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ABSTRACT 

It has been reported that the presence of flexible conductors between electrical equipment during 

an earthquake might be responsible for generating destructive forces at the top of such apparatus. 

The purpose of this study is to investigate the effect of interaction between two equipment items 

connected by a cable conductor, through a finite-element model describing the dynamic behavior 

of flexible conductors interconnecting electrical equipment items. 

The first part of this study consists in modeling previous experimental tests of a cable conductor 

only, already present in literature. The sensitivity of the modeling to the various parameters 

affecting the solution is specifically checked. The initial compression in the cable coming from 

the static loads is found to be the most significant parameter to evaluate the accuracy of the 

model for the dynamic analysis. If the analytical and actual values are close, it is reasonable that 

the finite-element model will provide an adequate approximation of the dynamic behavior of the 

cable. The biggest errors related to the initial compression are directly caused by overestimated 

values of the bending stiffness. Compression can shift the natural frequencies, changing the 

dynamic properties of the cable. The model implementing an adequate variable bending stiffness 

reproduces the experimental results with an average error of 4.8%: the model simply considering 

a constant bending stiffness shows an average error of 16.2%.  

The second part of this report aims to model the dynamic behavior of a flexible conductor 

interconnecting two electrical equipment items modeled through equivalent beams: a very large 

range of interconnected systems can be analyzed simply changing the structural properties of 

these beams. Some ground motions are applied to the base of the structure, and different initial 

shapes of the cable are assumed. The cable is redistributing the horizontal forces from the more 

affected element to the less affected. In the vertical direction both the equipment items are more 

severely tested in the interconnected configuration, due to the vertical inertia provided by the 

cable. The moment at the base of the two cantilevers generated by the axial force in the cable has 

the same order of magnitude of the moment due to the seismic response of the equipment itself. 

It is suggested to design flexible connections so that the range of natural frequencies at which 

they are likely to be excited are different from those of the equipment they are interconnecting, 

in order to avoid the risk of dynamic interaction and resonance between them. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

1.1.1 Background 

Cables forming tension-loaded structural members are found in nearly all branches of 

engineering. They are widely used in structural engineering: they cannot be only used singularly, 

but also composing different and more complex systems. Cables structures are mainly divided 

into two categories: suspended structures and braced structures. Suspended structures can be 

subdivided into single curvature structures (all the cables are parallel), double cable structures 

(cables with different curvature in the same plane) and double curvature structures (or anticlastic, 

with cables owning different curvatures crossing each other). Braced structures typically use 

either vertical or inclined compressed columns, to which straight cables bearing the deck are 

attached. 

Suspended cables can be used to cover very big distances, thus they are commonly used for 

suspension bridges, where they have to stand the deck and the traffic loads. Since the traffic 

loads are very variable, in order to avoid changes of configuration in the cables, the deck is a 

rigid plane; therefore the load transmitted to the cables remains constant. Other suspended cable 

structures are used for suspended roofs, especially for big spans. 

Another fundamental field where cable are widely used is electrical engineering: they are the 

transmission lines with which the electricity is carried from the power plants to the single users, 

passing through electrical substations. An electrical substation consists of a complex set of 

equipment items that are interconnected through conductor buses or cables. Many equipment 

items in electrical substation are connected to each other by flexible conductors, typically cables 

made of braided aluminum wire strands. These flexible conductors are single cables, just like 

those used for suspension bridges or suspended roofs: therefore, the same calculation methods 
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can be applied. As well as for the other cable structures, they can be either pre-stressed or non-

prestressed: in this case, we will talk about either slack or tight cables. 

1.1.2 Purpose of the Study 

It has to be noted that the classical theory of cables, which calculation methods are based on, 

completely neglects their bending rigidity, and takes account only for the axial internal forces. 

Despite the low values of their bending rigidity, in comparison with the axial stiffness, the cables 

are capable of transmitting moments too, indeed. Since this aspect has been neglected up to now 

by most of the researchers, the influence of bending stiffness in the static and dynamic behavior 

of cables has not been fully investigated. The present work aims to achieve a more realistic 

description of the mechanics of cables, thanks to accounting for the bending stiffness of the 

cable. This means that the behavior is something intermediate between the classical beam theory 

and the classical cable theory. 

It has been reported that the presence of flexible conductors between equipment experiencing a 

differential displacement during an earthquake might be responsible for generating destructive 

forces at the top of such apparatus. Since these events, many works have been involved to 

investigate the effect of dynamic interaction between two equipment items connected by a cable 

conductor. In order to understand it, this work aims to take fully account for the dynamic 

behavior of single cables, also considering their bending stiffness, even if relatively low. 

The purpose of this study is to describe the dynamic behavior of flexible conductors owning 

some bending stiffness and interconnecting electrical equipment items, in specific configurations 

under given boundary conditions and base motions. To do this, we want to reproduce through 

finite-element models experimental tests already done in the past, as well as experimental tests 

not yet done, but likely to be done in the future.  

1.1.3 Organization of the Present Work 

The first part of this study presents the classical theory of flexible cables owning no bending 

stiffness. A generic survey about cables is provided, as well as an historical background about 

them. Some case studies are developed providing both the theoretical approach and numerical 

examples. This first part is necessary in order to create a theoretical background on which basing 
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the further developments that are the inclusion of some bending stiffness and the extension of the 

study from the statics to the dynamics of cables. 

The second part of this study is based on the specific problems involving dynamics of flexible 

wrapped cables used as conductors in electrical substations. The first step consists in modeling 

previous sine-start and frequency-sweep experimental tests of a cable conductor only, already 

present in literature. After the model is validated by comparing its results with the experimental 

ones, the sensitivity of the modeling to the various parameters affecting the solution is 

specifically checked: through these analyses, it’s possible to understand what the cable dynamics 

depends primarily on. Therefore, a benchmark model common for all the experimental tests 

wanted to be reproduced can be built by setting all the parameters equal to the values that are 

found to guarantee a stable and accurate solution under any specific configuration. Owning this 

tested and reliable model, the second part consists of reproducing the dynamic behavior of two 

electrical equipment items interconnected at their tops by a flexible wrapped conductor, 

subjected to different ground motions. Every equipment item, as well as the cable, is modeled 

through equivalent beam: since the flexibility of the model, a very large range of interconnected 

systems can be analyzed simply changing the structural properties of the equivalent beams 

representing the equipment items. Some ground motions are applied to the base of the structure, 

and the response of the system is computed. Different initial shapes of the cable are assumed for 

different tests experienced: depending on the ground motion, the cable can be either slack or 

straight, in order to accommodate or not the required displacement at the two ends of the cable. 

For all these tests, comparison are made between the response of the two equipment items in the 

interconnected and in the standalone configuration, to understand the influence of the presence of 

the flexible connection on the forces generated and the displacements experienced. 
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CHAPTER 2 

GENERAL DISCUSSION ABOUT FLEXIBLE CABLES 

 

2.1 Introduction 

Cables are one-dimensional supporting system: such systems can also be called line supporting 

structures. They are large in one dimension and small in the other two. The material is 

concentrated along either a straight or a curved line. A flexible cable is such a line supporting 

system. The required cross section tends to zero as the tensile strength of the material increases. 

Due to their lack of rigidity in bending, all pure cable structures are subject to comparatively 

large ranges of deformation under varying loads. The reason for this is that a state of equilibrium 

can only be achieved through finite deformations. In contrast to conventional structures, 

primarily subject to bending, it must be considered equilibrium of deformed structures. 

A cable can be idealized as a continuous series of discrete elements bounded each other through 

hinges, just like a chain. Every element of the cable is free to rotate under a load, but no bending 

moments can be transmitted from one element to another. An element with pure cable behavior, 

that means without any bending stiffness, can only be subject to traction forces. In a section of 

the cable,  the shear due to the external loads is equilibrated by the vertical component of the 

internal traction force; the external moment is balanced by the internal moment provided by the 

horizontal component of the internal traction force times the vertical distance between the 

section and the restraints. 

Components subjected either to bending or compression must be first be given a shape. Flexible 

tension-loaded components automatically assume an equilibrium shape most suited to 

transmission of forces and moments. Shape and structure are largely one entity in such a flexible 

tension-loaded system. A cable is understood to be any support system that can be loaded by 

tension but is very flexible. A cable is a linear (one-dimensional) supporting system, large in one 

direction and small in the other two. Cables are deformable structural elements. The shape 

assumed under external loads depends on the type and intensity of the load itself. When a cable 

is simply undergoing a traction force at its ends, it assumes a straight configuration. When a 
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cable undergoes a series of concentrated loads, it assumes a deformed shape consisting of a 

series of straight segments. When a cable undergoes a distributed load, the deformed shape is a 

continuous curve. A cable under its dead weight assumes the so-called catenary curve. For 

uniformly distributed loads, the following shapes are possible: catenary shape (for vertical loads 

uniformly distributed along the cable), parabolic shape (for vertical loads uniformly distributed 

along the horizontal axis), cubic shape (for vertical loads linearly distributed along the horizontal 

axis) and circular shape (for loads at right angles to the curve formed by the cable, uniformly 

distributed along the cable axis). This physically explains the relationship between the 

geometrical shape and the applied loads; the cable automatically assumes a natural shape under 

every applied load.  

Different forces either coplanar or forming a spatial system can act on a cable. In the former case 

the cable lies in the plane; in the latter, the cable forms a three-dimensional curve. 

A cable is able to transmit load to the restraints only thanks to change of its shape, since it 

doesn’t own any shear of bending stiffness; therefore, a cable can also be called a variable 

geometry element. The significant changes of geometry, due to load variations, are mainly 

responsible for the non-linear geometrical behavior of cables. This non-linear behavior is a 

hardening type, where the stiffness increases with the displacements. Suspended structures can 

be divided into two different classes: discrete structures (cables) and continuous structures 

(membranes). Cable structures can be subdivided in three more classes: single cables (mono-

dimensional structures coplanar with the loads), cable beams (pre-tensioned cables, with 

different curvatures, coplanar  with the loads) and cable nets (pre-tensioned cables, with different 

curvatures, and perpendicular loads). 

The entire mechanics of cable structures is influenced by the sag/span ratio. For high values of 

the sag/span ratio, the internal forces are only slightly influenced by sag variations. For small 

values of the sag/span ratio, the internal forces are highly influenced by sag variations. The 

forces inherent the cable depend on the central sag and the span of the system, as well as the 

value and position of the applied loads. The higher the central sag value is, the less the forces at 

the ends of the cable are. A catenary cable always changes its deformed shape when the external 

load varies. If the shape of the cable undergoing its dead weight differs from the catenary shape, 
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there will always be bending moments inherent the structure. It is obvious that it’s possible only 

if the cable owns some bending stiffness. 

In order to take advantage of the optimal characteristics of suspended cables, it is mandatory 

limiting the displacements by means of geometrical stabilization methods. Cable structures can 

be stabilized in different ways: introducing rigid elements, introducing permanent weights bigger 

than the accidental ones, introducing secondary cables providing a pre-tension state. Simple 

slack cables are, in view of their greatly variable deformations, used in structural engineering as 

supporting elements only if stabilized by supporting members rigid in bending or by large 

permanent loads in comparison with which the useful loads are negligible. A non-pretensioned 

structure usually requires a comparatively high constant load for stabilization, in order to 

maintain the shape of the structure in the presence of negative loads (wind suction) or reduce the 

deformations to a minimum.  

Cables are widely used in structural engineering, since suspended cable structures can cover big 

spans. Given the span and the loads, all the problems involved in the design of their geometry are 

related to the sag/span ratio. Furthermore, simple suspended cables are particularly sensitive to 

vibrations due to wind effect; therefore, specific measures have to be taken. For example, the 

traction forces inherent the cable can be checked, since the eigenfrequencies of the cable depend 

on its internal traction, or bracing system can be added. Double cable structures are primarily 

designed to control the vibrations due to wind effect, which can be extremely dangerous for 

simple cable structures. A double cable structure usually consists of two pre-tensioned cables 

bounded each other through either tensioned or compressed trusses. These structures create big 

traction forces on the restraints that have to be carefully designed. The dynamic behavior of such 

structures is extremely interesting. Since the eigenfrequencies of the cables depend on the 

internal traction, and the two cables have different internal forces due to the external loads and 

their geometry, they have slightly different natural frequencies too. When an external force 

induces vibrations in both cables matching the first natural frequency of one cable, the other will 

damp this effect, since it has a different eigenfrequency. This implies that every vibration is 

damped, because neither cable can be excited in resonance thanks to the damping effect of the 

other. Nevertheless, the system consisting of the two connected cable will have its own 
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eigenfrequencies. The first natural frequency of the total system is function of the two single 

frequencies, and is higher than both. 

Many common cable structures, used both for building and bridges, include also rigid beams and 

columns. A series of straight cables stand a horizontal rigid beam, and they are attached to one or 

more compressed columns. This structural system can cover big span without any curve cable. 

The load is divided between the straight cables and the rigid beam, whose length covers the 

whole span. The number of cables depends on the dimension and flexural stiffness of the rigid 

element. The cables have to be very close each other if the rigid beam is slender, otherwise a less 

number of them can be used if the beam is stiffer. In such a system, cables are always subject to 

tension. Too small angles between the cables and the rigid beam must be avoided, because they 

could involve extremely high forces inherent the cables. 

 

2.2 Historical Development of Tension-Loaded Structures 

Through the human history, men have always been inspired by nature: every achievement in 

scientific progress has been possible observing the natural examples found around us. The same 

process governed the historical development of light tension-loaded structures built by men, 

which can be seen in living structures owning a much higher performance level. 

In nature, tension-loaded systems are found in animal bodies: such systems are sinews, muscles 

and skins. Therefore, the first ever human-made tension-loaded structures were probably tent-

like, made of animal skins or thin wood branches. Soon after, the first improvements were 

available thanks to the invention of knotting and weaving: these techniques made possible fabric 

more complex and resistant tents, as well as fishing nets and sails. Nets and fabrics were made of 

vegetal fibers extracted from plants for thousands of years: their strength has been surpassed only 

in the 20
th

 century by the introduction of steel cables. 

The first surface tension-loaded structures were tents: their mechanics is based on the flexible 

animal skins they are made of, which can stand large stresses. The first type of tent was the 

pointed tent, consisting of a central mast, surrounded by a membrane with a conical shape. A 
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different version consists of two masts and looks like a gable roof. Over the centuries only 

simple variations of these basic types have been used. 

Large circus tents achieved their classical shape only relatively late, at the end of the 19
th

 

century. In their most common version, they have four large masts distributed along the edge of 

the arena, from which the center of the circular tent is attached, with inclined beams supporting 

the membrane above the arena. The large spans covered and the high membrane stresses 

developed make necessary the reinforcement of the fabric at the critical point by sewn-on ropes. 

Ship sails were studied and improved separately from tents and net structures: fundamental 

impulse to the development of sail-making became possible only thanks to achievements in 

aerodynamics and in the design of membranes. However, apart from yacht racing, incentives for 

further developments are lacking since the end of the 19
th

 century, due to the introduction of 

engine-powered ships. 

Only few available data and records have survived until nowadays, but it can be assumed that 

important designs of net and membrane structures were already known in ancient times. 

Unfortunately, no significant progress has been attained in this state of technology since the 

Middle Ages. In contrast to compression- and bending-loaded structures, tension-loaded 

structures are a development of the second half of 20
th

 century. 

Another engineering field where cables have been used are suspension bridges. Long ago, the 

ropes of these bridges required to be renewed very frequently, since they were made of plant 

fibers, thus with a limited service life. The introduction of steel cables made possible to 

overcome this problem related to service life of suspension bridges. The first cable suspension 

bridges of this kind appeared in Great Britain around 1816, using wrought-iron chains. 

The further development in bridge building was the switch from single cable to multi-cable 

suspension bridges. Two different solutions could be adopted for the pathway: it was following 

along the catenaries, but it could either placed directly on the cables or suspended underneath 

them. 

Later on in the 19
th

 century, the early level roadways were built, with the roadway separated 

from the main structure: the structure design was quite different, since the roadways didn’t 
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follow along the catenaries, but were suspended from the cables. This design allowed spans 

much larger than before. 

The large-span suspension bridges have been built for a long time until now, with only slight 

variations. One of the first most important designers of gravity suspension bridge was John 

Roebling, whose main works are the Ohio Bridge in Cincinnati and the Brookling Bridge in New 

York. His technique consisted of cable nets forming vertical surfaces connecting the suspension 

cables (not pre-assembled but spun in place) and a rigid roadway. The perfection achieved by 

Roebling influenced all the other designers of large suspension bridges. 

Only in the late 1960s suspension bridges were designed with a newer technique: from three up 

to four cables were used to form a three-dimensional pre-stressed system, useful to reinforce 

highly-stressed bridges and reduce the deformations. This pre-stressed three-dimensional cable 

system was also designed to brace laterally the bridges and to prevent lifting and twisting due to 

wind suction. 

In the 20
th

 century cable structures began to be used for a completely new kind of buildings: 

roofs were suspended from cables, just like bridges. Suspended roofs gave start to a research 

field quite different from suspension bridges. Their main problems were related to the much 

lighter weight, due to the smaller loads acting on them. As a matter of fact, they are much more 

sensitive to lifting and twisting by wind suction than heavy bridge, because of their low dead 

weight. Nevertheless, they are much less affected by danger of aerodynamic instability than 

suspension bridges. 

One of the first master in suspended roofs design was Shuchov: his works in Nizhni Novgorod 

have been the first surface structures in which roof membrane and main structure cooperate 

forming one unit. Shuchov can be considered as the father of the structural-steel method that 

extended the secular technique used to build tents during the last centuries. 

In the early 1930s in Paris Lafaille designed sheet-metal shell structures, as well as tension-

loaded roofs some years later. At the same time, in various U.S. states (New York state, 

Missouri, …) modern tension-loaded surface structures were developed attempting to roof large 

grain silos with steel sheeting of simple curvature. 
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A new phase of development was represented by pneumatic membranes, arches stabilized by 

pre-tensioned cable nets, edge cables and edge supports used for non-prestressed cable 

structures: the main examples of these structures are Nowicki’s Raleigh Arena (1950) and the 

works of Severud and Deitrick in 1953. All these structures, as well as pre-stressed centrally 

supported surface structures were surveyed by Otto Frei in the early 1950s for the first time.  

Soon after, the design of suspended roofs received a further noticeable impulse. Since 1960 large 

tension-loaded surface structures were built all over the world. Among them, the most significant 

examples are the Schwarzwald Hall (Karlsruhe), the swimming pool in Wuppertal and the 

Westphalian Hall (Dortmund) in Germany, the Rio Grande do Sul Pavilion (Sao Paulo, Brazil),  

the Olympic gymnasiums (Tokyo, Japan), the Sydney Meyer Music Bowl (Melbourne, 

Australia) and the Yale Hockey Rink (New Haven),  the Dulles Airport (Washington D.C.) and 

the auditorium in Utica in the U.S.A. 

 



 

 

 

 

 



 

13 

CHAPTER 3 

CASE STUDIES AND NUMERICAL EXAMPLES 

 

In this chapter, three numerical examples are shown. The first is about a classical cable, without 

any flexible stiffness, undergoing a concentrated load at the middle of its span and a pre-tension 

force at its ends. The deflection caused by the external force and the pre-tension is investigated. 

The second consists of a classical cable undergoing its dead weight: this kind of structural 

element is also called as “catenary”. The third example shows a possible approach to study the 

interaction between a so-called “beam effect” and a “cable effect” that can address the problem 

of a cable owning some bending stiffness, as well as the influence of the axial elongation for a 

beam. In this case, the interaction between the two effects is investigate for a double-hinge beam 

undergoing a constant distributed load. The fourth and last example shows the sensitivity of the 

natural frequencies of a double supported continuous beam to its axial tension. 

 

3.1 Evaluation of Internal Forces and Spans in a Pre-tensioned Cable Subject 

to a Vertical Concentrated Load at the Middle of its Span 

A cable made of steel is pre-tensioned between two hinges. It is subject to a concentrated load at 

the middle of its span. 

Figure 3-1: Geometry of the steel cable 
 

3.1.1 Glossary 

• P = external vertical load applied at the middle of the span; 

• Ntot= traction force inherent the cable (sum of two components: the first, Npretension, due to the 

pre-tension in the cable and the second, Nsag, due to the sag caused by the vertical load P); 

• H = horizontal force at the end of the cable; 
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• V = vertical force at the end of the cable; 

• Npretension = pre-tension force; 

• L = 2l = distance between the two hinges (span of the cable); 

• L0 = 2l0 = initial length of the cable before the pre-tension; 

• L1 = 2l1 = final length of the cable after the pre-tension; 

• ∆����������� = �	 − �
= change of length caused by the pre-tension; 

3.1.2 Cable Stress and Strain 

The pre-tension force necessary in order to avoid the slackness of the cable is assumed to be 

Npretension = 0.80 kN.  

Considering the elastic modulus of steel, the cross-section area of most of the cable usually 

adopted in the industry, and the relatively low value of the pre-tension force, the deformation of 

the cable caused by the pre-tension is assumed to be negligible for engineering purposes. �
 ≅ �	 ≡ � 

∆����������� ≅ 0 

The cable is assumed to have a linear elastic behavior up to the failure. 

Under a vertical concentrated load P at the middle of the span, the deformed shape of the cable is 

shown in the figure below: 

 

Figure 3-2: Geometry of a cable undergoing a vertical 
concentrated load 

 

where the data of the problem are: 

• Aeff = effective cross-section area of the cable; 

• E = elastic modulus; 

L

P

f

lsag lsag

l l
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• L = 2l = distance between the two hinges (span of the cable) = length of the cable after the 

pre-tension, but before applying the concentrated load P; 

• l = L/2 = half distance between the two hinges (half span of the cable) = half length of the 

cable after the pre-tension, but before applying the concentrated load P; 

• Npretension = traction force due to the pre-tension inherent the cable; 

• ����������� = cable strain due to the pre-tension inherent the cable; 

• P = external vertical concentrated load applied at the middle of the span of the cable; 

while the unknowns are: 

• f = sag at the middle of the span due to the load P; 

• � = angle between the horizontal axis and the deformed shape of the cable; 

• ���� = 2���� = length of the cable in the deformed configuration, due to the load P; 

• ���� =

���

�
 = half length of the cable in the deformed configuration, due to the load P; 

• ∆���� = ���� − � = cable elongation in the deformed configuration, due to the load P; 

• ∆���� = ���� − � = half cable elongation in the deformed configuration, due to the load P; 

• ���� = cable strain due to the load P; 

• ���� = traction force due to the load P; 

• ���� = ����������� + ���� = traction force in the deformed configuration of the cable, due to 

both the pre-tension inherent the cable and the load P. 

