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Sommario

L’indagine ha riguardato il profilo del vento nei primi 30 metri dello strato limite atmosferico
stabile nell’ambito della teoria di similarità locale formulata da Nieuwstadt nel 1984 come
estensione della similarità di Monin-Obukhov (1954). Ad oggi, diversi esperimenti hanno
confermato la validità della teoria per strati-limite stabili (almeno per 0 < z/Λ . 1, z,
altezza dal suolo e Λ, lunghezza di Obukhov locale) su terreni che si avvicinavano il più
possibile alla condizione ideale di superficie piatta e omogenea. Tuttavia, tali superfici
sono piuttosto rare ed è perciò interessante comprendere quali siano i limiti di validità
della teoria in condizioni di terreno complesso e superfici non uniformi.

Entrambe le condizioni sono presenti a Ny-Ålesund, Svalbard (Norvegia) dove si trova
la Climate Change Tower (CCT): una torre alta 30m gestita dal Consiglio Nazionale delle
Ricerche (CNR). La torre si trova a circa 1 km dalla costa, in un fiordo artico, su terreni
ondulati e a distanza di qualche kilometro da montagne che raggiungono i 700m di altezza.

Parte delle misure di vento (da quattro anemometri a elica) e di turbolenza (da tre
anemoetri sonici) acquisite sulla CCT, da Maggio 2012 a Maggio 2013, sono state analizzate
nell’ambito della teoria della similarità locale. In particolare, la dipendenza del gradiente
verticale adimensionale della velocità del vento, φm, dal parametro di stabilità, z/Λ, è
stata valuatata a tre altezze dal suolo (z = 3.7, 7.5 e 20.5m) coincidenti con le quote a cui
le misure di turbolenza erano acquisite.

Il raffronto tra le misure di vento provenienti dai diversi anemometri presenti sulla
torre ha evidenziato deviazioni sistematiche tra il dato sonico e quello ad elica che hanno
suggertito diverse influenze della torre su i due tipi di strumenti.

I gradienti del vento ottenuti fittando le osservazioni con profili contenenti un andamento
logaritmico o interpolandole con splines (cubiche o lineari) in ln z sono risultati in generale
poco sensibili al metodo utilizzato. Metodi diversi hanno presentato però risposte diverse
alla presenza di una dipslacement height incognita nel profilo osservato.

Deviazioni significative sono state riscontrate tra le relazioni di flusso-gradiente osservate
e quelle maggiormente utlizzate (derivate da osservazioni su terreni piatti) in particolare
per i livelli più distanti dal suolo. Tali deviazioni hanno mostrato una dipendenza da z/Λ.
Per z/Λ . 0.1, valori di φm più grandi di quelli attesi sono risultati associati a flussi di
calore piccoli e anomali, a una perdità di validità di Λ come parametro di stabilità e a un
apparente disaccoppiamento tra la superficie e l’atmosfera sovrastante. Tale comportamento
è stato riscontrato per venti che soffiavano dal mare verso la costa ed è stato attribuito
alla formazione di strati-limite interni. Per z/Λ & 0.1, invece, valori di φm inferiori a quelli
attesi, e decrescenti con la quota, sono stati attribuiti a fenomeni di accentuazione della
turbolenza ad opera delle irregolarità del terreno. Non è stato possibile ecludere tuttavia
che parte del comportamento osservato avesse origini strumentali.

Il livello di self-correlazione presente nelle relazioni di flusso-gradiente osservate è stato
stimato derivando l’espressione per il coefficiente di self-correlazione lineare tra φm e z/Λ a
causa della dipendenza congiunta dal flusso di momento. Inoltre, i livelli di sigificatività
della correlazione osservata sono stati ottenuti dalle funzioni di distribuzione empiriche del
coefficiente di self-correlazione determinate tramite la generazione di dataset casuali. In
generale, le relazioni di flusso-gradiente osservate sono risultate affette da self-correlazione
in modo significativo o comunque non trascurabile, in particolare per i livelli più distanti
dal suolo.
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Abstract

The main topic of the research work was the wind profile in the first 30 meters of the stably
stratified atmospheric boundary layer, studied in the framework of local similarity theory,
developed by Nieuwstadt in 1984 as an extension of Monin-Obukhov similarity theory
(1954). Several experiments, carried out on almost flat and homogeneous terrain, have
confirmed the theory in stable conditions, at least for the range 0 < z/Λ . 1 (z, the height
above ground and Λ, the local Obukhov length). This ideal surfaces, however, are not very
common and it is then of some interest to asses the limits of the theory on complex terrain
and heterogeneous surfaces.

Both these conditions are encountered at Ny-Ålesund, Svalbard (Norway), where in
2009 the Italian National Council of Research (CNR) placed a 30-m high tower: the Climate
Change Tower (CCT). The tower is located at about 1 km from the coast of an arctic fjord,
on undulated terrain with up to 700-m high mountains few kilometers far.

Some of wind and turbulence measurements acquired on the CCT by four propeller-vane
and three sonic anemometers from May 2012 to May 2013 were analyzed in the framework
of local similarity theory. In particular, the relation between the dimensionless vertical
gradient of wind speed, φm, and the stability parameter, z/Λ was evaluated at three levels
where turbulence measurement were carried out (z = 3.7, 7.5 and 20.5m).

The comparison between wind speed observations from all the anemometers on the
CCT has revealed systematic deviations between sonic and propeller readings suggesting
uneven influences of the tower’s structure on the two instrument types.

An intercomparison between wind speed gradients have shown little sensitivity to the
method of estimation when observations were fitted with a profile containing a logarithmic
behavior or interpolated with splines (linear or cubic) in ln z. However, different methods
have shown different sensitivity to an unknown displacement height.

Deviations between observed and expected φm from most used flux-gradient relationships
(derived on flat terrain) were observed, particularly at the highest levels. For low stabilities
(i.e. z/Λ . 0.1), higher than expected φm, caused by anomalously small heat fluxes and
Λ, were attributed to a thermal decoupling between surface and the atmosphere above
arising from on-shore flows. For higher stabilities (i.e. z/Λ & 0.1), lower than expected
and decreasing with height values of φm were inputed to enhanced turbulence by complex
terrain although instrumental effects were not completely ruled out.

To asses the level of self-correlation affecting observed flux-gradient relationships, the ex-
pression for the linear self-correlation coefficient between φm and z/Λ, because of the shared
variable u∗ (the friction velocity), was derived. Furthermore, the estimation of the strength
of the observed correlation from empirical distribution functions of the self-correlation
index, derived through random datasets generation, is also proposed. Overall, observed
flux-gradient relationships resulted significantly affected by self-correlation, especially for
the highest observational levels.
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Introduction

The boundary layer meteorology studies the part of the atmosphere most influenced by the
earth’s surface. Indicatively, the planetary boundary layer (PBL) extends from the ground
up to about 1-2 km (Kaimal and Finnigan, 1994; Stull, 1988), although diurnal, seasonal
and geographical variations in PBL’s height are large. It is in this layer where exchanges
of momentum, heat, water vapor and other species, between the earth’s surface and the
atmosphere, take place. Here pollutants are released by human activities, plants grow up
and biosphere-atmosphere interactions occur. Here, global circulation models have their
lowest levels.

We have all experienced boundary layer phenomena since «From our first breath, we
spend most of our lives near the earth’s surface.» (Stull, 1988). Breezes, fog, fair weather
cumulus clouds on sunny days, dust devils, the looping smoke plume from a chimney are
among these. However, despite of their “daily” occurrence, all these phenomena hide a
fascinating complexity, which is peculiar of all PBL meteorology.

Indeed, PBL’s flows are dominated by turbulence, the chaotic and unpredictable motion
of fluids. This make the study of the PBL challenging both from a theoretical and an
experimental point of view.

Theoretically, PBL’s dynamic is described by the Navier-Stokes equations, non-linear
partial differential equations, for which no exact solution exists. It is usual, in turbulence
research, to express the fluid motion as a superposition of a mean flow (obtained from
time, space or, at leas theoretically, ensemble averages of the observed one) and turbulence.
However, because of non-linearity, it is not possible to separate the description of the mean
component from the turbulent one. Mathematically, the prognostic equations for the mean
flow are unclosed since they contain (unknown) turbulence-related terms. Closures can be
obtained approximating turbulence-related terms as functions of mean flow variables.

Acquisition and processing of boundary layer data is also a difficult task. Fast-response
sensors able to capture the rapid fluctuations of meteorological variables due to turbulent
motions were employed not earlier than 50 years ago. The development of sonic anemometry
around 1960 (Wyngaard, 1981) represented a great advance in the capability of measuring
turbulence. The first systematic use of sonic anemometers in a field program goes back
to the 1968 Kansas experiment (Businger et al., 1971; Haugen et al., 1971), from which
some results are still used today. However, measuring turbulence present still many issues
because high accuracy and resolution are required.

Important advances in turbulence description were obtained from semi-empirical theo-
ries, starting from observations and organizing them by mean of dimensional arguments.
Similarity theories are among them. They states that, when properly adimensionalized,
observations from different experiments should follow the same universal law.

In 1954, the two Russian scientists A. S.Monin and A.M.Obukhov proposed a similarity
theory for the profile of mean variables (wind speed, temperature, humidity and other

ix



x Introduction

passive tracers) in the thermally stratified, horizontally homogeneous and quasi-stationary
surface layer. In this layer, that occupies roughly the lowest 10% of the whole boundary
layer (Stull, 1988) turbulent fluxes do not vary significantly with height and meteorological
variables experience their sharpest gradients (Kaimal and Finnigan, 1994). This means
that turbulence is driven primarily by gradients of mean variables leading to the concept
of flux-gradient relationship.

In 1984, Nieuwstadt proposed to extend Monin-Obukhov similarity theory (MOST)
above the surface layer, in the stably stratified boundary layer, substituting surface scales
with local ones and leading to the so called local similarity theory.

Since the formulation of MOST and the possibility to measure turbulent fluxes directly,
many surface-layer experiments were conducted for the determination of flux-gradient
relationships, mainly over almost flat terrain and homogeneous surfaces. The behaviour of
the theory over complex terrain have received recently more attention.

The flux-gradient relations from different experiments show the largest differences for
very stable conditions. Also in numerical models that uses flux-profile relationships based
on MOST, the largest deviations between predicted and observed fluxes occur for the SBL,
especially during winter at higher latitudes (Cheng and Brutsaert, 2005b). These elements
suggest that some limitations can exist in the applicability of MOST for stable, or very
stable, conditions. It is further no clear if the adoption of local scaling improve similarity
(Grachev et al., 2007b).

On the effects causing these deviations for the SBL there is still debate. Indeed, the SBL
is characterized by many phenomena that can lead to the break-down of the flux-gradient
mechanism: e.g. low level jets, intermittent turbulence, breaking and non-breaking gravity
waves, Kelvin-Helmholtz instability (Cheng and Brutsaert, 2005b).

The Admundsen-Nobile Climate Change Tower (CCT) placed at Ny-Ålesund, Svalbard
(Norway), by the Italian National Council of Research (CNR) represents a unique opportu-
nity to study the lowest part of the arctic stable boundary layer over non ideal terrain. In
the present work, some of the wind speed and turbulence measurement acquired on the
CCT from May 2012 to May 2014 are analyzed in the framework of local similarity theory,
comparing observations with most used flux-gradient relationships derived over flat and
homogeneous surfaces. Particular attention is dedicated also on data selection and analysis
methods.

In chapter 1, the theoretical framework in which CCT data were analyzed, with
particular attention to similarity theories, is presented. In chapter 2, a brief description of
the experimental site, with particular regard to its morphology, and CCT instrumentation
is given. In chapter 3, results for the CCT dataset are presented. Conclusions and possible
future research are also discussed.



Chapter 1

Theoretical framework

The focus of this study is the wind profile in the lowest tens of meters of the stably stratified
atmospheric boundary layer. This chapter should give the main elements of the theoretical
framework in which PBL observations and results are interpreted.

After a qualitative description of the main features of the planetary boundary layer
(PBL) and its states (section 1.1), whit particular attention to the stably stratified case,
equations governing PBL flows and empirical theories that have produced important
advances in PBL description are presented.

The physic of the planetary boundary layer is the physic of turbulent flows. In
sections 1.2 to 1.4, governing equations, mathematical tools and simplifications adopted in
the theoric description of turbulent geophysical flows were presented. Sections 1.5 to 1.9
regard to the surface layer (lowest 10% of the PBL) with particular attention dedicated to
Monin-Obukov similarity theory. Finally, in section 1.10, main aspects of local similarity
theory, which is the extension of Monin-Obukov similarity for the whole stable boundary
layer, are discussed.

1.1 The Planetary Boundary Layer over land

Conventionally, the earth’s atmosphere extends from the surface to about 100 km where
begins the space. However, about 90% of the mass of the atmosphere is concentrated
in the lowest 10 km : the troposphere (the lowest 10% of the atmosphere). It is here
where meteorological phenomena occur. The earth’s surface is a lower boundary for the
atmosphere. The part of the atmosphere most influenced by this boundary is the planetary
boundary layer (PBL). The PBL height varies in time and space. During a sunny day, in
mid latitudes over land it is about 1 km (the lowest 10% of the troposphere). There is a
layer even more influenced by the presence of the earth’s surface which occupies about the
first 10% of the PBL depth : the surface layer.

In some general sense, this study refers to the surface-layer, since analyzed observations
were collected in the lowest tens of meters of the atmosphere. This can not be true, however,
when the PBL height is small and the surface layer concentrated very near to the surface.
These conditions can occur in conditions of stable stratification, which was just the focus
of this study.

Over land in high pressure conditions (i.e. fair weather), the PBL has a well defined
structure that evolves with the diurnal cycle (fig. 1.1).

During day, from some hours after sunrise to before sunset, a convective or well mixed
boundary layer forms. Convectively driven turbulence is maintained by the ground heating
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2 Chapter 1. Theoretical framework

Figure 1.1: The diurnal evolution of the planetary boundary layer over land (rielaboration from
Stull, 1988).

Figure 1.2: Sodar facsimile for a nocturnal stable boundary layer (from Argentini et al., 2012).
In this case the SBL top is below 50m.

from solar radiation. Positively buoyant raising air parcels can organize into thermals which
may generate cumulus clouds (fair weather cumulus). “Dust-devils” are other phenomena
occurring in the CBL. The convective boundary layer (CBL) grows from the top, with
the entrainment of less turbulent and stably stratified air of the free atmosphere. The
temperature profile is super-adiabatic near the surface and a temperature inversion caps
the CBL at the top. In the CBL, wind speed, temperature and humidity profiles are almost
constant with height due to the strong turbulent mixing. The CBL reaches its maximum
depth in the late afternoon.

Slightly before sunset, the ground starts to cool-down interrupting the feeding of
turbulence that begins to decay. The PBL maintains some of the characteristics of the
formerly well mixed layer and it is thus called the residual layer (RL). As the ground cools-
down further, the lowest part of the residual layer is transformed in the stable boundary
layer (SBL). The RL is thus isolated from the ground, maintaining its neutral stratification
and cooling slowly during the night by radiative emission. As the night progresses the SBL
grows from stabilization of the lowest part of the RL.

Contrary to the CBL, the SBL has not a well defined top. Furthermore it is charac-
terized by weak and intermittent turbulence with small vertical mixing. Since the stable
stratification, gravity waves are also present in the SBL. Reduced mixing and waves are
responsible for the wavy layered structure observed in sodar echoes of light winds SBLs
(fig. 1.2). Each layer is almost disconnected from the surface leading to the so called z-less
stratification (section 1.10). Since reduced vertical mixing and light winds, pollutants
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concentration builds-up and fog can form is the SBL.
A temperature inversion characterize the SBL (fig. 1.1): i.e. virtual potential tempera-

ture decreases with height until the almost-adiabatic profile of the RL is encountered at
the SBL top. The wind profile in the SBL can show quite peculiar characteristics. Indeed,
despite light or calm winds near the ground, a wind maximum (a “nose”) in the wind
profile can be observed at the stable boundary layer top, at about 100m from the ground
(the wind maximum is indeed used to define the SBL height). This is a manifestation of a
low-level or nocturnal jet. The term “jet” is used although the wind speed maximum can
not be confined in the horizontal direction forming a layer, instead of a jet, with high wind
speed. Low-level jets can be related to katabatic or drainage flows over sloped terrains.

Stable conditions can occur also when warm air is advected over a cooler surface.
At high latitudes, when the sun is low above the horizon or polar night is present long
lived stable boundary layers onset. In this case, the diurnal cycle of the boundary layer
disappears and the SBL can last several days (or even months).

At least in principle, the existence of the surface layer does not depend on stability
conditions (fig. 1.1) although its height varies according to PBL height. In the lowest few
centimeters of air, a microlayer or interfacial layer, where molecular transport dominates,
has also been individuated (Stull, 1988).

As a new day begins and , after sunrise, a CBL forms again (fig. 1.1) growing from
entrainment of nocturnal SBL air. The growth accelerates when the RL is reached.

1.2 The PBL governing equations

The fluid motion in the PBL is described by the Navier-Stokes equations (e.g. Stull, 1988):

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ fv + ν

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(1.1a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂p

∂y
− fu+ ν

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
(1.1b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂p

∂z
− g + ν

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
, (1.1c)

where the meteorological system is adopted: vertical z-axis aligned with the acceleration
of gravity, x-axis pointing east and y-axis pointing north. In (1.1), u, v and w are the
westerly, the southerly and the vertical components of the fluid velocity vector; ρ is the
fluid density and p, the pressure; f = 2Ω sinφ is the Coriolis parameter, Ω = 7× 10−5 s−1,
the angular speed of earth’s rotation and φ, the latitude; ν is the kinematic viscosity of
the fluid and it assumed constant, for air ν = 1.5 × 10−5 m2 s−1; g = 9.8m s−2 is the
acceleration due to gravity.

The conservation of mass is expressed by the continuity equation:

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= −ρ

(
∂u

∂x
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)
. (1.2)

Pressure, density and virtual temperature Tv are related by the equation of state for
ideal gases:

p = RρTv (1.3)
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where R = 287 J K−1 kg−1 is the gas constant for dry air and

Tv = T (1 + 0.61q) (1.4)

for moist unsaturated air (e.g. Wyngaard, 2010), T , the absolute temperature of air and q,
the specific humidity (mass of water vapor per mass of moist air).

Instead of the equation for absolute temperature is more convenient to consider that
for the potential temperature, θ:

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
+ w

∂θ

∂z
= νθ

(
∂2θ

∂x2 + ∂2θ

∂y2 + ∂2θ

∂z2

)
− 1
ρcp

(
∂Q∗x
∂x

+
∂Q∗y
∂y

+ ∂Q∗x
∂z

)
(1.5)

where the contribution from latent heat because of water changes of phase is neglected,
νθ = k/(ρcp) = 2× 10−5 m2 s−1 (k = 2.5× 10−2 W m−1 K−1, the thermal conductivity of
air and cp = 1× 103 J K−1 kg−1, the specific heat at constant pressure) and Q∗i is the net
flux of radiation (W m−2) in the i-th direction.

The potential temperature and the absolute temperature are related by the Poisson’s
equation:

θ = T

(
p0
p

) R
cp

, (1.6)

where p0 is some reference pressure, typically p0 = 1000 hPa. Furthermore, a relation
between the virtual potential temperature, θv, and the potential temperature, θ, can be
written as for (1.4):

θv = θ(1 + 0.61q). (1.7)
Finally, the equation for the conservation of water vapor, i.e. ρv = qρ, ρ, density of

moist air, neglecting sink/source terms, is

∂ρv
∂t

+ u
∂ρv
∂x

+ v
∂ρv
∂y

+ w
∂ρv
∂z

= νv

(
∂2ρv
∂x2 + ∂2ρv

∂y2 + ∂2ρv
∂z2

)
, (1.8)

νq, the molecular diffusivity of water vapor.

1.3 The Boussinesq approximation
The Boussinesq approximation states that: (i) the variations in the fluid density are
neglected in the mass continuity equation (1.2) and in the equations of motion (1.1) with
the exception of the buoyancy term in (1.1c); (ii) the contribution from pressure fluctuations
to density fluctuations can be neglected (Mahrt, 1986).

Following Spiegel and Veronis (1960), let us consider a basic state of the PBL in which
the atmosphere is at rest (u = v = w = 0) and write all thermodynamic variables as a
superposition of the basic state (e.g. ρ0(z)) and a perturbation due to fluid motion (e.g.
ρ̃(x, y, z, t)):

ρ(x, y, z, t) = ρ̃(x, y, z, t) + ρ0(z) (1.9)
p(x, y, z, t) = p̃(x, y, z, t) + p0(z) (1.10)
Tv(x, y, z, t) = T̃v(x, y, z, t) + Tv0(z). (1.11)

From (1.1) and (1.3) (taking u = v = w = 0) we have that the basic state in in hydrostatic
equilibrium:

dp0
dz

= −gρ0(z). (1.12)
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Defining the scale height

H ≡
∣∣∣∣ 1
ρ0

dρ0
dz

∣∣∣∣−1
, (1.13)

if h is the scale of vertical motions (the PBL depth), the Boussinesq approximation can be
adopted if h� H. Furthermore, in this case, the relative variation of ρ0 through the layer
is small and we can further take ρ0 ≈ ρ00 = const., where ρ00 is some representative value
of the layer.

Furthermore, if the thermodynamic perturbations induced by the motion are much
smaller than the basic state values (i.e. |ρ̃/ρ0| � 1, |T̃v/Tv0| � 1 and |p̃/p0| � 1) we can
linearize the equation of state (1.3) as

ρ̃

ρ0
≈ − T̃v

Tv0
+ p̃

p0
(1.14)

and, further
ρ̃

ρ0
≈ − T̃v

Tv0
≈ − θ̃v

θv0
, (1.15)

since pressure fluctuations are much smaller than temperature ones (Spiegel and Veronis,
1960). This means that the buoyancy term can be expressed in term of temperature
fluctuations that can be measured more easily.

The equations of motion (1.1) under the Boussinesq approximation become
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p̃

∂x
+ fv + ν

(
∂2u

∂x2 + ∂2u

∂y2 + ∂2u

∂z2

)
(1.16a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ0

∂p̃

∂y
− fu+ ν

(
∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2

)
(1.16b)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ0

∂p̃

∂z
+ g

θ̃v
θv0

+ ν

(
∂2w

∂x2 + ∂2w

∂y2 + ∂2w

∂z2

)
. (1.16c)

In (1.16), the further approximation ρ0 ≈ ρ00 = const. and θv0 ≈ θv00 = const. can be
adopted, where ρ00 and θv00 are representative values for the whole boundary layer.

The continuity equation becomes that of an incompressible fluid:
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0. (1.17)

The equation for the potential temperature is obtained from (1.5), taking θv(x, y, z, t) =
θ0(z) + θ̃v(x, y, z, t),

∂θ̃

∂t
+ u

∂θ̃

∂x
+ v

∂θ̃

∂y
+ w

∂θ̃

∂z
= −wdθ0

dz
+ νθ

(
∂2θ̃

∂x2 + ∂2θ̃

∂y2 + ∂2θ̃

∂z2 + d2θ0
dz2

)
(1.18)

where the radiative flux-divergence term was neglected.
The equation for the water vapor (1.8) can be written for the specific humidity,

q ≈ ρv/ρ0, dividing both sides for ρ0:
∂q̃

∂t
+ u

∂q̃

∂x
+ v

∂q̃

∂y
+ w

∂q̃

∂z
= −wdq0

dz
+ νv

(
∂2q̃

∂x2 + ∂2q̃

∂y2 + ∂2q̃

∂z2 + d2q0
dz2

)
. (1.19)

Finally we have
θv0 = θ0(1 + 0.61q0) (1.20)

and
θ̃v = θ̃(1 + 0.61q̃) + 0.61(q̃θ0 + q0θ̃). (1.21)
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1.4 Mean and turbulent motion

It is common in turbulence research to separate the contribution of the mean motion from
the turbulent one to the observed flow. This separation has some physical ground in the
existence of a spectral gap in the spectrum of turbulent flows, which separates large scale
(mean) motions from small scale (turbulent) ones. However, as pointed out by Wyngaard
(2010), the mean flow should be regarded only as a statistical description of the observed
one.

1.4.1 Reynolds averaging

With Reynolds averaging the contribution of the mean motion to the observed flow
is separated from that of turbulence. At least, theoretically Reynolds averaging is an
ensemble averaging: i.e. the average between many independent realizations of the same
flow. Practically, ensemble averages are substituted by time or space averages. Also
Reynolds, in 1895, introduced this method for volume average although using ensemble
average rules.

In this way, each variable a can be decomposed as a sum of a mean value a and a
fluctuation a′:

a = a+ a′ with a = a and a′ = 0. (1.22)

Furthermore
a+ b = a+ b and ab = ab+ a′b′, (1.23)

where a′b′ is the covariance between a and b. Only if two variables are uncorrelated, i.e.
a′b′ = 0, the average of the product equals the product of the averages. As will be shown,
covariances and variances have a key role in turbulence description.

The ensemble average commutes with the derivation:

∂a

∂x
= ∂a

∂x
,

∂a

∂y
= ∂a

∂y
,

∂a

∂z
= ∂a

∂z
, and ∂a

∂t
= ∂a

∂t
. (1.24)

This not holds rigorously when time or space averages are consider.

1.4.2 Equations for mean variables

Equations for mean variables are obtained expressing all variables as sums of averages and
fluctuations in the set of equations under Boussinesq approximation and averaging them.
The averaged equations are (1.16), (1.17), (1.18), (1.19) and (1.21).

