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Abstract 
 
In most real-life environments, mechanical or electronic components are subjected to vibrations. 
Some of these components may have to pass qualification tests to verify that they can withstand 
the fatigue damage they will encounter during their operational life. In order to conduct a reliable 
test, the environmental excitations can be taken as a reference to synthesize the test profile: this 
procedure is referred to as “test tailoring”. 
Due to cost and feasibility reasons, accelerated qualification tests are usually performed. In this 
case, the duration of the original excitation which acts on the component for its entire life-cycle, 
typically hundreds or thousands of hours, is reduced. In particular, the “Mission Synthesis” 
procedure lets to quantify the induced damage of the environmental vibration through two 
functions: the Fatigue Damage Spectrum (FDS) quantifies the fatigue damage, while the Maximum 
Response Spectrum (MRS) quantifies the maximum stress. Then, a new random Power Spectral 
Density (PSD) can be synthesized, with same amount of induced damage, but a specified duration 
in order to conduct accelerated tests. 
In this work, the Mission Synthesis procedure is applied in the case of so-called Sine-on-Random 
vibrations, i.e. excitations composed of random vibrations superimposed on deterministic 
contributions, in the form of sine tones typically due to some rotating parts of the system (e.g. 
helicopters, engine-mounted components, …). In fact, a proper test tailoring should not only 
preserve the accumulated fatigue damage, but also the “nature” of the excitation (in this case the 
sinusoidal components superimposed on the random process) in order to obtain reliable results. 
The classic time-domain approach is taken as a reference for the comparison of different methods 
for the FDS calculation in presence of Sine-on-Random vibrations. Then, a methodology to 
compute a Sine-on-Random specification based on a mission FDS is presented. In case of Sine-on-
Random environments, it will better represent the original excitation than a purely random 
specification.  
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Sommario 
 
In molte applicazioni, i componenti meccanici o elettronici sono soggetti a vibrazioni. Alcuni di 
questi componenti potrebbero dover essere sottoposti a prove di qualifica a vibrazione, per 
verificare che possano resistere al danno a fatica che incontreranno nel corso della loro vita 
operativa. Al fine di condurre una validazione appropriata, le eccitazioni reali possono essere 
prese come modello per sintetizzare il profilo vibratorio del test di qualifica: questa procedura 
prende il nome di “test tailoring”. 
Per ragioni di costi e fattibilità, di solito sono eseguiti test di qualifica accelerati. In questo caso, la 
durata dell’eccitazione originale che sollecita il componente per tutto il suo ciclo vita, tipicamente 
centinaia o migliaia di ore, è ridotta. In particolare, la procedura di “Mission Synthesis” permette 
di quantificare il danno indotto dalla vibrazione reale attraverso due funzioni: il Fatigue Damage 
Spectrum (FDS) quantifica il danno a fatica, mentre il Maximum Response Spectrum (MRS) 
quantifica il massimo stress. Quindi, può essere sintetizzata una nuova random Power Spectral 
Density (PSD) con la stessa quantità di danno indotto, ma una durata ridotta in modo da poter 
condurre test accelerati. 
Nel lavoro seguente, la procedura di Mission Synthesis viene applicata nel caso delle cosiddette 
vibrazioni Sine-on-Random, ovvero eccitazioni composte da vibrazioni random sovrapposte a 
contributi deterministici, sotto forma di componenti sinusoidali causate tipicamente da parti 
rotanti del sistema (per esempio nel caso di elicotteri, componenti montati sul motore, ...). Infatti, 
un adeguato test tailoring dovrebbe preservare non solo il danno a fatica accumulato, ma anche la 
"natura" dell'eccitazione, in questo caso le componenti sinusoidali sovrapposte al segnale random, 
per ottenere risultati attendibili. L’approccio classico nel dominio del tempo viene preso come 
riferimento per il confronto di diversi metodi per il calcolo del FDS in presenza di vibrazioni Sine-
on-Random. Quindi, viene presentato un metodo per la sintesi di un profilo Sine-on-Random 
partendo da un dato FDS di riferimento. In caso di ambienti sottoposti a vibrazioni Sine-on-
Random, un profilo con la stessa tipologia rappresenterà meglio l’eccitazione originale rispetto a 
una specifica con caratteristiche puramente random. 
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Introduction 
 
Mechanical components, during their operational life, may be subjected to vibrations. These 
vibrations can induce fatigue damage, due to the repeated loading and unloading of the material, 
and the components must be designed to last through the induced damage. Therefore, to avoid 
the risk of rupture, the components can be validated with qualification tests. The real 
environmental excitations can be taken as a reference to make these tests as representative as 
possible: this procedure is called test tailoring. The problem is that usually the real vibrations 
cannot be used without manipulations due to time and cost reasons. A solution can be to quantify 
the damage induced by the environmental vibrations and then synthesize a new profile with a 
reduced duration but the same amount of damage. 
One of these approaches for the test tailoring is the Mission Synthesis. It represents the generic 
component with a series of linear Single Degree of Freedom (SDOF) systems, with a fixed damping 
ratio and the natural frequency that varies in the range of the component’s frequencies of 
interest. Then, the response of each SDOF system to the input (i.e. environmental) excitation is 
calculated. The response evaluation can be approached in the time domain, but in the case of very 
long signals, the calculations could have a too long duration. So, again for time and cost reasons, a 
frequency domain approach is usually preferred. 
Once the SDOF response is calculated, the induced damage is quantified, under a number of 
approximations, by means of two functions. The Fatigue Damage Spectrum (FDS) quantifies the 
fatigue damage, while the Maximum Response Spectrum (MRS) quantifies the maximum stress. If 
the reason of the procedure is to preserve the fatigue damage, the original profile and the 
synthesized profile must have the same FDS. Usually, to avoid another type of damage, also the 
calculation of the new MRS is accomplished, in order to verify that the maximum induced stress 
will not pass the ultimate stress limit. Otherwise, if the purpose is the preservation of the shock 
damage, the new profile must have the same MRS of the real excitation. 
It is generally assumed that the environmental vibration has random characteristics, that is the 
excitation has random values with a Gaussian probability distribution. Therefore, also the 
synthesized profile can be random, to preserve this property and make the test more realistic. 
However, in some special cases, the vibration does not follow a Gaussian distribution. In 
particular, if a rotating part is present, a so called “Sine-on-Random” vibration usually shows up 
(e.g. helicopters, engine-mounted components, …). The mechanical component is thus subjected 
to a random Gaussian excitation, superimposed to deterministic components, in the form of 
sinusoids, due to the rotor. 
In order to perform accelerated tests, for feasibility and cost savings causes, a test profile which 
represents as much as possible the real environment but with a limited duration is needed. The 
purpose of this work is to investigate how to quantify the damage in presence of Sine-on-Random 
vibrations and, then, to find a way to synthesize a time reduced profile which preserves not only 
the fatigue damage but also the characteristics of the sinusoidal tones. 
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In [Chapter 1] a review of the Mission Synthesis procedure is presented. 
In [Chapter 2] a model for the quantification of the damage with the classical time domain 
approach is introduced and validated in case of purely random vibrations. Therefore, it can be 
used as the reference in the following comparisons in presence of Sine-on-Random excitations.  
In [Chapter 3] different frequency domain methods for the damage calculation in case of Sine-on-
Random vibrations are compared, with the aim to find the best one. Then, starting from the 
advantages of each method, a new procedure for the FDS calculation is proposed.  
In [Chapter 4] a new method for the synthesis of a Sine-on-Random profile starting from a 
reference FDS is disclosed and its benefits over the synthesis procedure of a purely random profile 
are discussed. 
In [Chapter 5] the conclusions of the presented work are reported.  
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Chapter 1 –  Mission Synthesis 
 
Almost all mechanical components are subjected to vibrational environments during their life 
cycle, and such environments have been shown to be damaging. Therefore, to reduce failure 
rates, it is essential to take these vibrational stresses into account at an early stage of the 
development of the components and to be able to design accurate tests to achieve this purpose. 
These tests must satisfy the following criteria: 

- Be severe enough to ensure that, if the part survives the test, it can be safely assumed that 
it will do also in a real environment. 

- Be sufficiently representative of the real environment to give enough confidence that if the 
unit fails during the test, it will fail also in real operating conditions. 

Thus, a balance must be found between severity and accuracy. The test should give the developer 
the confidence that its severity guarantees to prevent failures that may occur under normal 
operating conditions, but at the same time it should avoid an overestimation of the damage that 
would lead to an expensive oversized component. So, the goal of the Mission Synthesis is to design 
the optimum test. 
There are two main possible strategies to determine the test specifications: 

- Testing in situ: this method consists in mounting the component to test on the source of 
vibrations and expose it to the actual working conditions. Such testing has obviously the 
advantage that it is highly representative of the real excitations. But in most cases due to 
cost, time and feasibility reasons it is highly impractical, if not impossible, to conduct that 
type of tests. 

- Testing by simulation of conditions in a laboratory: 
o Based on standards: using standard test specifications is useful when the 

component will be subjected to unknown conditions or in any case in which they 
are not easily measurable or assumable. However, standards are conservative by 
nature and, in general, they will lead to an overdesigned component, causing higher 
costs. 

o Based on real environmental data: when the life cycle of the component is well 
known, a specification which closely simulates the real environment can be 
developed. In general, the risk of oversizing is diminished. On the other hand, the 
equipment will be designed for a specific life cycle. So, changes to the test 
specifications will require a new procedure. In addition, it is important that not only 
the specification respects the real environment but also that the actual testing does 
it. 

In this scenario, the Mission Synthesis procedure lets to determine test specifications based on 
real environmental data [Ref. 1]. 
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So, if the life cycle of the component is well acquainted, the first step is to break it down into a 
series of phases of known duration and loading conditions, called situations. Environmental data 
are necessary to evaluate each situation identified in the life cycle. In general, situations occur one 
after the other, in series, but parallel situations are also possible [Fig. 1.1]. 
 

 
Figure 1.1: Example of life profile of a component with situations in series/parallel 

 
The determination of the simulated environment consists of three stages: 

- The estimation of the equivalent damage potential of the real environment by the 
computation of the Maximum Response Spectrum (MRS) and Fatigue Damage Spectrum 
(FDS) functions. 

- The possible application of a safety factor to consider all the uncertainties that are involved 
in the definition of the test specifications. 

- The combination into one global test specification of all the individual situations and their 
equivalent damage potentials. 

 
For the estimation of the equivalent damage potential by means of the FDS/MRS functions, a 
generic component is represented with a series of linear Single Degree of Freedom (SDOF) systems 
[Fig. 1.2], with a fixed damping ratio and the natural frequency that varies in the range of the 
component’s frequencies of interest. It will be shown that this simplification lets to reduce the 
problem of the damage quantification in finding the response of a linear SDOF system. Usually, the 
environmental vibration is given in the form of an acceleration and it corresponds to an excitation 
applied to the base of the system. Then, the elongation caused by the excitation can be calculated, 
in the form of the relative displacement response between the mass and the support of the SDOF 
system. The calculation can be done in the time or in the frequency domain. 
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Figure 1.2: the component is modeled as a series of SDOF systems 

 
The Maximum Response Spectrum (MRS) is the maximum value of the relative displacement 
response over its duration, for each natural frequency of the SDOF system. Usually it is reported in 
the form of an acceleration, with a multiplication by the squared natural pulsation of the SDOF 
system. Due to the linearity of the system, if the material is linear, a linear relation between the 
maximum relative displacement and the stress peak inflicted to the system can be considered, so 
the MRS quantifies the maximum stress induced by the excitation and it is typically used to verify 
that it does not pass the ultimate stress limit of the material to avoid shock ruptures. 
Calling ݂ a certain natural frequency of the SDOF system and ݖ௫ the maximum value of the 
relative displacement response at that natural frequency, the MRS expression is: 
 
= ܴܵܯ  ߨ2)  ݂)ଶ  ∙ )௫ݖ  ݂) [EQ.  1.1] 
 
The Fatigue Damage Spectrum (FDS) function, instead, is used to quantify the fatigue damage 
caused by the excitation. In fact, after the calculation of the relative response displacement of the 
SDOF system, an estimation of the induced fatigue damage can be accomplished, thanks to some 
further assumptions: 

- the fatigue relation Stress – Number of Cycles is described by the Basquin’s law: ܰ ߪ  =  ܥ 
where ܰ is the number of cycles to failure under stress of amplitude ߪ and ܾ and ܥ are 
constants characteristic of the material 

- a linear relation exists between the maximum relative displacement and the peak stress 
inflicted to the system: ߪ =  is a constant of the material ܭ ௫ whereݖ ܭ 

- a method is used to count the peaks and the relative number of cycles (e.g. Rainflow 
Counting) 

- the Miner’s linear accumulation rule for the damage is used: ܦ =  ∑ ݀ெୀଵ  where the total 
damage ܦ is given by the sum of the ܯ levels of damage ݀. 

Afterwards, an exponential proportionality between the fatigue damage and the relative 
displacement emerges and, at each frequency, the value of the FDS function is precisely this 
estimated fatigue damage. In particular: 
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ܵܦܨ  = = ܦ    ݀
ெ

ୀଵ
=   ݊

ܰ

ெ

ୀଵ
=   ݊ (ߪ) 

ܥ
ெ

ୀଵ
= ܭ 

ܥ   ݊ (ݖ) 
ெ

ୀଵ
 

 
[EQ.  1.2] 

 
   
In the end, the FDS and MRS functions are usually represented by plotting the calculated values of 
the maximum response and the fatigue damage versus the natural frequency of the single degree-
of-freedom linear system [Fig. 1.3]. The MRS and FDS expressions [EQ. 1.1], [EQ. 1.2] will be 
discussed in detail in [Chapter 2]. 
 

 
Figure 1.3: MRS, FDS examples 

 
After their calculation and, if necessary, the application of the safety factor, the FDS and MRS 
functions for each situation have to be all combined in a single specification: 

- Situations in parallel: in this case the equipment is subjected only to one of the parallel 
situations, so the combined specification is obtained by: 

o The envelope of the MRSs 
o The envelope of the FDSs 

- Situations in series, the combined effect will be: 
o The envelope of the MRSs (to consider the higher peak stress) 
o The sum of the FDSs (to consider the cumulative fatigue damage) 

Now, all the environmental situations are represented by a unique specification and the inflicted 
damage is fully described by its MRS and FDS functions. Then, accelerated qualification tests are 
usually preferred, for the purpose to keep them feasible and with limited costs. Thus, a new 
profile with a reduced time but the same amount of damage can be synthesized: 

- In case the fatigue damage has to be preserved, the FDS of the new excitation has to be 
the same of the original one. 
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- In case the maximum stress has to be conserved, the MRS of the new profile has to be the 
same of the original one. 