The equilibrium of node C’ (correspondent to the middle of the cable in the deformed 

configuration) at the middle of the span is: 

���� =
�

2 ∙ ��	� 

  (1) 

 

Figure 3-3: Equilibrium of the middle node 
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Equilibrium conditions: ���� = ����������� +���� 

 

  (2) 

Elasticity conditions: ���� = ����������� ∙ 
 ∙ ���� + ���� ∙ 
 ∙ ���� 

���� =
����
 ∙ ���� =

���� −�����������
 ∙ ����  

  (3) 

Cable elongation: 

∆���� = ���� ∙ � 
(4) 

∆���� =
���� ∙ �
 ∙ ���� =

����� − �����������
 ∙ �
 ∙ ����  

  

  (5) 

From simple geometric considerations: 

��	� =
����� =

�� + ∆���� 

  (6) 

and: 

� = ��� + ∆����
� − �� 

� = ��� + 2� ∙ ∆���� + ∆����� − �� 

� = �∆�����2� + ∆����
 
  (7) 

Using ∆���� as the only unknown of the problem, substituting (1) into (4): 

∆���� =
� �

2 ∙ ��	� −������������ �
 ∙ ����  

∆���� =
�� − 2 ∙ ��	� ∙ �����������
�

2 ∙ ��	� ∙ 
 ∙ ����  
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∆���� =
� ∙ �

2 ∙ ��	� ∙ 
 ∙ ���� −
����������� ∙ �
 ∙ ����  

∆���� =
� ∙ �

2 ∙ ��	� ∙ 
 ∙ ���� − ����������� ∙ � 
  (8) 

and substituting (6) into (8): 

∆���� =
� ∙ �

2 ∙
�� + ∆���� ∙ 
 ∙ ���� − ����������� ∙ � 

∆���� =
� ∙ � ∙ �� + ∆����


2 ∙ � ∙ 
 ∙ ���� − ����������� ∙ � 
  (9) 

and substituting (7) into (9): 

∆���� =
� ∙ � ∙ �� + ∆����


2 ∙ �∆�����2� + ∆����
 ∙ 
 ∙ ���� − ����������� ∙ � 
  (10) 

This last equation has ∆���� as the only unknown. 

Solving (10) by analytical or numerical way, ∆���� can be obtained. 

Substituting (4) into (10): 

���� ∙ � =
� ∙ � ∙ �� + ∆����


2 ∙ ����� ∙ � ∙ �2� + ∆����
 ∙ 
 ∙ ���� − ����������� ∙ � 
���� ∙ � =

� ∙ �� ∙ �1 + ����

2 ∙ ����� ∙ �� ∙ �2 + ����
 ∙ 
 ∙ ���� − ����������� ∙ � 

���� =
� ∙ �1 + ����


2 ∙ ����� ∙ �2 + ����
 ∙ 
 ∙ ���� − ����������� 

  (11) 

whence: 

���� = � �
2 ∙ 
 ∙ ����� �1 + ����
����� ∙ �2 + ����
 − ����������� 

  (12) 
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The last equation has ���� as the only unknown. Solving (12) by analytical or numerical way, ���� can be obtained. 

From (2) the total traction force inherent the cable is obtained: ���� = ����������� + ���� ∙ 
 ∙ ����  

  (13) 

From (6) the angle between the horizontal axis and the deformed shape of the cable is obtained: 

� = �����	 � �
2 ∙ ����� 

  (14) 

Equations (12), (13) e (14) show that ����, ���� and α only depend on the vertical applied load 

P, the elastic modulus E, the cable effective cross-section area ����  and the pre-tension force �����������. 

From (4) the elongation of half cable ∆���� is obtained: 

∆���� = ���� ∙ � 
  (15) 

From (7) the sag f is obtained: 

� = �∆�����2� + ∆����
 
  (16) 

Finally, from (16) and (15) the sag/span ratio 
�



 is obtained: �� =

1

2
������2 + ����
 

  (17) 

3.1.3 Forces (H e V) Transmitted to the Ends 

The total traction force ���� inherent the cable is split into an horizontal H and a vertical forces 

V: � = ���� ∙ ���� 

  (18) � = ���� ∙ ��	� 

  (19) 
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Figure 3-4: Equilibrium of the deformed cable 
 

3.1.4 Numerical Example 

Making reference to a steel cable consisting of 19 wrapped strands, the geometrical and 

mechanical data of the cable are: � = 8 �� 
 = 10800 ��/��� ���� = 0.34 ��� 

The pre-tension force inherent the cable is: ����������� = 0.80 �� 

whence: 

����������� =
�����������
 ∙ ���� =

0.80

10800 ∙ 0.34
= 2.18 ∙ 10�� 

The value of span and external load are assumed to be: � = 800 �� 

� =
�
2

= 400 �� 

� = 12 �� 

The solving equation of the problem is: 

���� = � �
2 ∙ 
 ∙ ����� �1 + ����
����� ∙ �2 + ����
 − ����������� = 0.0109261 
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implementing the equations in Mathematica 3.0: 

 

 

Knowing the strain ����, all the other unknowns can be obtained. 

From (13) the total traction force inherent the cable is obtained: ���� = ����������� + ���� ∙ 
 ∙ ����  ���� = 0.80 + 0.0109261 ∙ 10800 ∙ 0.34 = 40.92 �� 

From (14) the angle between the horizontal axis and the deformed shape of the cable is obtained: 

� = �����	 � �
2 ∙ ����� 

� = �����	 � 12

2 ∙ 40.92
� = 0.1472 ��� = 8.431° 

From (15) the elongation of half cable ∆���� is obtained: 

∆���� = ���� ∙ � 
∆���� = 0.0109261 ∙ 400 = 4.37 �� 

From (16) the sag f is obtained: 

� = �∆�����2� + ∆����
 
� =  4.37!2 ∙ 400 + 4.37" = 59.29 �� 

From (17) the sag/span ratio 
�



 is obtained: �� =

1

2
������2 + ����
 �� =

1

2
 0.0109261!2 + 0.0109261" = 0.074 =

1

13.49
 

From (18) the horizontal force transmitted at the end of the cable is obtained: � = ���� ∙ ���� 
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� = 40.92 ∙ 0.9892 = 40.48 �� 

From (19) the vertical force transmitted at the end of the cable is obtained: � = ���� ∙ ��	� � = 40.92 ∙ 0.1466 = 6 �� 

3.1.5 Parametric Study: Influence of the Vertical Load P 

Making reference to a steel cable consisting of 19 wrapped strands, the geometrical and 

mechanical data of the cable are: � = 8 �� 
 = 10800 ��/��� ���� = 0.34 ��� � = 800 �� 

The pre-tension force inherent the cable is: ����������� = 0.80 �� 

whence: 

����������� =
�����������
 ∙ ���� =

0.80

10800 ∙ 0.34
= 2.18 ∙ 10�� 

the four following figures show respectively the influence of the vertical load P on the strain 

inherent the cable ����, the total traction force ����, the angle � between the horizontal axis and 

the deformed shape of the cable and the sag/span ratio 
�



. 

It has to be noted that the results shown are independent from the total span L, since, as shown 

before, they depend only on the vertical applied load P, the elastic modulus E, the effective 

cross-section area Aeff and the pre-tension force Npretension. 
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Figure 3-5: Strain due to the vertical concentrated load P  
 

 

Figure 3-6: Total traction inherent the cable  
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Figure 3-7: Angle between the deformed cable and the horizontal axis  
 

 

Figure 3-8: Sag/span ratio  
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3.1.6 Table resuming the Influence of the Vertical Load P on Ntot, H and V 

Making reference to a steel cable consisting of 19 wrapped strands, the geometrical and 

mechanical data of the cable are: � = 8 �� 
 = 10800 ��/��� ���� = 0.34 ��� � = 800 �� 

The pre-tension force inherent the cable is: ����������� = 0.80 �� 

whence: 

����������� =
�����������
 ∙ ���� =

0.80

10800 ∙ 0.34
= 2.18 ∙ 10�� 

the following table shows the values of the total traction force inherent the cable Ntot and the 

horizontal as well as the vertical forces transmitted at the end of the cable to the restraints (H and 

V)  for different values of the static vertical external load P, applied at the middle of the span. 

Particularly interesting are two values, P = 6 kN and P = 12 kN. 

 

Table 3-1: Table Resuming the Influence of the Vertical Load P on Ntot, H and V  
 

P ε freccia N tot α f/L L/f H V

[kN] [kN] [°] [kN] [kN]
1.00 0.20% 8.00 3.584 0.031 31.93 7.98 0.50

2.00 0.32% 12.54 4.575 0.040 24.99 12.50 1.00

3.00 0.42% 16.35 5.264 0.046 21.71 16.28 1.50

4.00 0.52% 19.76 5.810 0.051 19.66 19.66 2.00

5.00 0.60% 22.89 6.269 0.055 18.20 22.76 2.50

6.00 0.68% 25.83 6.670 0.058 17.10 25.65 3.00

7.00 0.76% 28.60 7.029 0.062 16.22 28.39 3.50

8.00 0.83% 31.25 7.354 0.065 15.50 30.99 4.00

9.00 0.90% 33.79 7.652 0.067 14.89 33.49 4.50

10.00 0.97% 36.25 7.929 0.070 14.36 35.90 5.00

11.00 1.03% 38.62 8.188 0.072 13.90 38.22 5.50

12.00 1.09% 40.92 8.431 0.074 13.49 40.48 6.00

13.00 1.15% 43.16 8.662 0.076 13.13 42.67 6.50

14.00 1.21% 45.35 8.880 0.078 12.80 44.80 7.00

15.00 1.27% 47.48 9.088 0.080 12.50 46.89 7.50

16.00 1.33% 49.57 9.287 0.082 12.23 48.92 8.00

17.00 1.38% 51.62 9.478 0.083 11.98 50.91 8.50

18.00 1.44% 53.63 9.661 0.085 11.75 52.87 9.00
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3.2 Evaluation of Internal Forces and Shape of an Inextensible Cable Subject 

to its Dead Weight: the Catenary Case 

An inextensible cable is suspended between two hinges and it is subject only to its dead weight, 

without any external additional load. Such a cable is also known as catenary. 

 

Figure 3-9: Geometry of the catenary 
 

3.2.1 Glossary 

• p = dead weight of the catenary, equal to the mass per unit of length of the cable times the 

gravity acceleration; 

• T = traction force inherent the catenary (it has to be noted that has the same slope of the 

cable); 

• # = angle between the catenary and the horizontal axis; 

• 2L = total length of the catenary; 

• 2l = span of the catenary (distance between the two hinges); 

• y0 =  y-coordinate of the middle of the catenary; 

• yB =  y-coordinate of the hinges; 

• f =  central sag of the catenary; 

3.2.2 Evaluation of the Shape and the Internal Tension 

The cable is assumed to have a homogeneous density, therefore it is subject to a homogeneous 

dead weight: this dead weight is constant along the direction of the cable itself. 
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The data of the problem are: 

• p = dead weight of the catenary, equal to the mass per unit of length of the cable times the 

gravity acceleration; 

• #� = angle between the catenary and the horizontal axis at the ends of the cable; 

• 2L = total length of the catenary; 

• 2l = span of the catenary (distance between the two hinges); 

while the unknowns are: 

• T = traction force inherent the catenary (it has to be noted that has the same slope of the 

cable); 

• $
 = horizontal component of the traction force inherent the catenary; 

• # = angle between the catenary and the horizontal axis; 

• y =  shape of the catenary; 

• y0 =  y-coordinate of the middle of the catenary; 

The differential equilibrium equation governing the mechanics of the cable is: �$(�)�� = %(�) 

(1) 

Since the only load is in the vertical direction, separating the differential equilibrium equation in 

the two perpendicular directions we obtain: 

&�($ ∙ ���#)�� = 0�($ ∙ ��	#)�� = %' 
(2) 

Integrating the first of the two, we have that the horizontal component of the tension is always 

constant, and can be called $
: $ ∙ ���# = $
 

(3) 

Substituting (3) into the second equation of (2) we have: �($
 ∙ ()#)�� = % 

(4) 
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From geometrical consideration we know that: �*�+ = ()# 

(5) 

and: �� =  1 + (*�)��+ 

(6) 

Substituting (5) and (6) into (4), and considering that $
 is constant, we obtain: $
 ∙ �(()#)�� = % 

$
 ∙
�(
�*�+) 1 + (*�)��+ = % 

�(
�*�+)�+ =

%$
 ∙  1 + (*�)� 

*′′ =
%$
 ∙  1 + (*�)� 

(7) 

This is the second grade differential equation governing the shape of the catenary. 

One possible solution is: 

* =
$
% ∙ ���ℎ

% ∙ +$
  

(8) 

This equation can be rewritten in a different way, from considering it for the middle of the 

catenary: 

*!0" =
$
% ∙ ���ℎ

% ∙ 0$
 =
$
%  

*
 =
$
%  

(9) 

Substituting (9) into (8) we can rewrite: 

* = *
 ∙ ���ℎ
+*
 

(10) 
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It has to be noted that the shape of the catenary is still unknown, since we don’t know either $
 

or *
 that depends on the choice of the position of the y-axis. 

Deriving (8) in the x-direction, we obtain: �*�+ = ��	ℎ
% ∙ +$
  

()# = ��	ℎ
% ∙ +$
  

(11) 

Writing (11) for the one of the two hinges, we have: 

()#� = ��	ℎ
% ∙ �$
  

(12) 

Knowing the dead weight of the material (p), the angle formed by the catenary and the horizontal 

axis in the end points (#�) and the span of the cable (2l), we can evaluate the horizontal tension $
 from (12). 

Alternatively, $
 can be obtained knowing the total length of the catenary (2L). 

As a matter of fact, the total length of half cable is: 

� = ,���




 

(13) 

Substituting (6) into (13), we have: 

� = , 1 + (*�)��+�




 

(14) 

Substituting (8) into (14), we have: 

� = ,-1 + ���	ℎ
% ∙ +$
 �� �+

�




= ,-����ℎ
% ∙ +$
 �� �+

�




= ,���ℎ
% ∙ +$
 �+�




 

� =
$
% ∙ ��	ℎ

% ∙ �$
  

(15) 

Knowing the dead weight of the material (p), the total length of the catenary (2L) and the span of 

the cable (2l), we can evaluate the horizontal tension $
 from (15). 
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Substituting (12) into (15) we have: 

� =
$
% ∙ ()#� 

(16) 

Knowing the dead weight of the material (p), the total length of the catenary (2L) and the angle 

formed by the catenary and the horizontal axis in the end points (#�), we can evaluate the 

horizontal tension $
 from (16). 

Inserting the value of $
 in (9), we can evaluate *
 that is the ratio of the horizontal tension and 

the dead weight of the material. 

We can also determine the shape of the catenary from either (8) or (9). 

In order to know the total sloped tension T inherent the cable, we must first determine the 

equation of the angle #. Substituting (9) into (5), we have: 

��	ℎ
+*
 = ()# 

# = ���() ���	ℎ
+*
� 

(17) 

Knowing #, the tension T can be evaluated from (3). 

It has to be noted that, whether the horizontal tension $
 is sufficiently high, the shape of the 

catenary can be approximated with a parabola, since the terms over the second grade in the series 

expansion of (8) can be neglected. 

* =
$
% ∙ ���ℎ

% ∙ +$
 ≅
$
% ∙ �1 +

%� ∙ +�
2 ∙ $
� +

%� ∙ +�
24 ∙ $
� + ⋯� 

(18) 

3.2.3 Forces (H e V) Transmitted to the Ends 

The total traction force T inherent the catenary can be split at the restraints into a horizontal H 

and a vertical reaction V: �� ≡ $
 = $(�) ∙ ���#� 

(19) �� = $(�) ∙ ��	#� 

(20) 
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3.2.4 Numerical Example 

Making reference to the same steel cable of the previous example, consisting of 19 wrapped 

strands, the geometrical and mechanical data of the cable are: � = 8 �� ���� = 3.4 ∙ 10�� �� . = 7.87 ∙ 10� �)/�� % = 7.87 ∙ 10� ∙ 3.4 ∙ 10�� ∙ 9.81 = 2.62 � 

The span and the total length of the cable are assumed to be respectively: 

2� = 800 �� = 0.8 � 

2� = 1000 �� = 1 � 

The cable is let under the dead weight: therefore, it will assume the catenary shape. 

The solving equation of the problem, knowing p, l and L, is: 

� =
$
% ∙ ��	ℎ

% ∙ �$
  

It has to be noted that this equation can’t be directly solved (e.g., using Mathematica) since it is 

transcendental. Therefore, it has to be solved with an iterative procedure, for different trial values 

of $
, until the equation is satisfied. Below the procedure is showed, with the value of $
 that, 

substituted into the solving equation, was found to give the best approximation of the total length 

L. 

implementing the equations in Mathematica 3.0: 

 

 

The correct value of the horizontal tension is therefore: $
 = 0.8861 � 

Knowing $
, all the other unknowns can be evaluated. 

The shape of the catenary is: 

* =
$
% ∙ ���ℎ

% ∙ +$
 =
0.8861

2.62
∙ ���ℎ 2.62 ∙ +

0.8861
= 0.338 ∙ cosh (2.956 ∙ +) 

l= 0.4; H∗m∗L

L=.; H∗m∗L

p= 2.62; H∗Nêm∗L

T0= 0.8861; H∗N∗L

SolveAL==
T0

p
∗SinhA

p∗l

T0
E, LE

88L→ 0.499997325642781209̀ <<
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Knowing the expression of the shape of the catenary, one meaningful parameter is the central sag 

f that is the difference between y
 and y�. 

The parameter y
 is: 

*
 =
$
% =

0.8861

2.62
= 0.338 � 

The y-coordinate y� is: 

y� = *!�" =
$
% ∙ ���ℎ % ∙ +$
 =

0.8861

2.62
∙ ���ℎ

2.62 ∙ 0.4

0.8861
= 0.604 � 

Therefore, the central sag f is: � = y� − *
 = 0.604 − 0.338 = 0.266 � 

The sag/span ratio is: �
2� =

0.266

0.8
= 0.3325 

The angle between the catenary and the horizontal axis is: 

# = ���() ���	ℎ
+*
� = ���()!sinh (2.956 ∙ +)" 

At the end of the cable, this angle is: #� = #!�" = ���()!��	ℎ(2.956 ∙ 0.4)" = 55.92° 

The reactions at the restraints are respectively: �� ≡ $
 = 0.8861 � 

�� = $!�" ∙ ��	#� =
$
���#� ∙ ��	#� = $
 ∙ ()#� = 0.8861 ∙ ()55.92° = 1.309 � 

3.2.5 Parametric Study: Influence of the Length of the Cable 2L 

Making reference to the same steel cable of the previous example, consisting of 19 wrapped 

strands, the geometrical and mechanical data of the cable are: � = 8 �� ���� = 3.4 ∙ 10�� �� . = 7.87 ∙ 10� �)/�� % = 7.87 ∙ 10� ∙ 3.4 ∙ 10�� ∙ 9.81 = 2.62 � 

The span between the two hinges is assumed to be: 

2� = 800 �� = 0.8 � 
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Some cables, with different length, are supposed to be installed between the two hinges, and let 

under the dead weight: therefore, they will assume the catenary shape. 

The five following figures show respectively the influence of the total length 2L of the catenary 

on the horizontal traction $
, on the vertical reaction �� of the hinges, on the angle #� at the end 

of the cable, on the central sag f and on the sag/span ratio 
�



. 

 

 

Figure 3-10: Horizontal traction for different values of the length 2L  
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Figure 3-11: Vertical reaction for different values of the length 2L  
 

 

Figure 3-12: Angle at the end of the cable for different values of the length 2L  
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Figure 3-13: Central sag for different values of the length 2L  
 

Figure 3-14: Sag/span ratio for different values of the length 2L  
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3.2.6 Table resuming the Influence of the Length of the Cable 2L on /�, 0�, 1�, f and 
�

�
 

Making reference to the same steel cable of the previous example, consisting of 19 wrapped 

strands, the geometrical and mechanical data of the cable are: � = 8 �� ���� = 3.4 ∙ 10�� �� . = 7.87 ∙ 10� �)/�� % = 7.87 ∙ 10� ∙ 3.4 ∙ 10�� ∙ 9.81 = 2.62 � 

The span between the two hinges is assumed to be: 

2� = 800 �� = 0.8 � 

Some cables, with different length, are supposed to be installed between the two hinges, and let 

under the dead weight: therefore, they will assume the catenary shape. 

The following table shows the values of the horizontal traction $
, the vertical reaction �� of the 

hinges, the angle #� at the end of the cable, the central sag f and the sag/span ratio 
�



  for different 

values of the total length 2L of the catenary. 

 

Table 3-2: Table Resuming the Influence of the Length of the Cable 2L on ��, ��, ��, f and 
�

�
  

 

2L T 0 V B γB y 0 y B f f/2l

[m] [N] [N] [°] [m] [m] [m]

0.8025 7.6560 1.0513 7.82 2.922 2.950 0.027 0.034

0.805 5.4170 1.0545 11.02 2.068 2.106 0.039 0.049

0.81 3.8340 1.0611 15.47 1.463 1.518 0.055 0.069

0.82 2.7160 1.0742 21.58 1.037 1.115 0.078 0.098

0.85 1.7272 1.1135 32.81 0.659 0.784 0.125 0.156

0.90 1.2322 1.1790 43.74 0.470 0.651 0.181 0.226

0.95 1.0147 1.2445 50.81 0.387 0.613 0.226 0.282

1.00 0.8861 1.3100 55.92 0.338 0.604 0.265 0.332

1.20 0.6461 1.5719 67.66 0.247 0.649 0.402 0.503

1.40 0.5422 1.8339 73.53 0.207 0.730 0.523 0.654

1.60 0.4813 2.0961 77.07 0.184 0.821 0.637 0.796

1.80 0.4404 2.3580 79.42 0.168 0.916 0.747 0.934

2.00 0.4105 2.6205 81.10 0.157 1.012 0.856 1.070

2.20 0.3876 2.8817 82.34 0.148 1.110 0.962 1.202
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3.3 Interaction between “Beam Effect” and “Cable Effect” in a Simply 

Supported Element undergoing Uniform Vertical Distributed Load 

A horizontal element is simply supported by two fixed hinges, and is subject to an uniform 

vertical distributed load. 

 

Figure 3-15: Simply supported element undergoing a vertical distributed load  
 

3.3.1 Glossary 

• 2���  = uniform vertical distributed load applied to the beam; 

• 2� = part of the external vertical distributed load carried by the “beam effect”; 

• 2� = part of the external vertical distributed load carried by the “cable effect”; 

• N = horizontal traction force inherent the cable; 

• L = distance between the two hinges (span of the element); 

3.3.2 Evaluation of the Axial Stress Arising in the Element 

The total external distributed load on the element is supposed to be carried by two different 

complementary effects, one being a “beam effect” (moment + shear), the other being a “cable 

effect” (axial force). 

First, we assume one restraint to be a roller, and the other to be a hinge: in this way, the 

horizontal translation of one end are allowed. 

