-Var).

3D-Var (Lorenc, 1981; Parrish and Derber, 1992) is a method in which data assimila-

tion is performed every 6 hours, and in the cost function, the background covariance

P b is replaced by a constant matrix B representing typical uncertainty in a 6-hour fore-

cast. The 4D-Var method (Le Dimet and Talagrand, 1986; Talagrand and Courtier,

1987) uses a cost function that includes a constant covariance background as in 3D-

Var, together with a sum accounting for the observations collected over a 12-hour time

window. The cost function is minimized; this is computationally expensive because

computing the gradient of the cost function requires integrating both the nonlinear
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model and its linearization over 12-hour, and this is repeated until a satisfactory ap-

proximation to the minimum is found.

The Ensemble Kalman Filter is an approximation to the Kalman Filter in that background-

error covariances are estimated from a finite ensemble of forecasts. Background error

covariances are estimated using the forecast ensemble and are used to produce an en-

semble of analysis; these covariances are flow dependent and often have complicated

structure.

Even though Ensemble-based techniques are computationally expensive, they are rel-

atively easy to code (Hamill, 2006).

The key idea of Ensemble Kalman Filter (Evensen, 1994; Evensen, 2006) is to choose

at time tn−1 an ensemble of initial conditions whose spread around xa (at time tn−1)

characterizes the analysis covariance P a, propagate each ensemble member using the

nonlinear model, and compute P b based on the resulting ensemble at time tn. The

uncertainty in the state estimate is propagated from one analysis to the next, like the

extended Kalman Filter. Instead, 3D-Var method does not propagate the uncertainty,

while 4D-Var method propagates it only with the time window over which the cost

function is minimized.

The most important difference between Ensemble Kalman Filtering and the other meth-

ods is that the former quantifies uncertainty only in the space spanned by the ensemble.

A possible limitation is that computational resources restrict the number of ensemble

members (k) to be much smaller than the number of variables of the model (m), but,

if this limitation can be overcome (see 2.3.1), the analysis can be performed in a much

lower-dimensional space. Thus, Ensemble Kalman Filtering has the potential to be

more computationally efficient than the other methods.

1.3.1 Comparison between Ensemble-based method and 4D-

Var variational assimilation

Some intelligent guesses can be made regarding advantages and disadvantages of Ensemble-

based method and 4D-Var method (Lorenc, 2003).

Ensemble-based methods are much easier to code and maintain than the 4D-Var varia-

tional assimilation. Ensemble-based methods produce an ensemble of possible analysis
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states, providing information about both the mean analysis and its uncertainty, there-

fore, an advantage of using this method is that the ensemble of analysis state can be

used directly to initialize ensemble forecasts without any additional computations.

Another advantage is that if the analysis uncertainty is very spatial inhomogeneous

and time dependent, in Ensemble-based methods this information will be fed through

the ensemble from one assimilation cycle to the next. Instead, in 4D-Var, the assim-

ilation typically starts at each update cycle with the same stationary model of error

statistics. Consequently, the influence of observations can be more properly weighted

in Ensemble-based methods than in 4D-Var.

Ensemble-based methods also provide a direct way to incorporate the effects of model

imperfections directly into the data assimilation. In 4D-Var, differently, the forecast

model dynamics are a strong constraint (Courtier et al., 1994). If the forecast model

used in 4D-Var does not adequately represent the true dynamics of the atmosphere,

model error can be large, and it may fit a model trajectory very different from the

trajectory of the real atmosphere.

On the other hand, a disadvantage of Ensemble-based methods is that are at least as

computationally expensive as 4D-Var, and perhaps more expensive when there is an

overwhelmingly large number of observations (Hamill and Snyder, 2000; Etherton and

Bishop, 2004). Furthermore, ensemble approaches may be difficult to apply in lim-

ited area models because of difficulty of specifying an appropriate ensemble of lateral

boundary conditions.
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Chapter 2

Ensemble Kalman Filter

2.1 Kalman Filter

The problem of which trajectory of a dynamical system best fits a time series of data,

is solved exactly for linear problems by using the Kalman Filter and approximately for

nonlinear problems by using Ensemble Kalman Filters.

It will be described how to perform a forecast step from time tn−1 to tn, followed by an

analysis step at time tn, in such a way that if we start with the most likely system state,

given the observations up to time tn−1, we end up with the most likely state given the

observations up to time tn. The forecast step propagates the solution from time tn−1

to tn, and the analysis step combines the information provided by the observations at

time tn with the propagated information from the prior observations. The first step

is to assume that the analysis at time tn−1 has produced a state estimate xan−1 and

an associated covariance matrix P a
n−1. They represent respectively the mean and the

covariance of a Gaussian probability distribution that represents the relative likelihood

of the possible system states given the observations from time tn−1 to tn. Algebraically

(Hunt et al., 2007), it can be written:

∑n−1
j=1 [y

o
j −HjMtn−1,tjx]

TR−1
j [yoj −HjMtn−1,tjx] = [x− x̄an−1]

T (P a
n−1)

−1[x− x̄an−1] + c,

where x is a m-dimensional vector representing the state of the system at a given time,

yoj is a vector of observed values, M is the model forecast operator, R is the covariance

matrix, H is the observation operator that describes the relationship between yoj and
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x(tj): yoj = Hj(x(tj)), and c is a constant.

The following step is to propagate the analysis state estimate x̄an−1 and its covariance

P a
n−1, by using the model forecast operator M to produce a background estimate x̄bn

and its covariance P b
n:

x̄bn =Mtn−1,tn x̄
a
n−1 and P b

n =Mtn−1,tnP
a
n−1M

T
tn−1,tn

.

The next step is the minimization of a cost function, so that it is possible to estimate

the state at time tn:

Jtn(x) = (x− x̄bn)T (P b
n)

−1(x− x̄bn) + (yon −Hnx)
TR−1

n (yon −Hnx) + c.

The analysis state estimate x̄a and its covariance P a at time tn are:

x̄an = x̄bn + P a
nH

T
nR

−1
n (yon −Hnx̄

b
n),

P a
n = (I + P b

nH
T
nR

−1
n Hn)

−1P b
n,

with P a
nH

T
nR

−1
n called “Kalman gain”.

Many approaches to data assimilation for nonlinear problems are based on Kalman

Filter. A nonlinear model forces a change in the equations calculating x̄bn and P b
n,

while nonlinear observation operators Hn force a change in the calculation of x̄an and

P a
n .

2.2 Ensemble Kalman Filter

Ensemble Kalman Filter is the most well-known stochastic ensemble data assimilation

algorithm. This algorithm updates each member to a different set of observations per-

turbed with random noise. Because randomness is introduced every assimilation cycle,

the update is considered stochastic.

We start with an ensemble
{

x
a(i)
n−1 : i = 1, 2, ..., k

}

of m-dimensional model state vectors

at time tn−1. The ensemble is chosen so that its average represents the analysis state

estimate. Ensemble members evolved according to the nonlinear model to obtain a

10



background ensemble
{

xb(i)n : i = 1, 2, ..., k
}

at time tn:

xb(i)n =Mtn−1,tn(x
a(i)
n−1).

For the background state estimate and its covariance, the sample mean x̄b and covari-

ance P b of the background ensemble are used:

x̄b = k−1 ∑k
i=1 x

b(i) and

P b = (k − 1)−1 ∑k
i=1(x

b(i) − x̄b)(xb(i) − x̄b)T = (k − 1)−1Xb(Xb)T .

Xb is the m x k matrix whose i-th column is xb(i) − x̄b. Unlike the Kalman Filter or

3D-Var, the background error covariance estimate is generated from an ensemble of

non-linear forecasts. These background error covariances can vary in time and space.

For the analysis state estimate and its covariance, the sample mean x̄a and covariance

P a are used:

x̄a = k−1 ∑k
i=1 x

a(i),

P a = (k − 1)−1 ∑k
i=1(x

a(i) − x̄a)(xa(i) − x̄a)T = (k − 1)−1Xa(Xa)T ,

where Xa is the m x k matrix whose i-th column is xa(i) − x̄a.