Also in the first case a check on the maximum stress of the synthesized excitation, represented by 
its MRS, has to be done in order to verify that the component to test will not incur in a different 
type of rupture, due to the passing of the ultimate stress limit. 
The qualification test can now be carried out on the component in exam. Obviously, the better the 
test profile represents the environmental excitation, the more reliable the qualification test will 
be. Given that the Mission Synthesis method in case of Gaussian random vibrations is well known, 
it permits to synthesize a new test profile in the form of a Power Spectral Density (PSD) with the 
same induced damage of the environmental excitation but with a reduced duration, in order to 
perform accelerated qualification tests. 
Thus, the aim of this work is to investigate the procedure in presence of the so called Sine-on-
Random vibrations, sinusoidal contributions superimposed on a random excitation, looking for the 
best way to quantify the fatigue damage and, then, to synthesize a time reduced profile based on 
a target FDS that preserves as much as possible the characteristics (i.e. the deterministic 
components) of the original signal.  
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Chapter 2 –  Random vibrations 
 
The first step in the evaluation of different methods for the calculation of the damage inflicted by 
Sine-on-Random vibrations is to obtain a reference value for the comparison. This reference has 
been identified in the classical time domain approach for the calculation of the FDS and MRS. 
The idea is to compare the results with the frequency domain approach in the case of purely 
random vibrations and then, since the time domain model works with every timeseries, it can be 
used to compare the different frequency domain methods also in the case of Sine-on-Random 
excitations. 
 
  

2.1. Time domain approach 
 
Relative Displacement Response of a SDOF system 
A generic component is modeled with a series of Single-Degree-of-Freedom (SDOF) systems, then 
the relative displacement response of each system to the excitation is calculated in the time 
domain and the response is eventually used to obtain the FDS and MRS functions. Therefore, the 
first passage in the procedure is the calculation of the relative displacement response of a SDOF 
system: 
 

 
Figure 2.1: SDOF system 

 
In [Fig. 2.1] (ݐ)ݔ is the displacement response of the system to the input displacement excitation 
 It is worth noting that, in case of measured vibrations, the excitation is usually known in the .(ݐ)ݕ
form of acceleration ݕሷ  :Then, the relative displacement response is defined as .(ݐ)
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(ݐ)ݖ  = (ݐ)ݔ −  [EQ.  2.1] (ݐ)ݕ
 
The SDOF system is characterized by its parameters: mass ݉, stiffness ݇, and damping ܿ. So, it can 
be described by the natural frequency ݂ and the quality factor ܳ (or the damping ratio ߦ): 
 
 

݂  =   1
ඨ ߨ2 ݇

݉ [EQ.  2.2] 

 ܳ =  1
ߦ2 =  √݇ ݉

ܿ  [EQ.  2.3] 
 
Given a SDOF system with fixed damping ratio and natural frequency, and the base acceleration 
input, the relative displacement response in the time domain is obtained with the Duhamel, or 
convolution, integral: 
 
(ݐ)ݖ  = න ℎ(ݐ − ሷݕ (߬ (߬) ݀߬௧


= − න ሷݕ (߬) ݁ିకఠ(௧ିఛ)

߱ௗ
sinሾ߱ௗ(ݐ − ߬)ሿ ݀߬௧


 [EQ.  2.4] 

 
Where ℎ(ݐ) is the impulse response function of the system, ߱ is the natural pulsation and ߱ௗ is 
the damped natural pulsation: 
 
 ℎ(ݐ) =  ݁ିకఠ௧

߱ௗ
sin(߱ௗݐ) [EQ.  2.5] 

 ߱  = ߨ2 ݂ [EQ.  2.6] 
 ߱ௗ  =  ߱ ඥ1 −  ଶ [EQ.  2.7]ߦ 
  
There are different algorithms to compute the integral and calculate the relative displacement 
response, for example: 

- The numerical integration of the Duhamel integral 
- The recursive filtering methods: 

o Impulse invariant method (Kelly-Richman algorithm) 
o Ramp invariant method (Smallwood algorithm) 

In fact, to avoid the numerical integration over the entire interval, a popular technique is to use a 
digital recursive filter to simulate the SDOF system and, using a sampled input, the output of the 
filter is assumed to be a gauge of the response. Being the input the measured environmental 
excitation, it is typically already given in a sampled form. Then, the recursive filtering approach 
consists in the calculation of the response ݕ(݊ܶ+ܶ), where ܶ is the sampling interval, with a 
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recursion formula using only the previous values of the response ݕ(݊ܶ) and the input signal in the 
time interval. Different approximations of the input [Fig. 2.2] in the interval [0, ܶ] define different 
filter design methods. In particular, the impulse invariant method considers the input as an 
impulse at that instant, so the excitation is represented by a series of scaled impulses at each 
sampling time. But, at high values of the natural frequencies of the SDOF system, where high is 
related to the value of the sampling frequency of the input signal, this approximation leads to 
some errors, due to the possible interference of the impulse responses. 
 

 
Figure 2.2: Different input approximations 

 
The problem has long been recognized [Ref. 2] and the ramp invariant method solves this issue 
approximating the input as a ramp between the instant of interest and the previous one. This 
leads, for the Smallwood algorithm, to better results also at high values of the natural frequencies 
[Fig. 2.3] and, for this reason, it was chosen in this work for the implementation. 
The expressions of the ramp invariant filter ܪௗ(ݑ) and its coefficients are: 
 

(ݑ)ௗܪ =  ܾݑଶ + ܾଵݑ +  ܾଶ
ଶݑ +  ܽଵݑ +  ܽଶ

 [EQ.  2.8] 

ܽଵ =  −2݁(ିకఠ்) cos(߱ௗܶ) [EQ.  2.9] 
ܽଶ =  ݁(ିଶకఠ்) [EQ.  2.10] 

ܾ = cos(߱ௗܶ)(కఠ்ି)݁ൣߦ2  − 1൧  +  ݁(ିకఠ்) ቂ߱߱ௗ ଶߦ2)  − 1) sin(߱ௗܶ)ቃ +  ߱ܶ
߱ଷܶ  [EQ.  2.11] 

ܾଵ =  −2߱ܶ݁(ିకఠ்) cos(߱ௗܶ) + 1ൣߦ2 − ݁(ିଶకఠ்)൧ − 2 ߱߱ௗ ଶߦ2) − 1)݁(ିకఠ்) sin(߱ௗܶ)
߱ଷܶ  [EQ.  2.12] 

ܾଶ = ߦ2)  +  ߱ܶ) ݁(ିଶకఠ்) +  ݁(ିకఠ்) ቂ߱߱ௗ ଶߦ2)  − 1) sin(߱ௗܶ) − ߦ2 cos(߱ௗܶ)ቃ
߱ଷܶ  [EQ.  2.13] 
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So the response can be calculated with the following recursive formula, for each sample time ݅: 
 
ݖ  =  − ܽଵݖିଵ  −  ܽଶݖିଶ −  ܾݕሷ −  ܾଵݕሷିଵ −  ܾଶݕሷିଶ [EQ.  2.14] 
 
How to obtain the recursive filtering parameters, expressions [EQ. 2.8÷14], is detailed in [Ref. 2]. 
Given the modeling of the generic component as a series of SDOF systems, the procedure is 
repeated setting each frequency in the range of interest as natural frequency of the SDOF system 
and, then, calculating the response in the complete spectrum. 
 

 
Figure 2.3: Relative displacement response – comparison between Impulse and Ramp invariant methods 

 
Maximum Response Spectra (MRS) 
Once the relative displacement response is calculated, the Maximum Response can be obtained 
taking the maximum value of the relative response displacement at a certain natural frequency, 
and multiplying it by the squared natural pulsation, to give the results in the form of acceleration: 
 
௫ݖ  = max ሾ(ݐ)ݖሿ [EQ.  2.15] 
= ܴܵܯ  ߨ2)  ݂)ଶ ݖ௫ [EQ.  2.16] 
 
Where (ݐ)ݖ is the calculated relative displacement response, ݖ௫ is its maximum value and ݂ is 
the natural frequency of the SDOF system. Repeating the procedure for each natural frequency in 
the range of interest gives the complete MRS function [Fig. 2.4]. 
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Figure 2.4: MRS calculation – comparison with Test.Lab 

 
Fatigue Damage Spectra (FDS) 
For the calculations of the FDS, once the Relative Displacement Response is obtained with the 
ramp invariant method, a peak counting algorithm is needed. The most popular one, due to his 
reliability, is the Rainflow Counting method, therefore it is the algorithm that has been chosen also 
in this work.  
The algorithm basically consists in counting the cycles or the half-cycles of stress – time signals. In 
this case, the stress is represented by the relative displacement response of the SDOF. So, the 
result of the Rainflow Counting is the number of cycles of a certain magnitude of the relative 
displacement response peaks. The name rainflow comes from a comparison between the method 
and the flow of a rain falling on a pagoda. In fact, the procedure can be schematized as: 

- Reduce the time history to a sequence of peaks and troughs. 
- Imagine the time history as pagoda: rotate the figure, putting the starting time at the top. 
- Each peak is imagined as a source of water that falls down the pagoda. 
- Count the number of half-cycles by looking for terminations in the flow occurring when 

either: 
o It reaches the end of the time history 
o It merges with a flow that started at an earlier peak or, in case of trough, it 

encounters a trough of greater magnitude 
- Repeat the previous step for the troughs. 
- Assign a magnitude to each half-cycle equal to the stress difference between its start and 

termination. 
- Pair up the half-cycles of identical magnitude to count the number of complete cycles. 

Typically, there are some residual half-cycles. 
 

 
Given the many different ways to implement the algorithm, it has been chosen to use the one 
described in the ASTM standard [Ref. 3]. After the calculations, it is possible to represent the result 
in a histogram with the number of cycles associated with each magnitude [Fig. 2.5]. 



18  

 

 
Figure 2.5: Rainflow Counting histogram 

 
Then, if the material is linear and given the linearity of the SDOF system, a linear relation exists 
between the relative displacement peaks and the stress peaks: 
 
= ߪ    [EQ.  2.17]ݖ ܭ 
ܭ ℎݐ݅ݓ  =   ݈ܽ݅ݎ݁ݐܽ݉ ℎ݁ݐ ݂ ݐ݊ܽݐݏ݊ܿ 
 
So, the number of cycles at a certain stress amplitude inflicted to the system is known. If the 
Stress-Number of cycle (S–N) curve of the material follows the Basquin’s law: 
 
ߪ ܰ   =  [EQ.  2.18] ܥ 
 
Where ܰ is the number of cycles to failure of the material under a stress of amplitude ߪ and ܾ and 
 are constants characteristic of the material (in the literature their values are usually given for a ܥ
test bar under sinusoidal stress). It has to be noted that, in the Rainflow Counting, the magnitude 
associated with each (entire or half) cycle can be referred to the range or the amplitude, with: 
 
 ܴܽ݊݃݁ = ݇ܽ݁)  −    (ݕ݈݈݁ܽݒ
= ݁݀ݑݐ݈݅݉ܣ  ݇ܽ݁)  −    2/(ݕ݈݈݁ܽݒ
The choice does not influence the procedure, except for the parameters of the Basquin’s law  
[EQ. 2.18] that correlate the number of cycles to rupture at a certain stress. Given that in the S–N 
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curve [Fig. 2.6] the literature typically refers the stress to the amplitude, for coherence in this work 
the relative displacement amplitude has been taken as magnitude. 
 

 
Figure 2.6: S-N curve 

 
Then, knowing that the damage ߜ inflicted to the system by the application of one cycle of a 
certain stress ߪ is: 
 
ߜ  =  1

ܰ
= ܥߪ   [EQ.  2.19] 

 
In the case of ݊  cycles of stress ߪ, the associated damage ݀ will be: 
 
 ݀ =  ݊

ܰ
=  ݊ ߪܥ = ܭ 

ܥ  ݊  ቀݖቁ
 [EQ.  2.20] 

 
Now, given ܯ levels of damage induced by likewise peak amplitudes ݖ each one achieved in ݊  
cycles, the total damage can be calculated considering the Miner’s linear rule of accumulation 
[Ref. 4]: 
 
ܦ  =   ݀

ெ

ୀଵ
 [EQ.  2.21] 

 
Thus, the expression for the total damage is: 
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ܵܦܨ  = = ܦ    ݀
ெ

ୀଵ
=   ݊ (ߪ) 

ܥ
ெ

ୀଵ
= ܭ 

ܥ   ݊ (ݖ) 
ெ

ୀଵ
 [EQ.  2.22] 

 
Repeating the calculation of the fatigue damage, assigning each value in the range of interest to 
the natural frequency of the SDOF, leads to the complete FDS function [Fig. 2.7]. 
 

 
Figure 2.7: FDS calculation – comparison with Test.Lab 

 
 

2.2. Frequency domain approach 
 
In the case of the frequency domain, if the random excitation has a Gaussian probability 
distribution of its values [Fig. 2.8], a statistical approach can be used. The procedure can be 
summarized as: 

- Calculation of the Power Spectral Density (PSD) of the vibratory excitation. 
- Calculation of the root mean squared (rms) values ݖ௦, ݖሶ௦, ݖሷ௦ of the relative 

displacement, velocity and acceleration of the response of the SDOF system to the input 
PSD. 