The averaged Navier-Stokes equation (1.16) is

∂ui
∂t

+uj
∂ui
∂xj

= − 1
ρ00

∂p

∂xi
+g

θv
θv00

δi3 +fεij3uj−
∂u′ju

′
i

∂xj
+ν

∂2ui
∂xj∂xj

for i = 1, 2, 3 (1.25)

where x1 = x, x2 = y, x3 = z, u1 = u, u2 = v and u3 = w, the convention of sum over
repeated indexes is adopted and all mean thermodynamic variables are deviations from
the motionless hydrostatic basic state (i.e. θv ≡ θ̃v and p ≡ p̃). To obtain (1.25) the
incompressibility of turbulent fluctuations (1.27) is used.

The covariances u′ju′i appeared in (1.25) can be interpreted as the kinematic flux of the
i-th momentum component along the j-th direction due to turbulent motion, or vice versa
(e.g. Stull (1988)); τij = −ρ00u′iu

′
j is called Reynolds stress.
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From (1.17), the incompressibility of mean motion

∂uj
∂xj

= 0. (1.26)

and fluctuations
∂u′j
∂xj

= 0 (1.27)

is readily obtained.
Neglecting the radiative flux-divergence term, the equation of mean potential tempera-

ture is obtained from (1.5) using again (1.27):

∂θ

∂t
+ uj

∂θ

∂xj
= −u3

dθ0
dx3
−
∂u′jθ

′

∂xj
+ νθ

∂2θ

∂xj∂xj
+ νθ

d2θ0
dx2

3
(1.28)

In this case, the divergence of the turbulent flux of potential temperature in the j-th
direction, u′jθ, is present; the turbulent flux of sensible heat being ρ00cpu′jθ.

The conservation equation for the mean specific humidity, q, from (1.19), is

∂q

∂t
+ uj

∂q

∂xj
= −u3

dq0
dx3
−
∂u′jq

′

∂x′j
+ νv

∂2q

∂xj∂xj
+ νv

d2q0
dx2

3
, (1.29)

where ρ00u′jq
′ is the turbulent flux of water vapor in the j-th direction.

The set is closed by the expression for the mean virtual potential temperature (from
(1.7)):

θv ≈ θ(1 + 0.61q) + 0.61(θ0q + θq0) (1.30)

supposing that |θ′q′| � θq.
The set of equations (1.25), (1.26), (1.28), (1.29) and (1.30) is unclosed since equations

for turbulent fluxes (covariances) are also needed. However, equations for second order
moments require equations for third order moments, and so on. The problem is then
mathematical intractable, unless higher order moments are expressed as functions of lower
ones, i.e., unless closures are found.

1.4.3 The equation for the turbulent kinetic energy

Among all the prognostic equations for second order moments (variances and covariances),
a key role is played by that for the turbulent kinetic energy (TKE) e = (u′2 + v′2 + w′2)/2
(e.g. Stull (1988)):

∂e

∂t︸︷︷︸
i

+uj
∂e

∂xj︸ ︷︷ ︸
ii

= −u′iu′j
∂ui
∂xj︸ ︷︷ ︸

iii

+ g

θv00
u′3θ
′
v︸ ︷︷ ︸

iv

−
∂u′je

∂xj︸ ︷︷ ︸
v

− 1
ρ00

∂u′jp
′

∂xj︸ ︷︷ ︸
vi

− ε︸︷︷︸
vii

. (1.31)

where e = (u′2 + v′2 + w′2)/2 and

ε = ν
∂u′i∂u

′
i

∂xj∂xj
. (1.32)

The physical meaning of each term is explained below:

i. local storage of TKE.
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ii. TKE advection by mean flow.

iii. mechanical or shear production term: the kinematic flux of momentum u′iu
′
j is usually

in the opposite direction of the gradient ∂ui/∂xj making this term positive. This is
a source term in TKE equation and a sink one in the equation for the kinetic energy
of the mean flow.

iv. buoyant production or consumption: when u′3θ′ > 0, potential energy is transformed
into kinetic one and the strength of turbulence increasing (convective boundary layer);
when u′3θ′ < 0, the opposite is true (stable boundary layer).

v. turbulent transport of TKE.

vi. pressure correlation term: redistribution of TKE by pressure perturbations.

vii. viscous dissipation: TKE is transformed into heat at the smallest scales, this term
is always a sink of TKE:. This means that TKE is conserved, i.e. the PBL remains
turbulent, only if generation or transport processes are acting.

A simplified expression for the TKE budget (1.32) can be obtained assuming horizontal
homogeneity, no subsidence and aligning the coordinate system with the mean wind,
assuming no wind rotation with height, (Stull, 1988):

∂e

∂t
= −u′w′∂u

∂z
+ g

θv00
w′θ′v −

∂w′e

∂z
− 1
ρ00

∂w′p′

∂z
− ε. (1.33)

This is the equation usually adopted for the surface layer (lowest 10% of the boundary
layer) over flat and homogeneous terrain.

1.5 The surface layer

We consider the simplest case of a stationary flow over an infinite, flat, homogeneous
surface. In this ideal conditions, the properties of the flow are functions of the height above
the surface, z, only. These conditions are better encountered in the surface-layer: the
atmospheric layer that extends from above the grass up to about 10% of the PBL height.
In this layer, gradients of mean variables are usually large, suggesting the possibility to
express turbulent fluxes as functions of mean gradients.

The Reynolds number, Re= UL/ν, where U and L are the velocity and the length
scales of the flow, and ν is the kinematic viscosity, expresses the ratio between inertial and
viscous forces. For Re& 2000, inertia dominates on viscous damping and the flow becomes
fully turbulent. For the typical surface layer scales, L = 10÷ 100m, U = 1÷ 10m s−1 and
ν ∼ 10−5 m2 s−1, Re= 106 ÷ 108. For this reason, viscous terms will always be neglected
hereafter in the equations for the mean flow.In the surface layer Ro= U/(fL) ∼ 103 and
then also the effect of earth’s rotation is usually negligible.

The constancy of fluxes can be used to determine the surface layer height (Monin and
Obukhov, 1954). Consider a reference system with the x-axis aligned with the mean wind
at the earth’s surface (slightly above the grass height), i.e. v(0) = 0. Furthermore, assume
horizontal homogeneity and stationarity. Under these conditions the equations of motion



1.5. The surface layer 9

Figure 1.3: Qualitative behaviour of kinematic momentum fluxes and mean wind speed for the
near-neutral PBL (adapted from Wyngaard (2010)). The dashed area indicates approximately the
surface layer depth.

(1.25) becomes

du′w′

dz
= f(v − vg) (1.34)

dv′w′

dz
= f(ug − u) (1.35)

1
ρ00

∂p

∂z
= g

θv
θv00

, (1.36)

where the geostriphic wind components

ug ≡ −
1

fρ00

∂p

∂y
and vg ≡

1
fρ00

∂p

∂x
(1.37)

were introduced. We have dv/dz = 0 if d2u′w′/dz2 = 0, thus, the boundary layer cannot be
stationary and unidimensional (no wind rotation) if the along-wind kinematic momentum
flux −u′w′ varies (not linearly) with height. In the surface layer, intended as constant flux
layer, wind rotation with height can be neglected.

Integrating (1.34) in z, from above the grass (i.e. z ' 0) up to z = h we have

u2
∗ − τx(h) =

∫ h

0
f(v − vg)dz <

∫ h

0
f |vg|dz = hf |vg| (1.38)

with τx ≡ −u′w′ with τx(0) ≡ u2
∗, where u∗ is the friction velocity. From fig. 1.3 we see

that v have the same sign of vg in the surface layer and that |v| < |vg|. Then

u2
∗ − τx(h) < hf |vg|. (1.39)

Imposing that the relative variation of momentum fluxes remains below a threshold a, i.e.

u2
∗ − τx(h)
u2
∗

≤ a (1.40)
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leads to an expression for the maximum height above ground for which (1.40) is satisfied,
i.e. an estimation of the surface layer depth:

h = au2
∗

f |vg|
. (1.41)

From observations (Monin and Obukhov (1954), Liang et al. (2014) and also from the CCT
dataset, section 3.2)

u∗
|vg|
∼ 0.05,

from which
h ∼ 2.5× 10−3a

|vg|
f

and taking a = 20%, |vg| ∼ 10m s−1 and f ∼ 10−4 s−1 we have

h ∼ 50 m.

As can be seen in fig. 1.3, steepest vertical variations of turbulent fluxes and of wind
speed occur just near the ground. However, the surface layer depth, h, is much smaller
than the PLB height, H, (defined, for example as the height at which u′w′ reverse its sign).
Then, because

du′w′

dz
∼ u2

∗
H

and dw′θ′v
dz

∼ Q0
H
, (1.42)

with Q0 ≡ w′θ′v(0), the relative variations of turbulent fluxes in the surface layer are

τx − u2
∗

u2
∗
∼ w′θ′v −Q0

Q0
∼ h

H
. (1.43)

Variations below 20% corresponds to h/H ∼ 20%.

1.6 Mixing length and K-theory closure

Especially where gradients of mean variables are large, as is in the surface layer, it is
quite natural to try to relate turbulent fluxes to mean gradients. This leads to the idea of
turbulent diffusion, in analogy with molecular diffusion, acting to reduce mean gradients.
As in molecular diffusion molecules travel undisturbed until they collide with another
molecule, in turbulent diffusion, a fluid parcel travel conserving its properties (momentum,
temperature, humidity, etc.) until it merges with the surrounding fluid.

The length scale for which the fluid particle travels undisturbed is the equivalent of the
mean free path in molecular diffusion. The concept of a length scale for turbulent mixing
was independently developed by Taylor and Prandtl, at the beginning of 1900 (Wyngaard,
2010), although, some years later, Taylor became critical on the physical validity of this
model.

For example, the fluctuation of the horizontal wind speed u because of a vertical
displacement, l′ (l′ > 0 upward), can be expressed as

u′ ≈ −l′∂u
∂z
. (1.44)
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Figure 1.4: Correlation between the fluctuations of wind speed and vertical velocity (a) and
between the virtual potential temperature and the vertical velocity for unstable (b) and stable (c)
stratification.

Multiplying (1.44) for w′ and averaging we obtain an expression the kinematic momentum
flux

u′w′ ≈ −l′w′∂u
∂z
≡ −Km

∂u

∂z
. (1.45)

Km is called eddy diffusivity, from which the name of “K-theory” of this closure. Further-
more, Km ≥ 0 since w′l′ ≥ 0, allowing only for counter-gradient fluxes. It is defined in
analogy with molecular diffusivity (kinematic viscosity). However, Km is not a property of
the fluid, but a variable characteristic of the flow, depending on both its dynamics and
geometry.

If a correlation exists between u′ and w′, i.e. if u′w′ 6= 0,

w′ ≈ α sgn
(
∂u

∂z

)
u′

and then
u′w′ ≈ −α sgn

(
∂u

∂z

)
u′2 = −αl′2

∣∣∣∣∂u∂z
∣∣∣∣∂u∂z , (1.46)

where (1.44) was used. Comparing (1.46) with (1.45) we have

Km ≈ αl′2
∣∣∣∣∂u∂z

∣∣∣∣ ≡ l2m∣∣∣∣∂u∂z
∣∣∣∣, (1.47)

where lm is the mixing length (for momentum) directly proportional to the mean size of
eddies, l′21/2, the constant of proportionality, α1/2, empirically determined from experi-
mental data. It will be shown, that surface layer scales of velocity and length are u∗, the
friction velocity, and z, the height above ground. Then, from dimensional arguments we
have that, in the surface-layer

lm ∼ z and Km ∼ u∗z, (1.48)

whit correction factors that must be introduced to account for stability.
Flux-gradient relationships can be formulated also for scalars, such as virtual potential

temperature and specific humidity

w′θ′v = −Kh
∂θv
∂z

(1.49)

w′q′ = −Kq
∂q

∂z
, (1.50)
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where it is sometimes assumed that (Obukhov, 1971)

Kq ∼ Kh ∼ Km,

although experimental data show usually a more complicated behaviour.
In fig. 1.4, a representation of the mechanism generating downward momentum fluxes

(a) and upward or downward heat fluxes for unstable (b) and stable (c) stratification,
respectively, is given. It must be noted, however, that this picture is only statistically true,
i.e., it is true on average. Indeed, the products u′w′ and w′θ′v can have instantaneously
also the “wrong” sign (as indeed occurs for real observations) and only on average counter-
gradient fluxes should be observed.

The assumptions underling the K-theory (or classical theory of atmospheric turbulence)
are (Obukhov, 1971):

1. while moving unmixed with the surrounding air, transported property is conserved
by the fluid parcel;

2. the property is globally conserved during the mixing of the fluid parcel with the
surrounding air;

3. the transported property is passive, i.e. its mixture does not influence the development
of turbulence.

This condition can be more or less satisfied by material contaminants (smoke, dust, trace
elements) that are indeed termed passive tracers. However, in particular the first and the
third, are far from being strictly fulfilled by momentum and heat. This is the cause of the
non-perfect coincidence between eddy diffusivities for momentum, heat and passive tracers
(Obukhov, 1971).

1.7 Monin-Obukhov similarity theory
Much of the present understanding of the atmospheric surface layer was obtained in the
framework of Monin-Obukov similarity theory (MOST). Similarity theories are based
on dimensional analysis. The key variables governing the phenomenon are individuated
and combined into dimensionless groups, the Buckingham Pi Theorem (e.g. Stull, 1988)
prescribes how to do it. Finally universal laws relating dimensionless groups are derived
from observations.

In 1954, Monin and Obukhov proposed that turbulence in the quasi-stationary and
horizontally homogeneous surface layer was governed by four key variables: the height
above ground, z; the friction velocity, u∗ = |u′w′(0)|1/2; the temperature flux at the surface,
Q0 = w′θ′v(0); the buoyancy parameter β = g/θv00.1 MOST is a flux-based similarity, with
fluxes evaluated at the earth’s surface.

When properly normalized with combinations of the four key variables, turbulence
quantities should be universal functions of z/L only, where

L ≡ − u3
∗

κβQ0
(1.51)

1In the original paper (Monin and Obukhov, 1954), the absolute temperature, instead of the virtual
potential temperature, was used in both the definition of the temperature flux and the buoyancy parameter,
although, today, definitions with the virtual potential temperature are most used.
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is the Obukhov lenght, firstly introduced by the Russian physicist A. M. Obukhov in 1946
(Obukhov, 1971). For historical reasons, in the definition (1.51) enters the von Kármán
constant, κ, that usually is assumed equal to 0.4 (Högström, 1996).

The physical interpretation of L is that of a characteristic scale of the depth of the
dynamical sublayer (Obukhov, 1971), where the influence of thermal stratification is small
and turbulence is mechanically generated by the wind shear. The Obukhov length can be
both positive or negative, depending on the sign of the temperature flux. In the convective
surface layer, Q0 > 0 and L < 0; in the stable surface layer, Q0 < 0 and L > 0; in almost
neutral conditions Q0 ' 0 and L becomes large with both positive or negative sign, i.e.
L→ ±∞. For this reason, z/L is called the Monin-Obukhov stability parameter.

The M-O stability parameter appears also in the non-dimensional form of the TKE
equation, obtained dividing (1.52) by u3

∗/(κz):

u3
∗
κz

∂e

∂t
= φm −

z

L
+ φt − φε, (1.52)

where
φm ≡

κz

u∗

du

dz
(1.53)

is the normalized shear-production term but it is also the dimensionless wind shear; z/L
expresses the effect of buoyancy production (z/L < 0, unstable case) or consumption
(z/L > 0, stable case) of TKE; φt and φε are the dimensionless transport (both from
vertical velocity and pressure fluctuations) and the dimensionless viscous dissipation terms,
respectively. For MOST, φm, φt and φε are all universal functions of z/L.

In analogy with (1.53), the dimensionless temperature gradient is defined as

φh ≡
κz

θ∗

dθv
dz

(1.54)

where
θ∗ ≡ −

Q0
u∗
,

with θ∗ > 0 in stable conditions and θ∗ < 0 in unstable ones.
The similarity function for the specific humidity is

φq ≡
κz

q∗
dq

dz
(1.55)

where

q∗ ≡
−w′q′
u∗

.

Comparing (1.53), (1.54) and (1.55) with (1.45), (1.49) and (1.50) we have

Kmφm = Khφh = Kqφq = κzu∗, (1.56)

and, from (1.47),
lmφm = lhφh = lqφq = κz. (1.57)
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1.8 The wind profile in the surface layer
MOST does not predict the functional form of universal functions φ(z/L) which must
instead be derived from experiments. For φm, the only constraints is that the logarithmic
profile solution must be obtained as the surface-layer approaches near neutral conditions
(i.e. |z/L| → 0):

φm(z/L = 0) = 1. (1.58)

That the fluid velocity over an infinite flat and rough surfaces increases logarithmically with
the distance from the surface for non-stratified fluids is predicted by Prandtl’s similarity
theory, which Monin and Obukhov extended to the case of stratified fluids (Monin and
Obukhov, 1954).

From (1.53) we have
du

dz
= u∗
κz
φm

(
z

L

)
(1.59)

that, integrated from z0m, defined such that u(z0m) = 0, to z,

u(z) = u∗
κL

∫ z/L

z0m/L
φm(ζ)dζ

ζ
(1.60)

yields the wind profile

u(z) = u∗
κ

(
ln
(

z

z0m

)
+ ψm

(
z

L

)
− ψm

(
z0m
L

))
, (1.61)

where we remember that both u∗ and L are constant and was defined the function

ψm(ζ) ≡
∫ ζ

0

φm(x)− 1
x

dx (1.62)

which is the deviation from the logarithmic profile. In stable conditions (i.e. z/L ≥ 0),
φm ≥ 1 (at leas for all similarity functions derived over flat and homogeneous terrain) and
ψm is a non-negative monotonically increasing function of z/L with

ψm(0) = 0. (1.63)

This express the fact that in the stably stratified surface layer the wind profile is super-
logarithmic (fig. 1.5(b)). The opposite is true for the unstable surface layer for which the
wind profile is sub-logarithmic. However, this not means that the dimensional wind is
usually stronger in the stable surface layer since u∗ is smaller in stable conditions. Indeed,
stable conditions are usually characterized by lighter winds.

Since (1.61) should be used only for z � z0m and z0m/L does not differ significantly
from zero (if L ∼ z0m, a surface-layer does not exist) we can take

u(z) ≈ u∗
κ

(
ln
(

z

z0m

)
+ ψm

(
z

L

))
. (1.64)

The aerodynamic roughness length, z0m, is the height at which the surface layer wind
speed profile (i.e. that computed from (1.61)) goes to zero. This however does not mean
that the wind speed is zero for z ≤ z0m but only that, very near to the ground, where the
influence of individual roughness elements is strong (i.e. in the roughness sublayer), the
surface-layer profile is no longer valid.
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Figure 1.5: (a) The effect of a displacement height on the logarithmic wind profile; (b) qualitative
behaviour of the wind profile for stable (L > 0), neutral (L = ±∞) and unstable (L < 0) conditions.

If the surface-layer profile can be extended also above the surface layer (i.e. for
|z/L| � 1) is still an open question (Caporaso et al., 2013). It is a matter of fact, however,
that proposed formulations for φm diverge for z/L & 1 indicating limits in the validity of
MOST. The roughness length is not directly related to the height of the roughness elements
although it depend on the type of elements and their disposition. More specifically, z0m
is a property of the surface and not of the flow or, being independent on stability, wind
speed or stress (Stull, 1988). Exception however exist, as for the sea-surface that changes
under the effect of wind though the formation of waves. Tables containing typical values of
z0m for many surface types exist (e.g. Stull, 1988, p. 380) although for each site this value
should be determined from observations. From Stull’s table, typical values of z0m ranges
from about 0.1mm for calm open sea or flat snow-covered ground up to about 100m above
mountainous areas; for grass or crops, z0m of the order 1–10 cm are usual.

For tall and closely packed elements, such as tree in a forest or buildings in urban areas,
the height above ground, the top of these elements acts like a displaced surfaces. In this
case, the vertical scale of the surface layer, which eventually forms only above the canopy
(above elements’ top) is no longer z, the height above ground, but z − d, the height above
the displaced surface. Indeed, d is usually called the displacement height.

From (1.64), the wind profile in the surface layer above a canopy in is expressed as

u(z) = u∗
κ

(
ln
(
z − d
z0m

)
− ψm

(
z − d
L

))
(1.65)

where u∗ and L are now evaluated from turbulent fluxes measured slightly above the canopy
height and (1.65) holds for z − d � z0m, (1.65). In fig. 1.5(a) is showed the effect of a
displacement height on the neutral wind profile

u(z) = u∗
κ

ln
(
z − d
z0m

)
. (1.66)

when the wind speed is plotted against the logarithm of the height above ground, ln z,
without the correction for d. The case d < 0 corresponds to an underestimation of z, which
now takes into account a displacement height which is however too large.
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1.9 An overview on wind speed similarity functions for sta-
ble conditions

MOST predicts that, for the quasi-stationary and horizontally homogeneous surface layer,
the dimensionless wind speed vertical gradient, φm, should be a universal function of z/L.
However, it does not predict the behaviour of φm, beyond the neutral limit φm(z/L = 0) = 1,
that must be determined from experiments. Because of universality, data for different
experiments should collapse on the same curve. In this section, the similarity functions
from different experiments in the stable surface-layer (i.e. for z/L > 0) are presented. The
overview has not the pretense of completeness, although most used similarity functions or
those showing peculiar behaviours are present.

For small z/L, φm can be approximated with a linear function (Monin and Obukhov,
1954). Indeed, expanding φm in Taylor’s series around the neutral case (i.e. z/L = 0) and
retaining only the first two terms we have

φm ≈ 1 + βm
z

L
for z/L < 1, (1.67)

where βm must be determined experimentally. Expression (1.67) leads to the log-linear
wind profile (see eq. (1.64))

u(z) = u∗
κ

(
ln
(

z

z0m

)
+ βm

z

L

)
. (1.68)

From observations collected during the 1968 Kansas experiment (Businger et al., 1971;
Haugen et al., 1971), Businger et al. (1971) proposed the linear expression

φm = 1 + 4.7 z
L

for 0 ≤ z/L . 1. (1.69)

However, few observations were available for z/L > 0.5 and the scatter of data allowed for
4.5 . βm . 5.0 (Businger et al., 1971). They also noted a rapidly decrease in the slope of
φm at the crossing of the neutral point (i.e. z/L = 0).

The 1968 Kansan was the first experiment relying on direct measurements of turbulence
by mean of sonic anemometers. The experimental site was a Kansas’ flat farmland covered
by wheat stubble (Haugen et al., 1971). Businger et al. (1971) used in their analysis a value
of 0.35 for κ, the von Kármán constant. However, the linear law proposed by Businger
et al. (1971) was more or less confirmed by later experiments over flat terrain, at least for
z/L . 1. Equation (1.69) is represented by the solid red curve in fig. 1.6. It must be noted
that in fig. 1.6 all similarity functions are plotted up to z/L = 100 although most of the
formulations were derived for a smaller stability range.

Högström (1988) derived a modified expression for (1.69) assuming κ = 0.40:

φm = 1 + 6.0 z
L
. (1.70)

He found, however, that observations from Lövsta site, Sweden (Högström, 1988), were
better described by the relation

φm = 1 + 4.8 z
L

for 0 ≤ z/L . 0.5 (1.71)

which is obtained modifying Dyer (1974) curve and that does not differ significantly from
(1.69). For z/L & 0.5, although few data points were present, he observed an indication of
level-off for φm.
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Figure 1.6: (a) Similarity functions for the dimensionless wind speed gradient proposed by different
authors.(b) Relative deviations of formulations from the Businger et al. (1971) linear law (see
eq. (1.76)).
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From an averaging between similarity functions proposed up to that time (although
that from Beljaars and Holtslag (1991) was not included) Högström (1996) recommended
the expression

φm = 1 + 5.3 z
L

for 0 ≤ z/L . 0.5, (1.72)

that is represented bu the black dotted curve in fig. 1.6(a).
From wind speed observations obtained at Cabauw, The Netherlands, Holtslag (1984)

and Holtslag and De Bruin (1988)2 proposed the function

φm = 1 + a
z

L
+ b

z

L

(
1 + c− d z

L

)
e−d

z
L for 0 ≤ z/L . 10 (1.73)

with a = 1, b = 0.667, c = 5.0 and d = 0.35. The value of a, originally of 0.7, was chosen
by Beljaars and Holtslag (1991) to account for a critical flux Richardson number of 1 (see
section 1.10). We have

φm ∼ 1 + 5.1 z
L

for z

L
→ 0 and φm ∼

z

L
for z

L
→∞.

Equation (1.73) is the blue dashed line in fig. 1.6(a).
Cheng and Brutsaert (2005a), from CASES99 (Cooperative Atmosphere- Surface

Exchange Study-99) data (Kansas), proposed the similarity function

φm = 1 + a
ζ + ζb(1 + ζb) 1−b

b

ζ + (1 + ζb) 1
b

for 0 ≤ ζ . 5, (1.74)

where ζ ≡ z/L, a = 6.1 and b = 2.5, such that

φm ∼ 1 + aζ = 1 + 6.1ζ for ζ → 0 and φm ∼ 1 + a = 7.1 for ζ →∞.

Then (1.74) is a smooth interpolation between two behaviour: a linear behaviour such that
of the modified-Kansas68 (1.70) in the near-neutral and weakly stable range (ζ � 1); a
constant behaviour with a value of 7 for very stable conditions (ζ � 1). A transition regime
is present around ζ = 1, which assumes the role of a critical stability value. Equation (1.74)
is the green dot-dashed line in fig. 1.6(a).