2.3 Local Ensemble Transform Kalman Filter

In the LETKF (Hunt et al., 2007), an ensemble of forecasts is used to represent a

situation-dependent background error covariance. This is implicitly deployed then in

three steps taking into account the observations and their errors. Firstly, the analysis

mean state (best linear unbiased estimate) is equal to the ensemble mean forecast plus a

weighted sum of the forecast perturbations (i.e. the deviations of the individual ensem-

ble forecasts from the ensemble mean forecast) where the weights depend on the devia-

tions of the ensemble members to the observations. Secondly, the analysis covariance is

calculated. Thirdly, the analysis perturbations are determined as a linear combination

of the forecast perturbations such that they reflect the analysis covariance. Asynoptic,

high-frequency, and indirect observations can also be accounted for (COSMO web site,
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http://www.cosmo-model.org/content/tasks/pastProjects/kenda/default.htm). Local-

isation, e.g. by using only observations in the vicinity of a certain grid point, requires

the ensemble to represent uncertainty in only a rather lower-dimensional local unstable

sub-space. This reduces the sampling errors (i.e. the errors in sampling the forecast

errors) and rank deficiency (which expresses that due to the limited ensemble size, the

ensemble is not able to explore the complete space of uncertainty in general). Note that

the method provides a framework how to make smooth transitions between different

linear combinations of the ensemble members in different regions (e.g. by gradually

increasing the specified observation errors with increasing distance from the observa-

tion). This should allow to keep both the ensemble size and the imbalances caused by

localisation reasonably small (cosmo-model.org site web).

The LETKF method is now described, which is an efficient means of performing the

analysis that transforms a background ensemble xb(i) into an appropriate analysis en-

semble xa(i). It has been assumed that the number of ensemble members k is smaller

than the number of model variables m. We want the analysis mean x̄a to minimize

the Kalman Filter cost function used in a linear scenario, modified to allow for a non

linear observation operator H :

J(x) = (x− x̄b)T (P b)−1(x− x̄b) + [yo −H(x)]TR−1[yo −H(x)].

H(x) is the observation operator: it acts as a collection of interpolation operators from

the model discretization to the observation points. This operator is important because

generally, there are fewer observations than variables in the model and they are not reg-

ularly disposed, so that the only way to compare observations with the state vector is

through the use of H(x). Another important step is the passage from a m-dimensional

system to a k-dimensional system, with the aim to reduce the number of variables in

the system. In this new space, if w is a Gaussian random vector with mean 0 and

covariance (k − 1)−1I, then x = x̄b + Xbw is Gaussian with mean x̄b and covariance

P b = (k − 1)Xb(Xb)T .
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In the transformed space, the cost function becomes:

J(w) = (k − 1)wTw + [yo −H(x̄b +Xbw)]TR−1[yo −H(x̄b +Xbw)].

If w̄a minimizes J(w), x̄a = x̄b +Xbw̄a minimizes the cost function J .

Beacuse we only need to evaluate the observation operator H in the ensemble space,

the simplest way to linearize H is to apply it to each of the ensemble members xb(i)

and interpolate. It has defined an ensemble yb(i) of background observation vectors by

yb(i) = H(xb(i)).

Another important step is the linear approximation:

H(x̄b +Xbw) ≈ ȳb + Y bw.

By substituting this term into the cost function J(w) is possible to obtain:

J̃(w) = (k − 1)wTw + [yo − ȳb + Y bw]TR−1[yo − ȳb − Y bw].

In transformed space, the analysis equations are:

w̄a = P̃ a(Y b)TR−1(yo − ȳb) and

P̃ a = [(k − 1)I + (Y b)TR−1Y b]−1.

In model space, the analysis mean and covariance are:

x̄a = x̄b +Xbw̄a,

P a = XbP̃ a(Xb)T .

To initialize the ensemble forecast that will produce the background for the next anal-

ysis, it must be chosen an analysis ensemble whose sample mean and covariance are

respectively x̄a and P a. It can be formed the analysis ensemble by adding x̄a to each

of the columns of Xa.

A good choice of analysis ensemble is described by Xa = XbW a, where

W a = [(k − 1)P̃ a]1/2.

The use of symmetric root to determine W a from P̃ a is important for two reasons:

the first is that it ensures that the sum of the columns of Xa is 0, so that the analy-
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sis ensemble has the correct sample mean (Wang et al., 2004). The second reason is

that it ensures that W a depends continuously on P̃ a. This is very important, so that

neighboring grid points with slightly different matrices P̃ a do not yield very different

analysis ensembles. It is possible to form the analysis ensemble by adding w̄a to each

of the columns of W a.
{

wa(i)
}

are the columns of the resulting matrix. These weights

vector specify what linear combinations of the background ensemble perturbations to

add to the background mean to obtain the analysis ensemble in model space:

xa(i) = x̄b +Xbwa(i).

2.3.1 Localization

Another important issue in Ensemble Kalman Filter is the spatial localization. If the

ensemble has k members, the background covariance matrix given by P b describes un-

certainty only in the k-dimensional subspace spanned by the ensemble, and a global

analysis will allow adjustments to the system state only in this subspace. If the system

is high-dimensionally unstable (if it has more than k positive Lyapunov exponents),

the forecast errors will grow in direction not accounted for by the ensemble, and these

errors will not be corrected by the analysis (Hunt et al., 2007).

Another problem could be that the limited sample size provided by an ensemble will

produce spurious correlations between distant locations in the background covariance

matrix P b (Houtekamer and Mitchell, 1998; Hamill et al., 2001). These spurious cor-

relations will cause observations from one location to affect, in a random manner, the

analysis in localizations a large distance away.

About localization, it is important to point out that is generally done implicitly, by

multiplying the entries in P b by a distance-dependent function that decays to zero be-

yond a certain distance, so that observations do not affect the model state beyond that

distance (Houtekamer and Mitchell, 2001; Hamill et al., 2001; Whitaker and Hamill,

2002).

In particular the implementation in KENDA is as follows.

For every point of the analysis grid, a local ensemble of model equivalents
{

yb(i)
}

with corresponding local observations yoi can be formed, and the corresponding entries
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in the inverse observation error covariance matrix R−1 are multiplied with a distance-

dependent correlation function Co. Therefore, the single observations yoi will contribute

to the local analysis, at every point, with an observation weight ≤ 1.

The function Co is a polynomial approximation to a Gaussian function Go = exp(−b2

2l2
),

where b is the spatial distance between the single analysis grid point and the location

of one single observation, and l is the length scale where Go = exp(−1
2
) ≈ 0.61.

The localization radius is rloc = 2l
√

10
3
, where the function Co goes to zero (Gaspari

and Cohn, 1999; Hamill et al., 2001). The input parameter l is typically chosen ample

enough to overlap with neighboring analysis grid points in order to obtain a spatially

smooth field of local analysis weights
{

wa(i)
}

. Observations that are further away than

rloc are neglected, while the observation weights are very close to a Gaussian curve

(Documentation of the DWD Data Assimilation System, available on request).

Figure 2.1: Function Co of Gaspari and Cohn compared to Gaussian Go, with l chosen

as 20 km.

2.3.2 Covariance inflation

An inflation procedure needs to be applied to account for unrepresented systematic

errors in the Local Ensemble Transform Kalman Filter, such as model or sampling

errors. These systematic errors lead to an underestimation of the background ensemble
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variance which subsequently decreases the weight given to the observations. If this

discrepancy becomes too large it can happen that no weight is given to the observations

and that they are essentially ignored.

A number of procedures are developed to counteract this problem, and they can be

separated into additive and multiplicative methods. The additive methods add some

multiples of the identity matrix to the background or analysis covariances (Ott et al.,

2004), while the multiplicative methods multiply background or analysis covariances

by a factor larger than 1 (Anderson and Anderson, 1999; Hamill et al., 2001). In case

each analysis member has a corresponding background member, relaxation methods

can also be applied where the inflations relaxes the analysis ensemble back towards the

background ensemble.