The element is subject to an uniform vertical distributed load, and the deformed shape is 

assumed to be a parabolic curve, as shown in the pictures below: 

L

qEXT
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Figure 3-16: Deformed shape of the element due to the “beam effect”  
 

Then, the element is considered to be a cable subject to horizontal traction N, with a span equal 

to L and a central sag equal to f. 

The horizontal traction N is arising from the necessity of respecting the fixed hinges that don’t 

allow the horizontal translation of the ends of the element. 

 

Figure 3-17: Mechanics of the element due to the “cable effect”  
 

where the data of the problem are: 

• A = cross-section area of the element; 

• I = moment of inertia of the element; 

• E = elastic modulus of the material the element is made of; 

• L = distance between the two hinges (span of the element); 

• 2���  = external vertical distributed load applied to the element; 

while the unknowns are: 

• 2� = part of the external vertical distributed load carried by the “beam effect”; 

• 2� = part of the external vertical distributed load carried by the “cable effect”; 

• f = sag at the middle of the span due to the load 2�; 

l

qB

f

L

qC

fN N



 

38 

• l = span assumed by the element, supported by a fixed hinge and a roller, under the load 2�; 

• N = horizontal force arising in the element to respect the restraints (fixed hinges); 

• � = coefficient representing the part of the total external load carried by the “beam effect”. 

The central sag is evaluated through the classical beam theory: 

� =
5

384
∙
2� ∙ ��
3  

(1) 

The subscript “B” stands for “beam”: it means that the sag is supposed to be caused only by a 

percentage of the total external load. 

As a matter of fact, the “beam effect” of the element will stand for a percentage of the total 

external load, and the “cable effect” will stand for the complementary part. 

In the following calculations, qB is obtained applying a coefficient to the external load: 2� = � ∙ 2��� 

(2) 

Assuming a parabolic shape for the deformed beam, and considering there are no axial forces, 

the axis of the beam should not vary its length. 

Therefore, due to the deflection of the beam, the roller will translate shortening the span. 

The value of the translation of the roller is evaluated by subtracting the span achieved under the 

external load from the initial length of the beam, which is equal to the length of the parabolic 

curve: 

� = � �1 +
8

3

����� 

(3) 

It has to be noted that this formula is valid only under the assumption of small sag/span ratios. 

The horizontal displacement of the roller is then equal to: 

∆� =
8

3

���� ∙ � =
8

3

���  

(4) 

Since both restraints at the ends of the cable are fixed hinges, an horizontal force necessary to 

prevent this translation has to be developed. 

This force is evaluated from elasticity conditions: 
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� = 
 ∙ � ∙
∆��  

(5) 

Substituting (4) into (5): 

� = 
 ∙ � ∙
8

3

��� ∙ � 

(6) 

Considering the deformed shape of the element, it has a deflection that can be intended as a slack 

cable. 

Therefore, the horizontal force N is able to equilibrate, through a “cable effect”, the 

complementary part of qB that is the part of external load supported by the “beam effect”. 

In a cable, the horizontal force, multiplied by the sag, is necessary to equilibrate the central 

moment arising from the external distributed load. 

From the equilibrium condition of a cable, we have: 

2� = 8 ∙
��� ∙ � 

(7) 

Substituting (6) into (7): 

2� = 8 ∙
��� ∙ 
 ∙ � ∙

8

3

��� ∙ � =
64

3
∙ 
 ∙ � ∙

��� ∙ �� 

(8) 

Substituting (1) into (8): 

2� =
64

3
∙

 ∙ �� ∙ �� ∙

5�

384� ∙
2�� ∙ �	�
� ∙ 3�  

(9) 

From the total equilibrium of the system, since the load carried by the “cable effect” is 

complementary to that carried by the “beam effect”: 2� + 2� = 2��� 

(10) 

Substituting (2) into (10): 2� = !1 − �" ∙ 2��� 

(11) 

The solving equation from which evaluating the coefficient �, representing the part of total 

external load carried by the “beam effect”, is obtained substituting (11) into (9): 
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!1 − �" ∙ 2��� =
64

3
∙

 ∙ �� ∙ �� ∙

5�

384� ∙
2�� ∙ �	�
� ∙ 3�  

(12) 

Simplifying we obtain: 

!1 − �" ∙ 2��� =
125

2654208
∙
� ∙ �
� ∙ 3� ∙ � ∙ 2�� 

(13) 

Substituting (2) into (13) we obtain the final solving equation, where � is the only unknown: 

!1 − �" ∙ 2��� =
125

2654208
∙
� ∙ �
� ∙ 3� ∙ � ∙ �� ∙ 2���� 

(14) 

This third grade equation can be solved in numerical way (e.g., using Mathematica). 

It has to be noted that l is an unknown too, depending on �. 

Since for small sag/span ratios the difference between L and l has no engineering meaning, it is 

possible to assume � ≅ �. 

Otherwise, if a better approximation is wanted, it is possible to substitute the exact expression of 

l into (14): 

� =
� +��� − 32

34 ∙ ��
2

 

(15) 

3.3.3 Numerical Example 

Making reference to a steel element IPE 120, the geometrical and mechanical data of the cross-

section are: � = 1320 ��� 

I = 3.18 ∙ 10! ��� 

E = 2.06 ∙ 10� �/��� 

The element is assumed to be subject only to the gravity load and no external additional loads: 

ρ = 7.71 ∙ 10�� �/��� 2��� = . ∙ � = 7.71 ∙ 10�� ∙ 1320 = 0.10 �/�� 

The span of the element is assumed to be: � = 5000 �� 
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implementing the equations in Mathematica 3.0: 

 

 

 

Now we know the two parts of the total external load carried respectively by the “beam effect” 

and the “cable effect”, and it we can evaluate every other unknown of the problem. 

From (2), the distributed load carried by the “beam effect” is: 2� = � ∙ 2��� = 0.0099982 �/�� 

From (11), the distributed load carried by the “cable effect” is: 2� = !1 − �" ∙ 2��� = 1.8 ∙ 10�� �/�� 

From (1), the sag is: 

� =
5

384
∙
� ∙ 2��� ∙ ��
3 = 1.24 �� 

Expressing (7) in terms of N, the horizontal traction arising in the element is: 

� =
2� ∙ ��
8 ∙ � = 45.36 � 

Finally, we have to check the sag/span ratio to ensure the validity of the initial assumption of low 

sag/span ratio, necessary for the hypothesis of parabolic deformed shape: �� =
1.24

5000
= 2.48 ∙ 10�� 

This shows that the initial assumption is valid; therefore the presented approach can be applied 

for this numerical problem. 

It has to be noted that for the element considered in this numerical example and its span, the 

presence of the “cable effect” is absolutely negligible. 

A= 1320; H∗ mm2 ∗L
J= 3.18∗106; H∗ mm4 ∗L
El= 2.06∗105; H∗ Nêmm2 ∗L
qext= 0.10; H∗ Nêmm ∗L
L= 5000; H∗ mm ∗L

f=
5

384
∗

alpha∗qext∗ L4

El∗J
;

l=

L+$ L2− 32

3
∗f2

2
;

alpha=.;

SolveAH1− alphaL∗qext == 125

2654208
∗

A∗ L9

El2∗J3∗l
∗alpha3∗qext3,alphaE

8alpha→ 0.999822146853347426̀ <
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The “cable effect” can play a bigger role in the mechanical behavior of the element when the 

span arises, but is still under the assumption of small sag/span ratios. 

Let’s consider the same element, under gravity load, but with a different span: � = 12000 �� 

In this case we have: 

implementing the equations in Mathematica 3.0: 

 

 

 

Now we know the two parts of the total external load carried respectively by the “beam effect” 

and the “cable effect”, and it we can evaluate every other unknown of the problem. 

From (2), the distributed load carried by the “beam effect” is: 2� = � ∙ 2��� = 0.08707 �/�� 

From (11), the distributed load carried by the “cable effect” is: 2� = !1 − �" ∙ 2��� = 0.01293 �/�� 

From (1), the sag is: 

� =
5

384
∙
� ∙ 2��� ∙ ��
3 = 35.88 �� 

Expressing (7) in terms of N, the horizontal traction arising in the element is: 

� =
2� ∙ ��
8 ∙ � = 6486.6 � 

Again, we have to check the sag/span ratio to ensure the validity of the initial assumption of low 

sag/span ratio, necessary for the hypothesis of parabolic deformed shape: 

A= 1320; H∗ mm2 ∗L
J= 3.18∗106; H∗ mm4 ∗L
El= 2.06∗105; H∗ Nêmm2 ∗L
qext= 0.10; H∗ Nêmm ∗L
L= 12000; H∗ mm ∗L

f=
5

384
∗

alpha∗qext∗ L4

El∗J
;

l=

L+$ L2− 32

3
∗f2

2
;

alpha=.;

SolveAH1− alphaL∗qext == 125

2654208
∗

A∗ L9

El2∗J3∗l
∗alpha3∗qext3,alphaE

8alpha→ 0.870699871331925479̀ <
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�� =
35.88

12000
= 2.99 ∙ 10�� 

Under this span, the sag/span ratio is one order of magnitude bigger than in the previous case, 

but the initial assumption can still be considered valid. 

It has to be noted how, for span values common in the practice (12 m), the “cable effect” cannot 

be considered negligible, inducing important traction forces in the element, when the horizontal 

translations of the ends are prevented. 

3.3.4 Parametric Study: Influence of the Span L 

Making reference to a steel element IPE 120, with the following geometrical and mechanical 

data of the cross-section: � = 1320 ��� 

I = 3.18 ∙ 10! ��� 

E = 2.06 ∙ 10� �/��� 

and considering the element undergoing the gravity load: 

ρ = 7.71 ∙ 10�� �/��� 2��� = . ∙ � = 7.71 ∙ 10�� ∙ 1320 = 0.10 �/�� 

the four following figures show respectively the influence of the span L on the coefficient �, the 

central sag f, the horizontal traction inherent the element N and the sag/span ratio f/L. 

The span is assumed varying in a range of feasible common values, from 1 up to 20 m. 

All the pictures show that a different behavior is observed over the span equal to 12 m; therefore, 

over this span, the sag/span ratio f/L is not sufficiently small to completely validate the initial 

assumption of the presented approach. 
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Figure 3-18: 5 coefficient for different values of the span 
 

 

Figure 3-19: Central sag for different values of the span 
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Figure 3-20: Horizontal traction for different values of the span 
 

 

Figure 3-21: Central sag for different values of the span 
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3.3.5 Table Resuming the Influence of the Span L on 5, f, N, 
�

�
 

Making reference to a steel element IPE 120, with the following geometrical and mechanical 

data of the cross-section: � = 1320 ��� 

I = 3.18 ∙ 10! ��� 

E = 2.06 ∙ 10� �/��� 

and considering the element undergoing the gravity load: 

ρ = 7.71 ∙ 10�� �/��� 2��� = . ∙ � = 7.71 ∙ 10�� ∙ 1320 = 0.10 �/�� 

the following table shows the values of the � coefficient, the central sag f, the horizontal traction 

inherent the element N and the sag/span ratio f/L for different values of the span L. 

The span is assumed varying in a range of feasible common values, from 1 up to 20 m. 

 

Table 3-3: Table Resuming the Influence of the Span L on �, f, N, 
�

�
  

 

L α f N f/L

[m] [mm] [N]

1.00 1.000000 0.00 0.00 1.99E-06

2.00 1.000000 0.03 0.00 1.59E-05

3.00 0.999997 0.16 2.10 5.37E-05

4.00 0.999970 0.51 11.79 1.27E-04

5.00 0.999822 1.24 44.78 2.48E-04

6.00 0.999237 2.57 133.39 4.29E-04

7.00 0.997394 4.76 335.33 6.80E-04

8.00 0.992527 8.08 739.84 1.01E-03

9.00 0.981461 12.80 1466.54 1.42E-03

10.00 0.959730 19.08 2638.75 1.91E-03

11.00 0.923171 26.87 4325.37 2.44E-03

12.00 0.870699 35.89 6485.40 2.99E-03

13.00 0.805663 45.74 8975.96 3.52E-03

14.00 0.734064 56.05 11623.92 4.00E-03

15.00 0.661710 66.59 14289.09 4.44E-03

16.00 0.592666 77.20 16883.65 4.83E-03

17.00 0.529147 87.84 19363.18 5.17E-03

18.00 0.472017 98.49 21711.15 5.47E-03

19.00 0.421321 109.14 23926.71 5.74E-03

20.00 0.376675 119.79 26016.77 5.99E-03
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3.3.6 Parametric Study: Influence of the External Load 6"#$ 

Making reference to a steel element IPE 120, with the following geometrical and mechanical 

data of the cross-section: � = 1320 ��� 

I = 3.18 ∙ 10! ��� 

E = 2.06 ∙ 10� �/��� 

and considering a fixed span equal to: 

L = 5000 �� 

the four following figures show respectively the influence of the vertical external distributed load 2���   on the coefficient �, the central sag f, the horizontal traction inherent the element N and the 

sag/span ratio f/L. 

The external load 2���  is assumed from the dead weight of the IPE 120 beam up to 1 t/m, 

because for bigger values the sag/span ratio seems to be not sufficiently low to respect the initial 

hypothesis of parabolic deformed shape. 

 

Figure 3-22: 5 coefficient for different values of the span 
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Figure 3-23: Central sag for different values of the span 

 

Figure 3-24: Horizontal traction for different values of the span 
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Figure 3-25: Central sag for different values of the span 
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�
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Making reference to a steel element IPE 120, with the following geometrical and mechanical 

data of the cross-section: � = 1320 ��� 

I = 3.18 ∙ 10! ��� 

E = 2.06 ∙ 10� �/��� 

and considering a fixed span equal to: 

L = 5000 �� 

the following table shows the values of the � coefficient, the central sag f, the horizontal traction 

inherent the element N and the sag/span ratio f/L for different values of the vertical external 

distributed load 2���. 

The external load 2��� is assumed from the dead weight of the IPE 120 beam up to 5 t/m, even if 

for values bigger than 1 t/m the sag/span ratio seems to be not sufficiently low to respect the 

initial hypothesis of parabolic deformed shape. 

0,0E+00

5,0E-03

1,0E-02

1,5E-02

2,0E-02

2,5E-02

3,0E-02

0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00

f/L

external distributed load [t/m]

Sag/Span Ratio

Interaction Beam-Cable Effect

Classical Beam Theory



 

50 

 

Table 3-4: Table Resuming the Influence of the External Load �
���

 on �, f, N, 
�

�
  

 

3.4 Influence of the Axial Tension on the Natural Frequencies of a Simply 

Supported Beam 

A horizontal beam is simply supported by a fixed hinge and a roller, and is subject to an axial 

load. 

 

Figure 3-26: Simply supported beam undergoing an axial load N 
 

q EXT α f N f/L

[t/m] [mm] [kN]

0.01 0.999822 1.24 0.04 2.48E-04

0.02 0.999290 2.48 0.18 4.97E-04

0.03 0.998406 3.72 0.40 7.44E-04

0.04 0.997177 4.96 0.71 9.91E-04

0.05 0.995610 6.18 1.11 1.24E-03

0.06 0.993714 7.41 1.59 1.48E-03

0.07 0.991501 8.62 2.16 1.72E-03

0.08 0.988983 9.83 2.80 1.97E-03

0.09 0.986176 11.03 3.53 2.21E-03

0.10 0.983092 12.21 4.33 2.44E-03

0.20 0.940737 23.37 15.85 4.67E-03

0.30 0.887886 33.09 31.76 6.62E-03

0.40 0.834506 41.47 49.89 8.29E-03

0.50 0.784860 48.75 68.95 9.75E-03

0.60 0.740158 55.17 88.31 1.10E-02

0.70 0.700352 60.90 107.63 1.22E-02

0.80 0.664971 66.09 126.74 1.32E-02

0.90 0.633445 70.82 145.56 1.42E-02

1.00 0.605238 75.19 164.07 1.50E-02

2.00 0.430682 107.01 332.52 2.14E-02

3.00 0.344433 128.37 478.78 2.57E-02

4.00 0.291704 144.95 610.80 2.90E-02

5.00 0.255550 158.73 732.80 3.17E-02

L

N N
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3.4.1 Glossary 

• � = axial load applied to the beam (positive values correspond to compression); 

• � = length of the beam; 

3.4.2 Evaluation of the Natural Frequencies under the Influence of an Axial Load 

The data of the problem are: 

• A = cross-section area of the beam; 

• I = moment of inertia of the beam; 

• E = elastic modulus of the material the beam is made of; 

• L = distance between the hinge and the roller (length of the beam); 

• � = axial load applied to the beam; 

• � = mass per unit of length of the beam; 

while the unknowns are: 

• 7� = n-th natural mode of the beam; 

• 8� = n-th natural frequency of the beam; 

The fundamental equilibrium equation of a continuous beam considering the influence of the 

axial stress is, and in absence of any vertical external load is: 


3 9�:9+� + �9�:9+� +�9�:9(� = 0 

(1) 

Let the solution : be product of two separate functions, respectively depending only on the space 

and the time: :!+, (" = 7(+) ∙ ;(() 

(2) 

Substituting (2) into (1), and dividing by 7(+) ∙ ;((): 


3 7%&7 +�7%%7 = −�;<; = �8� 

(3) 

This single equation can be divided into a system of two separate equations, one depending only 

on the space, and one on the time: 
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=
37%& +�7%% −�8�7 = 0; +8�< ; = 0
' 

(4) 

Solving the first equation of (4), the natural modes of the beam are obtained: 

7%& +
�
3 7%% −

�8�
3 7 = 0 

(5) 

Let it be: 

& )� =
�
3�� =
�8�
3

' 
(6) 

Substituting (6) into (5): 7%& + )�7%% − ��7 = 0 

(7) 

The solution of (7) gives the natural modes of the beam: 7!+" = >	��	?+ + >����?+ + >���	ℎ�+ + >����ℎ�+ 

(8) 

being: 

@A
B
AC? = -��� +

)�
4
�	/� +

)�
2

� = -��� +
)�
4
�	/� −

)�
2

' 
(9) >	, >�, >�, >� are constants determined by the boundary conditions. 

Considering a simply supported beam, the boundary conditions imply: 

+ = 0:   = 7!0" = 0
37′′!0" = 0

'���(�DEEEF >� = >� = 0' 
(10) 

+ = �:   = 7!�" = 0
37′′!�" = 0

'���(�DEEEF = >	��	?� + >���	ℎ�� = 0

−?�>	��	?� + ��>���	ℎ�� = 0
'' 

(11) 

A solution is obtained only if the matrix is singular: 
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G��	?� ∙ ��	ℎ�� = 0��	ℎ�� > 0
'  '���(�DEEEF ��	?� = 0 

'���(�DEEEF  ? ∙ � = 	 ∙ H 

(12) 

Substituting (9) into (12), the natural frequencies of the beam are extracted: 

8� =
	H� -
3� �	�H��� −

�
3�
	
�

=
H��� -
3� �	� −

	����H�
3 �
	
�
 

(13) 

Since the buckling load for the beam is: 

�)� =
H�
3��  

(14) 

Substituting (14) into (13) the natural frequencies can be expressed in terms of �)�: 

8� =
H��� -
3� �	� − 	� ��)��

	
�
 

(15) 

When N goes to Ncr, 8	 tends to zero. 

3.4.3 Numerical Example 

Making reference to a steel beam IPE 120, the geometrical and mechanical data of the cross-

section are: � = 1.32 ∙ 10�� �� 

I = 3.18 ∙ 10�! �� 

E = 2.06 ∙ 10		 �/�� 

m = 10.0 �)/� 

The length of the beam is assumed to be: � = 5 � 

The buckling load for this beam, under this length, is from (14): 

�)� =
H�
3�� =

H� ∙ 2.06 ∙ 10		 ∙ 3.18 ∙ 10�!

5� = 258.6 �� 

Therefore, the natural frequencies of the beam are obtained from (15): 
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8� =
H��� -
3� �	� − 	� ��)��

	
�

= 101.0 �	� − 	� �
258.6

�	� 

In absence of any external axial load, the first natural frequency is: 

8� =
H��� -
3� �	� − 	� ��)��

	
�

= 101.0 �1 −
0

258.6
�	� = 101.0 ���/� = 16.0 �I 

3.4.4 Parametric Study: Influence of the Axial Force N 

Making reference to a steel beam IPE 120, the geometrical and mechanical data of the cross-

section are: � = 1.32 ∙ 10�� �� 

I = 3.18 ∙ 10�! �� 

E = 2.06 ∙ 10		 �/�� 

m = 10.0 �)/� 

The length of the beam is assumed to be: � = 5 � 

the following figure shows the influence of the axial load N on the first natural frequency 8	. 

The axial load N is assumed varying in a range from a traction equivalent to the buckling load, 

up to the buckling load in compression. As calculated before, for the present beam the buckling 

load is equal to 258 kN. 
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Figure 3-27: First natural frequency for different values of the axial load 
 

3.4.5 Table Resuming the Influence of the Axial Force N on the Natural Frequencies J* 

Making reference to a steel beam IPE 120, the geometrical and mechanical data of the cross-
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E = 2.06 ∙ 10		 �/�� 

m = 10.0 �)/� 

The length of the beam is assumed to be: � = 5 � 

the following table shows the values of the first natural frequency 8	 for different values of the 

axial load N. 

The axial load N is assumed varying in a range from a traction equivalent to the buckling load, 

up to the buckling load in compression. As calculated before, for the present beam the buckling 

load is equal to 258 kN. 
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Table 3-5: Table Resuming the Influence of the Axial Force N on the Natural Frequencies ��  

 

N N/N cr ω1

[kN] [Hz]

-258.00 -1.00 22.7

-244.42 -0.95 22.4

-230.84 -0.89 22.1

-217.26 -0.84 21.8

-203.68 -0.79 21.5

-190.11 -0.74 21.2

-176.53 -0.68 20.9

-162.95 -0.63 20.5

-149.37 -0.58 20.2

-135.79 -0.53 19.9

-122.21 -0.47 19.5

-108.63 -0.42 19.2

-95.05 -0.37 18.8

-81.47 -0.32 18.4

-67.89 -0.26 18.1

-54.32 -0.21 17.7

-40.74 -0.16 17.3

-27.16 -0.11 16.9

-13.58 -0.05 16.5

0.00 0.00 16.1

13.58 0.05 15.6

27.16 0.11 15.2

40.74 0.16 14.8

54.32 0.21 14.3

67.89 0.26 13.8

81.47 0.32 13.3

95.05 0.37 12.8

108.63 0.42 12.2

122.21 0.47 11.7

135.79 0.53 11.1

149.37 0.58 10.4

162.95 0.63 9.8

176.53 0.68 9.0

190.11 0.74 8.2

203.68 0.79 7.4

217.26 0.84 6.4

230.84 0.89 5.2

244.42 0.95 3.7

258.00 1.00 0.0
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CHAPTER 4 

FLEXIBLE STRANDED CONDUCTORS FOR ELECTRICAL PURPOSES 

 

4.1 Introduction 

An electrical substation consists of a complex set of equipment items that are interconnected 

through conductor buses or cables. Many equipment items in electrical substation are connected 

to each other by flexible conductors, typically cables made of braided aluminum wire strands. 

