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Abstract

In questa tesi si sono valutate le prestazioni di un sistema di localizzazione

multi-antenna di tag radio frequency identification (RFID) passivi in ambi-

ente indoor. Il sistema, composto da un reader in movimento che percorre

una traiettoria nota, ha come obiettivo localizzare il tag attraverso misure

di fase; piú precisamente la differenza di fase tra il segnale di interrogazione,

emesso dal reader, e il segnale ricevuto riflesso dal tag che é correlato alla

distanza tra di essi.

Dopo avere eseguito una ricerca sullo stato dell’arte di queste tecniche e

aver derivato il criterio maximum likelihood (ML) del sistema si é proceduto

a valutarne le prestazioni e come eventuali fattori agissero sul risultato di

localizzazione attraverso simulazioni Matlab.

Come ultimo passo si é proceduto a effettuare una campagna di misure,

testando il sistema in un ambiente reale. Si sono confrontati i risultati di

localizzazione di tutti gli algoritmi proposti quando il reader si muove su una

traiettoria rettilinea e su una traiettoria angolare, cercando di capire come

migliorare i risultati.
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Introduction

In recent years the importance of localizing and tracking objects and people

has grown considerably. Also the birth of the Internet of Things (IoT) and

its expansion, where every object can communicate to each other, caused the

need of interconnect many devices. In this context the information about

their locations could be important.

Simultaneously the technological progress of RFID systems has brought

an enormous diffusion of this technology. Originally they were created for

the purpose of automatically identifying and automatic storage of informa-

tion relevant to objects, animals or people. This technology thanks to its

simplicity, low cost and small dimensions, has found use in many environ-

ments like logistic, airport baggage management, inventory process, security

and access control. A RFID system is composed at least of two devices: a

reader that makes interrogations to the tag and the tag which answers with

its ID by modulating the interrogation. The reader can measures only the

received signal strength (RSS) level of the signal and the phase difference

between the interrogation and the response of the tag.

Thanks to the low cost of RFID tags, this technology can be used to design

innovative and low-cost localization systems. Imagine a warehouse where

each object is provided with a passive RFID tag. A reader, free to move inside

the environment, that performs phase measurements can localize all tags and

then through the information acquired realize an automatic inventory process

(see Figure 1). Otherwise cars provided with antenna arrays through their

motion can localize the relative position and velocity of an object, equipped

with a passive RFID tag, and prevent possible collisions.

In literature there are present many RFID locating system that use the

RSS level of the received signal, but the disadvantage of these methods is

that the RSS is affected by multipath and interference effects.

3



Figure 1: Example of localization in a warehouse environment using a moving

reader.

The objective of this thesis is to evaluate the performance and how im-

prove it of a RFID localization system formed by a reader, moving in a known

trajectory, that performs phase measurements.

This work is organized as follows:

- Chapter 1: describes the principal indoor localization techniques and

the architecture of RFID-based technologies. Also the principal RFID

phase-based spatial identification methods are introduced.

- Chapter 2: contains a mathematical analysis in order to derive the ML

criterion of the system and describes the algorithms proposed.

- Chapter 3: this chapter collects the simulation results of our system ob-

tained through Matlab simulators in order to discover the performance

and the features of the locating system implemented.

- Chapter 4: shows the measurement setup adopted and the principal

standard protocols that are used in RFID technologies.

- Chapter 5: describes the measurement campaign carried out in a real

indoor environment and compares the localization result of the different

algorithms investigation, trying to minimize the root mean square error

(RMSE).

- Chapter 6: reports the conclusions of the work.
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This thesis has been carried out within the European project XCYCLE.

Its objective is to reduce accidents and fatalities of cyclists in urban traffic

and improve its comfort. XCYCLE has an objective of developing user-

friendly, technology-based systems to make cycling safer in traffic [1].

RFID localization technologies could be used in this contest, for example,

to localize cyclists at junctions and prevent possible collisions.

XCYCLE consortium is composed by: Alma Mater Studiorum-University
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Chapter 1

Localization Methods

1.1 Classic Indoor Localization Methods

The localization methods are processes that perform physical measurements,

like distances or angles, in order to find the exact position of a mobile de-

vice [2]. A locating system is composed at least by: mobile devices or target

that are moving in an area; base stations at known positions and data process-

ing subsystems. Propagation in indoor environment is affected by many prob-

lems like multipath, diffraction, reflection, non-line-of-sight (NLOS) path and

absorption [4]. There are several localization methods in literature [5]. The

methods can be divided into three classes: distance-based estimation, scene

analysis based and proximity-based [6].

Distance estimation methods can be divided into:

• Received Signal Strength (RSS);

• Time-of-Arrival (TOA);

• Time-Difference-of-Arrival (TDOA);

• Received Signal Phase (RSP);

• Angle of Arrival (AOA);

Scene analysis methods can be divided into:

• k-Nearest-Neighbor (kNN);

• Probabilistic Approaches.

7



CHAPTER 1. LOCALIZATION METHODS

Figure 1.1: RFID-based localization system [3].

1.1.1 Distance Estimation-Based Methods

These algorithms use a triangulation or lateration approach to estimate the

mobile device location. They convert physical measurements of the system,

like propagation time or received power, in equivalent distance values.

• RSS-Received Signal Strength Method: Technique based on the

measure of the power of the signal received at the reader/base station.

The distance measurement can be obtained knowing the path-loss of the

radio channel. The attenuation of the signal is function of the distance

between the transmitter and the receiver. Therefore, the device with

unknown position is placed on a circumference with radius equal to

the distance estimated. Having at least three base stations or readers

doing the RSS measure it is possible estimate the position of the device

resolving a triangulation problem. This method is very sensitive to

shadowing and multipath effects; they can cause a large distance error

that determines a wrong localization.

• TOA-Time of Arrival Method: Technique based on the measure of

the signal propagation time between base stations and the mobile device

with unknown position. The distance measurement can be obtained

from the time measurement knowing the propagation speed of the sig-

nal. Therefore, the device with unknown position should be placed on

a circumference with radius equal to the distance estimated. Having

8



CHAPTER 1. LOCALIZATION METHODS

at least three base stations or readers doing the time-of-arrival (TOA)

measure it is possible estimate the position of the device resolving a

triangulation problem. This method is more robust than RSS with re-

spect to shadowing and multipath effects. The system need to know

the time instant of the signal transmission or in alternative use a two

way ranging method.

Figure 1.2: Example of localization with RSS or TOA method [7].

• TDOA-Time Difference of Arrival Method: Technique based on

the measure of the signal propagation time difference between two base

stations of the network. The time-difference-of-arrival (TDOA) princi-

ple lies on the idea of discovering the position of a transmitting device

by using the difference in time at which the signal arrives at multiple

base stations. Therefore, the device with unknown position should be

placed on a hyperbole where the base stations are in the focus of the

curve. Having at least three base stations or two TDOA measurements

it is possible estimate the position of the device. The system requires

strong base station synchronization.

• RSP-Received Signal Phase: This method, also called Phase of Ar-

rival (POA), uses the delay, expressed as phase measurements, to esti-

mate distance. The localization can be done using the same algorithm

than TOA or TDOA. This method strongly needs a line-of-sight (LOS)

path in order to limit locating error.

9



CHAPTER 1. LOCALIZATION METHODS

Figure 1.3: TDOA method [7].

• AOA-Angle of Arrival Method: Technique based on the measure of

the direction of arrival of the signal to the base station. Therefore, the

device with unknown position should be placed on a straight line with

direction equal to one measured before. Having at least two base station

it is possible estimate the position of the device as the intersection of

the two straight lines. This method requires directional antennas or

smart antennas.

Figure 1.4: AOA method [7].

10



CHAPTER 1. LOCALIZATION METHODS

1.1.2 Scene Analysis-Based Methods

Scene analysis approaches have a first step for collecting the fingerprint of

the environment. First of all the ambient is divided into several subareas,

then at each zone a value obtained through preliminary measurements is

assigned, so a database of the area is built. In the second step of the method

the target performs a measure and compares its value with the database

values in order to find the subarea of membership. Generally, RSS-based

fingerprinting is used. The two main techniques are: k-Nearest-Neighbour

(kNN) and probabilistic method.

• k-Nearest-Neighbour (kNN): It consists in a first time measuring

RSS at known location in order to make a database called radio map.

Then a mobile device can perform RSS measurements to find the k

closest matches in the signal space previously built. Finally, a root

mean square algorithm is applied in order to find the estimated location

of the device.

• Probabilistic Approach: This method assumes that there are n

possible locations and one observed strength vector during the sec-

ond phase according to Bayes formula. The location with the highest

probability is chosen.

1.1.3 Proximity-Based Methods

This approach relies on dense deployment of antenna. When the target enters

in the radio range of a single antenna, its position is assumed as the same of

this receiver. If more than one antenna detect the target, the mobile device

is collocated in the position of the receiver with the strongest signal. The

accuracy of this method is equal of the size of the cells.

1.1.4 Performance Metrics

Different applications or technologies may have different requirements on

localization system. There are different performance metric to evaluate in

order to reach a performance objective.

Performance metrics for indoor wireless location systems are [3, 8]:

11



CHAPTER 1. LOCALIZATION METHODS

• Accuracy: In general this parameter evaluates the localization error,

that is the distance between the real position of the target and the

estimated position. This is the most important parameter in these

systems; higher is the accuracy, better is the system but often there is

a trade off between this parameter and other performance metrics.

• Precision: This parameter is an indicator of how uniformly the sys-

tem works. Accuracy only evaluates the mean of the distance error.

Precision parameter represents the robustness of the localization tech-

nique i.e., the variations on its performance over many tentative. Many

scientific papers indicate precision as geometric dilution of precision

(GDOP) or location error standard deviation.

• Complexity: It depends from hardware, software and data processing.

• Scalability: The scalability represents how the system can work cor-

rectly in a different environment keeping the same performance.

• Latency: It is an important performance metric to evaluate a local-

ization system. Latency is defined as the time required by the system

to generate the new estimated position when the target moves to a new

location. In real time system it is very important to have a low latency.

• Robustness: A high robustness ensures that a system could work in

complicated environments where there is incomplete information, some

signals are not available, a wireless sensor network with disabled nodes

or high presence of multipath or interference effects.

• Cost: Cost is another performance metric to evaluate when a localiza-

tion system is designed. Costs include money, time, energy, space and

weight.

1.2 RFID Tag

RFID tags, also called transponders or labels, are simple devices formed by

an antenna and an integrated circuit. There are three different type of RFID

tags:

12
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• Passive tags : tags are not powered. They use the electromagnetic field

coming from the reader to power up.

• Semi-passive tags : they are powered only for data process or mainte-

nance. The electromagnetic field from the reader is used to send the

answer after the interrogation.

• Semi-active tags : chip and transmitter are both powered by a battery

but the tag is normally disabled. The tags are enable by a receiver that

works with the technology of passive tag. The main advantage is the

long life of battery.

• Active tags : tags are totally powered and contain their own transmitter.

They have an high working distance reachable.

In this thesis we consider only passive tags. They use a part of the electro-

magnetic field from the reader to power them-self and generate, through a

backscatter modulation, the response. The advantages of passive tags are:

very long useful life, they are very cheap and have small dimensions. The

major disadvantage is that they can be read only at very short distances.

Passive tags cannot start a communication but only respond after an inter-

rogation. They are made up by an integrated antenna, typically printed on a

insulating substrate, and a miniaturized integrated circuit. The total thick-

ness of the tag is very low so they can be integrated in credit cards, adhesive

labels, small plastic objects and tickets. Their data memory can be read-only

or read-writable. The last type permits also, in additions to reading opera-

tions, the possibility to modify data memorized. Generally tags can made by

different material in order to use it in different environments and situations.

RFID tags can operate in different frequency bands. In this thesis we

decided to use only passive tags that operate in the UHF band (860MHz-

960MHz).