2.3.2.1 Multiplicative covariance inflation

The multiplicative covariance inflation can be applied on either the background or the

analysis covariance in each data assimilation cycle. It can be performed on the analysis

by multiplying the analysis perturbations by an appropriate inflation factor ρ during the

data assimilation step. Even the background ensemble can be inflated by multiplying

the background perturbations by some factor ρ before the data assimilation.

2.3.2.2 Relaxation of the analysis ensemble

This alternative approach inflates the ensemble by relaxing the analysis ensemble to-

wards the background ensemble. There are two types of relaxation: relaxation to prior

perturbations (RTPP) and relaxation to prior spread (RTPS).

By using the first type, the analysis ensemble perturbations are relaxed back to the

background values (Zhang et al., 2004). These perturbations Xa are relaxed indepen-

dently at each grid point:

Xa ← (1− α)Xa + αXb.

The analysis ensemble perturbation matrix Xa is defined as the column matrix of the

differences of the k-th analysis ensemble member from the analysis ensemble mean.

The background ensemble perturbation matrix is defined in the same way. By using
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the second type, instead of relaxing the perturbations, the analysis ensemble spread is

relaxed back to the background ensemble spread (Whitaker and Hamill, 2012).

The analysis ensemble standard deviation is relaxed back to the background values at

each grid point:

σa ← (1− α)σa + ασb,

where σa =
√

(K − 1)−1
∑K

k=1(X
a)2 and σb =

√

(K − 1)−1
∑K

k=1(X
b)2 denote the anal-

ysis and background ensemble standard deviation respectively, and K is the ensemble

size. By using the last two equations, it can be written:

Xa ← Xa(ασb−σa

σa + 1).

The notation of α is used to represent the inflation factor for RTPP and RTPS method

because in both cases it represents a relaxation of the analysis ensemble to the back-

ground ensemble. The factor α is a tunable parameter, and it has been found an

optimal value of 0.755 for the RTPP method and 0.95 for the RTPS method (Whitaker

and Hamill, 2012).

2.3.2.3 Stochastically Perturbed Parametrization Tendencies

The Stochastically Perturbed Parametrization Tendencies (SPPT) scheme perturbs the

total parametrized tendency of physical processes (as opposed to the dynamics).

The original SPPT scheme perturbs the net parametrized tendency of physical pro-

cesses of the model (turbulence, radiation, shallow convection, microphysics...) by

using multiplicative noise during run time (Buizza et al., 1999). The tendencies of the

wind components u, v, temperature T and humidity q are perturbed. For an unper-

turbed tendency Xc, the perturbed tendency Xp is computed as:

Xp = (1 + rX)Xc

where rX is a random number drawn from a uniform distribution in the range [−0.5, 0.5].
The perturbations are multivariate, i.e. different random numbers are used for the four

variables (u, v, T, q). The same random numbers are used in the whole column over

boxes of pre-defined size, 5◦ by 5◦ in latitude and longitude in the implementation
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adopted for the present work.

The revised SPPT scheme uses perturbations collinear to the unperturbed tendencies

Xc. The perturbed tendency is computed as:

Xp = (1 + rµ)Xc

where r si the same randum number. The factor µ ∈ [0, 1] is used for reducing the

perturbation amplitude close to the surface and in the stratosphere. The replacement

of the multivariate perturbations by a univariate Gaussian distribution is an attempt to

introduce perturbations that are more consistent whit the model physics, in particular,

this change is designed to address the overprediction of heavy precipitation events.
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Chapter 3

The LETKF Data Assimilation of the

COSMO COnsortium

3.1 The KENDA System

The Kilometer-scale ENsemble Data Assimilation system (KENDA), based on a Local

Ensemble Transform Kalman Filter, has been developed for the kilometer-scale configu-

ration of the COnsortium for Small-scale MOdeling (COSMO, www.cosmo-model.org)

limited area model.

The main purpose of this data assimilation scheme is to provide the initial conditions

both for deterministic and ensemble forecasting systems which are run at a convection

permitting resolution. A description of the KENDA Project is available at www.cosmo-

model.org/content/tasks/pastProjects/kenda/default.htm.

LETKF alternates between a prediction step and an update step (analysis). The pre-

diction step consists of an ensemble of COSMO runs which produces the background

ensemble and is followed by an update step, when the KENDA code is run to produce

the 20 perturbed analyses.

During the COSMO model integration, observations are read and model equivalent is

computed for each ensemble member using the observation operator which is different

for each of observation type.

In KENDA the analysis for a deterministic data assimilation and forecast cycle is also

implemented, and it is determined by applying the Kalman gain matrix for the ensem-
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ble mean to the innovations of the unperturbed deterministic (or control) run:

xa = xb+LXbP̃ a(Y b)TR−1(yo−H(xb)). The rationale of using the gain of the ensemble

mean is that both, the ensemble mean and the deterministic analysis, aim to provide

an unperturbed best estimate of the true state. It allows the deterministic analysis

to take full advantage of the flow-dependent ensemble background covariances. The

deterministic analysis will not be optimal if its background deviates significantly from

the background ensemble mean (Schraff et al., 2016).

3.2 Observations

3.2.1 Conventional data: AIREP, TEMP, SYNOP

The conventional observation types which can be assimilated in KENDA are in-situ

observations and surface observations. In-situ observations directly measure the at-

mospheric quantities temperature, pressure, wind components u and v and specific

humidity within the atmosphere.

In-situ observations are provided by airplanes (AIREP report) and radiosondes (TEMP

report).

The observation operator for in-situ observations consists of vertical and horizontal

interpolation. The vertical interpolation is an interpolation to the pressure level of the

observation, and is performed in terms of temperature, generalised humidity and wind

components u and v. Horizontal interpolation is an interpolation to the location of the

observation, and it is a bi-linear interpolation used for all quantities (Documentation

of the DWD Data Assimilation System, available on request).

Surface observations are observations from weather stations close to the surface, e.g.

at 2 or 10 meter height (SYNOP report). SYNOP data are the weather measurements

obtained from land stations and ships. Meteorological quantities provided by SYNOP

data are temperature, moisture, cloud state, dew point, wind speed and direction,

visibility, pressure, weather state, precipitation and snow state and dynamics. Near

surface temperature is not assimilated because it strongly depends on the surface char-

acteristics and is not representative for the temperature in the atmosphere. Unlike
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in-situ observations, the observation operator consists of horizontal interpolation only.

Observations used in the assimilation are denoted as ACTIVE or ACCEPTED. The

ACCEPTED flag indicates that the observation obtained a weight larger than 0.5 in

the Variational Quality Control (VQC). Instead, the ACTIVE flag indicates that the

observation obtained a weight smaller than 0.5 in the VQC.

Observations not used in the assimilation are denoted as REJECTED if they are dis-

missed due to insufficient quality (did not pass all of the quality control checks). They

are denoted as PASSIVE if they are not assimilated but processed by the assimilation

system just for monitoring purposes. The PASSIVE-REJECTED flag indicates that

passivly monitored observations did not pass the quality control checks. Observations

denoted as DISMISSED are rejected without being written to any of the monitoring

file. The status MERGED refers to reports that were merged into others.

In figures 3.1, 3.2 and 3.3 are shown respectively the location of the observations from

aircrafts (AIREP), ground stations (SYNOP) and radiosondes (TEMP) over Italy be-

tween 9 UTC and 12 UTC on the 9th of October 2014. They are flagged as ACTIVE

(blue crosses) and REJECTED (black crosses).

Figure 3.1: Location of the observations from aircrafts (AIREP) over Italy between 9

UTC and 12 UTC on the 9th of October 2014.
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Figure 3.2: Location of the observations from ground stations (SYNOP) over Italy

between 9 UTC and 12 UTC on the 9th of October 2014.

Figure 3.3: Location of the observations from radiosondes (TEMP) over Italy between

9 UTC and 12 UTC on the 9th of October 2014.

22



3.2.2 Non conventional data: radar reflectivity

In KENDA it is possible to assimilate also 3d volumes of data reflectivity thanks to

the Radar Forward Operator (RFO, Zeng et al., 2012).