- Calculation of the mean frequency and the mean number of peaks per unit time. 
- Calculation of the irregularity factor of the response. 
- Determination of the peak probability density function of the response 
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Figure 2.8: Probability density function (Gaussian) of instantaneous values of a random signal 

 
Calculation of the response, peaks distribution 
Assuming that the PSD of the excitation is available [Fig. 2.9], the first step is the calculation of the 
SDOF system response. Knowing the transfer function of the SDOF system ܪ(݂): 
 
(݂)ܪ   =  1

ߨ2) ݂)ଶ ඨቈ1 − ൬ ݂݂
൰ଶ

ଶ
+ ൬ ݂ܳ ݂൰ଶ

 
[EQ.  2.23] 

Ref. 
It is possible to calculate the rms values of the relative displacement, velocity and acceleration 
responses due to the input PSD with the expressions [Ref. 5]: 
 
 

௦ݖ =  ඨ Q ∙ ௬ሷܩ  ( ݂)
4 ∙  ଷ [EQ.  2.24](݂ ߨ2) 

ሶ௦ݖ  = ߨ2)  ݂) ݖ௦ [EQ.  2.25] 
ሷ௦ݖ  = ߨ2)  ݂)ଶ ݖ௦ [EQ.  2.26] 
 
Where ݖ௦, ݖሶ௦, ݖሷ௦ are the rms values of the relative displacement, velocity and acceleration 
responses to the PSD of amplitude ܩ௬ሷ . The expressions are obtained in case of white noise, but 
they give a good approximation also if the noise is not white, when the quality factor ܳ is rather 
high (the case of interest, narrow band scenario). Otherwise, the expressions for ݖ௦, ݖሶ௦, ݖሷ௦ 
in case of a constant PSD between two frequencies are given in [Ref. 5]: 
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௦ଶݖ  = ܩ
ସ ݂ଷ(ߨ2) ߨ 

ߦ 4  ሾܫ(ℎଶ) −  (ℎଵ)ሿ [EQ.  2.27]ܫ
ሶ௦ଶݖ  = ଶ ݂(ߨ2)ܩ

ߨ 
ߦ 4  ሾܫଶ(ℎଶ) −  ଶ(ℎଵ)ሿ [EQ.  2.28]ܫ

ሷ௦ଶݖ  =  ݂ܩ ߨ 
ߦ 4  ሾܫସ(ℎଶ) −  ସ(ℎଵ)ሿ [EQ.  2.29]ܫ

ℎ:  ℎଵݐ݅ݓ  = ଵ݂
݂

;      ℎଶ = ଶ݂
݂

;   

(ℎ)ܫ = ߦ
ߙ ߨ ln ቆℎଶ + ℎߙ + 1

ℎଶ − ℎߙ + 1ቇ + 1
ߨ ඌtanିଵ ൬2ℎ + ߙ

ߦ2 ൰ + tanିଵ ൬2ℎ − ߙ
ߦ2 ൰ඐ  

ଶ(ℎ)ܫ = − ߦ
ߙ ߨ ln ቆℎଶ + ℎߙ + 1

ℎଶ − ℎߙ + 1ቇ + 1
ߨ ඌtanିଵ ൬2ℎ + ߙ

ߦ2 ൰ + tanିଵ ൬2ℎ − ߙ
ߦ2 ൰ඐ  

ସ(ℎ)ܫ = ߦ 4
ߨ ℎ + ଶ(ℎ)ܫߚ +   (ℎ)ܫ

ߙ = 2ඥ1 −   ଶߦ
ߚ = 2(1 −    (ଶߦ2

 
Figure 2.9: Random vibration – Power Spectral Density 

 
Then, the expressions for the mean number of zero crossing per unit time with positive slope 
݊ା and the mean number of positive maxima per unit time ݊ା of the response are [Ref. 6]: 
 
 ݊ା = 1

ሶ௦ݖ ߨ 2
௦ݖ

 [EQ.  2.30] 
  ݊ା = 1

ሷ௦ݖ ߨ 2
ሶ௦ݖ

 [EQ.  2.31] 
 
Consequently, the irregularity factor ݎ of the response can be defined as the ratio of the average 
number of zero crossings per unit time with positive slope to the average number of positive 
maxima per unit time [Ref. 5]: 
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= ݎ    ݊ା

݊ା
 [EQ.  2.32] 

 
Following its definition, the parameter r is a measure of the width of the response. In fact, for a 
broad band process, the number of maxima is much higher than the number of zeros, tending to 
the limiting case where ݎ = 0. While in the case of a narrow band signal, the number of passages 
through zero is equal to the number of peaks, until the limiting case where ݎ =  1. 
Since the narrow band scenario follows the case of the response to a SDOF system of rather high 
quality factor ܳ (or low damping ratio ߦ), the second is the case of interest. In this case it is known 
that the probability density of the response peaks tends to the Rayleigh’s law [Fig. 2.10] [Ref. 6]: 
 
൯ݖ൫  = ݖ 

௦ଶݖ  ݁ି ௭మ
ଶ ௭ೝೞమ [EQ.  2.33] 

 

 
Figure 2.10: Rayleigh probability density function 

 
Fatigue Damage Spectra (FDS) 
Thus, if the signal is stationary and Gaussian, it is possible to avoid the time-consuming direct 
peaks counting of the time domain approach. The probability density of the peaks in the response 
can be used instead. Precisely, if the probability ൫ߪ൯ to find the peak ߪ is known, the 
distribution of the fatigue cycles for the stress ߪ, comparable to a Rainflow Counting histogram, 
can be calculated using the equation: 
 
 ݊൫ߪ൯ =  ݊ା ܶ ൫ߪ൯ [EQ.  2.34] 
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Where  ܶ is the duration. So, in a similar manner as the previous chapter [EQ. 2.20], the caused 
damage due to the stress ߪ is: 
 
 ݀൫ߪ൯ = ݊൫ߪ൯

ܰ൫ߪ൯ =  ݊ା ܶ ൫ߪ൯
ܰ൫ߪ൯ [EQ.  2.35] 

 
Where ܰ is the number of cycles to failure under a stress ߪ. And, following the Miner’s rule 
[EQ. 2.21], it is possible to find the expression of the expected fatigue damage due to every stress 
 :ߪ
 
 

ܦ =  ݊ା ܶ න (ߪ)
(ߪ)ܰ ߪ݀ 

ାஶ


 [EQ.  2.36] 

 
Now, applying the linear displacement – stress relation [EQ. 2.17] and the Basquin law [EQ. 2.18] 
leads to: 
 
 

ܦ = ܭ 
ܥ  ݊ା ܶ න ݖ݀ ൯ݖ൫ ݖ

ାஶ


 [EQ.  2.37] 

 
Then, the substitution of the found probability density of the peaks [EQ. 2.30] gives the expression 
for the FDS calculation: 
 
 

ܵܦܨ = ܦ = ܭ 
ܥ  ݊ା ܶ න ାଵݖ

௦ଶݖ  ݁ି ௭మ
ଶ ௭ೝೞమ  ݖ݀ 

ାஶ


  [EQ.  2.38] 

 
In this particular case, the following version is obtainable [Ref. 5]: 
 
ܵܦܨ  = ܦ = ܭ 

ܥ  ݊ା ܶ ൫√2 ݖ௦൯ Γ ൬1 + ܾ
2൰ [EQ.  2.39] 

(ݔ)ℎ:  Γݐ݅ݓ   =  න ∝௫ିଵ  ݁ି∝  ݀ ∝
ஶ
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Where Γ is the gamma function. This expression is exact for perfectly narrow band responses 
ݎ) = 1) but it has been shown [Ref. 5] that it gives a good approximation for ݎ > 0.567. It is used 
for the FDS calculation in [Fig. 2.11]. 
 

 
Figure 2.11: FDS calculation – comparison with Test.Lab 

 
Maximum Response Spectra (MRS) 
For the MRS calculation, from [EQ. 2.34] and knowing that a linear displacement – stress relation 
exists [EQ. 2.17]: 
 
 ݊൫ݖ൯ =  ݊ା ܶ ൫ݖ൯ [EQ.  2.40] 
 
Assuming that the largest peak ݖ௫, over the duration ܶ, will be passed only once: 
 
(௫ݖ)݊   =  1 [EQ.  2.41] 
 
Thus, [EQ. 2.40] can be rewritten for the largest peak ݖ௫: 
 
(௫ݖ)  =  1

݊ା ܶ [EQ.  2.42] 
 
Given that the expression of the peaks distribution [EQ. 2.33] is known, the value of ݖ௫ that 
satisfies the relation [EQ. 2.42] can be found iteratively. 
Then, the MRS is given by: 
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ܴܵܯ  = ߨ2)  ݂)ଶ ݖ௫ [EQ.  2.43] 
 
Otherwise, the simplified relation can be obtained [Ref. 1]: 
 
ܴܵܯ  = ߨ2)  ݂)ଶ ݖ௦ ට2 ln(݊ା ܶ) [EQ.  2.44] 
 
This expression is used for the MRS calculation in [Fig. 2.12]. 
 

 
Figure 2.12: MRS calculation – comparison with Test.Lab 

 
A detailed discussion and the way to obtain the expressions for the probability distribution of the 
peaks and the FDS and MRS functions calculation [EQ. 2.33], [EQ. 2.39], [EQ. 2.44] are given in 
[Ref. 5], [Ref. 6]. 
 
 

2.3. Discussion 
 
Both the methods implemented in MATLAB scripts show a very good correspondence with their 
respective LMS Test.Lab calculations. As a further validation, the time domain approach can be 
compared directly with the frequency domain approach in case of purely random vibrations. Thus, 
the MRS and FDS functions are computed for the same excitation, in the form of timeseries and 
corresponding PSD, with the two different methods. 
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Figure 2.13: FDS calculation – Time/Frequency domain comparison 

  

 
Figure 2.14: MRS calculation – Time/Frequency domain comparison 

 
In the case of the FDS calculation [Fig. 2.13], a very good correspondence in the fatigue damage 
estimation is shown, due to the good prediction of the peaks distribution of the frequency domain 
method. In [Fig. 2.14], instead, a not perfect correspondence emerges in the case of the MRS 
calculation. Considering that it takes into account only the maximum value of the response, a 
similar result was expected due to the statistical approximation of the frequency domain method. 
Therefore, given the match of the damage quantification between the time and the frequency 
domain approaches, the time domain model can be taken as the reference to compare the 
different frequency approaches also in presence of Sine-on-Random vibrations, for which 
equations shown in [Chapter 2.2] cannot be used.  
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Chapter 3 –  Sine-on-Random vibrations 
 
Many structural components in dynamic environments may experience both sinusoidal and 
random loadings at the same time. In fact, if a rotating part is present, its unbalancing typically 
generates a periodic excitation, in addition to the random noise produced by the rest of the 
environment. Therefore, a so called Sine-on-Random vibration is present: it is an excitation made 
of a deterministic contribution (i.e. sinusoidal tones), superimposed on a random signal. 
An excitation of this kind can be represented with a PSD for the random part, plus the 
superimposed sinusoids in the form of accelerations at their own frequencies [Fig. 3.1]. 
 

 
Figure 3.1: Example Sine-on-Random profile 

 
In order to calculate the induced damage, the method described in [Chapter 2.2] cannot be used. 
In fact, due to the presence of the sine tones, the Gaussian distribution of the signal is modified. 
This leads to a peaks distribution different from the case of purely random signals (Rayleigh 
distribution). 
Thus, in this chapter, different approaches for the evaluation of the fatigue damage in the case of 
these Sine-on-Random profiles are compared, investigating the pros and cons of each one:  

 Time domain approach: after obtaining a timeseries of the excitation, if not already 
available, the method described in [Chapter 2.1] can be used.  

 Frequency domain approach: 
o Sine-on-Random with “sufficiently spaced sinusoids”: in the particular case of a 

single sinusoid superimposed on a random signal, Rice [Ref. 7] found the probability 
density function of the envelope of the composed excitation. It can be used to 
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determine the peaks distribution, so a statistical approach for the damage 
calculation can be accomplished. An extension for multiple sinusoids is proposed by 
Lalanne [Ref. 1]: if the frequencies of the sine tones are sufficiently spaced, each 
sinusoid can be considered independently. 

o Sine-on-Random with “not sufficiently spaced sinusoids”: the extension of the Rice 
probability density function in case of multiple sinusoids [Ref. 7] has to be 
numerically integrated to find the peaks distribution of the combined excitation. 
Then, the statistical approach for the damage calculation can be carried out. 

o “Mixed approach”: the advantages of the two previous methods are summed up. 
The closed form expression for the sufficiently spaced sinusoids is normally utilized, 
while the numerical integration is computed only when necessary to avoid an 
underestimation of the damage. 

 
As said, the need of a different method from the time domain approach is due to the long time 
necessary for the calculations in the case of very long signals. Nevertheless, due to its reliability, it 
is taken as the reference to compare the damage estimation of the frequency domain methods. 
 
 

3.1. Sufficiently spaced sinusoids 
 
Case of a single sinusoid 
In a first instance, the simple case of a single sinusoid superimposed on a random excitation is 
considered. The signal can be written as: 
 
= (ݐ)ܫ  ܤ   ߨ2)ݏܿ ௦݂ݐ + ߮) +  [EQ.  3.1] (ݐ)ݎ
 
Where ܤ, ௦݂ and ߮ are the amplitude, frequency ad phase of the sinusoid and (ݐ)ݎ is the random 
noise. In the case of a measured environmental vibration, the amplitude of (ݐ)ܫ is typically an 
acceleration. 
The idea is to apply a statistical procedure similar to the frequency domain method in case of 
purely random vibrations. The difference is that, due to the presence of the sinusoid, in this 
situation the excitation does not follow a Gaussian distribution [Fig. 3.2], so the Rayleigh 
distribution cannot be used to estimate the peaks. The new peaks distribution has to be found, 
instead. 
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Figure 3.2: (single) Sine-on-Random signal and probability density distribution of instantaneous values 

 
Calculation of the response, peaks distribution 
The first step of the procedure is the calculation of the relative displacement response. In this 
case, the SDOF system can be considered subjected to the sinusoidal component and to the 
random part separately. For the calculation of the response to the random part, assuming it is 
given in the form of a PSD, the expressions [EQ. 2.24÷26] of [Chapter 2.2] are recalled: 
 
 

௦ݖ =  ඨ Q ∙ ሷܩ  ( ݂)
4 ∙   ଷ(݂ ߨ2) 

ሶೝೞݖ  = ߨ2)  ݂) ݖ௦  
 zሷೝೞ = ߨ2)  ݂)ଶ ݖ௦  
 
Where ݖ௦, ݖሶ௦, ݖሷ௦ are the rms values of the relative displacement, velocity and 
acceleration responses to the random PSD of amplitude ܩሷ . 
The response to the sinusoidal excitation is still a sinusoid, thus, its amplitude is equal to the 
maximum displacement response and it is given by the amplitude of the excitation and the known 
transfer function of the system. 
 