1.3 RFID Localization Schemes

Nowadays there are a lot of RFID localization techniques. Due to the limited

energy of the tags the localization and the data processing are centralized.

With passive tags it is suggested the proximity approach; differently in an

13
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(a) Example of HF

passive tag.

(b) Example of active tag-

Identec.

(c) Example of semi pas-

sive tag integrated in an

adhesive label.

Figure 1.5: Different type of RFID tags [9].

environment full or readers technique more elaborated can be applied. We

can classify RFID localization scheme into three classes: distance estimation,

scene analysis and constraint-based.

1.3.1 Distance Estimation

These algorithms use a triangulation or laterations approach to estimate the

mobile device location. They convert physical measurements of the system,

like propagation time or received power, in equivalent distance values. Lat-

erations are used to localize the tag.

• SpotON [10]: This scheme is very simple: readers collect signal

strength measurements to approximate the distance through a function

built with empirical data.

• SAW ID-tags [11]: Surface Acoustic Wave Identification interro-

gates passive tags with the time inverse of its pulse response. Then

tags retransmit the correlated signal. This signal shows a peak in the

autocorrelation function and the response with the highest amplitude

recognizes the searched tag. The distance between the reader and the

tag is measured using a TOA approach.

14
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• LPM [12]: Local Position Measurement (LPM) readers are synchro-

nized thanks to a reference tag (RT) positioned in fixed location. This

method is based on the TDOA approach. Selective active tags after

an interrogation responds at the time tMT . The time difference tdiff of

the signals between reader Ri and tag can be calculate as:

ctdiff (Ri) = c(tMT − tRT ) + ‖MT −Ri‖ − ‖RT −Ri‖ (1.1)

where c is the speed of light andMT indicates the measurement transpon-

der.

• RSP [13]: Two readers at fixed locations calculate the phase difference

of a moving tag. When they collect a lot of measures the estimation

can be done through a least square fitting technique. With two pairs

of readers it is possible a triangulation to find the tag position and its

direction. It is an example of direction-of-arrival (DOA) method.

1.3.2 Scene Analysis

The principal RFID localization scheme belonging to scene analysis category

found on scientific papers are the following.

• Landmarc [14]: This method is based on the kNN concept. Fixed tags

with know positions (reference tags) cover the area to be monitored.

Tracking tags are on the target object. When an object is inside the

area, readers perform RSS measures of both reference and tracking

tags. The reference tag with the closest RSS value to the tracking tag

is used to compute the localization. Multipath and interference may

influence the performance of that system.

• VIRE [15]: This method uses the principle of the previous case. It

is used the concept of proximity map. The monitoring area in divided

into regions, where reference tags are placed in the center of them. Each

reader has its own proximity map. Readers perform RSS measures of

the unknown tags and reference tags and if the difference is smaller

than a threshold the corresponding region is marked as ’1’. The fusion

of all n reader proximity maps creates a global map localizing the tag.

15
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Figure 1.6: Landmarc method example [3].

• Simplex [16]: This method is based on reference tags placed in the

monitoring area. It requires that the n readers have different trasmis-

sione power level. Each reader starts with the lowest power level and

increases it until it receives a response from the tag. The distance

between the reader and the tag is estimated by averaging the distance

between the reader and all reference tags detected with the same power

level. This method is called simplex because it use the simplex algo-

rithm in order to minimize the localization error function.

• Kalman filtering [17]: This method is divided into two steps. The

first step consists in calculating the distance Dj between each reference

tag and tag with unknown position using RSS measurements from two

readers. Solving the following system of equation through a minimum

square error algorithm it is possible to find the coordinates of the target

tag.

(xj − xe)2 + (yj − ye)2 = D2
j ∀j = 1, · · ·n (1.2)

where (xi, yi) are the coordinates of the ith reference tag and (xe, ye)

are the coordinates of the target. The second step builds a probabilistic

map of the localization error for the reader’s detection area. A Kalman

filter is used on this online map in order to increase the accuracy of the

localization and reduce the error due to RSS measures.

16
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1.3.3 Constrain-Based Approach

The main method that belongs to this category is 3-D Constraints [18]. It is

based on connectivity information and it defines that if a reader can detect

a tag then the distance between them is inferior of the reader’s read range.

The area is discretized into points in order to delimit the detection area of

the readers.

1.4 RFID-Based Technology

Another way to classify RFID systems is depending on their technologies.

It can be classified into four categories: tag based, reader based, transceiver

free and hybrid technologies [3].

• Tag-based technologies

Tag-based technologies require that the target object carry a tag, for

example an active tag that periodically transmits beacon messages. An

example of this technology is LANDMARC system [14]. It use reference

tag in known positions and RSS measurements in order to find or track

a target carrying an active tag. It is very simple to implement but it

suffers of multipath and interference effect.

• Reader-based technologies

In this technologies classical roles of readers and tags are reversed: tags

are placed at known and fixed position and a reader is attached to a ob-

ject or is carried by an user [19]. The position of the user is determined

using tag IDs or RSS value read by the reader. This method is also

called as reverse RFID. It permits to remove the dependence on the

infrastructure of networked readers, very useful in many applications

concerning tracking people in dangerous situations like natural disaster

where the preexisting infrastructure can be damaged.

Active or passive tags can be used with this technology.

• Transceiver-free technologies (RADAR)

The basic idea of this technology is to locate object or people without

they carry any tag or reader. Wireless signal in a static environment

17



CHAPTER 1. LOCALIZATION METHODS

Figure 1.7: Transceiver-free technologies example [3].

are quite stable. When an object are moving in a monitored area it

cause changes on the signal.

A simple implementation of this technology is the following [20]: an

area is covered with an array of tags and few readers are placed on

the ground. Readers periodically read the RSS value of tags. These

values are stable in a static environment. When an object is moving

in the area it causes changes in the RSS values of nearby tags. This

information it used to track and localize the object. See Figure 1.7.

This algorithm requires a training step where for an amount of time the

system collects RSS values of tags. The main advantage of transceiver-

free technologies is that the target does not carry a device but the

localization and tracking of multiple object are very hard.

• Hybrid technologies

Hybrid technologies try to join advantages of different technologies.

The first example is Cocktail [21]. It is an implementation that joins

RFID technologies to wireless sensor networks (WSN) theory with ob-

jective to improve localization accuracy in a large area. In large area

accuracy of traditional RFID system decrease due to multipath and

18
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Figure 1.8: Cocktail architecture example [3].

interference effects. Cocktail employs a sparse WSN network to cover

the area using reference tags and sensor nodes. Sensor nodes have a

sparse grid deployment respect to tags grid because they are expensive.

When a target is moving in the area it causes changes in RSS values

of some sensor link, called influential links. Influential links tend to be

clustered around the object [22].

The a LANDMARC [14] approach or Support Vector Regression (SVR)

[23] is applied.

Cocktail improve the localization accuracy respect to previous tech-

nologies. However tracking multiple objects is very hard if they are

very close to each other.

The second example is a technology that joins RFID to inertial navi-

gation system (INS) using inertial and non-inertial sensors.

In a hybrid Reverse-RFID/INS system the target carry a reader and a

portable inertial navigation sensor. When the object is out of range of

a tag, the INS is used to track the trajectory. As soon as the object

enter in the read range of a tag, it know coordinates are used to correct

the trajectory estimated. This technology have good results only if the

time spend using the inertial sensor are small.

1.5 RFID Phase-Based Spatial Identification

The previously seen locating system mainly use the RSS indicator or TDOA

measurements. Using UHF RFID tags, RSS measurements could be very

19
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unreliable due to multipath and interference effects or reliable only in a short

distance. Moreover RFID tags and readers cannot operate in short impulse

mode as required by a TOA approach because they are a very short range

narrowband technology.

Thanks to modern RFID readers that perform fully coherent detection

and recover the phase of the tag signal, tag phase information could be used

to determine the position and the velocity of the moving tag. This application

is also called as spatial identification [24].

Tag phase information depends from the propagation channel. Using a

phase-difference-of-arrival (PDOA) approach it is possible erase some addi-

tive factors, like the phase introduced by cables or by the hardware, that

affect the phase read by the reader.

Figure 1.9: Phase identification schematic [24] .

The phase of the signal received by the reader is:

ϕd = ϕ+ ϕ0 + ϕBS (1.3)

where ϕ is the phase due to the electromagnetic propagation, ϕ0 is the phase

deriving from cables and other system components and ϕBS is the backscatter

phase from the tag.

ϕ = −2
2πf

c
d (1.4)

where c is the propagation velocity, f is the frequency of the signal and d is

the distance between reader antenna and the tag.
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1.5.1 Time Domain Phase-Difference-of-Arrival (TD-

PDOA)

This method estimates the velocity of the tag by measuring phases at different

time instants. Using a fixed signal frequency and measuring the tag phase

in two different time instants, assuming that ϕ0 and ϕBS do not change in

time we can derive:

Vr = − c

4πf

δϕ

δt
(1.5)

where Vr is the instantaneous tag velocity and ϕ is the phase measured.

Figure 1.10: TD-PDOA technique [24].

1.5.2 Frequency Domain Phase-Difference-of-Arrival

(FD-PDOA)

This method estimates the distance between tag and reader through phase

measurements at difference frequencies. Measuring the phase of the tag at

different frequencies, assuming that ϕ0 and ϕBS do not change in frequency

or can be considered calibrated and the tag is fixed during measurement

process, it is possible find the distance d between reader antenna and tag as:

d = − c

4πf

δϕ

δf
(1.6)

This technique is very similar to frequency modulated continuous wave (FM

CW) [25].

1.5.3 Spatial Domain Phase-Difference-of-Arrival (SD-

PDOA)

This technique estimates the direction of arrival of a backscattered signal by

measuring the phases at several receiving antennas. Supposing to have the
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Figure 1.11: FD-PDOA technique [24].

antennas spaced of a factor a and supposing to have the tag to be located

out a distance longer than a, it is possible calculate the DOA as:

θ ≈ arcsin

[
− c

2πf

(ϕ1 − ϕ2)

a

]
(1.7)

A simple scheme is reported in Figure 1.12. In these years many signal

Figure 1.12: SD-PDOA technique [24].

processing techniques have been developed to improve accuracy [26].

1.5.4 Synthetic Aperture Radar and Holographic Lo-

calization

This method is very similar to phase difference of arrival technique. A Syn-

thetic Aperture Radar (SAR) is realized by moving the reader antenna on

a known trajectory collecting several phase measurements. Target’s position

can be obtained through a holographic algorithm [27,28] or multi angulation

approach (see Figure 1.13).

In the holographic approach a special correlation function is derived

thanks to the phase measurements. The maximum of this function repre-

sents the estimated target position. This particular method will be studied

and explained in this thesis.
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Figure 1.13: Comparison between multi angulation (a) and holographic ap-

proach (b) [29].

1.6 RFID-UWB technology

A recent technology studied for accurate indoor mapping is the ultra-wide

band (UWB) technology. In fact, the adoption of UWB signals permit to

obtain a sub-meter localization accuracy. This technology can be a solution

for next generation RFID systems to overcome most of the limitations of

the narrow bandwidth RFID technology like: insufficient ranging accuracy,

sensitivity to interference and multipath and reduced area coverage [30]. For

future RFID systems, important requirements will be very accurate localiza-

tion at the submeter level, management of large number of tags, small size,

low cost and low power consumption.

A promising wireless technique that can be used in next generation RFID

systems is the UWB technology characterized by the transmission of sub-

nanosecond duration pulses. The employment of wideband signals enables

the resolution of multipath and high localization precision based on TOA es-

timation. Also, it includes low power consumption, low detection probability

and efficient multiple channel access [31].