The Radar Forward Operator computes the model equivalent of the radar reflectivity

using the prognostic variables of the COSMO model given on the model grid. In par-

ticular, for further calculations it uses the three-dimensional wind components (u, v,

w), the temperature T and informations on hydrometers: it is possible to distinguish

between cloud droplets, cloud ice, raindrops, snow and graupel by using their mass

densities. The following step is the calculation of the temperature dependent refractive

index m of the particles, the degree of melting and the shape of hydrometeors. It is

now possible to calculate radar reflectivity factor Ze on model grid:

Ze=
ηλ4

π5|Kw|2
,

with η radar reflectivity, λ wavelength of the radar, Kw reference value of the dieletric

constant of water. The radar reflectivity can be calculated by using either Rayleigh

or Mie theory. The Rayleigh theory is simpler and more efficient than the Mie theory.

However, using Mie theory, it is also possible to calculate the extinction coefficient.

The Radar Forward Operator works on parallel supercomputer architectures, therefore

parallelisation strategy is used: the radar volume is divided in horizontal interpolated

"azimuthal slices" evenly distributed.

In the next step, the Radar Operator calculates the propagation of radar beam con-

sidering beam bending due to atmospheric refraction. Another step is the vertical

interpolation of values of reflectivity, extinction and model wind from model grid onto

the radar beam. Then, the attenuation of the radar reflectivity due to atmospheric

hydrometeors can be calculated. Every observable is now avalaible on the radar beam

lying on a single line along the beam axis. A beam weighting function is used for the

increasing pulse volume with distance (Zeng et al., 2012).
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3.3 The COSMO model

The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model

(www.cosmo-model.org). It has been designed for both operational numerical weather

prediction (NWP) and various scientific applications on the meso-β and meso-γ scale.

The COSMO-Model is based on the primitive thermo-hydrodynamical equations de-

scribing compressible flow in a moist atmosphere. The model equations are formulated

in rotated geographical coordinates and a generalized terrain following height coor-

dinate. A variety of physical processes are taken into account by parameterization

schemes.

A variety of subgrid-scale physical processes are taken into account by parameterization

schemes: Grid-Scale Clouds and Precipitation, Subgrid-Scale Clouds, Moist Convec-

tion, Radiation, Subgrid-Scale Orography, Subgrid-Scale Turbulence, Surface Layer,

Soil Processes, Sea Ice Scheme, Lake Model.

The basic version of the COSMO-Model (formerly known as Lokal Modell, LM) has

been developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the

triangular mesh global gridpoint model GME form (together with the corresponding

data assimilation schemes) the NWP-system at DWD, which is run operationally since

end of 1999. The subsequent developments related to the model have been organized

within COSMO, the Consortium for Small-Scale Modelling. COSMO aims at the

improvement, maintenance and operational application of the non-hydrostatic limited-

area modelling system, which is now consequently called the COSMO-Model.

By employing 1 to 3 km grid spacing for operational forecasts over a large domain, it

is expected that deep moist convection and the associated feedback mechanisms to the

larger scales of motion can be explicitly resolved. Meso-γ scale NWP-models thus have

the principle potential to overcome the shortcomings resulting from the application of

parameterized convection in current coarse-grid hydrostatic models. In addition, the

impact of topography on the organization of penetrative convection by, e.g. channeling

effects, is represented much more realistically in high resolution nonhydrostatic forecast

models.
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3.4 KENDA implementation at Arpae SIMC

The Servizio Idro-Meteo-Clima (SIMC) of Arpae, the Regional Agency for Prevention,

Environment and Energy in the Emilia-Romagna region, partecipates to the COSMO

consortium through an agreement with ReMet, the meteorological service of the Italian

air force.

Arpae SIMC runs operationally over Italy the COSMO model at 7 km (COSMO-I7)

and at 2.8 km (COSMO-I2) of horizontal resolution. KENDA has been implemented by

Arpae SIMC in an experimental framework with the aim of producing initial conditions

for the deterministic COSMO-I2 run, as well as for the 2.8 km ensemble system under

development.

In the KENDA assimilation cycle, the boundary conditions for the 2.8 km COSMO

runs are produced by the first 20 members of ECMWF ENS, the global ensemble of

ECMWF, run at a spatial resolution of 32 km. These 20 members provide also the

initial conditions for the cold start.

The set-up of the KENDA cycle is as follow:

• COSMO-I2 domain (figure 3.4)

• 447x532 grid points

• Grid resolution of 2.8 km

• 50 vertical levels

• 20 member ensemble

• 3-hourly continuous assimilation cycles
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Figure 3.4: COSMO-I2 domain.

A sketch of the KENDA set-up is shown in figure 3.5.

Figure 3.5: Set-up of the KENDA-based data assimilation cycle.

The deterministic data assimilation and forecast cycle is also implemented, where

the same observations are used and the set-up of the COSMO model is the same as

in the ensemble members. The only difference is in the Boundary Conditions, which

are provided by the ECMWF IFS deterministic run, having an horizontal resolution of

about 16 km.
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Chapter 4

Sensitivity study of the KENDA

scheme

4.1 The sensitivity test

An extensive sensitivity test of the KENDA scheme have been carried out on one case

study. In particular, it has been studied the sensitivity of the algorithm to:

• localization radius

• inflation methodology

• observation type

The case study is characterized by very intense precipitation over Liguria, Genova in

particular, where a flood took place (9-10 October 2014).

This flood is due to an intense convection, produced by cumulonimbus developed in

rapid succession on Ligure sea, near the coast, and propagating toward the Apennine.

The precipitation observed during the event will be presented in Chapter 5, together

with the results of the model simulations for the case.

4.2 Sensitivity to the localization

First the sensitivity to the localization radius has been tested. A value of 80 km is

now the default, and a value of 40 km has been tested. The impact of this variation

27



is shown in figure 4.1, where the difference between the ensemble mean of the analysis

ensemble and the ensemble mean of the background ensemble is shown, in terms of

temperature at the lowest model level.

The lowest model level has an approximate height from the ground of 10 m in flat

terrain. The differences in temperature are in the order of 1-2 K. The maps are for an

assimilation taking place between 9 UTC and 12 UTC of the 9th of October 2014, after

4 assimilation cycles of 3 hours.

Considering the entire domain, the data assimilation scheme is more effective in chang-

ing the background when a larger radius is used (more observations are used in this

case), but locally a larger impact of the observations when 40 km localization radius is

applied is also visible (e.g. over Emilia-Romagna). This can be due to a larger weight

given to closer observations in case a smaller radius is used.
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Figure 4.1: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest

model level, with localization radius of 80 km (top) and 40 km (bottom).
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4.3 Sensitivity to the inflation

Then the impact of varying the inflation methodology has been tested. Adding to the

standard multiplicative inflation the RTPP one (Relaxation to Prior Perturbations)

determines a little impact in the way data are actually used by the scheme. This is

shown in figure 4.2, which is quite similar to the figure 4.1, where RTPP is not used. The

impact on the spread is shown in figure 4.3, where it is plotted the difference in spread

between the analysis ensemble and the background ensemble, without RTPP inflation

(figure 4.3, top) and with RTPP inflation (figure 4.3, bottom). In both figures, the

difference is on the order of few hundredths of degree. Generally, the assimilation step

determines a decrease of the spread, which should be “re-inflated” somehow artificially.

In this case it can be seen how the addition of the RTPP inflation (figure 4.3, bottom)

implies a smaller decrease of the spread due to the assimilation step.