௦ݖ   = ܤ 

ߨ2) ݂)ଶ ඨቈ1 − ൬ ௦݂
݂൰ଶ

ଶ
+ ൬ ௦݂ܳ ݂൰ଶ

 
[EQ.  3.2] 

௦௦ݖ   = ௦ݖ 
√2 [EQ.  3.3] 

ሶ௦௦ݖ  = ߨ2)  ௦݂) ݖ௦௦ [EQ.  3.4] 
ሷ௦௦ݖ  = ߨ2)  ௦݂)ଶ ݖ௦௦ [EQ.  3.5] 
 
Where ݖ௦ is the maximum value of the relative displacement response to the sinusoidal excitation. 
Consequently, ݖ௦௦, ݖሶ௦௦, ݖሷ௦௦ are the rms values of the relative displacement, velocity and 
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acceleration responses to the sinusoidal excitation. The sine amplitude ܤ is considered an 
acceleration. 
Thus, the rms values of the total displacement, velocity and acceleration responses ݖ௦, ݖሶ௦, 
 ሷ௦ have to take into account both the random and the sinusoidal signals. They are given by theݖ
expressions [Ref. 1]: 
 
௦ଶݖ  = ௦ଶݖ  + ௦௦ଶݖ  [EQ.  3.6] 
ሶ௦ଶݖ  = ሶ௦ଶݖ  + ሶ௦௦ଶݖ  [EQ.  3.7] 
ሷ௦ଶݖ  = ሷ௦ଶݖ  + ሷ௦௦ଶݖ  [EQ.  3.8] 
 
The mean number of zero crossing per unit time ݊ାௌோ and the mean number of peaks per unit 
time ݊ାௌோ are consequently modified [Ref. 1]: 
 
 ݊ାௌோ =  1

ሶ௦ݖ ߨ2
௦ݖ

 [EQ.  3.9] 
 ݊ାௌோ =  1

ሷ௦ݖ ߨ2
ሶ௦ݖ

 [EQ.  3.10] 
 
Then, defining ܵ(ܫ) as the envelope of ܫ, a Sine-on-Random signal of the kind [EQ. 3.1], the 
probability distribution function of this envelope has been deducted by Rice [Ref. 7]: 
 
 P(ܵ) =  ܵ

௦ݎ
ܬ  ൬ܵ ∙ ܤ 

௦ݎ
൰  ݁ି ௌమା మ

ଶ ೝೞ  [EQ.  3.11] 
 with:   ܬ(ݔ) =   ቀݔ

2ቁଶ  1
(݊!)ଶ

ஶ

ୀ
  

 
Where ݎ௦ is the rms value of the random noise and ܬ is the Bessel function of the first kind of 
order zero. 
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Figure 3.3: Probability density function of the envelope of a (single sinusoid) Sine-on-Random signal 

 
It is known [Ref. 8] that the probability density function of the envelope is the same of the peaks 
amplitude. Due to the linearity of the SDOF system, the response to a Sine-on-Random excitation 
has still the Sine-on-Random characteristics, thus [EQ. 3.11] can be used to estimate the peaks 
distribution of the response: 
 
 ܲ൫ݖ൯ = ܲ(ܵ) = ݖ 

௦ݖ
ܬ  ቆݖ  ∙ ௦ݖ 

௦ݖ
ቇ  ݁ି ௭మା ௭ೞమ

ଶ ௭ೌೝೞ  [EQ.  3.12] 
 
Where ݖ is the peak amplitude of the response. So, it is possible to follow the same procedure of 
the statistical approach for purely random vibrations, but using the new probability distribution. 
 
Fatigue Damage Spectra (FDS) 
In the same way as the frequency approach for random vibrations [EQ 2.34], the peaks 
distribution can be used to estimate the Rainflow Counting: 
 
 ܰ൫ݖ൯ = ܲ൫ݖ൯ ݊ାௌோ ܶ [EQ.  3.13] 
 
Where ܶ is the duration and ܰ൫ݖ൯ is the number of estimated cycle at the displacement 
amplitude ݖ. 
And the following expression for the fatigue damage ܦ can be obtained: 
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ܦ  =  ݊ାௌோܭ   ܶ
ܥ  න ݖ

ஶ


 ܲ൫ݖ൯ ݀ݖ [EQ.  3.14] 

 
After the substitution of the peaks distribution [EQ. 3.2], the expression for the fatigue damage 
becomes: 
 
ܦ  = ܶ  ݊ାௌோܭ 

ܥ  න ݖ
ஶ


ݖ 
௦ݖ

ܬ  ቆݖ  ∙ ௦ݖ 
௦ݖ

ቇ  ݁ି ௭మା ௭ೞమ
ଶ ௭ೌೝೞ   [EQ.  3.15]ݖ݀ 

 
In this particular case of a single sinusoid, the integral above [EQ. 3.14] has a closed form solution 
[Ref. 8]: 
 
ܵܦܨ  = ܦ = ܭ 

ܥ  ݊ାௌோ ܶ ൫√2 ݖ௦൯ Γ ൬1 + ܾ
2൰ ܨଵ ൬− ܾ2 , 1, − ܽଶ൰ଵ  [EQ.  3.16] 

ℎ: ܽݐ݅ݓ  = ௦ݖ௦௦ݖ
 [EQ.  3.17] 

,∝)ଵܨ  δ, േx)ଵ =   (∝) (േݔ)
!݆ (ߜ)

ஶ

ୀ
  

 
Where ܨଵଵ  is referred as the hypergeometric function. 
 
Maximum Response Spectra (MRS) 
For the MRS calculation, a recursive research for the highest peak as in [Chapter 2.2] is possible. 
From expression [EQ. 3.13] assuming that the largest peak ݖ௫, over the duration ܶ, will be 
passed only once: 
 
(௫ݖ)ܰ   =  1 [EQ.  3.18] 
(௫ݖ)ܲ  =  1

݊ାௌோ   ܶ [EQ.  3.19] 
 
And knowing the expression for the peaks distribution [EQ. 3.12], the value of ݖ௫ that satisfies 
the relation [EQ. 3.19] can be found iteratively. Thus, the MRS expression is: 
 
ܴܵܯ  = ߨ2)  ݂)ଶ ݖ௫ [EQ.  3.20] 
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Otherwise an approximated expression for the MRS calculation can be obtained [Ref. 1]: 
 
ܴܵܯ  = ߨ2)  ݂)ଶ ݖ௦ ට2 ln൫݊ାௌோ  ܶ൯ [EQ.  3.21] 
 
In case: 
 
 ݊ା ܶ > ℎ:  ݊ାݐ݅ݓ   1000 ~  = 1

௦ݖሶ௦ݖ ߨ 2
  

 
Where ݊ା is solely the mean frequency of the random vibration as calculated in [Chapter 2.2], the 
following expression gives a better approximation [Ref. 1]: 
 
ܴܵܯ  = ߨ2)  ݂)ଶ ݖ௦  ቆܽ √2 +  ට2 ln(݊ା ܶ)ቇ [EQ.  3.22] 
 

 
Figure 3.4: FDS calculation in case of single sinusoid – comparison with Test.Lab 
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Figure 3.5: MRS calculation in case of single sinusoid – comparison with Test.Lab 

 
The expressions [EQ. 3.16], [EQ. 3.12] are applied to the MRS and FDS calculations in [Fig. 3.4], 
[Fig. 3.5]. Their derivation is given in [Ref. 1]. 
 
Multiple “sufficiently spaced” sinusoids extension 
Obtained the expressions for a single sine tone superimposed on a random signal, a first approach 
in case of multiple (ܰ) sinusoids was proposed by Lalanne [Ref. 1]. If the frequencies of the sine 
tones are sufficiently spaced, only the nearest sinusoid to the natural frequency of the SDOF 
system has relevance on the damage, while the others are negligible. This is due to the expression 
of the maximum relative response to a sinusoidal excitation: it assumes its greatest value in case 
of resonance (the sine tone frequency equals the system natural frequency), and it decreases 
going away from that frequency [Fig. 3.6]. 
 

 
Figure 3.6: Example of maximum sine responses in the natural frequencies range of the SDOF systems 
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In this particular case, the sinusoids can be considered independently, so after the calculations of 
the separate FDS functions of each sine tone plus the random noise, the complete spectrum is 
given by their envelope. The same procedure is applicable to the MRS. 
 
௧௧ܵܦܨ = ܦܨ൫݈݁݁ݒ݊݁ ௌܵభିିோௗ, ܦܨ ௌܵమିିோௗ, … , ܦܨ ௌܵಿିିோௗ൯ [EQ.  3.23] 

௧௧ܴܵܯ = ܴܯ൫݈݁݁ݒ݊݁ ௌܵభିିோௗ, ܴܯ ௌܵమିିோௗ, … , ܴܯ ௌܵಿିିோௗ൯ [EQ.  3.24] 
 
The method is applied in [Fig. 3.7] for the FDS calculation and in [Fig. 3.8] for the MRS calculation. 
 

 
Figure 3.7: FDS calculation - Spaced sinusoids method vs. Time domain approach 
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Figure 3.8: MRS calculation - Spaced sinusoids method vs. Time domain approach 

 
 

3.2. Not sufficiently spaced sinusoids 
 
In the case the frequencies of the sinusoids are closer, the damage contribution of the other sine 
tones is not negligible. Therefore, the damage between the frequencies of two not sufficiently 
spaced sinusoids is influenced by both the sine tones and the previous method, which considers 
only one sinusoid at a time, will give an underestimation of the fatigue damage [Fig. 3.9]. 
 

 
Figure 3.9: FDS calculation - case of not spaced sinusoids 
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In this case, a new statistical approach that takes into account all the sinusoids at the same time is 
necessary [Ref. 9]. In case of several sine tones superimposed on a random noise, the signal can be 
written as: 
 
= (ݐ)ܫ  (ݐ)ݎ  +  ܤ ߨ2)ݏܿ ݂ݐ + ߮)

ே

ୀଵ
 [EQ.  3.25] 

 
Where ܤ, ݂, ߮ are the amplitudes, frequencies ad phases of the ܰ sinusoids and (ݐ)ݎ is the 
random noise. 
 
Calculation of the response, peaks distribution 
Again, due to the linearity of the SDOF system, the response has the same characteristics of the 
excitation. So, in case of an input of the kind [EQ. 3.25], if the PSD of the random part and the 
acceleration amplitudes of the sinusoids are known, the responses can be obtained with the 
expressions of the previous chapter [EQ. 2.24÷26], [EQ. 3.2÷3.5]: 
 
 

௦ݖ =  ඨ Q ∙ ሷܩ  ( ݂)
4 ∙   ଷ(݂ ߨ2) 

ሶೝೞݖ  = ߨ2)  ݂) ݖ௦  
 zሷೝೞ = ߨ2)  ݂)ଶ ݖ௦  
௦ݖ   = ܤ 

ߨ2) ݂)ଶ ඨቈ1 − ൬ ௦݂
݂ ൰

ଶ


ଶ
+ ൬ ௦݂ܳ ݂൰

ଶ
 

 

௦௦ݖ   = ௦ݖ 
√2  

ሶ௦௦ݖ  =  ൫2ߨ ௦݂൯ ݖ௦௦   
ሷ௦௦ݖ  =  ൫2ߨ ௦݂൯ଶ ݖ௦௦   
 
Where, again, ݖ is the response to the random part and ݖ௦  is the response to the ݅–  .ℎ sinusoidݐ
In this case the rms values of the total relative displacement, velocity and acceleration responses 
 :ሷ௦ take into account all the sinusoids. Their expressions areݖ ,ሶ௦ݖ ,௦ݖ
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௦ଶݖ  = ௦ଶݖ  +  ௦௦ݖ
ଶ

ே

ୀଵ
 [EQ.  3.26] 

ሶ௦ଶݖ  = ሶ௦ଶݖ  +  ሶ௦௦ݖ
ଶ

ே

ୀଵ
 [EQ.  3.27] 

ሷ௦ଶݖ  = ሷ௦ଶݖ  +  ሷ௦௦ݖ
ଶ

ே

ୀଵ
 [EQ.  3.28] 

 
The consequently modified mean number of peaks of the response per unit time ݊ାௌோ is: 
 
 ݊ାௌோ =  1

ሷ௦ݖ ߨ2
ሶ௦ݖ

 [EQ.  3.29] 

 
If ܵ(ݐ) is the envelope of (ݐ)ܫ, a Sine-on-Random signal as defined in [EQ. 3.25], the probability 
density function of ܵ has been obtained by Rice [Ref. 7]: 
 
 ܲ(ܵ) = ܵ න ೝೞమ ∗ ௫మ ି݁ (ݔ ܵ)ܬ ݔ

ଶ  ෑ (ݔ ܤ)ܬ
ே

ୀଵ
ݔ݀ 

ஶ


 [EQ.  3.30] 

 
Where ݎ௦ is the rms value of (ݐ)ݎ and ܬ is the Bessel function of the first kind of order zero. The 
formula [EQ. 3.30] assumes that the random signal and the sinusoids are independent random 
variables, thus the sine frequencies have to be incommensurable. 
Again, knowing that the probability distribution of the envelope is the same of the peaks [Ref. 8], 
and that, due to the linearity of the SDOF system, the response to a Sine-on-Random excitation 
has still Sine-on-Random characteristics, [EQ. 3.30] can be used to estimate the peaks distribution 
of the response: 
 
 ܲ൫ݖ൯ = ܲ(ܵ) = ݖ  න ൯ ݁ି ௭ೌೝೞమ ∗ ௫మݔ ݖ൫ܬ ݔ

ଶ  ෑ ௦ݖ൫ܬ ൯ݔ 
ே

ୀଵ
ݔ݀ 

ஶ


 [EQ.  3.31] 

 
Where ݖ is the peak amplitude of the response taking into account all the sine tones. The 
effectiveness of the formula [EQ. 3.31] has been tested, verifying its accuracy in the prediction of 
the peaks distribution even in case of not respected assumptions, considering that typically the 
sinusoids of a Sine-on-Random vibration have multiple frequencies.  
 



40  

Fatigue Damage Spectra (FDS) 
As seen in case of purely random vibration [EQ. 2.34] or a single Sine-on-Random signal [EQ. 3.13], 
the estimated number of cycles for a certain relative displacement amplitude, is given by: 
 
 ܰ൫ݖ൯ = ܲ൫ݖ൯ ݊ାௌோ ܶ [EQ.  3.32] 
 
Where ܶ is the duration. 
Knowing the peaks distribution [EQ. 3.31], a comparison between the result of the Rainflow 
Counting in the time domain and the expected number of cycles from [EQ. 3.32] is possible [Fig. 
3.10]. 
 