Also, UWB technology can be used in a novel network able to combine

passive RFID and radar sensor networks (RSN) in order to identify and

localize tags and moving objects in a monitored area through the analysis of

their backscattered response to a common interrogation signal [32].
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Chapter 2

Localization Algorithms using

Virtual Arrays

2.1 Virtual Array

Our system is composed by a moving reader equipped with a single UHF

antenna. It moves on a known trajectory performing phase measurements

of the signal received from the tag with unknown position. Supposing that

the tag is in a fixed location during the motion of the reader and supposing

to know the exact positions of the reader when the measures was taken,

it is possible to combine and process measurements taken at different time

instants corresponding to different antenna positions as if they were obtained

from an antenna with multiple spatially distributed elements.

This technique is called virtual antenna array and it creates an equiva-

lent virtual antenna with large aperture, able to discriminates directions of

arrivals of different signals.

The objective of this thesis is evaluating the effectiveness of a virtual

array solution where the motion of the reader is used to create an antenna

with large aperture.

Figure 2.1 shows an example of localization setup using virtual antenna

array.
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Figure 2.1: Example of localization using a virtual antenna array. vi indicates

the ith position of the reader performing the ith phase measurement.

2.2 Problem Definition

The advantage of using a backscatter transponder, as a passive tag, is that it

reflects the incident signal modulating it in amplitude after an interrogation,

performed by the reader. The phase shift between the interrogation signal

and the response is related to the distance that separates the reader and tag.

Figure 2.2: Block diagram of interrogator and backscatter transponder [33].

In order to recover the phase information is necessary to execute a fully

coherent demodulation, shown in Figure 2.2.

To simplify the model we suppose that the RFID reader transmits a

continuous wave (CW) signal

sTx(t) = aTx cos(2πf0t) (2.1)
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where aTx and f0 are, respectively, the amplitude and the frequency of the

signal. After traveling to the tag situated in a fixed position at distance di
from the reader and coming back, the reader receives the following signal:

r(t) = ãi s(t− τi) + n(t) (2.2)

τi = 2di/c (2.3)

where ãi is the amplitude of the received signal, c is the speed of the signal,

τi is the traveling delay due to the distance di between reader and tag and n

is the phase noise. Then

r(t) = ãi cos(2πf0(t−τi)) = ãi cos(2πf0t−2πf0τi) = ãi cos(2πf0t+ϕi) (2.4)

ϕi = −2πf0τi = −4πdi
λ

(2.5)

where λ = c/f0 is the wavelength of the signal. The phase value that the

reader provides is obtained as:

ϕi mod 2π = −4πdi
λ

mod 2π (2.6)

2.3 Maximum Likelihood Estimator

In this paragraph the maximum likelihood estimator will be derived with

two different assumptions. The first considers constant the amplitude of the

received signals; the second case uses the information about the received

power to derive the estimator.

Our system is composed of a moving reader along a know trajectory

interrogating a tag supposed in a fixed unknown position p = (x,y). In

each interrogation the reader performs a phase measurement which is related

to the distance between the reader and the tag. While moving the reader

collects N tag reads in positions v1,v2, . . . ,vN , where vi = (xi, yi), according

to Figure 2.3. The ith reader-tag distance is defined as:

di(v) =
√

(x− xi)2 + (y − yi)2 (2.7)
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Figure 2.3: Simple scheme of the system where the tag is located in p and

the reader evaluates the phase from the N positions vi.

2.3.1 ML Estimator with Constant Amplitudes

In this simplified model we assume that the amplitude of the received signals

is constant for all reader positions. The observation vector r that collects all

phase differences due to the reader-tag-reader propagation is (in equivalent

low-pass)

r = [r1 r2 . . . rN ]T =
[
ejϕ1 ejϕ2 . . . ejϕN

]T
= s + n (2.8)

where

s = [s1(p) s2(p) . . . sN(p)]T =
[
ejφ1(p) ejφ2(p) . . . ejφN (p)

]T
(2.9)

φi(p) = −4πf0
c

di(p) = −4πf0
c

√
(x− xi)2 + (y − yi)2 (2.10)

The noise vector n = [n1 n2 . . . nN ]T has independent elements ni =

nIi + jnQi. Considering nIi and nQi independent random variables, it is

nIi, nQi ∼ N (0, σ2) (2.11)

ni ∼ CN (0, 2σ2) (2.12)
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which is a circular Gaussian random variable.

The likelihood function of the ith observation given p is

f(ri|p) =
1√

2πσ2
exp

{
−|ri − si(p)|2

2σ2

}
(2.13)

so then

f(r|p) =
N∏
i=1

f(ri|p) =
1(√

2πσ2
)N N∏

i=1

exp

{
−|ri − si(p)|2

2σ2

}

=
1(√

2πσ2
)N exp

{
− 1

2σ2

N∑
i=1

|ri − si(p)|2
}
. (2.14)

Then, the maximum likelihood estimate p̂ of the tag position p is

p̂ = argmax
p

ln f(r|p) =

= argmax
p

{
−

N∑
i=1

|ri − si(p)|2
}

=

= argmax
p

−
N∑
i=1

|ri|2︸ ︷︷ ︸
N

−
N∑
i=1

|si(p)|2︸ ︷︷ ︸
N

+2
N∑
i=1

<{ris∗i (p)}


= argmax

p

N∑
i=1

<
{
ej(ϕi−φi(p))

}
= argmax

p

N∑
i=1

cos(ϕi − φi(p)) . (2.15)

Note that, according to (2.15), all the N phase measurements have the same

weight in the formula. This derives from the assumption that we considered

received signals with constant amplitude, so it is equivalent to consider the

same signal-to-noise ratio (SNR) for all the N phase measurements.

2.3.2 ML Estimator with Variable Amplitudes

In this second case we consider a model more similar to the reality. Here

each phase value measured is related to the received power at the position

from witch it was taken. So the model of the system shown in 2.8 changes

into:
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r = [r1 r2 . . . rN ]T =
[
ã1e

jϕ1 ã2e
jϕ2 . . . ãNe

jϕN
]T

= s + n (2.16)

where

s = [s1(p, a1) s2(p, a2) . . . sN(p, aN)]T =
[
a1e

jφ1(p) a2e
jφ2(p) . . . aNe

jφN (p)
]T

(2.17)

The amplitude value ai related to the i-th reader positions is considered

as deterministic unknown parameter, not correlated to the tag position p

because the RSS is not a good position-related parameter. The amplitude

ãi represents the square root of the received power reported by the reader in

the ith measurement.

The likelihood function of the ith observation given p and ai in this model

can be written as:

f(ri|p, ai) =
1√

2πσ2
exp

{
−|ri − si(p, ai)|

2

2σ2

}

=
1√

2πσ2
exp

{
−|ri|

2 + |si(p, ai)|2 − 2<{ris∗i (p, ai)}
2σ2

}
=

1√
2πσ2

exp

{
− ã

2
i + a2i − 2ãiai cos(ϕi − φi(p))

2σ2

}
. (2.18)

It is possible to determine the likelihood function independent of ai using

an estimate âi of ai into (2.18), which becomes

f(ri|p) = f(ri|p, ai = âi) . (2.19)

Using the maximum likelihood (ML) criterion the estimated âi is

âi = argmax
ai

ln f(r|p, ai) = argmax
ai

{−a2i + 2ãiai cos (ϕi − φi(p))} . (2.20)

According to

âi = ai :
∂

∂ai
f(ri|p, ai) = 0 (2.21)

we obtaine
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âi = ãi cos (ϕi − φi(p)) (2.22)

and the likelihood function of the ith observation becomes

f(ri|p) =
1√

2πσ2
exp

{
− ã

2
i − ã2i cos2(ϕi − φi(p))

2σ2

}
. (2.23)

Finally, the maximum likelihood estimate p̂ of the tag position p is

p̂ = argmax
p

ln f(r|p) = argmax
p

N∑
i=1

ã2i cos2(ϕi − φi(p)) . (2.24)

where ã2i is the received power of the signal given by the reader. In this maxi-

mum likelihood estimator the phase values received with a higher power have

a greater impact on the function and on the position estimation. Comparing

(2.24) to (2.15) we note that in (2.24) more reliable phase measurements

(higher ã2i ) have a higher weight in the localization process with respect to

(2.15).

2.4 Holographic Localization Method

In literature another algorithm is present, called holographic localization

method [33]. The principle is the same as previous approach i.e., the relation-

ship between phase values, antenna position and target position is unique if

a sufficient number of measurements was taken. This means that a set of N

phase measurements and a known reader trajectory identify only one possible

tag position.

According to this method the algorithm makes K hypothesis, where K �
N , representing K different possible tag’s position. For each hypothesis

with coordinates (xi,yi) it calculates the distance between it and the position

where the reader takes the phase measures (xm, ym). Through the value of

the distance it derives the phase vector containing the phase values that

can be read in the N measurement positions of the reader if it will be the

correct coordinates of the tag. For each hypothesis phase vector the algorithm
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computes a sort of correlation with the phase measurements vector by:

P (p) =

∣∣∣∣ N∑
m=1

ãme
j
(

4πdm,i
λc

−ϕm
)∣∣∣∣= ∣∣∣∣ N∑

m=1

ãme
j(−φm−ϕm)

∣∣∣∣ (2.25)

where P (p) is the correlation function, dm,i is the distance between the cur-

rent hypothesis and the antenna position m, am is the amplitude measured

at the antenna position m, λc is the carrier wavelength and ϕm is the phase

measured at the antenna position m. The hypothesis that maximizes the

function (2.25) is the detected position of the tag.

This method is very similar to approaches that calculate the AOA from

phase difference of arrival from different positions and calculate the triangu-

lation to find the tag position [34]. This formula is not the rigorous maximum

likelihood estimator, but at high SNR where the phase estimation errors are

small, holographic localization performance should be very similar to ML

derived in (2.24). In fact,

p̂ = argmax
p

∣∣∣∣∣
N∑
m=1

ãme
j(−φm(p)−ϕm)

∣∣∣∣∣ =

= argmax
p

√√√√( N∑
m=1

ãm cos(−φm(p)− ϕm)

)2

+

(
N∑
m=1

ãm sin(−φm(p)− ϕm)

)2

= argmax
p

ãm

√√√√( N∑
m=1

cos(−φm(p)− ϕm)

)2

+

(
N∑
m=1

sin(−φm(p)− ϕm)

)2

(2.26)

At high SNR, sin(−φm(p)− ϕm) ≈ 0 so

p̂ ≈ argmax
p

(
ãm(cos(−φm(p)− ϕm))2

)
(2.27)

where ãm is the power received at the m-th antenna positions, ϕm is the

phase measured at the m-th antenna positions and φm(p) is the theoretical

phase.
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Simulation Results

In this chapter the performance of the localization system are reported through

Matlab simulations.

The algorithm used in the simulations is explained in Sec. 2.4.

3.1 Monodimensional Algorithm

For simulating this system in Matlab we made a series of assumptions in

order to decrease the computational complexity and understand how several

features of the environment and the technology can impact the performance.

The assumptions are:

• the tag is fix in a position with coordinates p = (x, y);

• the reader is moving along a linear trajectory with constant speed;

• the distance between the tag and the reader’s trajectory (y) is known,

so it transforms the problem in monodimensional localization where

the only unknown variable is the longitudinal coordinate (x).

These hypotheses permit to have a faster simulation and a lower complexity

than the 2D case [33]. The complexity becomes:

Ncalculation ∼ KNantennas (3.1)

where K is the number of hypothesis along the x-coordinate and Nantennas

are the number of phase measures that the reader took. In the following
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Figure 3.1: Monodimensional localization scheme.

simulations we implemented the holographic localization method explained

in Sec. 2.4. The equation (2.25) in a monodimensional localization problem

becomes:

P (x) =

∣∣∣∣ N∑
m=1

e
j
(

4πdm,i
λc

−ϕm
)∣∣∣∣ (3.2)

3.1.1 Uniformly Spaced Measure Positions

The first topology that we investigated is a simple system formed by a reader

moving along a linear trajectory L with constant speed. It interrogates the

tag N times uniformly spaced along the track. The tag position is fixed in

x = L
2

, y = 1m for all different cases that we simulated. In these cases

we plot how the RMSE of the detected position and the ratio between the

first and the second peak of P (x) change using different values of N or L.