Stranded conductors are widely used structural components, in power engineering, in overhead 

transmission lines, and interconnections between substation equipment. Under some types of 

structural loading, these conductors may be subjected to large displacements that vary with time, 

leading to nonlinear behavior as a result of non negligible changes in geometry. Examples of 

such loading include conductor galloping, ice-shedding, short-circuit and interconnected 

substation equipment subjected to earthquakes. If the connections are not sufficiently flexible, 

significant dynamic interaction may occur between the connected equipment items during these 

loadings. 

It has been reported that the presence of flexible conductors between equipment experiencing a 

differential displacement during an earthquake might be responsible for generating destructive 

forces at the top of such apparatus. For example, during the Miyagi earthquake of 1978, many 

units of interconnected equipment failed, even though individually qualified to withstand the 

effects of an event of this magnitude. Connections were then identified as one of the important 

causes of destruction. Similar conclusions were drawn after the 1986 North Palm Springs 

earthquake and after the 1988 Saguenay earthquake of magnitude 6.2, which caused severe 

damage to several substations. 

Since these events, many works have been involved to investigate the effect of interaction 

between two equipment items connected by a cable conductor. Analytical as well as large-

deformation finite-element analyses have been used to determine the nonlinear response of the 

cable-connected system to selected ground motions. The sensitivity to various parameters, such 

the cable geometry and its axial extensibility, flexural stiffness, and inertia on the interaction 

effect have been considered. As a matter of fact, several authors studied the effect of interaction 
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in interconnected equipment items when the flexible conductor is considered to be an extensible 

cable with either negligible or significant flexural rigidity and inertia effects. In addition, since 

the bending stiffness of a stranded conductor may vary during motion as a function of its 

inherent tension, curvature and deformation history, and specific studies have been carried on for 

taking account of variable bending stiffness for the wrapped conductors. 

All these studies found that the interaction may amplify significantly the responses of the 

equipment items relative to their stand-alone responses when the cable lacks sufficient slack, but 

there’s also amplification, despite smaller, for cable with large slack values. In particular, the 

amplification can be particularly large for the higher frequency equipment item. 

The purpose of this study is to develop a reliable finite-element model to describe the dynamic 

behavior of flexible conductors interconnecting electrical equipment items, in specific 

configurations under given boundary conditions and base motions. To do this, we want to 

reproduce through finite-element models experimental tests already done in the past, as well as 

experimental tests not yet done, but likely to be done in the future.  

The first part of this study consists in modeling previous sine-start and frequency-sweep 

experimental tests of a cable conductor only, already present in literature. Reproducing previous 

tests is needed in order to be able of validating the current model, understanding the sensitivity to 

the different parameters and having a benchmark on which basing further analysis. After 

reaching this understanding, the sensitivity of the modeling to the various parameters affecting 

the solution is specifically checked: through these analyses, we understand what the cable 

dynamics depends primarily on. Then, all the parameters are set to the values that are found to 

guarantee a stable and accurate solution for each configuration, building a benchmark model 

common for all the experimental tests wanted to be reproduced. 

The second part of this report aims to model the dynamic behavior of two electrical equipment 

items interconnected by a flexible wrapped conductor, subjected to different ground motions. A 

feasible configuration of interconnected electrical equipment items is individuated: an electrical 

component (equipment #1) is mounted in the top of a steel post, and an insulator (equipment #2) 

is installed on top of a support frame structure consisting of steel beams (simulating a second 

piece of electrical equipment), interconnected by a flexible stranded conductor, attached at the 

top of the two equipment items. Every equipment item, as well as the cable, is modeled through 
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equivalent beam, whose structural properties are specifically computed. The structural properties 

of equipment #1 are inspired to those of a current transformer, and equipment #2 to those of a 

transformer bushing. This is not a common configuration for high-voltage electrical substations, 

but it is just intended to represent a general possible system: since the flexibility of the model, a 

very large range of interconnected systems can be analyzed simply changing the structural 

properties of the equivalent beams representing the equipment items. Some ground motions are 

applied to the base of the structure, and the response of the system is computed. Different initial 

shapes of the cable are assumed for different tests experienced. When the input at the base of the 

two equipment items is an acceleration vector, the cable is assumed to be initially straight. 

Conversely, when the input at the two bases is a sinusoidal displacement, the cable is assumed to 

be initially slack, with certain sag, in order to accommodate the required displacement at the two 

ends of the cable. For all these tests, comparison are made between the response of the two 

equipment items in the interconnected and in the standalone configuration, to understand the 

influence of the presence of the flexible connection on the forces generated and the 

displacements experienced. 

 

4.2 Glossary 

A glossary is provided here since the terms are not too familiar to the structural dynamics 

engineers who need to develop or change some of the electrical devices as done in this report. 

Electrical Substation: high-voltage facility used to switch generators, equipment, and circuits or 

lines into and out of a system. Substations can also be used to change AC voltages from one 

level to another, or for the purposes of inversion. In these facilities, direct current is changed to 

alternating current or alternating current is changed to direct current. Some substations are small 

with little more than a transformer and associated switches, while others are very large with 

several transformers and dozens of switches and other equipment. There are a number of distinct 

types of substations. 

Distribution Substation: it is located near to the residential, commercial, or light industrial end-

users, and changes the transmission voltage to lower levels. Typical distribution voltages vary 

from 19,920 volts to 2400 volts. 
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Collector Substation: it merges electricity from multiple point sources before delivery to the grid. 

Collector substations are found in at locations where multipoint power generation systems such 

as wind farms are used to augment grid capacity. 

Transmission Lines: Power lines that typically have a voltage of 69 kV or higher. These lines are 

often protected from lightning strikes by shield wires or surge arresters. 

Distribution Lines: power lines with a voltage lower than 69 kV. 

Electrical Clearance: physical separation needed for the air gaps between conductors and 

nonconductors to provide safe working conditions and prevent flashovers. Minimum clearances 

can be found in the National Electric Safety Code (NESC 2007). 

Rigid Bus System: buswork system in which the conductor is an extruded metal bar, typically an 

aluminum tube. 

Cable Bus System: buswork system in which the conductors are low tension flexible wires 

supported on insulators. 

Potential Transformer: it changes the magnitude of the primary voltage to a lower secondary 

value that can be used with various equipment measuring voltage. In substations, these devices 

are typically supported on a single pedestal. 

Equipment #1: it is the same device as the potential transformer, but it measures current. 

Bushing: it isolates energized components from supporting structures. Suspension bushings 

transfer tensile forces from the suspended conductor to the supporting structure. Station post 

bushings have the ability to transfer compressive and tensile forces to the structure as well as 

bending moments. They are constructed in a wide variety of both shapes and sizes, and may be 

formed using porcelain, glass, or composite materials. 

 

4.3 Common Seismic Design of Substation Equipment 

According to the previous introduction, the effects of connections made of wrapped flexible 

conductors must be included in the seismic design of substation equipment. At the present time, 

the most common practice is to take account of their effects as static loading only, providing 
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sufficient slack to let the expected relative displacement between interconnected equipment 

items during an earthquake, without generating destructive forces. More specifically, substation 

equipment is generally qualified on an individual basis to withstand the loads generated by an 

earthquake, with the effect of flexible conductors taken into account as a static force. For 

example, a static force of 1000 N/conductor is currently used in Hydro-Quebec’s specification on 

the seismic qualification of substation equipment. 

The other primary requirement is that all the connections between equipment are able to 

accommodate the large relative displacements that might occur, without generating impact 

forces, as specified in many standards. For example, a study performed after the Miyagi 

earthquake established some criteria for evaluating the required conductor slack for differential 

displacements of the interconnected equipment to have no significant impact. The study was 

primarily based on finite-element computer analyses of interconnected equipment items, without 

mentioning dynamic behavior of the conductors. However, other authors mentioned that the 

dynamic behavior of flexible connections might generate significant forces on interconnected 

equipment. 

Various works presented different approaches developed to investigate the influence of the 

dynamic behavior of flexible conductors interconnecting electrical equipment under earthquake 

excitation. It has been found that they can be excited in resonance and generate significant forces 

on the equipment they are interconnecting, even when is provided sufficient slack to 

accommodate the expected relative displacement between interconnected equipment items. 

Therefore, the dynamic reactions of these connections must be considered for the proper design 

of substation equipment, and the substations must be designed not only to permit relative 

displacement between equipment, but also to avoid dynamic interaction. 

One possible way to forecast whether the flexible connections are likely to be excited during an 

earthquake, consists of establishing their natural frequencies. Knowing these, possible 

resonances are avoided ensuring the connections have natural frequencies different from those of 

the interconnected equipment. Guidelines for seismic design of substation recommend 

experimental measurement of the natural frequencies rather than analytical studies, because of 

the uncertainty and inaccuracy regarding the mechanical properties of conductors made of 
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wrapped strands, due to highly nonlinear behavior as well as axial and flexural coupling. Next, 

some of these approaches will be presented and discussed. 

 

4.4 Bending of Stranded Conductors 

Before describing experimental tests and modeling of electrical equipment items interconnected 

by flexible stranded conductors, it’s essential to fully understand the peculiarity of bending 

behavior of cable made of wrapped strands [7]. Generally speaking, a stranded conductor 

consists of a certain number of layers of wires helically wrapped around a central core. 

Typically, for overhead transmission line conductors, the core and some of the inner layers may 

be made of steel, while the outer layers are usually aluminum. Conversely, conductors typically 

used in electrical substations to interconnect equipment items are composed by aluminum wires 

of the same diameter, including the core. Each wire belonging to a given layer is centered on a 

radius �� normal to the conductor axis, and each layer is wrapped over the core at an angle K� 
with the same axis. Each layer comprises 	�wires of diameter ?�, section ��and Young’s 

modulus 
�. 
The tensile force, to which each individual wire of a given layer is subject, under the conductor’s 

axial tension, is the same and it’s given by [7]: 

$� =

� ∙ �� ∙ ����K�∑ 
 ∙ � ∙ ����K�

∙ $ 

When in addition to an axial force, a wire in a given layer is also bent to a constant curvature of 

the conductor neutral axis, its bending stress consists of two terms. The first term is the stress 

arising from the bending of the wire around in its own neutral axis. This stress is the same for all 

wires belonging to a given layer, and varies linearly over the wire section from −M+%,,� to 

+M+%,,�, being null on the wire neutral axis, with M+%,,�given by: 

M+%,,� = 
� ∙
?�
2

∙ N 

Therefore, this stress component is always present as a function of the actual curvature N, thus 

independently of the history of deformation. 

Conversely, the second stress term is due to the value of the friction between the wire and those 

in the adjacent layers. For the sake of simplicity, it is assumed that the friction forces between 

adjacent wires in the same layer are negligible. The friction forces between the layers depend on 
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the tension in the conductor and the helical wrapping, causing radial forces. When the bending 

reaches small values, these radial forces are sufficient high to prevent relative interlayer slipping; 

in this state, the wire sticks to the wires in the adjacent layers and is thus also bent around the 

conductor neutral axis. This ’sticking’ stress, is therefore a function of the distance from the wire 

neutral axis to the conductor neutral axis, depending on the helical angle. When the wire is first 

bent from initially zero curvature, M-�%�.,�/ is given by: M-�%�.,�/ = 
� ∙ ℎ�/ ∙ !����K�" ∙ N 

As mentioned earlier, this stress component is constant over the wire cross section and is equal 

for wires at the same distance above and under the conductor neutral axis. As the bending 

increases, at a certain point the friction forces acting on the wire are no longer high enough to 

prevent slipping and this stress component remains always equal to the maximum value reached 

before slipping. Obviously, this stress component will remain constant until there is a reversal in 

the sign of the rate of curvature change; then, the wire sticks again and the sticking stress will 

first decrease to zero, and then increases again in the opposite direction until slipping is reached 

again. 

It’s noteworthy that there’s a big similarity between the variation in the sticking/slipping stress 

and the elasto-plastic material behavior. As a matter of fact, there are two stress regimes. The 

first is the elastic regime, when the stress increases or decreases linearly around a reference 

value, always with the same slope; the second is the plastic regime, when the wire is slipping. As 

mentioned earlier, the value of the elastic (sticking) stress must be computed according to the 

history of deformation, and therefore it depends on the curvature at the point of reversal in the 

sign of the rate of change of curvature in the plastic regime; thus, this value changes at every 

reversal in the sign of this rate in the plastic regime. The required change of curvature from the 

state of zero stress to the slipping state in either direction in the elastic regime is the absolute 

difference between the curvature at the point of reversal and the reference curvature. This value 

is a function of the tension in the conductor; therefore it changes according to the variation in 

tension. It is to be noted that the sticking/slipping stress component can become negative even 

while the curvature of the neutral axis is still positive, and vice versa, since it doesn’t depend on 

the current curvature, but its rate of change. 
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4.5 Experimental Investigation on the Dynamic Behavior of Flexible 

Conductor 

An experimental research program was initiated in 1996 by Dastous and Hydro-Québec’s 

Research Institute [4] to investigate the influence of the dynamic behavior of connections, 

despite little information was available at that time. The scope of the study was to determine 

whether the flexible conductors have natural frequencies likely to be excited during an 

earthquake, and to take insight into their dynamic behavior. A method of establishing those 

natural frequencies was proposed, and it was described the dynamic phenomena as well as 

conditions, such as resonances, that might cause additional forces during such an event. 

The method of establishing natural frequencies of flexible connections was proposed since they 

are difficult to determine analytically for many reasons. First, these elements are highly 

geometrically nonlinear, that means their properties and behavior depend on their current 

configuration; thus, a flexible connection subject to differential displacement of its ends has 

natural frequencies varying during the motion itself. Next, it’s difficult to determine their 

mechanical properties, such as axial and bending stiffness, since they may change according to 

the level of tension in the conductor, the geometry and during time. As a matter of fact, for 

connections consisting on short conductor lengths, their tension can vary significantly during a 

differential displacement at their ends. Therefore, it could not be meaningful to try to analytically 

evaluate their natural frequencies, considering their variation during motion. For this study, the 

natural frequencies likely to be excited were determined by means of a frequency-sweep test 

performed at low amplitude, since the natural frequencies of the standalone electrical equipment 

are generally low.  

Furthermore, since the natural frequencies of the cables depend on the amplitude of vibration 

because of their geometrically nonlinear properties, the tests were performed at amplitudes 

representative of those expected during an earthquake for the interconnected equipment items. 

The excitation was applied in the horizontal direction along the span of the connection. Two 

different variants of excitation were used: the first where a connection is installed between two 

equipment items oscillating out of phase, corresponding to the most extreme case, the second 

corresponding to a conductor connected between oscillating equipment and a fixed or not excited 
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one. The measured values were the horizontal reactions applied at both ends together with the 

frequency of excitation. 

It is noteworthy that the excitation applied at the ends of a flexible connection is the motion at 

the top of the interconnected equipment excited at their base by the earthquake. 

Since the substation equipment can be analytically modeled as linear single or multi-degree-of-

freedom, the ground motion is filtered by it and the oscillation is mostly at its natural frequency, 

thus the motion at the top of the equipment is something close to a sinusoidal excitation of 

varying amplitude. Therefore, a frequency-sweep test at expected amplitudes allows 

investigating the dynamic behavior of flexible connections during an earthquake and their 

possible resonances. However, continuous excitation at constant amplitude during the frequency-

sweep test, like those in the experimental tests, may have amplified the response at levels higher 

than those actually expected. The forces measured during resonance therefore provided an upper-

bound estimate of those expected in practice. 

In order to obtain a first evaluation of the severity of the results measured from the frequency-

sweep test, sine-start tests were also performed. In this case, the motion consisted in the 

application at the ends of a sinusoidal excitation characterized by constant amplitude and fixed 

frequency; this scope was to evaluate how many cycles were required to obtain the same level of 

forces as those measured during the frequency-sweep tests. Finally, static tests were performed, 

consisting in applying a cyclic quasi-static differential displacement to the ends of the cable, in 

order to investigate the corresponding behavior. 

4.5.1 Test Parameters 

The amplitudes for the frequency-sweep tests were selected on frequency bands whose upper 

frequency was related to the amplitude used [4]. Both the amplitudes and corresponding upper 

frequencies were determined using validated seismic response spectrum for substations, for an 

acceleration of 0.34 g; in addition, a value of 2% was assumed for the critical damping. Selected 

values of amplitudes and related frequencies from the spectrum for these conditions are 

presented in Table 4-1. 
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Table 4-1: Spectrum Displacements and Accelerations 

Frequency  

(Hz) 

Displacement 

(mm) 

Acceleration 

(g) 

0.5 0.28 0.28 

1 0.15 0.60 

2 0.076 1.2 

3 0.035 1.3 

5 0.015 1.5 

10 0.0045 1.8 

In the case of substation equipment, the value of the displacement obtained from the response 

spectrum corresponds to the displacement at its centre of gravity, whose position depends on its 

mass distribution. Since the equipment in a substation are pretty different, direct use of the 

displacements obtained from the response spectrum was made. This approach is consistent with 

the goal of performing tests using realistic amplitudes. 

The natural frequencies of standalone substation equipment typically vary between 0.5 and 10 

Hz, but rarely exceed 5 Hz. Furthermore, since displacements corresponding to frequencies 

higher than 5 Hz are negligible, the higher upper-band frequency for the frequency-sweep tests 

was limited to 5 Hz. The lowest frequency for each band was assumed as 0.5 Hz. The values of 

amplitudes and frequencies adopted for each test are summarized in Table 4-2 and Table 4-3. 

Table 4-2: Amplitudes and Frequencies for Sine-Start Experimental Tests 

Test ID Cable 
Amplitude 

(mm) 

Frequency 

(Hz) 

#134 1796-MCM 150 1 

#135 1796-MCM 80 2 

#136 1796-MCM 40 3 

#137 1796-MCM 20 3 

#138 1796-MCM 20 5 

#139 1796-MCM 20 1 

#140 1796-MCM 20 2 
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Table 4-3: Amplitudes and Frequencies for Frequency-Sweep Experimental Tests 

Test ID Cable 
Amplitude 

(mm) 

Lowest Frequency 

(Hz) 

Highest Frequency 

(Hz) 

#130 1796-MCM 20 0.5 5 

#131 1796-MCM 40 0.5 3 

#132 1796-MCM 80 0.5 2 

#133 1796-MCM 150 0.5 1 

#156 4000-MCM 20 0.5 5 

#157 4000-MCM 40 0.5 3 

#158 4000-MCM 80 0.5 2 

#160 4000-MCM 150 0.5 1 

 

4.5.2 Test Specimens 

Hydro-Québec substations were used for the tests; as mentioned above, since the present study 

was interested only in understanding the general behavior of cable dynamics, only one kind of 

configuration was modeled, and therefore presented hereafter [4]. Most of the tests were 

experienced on the 1796-MCM electrical conductor, while few of them on the 4000-MCM 

conductor, less common in electrical substations. In Table 4-4 the mechanical properties of the 

1796-MCM cable conductor are summarized. 

Table 4-4: Mechanical Properties of Cables 1796-MCM and 4000-MCM 

Property 1796-MCM 4000-MCM 

Material aluminum aluminum 

Young’s Modulus (MPa) 5.72e4 5.72e4 

N° of Layers 5 10 

N° of Strands 61 271 

Strand Diameter (mm) 4.36 3.09 

Overall Diameter (mm) 39.2 58.6 

Cross Section Area (mm2) 910  2027 

Mass per Unit Length (kg/m) 2.509 5.698 
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The configuration of the cable was a catenary type with both ends clamped horizontally. The 

span was assumed in an interval from 5.0 to 5.6 m. In particular, for the tests shown and 

discussed hereafter, a total length of 5.52 m and an initial span of 5.00 m for the 1796-MCM 

conductor, and a total length of 5.64 m and an initial span of 5.15 m for the 4000-MCM were 

adopted. The effect of the sag/span ratio on the natural frequencies and the dynamic behavior 

was studied: ratios of 0.08, 0.12, 0.16 and 0.20 were used by varying the span for conductors of 

fixed lengths. One support was moveable, in order to obtain the desired span and sag / span ratio. 

It has to be noted that the National Electrical Safety Code [1] doesn’t provide specific limit about 

the range of sag / span ratio for flexible cable conductors, but only absolute reference values for 

the clearances between the cable, or its lowest point, and other facilities, depending on external 

conditions. Since a specific range for sag / span ratio is not defined, it was decided to use a 

feasible one. This range, whose boundary values are 2% and 20%, has been confirmed and 

validated for year 2009 by Ansell Schiff [26]. 

The sinusoidal excitation applied to the ends of the cable was transmitted by a rotating disk 

coupled with a sliding mechanism; the required amplitude was set by attaching this mechanism 

at different radii on the disk, and the frequency of excitation during the frequency-sweep was 

adjusted by a frequency controller. The load cell used to measure the horizontal reactions 

generated at the ends of the conductors had a 4500N capacity, and the capability of measuring 

only axial forces (both compression and traction) and insensitive to loads in other directions 

(vertical, lateral or rotational). 

4.5.3 Static Tests 

In the static tests, quasi-static cyclic differential displacement at large amplitude was applied to 

the cable connection [4]. A significant sudden change in traction was observed, as the flexible 

connection was stretched to a span close to its total length: this confirms the need to 

accommodate the differential displacement providing sufficient slack to the cable. For large sag, 

compression forces were observed, highlighting the importance of bending stiffness on the 

behavior of conductors for short span at low tension. It was also observed that the conductor 

behavior varies as its tension increases and decreases, with the traction following a hysteresis 

cycle; this means that the mechanical properties of conductors change during a cycle, confirming 

the material nonlinear behavior of short conductors. 



 

69 

4.5.4 Frequency-Sweep Tests 

All the frequency-sweep test were performed only for amplitudes that allowed the corresponding 

differential displacement without generating impact forces [4]. Since the cable experiences large 

displacements and its behavior is highly nonlinear, it is not completely correct to reason in terms 

of natural frequencies, but rather in terms of frequencies likely to be excited during an 

earthquake. These resonant frequencies, that means those likely to be excited during an 

earthquake, were identified using spectra built measuring the minimum and maximum values of 

horizontal forces for the corresponding frequency. During the sweep tests three predominant 

behaviors were observed. 

First, cable oscillating in a stable way around its equilibrium position, without any abrupt change 

of amplitude or forces: this can be called dynamic stability. This behavior is characterized by the 

forces varying cyclically between two extremes, corresponding to the minimum and maximum 

spans reached for a given amplitude and frequency of sinusoidal input. It is noteworthy that the 

minimum and maximum levels of the forces increase monotonically with the frequency; this 

indicating that no natural frequencies are significantly excited. It was also observed that the 

forces generated dynamically can be of compression and considerably higher than those 

developed statically. In particular, the results showed that a high sag/span ratio favors dynamic 

stability over a wider range of amplitudes and frequencies. It was observed that the highest 

forces were typically developed at low amplitudes, at frequencies close to the upper limit of the 

test band, from which can be concluded that dynamic effects play a key role in generating 

horizontal forces, depending more on frequency than on amplitude. 