 
Figure 3.10: Rainflow Counting comparison with the predicted distribution 

 
Also in the worst case, when the assumptions of the Rice formula are not fully respected (i.e. 
multiple frequencies) and when the response is not perfectly narrowband, it still gives a good 
approximation of the number of cycles, well describing the distribution in the tale where the 
induced damage is higher. 
Then, with the same procedure in case of single sinusoid but the new probability density function 
[EQ. 3.31] and mean number of peaks [EQ. 3.29], the FDS expression can be derived: 
 
ܵܦܨ  = ܦ =  ݊ାௌோܭ   ܶ

ܥ  න ݖ
ஶ


 ܲ൫ݖ൯ ݀ݖ [EQ.  3.33] 
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The substitution of the expression of the peak distribution ܲ൫ݖ൯ gives: 
 

ܵܦܨ = ܦ  = ܭ
ܥ  ݊ାௌோ  ܶ න ାଵݖ  න ஶݔ


 ݁ି ௭ೌೝೞమ௫మ

ଶ ൯ݖ ݔ൫ܬ  ෑ ݖ݀  ݔ݀ ௦൯ݖ ݔ൫ܬ
ே

ୀଵ

ஶ


  [EQ.  3.34] 

 
Unfortunately, in this case a closed form solution is not obtainable. How to properly set the 
parameters for a numerical integration is shown in [Appendix A]. 
 

 
Figure 3.11: FDS calculation in case of not spaced sinusoids –  comparison of the different methods 

 
Thus, the expression [EQ. 3.34] solves the problem of the fatigue damage underestimation in case 
of not sufficiently spaced sinusoids [Fig. 3.11], but at the price of a numerical integration. 
 
 

3.3. “Mixed approach” 
 
The advantage of the first presented method is that a closed form expression for the fatigue 
damage calculation is obtainable. Unfortunately, it gives an underestimation of the damage in 
case of sinusoids with closer frequencies. This issue is solved by the second method, but two 
numerical integrations are needed. Then, the optimal solution can be the utilization of the closed 
form expression, with the implementation of the numerical integrations only when necessary, to 
avoid an excessive underestimation of the damage. 
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To decide when the numerical integrations are needed, a criterion has to be defined. From the 
previous chapters, it is known that there is an exponential relation between the fatigue damage ܦ 
and the relative displacement  z: 
 
ܵܦܨ  = ∝ ܦ  z  
 
Now, the expressions for the calculations of the rms values of the total relative displacement 
response with the two different methods are recalled. In particular, in case of sufficiently spaced 
sinusoids, its expression considers only the highest sinusoidal response ݖ௦ೝೞೌೣ  [EQ 3.8]: 
 
ோெௌ௧ௗ ଵଶݖ  = ௦ଶݖ  + ௦ೝೞೌೣݖ

ଶ  
 
While in case of not sufficiently spaced sinusoids, all the sine responses are taken into account. 
Thus, the expression is [EQ 3.23]: 
 
ோெௌ௧ௗ ଶଶݖ  = ௦ଶݖ  +  ௦௦ݖ

ଶ
ே

ୀଵ
  

 
So, after the calculation of the SDOF responses with the two different methods, it is possible to 
estimate the underestimation of the “method 1” and decide if the implementation of the “method 
2” is necessary: 
 

ቆݖோெௌ௧ௗ ଵݖோெௌ௧ௗ ଶ
ቇ


= (1 − ݁݃ܽ݉ܽܦ (݊݅ݐܽ݉݅ݐݏ݁ݎ݁݀݊ݑ

݁݃ܽ݉ܽܦ  
݂݅ 1 − ቆݖோெௌ௧ௗ ଵݖோெௌ௧ௗ ଶ

ቇ


> ൩(݁ܿ݊ܽݎ݈݁ݐ ݊݅ݐܽ݉݅ݐݏ݁ݎ݁݀݊ݑ)  →  ݊݅ݐܽݎ݃݁ݐ݊݅ ݈ܽܿ݅ݎ݁݉ݑ݊ ݁ݏݑ
 
 
Where the value of the tolerance can be set according to the acceptable error in the calculations. 
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3.4. Discussion 
 
A closed form expression for the damage estimation in case of a single sine tone superimposed on 
a random vibration has been shown. Its application even in presence of multiple sinusoids is 
possible in case of sufficiently spaced frequency: only one sinusoidal response can be considered 
at a time (the closer to resonance), while the others are negligible. 
Unfortunately, if the sine tones are not spaced, this method gives an underestimation of the 
fatigue damage. In fact, the other sine tones are not effectively negligible in that case. 
The solution is the utilization of the probability density function of multiple sinusoids 
superimposed on a random signal. The new expression for the fatigue damage calculation solves 
the problem of the underestimation, but it requires two numerical integrations. 
Thus, a “mixed” approach is proposed. It starts from the closed form formula to compute the 
damage. Then, if necessary, it corrects the underestimation computing the numerical integrations 
of the second method. It combines a proper damage estimation with a not excessive 
computational load. 
Its application is shown in figure [Fig. 3.12]. 
 

 
Figure 3.12: FDS calculation – mixed approach 

 
  



44  

Chapter 4 –  Test profile synthesis 
 
If a critical mechanical or electronic component will be subjected to a Sine-on-Random excitation 
during its operational life, a qualification test may be necessary to verify its endurance with 
respect to the induced fatigue damage. In order to conduct a qualification test, a new specification 
profile has to be synthesized. In particular, this profile has to be based on the real environment to 
be realistic, but at the same time its duration has to be limited for the test feasibility. 
Assuming that the fatigue damage has to be preserved, the Fatigue Damage Spectrum of a certain 
excitation has been calculated (with one of the described methods) and then it will be used as the 
mission FDS to synthesize a new profile with the same damage but a reduced duration.  
Some authors [Ref. 10], [Ref. 11] have suggested different methods in order to transform the 
amplitude of the sinusoids into narrowband PSDs and add them to the random part, therefore a 
new complete PSD is obtained. Nevertheless, a procedure to synthesize a real Sine-on-Random 
profile is still missing. 
In this chapter, a new method for the synthesis of a Sine-on-Random profile is compared with the 
standard random Power Spectral Density (PSD) profile synthesis: 

 Synthesis of a Random PSD profile: previously, a way to compute the Fatigue Damage 
Spectrum from a random Gaussian PSD was shown. By inverting the procedure, but varying 
the duration, it is possible to obtain a time reduced PSD profile from a mission FDS. This is 
the standard procedure for the profile synthesis. 

 Synthesis of a Sine-on-Random profile: if the original excitation has the Sine-on-Random 
characteristics, a similar synthesized profile will be more advisable. Starting from the 
expression for the FDS calculation of a (single sinusoid) Sine-on-Random excitation 
described in [Chapter 3.1], it is possible to obtain a procedure for a Sine-on-Random profile 
synthesis. A parameter which represents the ratio between the amplitude of the sinusoids 
and the random part in the original environmental data is needed. 

 
 

4.1. Random Power Spectral Density profile synthesis 
 
It follows the method described in [Chapter 2.2]. Starting from a reference FDS and inverting the 
procedure, a purely random PSD is synthesized. A reduced duration will give a higher amplitude of 
the profile, but the same amount of damage. 
The expressions [EQ. 2.24], [EQ. 2.39] for the computation of the rms value of the relative 
response displacement ݖ௦ for an input PSD of amplitude ܩ௬ሷ  and of the relative ܵܦܨ calculation 
are recalled: 
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௦ݖ =  ඨ Q ∙ ௬ሷܩ  ( ݂)
4 ∙   ଷ(݂ ߨ2) 

ܵܦܨ  = ܦ = ܭ 
ܥ  ݊ା ܶ ൫√2 ݖ௦൯ Γ ൬1 + ܾ

2൰  
 
Knowing that the mean number of zero crossing per unit time ݊ା corresponds to the mean 
frequency of the signal and, in case of narrowband response, it can be set equal to the natural 
frequency of the SDOF system [Ref. 12]: 
 
 ݊ା =  ݂ [EQ.  4.1] 
 
It is possible to obtain the PSD amplitude ܩ௬ሷᇱ  of the synthesized profile for a specified duration ܶ′: 
 

௬ሷᇱܩ ( ݂) = 4 ∙ ଷ(݂ ߨ2) 
ܳ ௦ଶݖ  =  4 ∙ ଷ(݂ ߨ2) 

ܳ   ∙ ܥ )ܵܦܨ  ݂)
 ݊ା ܶ′ ൫√2 ൯ Γܭ ቀ1 + 2ܾቁ

ଶ
 [EQ.  4.2] 

 
In case of purely random vibrations, if the environmental excitation is given in the form of a PSD, 
the Mission Synthesis procedure of FDS calculation and PSD synthesis with reduced time is 
straightforward: 
 
 

ௗ௨ௗܩ =  ൬ܩ  ܶ
ܶௗ௨ௗ

൰
ଵ  

 
Where ܩ, ܶ are the amplitude and duration of the original PSD and ܩௗ௨ௗ, ܶௗ௨ௗ are 
the amplitude and duration of the synthesized PSD. 
The parameters ܥ ,ܭ have no influence, due to their simplification in the procedure (FDS 
calculation and specification synthesis). The Basquin coefficient ܾ, instead, affects the value of the 
synthesized PSD and its choice, from the literature or an experimental research, has relevance. 
It is already clear that this method is not optimum in case of Sine-on-Random excitations because 
it only aims at matching the fatigue damage, whereas the nature of the excitation is not 
considered: the synthesized profile has purely random characteristics and the deterministic part 
(i.e. the sinusoids) is not preserved. 
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4.2. Sine-on-Random profile synthesis 

 
As seen in [Chapter 3.1] the fatigue damage in case of a single sinusoid superimposed on a random 
excitation can be calculated from [EQ. 3.16]: 
 
ܵܦܨ  = ܦ = ܭ 

ܥ  ݊ାௌோ ܶ ൫√2 ݖ௦൯ Γ ൬1 + ܾ
2൰ ܨଵ ൬− ܾ2 , 1, − ܽଶ൰ଵ   

ℎ: ܽݐ݅ݓ  = ௦ݖ௦௦ݖ
  

 
Considering the already seen expressions [EQ. 2.24÷26], [EQ. 3.3÷8] for the responses: 
 
௦௦ݖ   = ௦ݖ 

√2  
ሶ௦௦ݖ  = ߨ2)  ௦݂) ݖ௦௦  
ሷ௦௦ݖ  = ߨ2)  ௦݂)ଶ ݖ௦௦  
ሶ௦ଶݖ  = ߨ2)  ݂) ݖ௦ଶ   
ሷ௦ଶݖ  = ߨ2)  ݂)ଶ ݖ௦ଶ   
ሶ௦ଶݖ  = ሶ௦ଶݖ  + ሶ௦௦ଶݖ   
ሷ௦ଶݖ  = ሷ௦ଶݖ  + ሷ௦௦ଶݖ   
 
The mean number of peaks per second ݊ାௌோ can be rewritten in function of the ܽ parameter: 
 
 

݊ାௌோ =  1
ሷ௦ݖ ߨ2

ሶ௦ݖ
=  1

ߨ2  ඨݖሷ௦ଶ + ሷ௦௦ଶݖ
ሶ௦ଶݖ + ሶ௦௦ଶݖ =  ඨ ݂ସ +  ௦݂ସ ܽଶ

݂ଶ +  ௦݂ଶ ܽଶ [EQ.  4.3] 

 
Thus, if ܽ, the ratio between the sine and the random amplitudes of the response, is known or 
obtainable, it is possible to invert the procedure and obtain a synthesized Sine-on-Random profile 
with a specified duration ܶ′. In particular, the first passage is to obtain the responses given by the 
new profile: 
 
 

′௦ݖ = ൦ ܦ
ܭ
ܥ  ݊ାௌோ  ܶ′ ൫√2 ൯ Γ ቀ1 + 2ܾቁ ܨଵ ቀ− 2ܾ , 1, − ܽଶቁଵ

൪
ଵ

 [EQ.  4.4] 
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′௦௦ݖ  = ܽ  ∙  ௦′ [EQ.  4.5]ݖ 
 
Where ݖ௦′ is the relative response displacement induced by the new random PSD and ݖ௦௦′ is 
the relative response displacement induced by the new sinusoid. The duration ܶ′ can be set at the 
desired value for the synthesized profile. 
Now, recalling the expressions [EQ. 2.24], [EQ. 3.2]: 
 
 

௦ݖ = ඨ Q ∙ ሷܩ  ( ݂)
4 ∙   ଷ(݂ ߨ2) 

௦ݖ   = ܤ 
ߨ2) ݂)ଶ ඨቈ1 − ൬ ௦݂

݂൰ଶ
ଶ

+ ൬ ௦݂ܳ ݂൰ଶ
  

 
They can be inverted and the amplitudes of the sinusoid ܤ′ and of the random PSD ܩሷ ′ of the new 
profile can be obtained: 
 
ሷܩ  ′( ݂) = 4 ∙ ଷ(݂ ߨ2) 

ܳ  ∙  ൫ݖ௦′൯ଶ [EQ.  4.6] 
 

ᇱܤ = ߨ2) ݂)ଶ  ∙ ඨቈ1 − ൬ ௦݂
݂

൰
ଶ


ଶ

+ ൬ ௦݂
ܳ ݂

൰
ଶ

 ∙  ௦′ [EQ.  4.7]ݖ 

 
And the synthesized (single sinusoid) Sine-on-Random profile is obtained. 
In case of several sinusoids superimposed on the random vibration, if the sine frequencies are 
sufficiently spaced, as seen in [Chapter 3.1] a similar extension is applicable: each sine tone is 
treated independently. The procedure can be schematized as: 

- Considering a single sine tone superimposed on the random part, the method above is 
applied in order to obtain the synthesized Sine-on-Random profile. 

- The procedure is repeated for each sinusoid. 
- Then, only the minimum value for the random part between the different ones is taken 

[Fig. 4.1]. 
- The complete Sine-on-Random specification is composed by all the synthesized sinusoids 

and the “minimum” random signal. 
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Figure 4.1: Synthesis random component 

 
In [Chapter 3.1] it has been shown that, if the sine tones are close, the FDS formula gives an 
underestimation of the damage due to the not negligible sinusoids. In the synthesis procedure, if 
the starting mission FDS is properly calculated (without damage underestimation), the procedure 
will overestimate the random part between the frequencies of the close sinusoids. In fact, 
considering only one sine tone at a time, the residual damage due to the neglected sinusoids 
(taken in account by the mission FDS but not by the synthesis formula) will be added to the 
random excitation, leading to a more severe synthesized profile. If the severity overestimation is 
seen as a further safety factor of the procedure, the error is acceptable. 
 