Also we consider a Gaussian noise with several variances added to the phase

measures. Each simulation is implemented in Matlab through a Monte Carlo

approach. Then,

ϕm = φm + n (3.3)

where ϕm is the phase measured, φm is the theoretical phase without

any noise, n is the additive Gaussian noise N (0, σ2). First of all we derive

the RMSE of the detected position when the number of phase measures N
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Figure 3.2: RMSE as a function of the number of phase measure N for several

noise variances. Monte Carlo simulation with 10000 iterations and L = 10.

increase with the length of the trajectory L constant and the opposite case

i.e., when N is constant and the length L changes.

From Figure 3.2 is it possible to see that increasing the number of phase

measurements for several values of variance of the phase noise, the RMSE

decreases. Instead we have an increase of the RMSE when the number N is

constant and the length of the trajectory increases (see Figure 3.3).

The same simulation shown in Figure 3.2 is executed monitoring the ratio

between the first and the second peak of P (x), showing how the system is

strong to the phase noise. It is right to think that increasing the number

of phase measures the ratio decreases. In Figure 3.4 this trend is confirmed

but growing N the advantage is limited. The curves has a sort of asymptote

proving that the amplitude difference between the first and the second peak

do not improve beyond a certain value of N . Given the effects on the RMSE

or the ratio between the first and the second peak of N or L while the

other variable is constant, it is interesting to see how N and L interact each

other. To do that, we implemented the same simulations done before looking

at the evolution of the functions as the ratio N/L increases. It is rational

to suppose that the RMSE tends to 0 for high value of N/L, because it

means collect a high number of phase measures for distance unit. Instead,

the ratio between the first and the second peak of P (x) has an asymptotic

trend like in Figure 3.4. The simulations results are shown in Figure 3.5 and
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Figure 3.3: RMSE as a function of the length L of the reader’s trajectory for

several noise variances. Monte Carlo simulation with 10000 iterations and

N = 5.
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Figure 3.4: Ratio between the first and the second peak of P (x) as a function

of the number of phase measure N for several noise variances. Monte Carlo

simulation with 5000 iterations and L=10.
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Figure 3.5: RMSE as a function of the ratio N/L of the reader’s trajectory

for several noise variances. Monte Carlo simulation with 10000 iterations.
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Figure 3.6: Ratio between the first and the second peak of P (x)as a function

of the ratio N/L for several noise variances. Monte Carlo simulation with

10000 iterations.
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Figure 3.7: RMSE as a function of the noise power for several N/L. Monte

Carlo simulation with 20000 iterations.

Figure 3.6. The last simulation compared the same ratio N/L, equals to 1,

with different values of N equals to L. The result shown in Figure 3.7 is

very interesting. For low noise power is advantageous to use an high number

of phase measurements evenly spaced in a long trajectory. Instead, using a

short track is better for an higher value of noise power. Also the curves seem

to have a common point.

3.1.2 Random Measure Points

The next environment simulated has only one difference from the previous:

the measurement points are no more equally distributed along the trajectory

but are random placed. For each Monte Carlo iteration a vector contain-

ing the coordinates of the phase measure points is random generated. The

trend of the following simulations is very similar to the previous case, where

the measure points are equally spaced, but the performance is a little bit

worse. In Figure 3.13 we can see that the advantage found in the case of uni-

formly spaced measure points, here is lower; only for very low noise power

it is advantageous to use a high number of phase measurements. In general

the performance in random measure positions is worse with respect to the

previous case. To prove it, we simulated both situations in the same picture

for two fix values of phase noise standard deviations: 0.1 and 0.707 (see Fig-
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Figure 3.8: RMSE as a function of the number of phase measure N for several

noise variances and random measurement positions. Monte Carlo simulation

with 10000 iterations and L = 10.

ure 3.14 and Figure 3.15).

Simulations of random measure position are from Figure 3.8 to Figure 3.15.

3.1.3 Reader Position with Noise

After having shown the effect of the phase noise on the localisation pro-

cess we decided to study how the noise on the information about the po-

sition of the reader influences the correct localisation of the tag. Sup-

posed to have exact phase measures, so without any uncertainty, we added

to each position of the reader an additive Gaussian noise N (0, σ2
s); where

σ2
s = [0.00001, 0.00005, 0.0001, 0.0005, 0.001].

xi = x̃i + ns (3.4)

where x̃i is the ith true position of the reader when performs the ith phase

measure, xi is the ith position of the reader with noise and ns is the noise

sample belonging to N (0, σ2
s). Figure 3.16 and Figure 3.17 shows, respec-

tively, the ratio between the first and the second peak of P (x) and the RMSE.

The trends of these figure of merit are very similar to the curves of the pre-

vious simulations, where there was noise on the phase measurements. From

Figure 3.16 it can be seen that by increasing the number of measure points
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Figure 3.9: RMSE of the detected position as a function of the length L of

the reader’s trajectory for several noise variances and random measurement

positions. Monte Carlo simulation with 5000 iterations and N = 5.
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Figure 3.10: Ratio between the first and the second peak of P (x)as a function

of the number of phase measure N for several noise variances and random

measurement positions. Monte Carlo simulation with 5000 iterations and

L = 10.

40



CHAPTER 3. SIMULATION RESULTS

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

N/L

R
M

S
E

 [
m

]

 

 

σ =0.0316

σ =0.1

σ = 0.3162

σ =0.7071

σ =1

Figure 3.11: RMSE of the detected position as a function of the ratio N/L of

the reader’s trajectory for several noise variances and random measurement

positions. Monte Carlo simulation with 5000 iterations.
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Figure 3.12: Ratio between the first and the second peak of P (x)as a func-

tion of the ratio N/L for several noise variances and random measurement

positions. Monte Carlo simulation with 5000 iterations.
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Figure 3.13: RMSE of the detected position as a function of the noise variance

for several N/L. Monte Carlo simulation with 20000 iterations.
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Figure 3.14: Ratio between the first and the second peak of P (x)as a func-

tion of the ratio N/L for several noise standard deviations. Monte Carlo

simulation with 10000 iterations.
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Figure 3.15: RMSE of the detected position as a function of the ratio N/L.

Monte Carlo simulation with 10000 iterations.

N the ratio between the first and the second peak decreases and it tend to

have an asymptotic behaviour. In Figure 3.17 the RMSE decreases when

the ratio N/L raises. The only big difference with the previous cases is the

magnitude of the noise variances. In order to have a very good localisation

of the tag it is important to know the relative position of the reader with a

small error.

Summarizing:

• the largest is the number of phase measurements N , the better is the

localization result;

• the longer is the trajectory L, the larger N is necessary for a good

results;

• the noise on the position is more degrading with respect to the phase

noise.

3.1.4 Relative Position Localization

Imagine an environment, similar to a storage room or a store, where the ob-

jective is to know not the absolute position of several products equipped with

a RFID tag in the space but the relative positions related to a reference tag
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Figure 3.16: Ratio between the first and the second peak of P (x)as a function

of N for several standard deviations of the position noise with noise in the

reader trajectory. Monte Carlo simulation with 5000 iterations.
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Figure 3.17: RMSE as a function of the ratio N/L with noise in the reader

trajectory. Monte Carlo simulation with 5000 iterations.
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with known location. This tag can be positioned on a shelving or in other

place. It has been found that, if the reader position errors are independent,

locating the reference tag and the tag with unknown position separately, us-

ing the algorithm explained before, and then derive the unknown tag position

through the error on the first device is not useful. Supposing that the mov-

ing reader is equipped with high precision odometers or something similar,

it is correct to think that the position error between consecutive locations

is negligible for a small trajectory. Only on the starting point of the track

a significant error is present. In the simulation program we added the same

single sample of position noise to all reader locations. The noise trajectory

is a shifted version of the original.

Figure 3.18: Example of reader trajectory: ’o’ are the real measurement

points of the reader, ’x’ are the points with noise.

Figure 3.19: Example of localization with tag reference.

Through this assumption the error on the reference tag is equal to the er-

ror on tag with unknown position. Knowing the real location of the reference

tag it is possible localize the other tag with no uncertainty. To understand

the performance of the system and verify that the localization errors of both

tags are equal, we simulated this case for several noise variance through a
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Monte Carlo simulation where we counted the number of times that localiza-

tion errors were different each other. The result is an empty histogram for all

variance used. This means, under the assumption done before, that always

the error on the localized position of the reference tag is equal to the error of

the other device with unknown position; so the latter can be localized with

precision.

3.1.5 Not Central Tag Position

In previous simulations a strong assumption was that the x-coordinate of the

tag was positioned in the middle of the trajectory. The geometry of the sys-

tem influences the locating process result, so we decided to investigate about

the impact of the relative tag position with respect to the reader trajectory.

To do that we implemented a simulation where the tag is located in a fixed

position and the linear trajectory, with length fixed to L, is moved adding

an offset factor, called ∆. When ∆ is equal to 0 means that the trajectory

is centered with respect to the tag i.e., reader measurement positions are

between −L
2

and L
2
. Adding or subtracting a ∆ factor to all reader measure

positions means move the reader trajectory on the right or on the left with

respect to the tag location. For each value of ∆ factor we calculated the

RMSE using the same position noise samples.

Looking at Figure 3.20, it is possible see that the RMSE modifies its value

as the ∆ factor changes. In particular the RMSE has zero value when the

trajectory is opposite to the tag position and it increases when the trajectory

moves from it. Figure 3.21 shows the same simulation but without position

noise; in this situation the position of the trajectory with respect to the tag

does not influence the localization process result.

3.1.6 Signal-to-Noise Ratio Simulation

The previous simulations considered the phase noise independently to the

SNR at the considered reader position. In the following simulation we decided

to test the algorithm generating the noise samples with variance according

to the effective reader position.

First of all we have extrapolated experimentally the signal to noise ratio

at the distance of 1 meter (SNR0) using the real hardware setup available
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Figure 3.20: RMSE when the relative trajectory position with respect to the

tag changes in presence of position noise (L = 2, N = 21).

−8 −6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

∆ [m]

R
M

S
E

 [
m

]

 

 

σ
s
 = 0

Figure 3.21: RMSE when the relative trajectory position with respect to the

tag changes without position noise (L = 2, N = 21).

in laboratory (see section 4.2).

SNR = SNR0 d
−4 (3.5)

Then using the formula (3.5) we calculated the SNR at each reader

position distant d from the tag. Now, using the Cramer-Rao Lower Bound
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(CRLB) for phase estimation [35] we computed the noise variance as

var(ϕ̂) =
1

K SNR
(3.6)

where K is the number of samples of the received signal (we considered

K = 100 and K = 1000).

Thanks to this evaluation, we discovered that the RMSE as function of

the number of phase measurements N or the length of the trajectory L is

very low. It means that with our hardware the phase noise does not affect

significantly the estimation process, so it can be neglected. The factor that

most influence the estimation of the tag position is the error on the reader

trajectory.

Figure 3.22: Scheme representing the SNR received at different reader posi-

tions v.

3.1.7 Comparison with ML Criterion

Previous simulations used the monodimensional algorithm deriving from

equation (2.25). In this section we compare the performance of this al-

gorithm and the localization using the ML criterion deriving from (2.15).