Figure 4.2: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest

model level, with localization radius of 80 km, with RTPP inflation.
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Figure 4.3: Difference between the spread of the analysis ensemble and the spread

of the background ensemble in terms of mean temperature at the lowest model level,

without RTPP inflation (top) and with RTPP inflation (bottom).
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Changing the inflation to the RTPS (Relaxation to Prior Spread) methodology,

without standard inflation and without RTPP, decreases the effect of the assimilation

step, with assimilation that becomes less efficient. This is due to the fact that the

RTPS inflation does not produce enough spread in the background ensemble. The

most relevant difference is over Emilia-Romagna where the difference between the

ensemble mean of the analysis ensemble and the ensemble mean of the background

ensemble in terms of temperature, at the lowest model level, tends to decrease. This

is shown in figure 4.4. Changing the inflation to the RTPS algorithm determines also

a marked decrease of the difference between spread before and after the analysis

(figure 4.5). In particular the difference between the spread of the analysis ensemble

and the spread of the background ensemble in terms of temperature is less than 0.2

K. Therefore, with the RTPS too high confidence is given to the background,

implying that less weight is given to the data.

Figure 4.4: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest

model level, with localization radius of 80 km, with RTPS inflation.
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Figure 4.5: Difference between the spread of the analysis ensemble and the spread of

the background ensemble in terms of mean temperature at the lowest model level, with

RTPS inflation.

Using the SPPT scheme in the COSMO runs determines differences between the

ensemble mean of the analysis ensemble and the ensemble mean of the background

ensemble in terms of temperature mainly in Austria, Slovenia, Hungary, Southern

Italy and Tunisia (figure 4.6). This is due to the increase of spread in the background

ensemble yield by the SPPT scheme. In particular the difference in terms of

temperature before and after the assimilation increases with respect to the previous

cases. The difference between the spread of the analysis ensemble and the spread of

the background ensemble in terms of mean temperature (figure 4.7) is generally

smaller than 0.15 K, but locally greater than 0.15 K (e.g. Rome area).

33



Figure 4.6: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest

model level, with localization radius of 80 km, with SPPT scheme.

Figure 4.7: Difference between the spread of the analysis ensemble and the spread of

the background ensemble in terms of mean temperature at the lowest model level, with

SPPT inflation.
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4.4 Sensitivity to the observation type

The sensitivity to the observation network has also been studied.

Comparing figures 4.1 (top), 4.8 and 4.9 permits to quantify the impact of the AIREP

and the SYNOP data in this case. Differences between the first figure (containing all the

data) and the second one (without AIREP data) are small, mainly in the Northwestern

Italy and in Sicily.

The figure 4.9 (without AIREP and SYNOP) is very different from the other two figures

considered, in fact there are only small differences in terms of temperature before and

after assimilation step.

It means that the signal is largely due to SYNOP data, because TEMP data and AIREP

data are very few in the domain. In particular over the Bologna area, assimilation by

SYNOP data is very relevant.

Figure 4.8: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest

model level, without AIREP data.
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Figure 4.9: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest

model level, without AIREP and SYNOP data.
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Chapter 5

Results

5.1 Description of the experiments

In order to define the set-up of a suitable KENDA system for providing the initial

conditions to the COSMO-I2 run, an objective evaluation of KENDA assimilation has

been carried out on a period of one week. In particular, the focus has been on: as-

sessing the usefulness of SPPT as a mean to inflate the ensemble spread, assessing the

impact of the assimilation of radar reflectivity.

For this purpose three different experimental data assimilation suites have been run,

each consisting of one week of continuous data assimilation, following the scheme de-

scribed in section 3.4. Three experiments have been done. In the first experiment a

so called "control run" of the data assimilation cycle has been used: this is a run in

which only conventional data (AIREP, TEMP and SYNOP data, already described in

3.2.1) have been assimilated into the model. The inflation is provided by multiplicative

covariance inflation and RTPP (described in 2.3.2.2). The localization radius is fixed

to 80 km. This run is referred to as control analysis.

In the second experiment the SPPT scheme (described in 2.3.2.3) is actived into the

COSMO model. The other settings are as in the control run. This run is referred to

as SPPT analysis.

In the third experiment, also non-conventional data are assimilated, namely 3d volume

of radar reflectivity (described in 3.2.2). This run is referred to as radar analysis.

The three experiments are run from 00 UTC on the 7th to the 00 UTC of the 15th of
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October 2014. The control run has been run also with 40 members instead of 20 in

order to assess the impact of doubling ensemble size.

In order to evaluate the quality of the KENDA analyses in providing initial conditions

for COSMO-I2, deterministic forecasts have also been run for each of the three exper-

iments. The 00 UTC analyses (8 analyses) have been used as initial conditions of 8

runs of the COSMO model at 2.8 km of resolution, with a 24 h forecast range.

5.2 Objective evaluation of the experiments

In order to objectively evaluate the performance of the experiments, a number of quality

measures have been computed. Spread denotes the degree of variation or dispersion

around the central value. This is an important measure for evaluating the degree of

variability represented by an ensemble. Here the standard deviation of the ensemble

members is used as a measure of the ensemble spread. For an ensemble of N elements,

it is defined as:

SPREAD =
√

1
N

∑N
n=1(yn − ȳ)2.

A common accuracy measure for field forecasts is the Mean-Squared Error (MSE),

which operates on the gridded forecast and observed fields by simply averaging the

individual squared differences between the two at each of the M gridpoints:

MSE = 1
M

∑M
m=1(ym − om)2.

The MSE for a perfectly forecast field is zero, with larger MSE indicating decreasing

accuracy of the forecast. The square root of the MSE, the root-mean squared error, is

often used, RMSE=
√
MSE. This form of expression has the advantage that it retains

the units of the forecast variable and is thus more easily interpretable as a typical error

magnitude.

The bias, or mean error, is defined as:

BIAS = 1
M

∑M
m=1(ym − om).

Positive bias indicates that the forecast is on average greater than the observation,
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which is called overestimation. Conversely, negative bias indicates that the forecast is

on average smaller than the observation, which is called underestimation (Wilks, 1995).

5.3 Case Study: 9
th and 10

th of October 2014 (Genova

flood) and on the 13
th of October 2014 (Parma

flood)

5.3.1 Performance of the deterministic run for the Genova flood

in terms of precipitations

In the following figures, observed precipitations and predicted precipitations on the 9th

and 10th of October 2014 are represented. In particular the observed precipitations are

referred to precipitations measured from rain-gauge networks distributed over North-

ern Italy and Alps (figures 5.1 and 5.5).

These figures show a severe area of precipitations over Genova (44.4◦ N and 8.9◦ E)

area, where the total precipitation in those two days locally exceeded 500 mm. These

precipitations are compared with predicted precipitations by the deterministic runs of

COSMO model with control analysis (figures 5.2 and 5.6), with SPPT analysis (figures

5.3 and 5.7) and radar analysis (figures 5.4 and 5.8).

Considering 9th and 10th of October 2014, the three forecasts show precipitations in the

Genova area and in the central Alps, in agreement with the observed precipitations.

Nevertheless, there are two relevant differences between forecasts and observations.

The first one, it is the underestimation of the predicted precipitations in Genova, where

a flood took place during the night between 9th and 10th of October. In particular, the

SPPT experiment determines a decrease of the precipitations occuring over Genova,

while the radar experiment is similar to the control run.

The second difference is that the predicted precipitations area is west-shifted: the po-

sition of the maximum rainfall is not significantly corrected by any of the experiments,

with just a small positive signal in radar experiment on the 10th of October.
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Figure 5.1: Observed precipitations accumulated over 24 hours from rain-gauge net-

works on the 9th of October 2014.

Figure 5.2: Predicted precipitations on the 9th of October 2014 by the deterministic

run of COSMO model with control analysis.
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Figure 5.3: Predicted precipitations on the 9th of October 2014 by the deterministic

run of COSMO model with SPPT analysis.

Figure 5.4: Predicted precipitations on the 9th of October 2014 by the deterministic

run of COSMO model with radar analysis.
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Figure 5.5: Observed precipitations accumulated over 24 hours from rain-gauge net-

works on the 10th of October 2014.

Figure 5.6: Predicted precipitations on the 10th of October 2014 by the deterministic

run of COSMO model with control analysis.
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Figure 5.7: Predicted precipitations on the 10th of October 2014 by the deterministic

run of COSMO model with SPPT analysis.

Figure 5.8: Predicted precipitations on the 10th of October 2014 by the deterministic

run of COSMO model with radar analysis.