Resonance was the second observed behavior. In this case, there was a sudden amplification of 

the forces at the cable ends; sometimes, the resonance led to a large oscillation of the conductor 

that lashed back and forth generating big impact forces, closely to a dynamic instability behavior. 

Also, there was often a lateral motion, highlighting that modes in two orthogonal directions can 

be coupled during dynamic excitation in only one direction. In some cases, the tests were 

stopped to avoid damage to the testing setup, due to the severity of the resonances. This 

evidenced that the natural frequencies of a flexible connection vary during motion that means a 

given configuration can be excited in resonance over a range of frequencies rather than at one 

specific frequency alone. This is why it’s not completely correct to reason in terms of classical 

natural frequencies. It was observed that the level of forces reached for both types of excitation 
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was of the same order of magnitude: since excitation at one end only is less idealistic than out-

of-phase excitation, this means that significant forces can be developed in resonance, even if 

only one end of a connection is excited in the proper frequency range. The resonances 

frequencies varied according to the sag/span ratio, as well as the amplitude of excitation; 

generally, higher frequencies were excited at smaller amplitudes and vice versa. 

The third meaningful observed behavior was compression in the cable. It was showed that big 

compression forces may be generated during motion, and were higher for the higher sag/span 

ratio, according to the fact that traction in the cable can be very low for large sag, due to the low 

bending stiffness of the cable and the short span used. The magnitude of the compression forces 

measured was lower than the traction ones, but although impressive in resonance. Therefore, the 

reactions at the end of the cable can oscillate from a high value of traction to a high value of 

compression during motion. This means that the resultant force applied to the top of equipment 

with connections on both sides can be the combination of forces in the same direction, since 

traction forces can be developed on one side while compression forces can be developed on the 

other. 

4.5.5 Sine-Start Tests 

The scope of the sine-start tests at fixed frequencies was to investigate the number of cycles of 

oscillation required to obtain the same level of horizontal forces measured during the sweep tests 

[4]. The tests were performed both at frequencies characterizing dynamic stability and 

resonance; for all the tests performed, 3 to 5 cycles were necessary to reach the same level of 

force obtained during the sweep tests. This means that the level of forces obtained during the 

sweep tests could be achieved also during an earthquake, when the equipment is excited for a 

few cycles only. 

4.5.6 Conclusions 

This study showed the big importance of dynamic behavior of flexible connections in response to 

the excitation generated by an earthquake [4]. Frequency-sweep tests at realistic amplitudes on 

selected frequency bands were considered an appropriate way to evaluate the frequencies of 

connections likely to be excited during such an event. The final conclusions were the following. 
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Almost all the results showed that such forces might be dynamically generated, even when 

sufficient slack is provided to account for the differential displacement between the 

interconnected equipment items. Flexible connections interconnecting substations equipment are 

highly geometrically nonlinear systems, characterized by frequencies likely to be excited in the 

range 0.5 to 5 Hz during a ground motion; due to their nonlinear behavior, these frequencies vary 

according to their current configuration. Furthermore, large forces, both of traction and 

compression, can develop at the ends of cables excited in resonance. The maximum forces 

measured in resonance were achieved for small amplitudes of excitation, indicating that it is not 

sufficient to seismically design connections on a static basis only, in terms of allowing for the 

differential displacement expected at their ends; nevertheless, a large sag/span ratio tends to 

promote the dynamic stability, avoiding the risk of resonances. 

Therefore, it is important to design flexible connections so that the range of natural frequencies 

at which they are likely to be excited are different from those of the equipment they are 

interconnecting, in order to avoid the risk of dynamic interaction and resonance between them. 

 

4.6 Constant Bending Stiffness Studies 

Studies on the dynamic behavior of flexible conductor typically interconnecting high-voltage 

electrical substation equipment items, considering a constant bending stiffness for the cable 

itself, have been presented by A. Der Kiureghian, K. J. Hong and J. L. Sackman, 1999 [9]. 

A typical electrical substation consists of a complex set of interconnected electrical equipment 

items, such as transformers, circuit breakers, surge arresters, capacitor banks, disconnect 

switches, etc. As shown in various works of different authors, these equipment items are often 

connected to each other through flexible conductor cables: significant dynamic interaction 

between them may occur during seismic events, even whether the cable is sufficiently slack to 

accommodate for the relative displacement. This kind of interaction is likely to be responsible 

for some of the observed damage in electrical substations during past earthquake, also when the 

equipment items were qualified to stand for a ground motion of that severity. 

Der Kiureghian’s studies investigated, through a finite element model using frame elements and 

a Lagrangian formulation taking into account large displacements, the effect of interaction in two 

equipment items connected by a cable and subjected to a horizontal earthquake ground motion in 
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the plane of the cable. The influence of interaction was evaluated by calculating the ratios of the 

equipment responses in the connected system to their corresponding responses in their 

standalone configurations. For the sake of simplicity, since the study was more concerned on 

cables, each equipment item was modeled as a linear system with distributed mass, damping, and 

stiffness properties. Through the use of a prescribed displacement shape function, each 

equipment item was characterized by a single degree of freedom, neglecting the modes higher 

than the first. This assumption is consistent with the fact that the displacements at the ends of the 

cable have amplitudes and frequencies filtered by the interconnected equipment; since its mass 

proportional to the first mode was observed to be about 80%, it can be considered the only 

significant. 

4.6.1 Catenary Cable 

Actually, the shape of an extensible cable is not a catenary, because the strain along the cable 

varies according to the inherent tension force [10]. However, for cables generally used in the 

power industry and for overhead transmission, the axial deformation is significant only for 

extremely taut cables. But also in that case, the tension force in the cable is essentially a constant, 

generating an uniform strain along the cable and, thus, a catenary shape. 

In the first part of the study, the connecting cable was modeled as an extensible catenary cable, 

neglecting both its flexural stiffness and inertia. Under these assumptions, it was possible to 

derive a closed form expression for the stiffness of the cable, and there was no need to model the 

cable by finite elements with a formulation capable to account for large deformations. Two 

equipment items with distributed mass, damping, and stiffness properties, with a vertical 

separation of the supports and connected by an extensible catenary cable were considered; the 

system was then subjected to a horizontal base motion. For the sake of simplicity, each 

equipment item was modeled as a linear, single-degree-of-freedom system by describing only its 

horizontal displacement at the point of attachment. Also damping coefficients were included to 

take into account energy dissipation in the equipment items; their values were computed on the 

basis of an estimated modal damping ratio for each of them. It is noteworthy that energy 

dissipation also occurs in the cable due to slippage of the strands one other under friction forces; 

actually this is a very complicated phenomenon, for which several simplified models have been 

presented in literature. Nevertheless, the contribution of the cable damping to the energy 

dissipation in the total system can be considered negligible: therefore, it’s a conservative 
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approach to neglect the cable damping. In order to compute the nonlinear response of the 

interconnected system, the classical Newmark step-by-step time integration algorithm was 

adopted, together with a Newton iteration scheme at each step to solve these equations; this 

required to compute the tangent stiffness matrix at each time step. 

As measures of interaction between the two equipment items, the ratio of the equipment 

responses in the connected system to their corresponding responses in their standalone 

configurations was adopted. Therefore, if the ratio is > 1, the response of equipment in the 

interconnected system is amplified on account of the interaction effect, whereas if the ratio is < 1 

it is de-amplified. It is also noteworthy that, since the equipment items are linear and described 

by a single displacement shape function, all internal forces are linearly proportional to the 

corresponding displacement responses. Therefore, the same response ratios can be considered for 

the maximum internal forces in each equipment item. The seismic demand on the interconnected 

system can be measured by the maximum relative displacement of the standalone equipment 

items away from one another; next, based on this a parameter to predict the effect of interaction 

can be defined. This approach is particularly easy, since this value can be directly computed in 

terms of the response spectrum of the ground motion and properties of the standalone equipment 

items. 

The responses in the interconnected system showed strongly peaks relative to their static 

equilibrium positions, with larger displacements occurring towards the side that slackens the 

cable. In particular, the amplification in the peak response of the higher frequency equipment 

was the most significant: this is absolutely not surprising, since this equipment tends to act as a 

restraint against the motion of the lower frequency one, which in turn tends to generate large 

motions on the higher frequency equipment item. The peak forces were more than two orders of 

magnitude greater than the initial cable force: these occurred when the cable was stretched to its 

utmost straight position. These results confirmed that, when the cable does not have sufficient 

slack, allowing the relative displacements, the interaction between the two equipment items 

develops large additional, in particular for the equipment with higher frequency. This was 

especially evident when the ends of the cable were attached at different heights, generating a 

vertical component of the forces in the cable. To avoid all these adverse effects, criteria for 

selecting the cable length to provide sufficient slack were found advisable. 
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4.6.2 Cable with Flexural Stiffness and Inertia 

The cable inertia tended to cause further forces amplification, especially when the ends of the 

cable were attached at different heights [10]. The interest of the study was, thus, concerned on 

slack cables with axial and flexural stiffness undergoing large deformations under dynamic 

loading. Although a theory for the dynamics of taut cables experiencing small deformations 

developed by Irvine was available since 1981, the finite deformation problem was practically 

impossible to be solved analytically. Therefore, a numerical solution through the finite-element 

method had to be sought. A brief description of the section properties of the cable subjected to 

study is the following. 

Cable conductors typically used either in the power industry or for overhead transmission are 

made of helically twisted strands of aluminum wire. If neglecting the small lay angle that the 

wires make with the axis of the cable, the cross-sectional area is simply the sum of the areas of 

the individual strands. The two ends of the cable are typically attached to the equipment items 

through welded connectors, so that is not allowed any unwrapping of the strands. When a tension 

force is applied to the cable, the wrapped wires will be tightened before the full axial stiffness of 

the cable can be developed. Conversely, when the cable is subjected to compression, the twisted 

wires can open, or even the outer strands can buckle. This means that the axial stiffness of the 

cable, either for a small tension force or a large compression force, could be smaller than the sum 

of the axial stiffnesses of the individual strands. For the sake of simplicity, and considering these 

effects negligible, the analyses were made ignoring these effects and assuming that the axial 

stiffness of the cable section was constant and described by EA, where A is the sum of the areas 

of the individual strands, and E is the elastic modulus of the cable material (typically aluminum). 

The flexural stiffness of the cable section was given by the product EI, where I denoted the 

effective moment of inertia of the section; in this case, the choice of I was not univocal. As a 

matter of fact, the value of I depended on whether the strands at the cross section remain attached 

or slide with respect to one another during the cable motion. The minimum value of the inertia 

was obtained under the assumption that all the strands were freely sliding against one another. In 

the actual system, when the cable was subjected to high tension, significant friction may be 

generated between the strands; this may prevent sliding of some of the strands and let a larger 

effective moment of inertia develop. The maximum value of I, obtained by assuming that all 

strands remained attached, was calculated considering the solid cross section of the strands 
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forming the cable. Actually, the effective moment of inertia of the cable at each cross section 

was somewhere between the above two extremes: unfortunately the two bounding values are 

widely apart for typical cables. For example, for the modeled hereafter 1796-MCM cable, 

consisting of 61 strands divided in five layers, the upper bound is about 80 times the lower 

bound. IEEE guidelines (IEEE 1999) directly recommend an approximation based on 

experimental tests conducted in the 1990s, where the value of I is computed by multiplying the 

inertia of a single strand times the number of layers increased by 1. It was assumed a constant 

moment of inertia throughout the length of the cable at all times, and equal to the approximation 

of the IEEE guidelines. 

For the finite-element analyses, the cable was modeled by 100 frame elements having uniform 

length and cross-sectional properties as described above. Geometric nonlinearity due to large 

displacements and rotations was fully taken into account by using a Lagrangian deformation 

formulation based on the Cosserat rod theory. The finite-element program FEAP [28] was used 

for the analyses. 

It is to be noted that the dynamic analysis of a cable undergoing large displacements and 

rotations is a highly nonlinear elasto-dynamic problem without known analytical solution, and 

even numerical solutions of this problem are challenging. During the dynamic response, since 

the cable is undergoing severe compression and traction forces, the axial stiffness dominates the 

flexural behavior, generating significant high frequency effects; these high frequencies, in 

addition to the spatial discretization employed in the finite-element model, may give rise to 

inaccuracy and instability in the numerical computations. Therefore, under these conditions, the 

Newmark time integration algorithm, which obviously can be successfully used for the catenary 

cable, does not lead to stable and accurate results. Furthermore, the classical Newmark family of 

algorithms typically has no capability to conserve the total energy and angular momentum for 

nonlinear elasto-dynamic problems. Since conservation of the energy and momentum through 

the numerical time integration algorithm was essential to achieve a sort of stability, a numerical 

algorithm that does preserve the total energy and angular momentum was needed: one algorithm 

with these capabilities is presented in Simo et al., 1992 [27]. The finite-element computer 

program FEAP provides a modified version of this algorithm (Simo et al., 1995), that introduces 

numerical damping to stabilize the computations, while only slightly compromising on the 

conservation of energy and angular momentum. Experience showed [10] that this modified 
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algorithm with parameter values � = 0.55, K = 0.5, and # = 1 and time step Δ( = 0.0005 � 
worked successfully for the dynamics of this kind of cables. Conversely, parameter values of � = 0.5, K = 0.5, and # = 1  would have corresponded to the energy conserving algorithm with 

no artificial numerical damping. 

The first step of the analysis consisted in understanding the initial shape of the cable, clamped at 

its two ends and under its own weight. Due to the flexural stiffness, the shape of this kind of 

cable was considerably different from the catenary shape. It is noteworthy that a cable having 

flexural rigidity and held between two fixed supports is a statically indeterminate system, since 

the horizontal support force for such a system cannot be determined from equilibrium 

considerations alone. Therefore, an approach different from the classical equilibrium method was 

needed, in order to get the initial shape and the initial internal forces inherent the cable. For the 

present analysis, the cable was assumed initially straight, with the two ends distant one another 

the total length of the cable. After fixing both ends, the gravity load was applied and the right 

support was then moved horizontally towards the left support until the initial span was reached. 

Only in the case the configuration of the cable showed also a vertical separation of its support 

points, the right end of the cable was moved vertically by consequence. Both cables with and 

without vertical separation between their ends were tested, obtaining different responses. 

Only the horizontal component of the ground motion in the plane of the cable was considered in 

the analysis. The cables with no vertical separation experienced almost only vertical motions, 

therefore the inertia forces in these cables were primarily vertical, despite resulting from the 

horizontal motions of their end points. The cables with vertical separation experienced 

significant motions in both the horizontal and vertical directions, since they had significant 

inertia forces in their transverse direction. 

Because of these effects, significant interaction between the interconnected equipment items can 

be expected, even when the cable has sufficient slack. By way of comparison with the same 

systems with the catenary cable, the response ratios were found to be primarily influenced by the 

cable inertia and flexural stiffness: it means that cable inertia can further amplify this interaction 

effect. This amplification can be especially significant for the equipment item that has the higher 

frequency. Obviously, since the cable behavior is highly nonlinear, it’s not completely correct 

speaking of natural modes of vibration in the usual sense for linear systems. Nevertheless, when 
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the dominant frequency content of the excitation matches certain critical frequencies with 

appropriate amplitudes, then a dynamic instable behavior can be observed in the cable, just like a 

resonance. This is the same phenomenon observed in the experiments on cables subjected to 

imposed harmonic end displacements made by Dastous and Pierre, 1996 [4]. 

The results of this study provided new insight into the strongly nonlinear behavior of the 

electrical system interconnected by cable and the effect of interaction, through a reliable finite-

element method; this method of analysis had been also used to develop a design criterion for the 

required cable slackness for electrical substation equipment. 

Furthermore, this same numerical computational approach had also been used for dynamic 

analysis of overhead transmission cables subjected to wind forces, or other dynamic excitations. 

 

4.7 Variable Bending Stiffness Studies 

Studies on the dynamic behavior of flexible conductor typically interconnecting high-voltage 

electrical substation equipment items, considering a variable bending stiffness for the cable itself, 

have been presented by J-B. Dastous, 2005 [7]. 

In addition to the geometrical nonlinearity of stranded flexible conductor mentioned above, its 

bending stiffness can vary during motion according to its tension, curvature and history of 

deformation, this resulting in a material nonlinear behavior also. In order to fully understand the 

dynamic behavior of such a cable, a calculation method capable of taking into account both 

material and geometrical nonlinearities must be used. This was the purpose of Dastous’ (2005) 

analytical study [7], following his experimental work [4]. The geometric nonlinearity due to 

large displacements experienced by the conductors can be successfully handled by finite-element 

analysis with the capability of an adequately beam element formulation. Most of commercial and 

research finite-element programs have such elements available in their library. The most delicate 

issue is adequately handling the variable bending stiffness of the flexible cable, and therefore the 

material nonlinearity arising from it, since this capability is not widely spread in commercial 

programs. This difficulty comes in particular from the mandatory requirement that the bending 

stiffness vary with the inherent deformation history and variation in tension. Nevertheless, an 

abundant literature on the bending stiffness of conductors was available, and the scope of 

Dastous’ study was therefore to implement one of those formulations, in order to fully cover also 
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this particular aspect of the cable dynamics. It was chosen to adopt and implement the work of 

Papailiou [25], since it was a practical model of variable bending stiffness completely adaptable 

to finite-element formulation. This model presented the complete capability of taking into 

account the phenomena of the interlayer friction force and the slipping of the strands one another 

in the conductor during motion, by building a variable secant bending stiffness that changes with 

the variation of curvature and tension. Before implementing it for dynamic analyses, it had been 

validated experimentally on initially straight conductors subjected to static transverse force, at 

tensions representative of overhead transmission lines. For the purpose of this study this model 

was implemented in a classical finite-element program based on the tangent stiffness method, 

expressly designed to taking into account the specific loading used in the experimental tests; 

furthermore, it was adapted to treat arbitrary types of dynamic loading and to address both 

material and geometrical nonlinearities, as these are typical of many applications regarding 

stranded conductors. The choice of using the tangent bending stiffness instead of the secant 

tangent stiffness was made because it is the base for nonlinear finite element formulation used in 

most general-analysis computer programs. This formulation was implemented in the finite-

element program FEAP, specifically dedicated to research purposes [28]. 

4.7.1 Bending Stiffness Calculation 

In the general finite-element formulation of equilibrium was implemented the proposed model 

making use of the tangent stiffness matrix of the structure under analysis [7]. The tangent value 

is the actual slope of the moment-curvature relationship for a given curvature. The tangent 

bending stiffness can be calculated by summing the contribution of the core and each layer. The 

tangent bending stiffness of layer can be decomposed by summing the contribution of each wire 

in the layer according to its actual state, sticking or slipping. More specifically, the bending 

stiffness of a wire in the sticking state is composed of the contribution of its bending around its 

own neutral axis and the bending of its section around the conductor neutral axis. For a wire in 

the slipping state, the contribution of tangent stiffness from the bending of the wire section 

around the conductor neutral axis is lost as soon and as long as the wire is slipping; 

consequently, it is reduced to the contribution from the wire bending around its own neutral axis 

only. For a given layer, the tangent bending stiffness is thus obtained by summing the 

contribution of the sticking bending stiffness and the slipping bending stiffness, according to the 

state of each wire. When all wires in all layers are in the sticking state, the value of the tangent 
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bending stiffness is therefore maximum; conversely, when all wires slip, is minimum. The 

substantial difference between the secant and tangent bending stiffness is that the tangent 

bending stiffness varies in a staircase way, while the secant bending stiffness varies in a smooth 

monotonous way. This is because the tangent bending stiffness is based on the contribution of 

the different wires in the conductor section that are slipping at different curvatures; furthermore, 

the tangent stiffness reaches its minimum value at the curvature when the last wire slips. It is 

noteworthy that the secant and tangent stiffness methods are equivalent and lead to the same 

results. 

4.7.2 Internal Moment Calculation 

As for the tangent bending stiffness, the internal moment in each element has to be calculated at 

every iteration, and the contribution from every layer can be computed by summing the 

contribution of each wire in the layer according to its state [7]. Because of the two stress 

components present during bending mentioned above, the contribution of each wire can also be 

decomposed into two components, as the contribution from the stress arising from the bending of 

the wire around its own neutral axis and the contribution of due to the state of friction between 

the wire and those in adjacent layers, depending on whether the wire is in the sticking or slipping 

state. This computation requires not only the current curvature but also the reference value that 

has to be updated for every wire every time there is a reversal in the sign of the rate of change of 

curvature; this means monitoring the state of every wire at every moment, which in turn will 

slow down the computational process. 

For the sake of simplicity, it was found more practical to use the average slip criterion for each 

layer: this implies that all the wires in a layer slip simultaneously at a single average curvature 

change. For a layer, this can be easily computed by equating the moment for the layer in the fully 

slipped state to the average moment in the sticking state at the onset of slipping, under the 

approximations that all wires slip simultaneously. By comparison on the same model analyzed 

with the implementation of either the tangent stiffness based on the average slip criterion or the 

real tangent stiffness, it was observed that the calculated moments presented very small 

difference. Therefore, this criterion provides a reliable and acceptable approximation for the 

tangent stiffness, with much less computational effort. 
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4.7.3 Implementation in a Finite-Element Formulation 

During the time integration of the dynamic problem, the tangent bending stiffness and the 

internal moment must be computed at every iteration [7]. As mentioned earlier, the bending 

stiffness is obtained by summing the contribution of each layer, as well as the internal moment 

from every layer is calculated and counted to obtain the element total internal moment that will 

be used for calculating the internal-load vector. Since these quantities change according not only 

to the current curvature, but also to the deformation history, a material constitutive law must be 

developed to adequately compute the bending stiffness during the iterative process. 

The moment-curvature relationship for a layer is bilinear when making use of the average slip 

criterion, with the tangent bending stiffness oscillating between the maximum value, when all 

wires are sticking, and the minimum, when all wires are slipping. It is noteworthy that the 

variation of bending stiffness for the sticking/slipping component is completely analogous to that 

of an elasto-perfectly plastic material. In the iterative process, the constitutive equation must 

therefore determine which state a given layer is in, through a specific test. The test on the layer 

state consists in checking whether the difference between the curvature at a given iteration and 

the reference curvature at the beginning of the same time step is smaller or larger than the 

average curvature change required to pass from the sticking to the slipping state. Actually, at 

every iteration a tentative reference curvature must be calculated and, at the last iteration after 

convergence is achieved, this will become the new reference curvature for layer for the 

beginning of the next time step. When in the slipping state, the tentative reference curvature is 

updated at every iteration, while at the beginning of a new time step, when a layer is found in the 

slipping state at the end of the previous step, the initial position of the converged curvature is at 

the point of onset of slipping on the sticking/slipping curve. Obviously, all the elements need to 

implement this variable tangent bending stiffness in the general material-constitutive equation 

that the beam element routine calls when forming the element tangent stiffness and its residual at 

the required iterations. 