In Figure 3.24 it is shown the ratio between the first and the second peak of

P (x) as function of the number of measure points N for several position noise

variances. The algorithm that uses the equation (2.25) tends to have the

amplitude of secondary lobes very similar to the amplitude of the main peak

for high value of noise variance than the localization performed using the
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ML criterion. Amplitude of secondary lobes comparable to the main peak

can create an ambiguity problem i.e., a secondary lobe can be choosen as

estimated position generating a high estimation error. A sharper main peak

indicates an estimation with a high accuracy. Using a smaller noise variance

both algorithms have a similar peak ratio. Figure 3.23 shows the comparison

between the correlation function given by the two algorithms for a specific

system configuration.

Figure 3.25 shows the RMSE of the localization result as function of N for

several position noise variance. For a small position noise variance and few

reader measurements the RMSE results lower using the ML criterion. With

a higher noise variance the algorithms seems to have the same performance.
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Figure 3.23: Comparison between the correlation functions given by the two

algorithms in the same configuration (N=30, L=5 and noise on the reader

positions). True tag position x =2.5 m.
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Figure 3.24: Ratio between the first and the second peak of P (x) as a function

of the ratio N for several noise standard deviations. Monte Carlo simulation

with 10000 iterations.
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Figure 3.25: RMSE of the detected position as a function of N . Monte Carlo

simulation with 10000 iterations.
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Chapter 4

Measurement Setup

4.1 Hardware and Software

4.1.1 Reader

The reader used in this research is the Impinj Speedway Revolution R420

shown in Figure 4.1. It is a high performance reader, compatible with EPC-

global UHF Gen 2 standard, that provides network connectivity between

tag and enterprise software; it is able to maintain high read rates regardless

of RF noise or interference as the readers adapt automatically for optimal

functionality [36].

The main features of this model are:

• Low power consumption: it is capable of using Power over Ethernet

(PoE);

• Compact form factor and robust design: the compact size permits

an easier installation in tight space;

• High Performance Features: it has several utilities making possible

to read more than 1000 tags per second.

Other characteristics are shown in Table 4.1. Let us note that it has 4

port but, through hubs, it is possible connect 32 antennas. Furthermore, the

output power from each port can be set from +10 dBm to +30 dBm with

POE power or to +32.5 dBm with an external DC power. The sensitivity of

the reader is -82 dBm. In the front panel of the reader, shown in Figure 4.2, it
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Figure 4.1: Impinj Speedway Revolution R420 [36].

is possible to see the 4 antenna connectors and the related led, indicating the

work status of each port. In the rear panel there are: an ethernet connector

and a RS-232 connector used as data interfaces, the power source connector

for external power supply and an USB connector for future use.

4.1.2 EPC Radio-Frequency Identity Protocols Class-

1 Generation-2 UHF RFID

The EPC protocol [38] defines the physical and logical requirements for an

RFID system of interrogators and passive tags, operating in the 860 MHz

- 960 MHz UHF range. The system comprises interrogators, also known as

readers, and tags, also known as labels. The reader transmits information to a

label by modulating an RF signal. Tags receive information and power energy

from this signal; then they respond at the interrogation by modulating the

reflection coefficient of their antennas, thereby backscattering an information

signal to the reader. The communications are half-duplex, meaning that

readers talk and labels listen, or vice-versa. The protocol specifies: the

physical interactions between readers and tags, the operating procedure of

interrogators and labels and the collision arbitration scheme used to identify
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Figure 4.2: Front and rear panel of the reader Impinj Speedway Revolution

R420 [36].
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Table 4.1: Main features of Impinj Speedway Revolution R420 [37].

Product Details Speedway R420

Air Interface Protocol GS1/EPCglobal UHF Gen2 (ISO 18000-6C) or RAIN RFID

Antenna Ports 4 expandable to 32 antennas with Speedway Antenna Hub

Supported Regions or

Geographies

FCC (TWYIPJREV), Canada (6324A-IPJREV), Australia,

Brazil (Anatel), China (CMIT 2010DJ4065),

EU (CE Mark, ETSI EN408 208 v1.4.1), Hong Kong,

India, Japan (920MHz band), Korea (UQC-R420),

Malaysia, New Zealand (Z233), Singapore,

South Africa (ICASA), Taiwan (CCAF10LP1290T5),

Thailand, Uruguay, UAE, Vietnam

Transmit Power
+10.0 to +31.5 dBm (PoE) (EU1 limited to +30 dBm),

+10.0 to +32.5 dBm(Listed/Certified power supply)

Max Receive Sensitivity -84 dBm

Min Return Loss 10 dB

Application Interfaces

Low Level Reader Protocol (LLRP): C, C++, Java,

and C# libraries,

OctaneSDK: Java or C#,

On-reader Applications via Octane ETK: C, C++

Network Connectivity

10/100BASE-T auto-negotiate

802.1x with PEAP/TLS and MD5 support,

WPA for Wifi and Ethernet,

3rd party Wifi adapters supported via USB interface.

Speedway Connect:

HID (keyboard) emulation,

TCP Socket, Serial/RS-232, HTTP POST

Power Sources

Power over Ethernet (PoE) IEEE 802.3af,

Listed/Certified power supply

rated minimum 2.5A

Operating Temperature -20 C to +50 C

Dimensions & Weight 7.5 in H x 6.9 in W x 1.2 in D (19 x 17.5 x 3 cm)
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a specific tag in a environment full of different label.

The commands described in the protocol are divided into:

• Mandatory commands: Conforming tags and readers shall support

all mandatory commands;

• Optional commands: Conforming tags or interrogators may or may

not support optional commands;

• Proprietary commands: Proprietary commands may be enabled in

conformance with this specification, but are not specified herein and

shall be capable of being permanently disabled. Proprietary commands

are intended for manufacturing purposes and shall not be used in field-

deployed RFID systems;

• Custom commands: Custom commands may be enabled in confor-

mance with this specification, but are not specified herein.

Concerning the tag-identification layer, an interrogator manages tag pop-

ulations through three basic operations:

• Select operation: The operation of choosing a tag population for

inventory and access;

• Inventory operation: The operation of identifying tags. A reader

begins an inventory round by transmitting a query command in one

of four sessions. One or more tags may reply. Inventory comprises

multiple commands;

• Access operation: The operation of reading from and/or writing to

a tag. An individual tag must be uniquely identified prior to access.

All commands, RF signal, modulations, and other technique available of

this technology are explained in the protocol.

4.1.3 LLRP-Low Level Reader Protocol

The Low Level Reader Protocol (LLRP) [39], written by EPC in 2007, is

the standard protocol used to standardize the network interface of the RFID
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readers. It specifies an interface between RFID readers and clients and pro-

vides control of air protocol operation timing and access to air protocol com-

mand parameters. LLRP is situated between clients and readers and his

purpose is to maximize the efficiency of operations and facilitates the man-

agement of the reader devices to mitigate reader-to-reader and reader-to-tag

interference. Also it facilitates device status and error reporting.

The LLRP is specifically concerned with providing the procedures and

formats of communications between devices. The data units are called mes-

sages. The messages from the client to the reader include configuration,

managing and access operation of the reader. Message from the reader to

the clients include the reporting of the tag read and the status of the device.

It is an application layer protocol and do not permit re-transmission in case

of communication errors.

A typical LLRP configurations and execution are:

• Capability discovery;

• Device configuration;

• Inventory and access operations setup;

• Inventory cycles executed;

• RF Survey operations executed;

• Reports to the Client.

Figure 4.4 shows a typical interactions between client, reader and tag.

4.1.4 FOSSTRACK LLRP Commander

In order to send and receive LLRP messages, configure and manage the reader

we used the software FOSSTRACK LLRP Commander. It is a plugin with

graphical interface working on Eclipse. The program permits to compose

easily LLRP messages through a graphical interface or an XML editor or

binary code. At the same time it makes possible to receive and view the

messages and the reports from the reader.

The basic sequence of operations to read a tag is the following:
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Figure 4.3: LLRP endpoints [39].

Figure 4.4: Tag-reader-client LLRP interaction [39].
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Figure 4.5: Fosstrack LLRP Commander interface [40].

• connect the reader;

• send the set reader configuration (SetReaderConfig) message;

• send the reader operation specification (add ROSpec) message;

• send enable the reader operation specification (enable ROSpec) mes-

sage;

• read the receive operation access report message (RO access report)

from the reader;

• send disable the reader operation specification (disable ROSpec) mes-

sage;

• send the delete reader operation specification (delete ROSpec) message;

• close the connection.

Set Reader Configuration message (SetReaderConfig) sets the main con-

figurations of the reader, like the antenna and the channel frequency used,
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the output RF power and the sensibility of the receiver. Each Set Reader

Configuration overwrites the previous set up.

Reader Operation Specification message (addROSpec) defines the be-

haviour of the reader. Through this message it is possible define most of the

parameters used in the inventory process. In one reader can be set more than

one Reader Operation Specification, each recognizable with his ROSpec ID,

but only one can be active at the same time. Enable the Reader Operation

Specification (enable ROSpec) and Disable the Reader Operation Specifica-

tion (disable ROSpec) message enable and disable the relative ROSpec. The

principal parameters set in SetReaderConfig message are:

• ROSpecStartTrigger: it describes the condition upon which the ROSpec

will start execution;

• ROSpecStopTrigger: it describes the condition upon which the ROSpec

will stop;

• AlSpecStopTrigger: it defines when the Inventory process ends;

• InventoryParameterSpec: this parameter defines the inventory oper-

ation to be performed at all antennas specified in the corresponding

AISpec;

• AntennaConfiguration: this parameter carries a single antenna’s con-

figuration;

• ROReportSpec: this parameter describes the contents of the report

sent by the reader and defines the events that cause the report to be

sent.

Figure 4.6 and Figure 4.7 show respectively, the reader configuration and

reader operation specification messages used. The phase of the signal re-

ceived from the tag is not a standard parameter reported from the reader

through LLRP report messages. Impinj provides vendor extensions that per-

mit to obtain these measurements. After have enabled custom messages, it is

possible to enable phase measurements adding an extension to our ROSpec

message. An extension is described by:

• CustomParameterDefinition: it describes the name of the extension

and the vendor identifier;
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Figure 4.6: Set Reader Configuration message used.
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Figure 4.7: Reader Operation Specification message used.
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Figure 4.8: LLRP custom message parameter.

Figure 4.9: Custom parameter configuration to enable phase measurements

in Impinj Speedway Revolution reader.

• Field: it describes the data type and the relative name;

• Parameter: another extension nested to the previous;

• AllowedIn: it defines where the extension are insert.

In Figure 4.8 we can see the general custom message parameters while

Figure 4.9 shows the configuration of the parameter in order to read the

phase value.

The Receive Operation Access Report (RO access report), shown in Fig-

ure 4.10, include many data generated after an access operation. All pa-

rameters shown can be enabled or disabled through tag report specification
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Figure 4.10: Receive Operation Access Report message.
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setting inside the ROSpec message.

The principal parameters used are:

• EPC 96: it is the 96-bit tag identifier;

• ROSpecID: it indicates the ROSpecID that performed the report;

• AntennaID: it indicates the number of antenna that performed tag

read;

• PeakRSSI: it indicates the received power of the RF signal;

• ChannelIndex: it indicates the channel frequency used;

• Custom: it contains custom parameter measurements sets.

For the phase measure we can obtain the degree value through the following

equation:

Phase(degree) = Value ∗ 360

4096
(4.1)

where Value is the data contained in the custom section inside the Receive

Operation Access Report message.

4.1.5 RFID Tag

In this thesis we consider only passive UHF RFID tags.

Tags available in laboratory are shown in Figure 4.11. All of them are

made by Impinj and are inlay sticker tags. Comparing their features, we

choose two tags, looking at their nominal read range. We have chosen E51

and H47 model; they have a different shape and a different chip but they

have an high nominal read range. Table 4.2 reports the nominal read range

of available tags.

4.2 Antenna Test

The first type of measurement done was realized to understand the losses

due to the channel and the antenna matching in a real environment when

reader and tag are in a line of sight. To do that we put the reader antenna

on a tripod in a fix position and then we moved the tag on a line in front
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Figure 4.11: Model of tags available in the laboratory.