From the dataset of SHEBA (Surface Heat Budget of the Arctic Ocean) experiment,
conducted over the arctic pack, Grachev et al. (2007b) proposed the similarity function

φm = 1 + aζ(1 + ζ)1/3

1 + bζ
for 0 ≤ ζ . 100 (1.75)

with a = 5 and b = a/6.5 = 0.77, which is a smooth interpolation between a linear
behaviour in the weakly stable range

φm ≈ 1 + 5ζ for ζ � 1

and a ζ1/3-behaviour in the very stable range

φm ≈ 6.5ζ1/3 for ζ � 1.
2This is the reference reported in the paper of Beljaars and Holtslag (1991) although it apparently wrong

in the references list. Unfortunately, this paper was not found.
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The ζ1/3-behaviour in very stable conditions suggest the existence of a u∗-less regime, in
which wind shear does not depend anymore on friction velocity (Grachev et al., 2007b).
This behaviour arise because of self-correlation, since φm ∝ u−1

∗ and ζ ∝ u−3
∗ . Also data

presented by Yagüe et al. (2006) have about the same behaviour for ζ > 1. It must be noted
that data considered by Grachev et al. (2007b) reached very high stabilities compared to
other experiments. Equation (1.75) is shown as the purple dash-dot-dot line in fig. 1.6(a).

In fig. 1.6(a), all presented stability functions are plotted together, also beyond the
stability range for which they was originally proposed. Figure 1.6(b), show minus the
relative deviation of the considered formulations from the original 1968-Kansas linear law
proposed by Businger et al. (1971), i.e.

δφm
φm

= φB71
m − φX

m

φB71
m

(1.76)

where φB71
m is eq. (1.69) and φX

m can be eq. (1.72) from Högström (1996), eq. (1.73) from
Beljaars and Holtslag (1991), eq. (1.74) from Cheng and Brutsaert (2005a) or eq. (1.75)
from Grachev et al. (2007b). The style of each curve in fig. 1.6(a) is retained in fig. 1.6(b).

For z/L . 0.5, the linear dependence of φm on z/L, over leveled terrain, is well
established, with deviations between formulations smaller than 10%, with a value for
βm ' 5. Deviations remain below about 20% up to z/L ' 1. Beyond, sub-linear behaviour
were observed (Beljaars and Holtslag, 1991; Cheng and Brutsaert, 2005a; Forrer and Rotach,
1997; Grachev et al., 2007b; Howell and Sun, 1999; Yagüe et al., 2006) but results from
different experiments hardly collapse on the same curve. This may indicate a failure of
MOST for very stable conditions (i.e. z/L > 1). It must be noted however that momentum
fluxes become small in very stable conditions, making their measure more difficult and
increasing the effect of instrumental errors on obtained results.

1.10 The local similarity theory
The application of MOST is limited to the surface layer, where turbulent fluxes are almost
constant with height. However, for very stable conditions, this layer may be very shallow,
occupying the first few meters above ground, or even may not exist. This means that,
especially in the stable case, a theory to describe the flow above the surface layer (i.e. in
the stable boundary layer) is required.

In the stable boundary layer, buoyancy suppresses turbulent eddies, starting from the
largest ones. Then, if in near-neutral conditions the size of eddies scales with the height
above ground, in stable conditions, instead, they are much smaller and almost independent
on the presence of the surface. This regime, in which z does not play anymore the role of
scaling variable, is indeed termed z-less stratification (Nieuwstadt, 1984; Wyngaard and
Coté, 1972). This means also that surface scales, which enter in MOST, are no longer
appropriate for the description of the flow in the stable boundary layer.

Nieuwstadt (1984) proposed the adoption of local scaling in the stable boundary layer:
from which the name of local similarity theory. The scales are the same of MOST but now
are evaluated at the level of interest and depend on z:

• the height above ground z (which is retained despite the z-less behaviour);

• the local friction velocity: u∗(z) = τ1/2(z) where τ =
√

(u′w′)2 + (v′w′)2 is the
magnitude of the kinematic vertical flux of horizontal momentum;
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• the local temperature flux: Q(z) = −w′θ′v(z);

• the buoyancy parameter β = g/θv(z) ≈ g/θv00, for which does not matter if the local
or a reference temperature is used.

Combining above scales a local Obukhov length can be defined:

Λ(z) ≡ τ3/2

κβQ
(1.77)

where κ = 0.4 is, as usual, the von Kármán constant.
Local similarity theory (as MOST) predicts that, for the quasi-stationary and horizon-

tally homogeneous stable boundary layer, properly adimensionalized mean gradients and
turbulence statistics (i.e. variances and covariances) should be universal functions of the
local stability parameter z/Λ. Local similarity theory comprises MOST as a special case
for which fluxes do not vary significantly with height.

Surface-layer similarity functions, if correct, should be valid also above, in the stable
boundary layer, when z/Λ is substituted to z/L. Indeed, local similarity predicts that
these are universal functions of z/Λ only and should not depend on the height above
ground alone. However, as we move far from the ground, other scales beside Λ, such as
the boundary layer height, can play some role (Zilitinkevich and Esau, 2007). This can
determine a dependence of similarity functions on the dimensional height above ground or
on time (through the variation of the PBL height).

The argument used by Nieuwstadt (1984) to prove the validity of local scaling was the
observation of the z-less behaviour in similarity functions for variances and covariances as
z/Λ→∞. In the z-less regime, mean gradients should not depend on the height above
ground (this not mean that they are constant but that z is not anymore an important
scale). This mean that

φa

(
z

Λ

)
= κz

a∗

da

dz
∼ z

Λ as z

Λ →∞ (1.78)

and then
da

dz
∼ a∗
κΛ , (1.79)

where a can be the wind speed, the temperature or a passive scalar and a∗(z) =
−a′w′(z)/u∗(z) is its turbulent scale. The mixing length, which is related to the size
of eddies becomes ( see eq. (1.57))

la = κz

φa
∼ κΛ as z

Λ →∞,

confirming that, in the z-less regime (i.e. Λ� z), the size of eddies scales as Λ which is
much smaller than z, the height above the surface.

For the wind speed gradient, the existence of the z-less behaviour has important impli-
cations. The dimensionless form of the TKE for stationarity and horizontal homogeneity
and neglecting transport terms reads (see eq. (1.52)):

φm(1− Rf )− φε = 0, (1.80)

where we have introduced the flux Richardson number

Rf ≡
βQ

τdu/dz
= z/Λ
φm(z/Λ) (1.81)
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Figure 1.7: Vertical profiles for turbulent fluxes of momentum (a) and temperature (b), normalized
by the surface value, for the stable boundary layer (adapted from Nieuwstadt, 1984).

which is an alternative local stability parameter.
Rf express the ratio between buoyancy destruction βQ and shear production τdu/dz

of TKE. The flux Richardson number is positive for stable conditions with increasing
stability corresponding to higher value of Rf . However, for the stationary and homogeneous
turbulence no arbitrarily high value of Rf can be reached since for Rf > 1 destruction
(both from buoyancy and viscous dissipation) overpass production in TKE budget (1.80)
and conditions with decaying or intermittent turbulence occur.

From (1.81), the existence of a critical flux Richardson number, Rfc, requires that
φm ∼ z/Λ for z/Λ→∞, as z-less stratification predicts. Linear formulations of the type
proposed by Högström (1996) and Businger et al. (1971) (i.e. φm = 1 + βm(z/Λ), with
βm ' 5) predict the existence of a critical value Rfc ' 0.2, which is near to accepted limit
for continuous turbulence (Grachev et al., 2013). The formulation adopted by Beljaars
and Holtslag (1991) predicts Rfc = 1.

Similarity functions which levels-off or increase sub-linearly for z/Λ → ∞ (as those
proposed by Cheng and Brutsaert (2005a) and Grachev et al. (2007b)) does not predict
the existence of any critical values for Rf . This level-off or sub-linear behaviour of φm for
z/Λ > 1 is due to data points referring to the super-critical regime, i.e. characterized by
Rf > Rfc ' 0.2-0.25 (Grachev et al., 2013), with turbulence which is not in equilibrium.

From a theoretical point of view, local similarity theory is satisfactory since it constitutes
the framework in which turbulence in stable conditions can be studied independently on
experimental circumstances. However, it is not well suited for practical applications since,
for example, the vertical dependence of τ and Λ is necessary to derive the dimensional wind
profile. Nieuwstadt (1984) derived vertical profiles of heat and momentum from a stable
boundary layer model using as closure hypothesis a constant flux and gradient Richardson
number, Ri= (φh/φ2

m)(z/Λ), equal to their critical values. In fig. 1.7, predictions from
Nieuwstadt’s model (curves) and observations (mean values and standard deviation in
bin of z/h) at Cabauw mast, The Netherlands, are presented. The expected profiles for
fluxes of momentum and heat in the stable boundary layer over flat terrain have the form
(Sorbjan, 1986):

τ(z) = u∗(1− z/h)α1 and Q(z) = Q0(1− z/h)α2 (1.82)

where h is the height of the boundary layer and α1, α2 are constants such that α1 ≥ α2
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that must be determined empirically. Nieuwstadt’s model predict α1 = 3/2 and α2 = 1
(see fig. 1.7). From (1.82), (1.77)and (1.51) we have

Λ(z) = L(1− z/h)3/2α1−α2 . (1.83)

However, further studies are required to establish the relation between local and global
Obukhov length in the stable boundary layer.



Chapter 2

The experiment

An increasing concern arose about the effects of the changing climate on arctic regions. In
the complex interactions occurring between land, sea, ice and atmosphere, the planetary
boundary layer plays an essential role. For this reason, advance in the understanding of
the arctic planetary boundary layer, which has, for most of the time the characteristics
of a stable boundary layer (since long lived stable boundary layers onset from autumn to
spring at high latitudes) is crucial.

This chapter give a description of the Climate Change Tower experiment (that is,
indeed, an arctic experiment) from which the analyzed data comes. Firstly, a description
of the experimental site, its morphology and climatology, is made. Then, a description of
the instrumentation and data acquisition system is given.

2.1 The Climate Change Tower Integrated Project

The Italian National Research Council (CNR), since 1998, supported and coordinated
research projects and scientific activities in the Arctic region, collaborating with the inter-
national community in Ny-Ålesund, a permanent settlements in the island of Spitzbergen,
Svalbard archipelago.

The building and the implementation of the Amundsen-Nobile Climate Change Tower
(CCT), in 2009, represented a major advance in the study of the arctic planetary boundary
layer. Figure 2.3 refers to the earliest stages of the tower building. The name was chosen
in honor of the Italian and the Norwegian explores Umberto Nobile and Roald Amundsen,
who establish in Ny-Ålesund the starting point for their airship expeditions to the North
Pole.

The CCT is located at Kolhaugen, just outside the Ny-Ålesund research village, at
about 50 meters of altitude above seal level and it is 33 meters high. Instrumented with
four level dedicated to the measurement of meteorological variables (wind speed, direction,
temperature and relative humidity) and three dedicated to micrometeorological ones (by
means of sonic anemometry), it permits the study of the lowest 30 m of the arctic planetary
boundary layer. Data acquired on the CCT are transmitted in real-time to CNR, Institute
of Atmospheric Science and Climate (ISAC) in Bologna, Italy. The work concentrated on
observations taken from May 2012 to May 2014.

23
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Figure 2.1: Left corner, small image: the Svalbard archipelago, the red square indicate Ny-Ålesund
area. Big image: the experimental area and the main natural and artificial elements characterizing
the site; the position of the CCT is indicated by the red dot (original maps from Norwegian Polar
Institute (2015)).

2.2 The experimental site

The CCT is located in Ny-Ålesund (78°55.282′N, 11°51.952′ E), a small village (originally
devoted to mining) in the northwestern side of Spitzbergen, Savlbard, Norway (fig. 2.1).
Ny-Ålesund is among the northernmost villages permanently inhabited, mostly for research
activities. Indeed, because of its location on the western branch of the Spitzbergen current
(the northernmost part of the gulf stream), Ny-Ålesund is characterized by a relatively
mild climate, compared to other places at the same latitude.

2.2.1 Morphology

The topography of the area is quite complex (fig. 2.1). Ny-Ålesund is located in a peninsula
facing Kongsfjorden. Both the fjord and the peninsula are oriented along the NW-SE
direction and a mountain range, that do not overpass ∼700m, runs through the peninsula
in the same direction.

In particular, the CCT is located about 1.5 km west of the Ny-Ålesund village, in the
coastal zone of Kongsfjorden (fig. 2.1). Mountains and glaciers surround the area from
southeast to northwest. The nearest mountains are Schetelig (719m, the highest), about
2 km northwest, and Zeppelin (556m), about 1.5 km southeast. During the melting season,
small lakes form in the area: one of them can be seen in fig. 2.1, about 500m south of the
tower.

The experimental site is not flat nor horizontally homogeneous (figs. 2.1 and 2.2).
Furthermore, variations in terrain elevation are characterized by a wide range o spatial
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Figure 2.2: Elevations of the experimental site (in meters above m.s.l.): contour lines are drown,
in gray, from 0m to 50m every 10m and, above 50m, in black, every 50m (data from Norwegian
Polar Institute (2014)).

scales and amplitudes. The most important are those associated with mountains, which
occur on spatial scales of ∼1 km and have amplitude of ∼0.5 km, and those associated with
terrain slopes near the coast, with spatial scales of ∼1 km and amplitude of ∼50m (see
fig. 2.2). Changes in surface characteristic also occur with land-sea, land-ice, land-urban
transitions. Furthermore, seasonal variations of surface characteristics and morphology
due to the snow-cover cycle are also present.

Surface morphology and characteristics show also a strong directional dependence with
greater variations occurring in the cross-fjord direction (NE-SW) and lesser ones in the
along-fjord direction (NW-SE), with respect to the position of the tower (figs. 2.1 and 2.2).

Also artificial structures are present in the area although their impact on the local
environment should be much lesser than natural ones. About 1 km E-NE to the CCT there
is the village of Ny-Ålesund, made of small buildings mostly devoted to research activities.
At the same distance, the runway of Ny-Ålesund’s airport, placed on a ridge along the
coast, crosses the fetch in the sector 340–420°(60°) (figs. 2.1 and 2.2). Some elevated streets,
which disappear in winter, connect Ny-Ålesund with other research stations in the area
but their effect is fairly negligible compared with natural slopes.

Figure 2.3 shows the morphology of the area near the CCT in the snow-free period: the
two photos were taken during the erection of the tower structure. On the left of fig. 2.3(a),
taken looking toward northwest, is partially visible Schetelig mountain. From this point of
view, the terrain appears quite flat with only gently slopes up to distances of 50–100m from
the tower. However, on the left of fig. 2.3(b), which was taken looking toward Kongsfjorden
(north), are clearly visible slopes and depressions with melting snow or ice. On the right
of fig. 2.3(b) is also visible the small house that host computers receiving data from the
CCT instrumentation. During the snow-free season, the ground near the tower is covered
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Figure 2.3: The CCT site as viewed from south-east (a) and from south (b) during the erection
of the tower structure (ISAC–CNR, 2014).

by stones and short grass, typical of arctic tundra: no tall vegetation grows at these high
latitudes.

Figure 2.5 refers to the permanent snow-cover period: May 2012, in that particular
case. The snow cover smooths the irregularity of ground on small scales (e.g., stones) but
slopes on larger scales still remain. Furthermore, during winter and spring the fjord can
freeze, partially attenuating the effect of sea-land transitions.

2.2.2 Climatology

Being north of the Arctic Circle, Ny-Ålesund experiences polar night and polar day
conditions: i.e., days with 24 hours of darkness and sunlight, respectively. Polar night
starts on 24 October and ends on 18 February; polar day starts on 18 April and ends on
24 August (Maturilli et al., 2013).

The ground is covered by snow from October to May-June, when the melting season
begins. However, summer snowfalls are also possible (Maturilli et al., 2013).

During polar night, a long lived stable boundary layer onsets. During polar day, when
the sun is low above the horizon and snow covered ground is present (especially during
spring), something like a “nocturnal” stable boundary layer can form. Transition months
like September show conditions resembling that of a long lived SBL, probably because of
the very low sun that cannot break-up the nocturnal layer during daytime.

Winds blow from three directions mainly (fig. 2.4): two along-fjord (noth-west and
south-east) and one cross-fjord (south-west). Prevalently winds blow from south-east, in
the sector 110°-130° although the strongest are from east/south-east, i.e. 90°-120° where
we have unobstructed fetch for several kilometers (fig. 2.1). These winds, from inland of
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Figure 2.4: Wind roses at the four propeller anemometers levels of the CCT for the considered
dataset.
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Spitzbergen, are the result of the channeling of the flow by the fjord structure during most
frequently synoptic conditions. The same mechanism is responsible also for north-westerly
flows, less frequent than south-easterly ones. Anemometers should be optimally oriented
for these two directions. Winds from south-west, i.e. 200°-240°, are related to katabatic
flow from inland glaciers (fig. 2.1). However, for this sector, characterized mostly by weak
winds, anemometers are downstream to the tower structure. Wind directions from this
sector were then neglected in the present analysis.

2.3 Instrumentation and measurements
Meteorological and micrometeorological observations have been taken on CTT since the
end of 2009. The data taken on the CTT are then transmitted in real-time to the Institute
of Atmospheric Sciences and Climate (ISAC) of the National Research Council (CNR) in
Bologna, Italy. From the end of May 2012 to the end of November 2012 and from June 2013
to April 2014 (excluding December 2013) nearly continuous boundary-layer measurements
were taken on the CCT at Ny-Ålesund.

The CCT is a 33m high rectangular tower, of the open lattice type, composed by 17
modules 1.4m×1.8m wide and 1.8m high (Figs. 2.3 and 2.5). The main axis of the tower
is oriented along the direction of prevailing winds (about 120° from north ). Propeller-
vane and sonic anemometers are mounted on booms oriented to north-est to minimize
flow distortion by the tower structure for the prevailing wind direction. The booms
were fixed along the south-eastern side of the tower, extending ∼2m outside the tower.
Thermo-hygrometers were placed on propeller booms (Fig. 2.5(b)) closer to the tower
structure. Sonic anemometers are slightly more distant from the tower than propeller ones
(Fig. 2.5(b)).

Observations of mean meteorological variables were carried out at four levels by propeller-
vane anemometers and thermo-hygrometers at nominal heights (i.e. height above snow-free
ground) of 2.0, 4.8, 10.3 and 33.4m. Turbulence measurements were performed by sonic
anemometers-thermometers at three levels, in the middle of low-response probes, at 3.7,
7.5 and 20.5m. Other instruments were present on the CCT, including two radiometers
and a sonic sensor for the retrieval of snow height. However, snow height measurements
were seldom available during the considered period and, when available, some doubts were
present about their reliability. Atmospheric pressure was also measured by a barometer at
5m above ground. As a reference, snow height observations reported by the station of the
Norwegian Meteorological Institute in Ny-Ålesund were considered1. The station is about
2 km east far from the tower. However, as long as possible, the study was limited to cases
in the summer/early-autumn period, when snow-covered ground can be present but snow
depth can be neglected in the estimation of the height above ground of observational levels.

Vane-propeller anemometers (Young) and slow-response thermo-hygrometers (Vaisala
HMP45) provided measurements of horizontal wind speed (S =

√
u2 + v2), wind direction,

temperature and relative humidity at four levels with a sampling rate of 1 sample per
minute.

The sonic anemometers-thermometers (two Gill Solent instruments, R2 and R50, at
3.7 and 7.5m and one Campbell CSAT3 instrument at 20.5m) provided measurements
of the three wind components in the meteorological system (u–westerly, v–southerly and
w–vertical) and sonic temperature (Ts) at three levels. The sampling rates were 20Hz for
the two lowest levels an 10Hz for the highest one.

1http://eklima.met.no/

http://eklima.met.no/
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Figure 2.5: The CCT setup as viewed from the east side (a) and a close view of the lowest five
measurement levels from the west side (b) (ISAC–CNR (2014)). The photos were taken in May
2012 but the setup remained unchanged during the whole considered period.

The considered dataset was composed by 10-min statistics computed from the row
dataset. Mean variables were derived as simple averages between the samples (10 for slow-
response probes, about 12000, for fast response ones) contained in each 10-min interval.
Variances are also given for slow-response sensors. For fast-response ones, turbulent fluxes
(i.e. covariances) were derived with the eddy correlation method. For example, for each
10-min interval, containing N samples, the averages

u ≡ 1
N

N∑
i=1

ui and w ≡ 1
N

N∑
i=1

wi

were computed and the covariance (the kinematic momentum flux) derived as

u′w′ ≡ 1
N

N∑
i=1

(ui − u)(wi − w).

No corrections for trends, spikes or other effects were applied.
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Comparing time series of 10-min average wind speed, a time lag of 10 min was observed
between the propeller data and the sonic ones: in particular, the sonic readings were in
advance of 10 min with respect to the propeller ones. The same shift was observed in wind
direction time series. Assuming that the same lag affected all the measured variables, a
new dataset was obtained from the original one with a 10 min shift. A new synchronized
dataset was obtained from the original with a shift of 10 min between the sonic and the
propeller-thermo-hygrometer dataset.



Chapter 3

The wind shear sensitivity to the
evaluation method

This chapter deals about observations reliability and methods. Observations regard mostly
wind speed, measured by the seven anemometers on the CCT. Methods regard computation
of wind speed gradients, which are the main focus of the whole work.

After a brief parenthesis about the difference between the scalar average (wind speed)
and the vectorial average (wind velocity) of the horizontal wind vector (section 3.1), a
calibration test is carried out between the wind speed measured by all propeller and sonic
anemometers on the CCT (section 3.2). The calibration test was carried out comparing
observations from different anemometers disposed in the operative CCT setup. The
problem of the estimation of expected deviations between instruments because of their
vertical separation was also addressed, although in a simplified manner. Finally, the
behaviour of measured speed with respect to the wind direction was analyzed, comparing
observations from different levels, and effects of the CCT structure on the probed flow
were also discussed.

The next sections deal to the main topic of this chapter: i.e. gradients. Gradients are
needed for the computation of the dimensionless wind shear, φm and then it is important to
understand how much gradients are sensitive to the method of estimation. The sensitivity
of gradients to the evaluation method receive usually little attention in boundary layer
studies although some authors (Forrer and Rotach, 1997; Klipp and Mahrt, 2004) have
made some investigations on this question.

The study dimensionless gradients, φm, instead of dimensionless wind speed, Ψm, avoid
the determination of the roughness length, z0, which is more complicated over complex
terrain (variations with wind direction) and surface changing, for example between snow-
covered and snow-free ground (variations with time). Furthermore, in the framework of
local similarity theory where both friction velocity and Obukhov length can vary with
height, the study of φm is easier than that of Ψm.

Gradients have the drawback of computational errors since they are not directly
measured quantities. However, as will be shown, some doubts arose about the reliability
of sonic speeds and turbulence measurements are available only at sonic levels. Then, to
study wind speed, instead of gradients, an interpolation of wind speed at sonic levels or of
turbulent fluxes at propeller ones would have been necessary anyway.

In section 3.3, the considered methods for the interpolation of the wind profile are
presented and the other techniques employed for the calculations of gradients, for the CCT
instrumental setup, are described in section 3.4. Using observations from the CCT dataset,

31
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a comparison between results from different methods (i.e. log-linear and log-log2 fits, Bessel
and log-Bessel splines, finite and log-finite differences) is carried out in section 3.5.

In section 3.6 and section 3.7 the sensitivity of gradients and of dimensionless gradients
to errors in the determination of the height above ground of observational level (i.e. to the
presence of a displacement height), for example because of snow height, are estimated for
the CCT setup.

3.1 Mean wind speed and mean wind velocity

Propeller-vane anemometers data are composed by 10-min averaged wind speed, direction
and their variances. Sonic data contain also mean wind velocity. Boundary layer equations
originally refer to mean wind velocity which differ, in general, from mean wind speed:
although they do not differ very much for sufficiently strong winds driven by synoptic scale
systems.

To use both propeller and sonic-data, we will derive an expression for obtaining mean
wind velocity from mean wind speed and direction variance. The wind velocity is

U = iu+ jv (3.1)

The wind speed is the modulus of the wind velocity:

S ≡ |U| = [u2 + v2]1/2. (3.2)

The wind direction, γ, is the direction of the wind velocity measured clockwise from North.
In the meteorological reference system (x-axis in E-W direction, positive westerly winds;
y-axis in the N-S direction, positive southerly winds) the wind components are

u = −S sin γ and v = −S cos γ. (3.3)

Splitting all the variables in eq.s (4.2) in a mean value and a fluctuation as

u = u+ u′, v = v + v′, S = S + S′, γ = γ + γ′, (3.4)

and averaging we obtain

u = −(S + S′)(sin γ cos γ′ + cos γ sin γ′), (3.5a)

v = −(S + S′)(cos γ cos γ′ − sin γ sin γ′). (3.5b)

Then, supposing that γ′ � 1, substituting the approximations cos γ′ ≈ 1 − γ′2

2 and
sin γ′ ≈ γ′ in (3.5), and retaining only perturbations products (neglecting higher order
terms) we have

u ≈ −S sin γ
(

1− γ′2

2

)
, (3.6a)

v ≈ −S cos γ
(

1− γ′2

2

)
, (3.6b)

where we have assumed uncorrelated wind speed and direction fluctuations: i.e. S′γ′ = 0.
From (3.6) we have an approximated relation between the modulus of the mean wind
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Figure 3.1: (a) Wind direction variance against wind speed for one sonic (level 4, 7.5m) and one
propeller (level 3, 4.8m) anemometer on the CCT: bin medians and 15th-85th percentile ranges are
shown for both, single data points for the sonic one only. (b) Wind speed-wind velocity deviations
against wind direction variance for the sonic level 4: data points, bin medians and 15th-85th
percentile ranges along with expected deviations from eq. (3.7) are shown.

velocity, U = [u2 + v2]1/2, the mean wind speed, S = [u2 + v2]1/2, and the wind direction
variance γ′2:

U ≈ S
∣∣∣∣1− γ′2

2

∣∣∣∣ (3.7)

that holds for γ′2 � 1.
Relation (3.7) strictly resembles eq. (6) of Businger et al. (1971):

S = U

(
1 + v′2

2U2

)
, (3.8)

from which
U ≈ S

(
1− v′2

2U2

)
, (3.9)

for v′2 � U
2. In (3.8) and (3.9) v′2 is the variance of the lateral (transversal) horizontal

wind speed in a reference frame aligned with the mean wind and not the variance of
the northward component. In particular, taking γ′ ≈ v′/U we have γ′2 ≈ v′2/U

2 that,
substituted in (3.9), gives (3.7).