 

4.3. Discussion 
 
The advantage of the synthesis of a Sine-on-Random profile over a purely random PSD is that it 
does not simply attempt to match the reference FDS but it also better describes the peaks 
distribution of the original signal. As seen, in fact, the maxima of a Sine-on-Random excitation do 
not follow a Rayleigh distribution as in the case of the purely random vibrations. 
Recalling the expression of the FDS [EQ. 1.2]: 
 
ܵܦܨ  = ܭ 

ܥ   ݊ (ݖ) 
ெ

ୀଵ
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It can be noticed that an exponential relation between the fatigue damage and the relative 
displacement peaks is present, with the Basquin coefficient ܾ as exponent. So, if the peaks 
distribution is well described by the synthesized excitation, the dependence on the accurate 
knowledge of the b coefficient during the mission synthesis procedure is reduced. Since this 
coefficient is usually taken from the literature, given the difficulty in the estimation due to its 
dependence on the material and the type of the excitation [Ref. 13], it is frequently a source of 
possible errors. 
Consequently, it is clear that in case of Sine-on-Random environment, if a Sine-on-Random 
synthesized profile is less subjected to errors due to a possibly inaccurate choice of the b 
coefficient, it gives a strong advantage over the standard purely random profile synthesis.  
 

4.4. Application example: helicopter data 
 
Starting from real environmental data with Sine-on-Random properties, the two different 
synthesis methods are applied. The utilized data [Fig. 4.2] were measured on a helicopter whose 
rotor has the following characteristics: 

 Fundamental frequency at 392 rpm  (~ 6.53 ݖܪ). 
 Blade passage at 32.65 Hz (five blades). 

 

 
Figure 4.2: Sine-on-Random timeseries 

 
Starting from the measured timeseries, the time domain approach of [Chapter 2.1] is applied for 
the FDS calculation [Fig. 4.3]. 
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Figure 4.3: FDS from timeseries 

 
Then, a PSD [Fig. 4.4] is synthesized with the method described in [Chapter 4.1]. 
 

 
Figure 4.4: random PSD synthesis 

 
For the synthesis of a Sine-on-Random profile, instead, a relation between the original sine tone 
and the random excitation is needed before proceeding. Since the measured environmental data 
are in the form of a single timeseries (sum of the sinusoidal and random parts), some 
manipulations are necessary. The following procedure is followed: 
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- By knowing the fundamental frequency of the rotor, it is possible to extract the harmonic 
component from the signal (the “harmonic filtering” function implemented in Test.Lab has 
been used) 

- The Fourier transform is applied to the extracted harmonic component, in order to find the 
amplitudes and the phases of the fundamental sinusoid and its harmonics. 

- The residual part is the random component and the relative PSD is obtained. 
- The sinusoids and the random excitations are applied to the SDOF system, in order to 

obtain the values rms values of the relative displacement responses [EQ. 2.24], [EQ. 3.2]. 
Therefore, the ܽ parameter is obtainable and the synthesis is possible. The extracted phases of 
the sinusoids are kept in the new profile, to preserve as much as possible the characteristics of the 
original excitation. In this case, the fundamental sinusoid and its 14 superior harmonics are 
considered [Fig. 4.5]. 
 

 
Figure 4.5: Sine-on-Random profile synthesis 

 
In order to evaluate the two different methods, in a first instance, the duration of the synthesized 
profiles is taken equal to the original measured vibration. Then, a comparison between the original 
FDS and the FDSs of the synthesized profiles is carried out [Fig. 4.6]. In particular, a timeseries is 
derived from the synthesized profiles and the time domain approach is used, for the purpose of a 
comparison as much reliable as possible. 
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Figure 4.6: FDS comparison - Original profile, Sine-on-Random synthesis, Random synthesis (b=5) 

 
During the Mission Synthesis procedure, the following value of the b coefficient, typical in case of 
electronic components [Ref. 13], has been used: 
 

ܾ = 5 
 
Now, if it is assumed that the real value of the b coefficient was different, the actual FDSs of the 
original signal and the synthesized profiles can be computed and compared. The examples with 
ܾ = 7 [Fig. 4.7], ܾ = 12 [Fig. 4.8] and ܾ = 3 [Fig. 4.9] show that, as assumed, the Sine-on-Random 
synthesis is more representative of the original environment. In fact, while the recalculated FDS of 
the Sine-on-Random profile is still close to the original FDS, the FDS of the random profile shows a 
distance from the reference. In particular, the example with ܾ = 3 is particularly significant. It 
highlights the possible severity underestimation of the purely random signal that will lead to an 
improperly qualification test. 
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Figure 4.7: FDS comparison - Original profile, Sine-on-Random synthesis, Random synthesis (b=7) 

 

 
Figure 4.8: FDS comparison - Original profile, Sine-on-Random synthesis, Random synthesis (b=12) 
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Figure 4.9: FDS comparison - Original profile, Sine-on-Random synthesis, Random synthesis (b=3) 

 
Thus, in case the synthesized specification has the same duration as the original signal, it is 
confirmed that the synthesized Sine-on-Random profile is less sensitive to a possible not perfect 
knowledge of the Basquin coefficient b, compared to a purely random synthesis. The reason relies 
on the better representation of the peaks distribution of the Sine-on-Random profile. In fact, if a 
comparison between the Rainflow Counting of the original signal and the expected distributions 
with the Rayleigh (purely random synthesis) and Rice (Sine-on-Random synthesis) probability 
functions is shown [Fig. 4.10], it can be noticed that the Sine-on-Random specification is far more 
accurate in the peaks reconstruction. 
 

 
Figure 4.10: Rainflow Counting of the original excitation – comparison with the Rice and Rayleigh probability distribution 
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Chapter 5 –  Conclusions 
 
In the literature, different methods to obtain a PSD specification from a reference Sine-on-
Random profile are available, but a way to synthesize a Sine-on-Random specification was missing. 
In this work, the Mission Synthesis in case of Sine-on-Random vibrations is investigate and a 
procedure to synthesize a Sine-on-Random specification from a reference FDS is shown. In fact, in 
order to conduct accelerated qualification tests, a new profile with a limited duration but the 
same amount of induced damage is required. In particular, it is asserted that the synthesized 
profile should not only aim at matching the induced damage, but even the characteristics of the 
original excitation, in order to conduct reliable qualification tests. Thus, in case of environmental 
Sine-on-Random vibrations, a synthesized Sine-on-Random specification will be more advisable. 
The derivation of the Mission Synthesis procedure in case of Sine-on-Random vibrations was 
composed by a number of steps. 
 
In [Chapter 2] a model for damage calculations in the time domain is introduced. After its 
reliability validation, the model can be used as the reference for comparisons of the fatigue 
damage estimation in the frequency domain in case of Sine-on-Random excitations. The only 
drawback of this model is, in fact, the computational time in case of long signals. 
 
In [Chapter 3] an overview on different frequency domain methods for the FDS calculation in case 
of Sine-on-Random vibrations is presented, with the focus on the benefits of each procedure. In 
particular, in case of sufficiently spaced sinusoids a closed form solution is available, but the 
damage is underestimated in case of not spaced sinusoids. On the other hand, a method for an 
accurate damage estimation is obtainable, but two numerical integrations are required. 
Therefore, a “mixed method” for the damage estimation is suggested: it sums up the advantages 
of the closed form solution in case of sufficiently spaced sinusoids with the accuracy of the 
numerical integration in occurrence of not sufficiently spaced sinusoids. It solves the problem of 
the underestimation of the damage in case of sinusoids with closer frequencies without a 
numerical integration over the entire frequency spectrum. 
 
In [Chapter 4] the classical Mission Synthesis is reviewed. It permits to obtain a test specification 
of reduced duration starting from a reference FDS. A Gaussian random profile (PSD) is synthesized, 
so in case of Sine-on-Random vibrations, the damage is preserved, but not the nature of the 
original signal. 
Then, a procedure for the synthesis of a Sine-on-Random specification from a reference FDS is 
presented. In fact, in presence of Sine-on-Random excitations, the purpose of a proper test 
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tailoring should be not only the attempt to match the damage, but even the preservation of the 
nature of the excitation. 
In the end, an application of the Sine-on-Random Mission Synthesis to real environmental data in 
order to preserve the fatigue damage of the test profile has been shown. With respect to a PSD 
synthesis, the Sine-on-Random profile preserves the characteristics of the original signal, that is 
the sinusoids superimposed on the random vibrations, in addition to the damage. This procedure 
leads to a definition of the stress peaks in the new profile that better represents the original peaks 
distribution. If the duration of the synthesized profile and the original excitation is the same, this 
lets to accomplish a reliable Mission Synthesis even in case of a not perfect estimation of the 
Basquin coefficient b. Similar results are expected also in case of accelerated profiles. Given the 
strong uncertainty around the choice of this parameter, the benefits of the synthesis of a Sine-on-
Random specification over a standard purely random synthesis are evident.   
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Appendix A – Numerical integration 
 
The methods for the FDS calculation shown in [Chapter 3.2], [Chapter 3.3] require the numerical 
integration of the expression [EQ. 3.34]: 
 

ܵܦܨ = ܦ  = ܭ
ܥ  ݊ାௌோ  ܶ න ାଵݖ  න ஶݔ


 ݁ି ௭ೌೝೞమ௫మ

ଶ ൯ݖ ݔ൫ܬ  ෑ ݖ݀  ݔ݀ ௦൯ݖ ݔ൫ܬ
ே

ୀଵ

ஶ


  
 
The variables for the double integration are: 
 
= ݔ   0: :ݔ∆ ݖ   ௫ݔ =  0: :ݖ∆   ௫ݖ
 
It can be noticed that the step and the range of the integration in ݔ have to be: 
 
 ݁ି௭ೌೃಾೄమ௫మ

ଶ → 0   →→ ௫ݔ    >  ඨ− 2
ோெௌଶݖ ln 0ା [EQ.  A.1] 

ݔ∆  < ߨ2
ݏ + ∑ ௦ݖ

 [EQ.  A.2] 
 
Where: 

- The expression [EQ. A.1] is due to the fact that, in the integrand, the exponential term is 
the first which tends to zero. 

- The expression [EQ. A.2] comes from the integration of a series of Bessel functions in their 
asymptotic form [Ref. 14], [Ref. 15]. 

 
With regard to the integration in ݖ, which is the estimated value of the peak in the response ݖ: 
 
௫ݖ  >  ோெௌ [EQ.  A.3]ݖ
ݖ∆  = ௫ݖ 

ܰ௩
 [EQ.  A.4] 

 



60  

It is possible to set the range of the integration based on the known rms value of the total relative 
response ݖோெௌ [EQ. A.3], while the step can be chosen in order to evaluate ܰ௩ of peak levels 
[EQ. A.4] which are related to the same amount of induced stress levels. 

Thus, the following values give a good approximation for the integration with an acceptable 
computational time: 
 
௫ݖ  =   ோெௌݖ 3
ݖ∆  = ௫100ݖ    
௫ݔ  =  ඨ− 2

ோெௌଶݖ ln 10ି଼  

ݔ∆  = 1
10 ߨ2 

ݏ + ∑ ௦ݖ
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Appendix B – MATLAB scripts 
 
In this section, the MATLAB implementations of the described methods are reported: 

- Damage calculation: 
o Time domain approach of [Chapter 2.1] 
o Frequency domain approach for Gaussian random profiles of [Chapter 2.2] 
o Frequency domain approach for “sufficiently spaced” Sine-on-Random profiles of 

[Chapter 3.1] 
o Frequency domain approach for “not sufficiently spaced” Sine-on-Random profiles 

of [Chapter 3.2] 
o “Mixed” frequency domain approach for Sine-on-Random profiles of [Chapter 3.3] 

 
- Profile synthesis: 

o Synthesis of random PSD of [Chapter 4.1] 
o Synthesis of Sine-on-Random profile of [Chapter 4.2] 

 
B.1. Time domain approach 

 
function [timeFDS, timeMRS]=TIMEcalc(yy,t,fn,Q,bcoef,Cw,Kw,repets) %% FDS and MRS calculations, time domain %INPUT: yy=signal (time domain), t=time, fn=vector natural frequencies, Q=Q factor, %       bcoef= Basquin exponent, Cw=C Woehler, Kw=K linear fatigue %       repets= number of repetitions %OUTPUT: timeFDS=FDS, timeMRS=MRS %% if nargin < 8 repets=1; %number of repetitions, if not specified = 1 end % damp=1./(2.*Q); %damping defined by Q L=length(fn); % tmx=max(t); tmi=min(t); n = length(yy); dt=(tmx-tmi)/(n-1); % Damage_rdS=zeros(L, 1); 
  
%% for j=1:L % omega=2.*pi*fn(j); omegad=omega*sqrt(1.-(damp^2)); cosd=cos(omegad*dt); sind=sin(omegad*dt); 
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domegadt=damp*omega*dt; 
  
%%%%%% relative displacement (Smallwood algorithm) %%% rdS_a1(j)=-2.*exp(-domegadt)*cosd; rdS_a2(j)=exp(-2.*domegadt); rdS_b1(j)=(2*damp*(exp(-domegadt)*cosd-1)+exp(-domegadt)*(omega/omegad*(2*damp^2-1)*sind)+omega*dt)/(omega^3*dt); rdS_b2(j)=(-2*omega*dt*exp(-domegadt)*cosd+2*damp*(1-exp(-2*domegadt))-2*omega/omegad*(2*damp^2-1)*exp(-domegadt)*sind)/(omega^3*dt); rdS_b3(j)=((2*damp+omega*dt)*exp(-2*domegadt)+exp(-domegadt)*(omega/omegad*(2*damp^2-1)*sind-2*damp*cosd))/(omega^3*dt); % % rdS_forward=[ rdS_b1(j), rdS_b2(j), rdS_b3(j) ]; rdS_back =[ 1, rdS_a1(j), rdS_a2(j) ]; % % rdS_resp=filter(rdS_forward,rdS_back,yy); 
  
[RFtp,extTRF]=sig2ext(rdS_resp,t);    % turning points % found extrema (turning points of the min and max type) in time history RF=rainflow(RFtp,extTRF);         % rainflow function %     rf(1,:) Cycles amplitude, %     rf(3,:) Number of cycles (0.5 or 1.0), RFCycleRate=RF(3,:);       % number of cycles RFSigAmp=RF(1,:);          % cycle amplitudes 
  
Damage_rdS(j)=Kw^bcoef/Cw*((RFSigAmp.^bcoef)*RFCycleRate')*repets; rdS_pos(j)= max(rdS_resp); rdS_neg(j)= min(rdS_resp); 
  
end 
  
rdS_pn=max(rdS_pos,abs(rdS_neg));           %Relative displacement (max) 
  
timeMRS=rdS_pn.*((2*pi*fn).^2);               %MRS (max relative displacement response*(2*pi*fn)^2) timeFDS=Damage_rdS';                            %FDS end  
 