Tag Model Nominal Read Range

J51 0.5

F51 0.6

H51 2.9

E51 5

E52 5

E53 3

B42 1

H47 6

H41 2.5

E42 4

E44 4.5

Table 4.2: Nominal read range of tags for transmitted power of 1W.
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Figure 4.12: Simple schematic of the communication system.

the reader antenna from a distance of 0.5 m until the label could be read,

with step of 0.5 m. For each position we collected the RSSI of the signal

received. Interpolating these data we could reconstruct the path loss curve

and compare it with the theoretical free space path loss curve. The distance

between the curves is the values of additional losses in our system. This

value help us to calculate the best estimation of received power at the reader

antenna and then find the SNR at distance equal to 1 m (SNR0). The SNR0

value was used to simulate the system with noise on phase measurements.

We tried to recreate the free space propagation conditions realizing the

measurements in an open space. The test was repeated for four different type

of antennas and two tag models: E51 and H47.

The antennas used are:

- DLT3-868: Circular antenna with gain G=3 dBi,

- PN6-868: Square antenna with gain G=6 dBi,

- PN8-868: Square antenna with gain G=8 dBi,

- Impinj antenna: Square antenna with gain G=8 dBi.

Using the schematic circuit shown in Figure 4.12 we can define the power

received at the reader PRx as:

PRx =
PTxG

2
tG

2
rλ

4

(4πdLt)4
(4.2)

where PTx is the transmitted power by the reader, Gt is the transmit antenna

gain, Gr is the receiver antenna gain, λ is the wavelength, d is the distance

between tag and reader antenna and Lt are the additional losses due to

antenna matching and propagation channel. We can define PRx0 the power

received when the distance d is equal to 1 m.

PRx0 =
PTxG

2
tG

2
rλ

4

(4πLt)4
(4.3)
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(a) Tag E51 model. (b) Tag H47 model.

Figure 4.13: Tags used for the test.

Figure 4.14: Antenna test setup.

We can define the SNR0 as:

SNR0 =
E

N0

where E =
PRx0

B
,N0 = kTF (4.4)
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(a) DLT3-868 antenna

with gain G=3 dBi.

(b) PN6-868 antenna with

gain G=6 dBi.

(c) PN8-868 antenna with

gain G=8 dBi.

(d) Impinj antenna with

gain G=8dBi.

Figure 4.15: Antenna used for the test.

where B is the channel bandwidth equal to 200 KHz, k is the Boltzmann

constant, T is the noise temperature equal to 290 K and F is the noise figure

equal to 4 dB. So the signal-to-noise ratio SNR at the distance d can be

expressed as

SNR = SNR0

(
d

d0

)−4

(4.5)

where d0 is equal to 1 meter.

Next figures show the Friis transmission equation (4.2) in a real environ-

ment obtained using the RSSI read from the reader for several tag positions

in a linear line of sight with it. The red curves represent the equation with

Lt = 1 i.e., without losses. The green curves are the best Friis transmis-

sion equation with losses that get closer to the power points measured. The
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transmission equation with losses was estimated finding the Lt factor that

minimizes the euclidean distance to the points.

The curves derived from the measurements have the tendency similar to

the Friis transmission equation in free-space without losses but they present

a very high attenuation for the technologies and the system configuration

considered. We used information presented in the datasheets of the hardware.
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Figure 4.16: DLT3-868 Antenna test with E51 tag.
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Figure 4.17: PN6-868 Antenna test with E51 tag.
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Figure 4.18: PN8-868 Antenna test with E51 tag.
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Figure 4.19: Impinj antenna Antenna test with E51 tag.
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Figure 4.20: PN6-868 Antenna test with H47 tag.
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Figure 4.21: PN8-868 Antenna test with H47 tag.
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Figure 4.22: Impinj antenna test with H47 tag.
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Chapter 5

Measurement Results

5.1 Linear trajectory

After the simulative approach we decided to test the algorithm in a real

environment. The first test concerned the lateral relative movements of the

reader with respect to the tag. Our questions were: how long the tag can be

read while the reader is moving laterally with respect to it? Using the phase

measurements, can the tag be located correctly? Which algorithm does have

the best performance?

For an easier procedure of measurement we placed the reader antenna

fixed in the position of 4.65 m and moved the tag back and forth in a linear

trajectory in front of the reader. This situation is equal of the corresponding

used in simulations, where the tag was fixed and the reader in movement,

because what it is important is the relative motion among them. Tag was

moved with step of 0.1 m. For each position the phase and the RSS values

was taken as the mean of ten different measures. The test was repeated

for three different tag-reader frontal distances, 1 m, 2 m, 3 m and for two

antennas: PN6-868 model with 6 dBi gain and PN8-868 model with 8 dBi

gain.

The procedure can be summarized as:

1. Put the reader antenna in the fix point with coordinate 4.65 m;

2. Put the tag in front of the reader antenna at the desired distance;
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3. Find the maximum reading distance moving the tag on the right with

respect to the antenna and put it in this point;

4. Read 10 LLRP packets and calculate the average of the phase and the

RSS values read;

5. Move the tag 0.1 m left.

6. Repeat points 4 and 5 until the tag cannot be read.

Figure 5.1: Measurement setup.

5.1.1 1D-Localization Results

In this section the performance of the algorithms, explained in Chapter 2.

is compared using the phase measurements taken in the laboratory. In par-

ticular we tested the one dimensional (1D) localization i.e., we supposed to
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Figure 5.2: Measurement setup.

know a priori the distance between the reader and the tag trajectory (y-

coordinate) so that the algorithms should localize only the positions of the

tag on the linear trajectory (x-coordinate), referring to the lateral offset with

respect to the reader position.

Next figures show the function P of the algorithms i.e., the correlation

function between the vector containing the phase relative to a hypothetical

location and the vector of the phase measurements where its maximum ex-

presses the estimated position of the tag. In particular the figures refer to

the situation where the distance between the tag and the reader trajectory

was equal to 2 m. In this environment the tag, positioned in x = 4.65 m,

could be read from the coordinate x = 2.65 m to x = 6.65 m. We performed

phase measurements with step of 0.1 m.

Figure 5.2 shows our environment where a reader moves on a linear tra-

jectory with a constant velocity v and the tag is positioned in a fixed posi-

tion. Remembering the relation between the distance and the phase of the

backscatter signal, it is possible write:

ϕ =
(
−4πf0

s

c

)
mod 2π =

(
−4πf0

√
x2 + y2

c

)
mod 2π (5.1)

where ϕ if the phase of the received backscatter signal at the reader position,

f0 is the carrier frequency of the signal and c is the speed of the light.

Collecting many phase measurements closely spaced allowed us to plot

the trend of the phase as a function of the reader position. In Figure 5.3 it

is possible to see that when x ∼ s i.e., the reader is in a lateral position with

respect to the tag, the phase ϕ is linear with respect to x. The result is the

characteristic sawtooth wave behaviour due to the 2π periodicity. Instead,
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Figure 5.3: Phase trend as function of the position centered respect to tag

location.

when the reader approaches the minimum distance with respect to the tag,

the relation between s and x is non linear, so the phase has a different trend

(central part of the curve). This underlines the importance to measure the

tag phase as much as possible with the tag in front of the reader trajectory,

where the non linearity can help us to prevent phase ambiguities.

For simplicity we have called the various algorithms used as:

- Algorithm A: it refers to the algorithm present in literature that uses

the exponential function. The function to be maximized is in Section

2.4.

- Algorithm B: it refers to the algorithm deriving from the ML criterion.

The function to be maximized is in Section 2.3.1.

- Algorithm C: it refers to the algorithm presented in literature that

use the exponential function weighted with the received power. The

function to be maximized is in Section 2.4.

- Algorithm D: it refers to the algorithm derived from the ML criterion

that uses RSS measurements in additions to phase values. The function

to be maximized is in Section 2.3.2

Figure 5.4 and Figure 5.5 refers to the localization process using the four

76



CHAPTER 5. MEASUREMENT RESULTS

algorithms propose. Specifically, they show the functions whose maximum

indicates the tag position.

From Figure 5.6 to Figure 5.15 the localization is performed considering

the different algorithms using a portion of the total trajectory. We have

chosen only few central phase measurements (5, 7, 9 or 11 values) in order

to use values that belong to the non linear zone of the characteristic phase

trend; so the phase ambiguities could be limited. In general, decreasing the

number of phase measures N and consequently the length L of the trajectory

produces smoother correlation functions where the maximum location is more

ambiguous. This effect is amplified in the algorithms presented in literature,

that use the exponential function. Usually the algorithm B presents a sharper

principal peak than the other methods.

Figure 5.16 and Figure 5.18 show the localization of the tag using phase

measurements spaced respectively 0.2 meters and 0.3 meters along overall

trajectory.

In general, in all configurations, the algorithm D leads to a wrong local-

ization. The resultant correlation function is almost flat and presents a peak

not in the tag position. This behavior could be explained with the low reli-

ability and the randomness of the RSS values. In the 1D localization when

the distance between the reader trajectory and the tag is equal to 3 meters,

the function is still flat but it leads to a correct localization (see Appendix

A).

RSS values work better in the algorithm C where the function to be

maximized is exponential.

Table 5.1 and Table 5.2 present the results and the RMSE of the localiza-

tion for different configurations. N indicates the number of phase measures

used and L is the equivalent length of the trajectory. Looking at the table,

it is possible to see that the algorithm B, using the ML criterion, has for all

the configurations a performance equal or better than that of the algorithm

A. Only in the configuration with N = 5 and L = 0.8 m it presents a wrong

localization due to a secondary peak that grews decreasing the number of

phase values.

Another test done concerned the choice of the best phase values. In order

to use only the more reliable measurements, we implemented a threshold

model where a phase value was used in the algorithm only if its received
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power level satisfied a determined threshold. Table 5.3 and Table 5.4 show

the results of this analysis. A received phase value is used in the localization

process only if the corresponding RSS is included between the maximum

RSS along the trajectory and the latter less the threshold. The threshold

was not set in a unique manner, but relative to the maximum signal power

along the trajectory. Decreasing the threshold level less phase values are

used in the algorithms. Looking at the tables we notice that the localization

results with a threshold equal to 10-12 dB generally is equal or better than

the localization with all phase values measured. A threshold equal to 2 dB

causes a high RMSE because few phase measurements are collected.

The last experiment done in the 1D localization localization scenario con-

siders, a Monte Carlo simulations. Using one of the configurations seen be-

fore, in particular N = 7 and L = 0.6 m, Gaussian noise was added to the

reader position in order to discover the performance of the algorithms when

the information about the position is not precise. The test was repeated for

several noise variances. The results, shown in Table 5.5 and Table 5.6, reveal

that the noise on the reader position does not degrade significantly the local-

ization estimation provided that its standard deviation is lower than 0.032

m. Increasing the noise variance the resulting RMSE raises considerably.
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(a) Localization of the tag using algorithm A. Tag estimated in x=4.63 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=4.63 m.

Figure 5.4: Localization using algorithm A and B and 42 phase measure-

ments. True tag position: x=4.65 m. Reader trajectory-tag distance= 2

m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.625 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=7.465 m.

Figure 5.5: Localization using algorithm C and D and 42 phase measure-

ments. True tag position: x=4.65 m. Reader trajectory-tag distance= 2

m.
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(a) Localization of the tag using algorithm A. Tag estimated in x=4.64 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=4.645 m.

Figure 5.6: Localization with the 11 central measures spaced 0.1 m using

algorithm A and B. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.635 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=7.245 m.

Figure 5.7: Localization with the 11 central measures spaced 0.1 m using

algorithm C and D. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm A. Tag estimated in x=4.635 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=4.64 m.

Figure 5.8: Localization with the 9 central measures spaced 0.1 m using

algorithm A and B. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.605 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=7.465 m.