Figure 3.1(a) shows the wind direction variance against the mean wind speed (10-min
averages) for one propeller and one sonic anemometer on the CCT. As we can see, γ′2 < 1
for all data except in very light wind conditions (S < 1m s−1). Note also that sonic
direction variances tends to be greater than propeller-vane ones, particularly for light
winds, when propeller-vane inertia is not negligible. Furthermore γ′2 < 0.1 for almost all
data with wind speeds greater than 5m s−1. Thus, beyond this threshold, we will not
expect appreciable differences between mean wind speed and mean wind velocity.

For wind direction variances γ′2 ≤ 0.07 rad2 (which corresponds to a standard deviations
of about 15°), the normalized differences between observed and computed velocity (using
eq. (3.7)) are lesser than 1% for almost all data (figure 3.1(b)). About 80% of data in the
dataset are below this threshold.
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Table 3.1: Wind speed comparison tests. From left to right: below, central and above levels
considered in the comparison; anemometer type of below, central and above levels: “p” stays for
“propeller” and “s” for “sonic”; central level nominal height; above-below levels geometric mean
height; logarithmic profile deviation term.

levels anemometer z`
√
z`−1z`+1 κ−1 ln(z`/

√
z`−1z`+1)

type (m) (m)
1 – 3 – 5 p – p – p 4.8 4.5 0.1
3 – 5 – 7 p – p – p 10.3 12.7 −0.5
2 – 4 – 6 s – s – s 7.5 8.7 −0.4
1 – 2 – 3 p – s – p 3.7 3.1 0.4
3 – 4 – 5 p – s – p 7.5 7.0 0.2
5 – 6 – 7 p – s – p 20.5 18.5 0.25

3.2 Comparison between wind speed observations
No calibration tests in controlled or environmental conditions were available for the seven
anemometers installed on the CCT. Thus, a comparison between 10-min horizontal wind
speeds measured by propeller-vane and sonic anemometers was carried out. Wind speed
was chosen because is directly measured by both instrument types.

Calibration tests are usually made in controlled conditions (wind tunnel) or in environ-
ment, positioning the instruments as close as possible. Comparisons between vertically
separated instruments, as in the CCT setup, are more complicated.

However, the wind speed from one anemometer was compared with the average between
the speeds measured by the two neighbor anemometers: one located above and one below
the considered level. This was done between propeller anemometers only, sonic anemometers
only and between the two instrument types.

If the three anemometers, positioned at heights z`−1, z` and z`+1, with z`−1 < z` < z`+1,
are perfectly calibrated and are probing a logarithmic wind profile,

S` = S`−1 + S`+1
2 + u∗

κ
ln
(

z`√
z`−1z`+1

)
, (3.10)

where S` is the mean wind speed at height z`. Hence, if the central anemometer height
equals the geometric mean height of the others two anemometers, z` = √z`−1z`+1, the
logarithm in (3.10) vanishes and the central anemometer speed equals the above-below
average.

On the CCT, anemometers were not located exactly at the geometric mean of the above
and below anemometers heights, as table 3.1 shows. This could produce bias also between
perfectly calibrated instruments when above-below average and local speed are compared.
However, the modeling of this effect require the knowledge of the wind profile, which is
what we searching for. Anyway, an attempt was made to estimate its contribution at least
for a logarithmic profile: i.e. the last term of the right side of eq. 3.10. An expression
between u∗ and the wind speed was obtained fitting the local friction velocity, τ1/2, with
a linear relation for the three sonic levels. As an intermediate expression between the
three levels was chosen u∗ = 0.05S: this should be viewed only as an “order of magnitude”
estimate.

Figure 3.2 shows the results of the comparison between instruments of the same type:
(a)-(f) for propeller anemometers, (g)-(i) for sonic ones. Data are classified by the stability
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Figure 3.2: Same type anemometers comparison tests: first and second rows, propeller anemome-
ters, third row, sonic anemometers. Wind speed from one anemometer (10-min average) is plotted
against above-below same type anemometers average. Data are subdivided by z/Λ observed at level
4, z = 7.5m, (columns) and wind direction at the central level. Indexes indicate anemometer level.
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Figure 3.3: Sonic-propeller anemometer comparison tests: 10-min mean horizontal wind speed
measured by sonic anemometers are plotted against averages between the above and below propeller
anemometers. Data are subdivided by stability (columns) and sonic wind direction at the considered
level.
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Figure 3.4: Ratios between sonic and below-above propeller average wind speeds against sonic
wind direction (degrees from north) for the three sonic levels. Points are 10-min data, open symbols
are bin medians. Data are classified by year. Vertical lines indicate the two wind directions for
which anemometers are upwind (solid) and downwind (dashed) to the tower.

parameter z/Λ and wind direction at the central level. Propeller levels are 1 (2.0m), 3
(4.8m), 5 (10.3m) and 7 (33.4m). Sonic ones are 2 (3.7m), 4 (7.5m) and 6 (20.5m). The
dashed lines represent eq. (3.10), in which was substituted the above expression for u∗ with
S = (S`−1 + S`+1)/2. The deviation from the 1:1 relation is negligible in all cases.

For the wind directions lesser influenced by the tower structure, 90° ≤ γ ≤ 150° and
290° ≤ γ ≤ 450°, the agreement between same type anemometers is good, for all stabilities,
even if sonic data are slightly more scattered than propeller ones. For wind directions
more influenced by the tower structure, 150° < γ < 290°, propeller data show a small
bias [figure 3.2(a)-(b)] and sonic data are very scattered [figure 3.2(g)-(i)]. The small bias
between level 5 and levels 7 and 3 average could be do to a lesser influence of the tower
structure on level 7 anemometer which is positioned on tower top.

The comparison between sonic speed and propeller speed is shown in figure 3.3. The
scatter is greater with respect to figure 3.2, especially for level 2 and 4 [figure 3.3(d)-(e)
and (g)-(h)]. Some outliers are present for wind speeds lesser than ∼5m s−1: those of
figure 3.3(a)-(c) all refer to 2 September 2013. A positive bias between sonic and propeller
speeds is present for E-SE winds for all the three sonic levels. A variable negative bias
between level 6 sonic speed and levels 5-7 average for tower influenced flows (150< γ <290)
was also observed [figure 3.3(a)-(b)].

To further investigate the bias dependence on wind direction observed in the sonic-
propeller comparison, sonic-propeller speeds ratios were plotted against sonic direction
(figure 3.4). All 10-min runs with sonic wind speeds greater than 2ms−1 are considered.
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This threshold was adopted in order to reduce scattered points. This time, runs are
subdivided by year: 2012 runs were acquired from May to November, 2013 runs from June
to November and 2014 runs from January to April.

Level 6 ratios show a well defined wind direction dependence with two distinct minima
[figure 3.4(a)]: one, more pronounced, around 200°, and another, less pronounced, around
385°. The two directions are, respectively, the opposite and the pointing direction (25°)
of the anemometers booms and correspond to anemometers downwind and upwind with
respect to the tower. The magnitude of the absolute minimum is greater for 2013-2014
than for 2012 runs, with speed differences increasing (in absolute value) from ∼ −20%
to ∼ −40%. Two nearly flat regions with small biases extend from 90° to 140° and from
about 240° to 320°, corresponding to S-SE and W-NW flows for which the anemometers
exposition should be optimal. Median speed differences in these two region are around 5%
or lesser, but deviations greater than 10% are observed.

The behavior of levels 4 and 2 ratios [figure 3.4(b)-(c)] is less clear and an increased
scatter is present, with a predominance of positive biases. No absolute minima are still
easy recognizable around 200°, but large negative differences, ∼ −20%, were observed for
level 4 2012 runs [figure 3.4(b)]. Instead, a maximum was observed for westerly flows,
around 220°-230°, with median speed differences greater than 10%.

Concluding we can say that:

• Good agreement was observed between anemometers of the same type, at least for
wind directions no strongly influenced by the tower structure; however, propeller
readings appeared more coherent than sonic ones.

• Wind direction dependent biases and poorer correlation are present between sonic
and propeller data. In particular, level 6 sonic anemometer readings showed more
correlation with propeller speed and a clearer directional dependence with respect to
the others two sonic anemometers.

• The dependence of sonic-propeller bias on wind direction and the coherence between
readings from instruments of the same type suggest that the observed systematic
deviations are due to anemometers arrangement (sonic booms are longer than propeller
ones) rather than calibration errors.

• Wind directions between 150° and 250° are the more influenced by the tower structure
but also for E-SE winds, for which the anemometers arrangement should be optimal,
on average, sonic-propeller speed differences of about, or more, than 5% were observed.

3.3 Interpolation of wind speed observations
Usually, in atmospheric boundary layer studies, vertical gradients of mean variables are
calculated fitting observations with a chosen profile (e.g., Businger et al., 1971; Nieuwstadt,
1984; Högström, 1988; Grachev et al., 2007b) and then computing derivatives. The most
popular fitting profile is a second order polynomial in ln z (Businger et al., 1971; Högström,
1988; Grachev et al., 2007b) but also a log-linear profile is used (Howell and Sun, 1999;
Yagüe et al., 2006). Forrer and Rotach (1997) and Nieuwstadt (1984) fitted wind speed and
temperature observations with a log-quadratic profile. Businger et al. (1971) and Klipp
and Mahrt (2004) derive gradients from a local fit: i.e. fitting only observations near to the
level of interest. Finite differences are also sometimes used (Cheng and Brutsaert, 2005a;
Ha et al., 2007) both in their linear or logarithmic form.
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3.3.1 Fits

All the most used fitting profiles can be obtained, with particular choices of the coefficients,
from the general one:

y(z) = a0 + a1z + a2z
2 + a3 ln z + a4 ln2 z, (3.11)

z is the height above ground and y can be any atmospheric variable (typically wind speed
and temperature). Deriving (3.11) with respect to z we obtain the general vertical gradient

dy

dz
= a1 + 2a2z + a3

z
+ 2a4

ln z
z
. (3.12)

For the log-linear profile a2 = a4 = 0; for the log-log2 profile a1 = a2 = 0 ; for the Nieuwstadt
wind speed and temperature profiles a4 = 0. All these profiles are generalizations of the
logarithmic one, which is the accepted surface layer profile for almost neutral conditions.

Fits can be local (Businger et al., 1971; Klipp and Mahrt, 2004) or global (Nieuwstadt,
1984; Högström, 1988; Yagüe et al., 2006; Grachev et al., 2007b). In the first case many
fits for many levels are made considering only the nearest observations. In the second , one
fit is made with observations from all levels. Local fits require many measurement levels.

Fits lead to smooth profiles and then less erratic gradients. However, especially with
global fits and goodness of fit selections, results could be biased toward the chosen fitting
profile. Some authors have investigated on the sensitivity of their results to the chosen
fitting-profile founding that it is generally negligible (Businger et al., 1971; Grachev et al.,
2007a). However, the question “How much are (non-dimensional) gradients sensitive to the
evaluation method?” receive usually little attention.

3.3.2 Bessel splines

Splines are more robust than fits: no a priori assumption on the expected profile is
necessary. They are also a local method. On the other hand, interpolation could lead
to less smother profiles. Bessel cubic splines are among interpolation methods that give
smoother profiles. Furthermore, the interpolated profile has continuous first derivatives
(gradients).

Given N x-ordered interpolation points, (x1, y1), . . . , (xN , yN ), where x and y are the
independent and dependent variables, respectively, the Bessel cubic spline for the n-th
interval xn ≤ x ≤ xn+1, with 2 ≤ n ≤ N − 2, is (de Boor, 2001)

yn(x) = c0,n + c1,n(x− xn) + c2,n(x− xn)2 + c3,n(x− xn)3 (3.13)

with

c0,n = yn,

c1,n = sn,

c2,n = ([xn, xn+1]y − sn)/∆xn − c3,n∆xn,
c3,n = (sn + sn+1 − 2[xn, xn+1]y)/(∆xn)2,

where
[xn, xn+1]y = yn+1 − yn

xn+1 − xn
,
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for 1 ≤ n ≤ N − 1, is the first divided difference for the n-th interval, ∆xn = xn+1 − xn
and

sn = ∆xn[xn−1, xn]y + ∆xn−1[xn, xn+1]y
∆xn + ∆xn−1

, (3.14)

for 2 ≤ n ≤ N − 1, is the spline slope at the n-th interpolation point. Eq. (3.14) is the
slope of the parabola interpolating the point and its two neighbors and can be viewed also
as a generalization of the centered differences formula for unevenly spaced points. Bessel
splines were chosen because of their easy implementation and since only three points are
required for computing one slope (e.g., Akima splines require five points).

No cubic Bessel splines can be computed at the two end-intervals, x1 ≤ x ≤ x2 and
xN−1 ≤ x ≤ xN , because Bessel slopes at the end-points, s1 and sN , are not defined
[eq. (3.14)]. However, the first and the last intervals are interpolated with parabolic splines
matching Bessel slopes at the second and the last but one points, respectively. The splines
for the first and the last intervals are

y1(x) = c0,1 + c1,1(x− x2) + c2,1(x− x2)2 for x1 ≤ x ≤ x2 (3.15)

and

yN−1(x) = c0,N−1 +c1,N−1(x−xN−1)+c2,N−1(x−xN−1)2 for xN−1 ≤ x ≤ xN , (3.16)

where

c0,1 = c0,2 = y2, c0,N−1 = yN−1,

c1,1 = c1,2 = s2, c1,N−1 = sN−1,

c2,1 = (s2 − [x1, x2]y)/∆z1, c2,N−1 = ([xN−1, xN ]y − sN−1)/∆xN−1.

Eq. (3.15) and (3.16) are also the expressions for the arc of parabolas interpolating the
first three and the last three points.

Taking as independent variable ln x instead of x, logarithmic profiles are perfectly
interpolated. Bessel-log splines are obtained from Bessel splines expressions substituting
ln x to and ln xn to zn. Whit this choice, interpolation points are approximately evenly
spaced.

3.4 Gradients computation
Wind speed gradients were computed at the three sonic levels (3.7, 7.5 and 20.5m) from
propeller observations only (2.0, 4.8, 10.3 and 33.4m). Indeed, the observed deviations
between propeller and sonic wind speed can produce wildly oscillations in the interpolated
profile when local methods, such as splines, are employed.

As a sensitivity test, vertical gradients of mean wind speed computed with different
methods were compared. The considered methods were log-linear and log-log2 fits, Bessel
and log-Bessel splines, finite and log-finite differences. Wind profiles were obtained from
propellers data only. Derivatives were then computed at the sonic levels. All the stable
dataset were considered, without any selection. Thus, cases with light winds or strongly
perturbed flows (by the tower structure) were also present. With this choice, the behavior
of each method was studied on a wide range of wind profiles.

Firstly, 10-min average wind speeds from the four propeller anemometers were fitted
with the log-linear profile [eq. (3.11) with a2 = a4 = 0] and with the log-log2 [eq. (3.11) with
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a1 = a2 = 0] using a linear unweighted least squares method (Press et al., 1997, p. 665):
linear, because the problem is linear in the unknown coefficients ai; unweighted, because
χ2 was computed simply as the sum of the squares of the residuals between expected and
observed values. Then, having the coefficients of the fitting profiles, slopes at the three
sonic levels were obtained from (3.12). Nieuwstadt profile was not tested because it needs
the determination of four coefficients but only four observational levels were considered.

Observations from the four propeller anemometers are then interpolated with cubic
Bessel splines [eq. (3.13)] in the central interval (between the second and the third propeller
levels) and with quadratic splines matching Bessel slopes [eq.s (3.15) and (3.16)] in the the
two end intervals (between the first and the second, and between the third and the fourth
propeller levels). Interpolation was carried out in two ways. The first taking as independent
variable the height above ground and, the second, taking its logarithm. Hereafter the two
interpolation methods will be called Bessel and log-Bessel splines, respectively.

Bessel splines are obtained from (3.13), (3.15) and (3.16) (and from the relative
coefficients expressions) taking x = z, xn = zn and yn = Sn, where z is the height
above ground and Sn is the wind speed measured by the propeller anemometer at height
zn. Gradients are then computed from the obtained splines coefficients, evaluating the
derivatives of (3.13), (3.15) and (3.16) at the sonic anemometer heights.

Analogously, the expressions for log-Bessel splines are obtained taking x = ln z and
xn = ln zn in (3.13), (3.15) and (3.16). For example, for the central interval (between the
second and the third propeller anemometers) we have

y2(z) = c′0,2 + c′1,2L2(z) + c′2,2L
2
2(z) + c′3,2L

3
2(z), (3.17)

where the coefficients c′i,j are computed as for Bessel splines but taking xn = ln zn and
Ln(z) ≡ ln(z) − ln(zn) was introduced for sake of brevity. Deriving (3.17) by z and
considering that dLn/dz = 1/z we have the vertical gradient for the central interval:

dy2
dz

=
c′1,2 + 2c′2,2L2(z) + 3c′3,2L2

2(z)
z

. (3.18)

It is interesting to note that log-Bessel slopes at the n-th interpolation point [eq. (3.14)
for xn = ln zn], with 2 ≤ n ≤ N , is the slope of the parabola

pn(z) = An +Bn ln z + Cn ln2 z (3.19)

that interpolate the point itself and its two neighbors. Looking at (3.19), one can think
that some analogies exist between log-Bessel splines and log-log2 fit even if the first is a
local interpolation method and the second is a global fit. The advantages of log-Bessel
against Bessel splines are that interpolation points are approximately equally spaced in
ln z and logarithmic profiles are exactly interpolated.

Finally, vertical gradients are computed with finite differences taking both z and
ln(z − d) as independent variables. This is the same as an interpolation with a piecewise
linear and a piecewise logarithmic profile, respectively. The slope is continuous (constant
for linear splines) in each layer delimited by two near propeller levels but it is generally
discontinuous at the propellers heights.

In the linear case, the speed gradient in each layer is constant:

dS

dz
= Sn+1 − Sn

zn+1 − zn
for zn < z < zn+1, (3.20)
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Figure 3.5: Level 2 (3.7m) wind speed vertical gradients intercomparison: (a) log-log2 fit vs.
log-linear fit; (b) log-Bessel vs. Bessel splines; (c) log-finite differences vs. linear-finite differences;
(d) log-Bessel splines vs. log-log2 fit; (e) log-log2 fit vs. log-finite differences; (f) log-Bessel splines
vs. log-finite differences. Dots are 10-min data, solid lines are 1 : 1 relation, dashed lines in (b) is
eq. (3.22). Profiles classification: most logarithmic, red points; intermediate, green points; least
logarithmic, blue points. No profile classification is made in (c).

where Sn and Sn+1 are the two propeller speeds and zn, zn+1, the two propeller heights.
The gradient at the sonic level is that of the layer.

For the logarithmic case, the gradient in each layer is

dS

dz
= Sn+1 − Sn

ln zn+1 − ln zn
1
z

for zn < z < zn+1. (3.21)

where symbols are as in (3.20). The slope at the sonic levels can be obtained from (3.21)
substituting in z the sonic anemometers heights.

As for log-Bessel splines, log-finite differences gives exact slopes for logarithmic pro-
files. Although finite differences are a quit rough method for gradients evaluation, easy
implementation and robustness make it a useful in intercomparison tests.

3.5 Gradients intercomparison

Vertical gradients of 10-min average horizontal wind speed were calculated at the three
sonic levels heights (level 2 at 3.7m, level 4 at 7.5m and level 6 at 20.5m) for all the stable
dataset. Runs acquired on 2 September 2013 were discarded since considered not reliable.

Log-linear and log-log2 fits, Bessel and log-Bessel splines, linear and log-finite differences
were used for the computation. No snow depth corrections were adopted for anemometers
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Figure 3.6: Level 4 (7.5m) wind speed vertical gradients intercomparison (see figure 3.5).

heights taken equal to their nominal values. Vertical gradients of 10-min mean wind from
the different methods are shown in figure 3.5, 3.6 and 3.7 for level 2, 4 and 6, respectively.
Results are presented plotting slopes from one method against those from one other.

Furthermore, a profile classification of gradients was made. For each run, pro-
peller observations were fitted with a logarithmic profile y(z) = A + B ln(z − d) and
χ2 = ∑4

i=1(y(zi) − Si)2 computed (the sum in over propeller levels). Two values of χ2,
χ2

30% = 0.015m2s−2 and χ2
60% = 0.04m2s−2, were then chosen such that about 30% and

60% of the observed profiles showed a χ2 lower than the first and the second value, re-
spectively. Runs, and hence gradients, are then subdivided in three classes: χ2 ≤ χ2

30%,
χ2

30% < χ2 ≤ χ2
60% and χ2 > χ2

60% (red, green and blue points, respectively, in figures 3.5,
3.6 and 3.7). The first and the third classes contain, in order, the most and the least
logarithmic profiles.

Several conclusions can be drawn from the intercomparison. All methods showed a
decrease in gradients magnitude with increasing height (from fig. 3.5 to fig. 3.7), as expected.
Negative gradients were observed both from fit and interpolation methods at all levels.
They are associated mostly with weak winds (S . 3m s−1) and flows strongly perturbed
by the tower structure (150° . γ . 300°) [figure 3.8(c)]. However these two conditions are
related because lighter winds blew mostly from this sector (see figure 2.4).

The agreement between log-linear and log-log2 gradients was generally high [figures 3.5-
3.7, plot (a)] except at level 4 [figure 3.6(a)] where an increased scatter was observed for
least logarithmic profiles.

Instead, biases and more scatter were observed between log-Bessel and Bessel splines
slopes [figures 3.5-3.7, plot (b)]. Biases are greater for the most logarithmic profiles: this is
particularly evident in figures 3.6(b) and 3.7(b) where red points show greater systematic
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Figure 3.7: Level 6 (20.5m) wind speed vertical gradients intercomparison (see figure 3.5).

deviations from the 1 : 1 relation line. Biases between log-Bessel and Bessel splines were
obtained fitting (red) points belonging to most logarithmic profiles (χ2 ≤ χ2

30%) with the
linear relation y = ax. Levels 2 and 6 log-Bessel slopes were, on average, 13% and 20%
lower, respectively, than Bessel ones. Instead, level 4 log-Bessel slopes were, on average,
17% greater than Bessel ones. Large Bessel slopes at the higher sonic level (20.5m) are
due to the Bessel splines bump between the two higher propeller levels visible in all the
three profiles of figure 3.8 and in about 100 randomly chosen profiles too.

The relation between log-finite and (linear) finite differences slopes depends only on
anemometers heights. For this reason, no profile classification was adopted in plot (c) of
figures 3.5, 3.6 and 3.7. Indeed, from (3.21) , log-finite slope at sonic height z, located
between two observational levels n and n+ 1, can be expressed as

dS

dz
= zn+1 − zn
z ln(zn+1/zn)

Sn+1 − Sn
zn+1 − zn

, (3.22)

where the last factor in the right hand side of (3.22) is just the finite differences slope for
the layer.

In plot (c) of fig. 3.5-fig. 3.7, points follow eq. (3.22). Deviations between log-finite and
finite differences, which are 14% for level 2, become 4% for level 4 [figure fig. 3.6(c)] and
level-6 [figure fig. 3.7(c)].

Eq. 3.22 is also plotted in figure fig. 3.7(b) because points that refer to most logarithmic
profiles seem to follow it, suggesting a common behavior between log-Bessel splines and
log-finite differences, and between (linear) Bessel splines and (linear) finite differences at
least at this height.

In plots (d), (e) and (f) of fig. 3.5, fig. 3.6 and fig. 3.7 a comparison is made between
gradients from methods that share a logarithmic behavior. Due to the very similar behavior
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Figure 3.8: Three wind speed profiles for: (a) moderate NW winds (31 May 2012, 05.00, local
time); (b) light SW winds strongly perturbed by the tower structure (8 June 2012, 6.20); (c) weak
SW perturbed winds with a snow height of ∼1m (3 April 2014, 15.00). Height, z, is above snow-free
ground. Circles are propeller observations, squares, sonic ones. Lines are profiles obtained fitting or
interpolating propeller observations.

between log-log2 and log-linear fits, only results from the first method are shown. However,
considerations made for the first method can be fairly extended to the second.

The agreement between log-methods is in general good and increases as the observed
profile follows more closely the logarithmic one. The large scatter between fit and splines
gradients observed at level 4 [figure 3.6(d)-(e)] is due, very likely, to the sensitivity of
fit-slopes to the fitting profile already observed at this level in the intercomparison between
log-log2 and log-linear fits [figure 3.6]. Quite remarkable is the consistency of log-log2 and
log-Bessel gradients at level 2 [figure 3.5(d)] and that of log-Bessel and log-finite gradients
at level 6 [figure 3.7(f)], even if a very slightly positive bias (<1%) was noted, at this level,
between log-Bessel and the others two methods for least logarithmic profiles [blue points
in figure 3.7(d) and (f)].

Klipp and Mahrt (2004) compared gradients obtained from a local log-linear fit with
those from finite and log-finite differences. Their data came from 12 observational levels
from 1.5 to 55m, the 11 levels from 5 to 55m were equally spaced by 5m. The local fit
used observations from 4 adjacent levels. They found systematic differences (both positive
or negative, depending on the level) between gradients from local fit and finite differences
for the lowest levels (z ≤ 10m) and comparable results above. Smaller differences were also
observed between log-finite differences and local fit gradients. Results from CCT data show
biases between linear methods (Bessel splines and finite differences) and log-methods (fits,
log-finite differences and log-Bessel splines) for the lowest levels (z ≤ 7.5m) in agreement
with those of Klipp and Mahrt (2004).