4.7.4 Time Integration Method 

Since the cable dynamics is affected by geometrical and material highly nonlinear behavior, a 

particular class of time integration methods was needed to achieve accurate results [7]. For either 

static or dynamic problems, the nonlinear solution was obtained step by step through an iterative 
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process: numerous methods exist for this, but the most popular one is the Newton–Raphson 

method and its variations. It consists in evaluating the tangent stiffness matrix of every element 

at regular iteration steps during the search for a solution for each step; at the same time, it also 

calls for evaluation of the internal forces, in order to compute the internal-load vector. 

For a dynamic problem, this finite-element equilibrium problem must be extended to a second-

order problem involving inertial effects, requiring a time-stepping algorithm to calculate the 

dynamic solution for each time step. In most commercial finite-element programs the time-

stepping schemes used is the implicit Newmark–Beta algorithm, belonging to the Newmark 

family of algorithms [23]. Nevertheless, this class of algorithms is not capable of achieving 

accurate solution for the cable dynamics problems, because of two main reasons. First, this 

family of algorithms generally fails to conserve total angular momentum for nonlinear systems, 

losing the accuracy of the results obtained when the system is subjected to significant angular 

motion. Next, the axial stiffness in the cable dynamics can introduce artificial high-frequency 

oscillations contaminating the response of the system; therefore an algorithm providing high-

frequency numerical dissipation, like the Wilson-method [2], is needed. In the finite-element 

program FEAP, used for this study, is implemented a time-stepping scheme preserving angular 

momentum and capable of numerical dissipating high-frequencies, thus able to accurately treat 

cable dynamics problems [28]. As a matter of fact, a light numerical damping was introduced in 

order to avoid the high-frequency oscillations discussed above, at the expense of compromising 

just slightly on the conservation of energy. 

4.7.5 Modeling of Experimental Tests 

The tangent stiffness model was used to model some previous experimental tests on short-span 

flexible conductors used to interconnect substation equipment; the level of tension in the 

conductor was generally so low that compressive forces could be generated [4]. The tests were 

performed in a general study whose purpose was evaluating the additional end forces generated 

at the attachment point of interconnected substation equipment during dynamic motions. More 

specifically, they consisted in cyclically stretching / compressing a conductor in a catenary 

configuration at circular frequency at fixed amplitude around an average span, while measuring 

the horizontal traction forces generated at the cable ends. Two different types of conductors were 
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used, the 1796 MCM and the 4000-MCM conductor. The mechanical properties of those two 

conductors have already been shown in Table 4-4. 

The modeling was done through the finite-element program FEAP, due to its advantages 

discussed above, with a user element subroutine consisting of a custom- modified frame element 

with the variable tangent bending stiffness constitutive equation described earlier. The axial 

rigidity EA was considered constant through the length of the cable, and a value of 69900 MPa 

was used for the elastic modulus. A friction coefficient of 0.5 was used for the building of the 

variable bending stiffness matrix. The conductor was subdivided into a finite number of 

elements, with their properties assumed constant over their length: to model each element, a 

large displacement / small deformation beam element formulation was adopted, in order to take 

care of the geometrical nonlinearity present. A relatively large number of elements was therefore 

required: an adequate number was found to be 100 to lead to accurate results. For the sake of 

simplicity, coupling between bending and either torsion or tension was neglected. Obviously 

some type of damping was needed in the model, in order to accurately reproduce the 

experimental tests. Since accurate modeling of damping is a very complex issue and many forms 

of damping are actually present, and furthermore it is indeed a function of frequency and 

amplitude, it was decided to use an equivalent viscous form of damping, calibrated with 

experimental results. The damping was modeled in FEAP using single-degree-of-freedom 

viscous dashpot dampers connected to all the internal nodes of the finite-element conductor 

model: since the damping is directly related to the slipping of the layers over each other, that 

means to the bending process, the best way to model such damping was to make it proportional 

only to the rotational degree of freedom. Nevertheless, it was found that this simple approach 

was sufficiently adequate to lead to a good approximation. Since the damping was to be applied 

at every node, it was decided to use a single value of damping by unit length, equally divided 

among all the nodes for a conductor of given length. After calibration, these values were found to 

be for the two types of conductors: 

1796 MCM �0 = 10 � ∙ � 
4000 MCM �0 = 35 � ∙ � 
These values of rotational damping were then multiplied by the length of the cable, and divided 

by the number of nodes in which the cable was subdivided, to find the value to be applied at each 
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node. Furthermore, a mass was lumped at each end, in order to represent the mass of the load cell 

and the conductor clamp: after comparisons, a mass of 7.1 kg was used for the 1796-MCM 

conductor, and a mass of 12 kg for the 4000-MCM conductor. 

The first step consisted in the calculation of the static equilibrium position of the conductor 

before applying cyclic displacement at both ends. Since the shape of the cable under its own 

weight cannot be computed by only equilibrium considerations, it was decided to start with an 

initially straight conductor without mass, and then linearly increment its weight from zero to the 

full value, as a distributed dead load. Then, one end was horizontally moved until reaching the 

desired span with a linear increment. Using a relatively small step increment, the equilibrium at 

each step is usually reached within an average of 3–4 iterations. 

4.7.6 Results 

For the quasi-static cycling tests, conducted with low circular frequency applied displacement, 

measuring the horizontal traction at one end, it was first observed that the level of tension 

predicted by the model was in excellent agreement with the experiments, especially considering 

the large nonlinearities present [7]. As a matter of fact, it is noteworthy that these tests 

corresponded to relatively large displacements of the conductors, since they were stretched 

almost to horizontal and then back to a relatively high sag; therefore large variations in their 

axial tension during the cycling were observed, corresponding to very strong nonlinearities. It 

was also observed that the hysteresis predicted by the model was much less than that obtained 

experimentally, also despite varying the friction coefficient, trying to better match the 

experimental results. One possible explanation was found to be the significant backlash in the 

mechanism used to transmit the motion at both ends, since it was observed during the 

experimental tests that there was a little slipping of the mechanism when the maximum span was 

achieved. It was also found that the model was able to adequately reproduce the shape of the 

cable under its own weight: this aspect didn’t surprise, since the finite-element programs based 

on the displacement method provide more accurate displacements than forces. 

The same comparisons were made also for the dynamic tests: the only difference with the quasi-

static tests was that the displacements were applied dynamically at frequencies representative of 

the standalone natural frequencies of substation equipment. In particular, two different types of 

tests were developed, the first being the frequency-sweep tests at given amplitudes over a range 
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of frequencies, and the second being the sine-start tests at fixed amplitude and frequency. For the 

frequency-sweep, it was observed that the model predicted the measured traction with acceptable 

accuracy, despite a little smoothing of the model response over some frequencies as opposed to 

the experimental results: probably this can be related to the wrong approximation assumed for 

the damping. As expected, compression forces were also developed, due to the bending stiffness, 

which was more significant since the conductor had short length. Other comparisons between the 

model and the experimental results were made on the difference between the maximum and 

minimum horizontal traction force measured for a given cycle of applied displacement at a fixed 

amplitude and frequency. It was observed that the model reproduced with good accuracy the 

experimental results, with a maximum error of 20% and an average error of 7% for the 17 tests 

compared. Therefore, it could be concluded, from both the static and dynamic comparisons, that 

the presented model was completely adequate to representatively predict the dynamic response 

for short-span flexible conductors, typically connecting high-voltage substation electrical 

equipment. 

 

4.8 Framework of the Present Study 

The study presented in this report aims first to reproduce some of the mentioned above 

experimental tests through finite-element models, in order to try to match their results, thus 

providing a reliable model to describe the dynamics of flexible conductors. The experimental 

tests used for the comparisons are those described earlier in this report, since they had already 

been modeled successfully by other authors, thus they can be considered a reliable benchmark. 

Different models are investigated, some of them based on Der Kiureghian’s studies [10], while 

others on Dastous’ approach [7]. This aims to better understand the differences between these 

two approaches, their advantages and disadvantages, in order to be able to knowingly choose the 

most suited model for the further development. 

Two different finite-element programs are used. The first is ABAQUS, a popular general-

purpose analysis finite-element software, with the capability to take into full account the 

geometrical nonlinearity risen from the large displacements of the cables. It is chosen thanks to 

its characteristics of flexibility and easily adaptability to various changes in the model and in the 

type of the analysis. Therefore, it can be successfully used for static analyses as well dynamic 

ones, both with displacement control input and acceleration input, the last the most suited for 
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typical seismic analyses and earthquake simulations. The second finite-element computer 

program used is FEAP [28], a specific software committed to research purposes, thanks to the 

advantages described above. First, it allows recalling user-defined subroutine to build and 

consider the variable tangent bending stiffness, thus fully accounting for the material 

nonlinearity stemming from the interlayer friction due to the slipping of the strands over each 

other. Second, as most of finite-element programs, in its regular library are available beam 

formulations providing the capability of large displacement / small deformation, mandatory to 

take into account the geometrical nonlinearity affecting the response for dynamics of cables. 

Next, contrary to ABAQUS, which only time integration method available is a classical HHT-

alpha method [2], belonging to the Newmark method family [23], FEAP provides more recent 

energy-conserving methods, such as that presented by Simo, Tarnow and Wong, specifically 

designed for highly nonlinear dynamics [27]. As already discussed, such a method is necessary 

in order to lead to an accurate and stable solution, also when the response is affected by 

meaningful nonlinearities, both mechanical and geometrical. The Newmark family algorithms 

lack all these requirements, thus they need to use very small time steps as well as small values of 

the half-time step residual tolerance, that is the limit on residual forces at which the current 

solution is accepted for the time step, and the integration process moves to the next one. Since 

it’s not possible to correctly speaking of stability for the nonlinear dynamics, it’s not possible to 

set specific values for those parameters, but their setting is left to the experience and sensitivity 

of the user. In the following, their values are decided analysis by analysis, according to the 

different characteristics of each of them. 

FEAP also requires the setting of some parameters for its integration method: it is decided to let 

these values equal to those already used by previous studies, like Der Kiureghian’s [10] and 

Dastous’ [7], since they were already found to be acceptable. The biggest disadvantage of FEAP 

is the unavailability of imposing acceleration input at the ends of the cable; as a matter of fact, 

the only available boundary conditions are either forces or displacements, but not accelerations. 

Generally, in this work ABAQUS is used for analyses based on Der Kiureghian’s approach, 

since they don’t utilize and, thus, require the variable tangent bending stiffness. Nevertheless, 

particular attention must be focused on the correct and reliable choice of the parameters for the 

time integration method, in order to lead to a sufficient accuracy of the solution. Conversely, 

FEAP is used for the analyses based on Dastous’ model, in addition with the user-defined 
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subroutine for the variable tangent bending stiffness. Thanks to the literature on these two 

models [7, 10] and the experimental results reproducing, it is possible to make some changes and 

validate other models, by direct comparison between the results obtained. 

 

4.9 Scope of the Present Study 

The purpose of this study is to understand the dynamic behavior of flexible conductors 

interconnecting electrical equipment items, in specific configurations under given boundary 

conditions and base motions. To do this, we want to reproduce through finite-element models 

already available experiments as well as of experimental tests not yet done, but scheduled to be 

done in the future. The importance of achieving a reliable model lays in the fact that it was 

widely observed that the interconnection between electrical equipment items made by flexible 

conductors can negatively affect their dynamic response. As a matter of fact, additional forces 

are generated since the cable can be excited in a sort of resonance when its ends are subjected to 

displacement with certain amplitudes and frequencies. This can turns in failures of equipment 

items, also for seismic events lower than those they were certified to stand for. Reproducing 

previous tests is needed in order to be able of validating the current model, understanding the 

sensitivity to the different parameters and having a benchmark on which basing further analysis. 

After reaching this consciousness, it is possible to specifically check the sensitivity of the 

modeling to the various parameters affecting the solution: through these analyses, it’s easier to 

understand what the cable dynamics depends primarily on. Once achieved this, it is possible to 

set all the parameters in order to seek for a stable and accurate solution for each of the tests, 

building a benchmark model common for all the experimental tests going to be reproduced. 

The second part of this report aims to model the dynamic behavior of two electrical equipment 

items interconnected by a flexible wrapped conductor, subjected to different ground motions. 

Before proceeding with experimental tests, it’s absolutely useful to know in advance which 

forces and displacements have to be expected, through a finite-element model analysis of the 

specimens subjected to a given input. After a feasible and meaningful configuration of 

interconnected electrical equipment items is individuated, some ground motion are chosen and 

then applied to the base of the structure. The structure consists of equipment #1 mounted on the 

top of a steel post, and equipment #2 installed on top of a support frame structure consisting of 

steel beams. Actually, the steel post and the support structure are supposed to represent the other 
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equipment parts connecting the electrical equipment #1 and #2 to the ground: their 

characteristics are chosen in order to match the dynamic properties of those. Equipment #1 and 

equipment #2 are interconnected by a flexible stranded conductor, attached at the top of the two 

equipment items; the span of the cable, that means the distance between the two highest points of 

the two items, is based on the usual lengths of cable in electrical substations. The initial shape of 

the cable is assumed to be different depending on the kind of test experienced. When the input at 

the base of the two equipment items is an acceleration vector, the cable is assumed to be initially 

straight. Conversely, when the input at the two bases is a sinusoidal displacement control, the 

cable is assumed to be initially slack, with a certain sag: this is needed to accommodate the 

required displacement at the two ends of the cable. For all these tests, comparison are made 

between the response of the two equipment items in the interconnected and in the standalone 

configuration, to understand the influence of the presence of the flexible connection on the forces 

generated and the displacements experienced. Some parametric studies are also carried on, to 

check the sensitivity of the response to the configuration of the interconnected structure, such as 

the distance between the two equipment items and the vertical separation between the two 

attachment points of the cable. 

 

4.10 Further Studies 

Possible development of this are to be intended for minimizing the influence of the flexible 

conductor on the interconnected equipment, when subjected to strong ground motions. Since the 

cable is excited by the displacements experienced at its ends, corresponding to the motion of the 

attachment points on the top of the two equipment items, its response will be minimized when 

these displacements will assume the smallest values. According to this, classical approaches 

trying to minimize the acceleration experienced by the two equipment items through an 

elongation of their natural period are no more valid. This appears obvious from the spectrum of a 

general structure. For the same ground motion, increasing the natural period, that means 

increasing the flexibility of the structure itself, the relative acceleration experienced by the 

structure will decrease, but the displacement will increase. Therefore, trying either to increase the 

flexibility of the equipment items or to introduce classical base isolation, the displacement at the 

top of them will increase indeed. Despite reducing the severity of the response for the equipment 

in the standalone configuration, in the interconnected configuration this means the cable will 
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experience bigger displacements at both ends, resulting in a stronger dynamic input. In this case, 

the cable is more likely to be excited at frequencies close to a sort of resonance: this will cause 

large additional forces at the top of the two interconnected equipment items, resulting in possible 

failures. 

One possible solution is introducing a pendulum system base isolation, allowing the base of the 

structure to slide on a circular trajectory. The scope is making the structure behaves like a rigid 

body rotating around a fixed point: this take advantage that the center of rotation doesn’t 

translate. The goal of this approach is to set the pendulum system base isolation to match the 

center of rotation of each electrical equipment with the attachment point of the cable. If doing so, 

the two ends of the cable will only rotate but won’t translate, strongly reducing its contribution to 

the dynamic response of the total interconnected structure. 
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CHAPTER 5 

MODELING OF CONDUCTORS IN ELECTRICAL EQUIPMENT & 

SENSITIVITY STUDY 

 

5.1 Bending Stiffness 

The bending stiffness is a basic parameter to understand cable dynamics. Since the response of a 

geometrically nonlinear system depends on its current deformed shape, a big importance is based 

on how to accurately calculate these displacements. Obviously, from basic mechanics of 

structures, when the external loads are given, the displacements depend on the global stiffness 

matrix. This matrix is formed through the stiffness of the singular elements, and the global 

geometry of the system. While the geometry is automatically calculated at each step, the stiffness 

of the elements composing the cable depends on the parameters of the flexural stiffness that is 

plugged for them. Different approaches are available, and have been developed in previous 

studies [7, 10]. 

A traditional approach considers a constant value of flexural stiffness that is calculated through 

the boundary conditions of the element, its length, the elastic modulus of the material it’s 

consisting of, and the second inertia area of the cross section. This approach is the simplest, and 

it’s endorsed by the IEEE standard [21]. Conversely, the choice of a more accurate evaluation of 

the second inertia area of the cross section to be used is much more critical, and requires a more 

detailed discussion. Since the cable consists of strands wrapped together, the value of the second 

inertia area can be evaluated with different formulas, taking into account its dependence on the 

rate of curvature: then, since it changes during the motion and along the cable, the second inertia 

area is variable throughout the length of the cable and the time. 

One of the most basilar and important issue in cable dynamics is choosing which kind of flexural 

stiffness has to be used, either the constant or the variable one. Therefore, these two possible 

approaches are completely different: both are separately described hereafter. Furthermore, it’s 

also necessary to assign a value to the elastic modulus of the material. Despite the IEEE 
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guidelines [21] recommend E = 5.72e5 MPa, a value of E = 6.99e5 MPa has been adopted for 

these analyses, since it is believed to be closer to the real value for aluminum, and not too 

conservative. 

5.1.1 Constant Bending Stiffness 

In order to develop a finite element model of the flexible cable, it is necessary to describe the 

axial and bending rigidity of the conductor at each section. As mentioned earlier, the flexible 

conductor is generally a cable made of wrapped strands of aluminum wires. The two ends of the 

cable are usually attached to the equipment items through welded aluminum connectors, so that 

no unwrapping of the strands is possible. When the cable is subjected to a tension force, it’s 

possible that some tightening of the strands will occur before the full axial stiffness is developed. 

Likewise, when a segment of the cable is subjected to compression, opening of the strands or 

even buckling of the outer may occur. This imply that the axial stiffness of the cable for small 

tension forces or a large compression force could be smaller than the sum of the axial stiffnesses 

of the individual strands. For the sake of simplicity, the simplest approach is to ignore these 

effects, and consider that the effective cross sectional area of the cable throughout its length is a 

constant: it’s assumed to be equal to the sum of cross sectional areas of the strands. 

The flexural rigidity of a cable at a cross section is given by the product EI, where I denotes the 

section moment of inertia. The value of I depends on whether the strands at the cross section 

remain attached or slide with respect to one another as the cable is subjected to bending. The 

minimum value of the moment of inertia is obtained by assuming that the strands are free to slide 

one another. In this case, the moment of inertia is simply the sum of the moment of inertia of the 

individual strands: 

31�� =
	 ∙ H ∙ ��

64
 

where � is the diameter of the single strand, and 	 is the number of strands in the cable. 

In the real system, significant friction forces may develop between the strands, particularly at 

location where the cable has a strong curvature and is under elevate tension. These friction forces 

may prevent sliding of some of the strands and, hence, a larger effective moment of inertia may 

develop. Therefore, the maximum value of I is obtained when all strands are attached: 
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where *�  is the distance of the i-th strand from the neutral axis of the cable. 

The actual moment of inertia of the cable is somewhere between the two extreme values. 

Unfortunately, the two bounding values are widely apart for typical cables used in the power 

industry. For example, for a 1796-MCM cable consisting of 61 strands placed in 5 layers, the 

upper bound is about 80 times the lower bound. For the following discussion, let 	 denote the 

number of strands and � the diameter of each strand. Based on specific experiments conducted 

by BC Hydro, the IEEE 2006 guideline [21] recommends the use of the approximation: 3 ≅ (1 +�) ∙ 31�� 

for short length aluminum conductors, where � denotes the number of layers. In the following 

analyses, when a constant value for the bending stiffness is used, this recommended 

approximation is employed. Furthermore, it’s assumed that the moment of inertia remains 

constant throughout the length of the cable at all times. 

5.1.2 Variable Bending Stiffness 

More realistically, the bending stiffness of a stranded cable may vary during motion, depending 

on its internal tension, curvature and history of deformation. This results in a material nonlinear 

behavior as well, that has to be added to the geometrical nonlinearity of the system. Therefore, a 

finite element analysis capable of handling both material and geometrical nonlinearities needs to 

be used. While the geometrical nonlinearity is easily handled by most of commercial finite 

element programs, and beam elements with large displacement capabilities are implemented in 

their libraries, the material nonlinearity due to the variable flexural stiffness is usually not 

implemented, since it must depend on the variation in tension, curvature and history of 

deformation. As a matter of fact, quite an abundant literature on mechanical models of helical 

strands is available, but most theoretical approaches are not adaptable to finite element 

formulation, thus they don’t find a place in commercial and research programs. 

One practical model of variable flexural stiffness, adaptable to classical finite-element 

formulation, has been developed by Papailiou [25]. This well refined model takes into account 

the interlayer friction force and interlayer slipping in the cable during the bending process, 
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leading to a variable flexural stiffness that changes with the variation of curvature and tension, 

but neglecting the friction between wires in the same layer. This model has been experimentally 

validated on initially straight cables, at usual tension levels, under applying a static transverse 

force. This approach can be implemented in a finite-element custom-made program based on the 

secant stiffness method, designed to address the required external loading. 

Through the work of J-B. Dastous [7], described in the next paragraphs, became available the 

compatibility of the iterative formulation used to obtain equilibrium for a given load step with 

equilibrium methods used in classical finite-element formulations, and the adaptation of that 

model to a general program able to treat arbitrary types of loading, as well as considering 

dynamic problems. Dastous extended Papailiou’s work implementing the bending model in a 

more classical finite-element formulation, with capabilities to handle both material and 

geometrical nonlinearities for dynamic problems. Conversely of Papailiou’s variable secant 

flexural stiffness approach, Dastous used a tangent bending stiffness adapted to a classical 

nonlinear finite-element formulation based on the tangent stiffness method, that is the most 

widely used in commercial computer programs as far as now. The calculation of the tangent 

flexural stiffness for the cable elements, and its difference with the secant flexural stiffness is 

well described in his work. Comparisons with both static as well as dynamic experimental tests 

for short cables interconnecting electrical equipment show that this model computes a very 

representative and realistic bending stiffness for such cases, leading to accurate evaluations of 

the displacements of the cables and of tension generated at their ends. 

5.1.3 Comparisons 

Some comparisons between these two different approaches are shown. For each comparison, the 

same model is used; therefore, the same loading process is employed. The analyses were run 

with FEAP, since it provides both the capabilities of accounting for variable and constant 

flexural stiffness. The comparisons are shown for two different sine-start tests, with different 

amplitudes. Figure 5-1 presents the results with the two different flexural stiffnesses for sine-start 

test #138 (amplitude = 20 mm, frequency = 5 Hz). 
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Figure 5-1: Test #138, horizontal reaction 
 

In the graph, the positive values correspond to compression, accordingly to the positive 

orientation of the axes. 