Figure 5.9: Localization with the 9 central measures spaced 0.1 m using

algorithm C and D. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.

84



CHAPTER 5. MEASUREMENT RESULTS

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Trajectory [m]

F
u
n
ct

io
n
 P

 n
o
rm

al
iz

ed

(a) Localization of the tag using algorithm A. Tag estimated in x=4.605 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=4.63 m.

Figure 5.10: Localization with the 7 central measures spaced 0.1 m using

algorithm A and B. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.605 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=7.565 m.

Figure 5.11: Localization with the 7 central measures spaced 0.1 m using

algorithm C and D. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm A. Tag estimated in x=4.585 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=4.635 m.

Figure 5.12: Localization with the 5 central measures spaced 0.1 m using

algorithm A and B. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.585 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=7.565 m.

Figure 5.13: Localization with the 5 central spaced 0.1 m measures using

algorithm C and D. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm A. Tag estimated in x=4.645 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=7.995 m.

Figure 5.14: Localization with the 5 central spaced 0.2 m measures using

algorithm A and B. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.62 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=3.635 m.

Figure 5.15: Localization with the 5 central measures spaced 0.2 m using

algorithm C and D. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm A. Tag estimated in x=4.625 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=4.625 m.

Figure 5.16: Localization with 21 phase measurements spaced 0.2 m measures

using algorithm A and B. True tag position: x=4.65 m. Reader trajectory-

tag distance= 2 m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.62 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=3.635 m.

Figure 5.17: Localization with 21 phase measurements spaced 0.2 m using

algorithm C and D. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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(a) Localization of the tag using algorithm A. Tag estimated in x=4.61 m.
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(b) Localization of the tag using algorithm B. Tag estimated in x=4.615 m.

Figure 5.18: Localization with 14 phase measurements spaced 0.3 m measures

using algorithm A and B. True tag position: x=4.65 m. Reader trajectory-

tag distance= 2 m.
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(a) Localization of the tag using algorithm C. Tag estimated in x=4.60 m.
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(b) Localization of the tag using algorithm D. Tag estimated in x=7.46 m.

Figure 5.19: Localization with 14 phase measurements spaced 0.3 m using

algorithm C and D. True tag position: x=4.65 m. Reader trajectory-tag

distance= 2 m.
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Algorithm A Algorithm B Algorithm C Algorithm D

x̂[m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m]

N=42, L=4m 4.63 0.02 4.63 0.02 4.625 0.025 7.465 2.815

N=11, L=1m 4.64 0.01 4.645 0.005 4.635 0.015 7.245 2.595

N=9, L=0.8m 4.635 0.015 4.64 0.01 4.635 0.015 7.465 2.815

N=7, L=0.6m 4.6050 0.045 4.63 0.02 4.605 0.045 7.565 2.915

N=5, L=0.4m 4.585 0.065 4.635 0.015 4.585 0.065 7.565 2.915

N=5, L=0.8m 4.645 0.005 7.995 3.345 4.645 0.005 3.635 1.015

N=21, L=4m 4.625 0.025 4.625 0.025 4.62 0.03 3.635 1.015

N=14, L=4m 4.61 0.04 4.615 0.035 4.60 0.05 7.46 2.81

Table 5.1: Results for the localization when reader trajectory and tag are

distant 2 meters. True tag position: x=4.65 m.

Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m]

N=42, L=4m 4.64 0.01 4.64 0.01 4.64 0.01 4.635 0.015

N=11, L=1m 4.645 0.005 4.645 0.005 4.645 0.005 4.64 0.01

N=9, L=0.8m 4.655 0.005 4.65 0 4.655 0.005 4.65 0

N=7, L=0.6m 4.68 0.03 4.675 0.025 4.695 0.045 4.73 0.08

N=5, L=0.4m 4.72 0.07 4.7 0.05 4.735 0.085 4.735 0.085

N=5, L=0.8m 4.645 0.005 4.485 0.165 4.64 0.01 3.12 1.53

N=21, L=4m 4.64 0.01 4.64 0.01 4.64 0.01 4.635 0.015

N=14, L=4m 4.635 0.015 4.63 0.02 4.635 0.015 4.635 0.015

Table 5.2: Results for the localization when reader trajectory and tag are

distant 3 meters. True tag position: x=4.65 m.

5.1.2 2D-Localization Results

The 2D-localization algorithm uses the phase measurements collected in the

linear trajectory for the previous test but in this case it assumes that the

distance between reader trajectory and tag in unknown. The algorithm must

localize the tag along the x-coordinate i.e., the position on the same direction

of the trajectory and along the y-coordinate; in other words find the distance

between reader’s trajectory and tag. In this case the correlation functions

generated by the algorithms are three dimensional (3D) curves where the

maximum indicates the estimated location of the tag.

In this configuration we performed the 2D localization using all phase
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Threshold [dBm]
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m]

20 4.63 0.02 4.63 0.02 4.625 0.025 7.465 2.815

15 4.625 0.025 4.63 0.02 4.62 0.03 7.465 2.815

12 4.62 0.03 4.63 0.02 4.62 0.03 7.465 2.815

10 4.6150 0.035 4.63 0.02 4.61 0.04 7.465 2.815

8 4.605 0.045 4.625 0.025 4.605 0.045 7.465 2.815

5 4.635 0.015 4.625 0.025 4.635 0.015 7.245 2.595

2 4.68 0.03 4.485 0.165 4.68 0.03 7.98 3.3

Table 5.3: Results for the localization using a threshold in order to choose

some phase values. Reader trajectory and tag are distant 2 meters. True tag

position: x=4.65 m.

Threshold [dBm]
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m] x̂ [m] RMSE [m]

20 4.64 0.01 4.64 0.01 4.64 0.01 4.635 0.015

15 4.64 0.01 4.64 0.01 4.64 0.01 4.635 0.015

12 4.645 0.005 4.645 0.005 4.64 0.01 4.635 0.015

10 4.64 0.01 4.645 0.005 4.64 0.01 4.635 0.015

8 4.635 0.015 4.63 0.02 4.635 0.015 4.63 0.02

5 4.63 0.02 4.625 0.025 4.63 0.02 4.625 0.025

2 4.655 0.005 4.655 0.005 4.655 0.005 4.655 0.005

Table 5.4: Results for the localization using a threshold in order to choose

some phase values. Reader trajectory and tag are distant 3 meters. True tag

position: x=4.65 m.

Standard Deviation [m]
Algorithm A Algorithm B Algorithm C Algorithm D

RMSE [m] RMSE [m] RMSE [m] RMSE [m]

0 0.046 0.018 0.046 2.23

0.003162 0.0461 0.0189 0.0461 2.1754

0.01 0.0468 0.0204 0.0462 2.1521

0.03162 0.0479 0.1716 0.0485 1.7176

0.1 0.1053 0.9825 0.0769 1.3942

0.3162 0.5429 1.2080 0.5935 1.5253

Table 5.5: Results for the localization adding gaussian noise on the reader

positions. Reader trajectory and tag are distant 2 meters. True tag position:

x=4.65 m.
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Standard Deviation [m]
Algorithm A Algorithm B Algorithm C Algorithm D

RMSE [m] RMSE [m] RMSE [m] RMSE [m]

0 0.03 0.025 0.03 0.02

0.003162 0.0299 0.023 0.0293 0.0207

0.01 0.0308 0.0237 0.0293 0.0217

0.03162 0.0354 0.0281 0.0345 0.2139

0.1 0.0610 0.0851 0.1006 0.7430

0.3162 0.5046 0.7178 0.5501 1.0501

Table 5.6: Results for the localization adding gaussian noise on the reader

positions. Reader trajectory and tag are distant 3 meters. True tag position:

x=4.65 m.

Figure 5.20: Monitored area example.

measurements in the area where the tag could be positioned, called as moni-

tored area, in order to mitigate the effects of the secondary lobes. The results

for different configurations are shown in Table 5.7 and Table 5.8. In tables

x̂ and ŷ indicate the estimated coordinates of the tag.

Monitored areas are squares centered on the position of the tag with side

indicated in the tables (see Figure 5.20). Tables show that the reduction of

the monitored area does not improve the localization result probably because

the SNR is always high in each configuration.

Looking at Figure 5.24 we can see that the algorithms that use the ML

criterion to localize the tag have the correlation function with narrower peak
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than other algorithms, implying a more accurate localization, but present

secondary peaks with amplitude similar to the main one.

In Figure 5.25 it is possible to see that the localization of the x-coordinate

of the tag presents a clear peak in the estimated position and the shape of the

curve, looking from the side of the trajectory, is equal to the corresponding

configuration in the 1D-localization. The y-coordinate estimation is harder

because the phase measures are taken along the x axis, so they do not include

reliable information about the distance between tag and reader. Effectively,

looking from the y side, the correlation function P presents a not well defined

peak.

Monitoring Area Side
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m]

Trajectory length 4.64 1.905 0.0955 4.62 1.8 0.2022 4.62 1.905 0.0996 4.62 1.89 0.114

50cm 4.63 1.89 0.1118 4.63 1.99 0.0224 4.63 1.9 0.1020 4.625 1.89 0.1128

100cm 4.63 1.89 0.1118 4.63 1.99 0.0224 4.63 1.9 0.1020 4.62 1.89 0.114

200cm 4.63 1.90 0.0955 4.63 1.8 0.2010 4.63 1.9 0.1020 4.61 1.8 0.2040

Table 5.7: Results for 2D localization. Reader trajectory and tag are distant

2 meters. True tag position p = (4.65, 2)m.

Monitoring Area Side
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m]

Trajectory length 4.65 3.08 0.08 4.65 3 0 4.65 3.08 0.08 4.65 3.08 0.08

50cm 4.64 3.08 0.0806 4.64 3.175 0.1753 4.64 3.09 0.0906 4.64 3.08 0.0806

100cm 4.64 3.08 0.0806 4.64 2.99 0.0141 4.64 3.09 0.0906 4.64 3.08 0.0806

200cm 4.65 3.08 0.08 4.65 3.18 0.18 4.63 3.1 0.1020 4.63 3.08 0.0825

Table 5.8: Results for 2D localization. Reader trajectory and tag are distant

3 meters. True tag position p = (4.65, 3)m.

5.2 Angular trajectory

Another considered measurement setup was an angular trajectory. The

reader is moving along a right angle trajectory around the tag where each

0.1 m performs a phase measurement (see Figure 5.26). The tag is located

in p = (1.5, 1.5) m and in the first setup its position is not parallel with

respect to any portion of the trajectory, so it can be read by each reader

spot. Instead, in the second setup, the tag is parallel to the x axis of the tra-

jectory. In this situation we have collected many phase measurements along

the x axis and few values when the reader is moving along the y axis because
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(a) 2D localization using algorithm A.

(b) 2D localization using algorithm B.

(c) 2D localization using algorithm C.

(d) 2D localization using algorithm D.

Figure 5.21: Localization with 42 phase measurements. True tag position

p = (4.65, 2)m.
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(a) 2D localization using algorithm A.
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(b) 2D localization using algorithm B.
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(c) 2D localization using algorithm C.
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(d) 2D localization using algorithm D.

Figure 5.22: Localization with 42 phase measurements in a monitored area

with side equal to 50 cm. True tag position p = (4.65, 2)m.
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(a) 2D localization using algorithm A.
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(b) 2D localization using algorithm B.
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(c) 2D localization using algorithm C.
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(d) 2D localization using algorithm D.

Figure 5.23: Localization with 42 phase measurements in a monitored area

with side equal to 100 cm. True tag position p = (4.65, 2)m.
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(a) 2D localization using algorithm A.
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(b) 2D localization using algorithm B.
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(c) 2D localization using algorithm C.
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(d) 2D localization using algorithm D.