Now we turn on observed deviations between log-linear and log-log2 slopes at the
intermediate sonic level [figure 3.6(a)]. Given a set of observations, the two fitting profiles
are

ya(z) = a0 + a1z + a3 ln z and yb(z) = b0 + b3 ln z + b4 ln2 z. (3.23)
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Figure 3.9: Normalized ∆-functions, ∆(z)/∆(z), against normalized height, z/z, for 115 randomly
selected profiles. Vertical lines are normalized heights of the three sonic levels.

Vertical gradients are obtained deriving (3.23) with respect to z:

dya
dz

= a1 + a3
z

and dyb
dz

= b3 + 2b4 ln z
z

(3.24)

We define then a function, ∆(z), as the difference between log-linear and log-log2 slopes:

∆(z) ≡ dya
dz
− dyb
dz

= a1 + a3 − b3 − 2b4 ln z
z

. (3.25)

For a logarithmic profile a1 = b4 = 0 and a3 = b3 from which ∆ = 0 for every z. In
practice, however, this never happen although a1 and b4 can be very small and a3 and b3
very similar. ∆(z) has a stationary point in

z = exp
(

1 + a3 − b3
2b4

)
such that d∆

dz

∣∣∣∣
x

= 0 and with ∆(z) = a1 −
2b4
z
.

From (3.25), ∆-functions were obtained from the coefficients of 115 randomly selected
profiles belonging to the snow free stable dataset. In figure 3.9 these functions, normalized
by their value at the stationary point, ∆(z), are plotted against the height normalized by
the stationary point height, z/z. All the normalized functions show a common behavior:
∆(z)/∆(x) → −∞ for z → 0 as O(ln z/z), reaches a maximum in z = z and then levels
off around a negative value of the order of 1 for x → ∞. For not normalized functions,
∆(x), the stationary point can be a positive maximum (∆(x) > 0) or a negative minimum
(∆(x) < 0): in the latter case, the normalization implies a vertical reflection of the graph
around the zero axis.

The median value of z considering all the 2900 profiles is about 7m and for 70% of them,
z fall into the range 6-8m. Thus, maximum deviations between log-linear and log-log2

slopes occur mostly near level 4 height (7.5m). In figure 3.9, the heights of the three sonic
levels (3.7, 7.5 and 20.5m), normalized by z = 7m, are reported for comparison. Level 4
height falls indeed very near the height of maximum deviations (that can be both negative
or positive). Instead, in general, much smaller deviations correspond to level 2 and level 6
heights. This explain the increased scatter observed in figure 3.6(a).
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∆-functions become more flat with less pronounced maximums (or minimums) as the
observed profile follows more closely the logarithmic one: i.e. a1 ' 0, b4 ' 0 and a3 ' b3.
The uppermost curves in figure 3.9, like the magenta and green ones, which display a very
different behavior from the others, correspond just to this case. However, the behavior of
normalized ∆-functions in such limit is very sensitive to the relative magnitude of a1, b4
and a3 − b3 leading to less similar curves.

3.6 Gradients sensitivity to displacement height

Snow height measurements at the CCT were intermittent and not always reliable making
the height of observational levels above snow surface not known with sufficient accuracy.

In section 3.5 gradients were computed fitting or interpolating observations with the
height above snow free ground (i.e. the nominal height of levels) as independent variable,
without any correction for snow height. However, the analysis was carried out considering
only those runs for which the snow height (at the CCT or at NMI’s station) was below
20 cm. In this way, the obtained results should be almost free from snow height effects.

The best choice would have been to retain only those runs for which no snow cover
was observed at CCT or at NMI’s station: i.e., runs acquired from June to September.
However too few runs satisfy this condition because stable conditions occur mostly during
the permanent snow cover season: i.e., from October to May. Moreover, for subsequent
analyses, also the threshold of 20 cm for snow height turned to be too restrictive. It was
then decided to retain all runs acquired from June to November (included) and those
acquired from 25 to the end of May 2012: during these periods, the snow height at CCT
or at Ny-Ålesund’s station was below 50 cm.

A shift in the height of all observational levels has not effect on gradients obtained
from Bessel splines and linear finite differences because only the height differences between
levels are considered in these two methods.

Instead, gradients obtained from methods that have a nonlinear behaviour in z (i.e.,
log-finite differences, log-Bessel splines, log-linear and log-log2 fits) are affected by a shift
in the vertical coordinate. This can be seen for a logarithmic profile. Let us suppose that
the true profile is

y(z) = A+B ln(z − d), (3.26)

where z is the independent variable of interpolation (i.e., the height above snow free
ground) and d is a displacement height (e.g., the snow height). Log-methods interpolate
perfectly the true profile only when d = 0. Otherwise, deviations between the true and the
interpolated profile and, then, the true and the computed gradients are expected.

Deviations between true and computed derivatives for a logarithmic profile as that in
eq. (3.26) can be obtained easily for log finite differences. Given two observational levels at
zn+1 and zn, the computed gradient with log-finite differences at height zn ≤ z ≤ zn+1 is(

dy

dz

)
comp

= yn+1 − yn
ln zn+1 − ln zn

1
z

(3.27)

where yn = y(zn) = A+B ln(zn − d). Then(
dy

dz

)
comp

= ln(zn+1 − d)− ln(zn − d)
ln zn+1 − ln zn

z − d
z

(
dy

dz

)
true

(3.28)
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Figure 3.10: Ratios between computed and true derivatives for a logarithmic profile against
displacement height for a logarithmic (a) and a log-linear (b) profile.

where (
dS

dz

)
true

= B

z − d
(3.29)

is the true gradient from eq. (3.26).
Even for a logarithmic profile, a relation similar to (3.28) cannot be easily derived for

the other log-methods. However, as a sensitivity test, a comparison between computed
and true gradients from a known profile with variable displacement height was carried out.

Observations at the four propeller levels (z = 2, 4.8, 10.3, 33.4m) were generated from
the log-linear profile

y(z) = ln(z − d) + αz. (3.30)

Then gradients were computed at the three sonic levels (z = 3.7, 7.5, 20.5m) fitting
observations with log-linear and log-log2 profiles, interpolating them with log-Bessel splines
and with log-finite differences. This was done for values of d in the range −1m ≤ d ≤ 1m.

Taking α = β/L, L the Obukhov length, (3.30) is the normalized wind speed profile for
the horizontally homogeneous, stationary, weakly stable surface layer over flat terrain (ex-
cept for a constant, but computed gradients do not depend on constants in the interpolated
profile):

y(z) = κ

u∗
U(z) + const. (3.31)

Then derivatives of (3.30) are related to normalized wind shears for nearly-neutral or
weakly stable conditions:

dy

dz
= κ

u∗

dU

dz
= 1
z − d

+ α. (3.32)

Two cases were analyzed: a logarithmic profile, obtained for α = 0 in (3.30) and a
log-linear profile, obtained from α = β/L, β = 4.7 (Businger et al., 1971) and L = 50m in
(3.30). The ratio between the computed gradients with the four log-methods and the true
ones (3.32) for the three sonic level heights and the two profiles are presented in fig. 3.10.

For the sake of simplicity, hereafter z − d will be called “true height” and z “nominal
height”. In fig. 3.10 also the case for which the true height is greater than the nominal
one (d < 0) is shown. However, for the snow height effect d > 0. For both the logarithmic
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(fig. 3.10(a)) and the log-linear profile (fig. 3.10(b)) deviations between the computed and
the true gradients are below ∼ 5% for d < 0.5m for all log-methods and at all sonic levels.
An exception are gradients computed with log-log2 fit at the middle sonic level (z = 7.5m)
for the log linear profile which showed deviations of more tha 15%: uppermost red solid
curve in fig. 3.10(b). This is another manifestation of the deviations between log-log2

and log-linear profiles that were already observed at this height during the gradients
intercomparison in section 3.5.

For logarithmic profiles (fig. 3.10(a)) differences between computed and true gradients
are greater for d > 0: i.e., when the nominal height underestimates the true height. The
sensitivity of the computed gradients to the displacement height decreases with decreasing
d for both log and log-linear profiles. However this is much more evident for the log-linear
one (fig. 3.10(b)) because as d becomes more and more small (or even negative) the linear
behaviour, which does not depend on d, dominates on the logarithmic one (eq. (3.32)).

Log-Bessel gradients are almost identical to the true ones for the highest sonic levels
(z = 20.5m) and the logarithmic profile for the whole range of displacement height
considered: blue dashed line in fig. 3.10(a). Considering all the three levels, among the
four methods, log-Bessel splines seem to perform better.

Obviously, for log-linear profiles, better performances are obtained with a log-linear
fit although a greater sensitivity to the displacement height was observed for the middle
level (z = 7.5m): dot-dashed red curve in fig. 3.10(b). Also in this case performances of
log-Bessel splines are overall good.

Snow height measurements at the CCT were intermittent and considered not reliable
since October 2013. When the snow measurements at the CCT were not available, daily
observations from the station of the Norwegian Meteorological Institute (NMI) in Ny-
Ålesund were employed. The station is located west of the village at about 2 km from the
CCT’s site. When both observations were available, differences of the order of 10 cm were
observed between the snow height measured at the CCT and at NMI’s station. These
differences are of the order of the accuracy with which can be determined the height
above the snow-free ground, z, due to the irregularity of the terrain near the CCT. Higher
differences of about 40 cm were observed in March 2014. However, very few snow height
measurements were taken at the CCT in winter 2013-2014 and doubts are present on their
reliability.

The best choice would have been to exclude all runs with snow covered ground and
then computes gradients taking as independent variable the height above snow-free ground
(the nominal height). However, this would have excluded too many stable runs which occur
mostly during the permanent snow cover season.

It was decided then to compute gradients (and fit or interpolation coefficients) taking
as independent variable the height above snow-free ground, without any correction for the
snow depth, and limiting the analysis to runs for which the snow height (at the CCT or at
NMI’s station) was below 50 cm. For doing this, all runs acquired from January to May
2014 were excluded from the analysis.
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3.7 Sensitivity of dimensionless gradients to displacement
height

The true and the computed dimensionless wind shears are

φtrue
m = κ(z − d)

τ1/2

(
dU

dz

)
true

and φcomp
m = κz

τ1/2

(
dU

dz

)
comp

(3.33)

where z is the nominal height (used in the computation of the gradients), d is the difference
between the nominal and the “true height” above ground (i.e., the displacement height)
and, for the sake of brevity, we have put Ω ≡ dU/dz. From (3.33), the relative error in the
computed dimensionless shear is

εφm = εz + εdU/dz + εzεdU/dz, (3.34)

where

εφm = φcomp
m − φtrue

m

φtrue
m

, εz = d

z − d
and εdU/dz = (dU/dz)comp − (dU/dz)true

(dU/dz)true

are relative errors in dimensionless gradients, height above ground (or above zero plane)
and gradients, respectively. Supposing that both the relative error for the height above
ground and that for the wind shear are small (� 1) we can neglect the product in the
right side of (3.34) and write

εφm ≈ εz + εdU/dz. (3.35)

In φm vs. z/Λ plots, errors in the estimation of the height above ground (or above
zero-plane) have different effects depending on the similarity relationship followed by the
true gradients (supposing that they follow one) and hence on stability.

Let us suppose that the true dimensionless wind shear follows a similarity relation and
can be expressed as a function of the true stability parameter: φtrue

m = φemp
m ((z − d)/Λ),

where φemp
m is some empirical function. When the estimated height and the true height

coincide, d = 0, φcomp
m = φtrue

m and the computed points collapse onto the empirical function

φcomp
m = φemp

m (z/Λ).

However, when a displacement height is present, in the φm–z/Λ plane (where z is the incor-
rect height) the computed points moves from (z/Λ, φemp

m (z/Λ)) to (z/Λ+δ(z/Λ), φemp
m (z/Λ)+

δφm) where
δ(z/Λ) = εz(z/Λ) and δφm = εφmφ

emp
m (z/Λ). (3.36)

This means that because of errors in estimated height, the computed point moves along
straight lines passing through the origin (z/Λ = 0, φm = 0) and with slope

δφm
δ(z/Λ) = φemp

m (z/Λ)
z/Λ

(
1 +

εdU/dz
εz

)
(3.37)

obtained from (3.36) and (3.34).
Supposing that the true (empirical) similarity function is linear,

φemp
m (z/Λ) = 1 + βm(z/Λ), (3.38)
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from (3.36) we have that
δφm
δ(z/Λ) =

(Λ
z

+ βm

)
(1 + α) (3.39)

where α = εdU/dz/εz is the ratio between relative errors in gradients and height. From
(3.39) we see that when errors in gradients are much smaller that errors in height, i.e. α ' 0,
the computed point moves in a direction which becomes more and more aligned with true
relation as stability increases. Then in this special case errors have lesser influence on the
similarity relation as stability increases. This is not surprising because (3.38) predicts the
existence of a z-less regime for z/Λ� 1 for which the height above ground is not a scaling
variable anymore. The fact that errors in the height above ground can have not any effect
on similarity relationships is another manifestation of self correlation that affects φm vs.
z/Λ plots, this time because of the shared variable z.

For a linear similarity function as that of eq. (3.38) and α = 0

φcomp
m = z

z − d
φemp
m

(
z − d

Λ

)
= z

z − d
+ βm

z

Λ . (3.40)

It must be noted that d can change between computed points, as snow height changes
between different runs, making its effect on similarity relationships more difficult to detect.

At the lowest sonic level, z = 3.7m, for d = 0.5m εz = 16% and, for a logarithmic
profile (see fig. 3.10) α ranges from about 0.05 to 0.25, depending on the used methods in
the gradients calculation; at the same height, but for d = 1m, εz = 37% and α is between
about 0.1 and 0.3. At the middle sonic level, z = 7.5m, εz = 7% for d = 0.5m and α
varies between about −0.1 to 0.9; α varies almost in the same range for d = 1m, εz = 15%.
At the highest level, z = 20.5m, εz = 2.5% and α is between −0.8 and 0.4 for d = 0.5m;
for d = 1m, εz = 5% and α is about in the same range. Therefore, considering errors in
gradients due only to errors in the estimation of the height above snow-covered ground (or
zero plane) the assumption that α ' 0 is not fulfilled at all heights and for all computation
methods. This complicates further the estimation of errors in dimensionless gradients due
to snow height.





Chapter 4

Wind speed flux-gradient
relationships for the CCT dataset

This chapter is about the main argument of the work: the relation between the dimensionless
wind speed gradient, φm, and the local stability parameter, z/Λ, for the CCT dataset for
the stably stratified boundary layer. Several formulations were proposed since the 1968
Kansas experiment (Businger et al., 1971; Haugen et al., 1971),where for the first time
flux-gradient relationships were obtained from direct measures of turbulent fluxes, to the
present (e.g. Beljaars and Holtslag, 1991; Businger et al., 1971; Cheng and Brutsaert,
2005a; Grachev et al., 2007b; Högström, 1988, 1996; Sorbjan and Grachev, 2010). These
formulations (empirical functions) differ significantly only for very stable conditions (i.e.
z/Λ & 1). Furthermore, they are derived from observational campaigns made over almost-
flat and homogeneous terrains, which are among assumptions contained in Monin-Obukhov
similarity theory and in its local equivalent, that is adopted in this study.

However, most real surfaces are not flat nor homogeneous. The question arise then if
local similarity theory still works above complex terrains and heterogeneous surfaces. The
CCT is located in an arctic fjord surrounded by mountains few kilometers far from the
tower, i.e. the perfect site to test the limits of validity of local similarity theory. In this
chapter, result from the CCT dataset are presented in attempt to answer this question.

After a brief discussion in section 4.1 about the choice of considering wind speed
gradients instead of wind shear (in the rest of the chapter the terms “wind shear” and
“wind gradient” will be used almost equivalently), criteria for data selection to reduce the
scatter in similarity plots are presented in section 4.1. In particular, wind direction, to
exclude tower perturbed flows, and wind speed, to exclude weak turbulence, are considered.

In section 4.3, plots of φm against z/Λ are presented for all selected runs, with a further
subdivision in wind direction sector, each of which having its own peculiar topographic
and surface characteristics. In section 4.4, the possible origin of observed deviations of φm
for low z/Λ are analyzed and, finally, in section 4.5 the apparent failure of local similarity
theory for the CCT dataset is discussed.

4.1 Wind shear and wind speed gradient
The dimensionless wind shear is defined as (e.g., Sorbjan, 1986; Sorbjan and Grachev, 2010;
Stull, 1988):

φm ≡
κz

τ1/2

[(
du

dz

)2
+
(
dv

dz

)2]1/2
, (4.1)
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where τ = [(u′w′)2 + (v′w′)2]1/2 is evaluated at the surface or at the height z if surface
or local scaling is adopted, respectively. Definition (4.1) can be rewritten in term of the
vertical gradient of the wind velocity modulus, dU/dz, and the directional shear, dγ/dz,
considering that

u = −U sin γ and v = −U cos γ, (4.2)

where U = (u2 + v2)1/2 and γ is the mean wind direction measured clockwise from north.
Indeed, substituting (4.2) in (4.1) we have

φm = κz

τ1/2

[(
dU

dz

)2
+ U

2
(
dγ

dz

)2]1/2
. (4.3)

Many authors (eg., Businger et al., 1971; Grachev et al., 2007b; Högström, 1988; Yagüe
et al., 2006) use the definition

φm ≡
κz

τ1/2
dU

dz
(4.4)

that coincides with (4.1) or (4.3) when the directional shear is negligible. These authors
usually rotate the reference frame along the wind direction taking τ = |u′w′| (e.g., Grachev
et al., 2007b) or τ = [(u′w′)2 + (v′w′)2]1/2 (e.g., Yagüe et al., 2006) where now u′ and v′
are the fluctuations of the velocity components along and transverse to the mean wind
direction, respectively. The first choice is motivated by the assumption that |u′w′| � |v′w′|.

Always in the present work, because no axes rotation was carried out, the definition τ =
[(u′w′)2 +(v′w′)2]1/2 is used, being u′ and v′ the fluctuations of the eastward and northward
wind components, respectively. Furthermore, the mean wind speed S = [u2 + v2]1/2 instead
of the mean wind velocity, U , was used for the computation of wind shear both in (4.1) or
in (4.3), because only the first was available from propeller anemometers. However, as was
demonstrated in section 3.1, U ≈ S is a good approximations in many cases eventually
leading to slightly overestimations (< 5%) of dimensionless gradients.

4.2 Data selection by wind speed and direction

Dimensionless wind shears were derived at all the three sonic levels (z = 3.7, 7.5, 20.5m)
using (4.4) and calculating wind speed gradients with the four log-methods: log-linear and
log-log2 fits, log-Bessel splines and log-finite differences. Interpolated profiles, gradients
(dS/dz), dimensionless wind shears (φm) and stability parameters (z/Λ) were all derived
using the nominal height of each level, without any correction for the snow depth. The
analysis was carried out on runs belonging to the 1h-truly-stable dataset, excluding those
acquired from January to May 2014, in order to limit the effect of snow height. Local scaling
is adopted: both φm and Λ were derived from fluxes obtained with the eddy correlation
method and 10-min averages at the considered sonic level.

To reduce scatter in φm vs. z/Λ plots, runs were selected considering wind speed
and direction. The improvement from this selection is evident in fig. 4.1 where runs are
subdivided in three classes:

1. “tower perturbed”, if the wind direction at one or more propeller levels was in the
range 150°–300°;

2. “weak winds”, if the wind direction was outside the range 150°–300° at all propeller
levels and S < 3m s−1 at one or more propeller levels;
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Figure 4.1: Dimensionless wind shears computed with the four log-methods against stability
parameter for the three sonic levels. Data are stratified by wind direction and speed. Open symbols
are bin medians, shaded areas represent the maximum 15th-75th percentile range considering all
methods. Also shown are similarity functions from Businger et al. (1971) and Beljaars and Holtslag
(1991). Dashed lines indicate the (z/Λ)1/3 behaviour.
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3. “selected runs”, if wind direction was outside the sector 150°–300° and S ≥ 3m s−1

at all propeller levels.

For each class (columns), sonic level (rows) and log-method, data are collected in intervals
of stability (z/Λ): three intervals per decade of z/Λ of equal width in log(z/Λ). For each
interval, “bin”, the median values of φm and z/Λ, and the 15th–85th percentiles of φm
were derived. In fig. 4.1, open symbols are bin medians (for both z/Λ and φm) for each
method. The shaded areas extend from the minimum 15-th percentile to the maximum
85th percentile among all methods for the same bin. This area is an indication of the
spread of the data. Also shown in fig. 4.1 are similarity relationships from Businger et al.
(1971) and Beljaars and Holtslag (1991). In all plots both axes have logarithmic scales.

The starting dataset was composed by 3598 10-min runs, 520 (14%) of them were
classified as tower-perturbed, 383 (11%) as weak-wind conditions and the remaining 2695
(75%) were the selected ones. It must be noted that tower-perturbed runs were mostly
characterized by weak-wind conditions because weak winds were dominant in that direction
sector (see fig. 2.4). Hence, these two classes are not mutually exclusive.

The agreement between methods is high for selected runs at all three sonic heights and
for the whole observed stability range (fig. 4.1(c),(f) and (i)). Greater deviations were
observed for weak-winds (fig. 4.1(b),(e) and (h)) and, especially, for tower-perturbed flows
(fig. 4.1(a),(d) and (g)). Generally, large differences among methods are associated with an
increase of data scatter (shaded areas in fig. 4.1). Furthermore, particularly in these two
classes, the agreement is better between methods of the same type: log-lin and log-log2

fits; log-Bessel splines and log-finite differences. The different behaviour of global vs. local
methods (i.e., fits vs. interpolations) indicates that complex structures appear in the wind
profile in weak-wind and tower-perturbed conditions (see fig. 3.8(b), for an example). This
can leads to poorly determined, very small or even negative wind speed gradients.

A reduction in the scatter of data was observed for the selected runs with respect
to both tower-perturbed and weak-winds conditions for all the three sonic levels: this is
indicated by lesser vertical extension of the shaded area in plots (c), (f) and (i) of fig. 4.1.
Lesser scatter in φm vs. z/Λ plots suggests a greater correlation between dimensionless
gradients and stability parameter. However this does not automatically mean that a
flux-gradient relationship exists because of self-correlation that affects φm vs. z/Λ plots
(Baas et al., 2006; Klipp and Mahrt, 2004).

The behaviour of bin medians observed for weak-wind conditions (fig. 4.1(b), (e) and
(h)) can just be explained by self-correlation due to the shared variable τ which is present
in both φm and Λ. Indeed, φm ∝ τ1/2 and Λ ∝ τ3/2. Then, if the wind shear, dS/dz, is
uncorrelated with the local friction velocity, τ1/2, the behaviour φm ∼ (z/Λ)1/3 is observed
(this behaviour is represented by the dashed straight lines in fig. 4.1). A similar behaviour
can be observed also for tower-perturbed flows in fig. 4.1(a) and, although with a slightly
smaller slope, for selected runs at the highest level, in fig. 4.1(i).

Although the threshold of 3m s−1 for the wind speed is quite arbitrary and chosen
from a trade-off between scatter reduction and number or retained runs, it seems to
discriminate quite well between cases when a flux-gradient relation exists and those when
it does not. Argentini et al. (2012) observed that when the wind speed overpassed 3m s−1

a transition between a wavy stratified nocturnal surface layer with light turbulence to
a more mixed turbulent layer occurred. Liang et al. (2014) found that a wind speed of
3m s−1 separates a regime with stationary turbulence, for which MOST holds, from a
regime where nonstationary motions are dominant, turbulence is independent of the mean
flow and MOST may not holds.
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Figure 4.2: Comparison between φm obtained evaluating gradients with the four log-methods at
z = 7.5m and for each wind direction sector: open symbols are bin medians; single data points and
15th–85th percentile range (error bars) refer to log-Bessel splines only.

Klipp and Mahrt (2004) retained only cases for which dS/dz ≥ 0.001m s−1 because
small gradients are usually poorly determined (Salesky and Chamecki, 2012). In this study,
all selected runs satisfy this condition at the lowest two sonic levels. At the highest one,
very few negative gradients (∼ 0.1% of the total, depending on computation method),
of the order of −0.01m s−1, were observed. Anyway, no data selection by wind speed
gradients was adopted.

4.3 φm vs. z/Λ plots for different wind direction sectors

Selected runs were furthermore subdivided into four wind direction sectors: 120°–150°, 90°–
120°, 30°–330° and 300°–330°. The original idea was to subdivide the less tower-perturbed
sector (300°-150°) into 7 sectors, each 30°-wide. However, too few runs would have fallen
into sectors around north. For this reason, only one sector 60°-wide from 30° to 330° was
considered. Wind directions from 60° to 90° were excluded from the analysis because too
few runs belonged to this sector and because some of them shows anomalous results at
the lowest sonic level, maybe due to the influence of the small house hosting computers
connected with the CCT’s instrumentation. A separate analysis for each sector is advisable
in a complex terrain as that of the CCT’s site, because fetch and topography change as
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direction change. The north-sector is characterized by sea-land transitions and terrain
slopes oriented along the cross-wind direction (see section 2.2.1). In the east-southeast
and northwest sectors, topographic effects should dominate because of the presence of
mountains some kilometers far from the tower.

On average, no significant deviations between dimensionless gradients computed with
the four log-methods were observed at the lowest (z = 3.7m) and the highest (z = 20.5m)
sonic levels. Differences of the order of 10%–20% were instead observed for the middle sonic
level (z = 7.5m) between global (log-log2 and log-linear fits) and local methods (log-Bessel
splines and log-finite differences). This level as yet shown to be the most sensitive to the
computation method (section 3.5).