B.2. Gaussian random profiles 
 
function [psdFDS,psdMRS]=PSDcalc(PSD1,freq,T,f0,Q,bcoef1,Cw,Kw) 
  
%% FDS and MRS calculations, frequency domain (GAUSSIAN INPUT) %INPUT: PSD1=signal (frequency domain), freq=frequency, T=duration, f0=vector natural frequencies, Q=Q factor, %       bcoef1= Basquin exponent, Cw=C Woehler, Kw=K linear fatigue %OUTPUT: psdFDS=FDS, psdMRS=MRS %% 
  
L=length(f0); N=length(PSD1)-1; z=1/(2*Q); %damping defined by Q a=2*sqrt(1-z^2); b=2*(1-2*z^2); 
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Gamma1=gamma(1+bcoef1/2); Ex=zeros(N,L); Ev=zeros(N,L); Ea=zeros(N,L); for i=1:N G=PSD1(i); %psd amplitude f1=freq(i); f2=freq(i+1); h1=f1./f0; h2=f2./f0; i1=log((h1.^2+a*h1+1)./(h1.^2-a*h1+1)); i2=log((h2.^2+a*h2+1)./(h2.^2-a*h2+1)); l1=atan((2*h1+a)./(2*z)); l2=atan((2*h2+a)./(2*z)); m1=atan((2*h1-a)./(2*z)); m2=atan((2*h2-a)./(2*z)); I01=(z/(pi*a))*i1+(1/pi)*(l1+m1); I21=-1*(z/(pi*a))*i1+(1/pi)*(l1+m1); I41=((4*z)/pi)*h1+b*I21-I01; I02=(z/(pi*a))*i2+(1/pi)*(l2+m2); I22=-1*(z/(pi*a))*i2+(1/pi)*(l2+m2); I42=((4*z)/pi)*h2+b*I22-I02; D0=I02-I01; D2=I22-I21; D4=I42-I41; Ex(i,:)=G*D0; Ev(i,:)=G*D2; Ea(i,:)=G*D4; end Sx=sum(Ex);     %Summation (Lalanne formula relative displacement) Sv=sum(Ev); Sa=sum(Ea); A=(1./(((2*pi)^4)*f0.^3))*(pi/(4*z)); Zrmsp2=Sx.*A; Zrms=sqrt(Zrmsp2); % RMS relative displacement B=(1./(((2*pi)^2)*f0))*(pi/(4*z)); Vrmsp2=Sv.*B; Vrms=sqrt(Vrmsp2);  % RMS relative velocity C=f0*(pi/(4*z)); Armsp2=Sa.*C; Arms=sqrt(Armsp2);  %RMS relative acceleration n0plus=(1/(2*pi))*Vrms./Zrms;   %n0=mean frequency npplus=(1/(2*pi))*Arms./Vrms;   %np=mean number of peaks r=n0plus./npplus;               %r=irregularity factor 
  
psdMRS=(Zrms.*(2*pi*f0).^2).*sqrt(2*log(n0plus*T));     %MRS psdFDS=(Kw^bcoef1/Cw)*T*Gamma1*(sqrt(2)^bcoef1)*(Zrms.^bcoef1).*n0plus; %FDS end  
 

B.3. “Sufficiently spaced” Sine-on-Random 
 
function [lalFDS,lalMRS,aratio]=LALANNEcalc(randomPSD,freq,T,Ampsin,fsin,f0,Q,bcoef1,Cw,Kw) 
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%% FDS and MRS calculations, Sine-on-Random (LALANNE METHOD - envelope of damage from each sinusoid) %INPUT: PSDrandom=psd random signal [(m/s^2)^2/Hz], freq=frequency psd random signal, T=duration %       Ampsin=amplitude sinusoids [acc: m/s^2], %       fsin=frequency sinusoids, %       f0=vector natural frequencies, Q=Q factor, %       bcoef1= Basquin exponent, Cw=C Woehler, Kw=K linear fatigue %OUTPUT: lalFDS=FDS, lalMRS=MRS, aratio(isin,fnat)=MaxRelativeResponseSinusoids./RMSrelativeResponseRandomExcitation; 
  
%% z=1/(2*Q); %damping defined by Q L=length(f0); isin=length(fsin); 
  
%% relative_displacement=zeros(L, 1); velocity=zeros(L, 1); acceleration=zeros(L, 1); 
  
ZSin=zeros(isin,L); VSin=zeros(isin,L); ASin=zeros(isin,L); 
  
aratio=zeros(isin,L); a0ratio2=zeros(isin,L); Zrms=zeros(isin,L); Vrms=zeros(isin,L); Arms=zeros(isin,L); n0plus=zeros(isin,L); npplus=zeros(isin,L); 
  
FDSsor=zeros(isin,L); MRSsor=zeros(isin,L); lalFDS=zeros(1,L); lalMRS=zeros(1,L); 
  
%% Response Sinusoid 
  
for i=1:isin 
     
tpi=2*pi; fext=fsin(i); base_accel=Ampsin(i); 
  
for j=1:L     fn=f0(j); 
     
    omegan=tpi*fn;     omega=tpi*fext; 
  
    den=omegan^2-omega^2+(1i)*(2*z*omegan*omega); 
  
% base excitation -> relative displacement, velocity, acceleration 
         
    relative_displacement(j)=-base_accel/den;     velocity(j)=relative_displacement(j)*((1i)*omega); 
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    acceleration(j)=relative_displacement(j)*(-omega^2); 
        
end 
  
ZSin(i,:)=abs(relative_displacement); VSin(i,:)=abs(velocity); ASin(i,:)=abs(acceleration); end 
  
ZrmsSin=ZSin/sqrt(2); VrmsSin=VSin/sqrt(2); ArmsSin=ASin/sqrt(2); 
  
%% Response Random N=length(randomPSD)-1; a=2*sqrt(1-z^2); b=2*(1-2*z^2); Gamma1=gamma(1+bcoef1/2); Ex=zeros(N,L); Ev=zeros(N,L); Ea=zeros(N,L); for i=1:N G=randomPSD(i); %psd amplitude f1=freq(i); f2=freq(i+1); h1=f1./f0; h2=f2./f0; i1=log((h1.^2+a*h1+1)./(h1.^2-a*h1+1)); i2=log((h2.^2+a*h2+1)./(h2.^2-a*h2+1)); l1=atan((2*h1+a)./(2*z)); l2=atan((2*h2+a)./(2*z)); m1=atan((2*h1-a)./(2*z)); m2=atan((2*h2-a)./(2*z)); I01=(z/(pi*a))*i1+(1/pi)*(l1+m1); I21=-1*(z/(pi*a))*i1+(1/pi)*(l1+m1); I41=((4*z)/pi)*h1+b*I21-I01; I02=(z/(pi*a))*i2+(1/pi)*(l2+m2); I22=-1*(z/(pi*a))*i2+(1/pi)*(l2+m2); I42=((4*z)/pi)*h2+b*I22-I02; D0=I02-I01; D2=I22-I21; D4=I42-I41; Ex(i,:)=G*D0; Ev(i,:)=G*D2; Ea(i,:)=G*D4; end Sx=sum(Ex); Sv=sum(Ev); Sa=sum(Ea); A=(1./(((2*pi)^4)*f0.^3))*(pi/(4*z)); Zrmsp2=Sx.*A; ZrmsR=sqrt(Zrmsp2); % RMS relative displacement B=(1./(((2*pi)^2)*f0))*(pi/(4*z)); Vrmsp2=Sv.*B; VrmsR=sqrt(Vrmsp2); C=f0*(pi/(4*z)); Armsp2=Sa.*C; ArmsR=sqrt(Armsp2); n0plusONLYRANDOM=(1/(2*pi))*VrmsR./ZrmsR; 
  
%% FDS and MRS 
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for i=1:isin 
     
aratio(i,:)=ZSin(i,:)./ZrmsR; a0ratio2(i,:)=aratio(i,:).^2/2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Zrms(i,:)=sqrt(ZrmsR.^2+(ZrmsSin(i,:).^2)); %VrmsSin,ArmsSin: mistake in the Lalanne book Vrms(i,:)=sqrt(VrmsR.^2+(VrmsSin(i,:).^2)); Arms(i,:)=sqrt(ArmsR.^2+(ArmsSin(i,:).^2)); 
  
n0plus(i,:)=1/(2*pi)*Vrms(i,:)./Zrms(i,:); npplus(i,:)=1/(2*pi)*Arms(i,:)./Vrms(i,:); 
  
%FDS HypergeomDam = (zeros(1,L)); for j=1:L HypergeomDam(j)=taylora1f1(-bcoef1/2,0,1,0,-a0ratio2(i,j),0,eps);   %hypergeometric function     if a0ratio2(i,j)>20     HypergeomDam(j)=real(buchholzbreal1f1(-bcoef1/2,1,-a0ratio2(i,j),eps));     end end FDSsor(i,:)=(Kw^bcoef1/Cw)*T*(sqrt(2)*ZrmsR).^bcoef1.*gamma(1+bcoef1/2).*HypergeomDam.*npplus(i,:); 
  
%MRS MRSsor(i,:)=(ZrmsR.*(2*pi*f0).^2).*(aratio(i,:)+(sqrt(2*log(n0plusONLYRANDOM*T)))); 
  
%Envelope lalFDS=max(lalFDS,FDSsor(i,:)); lalMRS=max(lalMRS,MRSsor(i,:)); 
  
end end  
 

B.4. “Not sufficiently spaced” Sine-on-Random 
 
function [halfFDS]=RICEcalc(PSDrandom,freq,T,Ampsin,fsin,f0,Q,bcoef1,Cw,Kw) 
  
%% FDS and MRS calculations, Sine-on-Random (RICE METHOD - integration Rice PDF multipleSine-on-Random) %INPUT: PSDrandom=random signal, freq=frequency random signal, T=duration, %       Ampsin=amplitude sinusoids [acceleration: m/s^2], %       fsin=frequency sinusoids, %       f0=vector natural frequencies, Q=Q factor, %       bcoef1= Basquin exponent, Cw=C Woehler, Kw=K linear fatigue %OUTPUT: halfFDS=FDS 
  
%% z=1/(2*Q); %damping defined by Q L=length(f0); 
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isin=length(fsin); 
  
%% relative_displacement=zeros(L, 1); velocity=zeros(L, 1); acceleration=zeros(L, 1); 
  
ZSin=zeros(isin,L); VSin=zeros(isin,L); ASin=zeros(isin,L); 
  
snd_result=zeros(L,1); halfFDS=zeros(L, 1); 
  
%% %Sinusoidal response for i=1:isin 
     
tpi=2*pi; fext=fsin(i); base_accel=Ampsin(i); 
  
for j=1:L     fn=f0(j); 
     
    omegan=tpi*fn;     omega=tpi*fext; 
  
    den=omegan^2-omega^2+(1i)*(2*z*omegan*omega); 
  
% base excitation -> relative displacement, velocity, acceleration 
        
    relative_displacement(j)=-base_accel/den;     velocity(j)=relative_displacement(j)*((1i)*omega);     acceleration(j)=relative_displacement(j)*(-omega^2); 
     
end 
  
ZSin(i,:)=abs(relative_displacement); VSin(i,:)=abs(velocity); ASin(i,:)=abs(acceleration); end 
  
ZrmsSin=ZSin/sqrt(2); VrmsSin=VSin/sqrt(2); ArmsSin=ASin/sqrt(2); 
  
%% Response Random N=length(PSDrandom)-1; a=2*sqrt(1-z^2); b=2*(1-2*z^2); Gamma1=gamma(1+bcoef1/2); Ex=zeros(N,L); Ev=zeros(N,L); Ea=zeros(N,L); for i=1:N G=PSDrandom(i); %psd amplitude f1=freq(i); f2=freq(i+1); 
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h1=f1./f0; h2=f2./f0; i1=log((h1.^2+a*h1+1)./(h1.^2-a*h1+1)); i2=log((h2.^2+a*h2+1)./(h2.^2-a*h2+1)); l1=atan((2*h1+a)./(2*z)); l2=atan((2*h2+a)./(2*z)); m1=atan((2*h1-a)./(2*z)); m2=atan((2*h2-a)./(2*z)); I01=(z/(pi*a))*i1+(1/pi)*(l1+m1); I21=-1*(z/(pi*a))*i1+(1/pi)*(l1+m1); I41=((4*z)/pi)*h1+b*I21-I01; I02=(z/(pi*a))*i2+(1/pi)*(l2+m2); I22=-1*(z/(pi*a))*i2+(1/pi)*(l2+m2); I42=((4*z)/pi)*h2+b*I22-I02; D0=I02-I01; D2=I22-I21; D4=I42-I41; Ex(i,:)=G*D0; Ev(i,:)=G*D2; Ea(i,:)=G*D4; end Sx=sum(Ex); Sv=sum(Ev); Sa=sum(Ea); A=(1./(((2*pi)^4)*f0.^3))*(pi/(4*z)); Zrmsp2=Sx.*A; ZrmsR=sqrt(Zrmsp2); % RMS relative displacement B=(1./(((2*pi)^2)*f0))*(pi/(4*z)); Vrmsp2=Sv.*B; VrmsR=sqrt(Vrmsp2); C=f0*(pi/(4*z)); Armsp2=Sa.*C; ArmsR=sqrt(Armsp2); 
  
%% FDS and MRS 
  
Zrms=ZrmsR.^2; Vrms=VrmsR.^2; Arms=ArmsR.^2; for i=1:isin     Zrms=Zrms+(ZrmsSin(i,:).^2);     Vrms=Vrms+(VrmsSin(i,:).^2);     Arms=Arms+(ArmsSin(i,:).^2); end Zrms=sqrt(Zrms); Vrms=sqrt(Vrms); Arms=sqrt(Arms); 
  