43



The underestimation of the precipitations in both days over Genova area is also

shown in figures 5.9 and 5.10, where hourly observed precipitations averaged over an

area surrounding Genova (about 44-45◦ N and 8.5-9.5◦ E) are compared with the

hourly predicted precipitations, using the three methods just explained. It is possible

to see that the blue line representing the observed precipitations is higher the other

three lines representing the predicted precipitations, indicating that the average

precipitation over the Genova area is underestimated by all experiments.

The radar experiment determines a small impact to the hourly precipitations for the

first 10 hours of the 10th of October run (figure 5.10).

Figure 5.9: Comparison between observed precipitations and predicted precipitations

on the 9th of October 2014. Blue line represents observed precipitations. Predicted

precipitations are represented by black line (by SPPT analysis), red line (by control

analysis), green line (by radar analysis).
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Figure 5.10: Comparison between observed precipitations and predicted precipitations

on the 10th of October 2014. Blue line represents observed precipitations. Predicted

precipitations are represented by black line (by SPPT analysis), red line (by control

analysis), green line (by radar analysis).

5.3.2 Performance of the deterministic run for the Parma flood

in terms of precipitations

The following figures show the precipitations which took place on the 13th of Octo-

ber 2014 when an extended and locally severe perturbation affected Northern Italy

causing a flood in Parma (44.8◦ N and 10.3◦ E). Figure 5.11 represents the observed

precipitations on the 13th of October. In particular there are three "lines" of severe pre-

cipitations: one on the border between Piedmont and Liguria, another on the border

between Liguria and Emilia-Romagna, and the last on the border between Emilia-

Romagna and Tuscany. Like for the Genova flood event, observed precipitations are

compared with predicted precipitations. In this case, every forecast is quite consistent

with the observations, in particular the deterministic run of COSMO initialized with

radar analysis (figure 5.14) managed to identify three lines of precipitation between

Liguria, Emilia-Romagna and Tuscany: however, the localization is not exactly cor-

responding to the observations, in particular the line of precipitation on the border

between Emilia-Romagna and Tuscany is north-shifted.
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Figure 5.11: Observed precipitations accumulated over 24 hours from rain-gauge net-

works on the 13th of October 2014.

Figure 5.12: Predicted precipitations on the 13th of October 2014 by the deterministic

run of COSMO model with control analysis.
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Figure 5.13: Predicted precipitations on the 13th of October 2014 by the deterministic

run of COSMO model with SPPT analysis.

Figure 5.14: Predicted precipitations on the 13th of October 2014 by the deterministic

run of COSMO model with radar analysis.
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In figure 5.15 the comparison between observed precipitations and predicted

precipitations over Genova area is shown. In this case the three forecasts are similar

and quite consistent with the observed precipitations, with a slightly better

performance of the radar run in the first 8 hours.

Figure 5.15: Comparison between observed precipitations and predicted precipitations

on the 13th of October 2014. Blue line represents observed precipitations. Predicted

precipitations are represented by black line (by SPPT analysis), red line (by control

analysis), green line (by radar analysis).

5.3.3 Evaluation of the analyses for the Genova case

5.3.3.1 Difference at the lowest model level on the 9th of October 2014

In the next figures the differences between the ensemble mean of the analysis ensemble

and the ensemble mean of the background ensemble in terms of temperature, at the

lowest model level are plotted. In figure 5.16 these differences are shown in the case

of the control run using 20 members (top) and 40 members (bottom) in the analysis

cycle. The most relevant difference is located over Northwestern Italy and Swiss Alps,

where the difference in terms of temperature in the case of 20 members is greater than

in the case of 40 members. In the rest of the considered domain, the differences are

small.
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In figure 5.17 the differences in terms of temperature are plotted for the SPPT analysis

(top) and the radar analysis (bottom).

It is important to point out that in the case of SPPT analysis there are many differences

with respect to the other experiments, in particular over Tunisia, Tuscany, Southern

and Northwestern Italy. In particular, over Tunisia and Tuscany, after the update step

the temperature decreases instead of increasing, unlike the other maps.
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Figure 5.16: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest model

level, on the 9th of October 2014 at 12 UTC, for the control run with 20 members (top)

and 40 members (bottom).

50



Figure 5.17: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest

model level, on the 9th of October 2014 at 12 UTC, for the SPPT analysis (top) and

the radar analysis (bottom).
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5.3.3.2 Comparison between predicted temperatures before and after the

update step in Tunisia on the 9th of October 2014

To assess the performance of the update step in Tunisia on the 9th of October 2014

in the case of the control and SPPT analyses, it is possible to compare the predicted

temperatures, at the lowest model level, before (first guess) and after the update step

(analysis) with observed temperatures from a land station located at 9.18◦ E and 36.73◦

N in Tunisia.

Note that the observed temperatures considered are not assimilated into the model.

In the case of the control run (figure 5.18), with both 20 and 40 members, temperatures

after the update step are closer to the observation than the temperatures before the

update step: therefore, the update step has a good performance. Instead, in the case of

SPPT analysis (figure 5.19, top), temperatures after the update step at 12 UTC and 15

UTC are more distant from the observed temperatures than the predicted temperatures

before the update step: in this case the update step has not a good performance.

The case of radar analysis (figure 5.19, bottom) is quite similar to the run of control

(figure 5.18) at 12 UTC and 15 UTC, therefore the update step is good, while it is not

high-performing at 6 UTC and 9 UTC.
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Figure 5.18: Temperature predicted by the control run with 20 members (top) and 40

members (bottom) before the update step (black line) and after the update step (red

line) and temperature observed (green line) from a land station located in Tunisia on

the 9th of October 2014.
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Figure 5.19: Temperature predicted by the SPPT analysis cycle (top) and by the radar

analysis cycle (bottom) before the update step (black line) and after the update step

(red line) and temperaute observed (green line) from a land station located in Tunisia

on the 9th of October 2014.
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5.3.3.3 Difference at a medium model level on the 9th of October 2014 at

12 UTC

In figures 5.20 and 5.21 the differences between the ensemble mean of the analysis

ensemble and the ensemble mean of the background ensemble in terms of temperature

at level 40 of the COSMO model (corresponding to a height of about 800 m over flat

terrain), on the 9th of October 2014 at 12 UTC, are shown.

These figures are rather different with respect to figures 5.16 and 5.17 representing the

differences at the lowest level of the model. In this case, the differences between the

temperature before and after the update step are generally smaller than 1 K.

Considering figure 5.20, it is possible to point out that the differences between the

control run with 20 members (top) and 40 members (bottom) are small. The most

relevant difference is over Eastern Sardinia, where in the case of 20 members, after

the update step, the temperature decreases, while using 40 members, the temperature

increases.

Regarding figure 5.21, it is possible to point out that there are not many differences

with respect to figure 5.20. However, near Easter Sardinia the case of SPPT analysis

(figure 5.21, top) is similar to control run with 40 members, in fact after the update

step, the temperature increases, while radar analysis (figure 5.21, bottom) is more

similar to the control analysis with 20 members, in fact temperature over Northeastern

Sardinia decreases after the update step.
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Figure 5.20: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at level 40 of

COSMO model, on the 9th of October 2014 at 12 UTC, for the control run with 20

members (top) and 40 members (bottom).
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Figure 5.21: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at level 40 of

COSMO model, on the 9th of October 2014 at 12 UTC, for the SPPT analysis (top)

and radar analysis (bottom).
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5.3.4 Evaluation of the analysis for the Parma case

5.3.4.1 Difference at the lowest model level on the 13th of October 2014

In the next figures (5.22 and 5.23) the differences between the ensemble mean of the

analysis ensemble and the ensemble mean of the background ensemble in terms of

temperature at the lowest model level, on the 13th of October 2014 at 12 UTC, are

shown.

The experiments are the same used above. It is possible to see that in some areas,

after the update step, there are differences of temperature even greater than 2 K: in

particular considering figure 5.22, temperature decreases in Switzerland and in Emilia-

Romagna (Apennine), while temperature increases in Northeastern Alps. In the case

of radar analysis, in those areas, the differences in temperature are slightly smaller

(figure 5.23, bottom).