From 0 to 0.5 s, the own weight of the cable is linearly increasingly applied as a dead load on the 

cable in the vertical direction, with a quasi-static procedure consisting of 1000 steps. In this part, 

the cable is initially straight, with both ends fixed. 

The vertical dead load will be left for all the time of the analysis. It can be seen that the 

horizontal reactions are increasing, reaching a value of 3 kN of traction: this is due to the 

geometrical nonlinearity, that requires the satisfaction of equilibrium in the deformed 

configuration of the structure. Therefore, horizontal tractions are generated to equilibrate the 

moments caused by the vertical external forces, the internal transverse forces and the internal 

moments. In this case, the results confirm what is expected from physical intuition. Since the 

deflection of the cable is quite small under its own weight, and the rate of curvature is quite low, 

there is no important slippage of the individual strands over each other. Therefore, the flexural 

stiffness of the cable doesn’t change during time, and both the forces and the displacements 
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obtained with the constant and the variable flexural stiffness are similar. The difference between 

the two peaks is less than 4%. 

Then, from 0.5 to 1 s, the two ends of the cable are linearly moved one toward the other, until the 

desired span is reached, with a quasi-static process consisting of 1000 steps. In this case, the 

cable experiences very big deflections. As a matter of fact, for this test the total length of the 

cable, that means the initial span of the straight conductor, was 5.52 m, while the desired span 

was 5.00 m. Moving each end by 0.26 m, the central sag obtained was about 0.85 m: this shows 

how relatively small horizontal displacements generate relatively big vertical deflections. This 

effect involves big rate of curvature, also when the procedure is quasi-static, and generates strong 

slippage of the individual strands over each other. This causes a very important and sudden 

decrease in the flexural stiffness of the cable, and can be easily observed in the graph. From 0.5 

to 1 s, there is a big and sudden change in the tangent of the curve, that represents the stiffness of 

the system, and it is quite different for the two different models. This explains the big influence 

of considering the variability of the bending stiffness also for a static analysis, whether big rate 

of curvature, that means big vertical deflections, are involved. Furthermore, the decrease of the 

flexural stiffness is concentrated in the first instants right after the beginning of the horizontal 

displacements, because the vertical deflection is bigger, and it accumulates the biggest part of the 

difference between the two models. After this first deflection, the rate of curvature is smaller, 

thus the slippage in the cable ends and there are no big further changes in the bending stiffness. 

This physical aspect is confirmed by the graph, where it can be seen that the two curves have the 

same slope of their tangents, after the first instants subsequent to 0.5 s, where all the big 

differences are lumped. 

After 1 s the dynamic sinusoidal input is applied at both ends. First of all, it can be observed that 

there are no resonance effects in the system, since no sudden amplifications are visible: this 

means that the natural frequencies of this cable are not close to 5 Hz, that is the fixed frequency 

of the input. Furthermore, other meaningful differences between the two models are clear. The 

model with variable bending stiffness shows the same general behavior, but the peaks and the 

difference between the minimum and maximum horizontal reaction assume smaller value than 

the model with constant bending stiffness. This is due to the fact that, experiencing big rate of 

curvature, the variable bending stiffness decreases, thus the cable is less stiff and the forces 
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generated in the system are smaller: it is to be noted that the horizontal displacements are the 

same, because the input is displacement controlled and not force controlled. This confirms again 

the physical intuition: therefore, the model that best represents the real dynamics of the cable is 

that accounting for variable flexural stiffness. Otherwise, the flexural stiffness is highly 

overvalued, when meaningful displacements are applied. 

 

5.2 Loading Steps 

In order to model past and future experimental tests on cable dynamics, it’s necessary to 

understand the initial geometry and conditions of the cable, considered as standalone or 

interconnecting different equipment items. Therefore, the first goal of this study is to understand 

the shape achieved by the cable under its own weight, and the consequent internal forces. As 

shown hereafter, both are heavily influencing the dynamic behavior of the cable. Due to a low 

flexural stiffness, the cable experiences very big displacements under some types of structural 

loading; these large displacements lead to nonlinear behavior as a result of non negligible 

changes in geometry, and therefore a nonlinear analysis is needed to maintain the accuracy of the 

results obtained. The geometric nonlinearity deriving from large displacements of cables can be 

adequately addressed by choosing beam elements with large displacement and rotation 

formulation; these elements are provided in most of the commercial and research finite-element 

programs. Since a nonlinear analysis is performed, and the solution of each step depends on the 

current displacements, it’s not possible to superimpose the effects of different external loads. 

The initial shape is sensitive to various parameters, such as: 

- properties of the cable (flexural stiffness) 

- external forces acting on the cable 

- boundary conditions 

Furthermore, the initial geometry and condition are sensitive to how the external forces and the 

boundary conditions are applied. It is noteworthy that a cable having flexural rigidity and held 

between two fixed supports is a statically indeterminate system. This is because the horizontal 

support force for such a system cannot be determined from equilibrium considerations alone. 

This indeterminacy in the initial shape of the cable with flexural rigidity can lead to possible 
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quantitatively discrepancies between the experimental and the finite-element model results. 

Therefore, the first step in the analysis process is to compute the static equilibrium position of 

the cable, before the dynamic input is applied at its ends. To do this, the cable is assumed to be 

initially straight and without any mass, and it is incrementally subjected to its own weight from 

zero to the full value. Next, the two ends are moved one toward the other until the desired span is 

reached. Using a relatively small step increment, correspondent to applying the load and the 

linear displacement in 1000 steps for each, the equilibrium position at each step is achieved 

within an average of 3-4 iterations of calculations. 

Two main different approaches have been developed from previous studies. One of them, 

developed by A. Der Kiureghian [10], consists in two separated steps. In the first step, the cable 

is considered to be straight, and the dead load of its own weight is applied; then, the two ends are 

moved one toward the other, until the initial span is reached. In the second step, all the internal 

forces are removed, so to have an initial deformed shape without any compression or traction in 

the cable, and then the dynamic input is applied to the fixed ends. The other approach has been 

developed by J-B. Dastous [7]: its main characteristic consists in the possibility to apply directly 

all the loads, without either dividing them in different steps or removing the internal forces. 

Following this order, the own weight is applied to the straight cable, then the two ends are 

moved one toward the other until reaching the desired value of the span, and finally the dynamic 

input is applied to the two ends. In this case, the cable will have a certain value of compression 

or traction at the end of the statically applied displacement, and the internal forces it experiences 

don’t come only from the dynamic displacements, but have also a static contribution. Both these 

approaches are described more deeply hereafter. It is noteworthy that, for all the analyses 

presented and discussed in this report, a clear reference to one of these two approaches will be 

made, since its choice directly affects the results obtained. 

5.2.1 Dastous’ Model 

For this model, the cable is assumed to be initially straight, and without any mass, so that its 

geometry is completely known. Next, after fixing both ends, the gravity load is applied from zero 

to the full value; then, the two ends are moved one toward the other. Due to flexural rigidity, the 

shape of the cable is considerably different from the catenary shape. In addition, the support will 
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develop a certain amount of horizontal forces. This means that the cable develops non negligible 

internal forces after the static step, before applying the dynamic input. 

Contrary to common thinking, the cable can experience not only traction but also compression 

forces under its own weight. As mentioned above, this is due to the flexural stiffness, and can be 

explained easily with the following example. Let assume an initially straight cable, with two 

rollers at its ends, and without any mass and any load. Then, applying a vertical distributed load 

and allowing the two rollers to move in the horizontal direction, it will deflect and assume a 

deformed shape. The span between the two rollers will have been decreased, and the cable will 

be subjected to traction indeed. This is the natural shape that it tries to achieve under that load: it 

is the same that happens for a catenary cable, with the only difference that the shape will be 

different because of the presence of the flexural stiffness. Now, let suppose to want to close the 

span between the two rollers, that means between the two ends of the cable: in order to do this, 

it’s mandatory to introduce an external horizontal force of compression. The smaller the span is 

wanted, the higher this force must be. 

This process is shown in Figure 5-2 for the kind of cable that was considered in the experimental 

tests. The cable has a total length of 5.52 m, that is equal to the initial span, when the cable is 

straight and doesn’t carry any load. One end is fixed, and the other is attached to a roller; the 

flexural inertia is considered constant, and equal to the IEEE recommended value. Applying the 

vertical dead load, considered as a concentrated force of 1.359 N at each of the 99 internal nodes 

of the cable, it will assume a deflected shape with a span of 5.26 m. This explains the traction 

forces generated in the model, since both ends are fixed; as a matter of fact, the traction is the 

reaction developed to avoid the motion of one end. Therefore, if the desired span is shorter than 

5.26 m, an external compression force will be require to move the roller; this is the case of the 

experimental tests, in which the desired span was 5.00 m. Conversely, if the desired span is 

bigger than 5.26 m, an external traction force will be needed. 
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Figure 5-2: Loading Steps 
 

If the desired span is much shorter than the one naturally assumed by the cable, the horizontal 

force can be so high, that the resultant of the initial traction and this force will assume the same 

direction of the introduced external force, that means compression in the cable. Therefore, the 

initial presence of traction or compression in the cable depends on its total length and on its span; 

this is equivalent to saying that it depends on the slackness ratio, defined as: 

�����	P�� =
�) − �%�	�%�	  

where �) is the total length of the cable. 

In particular, the support horizontal force was found to be in compression for slackness ratio 

bigger than 0.00275 (0.275%). For most of the analyses studied in this report, the slackness ratio 

is bigger than 0.00275, thus the cable is initially subjected to compression before the dynamic 

input. 
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5.2.2 Der Kiureghian’s Model 

For this model, as well as for Dastous’ one, a finite element approach using frame elements with 

a Lagrangian strain formulation is used to take into proper account the geometric nonlinearity of 

the system. This model makes use of classical beam formulation available in the library of the 

most common finite-element programs. The only requirement, as mentioned above, is the 

capability to account for large displacements. Conversely, mechanical nonlinearity stemming 

from interlayer slipping and consequent friction is neglected: thus, the flexural stiffness is 

assumed to be constant over the total length of the cable. 

For this model, the following steps have been used to set the initial shape of the cable. A straight 

cable of the required length is modeled with both its ends fixed. The weight of the cable is 

linearly applied as dead load, from zero to the full value, and the cable is allowed to deform. One 

end of the cable is then moved toward the other until the specified initial span length used in the 

experiments is achieved. The deformed shape of the cable in this position is computed: this shape 

is assumed to be the initial shape of the cable without any internal forces. It is particular 

noteworthy that removal the internal forces is typical of this model. As a matter of fact, 

considering a constant flexural stiffness for the cable, this value will be highly overestimated 

when the cable experiences big rate of curvature, actually causing large slippage and decrease in 

the interlayer friction. This effect is present in the motion of one end of the cable toward the 

other; due to the quite low bending stiffness of the cable, large deflection and, consequently, rate 

of curvature arises also for relatively small horizontal displacement. When making use of 

constant bending stiffness, this behavior of the real cable is completely lost. Therefore, the 

behavior of the model is more like the buckling of a beam, since the imposed displacement is in 

the same direction of the axis of the cable, and, having a constant flexural stiffness, it can be 

considered as a very slender beam. This means that, despite the vertical and horizontal 

displacements can be accurately evaluated, the internal forces will be highly overestimated, since 

they are computed by the product of the displacements times the flexural stiffness, that assumes 

an highly unrealistic value in this phase. 

In order to avoid the presence in the cable of unrealistic internal forces through all the static and 

dynamic analyses, found to be likely bigger than the total forces arising from the dynamic input, 

the better choice is to completely ignore them. The correctness of this assumption has been 
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validated observing the internal forces in the cable measured in the experimental tests: since they 

were found to be quite low, comparing to those generated during the dynamic motion, they can 

be neglected without losing accuracy of the solution. The cable with this shape is now placed on 

the supports with fixed ends and the reaction forces under the dead load are calculated. 

Nevertheless, it is to be noted that the vertical forces representing the dead load of the cable will 

generate an horizontal initial tension force at each support. As described hereafter, because of the 

uncertainty in the initial conditions of the cable in the experiments as well as neglecting the 

internal forces arising from the horizontal displacement of the two ends, this horizontal force as 

well as the cable sag will be somewhat different from the initial conditions observed in the 

experimental tests. 

5.2.3 Comparisons 

The difference between these two approaches is shown in Figure 5-3. 

Figure 5-3: Test #134, horizontal reaction for Der Kiureghian’s and Dastous’ 
model 
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The horizontal reactions for sine-start test #134 are represented. Positive values correspond to 

compression, and negative to traction. One model has been studied with Dastous’ loading step 

approach, and the other with Der Kiureghian’s one: both have been run with ABAQUS. The 

same comparison for sine-start test #138 is shown in Figure 5-4. 

Figure 5-4: Test #138, horizontal reaction for Der Kiureghian’s and Dastous’ 
model 

 

Again, positive values correspond to compression, and negative to traction. Also in this case, one 

model has been studied with Dastous’ loading step approach, and the other with Der 

Kiureghian’s one, and both have been run with ABAQUS. 

In both the two graphs, it can be noticed that the biggest difference between the two models is in 

the static part. As a matter of fact, Dastous’ model provides the dead load to the system from 0 to 

0.5 s, and from 0.5 to 1 s the two ends are linearly moved one toward the other until the desired 

span is reached. Both the loads are applied quasi-statically. After the static part, the sinusoidal 

displacements are applied dynamically, without removing the internal forces. Therefore, the 

horizontal reactions in the dynamic part have a component due to the static part: this is clear 
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observing that the reactions are oscillating around a value shifted from the zero. Conversely, Der 

Kiureghian’s model applies the dead load from 0 to 1 s on the already deflected and slack cable, 

in which all the internal forces due to the horizontal motion of the two ends, needed to reach the 

desired span, have been removed. In this case, the horizontal reactions generated in the dynamic 

part are oscillating around a value of initial traction, that is linearly achieved in the static part. 

This is the biggest difference between the two models. Dastous’ model, depending on the sag / 

span ratio and the flexural stiffness of the cable, can show initial compression at the beginning of 

the dynamic input. This can be easily understood reasoning on the shape and the constraint of the 

cable. Let assume an initial straight cable, with rollers at both ends; applying its own weight, the 

cable will assume a deflected shape with the two rollers moving one toward the other, until a 

certain span is reached. Obviously, since the rollers allow horizontal displacements, no 

horizontal reactions are present at the two ends. If a different span from that obtained is wanted 

to be imposed to the cable, this will be possible only applying additional horizontal forces at the 

two ends. The value of the forces will depend on the change in span: in particular, whether the 

span is smaller than that obtained under the own weight, compression forces will be required. 

Since the deflected shape assumed by the cable under its own weight depends on the flexural 

stiffness, the value of the horizontal force will depend on the stiffness of the cable. Conversely, 

the application of a vertical dead load on a cable accounting for geometrical nonlinearity will 

generate traction reactions. For Dastous’ model, if the traction due to the vertical dead load is 

smaller than the compression due to the horizontal displacements of the two ends, there will be 

initial compression at the beginning of the dynamic analysis. Conversely, since Der Kiureghian’s 

model deletes all the internal forces due to the horizontal displacements of the two ends, and 

provides only the application of the vertical dead load in the static part, obviously there will be 

traction at the beginning of the dynamic analysis. The importance of the initial traction or 

compression in the cable will be clear in the following discussions. 

The choice of showing two graphs for two different tests lays in the will of showing that the 

dynamic behavior is not directly influenced by the two different loading step models, but only 

indirectly, through the initial force discussed above. As a matter of fact, the two responses of the 

two models can be in-phase or out-of-phase. This doesn’t depend directly on the model, but on 

the frequency of the sinusoidal input, due to a change in the natural frequency of the cable. This 

will be discussed more deeply hereafter. 
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5.3 Initial Conditions 

The initial conditions of the cable, that means its initial shape and the inherent tension, are 

particular noteworthy for many reasons. First of all, as mentioned before, a cable having flexural 

rigidity and held between two fixed supports is a statically indeterminate system, since its 

horizontal support force cannot be determined from equilibrium considerations alone. Therefore, 

the initial shape of the cable and the consequent tension are not univocal, but depend on the 

loading process. Both of this aspect are absolutely non negligible, because of the nonlinearity of 

the system and its influence on the dynamic properties. As a matter of fact, the natural 

frequencies of the system depend on its stiffness, that depends indeed on the geometry. Despite 

it’s not completely correct speaking of natural frequencies for a nonlinear system, the same logic 

is valid for the frequencies of the system more likely to be excited. This means that the dynamic 

properties of the cable, and thus its response to the dynamic input, depend on its initial geometry, 

assumed under its own weight and with both ends fixed. 

Furthermore, also the initial inherent forces in the cable play an important role on its dynamic 

properties. As a matter of fact, since the value of initial compression can reach very high level in 

Der Kiureghian’s model, this can change the frequencies more likely to be excited. This is 

similar to what happens to a straight beam: when it’s subjected to a compression close to the 

critical buckling load, its natural frequencies decrease drastically. Therefore, since both the 

geometry and the internal forces of the cable before applying the dynamic input are unknown, 

and they have a large influence on the dynamic properties of the cable, specific studies are 

carried on about the sensitivity of the model to the initial conditions. 

5.3.1 Compression in the Cable 

First of all, it is to be noted that, due to the slackness ratio of the cable in most of the tests, the 

cable is often subjected to compression and not traction after the static step. This is particularly 

true when Der Kiureghian’s model is used, for the reasons explained earlier. As a matter of fact, 

the flexural stiffness of the cable in the static step is highly overvalued, and this turns into very 

large value of compression forces at the supports. As well as for Dastous’ model, the value of 

initial tension or compression depends on the configuration of the cable, more specifically on its 
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slackness ratio, thus is different for different tests. For some of the tests approached with Der 

Kiureghian’s model, this initial compression was found to be so high that was close to the critical 

buckling load of the equivalent beam: this means, it was close to the critical buckling load of a 

beam with double fixed ends, span equal to the total length of the cable, and second inertia area 

of the cross section equal to that assumed constant for the cable. Strictly speaking, the equivalent 

beam corresponds to the initially straight cable with constant flexural stiffness. For a beam, such 

a high value of compression causes a strong decrease in the natural frequencies: something 

similar is found to affect the cable. It’s not possible to fully develop a hand calculation of these 

changes for the cable, for two main reasons. First, as mentioned before, the cable doesn’t have 

natural frequencies, but either a range of them or frequencies more likely to be excited: thus, it’s 

not possible to reason about a specific value of frequency. Next, there’s no available literature to 

compute the variation due to the compression for slack cable with non negligible flexural 

stiffness; it is possible to find some formulas only for either straight beams or cables with 

negligible bending stiffness and supporting only tension loads. 

In the current discussion, it was decided to proceed with an approximate approach, applying the 

formula for straight beams to the frequencies extracted from the slack cable. As a matter of fact, 

the cable is believed to be closer to a straight beam that can experience bending and 

compression, than to a parabolic cable truss supporting only tension loads. Furthermore, when 

the cable is assumed to be straight and with a constant bending stiffness, it fully corresponds to a 

slender beam. Therefore, formulas for the influence of compression on the natural frequencies of 

a beam are used. Since natural frequencies for a geometrical nonlinear system don’t exist, it is 

mandatory to work on something different. It is found to be noteworthy considering the natural 

frequencies extracted from a finite-element analysis of the cable in its initial shape, with a 

constant bending stiffness. This approach neglects the variability of the flexural stiffness, as well 

as the change of shape during the motion, but the frequencies obtained can be considered 

belonging to the range of frequencies more likely to be excited; the bound values of this range 

being the natural frequencies of the cable in its slackest and tightest configurations, both 

considering constant flexural stiffness. The first three natural frequencies of the cable with 

constant bending stiffness, computed with a finite-element computer program, are: 8	 = 1.26 �I 8� = 4.28 �I 
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8� = 6.71 �I 
The formulas adopted to evaluate the influence of the compression are extracted (Blevins, 1979 

[3]): 

8�|56
78�|53
7
= �1 +

�|�8| ∙
R	�R���

	
�9

 

where R	 = 4.73, R� = 7.85 and R� = 10.99 for a clamped-clamped beam, �8 is the buckling 

load of the beam and � is the actual compression in the cable at the end of the static loading 

(found to be 554 N from the numerical solution). It is to be noted that positive values of � in the 

formula correspond to traction, therefore the compression has to be accounted for as negative: as 

a matter of fact, it reduces the values of the eigenfrequencies. For this case, the buckling load is 

evaluated for the cable in its initial straight position, with the constant flexural stiffness 

recommended by the IEEE guidelines [21]: 

�8 =
4H� ∙ 
3�� =

4H� ∙ 69900 ∙ 6492

5520� = 588 � 

Applying this method, the first three natural frequencies are found to be: 

8	|53���7 = 1.26�1 −
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4.73�
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= 3.5 �I 

8�|53���7 = 6.71�1 −
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∙
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= 6.1 �I 

As mentioned earlier, those cannot be considered as the natural frequencies of the system in a 

classical view, but this approach is useful to understand how the compression in the cable 

deriving from the static part can heavily affect the dynamic response of the system. 

The influence of the initial compression is shown in the following graphs. In Figure 5-5 are 

represented the horizontal reactions for the different values of initial compression in the cable, 

for the sine-start test #134. All the curves are obtained using the constant flexural stiffness. 
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Figure 5-5: Test #134, horizontal reaction for different initial compressions 
 

The value of initial traction equal to 65 N corresponds to the value obtained from the static 

procedure in Der Kiureghian’s model. The value of initial compression equal to 550 N 

corresponds to the value obtained from the static procedure in Dastous’ model. The value of 

initial compression equal to 50 N has been obtained introducing additional compression forces to 

the already deformed shape in Der Kiureghian’s model. Comparing the different response of the 

three curves, and considering that all the other parameters are the same for each of them, it’s 

clear the influence of the initial compression on the response. 

As discussed earlier, the high value of compression present in the cable changes its natural 

frequencies, thus the fixed frequency of the input can be more or less close to the natural one. 

According to this, the response of the cable can be subjected to a big amplification if its natural 

frequency is shifted due to the compression to a value close to the given frequency of the input. 

It can be observed, introducing some compression forces to Der Kiureghian’s model that the 

response is different, and in particular it’s reduced: it means that the natural frequency closer to 

the sinusoidal input has been shifted. When the initial compression gets big enough, the first 

natural frequency of the cable crosses the fixed frequency of the applied displacements, and it 
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can be seen that the reaction of the cable goes in-phase with the acceleration input. This 

phenomenon physically agrees with the response of a single degree of freedom oscillator under 

harmonic motion: it undergoes a phase shift of 180 degrees between the displacement and the 

applied force when the excitation frequency crosses its natural frequency. Thus, the fact that the 

reaction curve for the initial compression equal to 550 N is out-of-phase with the other responses 

is the evidence that the first natural frequency of the system has been crossed, due to the 

compression force. The same change in natural frequencies is observed in Figure 5-6. 