The sensitivity of φm to the computation method for the middle sonic level is shown
in fig. 4.2. For each wind direction sector results are presented as bin medians: as for
fig. 4.1, data were subdivided in three intervals (bins) per decade of z/Λ and median values
computed for both φm and z/Λ. Only median values for bins containing at least 5 data
points are shown. Single data points and the 15th-85th percentile range for each bin are
shown for gradients computed with log-Bessel splines only, to give an idea of the typical
spread of data, which is quite similar for the other methods.

For the 90°-120°-sector (fig. 4.2(b)) and z/Λ . 0.04, gradients from log-linear fit cluster
slightly above (. 10%) and those from log-Bessel splines slightly below the theoretical
relation, with better agreement for log-log2 fit and log-finite differences. For higher
stabilities (z/Λ . 0.04) gradients from all methods collapse on the same curve. Differences
between methods in near-neutral conditions reflect deviations of the true profile from the
logarithmic one. In the case of fig. 4.2(b), differences between methods are in agreement
with the presence of a small positive displacement height (see fig. 3.10(a)). For the 300°-
330°-sector (fig. 4.2(d)), gradients from splines or log-differences are always above those
from fits. Relative deviations between global and local methods are almost constant with
stability. The presence of a positive displacement height to explain observed differences
between computed and theoretical φm for near neutral conditions (i.e. φm(z/Λ = 0) > 1)
seem to be discarded by between-methods differences, that are opposite to those expected
in this case (see fig. 3.10(a)).

For other sectors (fig. 4.2(a)-(c)), between-methods differences are lesser systematic
although a slightly better agreement among computed and theoretical φm for z/Λ . 0.03
is observed when fits, instead of local methods, are employed.

In general, dimensionless gradients from global fits collapse nearer to theoretical
relationships that those from local methods (splines or log-differences) for near neutral
conditions (i.e. z/Λ . 0.03). This can be explained by a smaller sensitivity of global
methods (fits) to deviations of the observed profile to the logarithmic one, maybe due to
the formation of internal boundary layers because of complex terrain. Klipp and Mahrt
(2004) observed that φm(z/Λ = 0) 6= 1 when finite or log-finite differences were employed
for the calculation of gradients, with both positive or negative biases, depending on level,
for z . 10m.

In fig. 4.3, dimensionless wind speed gradients, from log-Bessel splines, against stability
parameter are shown for selected runs at the three sonic levels and for each wind direction
sector as bin medians and 15th-85th percentile range. For comparison, statistics for data
from all sectors (which were yet presented in fig. 4.1(c), (f) and (h)) are also reported along
with similarity functions from Businger et al. (1971) and Beljaars and Holtslag (1991).

A comparison between local scaling (fig. 4.3(a)-(c)) and “surface” scaling (fig. 4.3(d)
and (e)) is also carried out: in the first case φm and Λ are computed from fluxes measured
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Figure 4.3: φm against z/Λ for each sonic level and wind direction sector: along with bin medians
(open symbols) and 15th-85th percentile ranges (error bars) for each sectors, those for all sectors
(dotted lines and shaded areas) are shown for comparison. In (d) and (e) surface scaling is adopted.
The dashed straight line in (c), (d) and (e) indicates the φm ∝ (z/Λ)1/3 behaviour.
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at the considered level, in the second, from fluxes at the lowest sonic level (z = 3.7m). It
must be stressed, however, that the use of the word “surface” can be misleading because
the lowest level can be or not be in the surface-layer which can even not be present at all.

Differences between φm from different direction sectors were observed in the weakly
stable and near neutral range, i.e. for z/Λ . 0.1, particularly at the middle sonic level
(fig. 4.3(b)) and, to a lesser extent, at the lowest one (fig. 4.3(a)). For z/Λ & 0.1, instead,
data from different sectors collapse almost on the same curve. At the highest level
(fig. 4.3(b)), observations from different sectors lie almost on the same curve for the whole
stability range, with the exception of the 300°-330°-sector.

The greatest agreement between observed and expected φm from most employed
empirical curves (i.e. Beljaars and Holtslag (1991) and Businger et al. (1971)) was found for
the lowest level (fig. 4.3(a)) and the 300°-330°-sector, which showed also the smallest range
of variation of z/Λ. For south-east sectors (i.e. 120°-150° and 90°-120°), at the same level,
the agreement is good up to z/Λ . 0.5. Beyond, observed φm increases slower with z/Λ
and seems to level-off around the value of 4. However, too few data points with z/Λ > 1 do
not permit a fairly assessment of this level-off, as that proposed by Cheng and Brutsaert
(2005a) although around a smaller value of φm. In the near-neutral limit, i.e. for z/Λ→ 0,
observed dimensionless gradients are both smaller or greater than the theoretical value
of 1, depending on the direction sector: south-eastern sectors showed values of φm below
the theoretical one, around 0.9; for the northern sector (330°-30°), instead, φm leves-off
around 1.5 for z/Λ . 0.05.

Between-sectors differences in the near-neutral and weakly-stable range increases at
the middle sonic level (fig. 4.3(b)) with south-eastern sectors showing values below, and
northern and north-western sectors above, the expected ones. With the exception of the
90°-120°-sector for z/Λ . 0.1, observed φm from any of the sectors do not follow closely
expected similarity functions. Other interesting features at this level are the systematically
higher φm observed for the 300°-330°-sector in the weakly-stable-near-neutral range, and
the minimum in observed φm around z/Λ ' 0.01-0.02 for south-eastern sectors. As for the
lowest level, between-sectors differences decrease when z/Λ & 0.1 and observed φm is lower
and increases slower with z/Λ than expected ones although differences are smaller for the
300°-330°-sector.

With the exception of the 300°-330°-sector, observed values of φm are much smaller
than expected ones for the whole stability range and follow more or less the relation
φm ∝ (z/Λ)1/3, although with a slightly smaller slope (fig. 4.3(c)). This behaviour indicates
that self-correlation is present (chapter 5), that a flux-gradient relationship does not exist
and that the observed correlation is a mathematical artifact due to the fact that the friction
velocity enters in both the definition of φm and Λ. The fact that observed slope is slightly
smaller than 1/3 is probably due to the higher range of variation of heat fluxes observed at
this level (section 5.1) which increases the horizontal scatter of data points. Observations
from the sector 300°-330° follow more closely expected similarity functions at least up to
z/Λ ' 0.1.

4.4 Deviations between observed and expected φm for small
z/Λ

The origin of between-sectors differences in the near-neutral range were inquired. Firstly,
the hypothesis of the need of a displacement height was considered. In fig. 4.4, mean wind
speed differences S(z)− S(2 m) for all runs such that z/Λ ≤ 0.02 at the middle sonic level,
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Figure 4.4: Vertical profiles of mean wind speed differences for all runs such that z/Λ ≤ 0.02 at
z = 7.5m: mean values and between-runs standard deviations (error bars) along with log-fits for
propeller means with and without a displacement height are shown.

which showed the largest deviations, are reported for all propeller and sonic levels on the
CCT. Furthermore, propeller mean differences were fitted with a logarithmic profile with
and without a displacement height and with the constraint of zero intercept a z = 2m.

Propeller observations are well fitted by the logarithmic profile for each sector, with
or without a displacement height (fig. 4.4). The fit-derived displacement heights are
d = 0.4± 0.1m for the sector 120°-150°, d = 0.6± 0.1m for 90°-120°, d = 0.7± 0.3m for
330°-30° and d = −0.4± 0.3m for 300°-330°.

Observed deviations can be at least partially explained by a displacement height, maybe
due to snow cover, only for the sector 330°-30°. Indeed, for this sector, most of near-neutral
runs were acquired in November with snow-covered ground, although the snow height
observed at Ny-Ålesund remained below 0.4m. For d = 0.7, φm can be overestimated of
about 20% and 10% at z = 3.7m and z = 7.5m, respectively (eq. (3.35)). Differences
between observed and expected φm in the near-neutral range are larger, of the order of
30%-40% (fig. 4.3(a)-(b)).

For the other sectors, observed deviations cannot be explained in term of a displacement
height, both because they are larger for the middle sonic level (fig. 4.3(b)) than for the
lowest one (fig. 4.3(c)) and because they have opposite sign with respect to the derived
displacement heights.

The hypothesis that observed deviations were caused by turbulent fluxes that enter in
the definition of both φm and Λ was also verified. Profiles for fluxes of momentum and
heat, normalized by the value at 3.7m, were derived in two cases: when z/Λ ≤ 0.04 at
3.7m and when z/Λ ≤ 0.04 at 7.5m (fig. 4.5).

For fluxes of momentum, the characteristics of an almost-constant-flux layer (i.e. of a
surface layer) are better encountered for the wind sectors 90°-120° and 300°-330° (fig. 4.5(b)
and (d)) although variations of more than 50% in 10-min fluxes occur for about 20% of
the selected runs at z = 20.5m,. For the sector 120°-150° (fig. 4.5(a)), fluxes at 7.5m are,
on average, 50% larger than those at 3.7m when the selection at 7.5m is considered (black
circles). This can be responsible for the smaller than expected values of φm observed for
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Figure 4.5: Vertical profiles for fluxes of momentum (first row) and heat (second row) normalized
by the value at 3.7m for all the runs such that z/Λ ≤ 0.04 at 3.7m (open circles) and at 7.5m
(filled circles): median values and 15th-85th percentile ranges (error bars) are shown. Symbols
referring to the same level are slightly vertically displaced for a clearer representation.

this sector (fig. 4.3(b)).
For fluxes of heat, the signatures of an almost-constant-flux layer are encountered, on

average, only for the sector 120°-150° (fig. 4.5(e)), although a large variability is present for
10-min values, with 30% of runs showing fluxes at 7.5m 50%-below and 50 or 75%-above
the 3.7-m value. Heat fluxes at 7.5m are always smaller than those at 3.7m for each
direction sector indicating a possible underestimation at this sonic level, that has also
shown large deviations in temperature measurements.

With respect to momentum fluxes, the variability of normalized heat fluxes (error bars)
is greater, indicating a poorer correlation between values from different levels. This is
because near-neutral conditions are characterized by small poorly determined heat fluxes
and large better determined momentum fluxes (Baas et al., 2006; Salesky and Chamecki,
2012). The observed correlation between heat fluxes at 7.5 and 3.7m is particularly low
for the northern and north-western sectors (fig. 4.5(g) and (h)). A better correlation
was instead observed between heat fluxes at 7.5 and 20.5m when near-neutral runs were
selected from z/Λ at 7.5m (fig. 4.5(h), open circles).

For the sector 300°-330° (fig. 4.5(h)), heat fluxes at 7.5 and 20.5m are a small fraction
(25-30%, on average) of those measured at 3.7m, when the condition z/Λ ≤ 0.04 is imposed
at the middle sonic level. This is also true when runs are selected from z/Λ at the highest
sonic level (not shown). Fluxes of momentum, however, do not shown the same sensitivity
to selection criteria (fig. 4.5(d)).

This means that near-neutral data points for this sector at both the middle (fig. 4.3(b))
and the highest (fig. 4.3(c)) sonic levels are characterized by anomalously low heat fluxes
(fig. 4.6(a) and (c)). At 7.5m, deviations of observed φm from the empirical curves arise
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Figure 4.6: Comparison between observed heat fluxes at different sonic levels ((a), 7.5m vs. 3.7m,
and (c), 7.5m vs. 20.5m) and between expected fluxes at 7.5m and observed ones at 3.7m (b) for
the sector 300°-330° and for z/Λ(7.5 m) ≤ 0.04 (red dots) and z/Λ(7.5 m) > 0.04 (open circles).

because the local stability parameter, z/Λ, does not represent anymore the stability of this
points. Indeed, if a point lies near the empirical curve, an underestimation of z/Λ (i.e.
of the heat flux) leads to an horizontal displacement of the point, in the φm-z/Λ plane,
toward lower values of z/Λ and, then, an higher than expected φm. This mechanism can
explain the observed behaviour also at 20.5m although, in this case, points move far from
curves for other sectors instead of empirical ones. Indeed, when surface scaling is adopted
(fig. 4.3(d) and (e)), i.e. when Λ at 3.7m is used as stability parameter instead of the local
one, points from this sector do not extend anymore toward so small z/Λ and collapse closest
to empirical curves (for z = 7.5m) or to φm from other direction sectors (for z = 20.5m).

In fig. 4.6(a) and (c) a comparison between heat fluxes, H = −w′T ′s, measured at the
three sonic levels for the sector 300°-330° is made for the whole dataset but retaining the
stratification for z/Λ at 7.5m yet adopted in fig. 4.5. In fig. 4.6(c) a comparison between
heat fluxes expected at 7.5m and those observed at 3.7m is also shown. Expected fluxes,
Hexp are those fluxes such that if substituted into empirical functions return the observed
dimensionless gradients. That is:

φobs
m = φemp

m (z/Λexp) where Λexp = Λobs
Hobs
Hexp

.

The similarity relation from Businger et al. (1971) was used as empirical function,
φemp
m (z/Λ) = 1 + 4.7(z/Λ), and the expected heat flux computed as

Hexp = φobs
m − 1

4.7z/Λobs
Hobs.

When expected fluxes at 7.5m are plotted against observed ones at 3.7m (fig. 4.6(b)),
most of the points related to anomalously small observed flux (red points) dispose around
the 1:1 relation indicating that, for these runs, heat fluxes at 3.7m are more representative
of stability at 7.5m than local ones.

It was speculated that this anomalously low heat fluxes at 7.5 and 20.5m, which causes
the failure of local similarity theory at these heights, were a manifestation of a two-layer
structure. One surface layer which extends below 7.5m and an outer layer above, thermally
decoupled with the former. This seems further supported by the greater correlation between
fluxes at 7.5m and at 20.5m (red points, fig. 4.6(d)) than with those at 3.7m (red points,
fig. 4.6(a)). This two-layer structure, however, involves only thermal characteristics of the
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Figure 4.7: Similarity relationships for the CCT dataset (symbols), for the three sonic levels and
for each direction sector, along with some empirical functions from other authors.

boundary layer and it is not found in dynamical ones: for this sector, vertical profiles of
fluxes of momentum showed the maximum resemblance to those expected for a surface
layer (fig. 4.5(d)) and no peculiar structures were observed in the wind profile (fig. 4.4).

Because for the sector 300°-330° sea-land transitions occur, at a distance of few kilome-
ters from the CCT, it is possible that internal boundary layers form when on-shore flows
are present. The advected boundary layer may adjusts dynamically with local properties
but not thermally. A similar mechanism can explains observed near-neutral deviations
between expected and observed φm for the sector 330°-30°, for which the sea-land transition
is about 1 km far from the tower. In this case, however, also fluxes at 3.7m are poorly
representative of stability conditions, maybe because of the shorter land-fetch, that does
not permit the achievement of thermal equilibrium to the advected layer. Also for the
sector 90°-120° sea-land transitions can occur although dominant winds are from land (??).
Some anomalously high values of φm were observed for this sector at the lowest sonic level
in the interval 0.01 . z/Λ . 0.1 (fig. 4.3(a)) but not at the higher level (fig. 4.3(b)).

As a final remark on deviations in near-neutral conditions, it was observed that higher
than expected values of φm were associated mostly with strong winds, S > 9m s−1. This
however has not simple interpretations because near-neutral conditions occur mostly with
strong winds and it is just in this range that greatest deviations occur.

Deviations between observed and expected φm at the middle sonic level for the two
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south-eastern sectors can have also an instrumental origin. Indeed, the sonic speed at this
level for these two sectors deviates significantly (about 30%) from the propeller’s profile
(fig. 4.4(a) and (b)) which is in better agreement, instead, with the sonic speed at 3.7m.
This deviations can be produced by the influence of the tower structure, as suggested by
their directional dependence. Also the wind speed at the highest sonic level can differ
significantly from propeller one (fig. 4.4(b) and (c)) suggesting that tower-perturbed flows
can have a role in the strong deviations between observed and expected φm at this level.

4.5 Variation of φm with height above ground

Local similarity theory predicts that, when properly scaled, turbulence quantities should
be (universal) functions of the stability parameter z/Λ only (Nieuwstadt, 1984; Sorbjan,
1986). For the wind shear this meas that when φm is plotted against z/Λ, data from
different levels should collapse on the same curve. Some authors (Forrer and Rotach,
1997; Grachev et al., 2005, 2007a,b, 2013; Yagüe et al., 2006) found that this is indeed
the case, at least for z/Λ . 1. Zilitinkevich and Esau (2007) proposed that, beyond Λ,
the introduction of other length scales accounting for earth’s rotation (i.e. Lf = τ1/2/|f |,
f the Coriolis’ parameter) and static stability (i.e. LN = τ1/2/N , N the Brunt-Väisälä
frequency) improves similarity. Salesky and Chamecki (2012) observed a diurnal cycle in
the deviation between observed and expected φm that they attributed to a dependence
of φm on the boundary layer height. Ha et al. (2007) observed influences of the speed of
large-scale flow on flux-gradient relationships that are not captured by z/Λ suggesting that
also wind speed should be accounted for.

Most of these studies refer to almost flat and uniform terrains, which is one of the
hypothesis on which local similarity relies (the other is stationarity). In a complex and
heterogeneous terrain (mountains, slopes, snow-free and snow-covered ground, sea-land
transitions etc.) such as that where the CCT is, this hypothesis breaks down. Furthermore,
the influence of surface heterogeneities changes as the height above ground changes and
therefore also a dependence of φm on z, beyond z/Λ, is expected.

In fig. 4.7 a comparison between φm for the three sonic levels of the CCT (z =3.7, 7.5
and 20.5m), for each wind direction sector, is shown (as usual, data are reported as bin
medians and 15th-85th percentile ranges). Also indicated are similarity functions from
other experiments.

As a global answer: local similarity theory does not hold for the considered CCT
dataset because values of φm from different levels do not collapse on the same curve. This
does not happen, for the whole stability range, also for observations from the two lowest
levels (z = 3.7 and 7.5m) although they showed the closest values of φm. Deviations for
the highest level (z = 20.5m) are large, both in magnitude and in behaviour with z/Λ.
However, it is suspected that some non-physical mechanism, such as instrumental errors or
tower perturbations, is at least partially responsible for they.

Mechanisms that lead to the failure of local similarity theory, however, seem to change
depending on wind direction sector (and then morphology and surface characteristics) and
stability range (low stability, i.e. z/Λ . 0.1, against high stability, i.e. z/Λ & 0.1).

For the near-neutral and weakly stable range (i.e. z/Λ . 0.1) and for sectors that
contain sea-land transitions, deviations between levels (i.e. z = 3.7m and z = 7.5m) and
between expected and observed φm are due to heat fluxes. In particular, anomalously low
heat fluxes that make the Obukhov length, Λ, unrepresentative of local stability. This
traduces in higher than expected values of φm in the near-neutral limit. This effect was
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observed for the sector 330°-30° (fig. 4.7(c)) at both the lowest levels, for the sector 300°-
330° (fig. 4.7(d)) at both the highest levels (although φm remains smaller than expected
at 20.5m) and, maybe, for the sector 90°-120° (fig. 4.7(b)) in the weakly stable range
(0.01 . z/Λ . 0.1). At this regard is quite remarkable the agreement between anomalously
high values of φm in the weakly stable range for the northern sector (fig. 4.7(c)). The
origin of these anomalously small heat fluxes is unknown but it was supposed related to
internal boundary layers formation in strong wind conditions and on-shore flows.

For the sector 120°-150° (fig. 4.7(a)), which does not contain sea-land transitions, the
failure of local similarity in the near neutral range for z = 7.5m is unknown. Although
tower or instrumental effects cannot be ruled out (fig. 4.4(a)), topographic effects are
also possible since mountain ranges are few kilometers far from the tower for this sector
(fig. 2.1). Furthermore, as it will be shown in section 5.3, for z = 7.5m, this sector is the
most affected by self-correlation (table 5.3) and this explain why the observed behaviour
of φm vs. z/Λ resembles that for z = 20.5m.

For z/Λ & 0.1 φm decreases systematically with z for all sectors. As yet done for the
near-neutral range, profiles of normalized fluxes of heat and momentum were analyzed for
the moderately stable range considering all runs for which 0.1 ≤ z/Λ ≤ 1 at 3.7m and all
that satisfied the condition at 7.5m.

The correlation between heat fluxes at 3.7 and 7.5m is improved with respect to
the near-neutral case (compare fig. 4.8(e)-(f) with fig. 4.5(e)-(f)) particularly for the
northern and north-western sectors. This is in agreement with the fact that more stable
conditions are generally characterized by larger better determined heat fluxes (Salesky and
Chamecki, 2012). Although on average heat fluxes decrease with height for moderately
stable conditions as expected (Nieuwstadt, 1984), fluxes at 20.5m much larger than values
at 3.7m still remain when runs are selected with z/Λ at 3.7m (filled circles).

Normalized fluxes of momentum show a larger scatter (fig. 4.8(a)-(d)) both at 7.5 and
at 20.5m. On average, signatures of an upside-down boundary layer are present for the
sector 330°-30° (fig. 4.8(c)) independently on the selection criteria and, although less clearly,
for the sectors 90°-120° and 300°-330° (fig. 4.8(b) and (d)). The sector 120°-150°, instead,
show the expected profile for the stable boundary layer (Nieuwstadt, 1984). However,
also Forrer and Rotach (1997) observed increasing fluxes of momentum with height for
moderately stable conditions.

Heat fluxes indicate the existence of a surface layer extending at least up to 7.5m
(fig. 4.8(e)-(h)) for most of the moderately stable runs. This indication is much more
weak looking at momentum fluxes (fig. 4.8(e)-(h)) showing instead that, for many runs, an
almost-constant flux layer does not exist or extends below 7.5m.

It was not observed a direct correlation between profiles of turbulent fluxes and
deviations of observed φm to expected one. For example, no better agreement between
expected and observed φm at 30.5m for the sector 120°-150° (fig. 4.7), which showed the
fluxes profiles most similar to expected ones in stable conditions.

The best agreement between observed and most used empirical similarity functions
was observed for the lowest sonic level, z = 3.7m, and among all, with that proposed by
Beljaars and Holtslag (1991), although for the stability range of the CCT dataset at this
level (z/Λ . 1) differences between formulations are quite small. Then, a decrease of φm
with z was observed. For z = 3.7m, values of φm systematically lower than those at 3.7m
were observed mostly for z/Λ . 1 (fig. 4.7), with the exception of the sector 300°-330°.

The cause of this lower than expected φm at 7.5m seems related to higher than expected
fluxes of momentum (fig. 4.8(a)-(d)) and this is probably true, at leas partially, at 20.5m
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Figure 4.8: Fluxes of momentum and heat at 7.5 and 20.5m, normalized by the value at 3.7m, for
all runs such that 0.1 ≤ z/Λ ≤ 1 at 3.7m (open circles) and at 7.5m (filled circles): medians and
15th-85th percentile ranges are shown. In plots (b), (c) and (d) out-of-scale values are indicated.

where, the large variability of heat fluxes (fig. 4.8(e)-(h)) also contributes to the observed
behaviour. However, if these high and variable fluxes are physics or instrumental effects or
tower perturbations is unknown. The use of surface scaling does not improve similarity
(fig. 4.3(d) and (e)) even if reduce self-correlation at the highest level.

Also Liang et al. (2014), from observations taken on the Loess Plateau (China), over
complex terrain, obtained smaller values of φm than those predicted by universal similarity
functions derived for almost flat surfaces (e.g. Beljaars and Holtslag, 1991; Businger
et al., 1971; Cheng and Brutsaert, 2005a; Grachev et al., 2007b). Indeed, complex terrains
enhance turbulence which reduces wind shear; whereas, over almost flat terrains turbulence
is generated primarily by the wind shear. This means also that over complex terrain
flux-gradient relationships can break-down. It is interesting to note that the sector showing
lesser enhanced turbulence at 20.5m is 120°-150° (fig. 4.5(a) and fig. 4.8(a)), for which
Zeppelin mountain is present few kilometers far from the tower. Instead, maximum
enhanced turbulence is showed by the sector 330°-30° (fig. 4.5(c) and fig. 4.8(c)) which has
not so high obstacles. However it is possible that nearest terrain heterogeneities, although
smaller, have more influence on the local turbulence field than farther mountains.

In fig. 4.9 the flux Richardson number against the local stability parameter for each
direction sector and sonic level is shown along the expected behavior from empirical
functions proposed by other authors. These plots are strictly related to those of fig. 4.7
since Rf = (z/Λ)φ−1

m . Grachev et al. (2013) proposed that a critical value of the flux
Richardson number Rfc ' 0.2-0.25 can be used to discriminate between those cases for
which local similarity theory holds (Rf ≤ Rfc) and those for which does not (Rf > Rfc).
They used also a threshold on the gradient Richardson number but that on Rf was more
efficient to separate the two regimes.
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Figure 4.9: Flux Richardson number, Rf , against local stability parameter, z/Λ, for the CCT
dataset (bin medians and 15th-85th percentile ranges) and from some empirical functions.

Some empirical formulations (Beljaars and Holtslag, 1991; Businger et al., 1971) predict
the existence of a critical Richardson flux number but others do not (Cheng and Brutsaert,
2005a; Grachev et al., 2007b). For the existence of a critical Rf , φm must be proportional
to z/Λ as the local stability parameter goes to infinity. Data from the CCT dataset do
not indicate the existence of a critical value, at least of the order of 0.2 (fig. 4.9). Instead,
for the highest sonic level, in particular for the sector 120°-150° (fig. 4.9(a)), were also
observed values of Rf greater than 1, which is the theoretical limit for the stationary and
horizontally homogeneous stable boundary layer. Assuming no instrumental artifacts, this
indicates that conditions with decaying turbulence or transport mechanisms were present.