A relevant difference is over Bologna area, in fact in the case of control run with 20

members (figure 5.22) temperature decreases slightly after the update step, while in

the case of the radar analysis temperature tends to increase after the update step.
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Figure 5.22: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest level

of the model, on the 13th of October 2014 at 12 UTC, for the control run with 20

members (top) and 40 members (bottom).
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Figure 5.23: Difference between the ensemble mean of the analysis ensemble and the

ensemble mean of the background ensemble in terms of temperature at the lowest level

of the model, on the 13th of October 2014 at 12 UTC, for the SPPT analysis (top) and

radar analysis (bottom).
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5.3.4.2 Comparison between predicted temperatures before and after the

update step in Switzerland and Bologna on the 13th of October

2014 at 12 UTC

The following step is an evaluation of the performance of the update step in two loca-

tions: Bologna and a station in Swiss Alps, on the 13th of October 2014 at 12 UTC in

the case of the control and the radar analyses.

It is possible to compare the predicted temperatures, at the lowest model level, before

(first guess) and after update step (analysis) with observed temperatures from a land

station located at 8.56◦ E and 47.38◦ N in Switzerland (figure 5.24) and Bologna at

11.30◦ E and 44.53◦ N (figure 5.25).

Regarding the Swiss location, both control and radar analyses show predicted tem-

peratures closer to the observed temperatures, after the update step, than predicted

temperatures before update step.

About Bologna, in the case of the control analysis (figure 5.25, top) the update step

is not high-performing, in fact predicted temperature after the update step is slightly

further from observation than the predicted temperature before the step. Instead, in

the case of radar analysis (figure 5.25, bottom), the temperature increases after the

update step and is very close to the observation at 12 UTC, therefore the update step

is rather efficient. Considering also the differences at 15 UTC, the temperature after

the update step tends to be further from the observation than the temperature before

the update step. In this situation, the update step is not high-performing.
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Figure 5.24: Temperature predicted by the control run with 20 members (top) and

radar analysis (bottom) before the update step (black line) and after the update step

(red line) and temperature observed (green line) from a land station located in Switzer-

land on the 13th of October 2014.
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Figure 5.25: Temperature predicted by the control run with 20 members (top) and

radar analysis (bottom) before the update step (black line) and after the update step

(red line) and temperature observed (green line) from a land station located in Bologna

on the 13th of October 2014.
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5.4 Evaluation over the entire week period

5.4.1 Comparison between predicted temperatures before and

after the update step in Switzerland from 00 UTC of 7th

to 00 UTC of 15th of October 2014

The comparison between predicted temperatures before (first guess) and after (analy-

sis) the update step with observed temperature in Switzerland has been extended from

00 UTC of 7th to 00 UTC of 15th of October 2014 (figures 5.26 and 5.27).

The x-axis of the figures represents the time, in hours, since the beginning of the anal-

ysis cycle, starting from 00 UTC of the 7th of October 2014.

Considering the experiment of the control run, with both 20 and 40 members (figure

5.26), the update step on the 7th of October (time between 0 and 24 h) is not high-

performing in fact temperatures before the update step are closer to the observation

than the temperatures after the step. Morover in that day predicted temperatures are

between 1 K and 3 K lower than the observed temperature. The following day pre-

dicted temperatures, both before and analysis are close to the observed temperature,

with a maximum difference on the order of 1 K.

The 9th of October the minimum observed temperature was about 284 K (at 54 h)

while the maximum was about 295 K (at 63 h). The COSMO model reduced the tem-

perature range over that 24 h period: the minimum predicted temperature both before

and after update step was nearly 2 K higher than the observation, while the maximum

predicted temperature was 2-3 K lower than the observation.

Note that at 15 UTC (at 63 h) the predicted temperature after the update step was

closer (about 1 K) to the observation than the one before the update step, demon-

strating that in that case the update step was high-performing. In the next days the

shape of the graphics of the observed and predicted temperatures are quite similar,

with differences on the order of less than 1 K, a part from the 14th of October where

the maximum predicted temperature was nearly 3 K underestimated.

Regarding figure 5.27, until the 18 UTC (at 42 h) of the 8th of October the graphics

are quite similar, while between 21 UTC (at 45 h) on the 8th and 6 UTC (at 54 h)

on the 9th of October, the SPPT analysis showed some problems in the forecast both
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before and after the update step: predicted temperature before the step was 2-3 K

higher than the observation, while predicted temperature after the update step was

even 3-4 K higher than the observed temperature, therefore the update step brought

the temperature 1 K further from the observation.

At the same hours, radar analysis worked much better, in fact the difference between

the predicted and the observed temperature was smaller than 2 K, both before and

after the update step. At 00 UTC (at 144 h) on the 13th of October a problem oc-

curred both using SPPT and radar analyses: using SPPT analysis, the temperature

after update step was about 4 K higher than the observation, while before the step

was about 2 K higher than the observed temperature. A similar problem, though of

smaller entity, was observed also in radar analysis.

The same evaluation has been done taking into account other locations (e.g. Bologna),

and the results were quite similar (not shown here).
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Figure 5.26: Temperature predicted by the control run with 20 members (top) and 40

members (bottom) before the update step (black line) and after the update step (red

line) and temperature observed (green line) from a land station located in Switzerland

from the 7th to the 14th of October 2014.
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Figure 5.27: Temperature predicted by the SPPT analysis (top) and radar analysis

(bottom) before the update step (black line) and after the update step (red line) and

temperature observed (green line) from a land station located in Switzerland from the

7th to the 14th of October 2014.
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5.4.2 Calculation of spread, rmse and bias of temperature for

the entire week

The next step was the calculation of spread, rmse and bias in terms of temperature

at the lowest model level after the update step, over the Italian domain, between 6◦

E and 19◦ E of longitude and 36◦ N and 48◦ N of latitude, from 00 UTC of 7th to 00

UTC of 15th of October 2014, using control run with 20 and 40 members (figure 5.28),

SPPT analysis (figure 5.29, top) and radar analysis (figure 5.29, bottom). Errors are

computated against 2m temperature observations from the SYNOP network.

For every experiment it was found that rmse generally has values between 2 K and

4 K, with a peak of 6 K on the 8th of October, bias is between 1 K and -3 K, while

spread is smaller than 1 K. This indicates that spread is too small with respect to the

rmse, suggesting that a better inflation methodology should be applied. Rmse and bias

show daily variations, in particular, during central hours of every day, rmse and bias

are higher (in module).

Differences between 20 (figure 5.28, top) and 40 members (figure 5.28, bottom) are

very small. Instead, spread and rmse measured from SPPT analysis (figure 5.29, top)

are slightly higher (1-2 tenths of K) than values obtained using the other methods.
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Figure 5.28: Representation of rmse (black line), bias (red line) and spread (green line)

of the temperature after the update step, for the control run with 20 members (top)

and 40 members (bottom).
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Figure 5.29: Representation of rmse (black line), bias (red line) and spread (green

line) of the temperature after the update step, for the SPPT analysis (top) and radar

analysis (bottom).
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5.4.3 Statistics of the analysis increments from 00 UTC of 7th

to 00 UTC of 15th of October 2014.

In the following figures statistics of the analysis increments in observation space is

shown, over the Italian domain, between 6◦ E and 19◦ E of longitude and 36◦ N and

48◦ N of latitude, from 00 UTC of 7th to 00 UTC of 15th of October 2014, using control

run of COSMO model with 20 members. The statistics is computed for each obser-

vation type separately, comparing the model equivalent with observations which are

assimilated, at observation location. The purpose is to check that the scheme is able

to ingest the observations.

In figures 5.30 and 5.31 the observations are in terms of temperature measured by ra-

diosondes, while in figures 5.32 and 5.33 are in terms of wind measured by radiosondes.