Figure 5.24: Localization with 42 phase measurements in a monitored area

with side equal to 200 cm. True tag position p = (4.65, 2)m.
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(a) 2D localization using algorithm A looking the

function from the x axis.

(b) 2D localization using algorithm A looking the

function from the y axis.

Figure 5.25: Correlation function of the algorithm A using all phase mea-

surements viewed from x axis and y axis. True tag position p = (4.65, 2)m.
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Figure 5.26: Angular trajectory setup.

when the tag is orthogonal to the trajectory hardly it can be read due to its

antenna pattern. The reader antenna is always oriented to the target.

Table 5.9 and Table 5.10 show the results of the localization using all

phase measurements collected or only a restricted number N of values cen-

tered in the portion of the trajectory opposite to the tag location. Reducing

the number N of phase values used in the localization process slightly im-

proves the RMSE, but looking for example at Figure 5.27 and Figure 5.28, it

increases for all algorithms used, the amplitude of the secondary lobes raising

the probability of a wrong localization.

The localization of the x-coordinates when the tag is parallel to the x

axis using all the phase values collected is very precise, because we have a

lot of measures. Instead the y-coordinate localized has a high error because

it was possible to read the tag in few reader positions.

The last test implemented is the localization using phase measures re-

ceived with a certain power level. The threshold model used is the same as

the 1D localization in a linear trajectory i.e., a measured phase is used in

the process only if its received power level is between the maximum power
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received and the latter minus the threshold. In the case of tag not parallel

to any portion of the trajectory, using a threshold approximately equal to

8 dB or 5dB can slightly improve the localization. In the configuration of

tag parallel to a side of the trajectory, using this model increases the RMSE.

The results are reported in Table 5.11 and Table 5.12

In tables x̂ and ŷ indicate the estimated coordinates of the tag.

Phase measures used
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m]

All 1.56 1.56 0.0849 1.56 1.56 0.0849 1.56 1.56 0.0849 1.56 1.56 0.0849

N=5 1.515 1.50 0.015 1.485 1.485 0.0335 1.515 1.5 0.015 1.485 1.56 0.0618

N=9 1.56 1.545 0.075 1.575 1.575 0.096 1.575 1.56 0.096 1.575 1.56 0.096

Table 5.9: Results for the localization with an angular trajectory where the

tag is not parallel to any portion of the trajectory. N indicates the number

of central phase measurements used. True tag position p = (1.5, 1.5) m.

Phase measures used
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m]

All 1.5 1.635 0.135 1.5 1.635 0.135 1.5 1.635 0.135 1.5 1.74 0.24

N=5 1.62 1.485 0.1209 1.605 1.485 0.1016 1.62 1.485 0.1209 1.515 1.47 0.0335

N=9 1.62 1.485 0.1209 1.605 1.47 0.1092 1.53 1.335 0.1677 1.515 1.47 0.0335

Table 5.10: Results for the localization with an angular trajectory where

the tag is parallel to the x axis. N indicates the number of central phase

measurements used. True tag position p = (1.5, 1.5) m.
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(a) 2D localization using algorithm A.

(b) 2D localization using algorithm B.

(c) 2D localization using algorithm C.

(d) 2D localization using algorithm D.

Figure 5.27: Localization with all phase measurements in angular trajectory

with the tag not parallel to any portion of the trajectory. True tag position

p = (1.5, 1.5) m.
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(a) 2D localization using algorithm A.

(b) 2D localization using algorithm B.

(c) 2D localization using algorithm C.

(d) 2D localization using algorithm D.

Figure 5.28: Localization with the 5 central phase measurements in angular

trajectory with the tag not parallel to any portion of the trajectory. True

tag position p = (1.5, 1.5) m.
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(a) 2D localization using algorithm A.

(b) 2D localization using algorithm B.

(c) 2D localization using algorithm C.

(d) 2D localization using algorithm D.

Figure 5.29: Localization with all phase measurements in angular trajectory

with the tag parallel to the x-axis. True tag position p = (1.5, 1.5) m.
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(a) 2D localization using algorithm A.

(b) 2D localization using algorithm B.

(c) 2D localization using algorithm C.

(d) 2D localization using algorithm D.

Figure 5.30: Localization with the 5 central phase measurements in angular

trajectory with the tag parallel to the x-axis. True tag position p = (1.5, 1.5)

m.
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Threshold [dBm]
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m]

10 1.56 1.56 0.0849 1.56 1.56 0.0849 1.56 1.545 0.075 1.575 1.545 0.0875

8 1.56 1.545 0.075 1.56 1.56 0.0849 1.545 1.53 0.0541 1.575 1.56 0.096

5 1.545 1.53 0.0541 1.575 1.545 0.0875 1.545 1.53 0.0541 1.575 1.545 0.0875

3 1.545 1.515 0.0474 1.575 1.545 0.0875 1.545 1.515 0.0474 1.575 1.545 0.0875

Table 5.11: Results for the localization with an angular trajectory where the

tag is not parallel to any portion of the trajectory. A threshold is used to

select the phase measures. True tag position p = (1.5, 1.5) m.

Threshold [dBm]
Algorithm A Algorithm B Algorithm C Algorithm D

x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m] x̂ [m] ŷ [m] RMSE [m]

10 1.5 1.635 0.135 1.5 1.635 0.135 1.5 1.635 0.135 1.515 1.65 0.1507

8 1.5 1.635 0.135 1.5 1.635 0.135 1.5 1.635 0.135 1.515 1.65 0.1507

5 1.515 1.65 0.1507 1.515 1.65 0.1507 1.515 1.65 0.1507 1.5 1.635 0.135

3 1.515 1.65 0.1507 1.515 1.65 0.1507 1.515 1.65 0.1507 1.515 1.815 0.3154

Table 5.12: Results for the localization with an angular trajectory where the

tag is parallel to the x axis of the trajectory. A threshold is used to select

the phase measures. True tag position p = (1.5, 1.5) m.
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Conclusions

In this thesis the performance of RFID tag localization with virtual multi-

antenna systems were evaluated. First, the principal RFID phase-based local-

ization techniques present in literature were studied. Then, the ML estimator

for the considered problem was derived.

A Matlab simulator was built in order to evaluate the behavior of the

system and understand the parameters that influence the performance. We

discovered that a reader position not perfectly known can drastically affect

the RMSE of the estimated target location.

Successively, we carried out a measurement campaign in a real indoor

scenario moving the reader on a linear trajectory and on an angular trajec-

tory. Starting from the measurements taken in the two different configura-

tions we applied the algorithms proposed in order to see their differences.

We noticed that there is not a big difference in terms of localization error

between the algorithm derived from the ML criterion and the holographic

localization method proposed in literature. The first presents a correlation

function with a sharper main peak while the second has a smoother function.

This means that the ML criterion has a higher accuracy. This method also

presents secondary lobes with amplitude higher than the holographic local-

ization method. This increases the possibility of a wrong localization due

to ambiguity problems, which leads to outliers generated by high secondary

lobes.

Moreover, we discovered that the information about the RSS of the single

phase measures used in the localization process does not always improve the

performance.
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The resultant accuracy of the algorithms is on average equal to few cen-

timeters; in the worst cases seen the RMSE of the localization is always less

than 0.2 m.

Future developments of this work could consider the testing of the algo-

rithms using a real time automatic system in an environment with many tags

that can collect many phase measurements and accurate odometers to mea-

sure the distance between consecutive reader positions. Another research

aspect to be addressed could consider efficient methods for estimating the

relative distance of unknown tags with respect to reference tags present in

the environment.
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Appendix A

1D-Localization Results

This appendix shows the results obtained with 1D-localization when reader

trajectory and tag distance is equal to 3 meter.
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(a) Localization of the tag using algorithm A. Tag estimate in x =4.64 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.64 m.

Figure A.1: Localization using algorithm A and B and 42 the phase mea-

surements. True tag position: x =4.65 m. Reader trajectory-tag distance =

3 m.
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(a) Localization of the tag using algorithm C. Tag estimate in x =4.64 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =4.635 m.

Figure A.2: Localization using algorithm C and D and all the phase mea-

surements. True tag position: x =4.65 m. Reader trajectory-tag distance =

3 m.
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(a) Localization of the tag using algorithm A. Tag estimate in x =4.645 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.645 m.

Figure A.3: Localization with the 11 central measures spaced 0.1 m using

algorithm A and B. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.

116



APPENDIX A. 1D-LOCALIZATION RESULTS

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Trajectory [m]

F
u
n
ct

io
n
 P

 n
o
rm

al
iz

ed

(a) Localization of the tag using algorithm C. Tag estimate in x =4.645 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =4.64 m.

Figure A.4: Localization with the 11 central measures spaced 0.1 m using

algorithm C and D. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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(a) Localization of the tag using algorithm A. Tag estimate in x =4.655 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.65 m.

Figure A.5: Localization with the 9 central measures spaced 0.1 m using

algorithm A and B. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.

118



APPENDIX A. 1D-LOCALIZATION RESULTS

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Trajectory [m]

F
u
n
ct

io
n
 P

 n
o
rm

al
iz

ed

(a) Localization of the tag using algorithm C. Tag estimate in x =4.655 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =4.65 m.

Figure A.6: Localization with the 9 central measures spaced 0.1 m using

algorithm C and D. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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(a) Localization of the tag using algorithm A. Tag estimate in x =4.68 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.675 m.

Figure A.7: Localization with the 7 central measures spaced 0.1 m using

algorithm A and B. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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(a) Localization of the tag using algorithm C. Tag estimate in x =4.695 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =4.73 m.

Figure A.8: Localization with the 7 central measures spaced 0.1 m using

algorithm C and D. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.

121



APPENDIX A. 1D-LOCALIZATION RESULTS

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Trajectory [m]

F
u
n
ct

io
n
 P

 n
o
rm

al
iz

ed

(a) Localization of the tag using algorithm A. Tag estimate in x =4.7 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.7 m.

Figure A.9: Localization with the 5 central measures spaced 0.1 m using

algorithm A and B. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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(a) Localization of the tag using algorithm C. Tag estimate in x =4.735 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =4.735 m.

Figure A.10: Localization with the 5 central spaced 0.1 m measures using

algorithm C and D. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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(a) Localization of the tag using algorithm A. Tag estimate in x =4.645 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.485 m.

Figure A.11: Localization with the 5 central spaced 0.2 m measures using

algorithm A and B. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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(a) Localization of the tag using algorithm C. Tag estimate in x =4.64 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =3.12 m.

Figure A.12: Localization with the 5 central measures spaced 0.2 m using

algorithm C and D. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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(a) Localization of the tag using algorithm A. Tag estimate in x =4.645 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.485 m.

Figure A.13: Localization with 21 phase measurements spaced 0.2 m mea-

sures using algorithm A and B. True tag position: x =4.65 m. Reader

trajectory-tag distance = 3 m.
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(a) Localization of the tag using algorithm C. Tag estimate in x =4.64 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =4.635 m.

Figure A.14: Localization with 21 phase measurements spaced 0.2 m using

algorithm C and D. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.

127



APPENDIX A. 1D-LOCALIZATION RESULTS

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Trajectory [m]

F
u
n
ct

io
n
 P

 n
o
rm

al
iz

ed

(a) Localization of the tag using algorithm A. Tag estimate in x =4.635 m.
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(b) Localization of the tag using algorithm B. Tag estimate in x =4.63 m.

Figure A.15: Localization with 14 phase measurements spaced 0.3 m mea-

sures using algorithm A and B. True tag position: x =4.65 m. Reader

trajectory-tag distance = 3 m.
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(a) Localization of the tag using algorithm C. Tag estimate in x =4.635 m.
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(b) Localization of the tag using algorithm D. Tag estimate in x =4.635 m.

Figure A.16: Localization with 14 phase measurements spaced 0.3 m using

algorithm C and D. True tag position: x =4.65 m. Reader trajectory-tag

distance = 3 m.
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