Chapter 5

Exploring self-correlation in φm vs.
z/Λ plots

Self-correlation, also known as spurious or artificial correlation, is a mathematical artifact
for which non-zero correlation is observed when two variables are compared, each of which
obtained as a combination of uncorrelated random variables, that share a dependence on
one (or more) of these random variables (Kim, 1999). For φm vs. z/Λ plots, self-correlation
arises because of the shared variable u∗ since φm ∝ u−1

∗ and z/Λ ∝ u−3
∗ (Baas et al., 2006;

Grachev et al., 2007a; Klipp and Mahrt, 2004; Liang et al., 2014). The height above ground,
z, that enters in both the definition of the dimensionless wind shear and the stability
parameter does not generate self-correlation because is usually taken constant and equal
to the observation level’s height.

Overestimation of the strength of the observed correlation can arise because of self-
correlation when observed and self-correlation have the same sign (Baas et al., 2006; Klipp
and Mahrt, 2004; Vickers et al., 2009). This is indeed the case for φm vs. z/Λ plots in
stable conditions (z/Λ ≥ 0), since the empirical relation derived from observation is usually
a linear function, eg. φm = 1 + βm(z/Λ) (e.g. Businger et al., 1971; Högström, 1988), or a
more complicated monotonic non-decreasing function of z/Λ (e.g. Beljaars and Holtslag,
1991; Cheng and Brutsaert, 2005a; Grachev et al., 2007b), and that from self-correlation is
φm ∼ (z/Λ)1/3.

Baas et al. (2006) observed that the effect of self-correlation of φm vs. z/Λ plots
increases as the ratio between relative errors in momentum fluxes (δτ/τ , with τ = u2

∗)
and those in heat fluxes (δH/H, with H = w′T ′) increases and as that stability increase.
However, the strength of self-correlation does not depend directly on measurement errors
but, instead, on the distributions of the variables (fluxes, wind shear etc.) in the considered
dataset: i.e. the strength of self-correlation increases as the variation of the shared variable
with respect those of non-shared variables increases (Kim, 1999).

In this chapter, the importance of self-correlation in the observed flux-gradient relation-
ships from the CCT’s dataset is estimated. As estimator was considered the Pearson’s linear
correlation coefficient. Pro and cons of this choice are discussed through the chapter. The
widely observed linear behaviour φm = 1+βm(z/Λ) at least for z/Λ . 1 (e.g. Businger et al.,
1971; Grachev et al., 2007a; Högström, 1988, 1996; Yagüe et al., 2006; Zilitinkevich and
Esau, 2007) was among the reasons that motivated this choice. In section 5.1, generalizing
the results of Kim (1999) an expression for the linear coefficient of self-correlation between
φm and z/Λ was derived and its results for the CCT’s dataset discussed. In section 5.2,
estimations of self-correlation from the generation of random datasets, both with random
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permutations and sampling with replacement are presented. Finally, the significance of the
observed correlation derived trough empirical distributions of the random linear correlation
coefficient and from the fraction of explained variance is the subject of section 5.3.

5.1 The linear self-correlation coefficient between φm and
z/Λ

When the plotted variables share a common term (as z and τ in φm vs. z/Λ plots) spurious
correlation can arise due, in particular, to the shared variable with greatest coefficient of
variation, i.e. σX/〈X〉, where X is a stochastic variable and 〈X〉 and σX are its mean and
standard deviation computed considering all points and that should not be confused with
time averages (Kim, 1999). Kim (1999) derived an expression for the linear-correlation
coefficient due to spurious correlation for between two variables that share a common
divisor or a common factor. The height above ground, z is a common factor between φm
and z/λ. The local friction.

Considering four stochastic independent variables, X, Y , A and B except that a
correlation exists between A and B (both linear or not). The coefficient of linear correlation
between the products AX and BY is

r(AX)(BY ) = cov(AX,BY )√
var(AX) var(BY )

where var(X) = 〈X − 〈X〉〉2 is the variance of X and cov(X,Y ) = 〈(X − 〈X〉)(Y − 〈Y 〉)〉
the covariance of X,Y and 〈·〉 indicates the expectation value. From the independence we
have

r(AX)(BY ) = cov(A,B) sgn(〈X〉) sgn(〈Y 〉)
| 〈A〉 || 〈B〉 |

√
[V 2
X(1 + V 2

A) + V 2
A][V 2

Y (1 + V 2
B) + V 2

B]
(5.1)

where sgn(x) = x/|x| is the “sign” function and were introduced the coefficients of variation,
e.g. VY =

√
var(Y )/| 〈Y 〉 |. Supposing that both the expectation values 〈X〉 and 〈Y 〉 are

positive or, more generally, that have the same sign and introducing the linear correlation
coefficient

rAB = cov(A,B)√
var(A) var(B)

we have
r(AX)(BY ) = rABVAVB√

[V 2
X(1 + V 2

A) + V 2
A][V 2

Y (1 + V 2
B) + V 2

B]
(5.2)

which is the coefficient of linear correlation between the variables AX and AY due only to
the correlation between A and B and their statistical variations VA and VB. When A = B,
rAB = 1, VA = VB and eq. (2.2) of Kim (1999) is obtained:

r(AX)(AY ) = V 2
A√

[V 2
X(1 + V 2

A) + V 2
A][V 2

Y (1 + V 2
A) + V 2

A]
. (5.3)

The relationship between A and B affects not only the linear correlation index rAB but
also the relative magnitude of the coefficients of variation VA and VB.
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Table 5.1: Linear self-correlation between φm and z/Λ due to u∗ for each wind direction sector
at z = 3.7m: N is the number of data points, φm ≡ AX, z/Λ ≡ BY , A = u−1

∗ , B = u−3
∗ ,

X = κz(dS/dz), Y = −gκzw′T ′s/T s, Vu∗ and VH are the coefficients of variation for the friction
velocity and the heat flux.

(a) z = 3.7m

Sector N r(AX)(BY ) rAB VA VB VX VY VH Vu∗

120°–150° 656 0.61 0.80 0.47 2.3 0.22 0.56 0.57 0.41
90°–120° 717 0.54 0.77 0.57 3.7 0.32 0.62 0.62 0.40
30°–330° 530 0.58 0.87 0.45 1.8 0.33 0.53 0.53 0.38
300°–330° 256 0.61 0.82 0.45 3.5 0.24 0.56 0.55 0.33

(b) z = 7.5m

Sector N r(AX)(BY ) rAB VA VB VX VY VH Vu∗

120°–150° 656 0.63 0.87 0.44 1.7 0.23 0.58 0.58 0.40
90°–120° 717 0.48 0.69 0.50 3.3 0.29 0.66 0.66 0.40
30°–330° 530 0.59 0.86 0.45 2.1 0.30 0.56 0.56 0.36
300°–330° 256 0.50 0.83 0.57 6.3 0.27 1.0 1.0 0.34

(c) z = 20.5m

Sector N r(AX)(BY ) rAB VA VB VX VY VH Vu∗

120°–150° 656 0.39 0.78 0.61 3.0 0.49 1.0 1.0 0.55
90°–120° 717 0.31 0.70 0.65 5.5 0.49 1.3 1.3 0.43
30°–330° 530 0.52 0.75 0.61 5.1 0.36 0.64 0.64 0.43
300°–330° 256 0.45 0.80 0.71 7.4 0.41 1.0 1.0 0.37

The shared variables between φm and z/Λ are the height above ground, z, (i.e. φm ∝ z
and z/Λ ∝ z) and the local friction velocity, u∗ (i.e. φm ∝ u−1

∗ and z/Λ ∝ u−3
∗ ).1

At each sonic level the height above ground was taken constant and equal to its nominal
value, i.e. Vz = 0. Thus, no spurious correlation arises from the shared variable z.

The contribution from self-correlation to the observed linear correlation between φm
and z/Λ due to u∗ can be estimated from (5.1) or (5.2) taking φm ≡ AX, with A = u−1

∗ ,
X = κz(dS/dz) and z/Λ ≡ BY , with B = u−3

∗ and Y = −gκzw′T ′s/T s. Furthermore, we
can take VX = VdS/dz and VY = VH/T s

, where H = −w′T ′s, because variables differing only
by a constant factor have the same coefficient of variation. The passage from (5.1) to (5.2)
is allowed since 〈X〉 > 0 (〈dS/dz〉 > 0) and 〈Y 〉 > 0 (−w′T ′s > 0), in stable conditions (in
unstable conditions, 〈Y 〉 < 0 and a minus sign appears in front of (5.2)).

Statistics for the wind shear, dS/dz, the normalized heat flux H/T s and the two
u∗-functions A = u−1

∗ and B = u−3
∗ were computed for all data points. Expectation values,

variances and covariances were substituted with their sample estimations: e.g.,

〈A〉N = 1
N

N∑
i=1

Ai, var(A)N =
∑N
i=1(Ai − 〈A〉N )2

N − 1

1Here, u∗ is used instead of τ1/2 for the local friction velocity to avoid cumbersome notation, however
this does not mean that the surface value instead of the local one is used.
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and

cov(A,B)N =
∑N
i=1(Ai − 〈A〉N )(Bi − 〈B〉N )

N − 1 ,

where N is the number of data points. Then, the coefficient of spurious correlation was
derived from (5.1).

Results are reported in table 5.1 for all the three sonic levels and the four wind direction
sectors. Besides the spurious correlation statistics, the coefficient of variation for the heat
flux VH and the local friction velocity Vu∗ are also showed. At each level and direction
sector VY ≈ VH indicating that the temperature relative variation is negligible with respect
that of the heat flux.

High spurious correlation arises when rAB is high, VA � VX and VB � VY (see
eq. (5.2)). For the considered dataset, the coefficient of variation for u−1/3

∗ , VB, was
between 3 and 7 times greater than that for the heat flux, VY , and the greatest among all
variables. Instead, even if VA > VX in all cases, the observed relative differences are much
smaller that those between VB and VY , with the variation of u−1

∗ which is at most twice
that of the wind shear.

The two variables A = u−1
∗ and B = u−3

∗ are exactly correlated, although non-linearly.
The observed variations of rAB between levels, for the same sector (same number of points),
are due to differences in the distribution of u∗ (and then of u−1

∗ and u−3
∗ ), probably in their

width. This was suggested by the smaller values of rAB observed for the highest sonic level
(table 5.1(c)) with respect to the lower ones (table 5.1(a)-(b)), which are accompanied with
an higher variability of the friction velocity, Vu∗ . Anyway, further investigations are needed
about the effects of the u∗-distribution on rAB. The between-sector variations of rAB, at
the same level, can be explained also by the sensitivity of the coefficient on the number of
data points.

The coefficient of spurious correlation r(AX)(BY ) is high for all levels and wind direction
sectors, indicating that a significant amount of the observed correlation between φm and
z/Λ can be explained by the shearing of u∗. Furthermore, it is interesting to note that the
smallest spurious correlation is observed at the highest sonic level (table 5.1(c)), the same
level that showed the most evident effects of self-correlation in φm vs. z/Λ plots. This is
due by two reasons.

Firstly, self-correlation is only partially traduced into linear correlation since the non-
linear behaviour φm ∝ (z/Λ)1/3, the traduced part being expressed by rAB , which is smaller
at the highest level probably because of a greater variability in u∗.

Secondly, beyond variations in rAB, spurious correlation becomes stronger as VX and
VY becomes smaller and VA and VB becomes bigger: i.e. as the variation of the friction
velocity increases and those of wind shear and heat flux decrease. Indeed, from (5.2) we
have

r(AX)(BY ) = rAB√
[V 2
X + (VX/VA)2 + 1][V 2

Y + (VY /VB)2 + 1]
.

At the highest sonic level (table 5.1(c)) an increase of all coefficients of variation was
observed with respect to those at the lower ones (table 5.1(a)-(b)). However, the relative
increase of those for wind shear and heat flux, VX and VY , is greater than those for friction
velocity, VA and VB. The increase of VX , VY and of the ratios VX/VA and VY /VB leads
to a decrease of r(AX)(BY )/rAB from the lowest levels to the highest one. An exception
is represented by the sector 30°–330° which indeed shows similar values of r(AX)(BY )/rAB
between the three levels.
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5.2 Self-correlation estimation by random datasets genera-
tion

To establish the degree of linear correlation between two variables, say x and y, the
coefficient r is computed and its value compared with the distribution of r for two
completely uncorrelated variables. In particular, the probability for two uncorrelated
variables to obtain an |r| greater than that observed, |robs|, is considered. The smaller this
probability, the stronger the correlation is. Usually, if this probability is lesser than 5%
the correlation is considered significant, if lesser than 1%, very significant (Taylor, 2000).
Whereas, if values greater than 5% or 10% are obtained, the null hypothesis that the two
variables are not correlated and the observed value of r is due only to chance cannot be
safely rejected.

The question now is: How can be computed the probability to obtain |r| ≥ |robs| due
to chance, i.e. the level of significance of the observed correlation? Or, equivalently: Which
is the probability distribution function of r in the null hypothesis, i.e. that x and y are
perfectly uncorrelated variables? From Press et al. (1997), sec. 14.5, p. 630, changing
slightly the notation:

[. . . ] About the only general statement that can be made is this: If the null
hypothesis is that x and y are uncorrelated, and if the distributions for x and y each
have enough convergent moments (“tails” die off sufficiently rapidly), and if N is large
(typically > 500), then r is distributed approximately normally, with a mean of zero
and a standard deviation of 1/

√
N . In that case, the (double-sided) significance of the

correlation, that is, the probability that |rxy| should be larger than its observed value
in the null hypothesis, is

P (|r| ≥ |robs|) = erfc
(
|robs|

√
N√

2

)
[. . . ]

where N is the number of data points and

erfc(x) = 2√
π

∫ ∞
x

e−t
2
dt

is the complementary error-function.
However we are dealing with two variables, φm and z/Λ, that cannot be never perfectly

uncorrelated, because of the shared variable u∗. Thus, the null hypothesis changes and the
question become: Which is the probability distribution of the linear correlation coefficient,
r, between two variables, x and y, each obtained as a combination of perfectly uncorrelated
variables, when one of these variables enter into the definition of both x and y? Answer this
question leads to the probability density function (pdf) for r, in the null hypothesis, when
self correlation is present. The significance of the observed correlation is then estimated
comparing robs with this pdf: i.e. the pdf of the self-correlation coefficient, i.e. the linear
correlation coefficient between x and y when only self-correlation are acting.

Of this distribution we know only that the expected value of r is 〈r〉 = r(AX)(BY ) from
eq. (5.2) and that becomes the new level of zero-correlation, instead of r = 0 (Kim, 1999).

At this point a clarification is needed. Spurious correlation does not mean that the
observed correlation between φm and z/Λ does not exist but, instead, that it is only a
mathematical artifact. In other words, an observed correlation coefficient too near to the
spurious correlation value, r(AX)(BY ), could mean that no useful physics can be inferred
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n Original dataset
1 dS/dz1 u∗1 w′T ′s1 T s1
2 dS/dz2 u∗2 w′T ′s2 T s2
...

...
...

...
...

N dS/dzN u∗N w′T ′sN T sN

n Random dataset
1 dS/dz37 u∗2 w′T ′s24 T s15
2 dS/dz98 u∗32 w′T ′s7 T s6
...

...
...

...
...

N dS/dz5 u∗12 w′T ′s44 T s18

Figure 5.1: An example of random dataset generation.

from data. Another possibility, however, is that the compared variables are truly related
but via a strongly non-linear law: this could lead to an observed correlation coefficient
even below the level of spurious correlation.

Beyond 〈r〉, which can only be estimated via (5.2) because statistics in (5.2) are
substituted with their sample estimation, we do not know further about the pdf of the
self correlation coefficient. We can suppose that it should be centered around this value.
However we even do not know if it is symmetric. Indeed, despite the large number of
points (N > 500) in the considered datasets (with the exception of the 300°–330° sector)
no much can be said about the condition that « “tails” die off sufficiently rapidly» (Press
et al., 1997) for the distributions of φm and z/Λ.

A way for estimating the pdf of r in the null hypothesis is the generation of many
datasets containing random data, to compute random φm’s and z/Λ’s from random fluxes
and random wind shears, to derive r for each random dataset and observe how it distributes.

Attention must be paid that the distributions of random variables in the random
dataset are the same of observed variables in the original dataset because the coefficient of
self-correlation depend on how variables are distributed (section 5.1; Kim, 1999; Klipp and
Mahrt, 2004;Vickers et al., 2009).

Random datasets preserving the distributions of the original one can be obtained
through random permutations of the elements in the original dataset (Baas et al., 2006;
Vickers et al., 2009). Uniformly distributed random integers between 1 and N , where
N is the length of the dataset, are created with a random number generator. Random
permutations of the original dataset are performed with Knuth shuffle algorithm in this
way:

1. the n-th element in the dataset is considered: x(n), for 1 ≤ n ≤ N ;

2. a random integer is generated: I, with 1 ≤ I ≤ N ;

3. a permutation between x(n) and x(I) is carried out.

This three steps are repeated for all the elements of the dataset, i.e., for 1 ≤ n ≤ N .
Random permutations were carried out separately on the wind shear array dS/dz(N),
the friction velocity array, u∗(N), the heat flux array w′T ′s(N) and the temperature array
T s(N). Random permutations were carried out also on temperature even if the self
correlation index has shown to be almost insensitive to this variables (section 5.1) for the
shake of generality and because no much more computational effort was needed. In fig. 5.1
an example of random dataset generation is shown. 1000 random datasets were created for
each sonic level and wind direction sector and the linear correlation coefficient computed
between the random φm’s and z/Λ’s for each dataset.
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Klipp and Mahrt (2004) generated their random datasets with a different method: i.e.
random sampling with replacement. That is, random integers are used as indexes to draw
an element from the original dataset:

1. a random integer is generated: I, with 1 ≤ I ≤ N ;

2. the element of the random dataset is drawn from the pool of observed values:
xrand(n) = xorig(I), for 1 ≤ n ≤ N ;

the process is repeated until all N random elements were attributed. And this is done for all
the variables separately. Vickers et al. (2009) define their method as random permutations
although from their description it resembles more sampling with replacement.

Whereas datasets generated with random permutations have exactly the same variables
distributions that the original ones (elements are the same, only in a different order), in
general, those generated via sampling with replacement have not. Indeed, in sampling with
replacement, one element of the original dataset can be drawn one or more times, or even
can not be drawn at all.

The probability to generate a sequence of length N which does not contain repeated
indexes is P = N !/NN which can be approximated as P ≈

√
2πNe−N just for N & 10,

using Stirling’s formula, N ! ∼
√

2πNNNe−N as N →∞. For N ∼ 100, as it is (at least) for
the considered datasets, P ∼ 10−43. Then, we expect that almost all randomly generated
sequences contain repeated indexes and, then, all random datasets differ (because of the
contained elements) from the original one.

As a comparison test, 1000 random datasets for each sonic level and wind direction
sector were generated by mean of the sampling with replacement method. In table 5.2 are
reported, for each sonic level and wind direction secor, the number of data points, N , the
observed linear correlation coefficient between φm and z/Λ for the original dataset, robs,
the self-correlation coefficient from eq. (5.2), r(AX)(BY ), the self correlation coefficients
estimated from randomized datasets by random permutations, rperm, and sampling with
replacement, rswr. For random permutations and sampling with replacement, the coefficient
of self-correlation was estimated as the average of r among all the 1000 random datasets, the
uncertainty of this estimation computed as the uncertainty of the average (Taylor, 2000),√

var(r)M/M where var(r)M is the sample-variance between datasets and M = 1000.
For all levels and wind direction sectors, the coefficient of self-correlation is a substantial

fraction of the observed value: between 60% and 90%, depending on level and sector table 5.2.
For the highest sonic level (table 5.2(c)), observed correlations lower than spurious ones
were obtained (sectors 90°–120° and 300°–330°). The near zero coefficient obtained for
the 300°–330°-sector, well below the self-correlation level, indicates that the observed
independence of the dimensionless gradients on the stability parameter (??(d)) is not
generated by self-correlation but by some mechanism, maybe of physical nature.

The self-correlation coefficients estimated by sampling with replacement are system-
atically higher than those estimated with random permutations (with the exception of
z = 20.5m, table 5.2(c), 300°–330°-sector) although differences are sometimes of the order
of statistical uncertainties. These deviations reflect changes in the distributions of variables,
because random permutations conserve the original ones and sampling with replacement
does not.

Self-correlation estimates from randomized datasets, both with random permutations
or sampling with replacement, are always higher than those obtained from (5.2). Two
reasons can explain these differences.
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Table 5.2: Comparison between observed linear correlation coefficient and self-correlation co-
efficients estimated with different methods for the three sonic levels and each wind direction
sector.

(a) z = 3.7m

Sector N robs r(AX)(BY ) rperm rswr

120°–150° 656 0.85 0.61 0.640± 0.002 0.645± 0.002
90°–120° 717 0.58 0.54 0.581± 0.003 0.587± 0.002
30°–330° 530 0.72 0.58 0.592± 0.002 0.593± 0.002
300°–330° 256 0.64 0.62 0.657± 0.002 0.661± 0.003

(b) z = 7.5m

Sector N robs r(AX)(BY ) rperm rswr

120°–150° 656 0.70 0.63 0.634± 0.001 0.639± 0.001
90°–120° 717 0.67 0.48 0.557± 0.003 0.569± 0.003
30°–330° 530 0.68 0.59 0.604± 0.002 0.604± 0.002
300°–330° 256 0.80 0.50 0.647± 0.004 0.624± 0.004

(c) z = 20.5m

Sector N robs r(AX)(BY ) rperm rswr

120°–150° 656 0.60 0.40 0.439± 0.003 0.438± 0.003
90°–120° 717 0.28 0.31 0.445± 0.003 0.459± 0.003
30°–330° 530 0.53 0.52 0.568± 0.003 0.575± 0.003
300°–330° 256 0.05 0.45 0.602± 0.005 0.579± 0.005
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Figure 5.2: Dimensionless gradient, φm, against stability parameter, z/Λ, for the original dataset
(a) and two randomized datasets, (b) and (c), for z = 20.5m and 300°-330°-sector. Linear fits for
all data (solid lines) and z/Λ ≤ 0.2 data only (dashed lines) are shown along with their respective
linear correlation coefficients. The similarity relationship from Businger et al. (1971) (dotted line)
is also shown for comparison.

The first one is that, in general, randomized datasets are not composed by truly random
data points and a fraction of true correlation present in the original dataset can be retained
also in the randomized ones. However, the importance of this contribution is questioned
by the observed behaviour at the highest sonic level (table 5.2(c)) and, particularly, for
300°–330°-sector. Indeed, because of the near-zero observed correlation in the original
dataset, if some of this non-correlation is retained in the random ones, then random
correlations lower than r(AX)(BY ) are expected. Instead, the greatest positive deviations
between rperm and r(AX)(BY ) were observed just for this case.

The second reason is the sensitivity of the linear correlation coefficient to outliers.
Indeed, few data points with anomalously high values of z/Λ can strongly influence the
degree of linear correlation of the whole dataset. This is evident from the plots reported in
fig. 5.2 which refer again to the highest sonic level and the 300°–330°-sector. Linear fits
between φm and z/Λ were derived for the original and for two randomized datasets (with
random permutations) considering only points with z/Λ ≤ 0.2 and all points, separately.
Solid lines in fig. 5.2 refer to all points, dashed ones to low z/Λ points only. The similarity
relationship from Businger et al. (1971) is also shown for comparison.

When the whole dataset is considered, the derived linear relation fits better the outliers
than low-z/Λ points which are much more numerous. The fact that outliers are usually
characterized by anomalously high values of z/Λ but by no so high values of φm, as
observed also by Klipp and Mahrt (2004), determine the deviations between low-z/Λ-
fits and whole-range-fits. This sensitivity to outliers is reflected, in turn, on the linear
correlation coefficient. Indeed, depending on the positions of these outliers, the correlation
for the whole dataset cam be improved, as for random datasets in fig. 5.2(b) and (c), or
reduced, as for the original dataset in fig. 5.2(a).

In stable conditions, real datasets are typically composed of many data points with
z/Λ < 1 and few scattered points with z/Λ � 1. Thus, the presence of few large-z/Λ
points affects not only the correlation coefficient of randomized datasets but also that of
observed ones. However this does not mean that the effect of outliers cancel when the
observed correlation is compared with correlation of random datasets, as shown in fig. 5.2.
Furthermore, Klipp and Mahrt (2004) observed an increase in random correlation when
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only low-z/Λ points are considered, which is the opposite of that showed in fig. 5.2(b)
and (c). However, they chose higher z/Λ-thresholds, and some sensitivity of correlation
to this thresholds, which cannot be explained by variations in the number of data points,
was indeed observed. Outliers can then act in a non-easily predictable manner on both
observed and random correlations. This further suggests that caution must be payed in
the interpretation of the random correlation coefficient as a self-correlation level (Klipp
and Mahrt, 2004).

One way to reduce the influence of outliers is to discard them during the generation of
the random dataset fixing some threshold for z/Λ. However, this arises further questions
about the randomness of the generated dataset. Another way is to consider estimators
that are less sensitive to outliers, such as rank correlation coefficients. The Spearman
rank correlation coefficient was also considered as a self-correlation estimator, as will be
discussed later, although this method has its own drawbacks too.

As a final remark, it is interesting to note that φm(z/Λ = 0) ' 1 also for randomized
datasets as indicated by linear fits of fig. 5.2(b)-(c). This closer than expected agreement of
random points with the theoretical relationship for small z/Λ was also observed by Klipp
and Mahrt (2004). The limited range of the dataset could be responsible of this behaviour,
since φm = O(1) also for most random points.

5.3 Significance level of observed correlation
The strength of the observed correlation cannot be safely estimated comparing the observed
linear correlation coefficient with the self-correlation level from eq. (5.2) or from random
datasets only. Indeed, the probability that observed deviations are due by chance must
be estimated: i.e. the significance level of the observed correlation must be estimated.
As discussed in section 5.2, the significance of the observed correlation can be obtained
comparing the observed r with the pdf of the self-correlation coefficient.