In figures 5.30 and 5.32 the errors are for the model states before the assimilation step

(first guess), while in figures 5.31 and 5.33 they are after the assimilation step (analy-

sis). The observational error (black line) is prescribed, therefore it does not vary. The

spread of the first guess is also plotted as a red line.

Errors are displayed as a function of the altitude (pressure). Because radiosonde obser-

vations have large biases in the upper troposphere, they are currently used only below

300 hPa.

Comparing figures 5.30 and 5.31 it is possible to note that the errors, expressed as

differences between observed value and modeled one (green for the mean error and

blue for the mean squared error) are reduced after the update step. Between 500 hPa

and 900 hPa of altitude mean squared error of observation - first guess is reduced by

about 0.5 K, while at the lowest level by about 0.3 K. The maximum value of the mean

squared error before analysis is 2 K.

Comparing figures 5.32 and 5.33 the errors are largely reduced after the update step:

the squared error is reduced by about 2-3 m/s, in particular at 300 hPa the squared

error is reduced even from 6.2 m/s (maximum value) to 2.8 m/s.

In figures 5.34 and 5.35 the observations are in terms of temperature measured by

airplanes, while in figures 5.36 and 5.37 are in terms of wind measured by airplanes.

Even in this case, comparing 5.34 and 5.35 it is possible to point out the reduction

of mean error and mean squared error of the difference between observation and first
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guess.

Regarding figures 5.36 and 5.37, the squared error is reduced by about 2-3 m/s, in

particular at 300 hPa the squared error is reduced even from 4.8 m/s (maximum value)

to 2.3 m/s.

In figures 5.38 and 5.39 the errors for the model states before and after the assimila-

tion step are shown, respectevely in terms of wind and surface pressure measured by

land stations. Regarding the first figure, the squared error has values around 2.5 m/s

before the update step and 2.3 m/s after the step, while considering the second one,

the squared error decreases from about 42 hPa to 16 hPa after the update step.

In figure 5.40 the statistics for radar assimilation is shown. In this case erros are dis-

played as a function of the altitude (height). Observations are in terms of reflectivity.

Even in this case, mean errors and squared errors decrease after the update step. In

particular the squared errors goes from values of 18 dBZ to 8 dBZ at 2000 m of height,

where maximum errors are measured.
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Figure 5.30: Observational error (black), spread (red), mean error of observation - first

guess (green), mean squared error of observation - first guess (blue) for observations

by radiosondes. Observations are in terms of temperature.

Figure 5.31: Observational error (black), spread (red), mean error of observation -

analysis (green), mean squared error of observation - analysis (blue) for observations

by radiosondes. Observations are in terms of temperature.
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Figure 5.32: Observational error (black), spread (red), mean error of observation - first

guess (green), mean squared error of observation - first guess (blue) for observations

by radiosondes. Observations are in terms of wind.

Figure 5.33: Observational error (black), spread (red), mean error of observation -

analysis (green), mean squared error of observation - analysis (blue) for observations

by radiosondes. Observations are in terms of wind.
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Figure 5.34: Observational error (black), spread (red), mean error of observation - first

guess (green), mean squared error of observation - first guess (blue) for observations

by airplanes. Observations are in terms of temperature.

Figure 5.35: Observational error (black), spread (red), mean error of observation -

analysis (green), mean squared error of observation - analysis (blue) for observations

by airplanes. Observations are in terms of temperature.
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Figure 5.36: Observational error (black), spread (red), mean error of observation - first

guess (green), mean squared error of observation - first guess (blue) for observations

by airplanes. Observations are in terms of wind.

Figure 5.37: Observational error (black), spread (red), mean error of observation -

analysis (green), mean squared error of observation - analysis (blue) for observations

by airplanes. Observations are in terms of wind.
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Figure 5.38: Observational error (red), mean error (black), mean squared error (blue)

for observations by land stations. Observations are in terms of wind.

Figure 5.39: Observational error (red), mean error (black), mean squared error (blue)

for observations by land stations. Observations are in terms of surface pressure.
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Figure 5.40: Spread before update step (red line), mean error of observation - first guess

(green line), mean error of observation - analysis (dashed green line), mean squared

error of observation - first guess (blue line), mean squared error of observation - analysis

(dashed blue line), for observations by radar. Observations are in terms of reflectivity.
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Chapter 6

Conclusions

The present work deals with the evaluation of a data assimilation scheme with the

purpose of providing initial conditions to a meteorological model at the convection per-

mitting scale, with a focus on the assimilation of data from meteorological radar. The

data assimilation methodology is based on a Localized Ensemble Transform Kalman

Filter approach (KENDA scheme). First the sensitivity of KENDA to a set of param-

eters of the scheme has been tested. With regard to the localization radius, the data

assimilation scheme is more effective in changing the background when a larger radius

is used (more observations are used in this case), but locally a larger impact of the

observations in case a smaller radius is used is also visible. This can be due to a larger

weight given to closer observations when a smaller radius is used.

Then the impact of varying the inflation methodology has been tested. In fact, the

assimilation step determines a decrease of the ensmeble spread, which should be re-

inflated in order to avoid a collapse of the filter. Adding to the standard multiplicative

inflation the RTPP one (Relaxation to Prior Perturbations) determines a little impact

with respect to the case without RTPP.

Changing the inflation to the RTPS (Relaxation to Prior Spread) determines a marked

decrease of the spread of the analysis ensemble, decreasing the effect of the assimilation

step, which becomes less efficient. This is due to the too high confidence given to the

background, implying less weight given to the observations.

Adding a Stochastic Perturbation of the Physics Tendencies to the model permits to

further inflate the spread, determining a more marked difference between the ensemble
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mean of the analysis ensemble and the ensemble mean of the background ensemble in

terms of temperature.

Comparing analyses where different types of data have been assimilated, it has been

possible to find out that the signal near the surface is largely due to SYNOP data.

Furthermore, the KENDA assimilation cycle has been implemented over a week period

in three different configurations: control, with SPPT, with the assimilation of radar

data. The analyses so obtained have been also used as initial conditions to a series of

deterministic forecasts of the COSMO model, to evaluate their quality in the forecast-

ing chain.

The precipitations predicted by the deterministic run of COSMO with control, SPPT

and radar analyses have been compared with observed precipitation accumulated over

24 hours from rain-gauge networks on the 9th of October 2014. It has been found that

predicted precipitations are underestimated over Genova area and west-shifted. Re-

peating the experiments on the 13th of October, the predictions were more consistent

with the observed precipitations, and the RADAR experiment managed to identify

quite well the three lines of precipitations occurred between Liguria, Emilia-Romagna

and Tuscany.

Then the KENDA analyses have been evaluated in more detail, by comparing the dif-

ferences between the ensemble mean of the analysis ensemble and the ensemble mean

of the background ensemble in terms of temperature at the lowest model level. On the

9th of October 2014 at 12 UTC, it has been found that the behaviour of the SPPT

analysis is rather different from the that of the other experiments, showing a greater

impact of the assimilation step. This impact is now always a positive one, as it was

shown by comparing the predicted temperatures before and after the update step with

the observed temperature in Tunisia: the performance of the update step for the SPPT

experiment is not good, unlike the other experiments. The same comparison has been

performed on a station in Switzerland and in Bologna on the 13th of October at 12

UTC, and it has been found that both control run with 20 members and radar analysis

are high-performing in Switzerland, while in Bologna the control run with 20 members

is not high-performing.

Regarding the comparison between predicted temperatures before and after the up-
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date step and observed temperatures during the entire week from 7th to 14th October

on a location in Switzerland, control and radar analyses show better performance of

the update step than the SPPT analysis, even though locally the differences between

predicted temperatures and observations are large. Similar results have been obtained

over other locations.

Calculation of spread, rmse and bias over Italy has been performed for every experi-

ment: the values for the different experiments are rather similar, with SPPT showing

slightly higher spread and rmse.

Finally, statistics of analysis increments in observation space has been calculated over

the Italian domain, for the whole week, in the case of control run with 20 members:

mean errors and mean squared errors decrease after the update step for all types of

observations (radiosondes, airplanes, land stations and radar data).
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