NpSoR=1/(2*pi)*Arms./Vrms; %npplus 
  
%%%Rice pdf 
  
for j=1:L     % setting s     max_s=3*Zrms(j);        %max s (pdf)=3*rms rel_disp     delta_s=max_s/100;      %100 level of stress considered     s=[0:delta_s:max_s];     resultFp_vec=zeros(length(s),1); 
     
    sigma_r_sq = (ZrmsR(j))^2;     % setting x 
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    max_x=sqrt(log(1e-8)*(-2/sigma_r_sq));     %1e-8~~0;     B=0;     for sincount=1:isin         B=B+(ZSin(sincount,j));     end     delta_x=2*pi/(B+max_s);           %integration of Bessel series, minimun step     delta_x=delta_x/10;     n_x=round(max_x/delta_x);     x=[0:delta_x:n_x*delta_x]; 
     
    exponen=exp(-(sigma_r_sq.*x.^2)/2);     integrand_part=x.*exponen; 
     
    for sincount=1:isin         b1=(ZSin(sincount,j));         y1=besselj(0,x.*b1);         integrand_part=integrand_part.*y1;         max_s=max(max_s,b1);     end  
    
for idx = 1:length(s)      [y0]=besselj(0,(s(idx)).*x);     integrand=y0.*integrand_part;     integration_result=delta_x.*cumtrapz(integrand);     resultFp_vec(idx)=(s(idx)).*integration_result(end);        %Amplitude, not Range-> s not s/2 
    
end 
     
snd_integrand=((s.^(bcoef1))'.*resultFp_vec); snd_result(j)=delta_s.*trapz(snd_integrand); 
  
%FDS halfFDS(j)=Kw^bcoef1*(1/(Cw)*T*snd_result(j).*NpSoR(j));      end end  
 

B.5. “Mixed” approach for Sine-on-Random 
 
function [totFDS,lalMRS,counter]=MIXEDmethod(randomPSD,freq,T,Ampsin,fsin,f0,Q,bcoef1,Cw,Kw,tol) 
  
%% FDS and MRS calculations, Sine-on-Random (MIXED METHOD) %INPUT: PSDrandom=psd random signal [(m/s^2)^2/Hz], freq=frequency psd random signal, T=duration %       Ampsin=amplitude sinusoids [acc: m/s^2], %       fsin=frequency sinusoids, %       f0=vector natural frequencies, Q=Q factor, %       bcoef1= Basquin exponent, Cw=C Woehler, Kw=K linear fatigue %       tol=error tolerance [0-1] %OUTPUT: lalFDS=FDS, lalMRS=MRS, counter=times Rice formula is used 
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%% z=1/(2*Q); %damping defined by Q L=length(f0); isin=length(fsin); set_err=exp(log(1-tol)/bcoef1); 
  
%% relative_displacement=zeros(L, 1); velocity=zeros(L, 1); acceleration=zeros(L, 1); 
  
ZSin=zeros(isin,L); VSin=zeros(isin,L); ASin=zeros(isin,L); 
  
aratio=zeros(isin,L); a0ratio2=zeros(isin,L); Zrms_L=zeros(isin,L); Vrms_L=zeros(isin,L); Arms_L=zeros(isin,L); n0plus_L=zeros(isin,L); npplus_L=zeros(isin,L); HypergeomDam = (zeros(isin,L)); 
  
FDSsor=zeros(isin,L); MRSsor=zeros(isin,L); snd_result=zeros(L,1); totFDS=zeros(1,L); lalMRS=zeros(1,L); 
  
%% Response Sinusoid 
  
for i=1:isin 
     
tpi=2*pi; fext=fsin(i); base_accel=Ampsin(i); 
  
for j=1:L     fn=f0(j); 
     
    omegan=tpi*fn;     omega=tpi*fext; 
  
    den=omegan^2-omega^2+(1i)*(2*z*omegan*omega); 
  
% base excitation -> relative displacement, velocity, acceleration 
         
    relative_displacement(j)=-base_accel/den;     velocity(j)=relative_displacement(j)*((1i)*omega);     acceleration(j)=relative_displacement(j)*(-omega^2); 
        
end 
  
ZSin(i,:)=abs(relative_displacement); VSin(i,:)=abs(velocity); ASin(i,:)=abs(acceleration); end 
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ZrmsSin=ZSin/sqrt(2); VrmsSin=VSin/sqrt(2); ArmsSin=ASin/sqrt(2); 
  
%% Response Random N=length(randomPSD)-1; a=2*sqrt(1-z^2); b=2*(1-2*z^2); Gamma1=gamma(1+bcoef1/2); Ex=zeros(N,L); Ev=zeros(N,L); Ea=zeros(N,L); for i=1:N G=randomPSD(i); %psd amplitude f1=freq(i); f2=freq(i+1); h1=f1./f0; h2=f2./f0; i1=log((h1.^2+a*h1+1)./(h1.^2-a*h1+1)); i2=log((h2.^2+a*h2+1)./(h2.^2-a*h2+1)); l1=atan((2*h1+a)./(2*z)); l2=atan((2*h2+a)./(2*z)); m1=atan((2*h1-a)./(2*z)); m2=atan((2*h2-a)./(2*z)); I01=(z/(pi*a))*i1+(1/pi)*(l1+m1); I21=-1*(z/(pi*a))*i1+(1/pi)*(l1+m1); I41=((4*z)/pi)*h1+b*I21-I01; I02=(z/(pi*a))*i2+(1/pi)*(l2+m2); I22=-1*(z/(pi*a))*i2+(1/pi)*(l2+m2); I42=((4*z)/pi)*h2+b*I22-I02; D0=I02-I01; D2=I22-I21; D4=I42-I41; Ex(i,:)=G*D0; Ev(i,:)=G*D2; Ea(i,:)=G*D4; end Sx=sum(Ex); Sv=sum(Ev); Sa=sum(Ea); A=(1./(((2*pi)^4)*f0.^3))*(pi/(4*z)); Zrmsp2=Sx.*A; ZrmsR=sqrt(Zrmsp2); % RMS relative displacement B=(1./(((2*pi)^2)*f0))*(pi/(4*z)); Vrmsp2=Sv.*B; VrmsR=sqrt(Vrmsp2); C=f0*(pi/(4*z)); Armsp2=Sa.*C; ArmsR=sqrt(Armsp2); n0plusONLYRANDOM=(1/(2*pi))*VrmsR./ZrmsR; 
  
%% Calculation Zrms, Vrms, Arms, aratio 
  
%For each sinusoid: (Lalanne method) for i=1:isin 
     
aratio(i,:)=ZSin(i,:)./ZrmsR; a0ratio2(i,:)=aratio(i,:).^2/2; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
Zrms_L(i,:)=sqrt(ZrmsR.^2+(ZrmsSin(i,:).^2)); 
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Vrms_L(i,:)=sqrt(VrmsR.^2+(VrmsSin(i,:).^2)); Arms_L(i,:)=sqrt(ArmsR.^2+(ArmsSin(i,:).^2)); 
  
n0plus_L(i,:)=1/(2*pi)*Vrms_L(i,:)./Zrms_L(i,:); npplus_L(i,:)=1/(2*pi)*Arms_L(i,:)./Vrms_L(i,:); 
  
end 
  
%Total: (Rice extension) Zrms=ZrmsR.^2; Vrms=VrmsR.^2; Arms=ArmsR.^2; for i=1:isin     Zrms=Zrms+(ZrmsSin(i,:).^2);     Vrms=Vrms+(VrmsSin(i,:).^2);     Arms=Arms+(ArmsSin(i,:).^2); end Zrms=sqrt(Zrms); Vrms=sqrt(Vrms); Arms=sqrt(Arms); 
  
NpSoR=1/(2*pi)*Arms./Vrms; %npplus 
  
  
%% FDS LALANNE method for i=1:isin 
     
for j=1:L   %  HypergeomDam(i,j)=chgm(-bcoef1/2,1,-a0ratio2(i,j)); HypergeomDam(i,j)=taylora1f1(-bcoef1/2,0,1,0,-a0ratio2(i,j),0,1e-05);     if a0ratio2(i,j)>20          HypergeomDam(i,j)=real(buchholzbreal1f1(-bcoef1/2,1,-a0ratio2(i,j),1e-02));       end end FDSsor(i,:)=(Kw^bcoef1/Cw)*T*(sqrt(2)*ZrmsR).^bcoef1.*gamma(1+bcoef1/2).*HypergeomDam(i,:).*npplus_L(i,:); 
  
  
%MRS if (n0plusONLYRANDOM*T>1000)     MRSsor(i,:)=(ZrmsR.*(2*pi*f0).^2).*(aratio(i,:)+(sqrt(2*log(n0plusONLYRANDOM*T)))); else      MRSsor(i,:)=(Zrms_L(i,:).*(2*pi*f0).^2).*((sqrt(2*log(n0plus_L(i,:)*T)))); end 
  
%Envelope totFDS=max(totFDS,FDSsor(i,:)); lalMRS=max(lalMRS,MRSsor(i,:)); 
  
end 
  
%% searching when Lalanne method fail (damage underestimation) 
  
Criteria_1=zeros(isin,L); Criteria_tot=zeros(1,L); 
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for i=1:isin     Criteria_1(i,:)=Zrms_L(i,:)./Zrms; end 
  
for i=1:isin     Criteria_tot=max(Criteria_tot,Criteria_1(i,:)); end 
  
%% FDS: not spaced sinusoids integration (Rice formula) 
  
counter=0; 
     
for j=1:L 
     
    if Criteria_tot(j)<set_err      %if too much underestimation use Rice         counter=counter+1; 
     
    % setting s     max_s=3*Zrms(j);        %max s (pdf)=3*rms rel_disp     delta_s=max_s/100;     s=[0:delta_s:max_s];     resultFp_vec=zeros(length(s),1); 
     
    sigma_r_sq = (ZrmsR(j))^2;     % setting x     max_x=sqrt(log(1e-8)*(-2/sigma_r_sq));     B=0;     for sincount=1:isin         B=B+(ZSin(sincount,j));     end      delta_x=2*pi/(B+max_s);      delta_x=delta_x/10;     n_x=round(max_x/delta_x);     x=[0:delta_x:n_x*delta_x]; 
     
    exponen=exp(-(sigma_r_sq.*x.^2)/2);     integrand_part=x.*exponen; 
     
    for sincount=1:isin         b1=(ZSin(sincount,j));         y1=besselj(0,x.*b1);         integrand_part=integrand_part.*y1;         max_s=max(max_s,b1);     end  
    
for idx = 1:length(s)       [y0]=besselj(0,(s(idx)).*x);     integrand=y0.*integrand_part;     integration_result=delta_x.*cumtrapz(integrand);     resultFp_vec(idx)=(s(idx)).*integration_result(end);        %Amplitude, not Range-> s not s/2 
    
end 
     
snd_integrand=((s.^(bcoef1))'.*resultFp_vec); snd_result(j)=delta_s.*trapz(snd_integrand); 
  
%FDS totFDS(j)=Kw^bcoef1*(1/(Cw)*T*snd_result(j).*NpSoR(j));      
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    end 
  
end 
  
end  
 

B.6. Synthesis of random PSD 
 
function [PSDr_synth]=PSDRsynthesis(psdFDS,T,f0,Q,bcoef1,Cw,Kw) 
  
%% FDS and MRS calculations, frequency domain (GAUSSIAN INPUT) %INPUT:  psdFDS=FDS, T=duration, f0=vector natural frequencies, Q=Q factor, %       bcoef= Basquin exponent, Cw=C Woehler, Kw=K linear fatigue %OUTPUT: PSDr_synth=synthesized PSD %% L=length(f0); PSDr_synth=zeros(L,1); 
  
for j=1:L     PSDr_synth(j)=(2*(2*pi*f0(j))^3/Q)*(psdFDS(j)*(Cw/(Kw^bcoef1))/(f0(j)*T*gamma(1+bcoef1/2)))^(2/bcoef1); end 
  
end  
 

B.7. Synthesis of Sine-on-Random 
 
function [AmpsinSynth,PSDsynth]=SORsynthesis(FDS,aratio,Tred,fsin,f0,Q,bcoef1,Cw,Kw) 
  
%% Sine-on-Random profile synthesis (LALANNE METHOD inversion) %INPUT: FDS=starting FDS, aratio(isin,fnat)=MaxRelativeResponseSinusoids./RMSrelativeResponseRandomExcitation; %       Tred=duration, %       Ampsin=amplitude sinusoids [acc: m/s^2], %       fsin=frequency sinusoids %       f0=vector natural frequencies, Q=Q factor, %       bcoef1= Basquin exponent, Cw=C Woehler, Kw=K linear fatigue %OUTPUT: AmpsinSynth(isin)=Amplitude synthesized sinusoids, %        PSDsynth(fnat)=synthesized random PSD %% L=length(f0); isin=length(fsin); AmpsinSynth=zeros(isin,1); PSDsynth=zeros(L,1); HypergeomDam = (zeros(isin,L)); npapprox=zeros(isin,L); 
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ZrmsRcalc=zeros(isin,L); ZSinred=zeros(isin,L); 
  
%% Synthesis: Lalanne formula inversion 
  
aratiored=aratio; a0ratio2=(aratio.^2)/2; 
  
for i=1:isin npapprox(i,:)=sqrt((((f0).^4)+(fsin(i).^4).*a0ratio2(i,:))./(((f0).^2)+(fsin(i).^2).*a0ratio2(i,:))); 
  
for j=1:L  HypergeomDam(i,j)=taylora1f1(-bcoef1/2,0,1,0,-a0ratio2(i,j),0,1e-05);  %hypergeometric function     if a0ratio2(i,j)>20        HypergeomDam(i,j)=real(buchholzbreal1f1(-bcoef1/2,1,-a0ratio2(i,j),1e-02));     end end 
  
Ztempcalc=FDS./((Kw^bcoef1/Cw)*Tred*(sqrt(2)).^bcoef1.*gamma(1+bcoef1/2).*HypergeomDam(i,:).*npapprox(i,:)); Ztempcalc=log(Ztempcalc)./bcoef1; ZrmsRcalc(i,:)=exp(Ztempcalc); 
  
ZSinred(i,:)=ZrmsRcalc(i,:).*aratiored(i,:); 
  
%% Sinusoids Amplitude 
  
tpi=2*pi; 
  
 for j=1:L     if (fsin(i)-f0(j))<0        %if fnat!=fsinusoids         fext=fsin(i);         fn=f0(j-1);         omegan=tpi*fn;         AmpsinSynth(i)=ZSinred(i,j-1)*(omegan^2*sqrt((1-(fext/fn)^2)^2+(fext/Q/fn)^2));         break     end end 
  
end 
  
%% Random PSD 
  
if isin==1     ZrmsRred=ZrmsRcalc;         %In case of only 1_sinusoid     else ZrmsRred=min(ZrmsRcalc);   %Multiple sinusoids: minimun="counter envelope" end 
  
for j=1:L     PSDsynth(j)=(((2*pi*f0(j))^2*ZrmsRred(j))^2)/((pi/2)*f0(j)*Q);  %PSD random part end 
  
end 