The pdf of the self-correlation coefficient was estimated from the distribution of r for
the 1000 randomized datasets, with all the limitations yet discussed (e.g. outliers sensitivity
and residual correlation). A pdf for each level and direction sector (each original dataset)
was derived. Randomized datasets from random permutations were considered because,
with this method, values of r closer to those from eq. (5.2) were obtained (table 5.2).

In particular, the null hypothesis that the random correlation coefficient was normally
distributed was tested. However, instead of r, the normalized test-statistic

R = r − 〈r〉M√
var(r)M

was considered, where r is the linear correlation coefficient of randomized datasets, 〈r〉M
the mean value between all M = 1000 random datasets (rperm, in table 5.2) and var(r)M
its sample-variance.

In the null hypothesis R is a normal random variable (zero mean and unitary variance)
with pdf

p(R) = e−R
2/2

√
2π

(5.4)

and cumulative distribution function (cdf)

P (R) =
∫ R

−∞
p(x)dx, i.e. P (R) = 1− 1

2erfc
(
R√
2

)
. (5.5)
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Figure 5.3: Observed probability distribution functions of R = (r − 〈r〉M )/
√

var(r)M for each
sonic level (columns) and wind direction sector (rows). The pdf of R in the null hypothesis,
p(R) = e(−R2/2)/

√
2π, is represented by the solid line.
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The expected distribution of R in the null hypothesis was compared to the observed
one for each sonic level and wind direction sector through a chi-square test (Press et al.,
1997). Observed values of R were subdivided in 10 intervals: R ≤ 2, 8 intervals of width
δR = 0.5 for −2 < R < 2 and R ≥ 2. This choice was motivated by the requirement that
both the expected number of events and the observed one falling in each interval were � 1
(Press et al., 1997; Taylor, 2000) although, in some cases, the number of observed events in
the two side intervals was only > 1. The reduced chi-square was then computed summing
the squared deviations between the observed and the expected number of events over all
m = 8 intervals:

χ̃2 = 1
d

m∑
i=1

(nobs
i − nexp

i )2

nexp
i

where d = m−k are the degrees of freedom and k the number of constraints. Because both
the mean and the variance of the expected distribution were derived from observations,
we have d = 10 − 3 = 7 degrees of freedom. The expected number of events in the i-th
interval was obtained from the cdf (5.5):

nexp
i = M(P (Rsup

i )− P (Rinf
i ))

where Rinf
i and Rsup

i are the extremes of the interval. The probability of obtaining, in the
null hypothesis (i.e. that the observed and the expected distributions are the same), a
value of χ̃2 as extreme as that observed only by chance is then derived (Press et al., 1997).
For all levels and direction sectors, the null hypothesis was rejected with a significance
level � 0.01 concluding than that the observed distributions of the random correlation
coefficient cannot be accurately approximated by a normal distribution with mean 〈r〉M
and variance var(r)M .

In fig. 5.3, observed and expected distributions for R for each level and wind direction
sector are shown. In general, observed distributions are not symmetric around zero and,
with respect to the expected distribution, present an exceeding amounts of events for
0 . R . 1, a slower decrease for R→ −∞ and a faster decrease for R→∞.

Due to the impossibility to derive a theoretical probability function for R the empirical
one was considered:

Pemp(R) = 1
M

M∑
i=1

Θ(R−Ri) (5.6)

where Θ is the Heavyside’s step function,

Θ(x− a) = 0 for x < a and Θ(x− a) = 1 for x ≥ a,

and Ri, for 1 ≤ i ≤M = 1000, is the collection of the values of R obtained for each random
dataset. The cdf (5.6) is a steps function only piecewise continuous with jumps of 1/M in
correspondence of each Ri.

The significance levels of the observed correlation was taken as the two-side probability,
in the null hypothesis, to obtain a value of R as or more extreme than that observed,Robs.
The null hypothesis is that the dataset belongs to random ones and observed deviations
are due to chance.

The two-side probability was obtained summing the the left-side probability and the
right-side one:

P (|R| ≥ |Robs|) = P (R ≤ −|Robs|) + P (R ≥ |Robs|).
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The left-side probability was obtained counting the number of random datasets, m, with a
value of R equal or below −|Robs|, and dividing it by M :

P (R ≤ −|Robs|) = Pemp(−|Robs|) = m/M

where
m = num{Ri’s : Ri ≤ −|Robs|}M .

Likely, the right-side probability was obtained counting the number of random datasets, n,
with a value of R above |Robs|, and dividing it by M :

P (R ≥ |Robs|) = 1− Pemp(|Robs|) = n/M

where
n = num{Ri′s : Ri > |Robs|}M .

Then, the two-side significance level is

P (|R| ≥ |Robs|) = (m+ n)/M. (5.7)

The normalization by var(r)M does not matter for the validity of (5.7) and can be neglected
taking R = r − 〈r〉M and Robs = robs − 〈r〉M . In this formulation, arises again the role of
〈r〉M as the new level of “zero”-correlation when self-correlation is present.

As small the significance level (5.7) is as much the difference between the observed
and the random correlation is significant: i.e. as small is the probability that the observed
differences between the original dataset and the random ones are due to chance. Finally, it
must be noted that significance levels were derived from the distribution of r and not of r2

because when self-correlation is involved also the sign of the observed correlation matters.
Significance levels, P (eq. (5.7)), were derived for all sonic levels and wind direction

sectors and are reported in table 5.3 along with the observed fraction of variance explained
by a linear model between φm and z/λ, r2

obs, and that explained by self-correlation from
eq. (5.2), r2

(AX)(BY ), and from randomized datasets with random permutations, r2
rand. As

in table 5.2, r2
rand is the average of r2 between all 1000 random datasets, the uncertainty of

this value, estimated as
√

var(r2)/M , with M = 1000, is O(10−3), well below the observed
differences. The difference between the observed fraction of variance explained and that
explained by self-correlation (r2

obs − r2
(AX)(BY ) and r2

obs − r2
rand) and the significance level,

P (also indicated as p-value), are two estimators of the the strength of the observed linear
correlation.

The significance level, P , is somewhat superior since it accounts also for the signs of the
observed and self-correlation, whereas r2 does not. However, r2 gives useful information
when observed and self-correlation have the same sign, as usually is for φm and z/Λ, and
it is the most used estimator by other authors (e.g. Klipp and Mahrt (2004) and Vickers
et al. (2009)). Instead, when observed and self correlation have about the same magnitude
but opposite signs, r2-differences underestimate the strength of the observed correlation.

At the lowest two levels (table 5.3(a)-(b)), the fraction of explained variance by self-
correlation ranges from ∼ 30% to ∼ 45% and from ∼ 20% to ∼ 40% if random datasets,
r2

rand, or eq. (5.2), r2
(AX)(BY ), respectively, are considered. At the highest level (table 5.3(c)),

these percentages go down to 20%–40%, for random datasets, and to 10%–30%, for eq. (5.2).
These lower values, however, do not indicate that the highest level is lesser affected by
self-correlation but, instead, that the effect of self-correlation on a linear model is lesser:
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Table 5.3: Fraction of explained variance (observed and from self-correlation), net fraction of
explained variance (observed − self-correlation) and significance level, P (eq. (5.7)), of the observed
linear correlation between φm and z/Λ, for each sonic level and wind direction sector.

(a) z = 3.7m

Sector r2
obs r2

(AX)(BY ) r2
rand r2

obs − r2
(AX)(BY ) r2

obs − r2
rand P

120°–150° 0.71 0.37 0.41 0.34 0.30 0.006
90°–120° 0.33 0.30 0.34 0.04 −0.01 0.96
30°–330° 0.52 0.34 0.35 0.19 0.17 0.012
300°–330° 0.41 0.38 0.44 0.03 −0.03 0.85

(b) z = 7.5m

Sector r2
obs r2

(AX)(BY ) r2
rand r2

obs − r2
(AX)(BY ) r2

obs − r2
rand P

120°–150° 0.49 0.40 0.40 0.09 0.08 0.15
90°–120° 0.45 0.23 0.32 0.23 0.10 0.19
30°–330° 0.47 0.35 0.37 0.12 0.10 0.21
300°–330° 0.64 0.25 0.43 0.39 0.21 0.18

(c) z = 20.5m

Sector r2
obs r2

(AX)(BY ) r2
rand r2

obs − r2
(AX)(BY ) r2

obs − r2
rand P

120°–150° 0.36 0.16 0.20 0.20 0.16 0.05
90°–120° 0.08 0.10 0.21 −0.02 −0.14 0.16
30°–330° 0.28 0.27 0.33 0.01 −0.05 0.71
300°–330° 0.003 0.20 0.39 −0.20 −0.38 0.008



5.4. Self-correlation between φm and other stability parameters: Ri and Rf 83

indeed, self-correlation does not follow a linear model but, instead, when it is strong
φm ∼ (z/Λ)1/3.

For the sectors 120°-150° and 30°–330° at z = 3.7m (table 5.3(a)), and sector 120°-150°
at z = 20.5m (table 5.3(c)) the observed correlation is very significant, i.e. P ≤ 0.05.
Significance levels for the sectors 90°–120° and 300°–330° at z = 7.5m (table 5.3(b)) are
maybe overestimated (i.e. the observed correlation is more significant that those indicated
by P ) because the level of self-correlation from random datasets, r2

rand, is sensibly higher
than those from eq. (5.2), r2

(AX)(BY ).
Some doubts are presents also on the values of P for the same sectors at z = 20.5

(table 5.3(c)). In this case, however, the significance of an observed non-correlation is tested
(i.e. the observed correlation is lower than both self-correlation levels) and doubts on P
regard to a possible underestimation. This have few consequences for the sector 90°–120°,
for which the observed non-correlation is yet indicated as non-significant (P > 0.1). Instead,
for the sector 300°–330°, the very significant (P < 0.01) non-correlation observed must be
viewed with some suspect because of the near-zero observed correlation, r2

obs, affected by
some z/Λ-outliers (fig. 5.2) and the difference between the two levels of self-correlation,
r2

rand and r2
(AX)(BY ). Then, although P < 0.01, we cannot conclude that a true physical

mechanism was acting to produce the observed non-correlation.
Considering all the possible errors in the estimation of P discussed above, in general, a

net fraction of explained variances (i.e. r2
obs− r2

(AX)(BY ) and r2
obs− r2

rand) & 0.2 corresponds
to a significant (P ≤ 0.1) or even very significant (P ≤ 0.05) observed correlation.

5.4 Self-correlation between φm and other stability parame-
ters: Ri and Rf

After all the considerations made above self-correlation affecting flux-gradient relationships
obtained from φm vs. z/Λ plots one question arise: Can influence of self-correlation be
reduced employing other stability parameters instead of z/Λ?

An alternative stability parameter is the gradient Richardson number. Self-correlation
in φm vs. Ri plots arises because both depend on wind shear, even in an opposite manner:
φm ∝ dS/dz and Ri∝ (dS/dz)−2. In this case, however, the the sign of self-correlation is
opposite to that of observed correlation. Indeed, the self-correlation behaviour is φm ∝ Ri−2

whereas, in stable conditions φm increases with Ri. Then, the effect of self-correlation
in φm vs. Ri plots is to reduce the strength of observed correlation. This explains the
increased scatter in plots of φm when Ri instead of z/Λ is used.

The level of self-correlation in φm vs. Ri plots can be obtained from eq. (5.2), taking

X = u−1
∗ , A = dS

dz
, Y = 1

θ

dθ

dz
and B =

(
dS

dz

)−2

where all constant factors, such as the height above ground, are been neglected. As a
further simplification we can take Y = dθ/dz assuming that the coefficient of variation of
the potential temperature, θ, is much smaller that that of its gradient. In stable conditions
we expect r(AX)(BY ) < 0 and lesser in magnitude that that between φm and z/Λ since
the shared variable is the wind shear which have smaller coefficients of variation than
fluxes (section 5.1). When the strength of the observed correlation between φm and Ri
is estimated, the observed correlation coefficient should be compared with the (negative)
level of self correlation r(AX)(BY ) instead of zero. Plots of φm vs. Ri were not considered
in this study because doubts were present on reliability of temperature measurements.
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Another possibility, is to plot φm against the flux Richardson number. In this case the
shared variables are two, the wind shear and the friction velocity. The friction velocity
generate a self correlation in the same direction of the observed one, φm ∝ u−1

∗ and
Rf ∝ u−2

∗ , whereas the wind shear in the opposite one, φm ∝ dS/dz and Rf ∝ (dS/dz)−1

(φm increases with Rf in the stable boundary layer).
The level self-correlation in φm vs. Rf plots can be estimated from eq. (5.2) taking

X = 1, A = 1
u∗

dS

dz
, Y = −w

′θ′

θ
and B = 1

u2
∗

(
dS

dz

)−1

where constant factors are neglected, VX = 0 and we can further take Y = −w′θ′ since the
coefficient of variation of the heat flux is much greater that that of temperature which is
also much smaller than unity. From (5.2) we have then

r(AX)(BY ) = rAB

VA
√
V 2
Y (1 + V 2

B) + V 2
B

(5.8)

where

V 2
A = V 2

x (1 + V 2
y ) + V 2

y , with x = dS

dz
, y = u−1

∗

V 2
B = V 2

w(1 + V 2
z ) + V 2

z , with w =
(
dS

dz

)−1
, z = u−2

∗ ,

where x-y and w-z are pairs of random independent variables but w = w(x) and z = z(y).
Furthermore, we have

rAB = r(xy)(wz) = 〈yz〉 /| 〈x〉 〈y〉 〈w〉 〈z〉 | − 1√
[V 2
x (1 + V 2

y ) + V 2
y ][V 2

w(1 + V 2
z ) + V 2

z ]

where it was used the fact that xw = 1 and 〈·〉 indicates the expectation value.
The expression for the self-correlation between φm and Rf is more complicated because

the shared variables are two, and its effects more difficult to predict since the two opposite
effect: the negative correlation from the sharing of the wind shear and the positive
correlation from the sharing of friction velocity. However, since the coefficients of variation
for fluxes are usually greater than those for gradients we expect that rAB > 0, and then
r(AX)(BY ) > 0, when Rf is used as stability parameter. Anyway, further investigations are
needed.



Conclusions

The question if local similarity theory (an extension of Monin-Obukhov similarity theory)
holds for the wind profile in the stably stratified boundary layer, over complex terrain
and heterogeneous surfaces, was tackled analyzing more than 2000 hours of turbulence
measurements acquired on the Climate Change Tower (CCT), Ny-Ålesund, Svalbard,
Norway, from May 2012 to May 2014. During this period, observations were acquired
also in the long-lived stable boundary layer which onsets in polar regions from autumn
to spring, although unreliable snow height measurements have limited the study of this
peculiar conditions. In this work, however, no distinctions were made between long-lived
and “conventional” stable boundary layers. The tower is located in a fjord and the
experimental site is characterized by undulated terrain, glaciers, mountains up to 700-m
high few kilometers far from the tower and sea-land transitions. Furthermore, the seasonal
cycle of snow-covered and snow-free ground is also present. All these factors generate
complex land-ice-sea-atmosphere interactions making the study of the boundary layer very
challenging and this experiment a sever verification test for the limits of applicability of
local similarity theory.

Due to the lack of calibration tests, an intercomparison between wind speed observations
from all sonic and propeller anemometers on the CCT was carried out. During this, a time
lag of 10 min between sonic and propeller readings was found and a new synchronized
dataset generated. The better agreement was observed between propeller observations.
Sonic anemometers showed less coherent measurements and an average over-speeding of
about 5% with respect to the propeller data. These deviations between propeller and
sonic anemometers were attributed to different boom lengths (and orientation) for the
two instruments types causing uneven influences of the tower structure (in particular for
the highest sonic anemometer, located at 20.5m). Particularly important is that largest
deviations between propeller and sonic readings were observed for the prevailing wind
direction (i.e. 110°-120°) for which the tower should have the optimal orientation. This
suggest also that the influence of the tower structure on observed wind speed could be not
negligible also for optimal wind directions and that longer booms should be employed to
reduce it.

A special attention throughout the whole work was dedicated to methods. In this case,
those for the computation of gradients. In particular, the sensitivity of gradients to the
evaluation method was inquired. This is a crucial question for local similarity theory since
gradients are needed for the derivation of the dimensionless wind shear, φm. A comparison
was made between gradients computed with finite and log-finite differences, fitting wind
speed observations with log-linear and log-log2 profiles and interpolating them with Bessel
and log-Bessel splines (log- means that ln z, instead of z, was taken as independent variable).
Interpolations, fits and finite differences were carried-out on propeller observations only (at
2.0, 4.8, 10.3 and 33.4m), which showed the best agreement. Derivatives are then computed
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at sonic levels (at 3.7, 7.5 and 20.5m), where turbulence measurements were available.
Because of observed deviations, the use of both propeller and sonic observations would
have led to wildly oscillations in interpolated profiles and unrealistically high gradients.

Wind speed vertical gradients have shown small sensitivity to the evaluation method at
the lowest (3.7m) and at the highest (20.5m) sonic levels when log-methods (i.e. log-finite
differences, log-Bessel splines, log-linear and log-log2 fits) were used. A larger sensitivity was
instead observed at the middle sonic level (7.5m) because this resulted near to the height
of maximum non systematics deviations between log-linear and log-log2 derivatives. Log-
methods should be preferred on linear ones (in particular Bessel-splines) which produced
systematically higher or lower derivatives, depending on the level. This is because the
logarithmic behaviour, usually dominant in observed profiles, is easily captured when ln z,
instead of z, is used as independent variable.

A problem affecting the CCT dataset is that of intermittent and unreliable snow height
measurements since long-lived stable boundary layers onset mostly during the permanent
snow-cover season, from October to May. Some long-lived cases occur also in September
and nocturnal stable boundary layers form in June and August, whit snow-free ground. In
the present work, the height of measurement levels was taken equal to that above snow-free
ground, without any correction for snow depth, and were excluded from the analysis
observations acquired from December to April, when snow depth over 50 cm occurred at
Ny-Ålesund.

Erroneous estimations of z influence directly both φm and the stability parameter, z/Λ.
However, φm is affected also indirectly through wind speed gradients. Indeed, the skill of
log-methods in the interpolation of logarithmic profiles decreases as the estimated height
above ground of observational levels deviates from the true one. The sensitivity of gradients
to an unknown displacement height, d, depends on method and level of computation. For a
logarithmic profile and d = 1m errors up to 10% in gradients estimation occur. Considering
all the three sonic levels, log-Bessel gradients resulted the least affected by errors in z,
although log-finite differences showed even smaller errors at 7.5 and 20.5m. The effect of
an unknown displacement height on similarity functions depend on z/Λ and on the function
itself. For linear functions, i.e. φm(z/Λ) = 1 + β(z/Λ), deviations between expected and
estimated φm decrease as z/Λ increases. This is indeed an expected behaviour, since when
the z-less regime is reached, i.e. φm ≈ β(z/Λ), turbulence does not depend anymore on
the height above ground.

Largest deviations between expected and observed φm were related mostly to weak winds
and tower perturbed flows. The sector 150°-300° was recognized as the most perturbed by
the tower structure and excluded from the analysis. A wind speed threshold of 3m s−1

was also adopted as a good compromise between the reduction of points scatter (in φm vs.
z/Λ plots) and number of retained runs. Other authors have shown that this threshold
discriminates well between weak or intermittent turbulence and continuous turbulence.

Since of the complex terrain and heterogeneous surface characterizing the experimental
site, data were further subdivided in four wind direction sectors: from west to south-west,
300°-330°, 330°-30° (around north), 90°-120° and 120°-150°.

The largest deviations between flux-gradient relationships from different sectors were
observed in the weakly stable and near-neutral range (i.e. z/Λ . 0.1) and for strong
winds (i.e. S > 9 m s−1). This deviations manifested as higher than expected values
of φm associated to anomalously small heat fluxes. Interesting results arose from the
north-western sector (300°-330°) for which this anomalous behaviour was observed at the
middle (7.5m) and the highest (20.5m) sonic levels but not at the lowest one (3.7m), where
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observed φm agreed with most used empirical functions. These deviations were associated
with a two-layers structure in heat flux profiles, with a shallow surface layer (below 7m)
and a small-flux layer above. This two-layers structure was not present in profiles of wind
speed and momentum flux, that were those of a surface layer extending up to the highest
level. It would has been interesting to analyze also temperature profiles but doubts were
present on reliability of temperature measurements.

Since the sector 300°-330° contains a sea-land transition, it was speculated that this
two-layers structure was a manifestation of internal boundary layers formation in conditions
of on-shore flows. In particular, the advected layer seems to adjust dynamically but not
thermally with the local surface. The same mechanism can also explain the observed
deviations for the northern sector (330°-30°) which should be even more influenced by
sea-land transitions. However, in this case, also the lowest level is affected, maybe because
the shorter land-fetch does not permit even the formation of a shallow surface layer.

Because of these anomalously small fluxes, the local Obukhov length, Λ, is not anymore
representative of true stability conditions. This means that points ling on expected empirical
functions, move horizontally in the φm–z/Λ plane toward lower values of z/Λ, generating
higher than expected values of φm and the failure of local similarity theory.

For z/Λ & 0.1, deviations of φm were mostly between levels, than between sectors, with
decreasing φm as the height above ground increased. The best agreement between observed
and expected φm was observed at the lowest sonic level (3.7m), in particular with the
empirical function prosed by Beljaars and Holtslag (1991). However, in the limited stability
range of the considered dataset (i.e. z/Λ . 1) deviations between most used formulations
are small. Dimensionless gradients at the middle sonic level (7.5m) were generally smaller
with a dependence on z/Λ resembling that from self-correlation: φm ∝ (z/Λ)1/3. The
self-correlation behavior is particularly evident for the highest sonic level (20.5m).

It was hypothesized that lower than expected values of φm were originated by enhanced
turbulence from complex terrain. Indeed, highly variable fluxes of momentum, showing
even signatures of upside-down boundary layers, were observed for most of the sectors
in moderately stable conditions (0.1 ≤ z/Λ ≤ 1). Stable conditions usually occur with
lighter winds and then smaller wind shears. It is then possible that, as stability increases,
terrain-generated turbulence becomes an important fraction (or even dominates on) shear-
generated turbulence. This could also explain the break-down of flux-gradient relationships
(indicated by the φm ∝ (z/Λ)1/3-behaviour) observed at 20.5m and, to a lesser extent, at
7.5m.

It is also possible that high and variable fluxes were a manifestation of instrumental
errors or tower perturbed flows. These doubts regard in particular the highest sonic level
(20.5m) for which φm showed the self-correlation behaviour, φm ∝ (z/Λ)1/3, for the whole
stability range, with the exception of the sector 330°-300°.

The expression for the linear self-correlation coefficient between φm and z/Λ due to the
shared variable u∗ (the local friction velocity) was derived. This is the level of no-correlation,
instead of zero, against which the observed linear correlation should be compared. The
level of self-correlation depends on the distributions of the shared and non-shared variables,
taking all points in the considered dataset. In particular, strong self-correlation arises when
the coefficient of variation of the shared variable (u∗) is large and those of the non-shared
variables (heat flux and wind shear) are small. For the CCT dataset, self-correlation
coefficients ranged from 0.3 to 0.6, depending on level and wind direction sector.

The strength of the observed correlation between φm and z/Λ was estimated comparing
the observed linear correlation coefficient with the empirical probability distribution function
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of the self-correlation coefficient, derived trough the generation of random datasets. These
were obtained with random permutations and sampling with replacement from the original
dataset. Random permutations (sampling without replacement) should be preferred since
the distributions of variables in the original dataset are retained also in the randomized
ones.

A drawback of the linear correlation coefficient as self-correlation estimator is its
sensitivity to outliers. This was retained the main cause for the observed overestimation of
the self-correlation coefficient derived through randomized datasets. Indeed, randomization
generates some z/Λ-outliers, (i.e. points characterized by anomalously high values of z/Λ)
that strongly influences the correlation index of the whole dataset.

Another limitation is that φm and z/Λ could be non-linearly related (although most
used empirical functions can be approximated by a linear model for z/Λ . 1) making
the linear correlation coefficient a poor estimator of the observed correlation. In this
case, if the observed relation is φm = f(z/Λ), the linear correlation coefficient should be
computed between φm and f(z/Λ) both for the original and the randomized datasets. The
expression derived for the self-correlation coefficient can be adapted to the non-linear case
approximating the observed function with power laws, i.e. f(z/Λ) ≈ const.+ (z/Λ)α, in
different intervals of (z/Λ) and comparing observed and self-correlation coefficients in each
interval. Estimators that are non-sensitive to the functional form of the tested model, such
as the rank correlation coefficient, have the drawback that they do not distinguish either
between the observed relationship and that from self correlation.

If the effect of self-correlation in φm vs. z/Λ plots is usually to strength the observed
correlation, since observed and self-correlation are about in the same direction, the opposite
is true in φm vs. Ri plots (Ri, the gradient Richardson number). This means that, when
observed correlation in φm vs. Ri plots is compared by a level of no-correlation equal to
zero, the strength of the observed correlation is underestimated.

———————————

Final considerations and possible future research

A calibration test between the anemometers of the CCT (particularly sonic ones) seems
necessary, to exclude the effect of measurement errors on the obtained results. Also their
disposition, maybe too near to the tower structure, could be reconsidered.

The study of the boundary layer in Ny-Ålesund was very challenging because of complex
sea-land-ice-atmosphere interactions. In particular, the formation of internal boundary
layers for on-shore flows and the effect of enhanced turbulence by the complex terrain
could be arguments of future research.

The effect of self-correlation on similarity plots requires further investigations both in
methods for its estimation and in the development of alternative similarity schemes not
affected by self-correlation.

Finally, the observed limitations of local similarity theory on complex and heterogeneous
surfaces, if confirmed, suggest that new theories are necessary for these conditions.
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