Figure 5-6: Test #130, horizontal reaction for Der Kiureghian’s and Dastous’ 
model 

 

This graph shows the horizontal reactions measured in a frequency-sweep test from 0.5 Hz to 2 

Hz. The black line represents Der Kiureghian’s model, in which the dynamic input begins with 

internal traction equal to 63 N, due to the vertical dead load representing the own weight of the 

cable, applied to the already deformed shape. The red line represents Dastous’ model, with an 

initial compression of 550 N, due to the traction generated by the vertical dead load applied to 

the straight cable, and the compression needed to move horizontally the two ends one toward the 

other. Both have been computed using a constant bending stiffness. 
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The response in Dastous’ model is always increasing with the increase of frequency of the 

excitation, showing that no natural frequencies are crossed. In Der Kiureghian’s response there’s 

a clear beat, showing that the frequency of the harmonic input is matching the natural frequency 

of the system. The beat consists of a big decrease of the horizontal reactions, due to the sum of 

its out-of-phase components: these components are the forces generated by the lumped mass at 

the end times the acceleration input at the same node, and the dynamic response of the cable. As 

mentioned earlier, below the first natural frequency of the system, the dynamic response is out-

of-phase with the input acceleration; therefore their sum turns out in a decrease of the total 

resultant reaction, since the two components are out-of-phase. The input acceleration increases 

its amplitude with the square of the frequency, since it is the second time derivative of the 

applied displacements; thus its shape is always increasing with the frequency. Conversely, the 

response of the cable fights this effect: therefore, the total horizontal reaction decreases when the 

response of the cable increases. The input acceleration is a fixed quantity, since it is given in 

input to the system. The resonance, when the excitation frequency matches the first natural 

frequency of the cable, affects only the cable response, amplifying it. Therefore, the beat is the 

biggest decrease in the total reaction, which corresponds to the biggest amplification of the cable 

response, summed with the out-of-phase acceleration input. Looking at this graph, the beat is 

around a frequency equal to 1.3 Hz. This agrees with the calculation of the first frequency of the 

cable with a constant bending stiffness equal to the IEEE recommendation, that was found to be 

equal to 1.26 Hz, in absence of internal forces. As a matter of fact, traction equal to 63 N seems 

to be a too small value to influence the natural frequencies of the cable. For Dastous’ model, the 

absence of beats shows that no natural frequencies are crossed. Since the presence of 

compression decreases the value of the natural frequencies, it means that the first natural 

frequency has been shifted from 1.26 Hz to something less than 0.5 Hz, which is the lowest 

frequency of the frequency-sweep input. This confirms the hand calculation of the new first 

natural frequency of the system affected by the internal compression that was found to be about 

0.3 Hz. 

The frequency-sweep test is very effective to understand the big influence of initial compression 

on the dynamic properties of the cable, resulting in meaningful changes of the natural 

frequencies. This aspect is even more important for two reasons. First, the initial compression in 

the cable can reach very important values in the cable, and it’s absolutely non negligible. As a 
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matter of fact, it depends on the model adopted, either Der Kiureghian’s or Dastous’ one, and on 

the type of flexural stiffness assumed for the cable. Next, the natural frequencies are shifted in a 

feasible range for electrical equipment. Since the motion applied to the two ends of the cable 

results from the ground motion filtered by the electrical equipment items, the frequency of that 

motion will have frequency content similar to the natural frequencies of the items, that are 

believed to lay between 0.5 and 10 Hz. Therefore, the cable design aims to avoid likely 

resonances for those frequencies. Using an unrealistic model, accounting for unfeasible 

compression forces resulting from the static loading, it is possible to lose completely the 

dynamic behavior of the cable, due to the shift of the eigenfrequencies. 

5.3.2 Central Sag 

Since the geometry of the system directly affects its stiffness, and thus its dynamic properties, 

the dynamic response of the cable can be significantly sensitive to its initial position. 

Furthermore, the shape of a cable having flexural rigidity and held between two fixed supports is 

statically indeterminate, and cannot be compared with the shape observed during the 

experimental tests, since unfortunately Dastous’ paper [4] doesn’t describe how the cables were 

shaped and put in their positions before starting the tests. Therefore, there’s an indeterminacy of 

the initial shape of the cable in the analyses. This is why a parametric study on the sensitivity of 

the cable to its initial shape is developed. This is applied only to test analyzed with Der 

Kiureghian’s model, because the initial shape is plugged in arbitrarily at the beginning of the 

second step without consequent internal forces. Therefore, a slightly different shape can be 

assumed for the test, without resulting in other changes. Conversely, in Dastous’ model every 

shape corresponds to a specific value of initial tension, thus changing the initial shape also the 

tension should be changed accordingly. 

The most meaningful parameter to be observed is found to be the central sag of the cable. 

Starting from the shape of the cable obtained through the static analysis under its own weight and 

with the linearly increasing motion of one end from the straight configuration to the desired span, 

the sag is shifted up and down, and the changes in the results are observed. Accordingly to the 

changes in the sag, linearly proportional changes are applied to all the nodes of the meshed cable, 

from a zero value for the two ends, to the biggest value at the middle point. The changes aren’t 

completely arbitrary, but the total length of the cable is also computed, to be sure that the change 
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of the sag doesn’t correspond to an unrealistic change in the total length of the cable. It is 

observed that a change of the central sag of 50 mm either up or down corresponds to a change of 

1% in the total length of the cable. Since an error of up to 2% can be addressed to a lack of 

precision in the measurement of the length of the cable in the experimental tests, values of 

change of 50 and 100 mm are used for the central sag. It is to be noted that these two values 

correspond to a change of respectively 1% and 2% of the sag / span ratio. Considering that the 

initial value of sag / span ratio is about 19%, the modified initial sags still belong to the feasible 

range for slack cables interconnecting electrical equipment items. 

Some results are presented hereafter. Figure 5-7 shows the shape assumed by the cable after 

applying the vertical dead load and moving the two ends horizontally to reach the desired span, 

measured for the sine-start test #135 (amplitude = 80 mm, frequency = 2 Hz). This shape, 

represented by the black line, is the same for all the sine-start and frequency-sweep test, since the 

configuration adopted is always the same. In particular, the cable is the 1796-MCM, with a total 

length equal to 5.52 m and a span equal to 5 m. The red line shows the different shape used to 

study the sensitivity of the response to the central sag, moving this down by 50 mm. It is to be 

noted that the scale on the two axes are different, thus the shape is only qualitatively. Figure 5-8 

shows the horizontal reactions measured for the sine-start test #135 (amplitude = 80 mm, 

frequency = 2 Hz). 
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Figure 5-7: Test #135, shape of the cable with the central sag moved down by 50 
mm 

 
 

Figure 5-8: Test #135 with the central sag moved down by 50 mm, horizontal 
reaction 
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The horizontal reactions graph shows that there is a very small sensitivity to the initial central 

sag of the cable. The blue line represents the horizontal reaction for the original shape of the 

cable, while the red line, which is superimposed to the blue, represents the horizontal reaction for 

the cable in the slightly changed deflected configuration. It is noteworthy that the test is studied 

with Der Kiureghian’s model, adopting the constant flexural stiffness. That is clear from the 

graph, where from 0 to 1 s there is a linear increase of traction, due to the vertical gravity load of 

the cable. The choice of using Der Kiureghian’s model is justified by the fact that it uses an 

already deformed shape of the cable without internal forces; therefore it is easy to change this 

shape. For short, all the comparisons for the same test with different changes on the central sag 

are presented in the Appendixes. Figure 9-1 shows the comparison between the original 

deformed shape of the cable, and a variation equal to 50 mm up for the central sag value. 

Everything is equal to that described earlier, but for the value of the central sag. Figure 9-2 

shows the horizontal reaction obtained with this new deformed shape of the cable. Also in this 

case, the two reaction time-histories are the same, that means that the dynamic response of the 

cable is not influenced by these values of difference in the initial central sag, either moved up or 

down. Finally, the results for a change of 100 mm up for the central sag are presented. As 

mentioned earlier, this is the biggest value of change studied, because otherwise it turns out into 

an unfeasible variation in the total length of the cable. In order to change the central sag without 

affecting the total length of the cable, it should be necessary to modify the span, but it is a fixed 

value known from the experimental setup. Figure 9-3 shows the shape assumed by the cable after 

applying the vertical dead load and moving the two ends horizontally to reach the desired span, 

in the original configuration and with a variation equal to 100 mm up for the central sag. Again, 

the scales of the two axes are different, thus the shapes are only qualitatively. For this new 

configuration, the horizontal forces are plotted in Figure 9-4, and compared with the original 

ones. In this case, there are slight differences between the horizontal reactions for the two initial 

configurations, but still very small. In particular, the general behavior is the same, and small 

changes are visible only for the peak values. 

Therefore, meaningful changes in the initial geometry of the cable turn out into negligible 

variations in the response of the cable: this means that the influence of the dynamic behavior to 

the initial geometry of the system is very small, even negligible. This can be explained thinking 

that the displacements experienced by the cable during the motion are order of magnitude bigger 
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than the possible uncertainties in the initial position of the cable. It is to be noted that all the 

above analyses have been modeled in ABAQUS, using Der Kiureghian’s model and constant 

bending stiffness. 

 

5.4 Parameters 

Since the cable dynamics is highly nonlinear, many parameters can address and affect the results. 

One of the most influencing parameter is the damping inherent the cable. It is practically 

impossible to predict the damping in the cable, which can be significant when the cable strands 

slide against one other under friction forces. Such damping would depend on the cable force and 

curvature at each location and would vary along the cable and in time. For this purpose, Noiseux 

[24] proposed a hysteretic damping model for cables, which is reported to well agree with 

experimental results and realistically describe the dissipation in the cable. Conversely, this class 

of model hasn’t found place in commercial programs up to now, therefore it is not possible to 

take into account this model for the scope of this study. Since accurate modeling of the damping 

is a complex issue and doesn’t belong to the scope of this study, it is decided to use an equivalent 

viscous type of damping that could be set to fit the experimental results. Furthermore, such type 

of damping is already available both in ABAQUS and FEAP, so that it is easier to proceed this 

way. 

The damping is modeled using single-degree-of-freedom viscous dashpot dampers connected to 

all nodes of the finite element cable model. It is noteworthy that the best way to model this 

damping is to link it only to the rotational degree of freedom. This is physically consistent, since 

the damping is directly related to the bending process which in turn is related to slipping of the 

layers one other. It should be observe, however, that damping is indeed a function of frequency 

and amplitude. Nevertheless, it is found that the simple approach used is adequate and lead to 

good accuracy in results, as shown by comparison with experimental tests. 

Another source of dissipation can arise from the Rayleigh damping that can be used to provide 

supplemental damping. Since damping in the cable stemming from the internal interlayer friction 

is already taken into account by the rotational velocity proportional dashpots, no additional 

Rayleigh damping is provided to the system. Nevertheless, some tests are run also including 
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some additional Rayleigh damping, just to understand its influence on the results and to check 

the validity of the assumption of neglecting it for most of the tests. 

Next, another parameter has to be mentioned, also if it’s not something directly regarding the 

physical issue of cable dynamics, but the computational method. One of the most common time 

integration method used for dynamic problems is the HHT-method [2]: in this study, it is used 

for the analyses run in ABAQUS. Since the system is highly nonlinear, solving each time step 

requires an iteration process, in this case being the Newton-Raphson method. This method 

consists of iteratively trying to solve the equilibrium equation reducing the residual forces: when 

the residual is less than a fixed value, the solution for that step is accepted, and the calculation 

shift to the next time step. ABAQUS lets the user choose between two different time stepping 

schemes. The first is the direct time stepping, which requires the user to explicitly define a fixed 

time step, that will be the increase of time between two subsequent solution instants. This direct 

user control over time stepping should be used only when the problem behavior is supposed to be 

well understood, or when the other option can’t easily handle the problem. The second is the 

automatic time stepping, when the choice of the most suitable time step to be used is left to the 

program. The scheme used by ABAQUS is based on the maximum force residuals over each 

iteration: by comparing consecutive values of these quantities, it determines whether the 

convergence is likely to be reached in a relatively small number of iterations. Thus, the load 

increment is adjusted only if convergence is deemed to be unlikely, otherwise it will continue 

with the iteration process. Basically, the automatic time stepping is based on the concept of half-

step residuals: the time stepping operator defines the velocities and accelerations at the end of the 

step in terms of displacement at the end of the step and conditions at the beginning of the step. 

Equilibrium is then established at the end of the step, thus ensuring an equilibrium solution at the 

beginning and end of any individual time step. The main problem is that this procedure doesn’t 

guarantee equilibrium throughout the step; therefore another control is required in order to apply 

the automatic time stepping. The time step control consists then of measuring the force residuals 

at half step, by using the integration operator, together with the solution obtained at the end of 

the step, to interpolate within the time step. If the maximum entry in this residual vector is bigger 

than a user-specified tolerance, the time step is considered to be too large and is reduced. If the 

maximum half-step residual is sufficiently smaller than the user-specified tolerance, the time step 

will be increased by an appropriate factor for the next increment; otherwise, the time step is 
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considered adequate. This user-defined value governing the process is called “half-step residual 

tolerance”. Therefore, this parameter governs the dimension of the time steps adopted, and 

consequently the accuracy of the solution obtained by the time integration method. Some tests 

with different values of the half-time residual tolerance are analyzed, to understand the 

sensitivity of the time integration method adopted to this parameter. Usually, the stability of the 

solution decreases when the nonlinearity increases; thus, for cable dynamics the accuracy of the 

time integration method is one of the most important aspects. 

5.4.1 Rotational Lumped Damping 

As mentioned before, in the case of flexible conductors the determination of damping is very 

difficult, complicated by the fact that it’s a function of both amplitude and frequency of the 

input, therefore it may also vary during the motion itself. Since accurately evaluating all these 

aspects of damping is not a purpose of this study, it is decided to proceed with an approximate 

approach, thus considering the damping represented by lumped dashpots placed at every node of 

the cable. Since the damping is to be applied to every node, it is chosen to use a single value of 

damping by unit length, denoted by �0, which is divided equally among all the nodes for a cable 

of a given length. After calibration, the value for the cable subject to study is found to be: �0 = 10 � ∙ �  for the 1796-MCM �0 = 35 � ∙ �  for the 4000-MCM 

In this model, distributed viscous damping is achieved by placing a dashpot at each node of the 

finite element model: viscosity is assumed to be proportional to the rotational velocity, since it is 

the best way to model a realistic damping depending on the curvature in the cable. Despite this 

model may not be realistic in describing energy dissipation by internal friction forces, it provides 

a preliminary estimation of the importance of the damping effect on the dynamic response of the 

cable. To apply this equivalent rotational damping to each node of the cable, the value by unit 

length is multiplied times the total length of the cable, and then divided by the number of the 

nodes of the mesh. For the cable 1796-MCM, adopted in the analyses, this value is: 

10 ∙
5

100
= 0.5 � ∙� ∙ � 

The influence of this equivalent damping on the dynamic response is first studied on the sine-

start test #137: two different analyses are conducted with and without this equivalent damping. 
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Figure 5-9 shows the horizontal reactions for the two different analyses. Both are based on Der 

Kiureghian’s model with constant bending stiffness, and are run in ABAQUS. 

Figure 5-9: Test #137, horizontal reaction with and without equivalent dashpots 
 

It is seen that there are no significant differences between the two models. This fact involves two 

aspects. 

First, this is consistent with the small rotational velocities present in the cable: since the 

velocities are small, the damping proportional to them doesn’t affect the solution. Next, this 

presents one of the limit of this approach: since the equivalent rotational damping doesn’t affect 

absolutely the solution, it means that it doesn’t represent in a realistic way the internal damping 

in the cable. This can be better shown in Figure 5-10, where are represented the horizontal 

reactions for frequency-sweep test #130, for the original value of equivalent rotational damping, 

and for a value multiplied by 100 times. This analysis is also based on Der Kiureghian’s model 

with constant flexural stiffness, and has been modeled in ABAQUS. 
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Figure 5-10: Test #130, horizontal reaction for different values of equivalent 
damping 

 
Again, this kind of equivalent damping doesn’t have any influence on the dynamic response: 

therefore, this model doesn’t have the capability of accounting for the internal damping of the 

real system. One possible further development of the study could be the implementation of a 

more realistic damping behavior, with the capability of considering the damping due to the 

frictional interlayer forces. 
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during time, since it depends on the elastic or plastic state of the material: thus, being the 

Rayleigh factors fixed, the critical damping fractions will change too, according to the state of 

the material. This is why, when the problem is nonlinear, most of the finite-element computer 

programs allow the direct use of the mass damping factor: the stiffness damping factor is 

interpreted as creating visco-elastic behavior in which the viscosity is proportional to the 

elasticity, which gives exactly the stiffness proportional damping effect defined above for the 

linear case. It is to be noted that such an approach is very limited and approximated, especially 

for highly nonlinear systems. 

In the following analyses, since the stiffness matrix of the system varies continuingly depending 

on the variable bending stiffness and the geometry of the cable, it is impossible to set the 

Rayleigh factors to achieve a certain critical damping, but it would change during motion, 

assuming very different values. Furthermore, the Rayleigh damping is based on the assumption 

of setting a critical damping ratio for a given mode: being the cable dynamics highly nonlinear, 

there are no given modes, and the basic assumption of Rayleigh damping cannot be satisfied. 

Because of all these reasons, and being rotational velocity proportional lumped dashpots 

available in both ABAQUS and FEAP, it is decided to completely neglect Rayleigh damping for 

most of the tests. For the sake of completeness, some tests are modeled also taking into account 

Rayleigh damping, just to see its influence on the response and to check the validity of the 

assumption of neglecting it. When using it, the procedure to set the two factors is the following. 

The given mode is assumed to be the first mode evaluated with a finite-element program, for the 

cable in its initial configuration, that means after the static steps, and without internal forces. The 

critical damping ratio is assumed to be 10%, evaluating the stiffness matrix for the elastic 

system: this is computed with the cable in its initial shape, after the static steps, and using the 

constant bending stiffness value extracted from the IEEE guidelines recommendations. Since 

only the first natural frequency is meaningful for the frequency content input used, the two 

parameters are set on the same frequency: this is equal to 1.26 Hz, as calculated earlier. The 

calculation is the following: 

� = 0.1
2 ∙ !2H ∙ 1.26"�
2 ∙ !2H ∙ 1.26" = 0.7917 

K = 0.1
2

2 ∙ !2H ∙ 1.26" = 0.0126 
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Figure 5-11 shows a comparison between the horizontal reactions obtained either considering or 

neglecting the Rayleigh damping, with the two parameters calculated above. The presented test 

doesn’t belong to those experimentally tested, but is developed just for the analytical study: the 

sinusoidal input has an amplitude equal to 100 mm and a frequency equal to 0.6 Hz, the 

configuration of the cable is the same as for the other sine-start tests. Its ID is sine-start test #106. 

Both the models are considering also the same equivalent rotational damping. All the presented 

analyses are submitted in ABAQUS, and are based on Der Kiureghian’s model with constant 

bending stiffness. 

Figure 5-11: Test #106, horizontal reaction with and without Rayleigh damping 
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part. This numerical disturb ends after some steps, and then the two curves are superimposed. It 
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rotational damping will be considered, since it’s the only form of damping that has a physical 

explanation. 

5.4.3 Half-Step Residual Tolerance 

Since the highly nonlinear behavior of cables subjected to dynamic input, and the uncertainties 

regarding this kind of problem, it is decided to use the automatic time stepping for the analyses 

run with ABAQUS. As a matter of fact, before running the analyses there is no idea about what 

could be an adequate value of time step in order to achieve an accurate and stable solution. 

Therefore, the choice of automatic time stepping can lead to more stable results for the first 

analyses: then, once better understood the problem of cable dynamics and all its issues, the time 

steps computed by the program can be observed and an order of magnitude for the most suitable 

time stepping can be extracted. This aspect is particularly important, since the time integration 

method adopted by ABAQUS is already known not to be extremely accurate for highly nonlinear 

dynamic systems, as mentioned earlier. Conversely, FEAP doesn’t provide the choice of 

automatic time stepping, but the better accuracy of the time integration method lets us think that 

a sufficiently stable and accurate solution will be obtained using a relatively very small time 

steps: the order of magnitude of the time steps can be evaluated by comparison with those used 

by ABAQUS for the same problems. In ABAQUS, since using the automatic time stepping, the 

accuracy of the solution is based on the maximum force residuals over each iteration, whose 

comparison on two consecutive values determines whether the convergence is likely to be 

reached in a relatively small number of iterations. 

All the automatic time stepping scheme is based on the concept of half-step residuals. Since the 

time stepping operator defines the velocities and accelerations at the end of the step in terms of 

displacement at the end of the step and conditions at the beginning of the step, the equilibrium is 

established at the end of the step, thus establishing an equilibrium solution at the beginning and 

end of each time step. The main problem of this procedure consists of not ensuring equilibrium 

throughout the step: therefore another control is needed to guarantee sufficient approximate 

equilibrium for the entire solution path. The time step control consists then of measuring the 

force residuals at half step: if the maximum entry in this residual vector is bigger than a user-

specified tolerance, the time step is considered to be too large and is reduced, otherwise, if the 

maximum half-step residual is sufficiently smaller, the time step is considered adequate. This 
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user-defined value governing the process is called “half-step residual tolerance”. Therefore, this 

parameter governs the dimension of the time steps adopted, and consequently the accuracy of the 

solution obtained by the time integration method, that is one of the most important issues for 

cable dynamics, since typically the stability of the solution decreases when the nonlinearity 

increases. The half-step residual tolerance has dimensions of force, and is usually chosen by 

comparison with typical actual force values, either applied forces or expected reaction forces. 

Value of half-step residual tolerance for obtaining reliable results can be very different. If the 

half-step residual tolerance is 1/10 of the forces, the solution will be highly accurate for elastic 

cases with little damping. In problems where considerable plasticity or other forms of dissipation 

are expected to be present and damp out the high frequency response, a tolerance this restrictive 

is not necessary. If the half-step residual tolerance is the same order of magnitude of the forces, 

the solution is moderately accurate for elastic cases with little damping and highly accurate for 

problems including plasticity or other damping effects. If the half-time step residual tolerance is 

about 10 times the forces, the solution is probably not sufficiently accurate for elastic problems 

with little damping, but could be still quite good for problems with dissipative effects. 

Furthermore, the half-step residual moment tolerance is the half-step residual tolerance times the 

characteristic element length calculated for a problem.  Obviously, suitable values for the half-

step residual tolerance depend on the unit adopted for the problem and plugged in the program. 

Since the units adopted for the problem were N, mm, s and the geometry of the problem, the 

order of magnitude of the forces generated in the problem is up to 1e5 N. Thus, different tests are 

submitted with values for the half-step residual tolerance in a range of 1e3 to 1e7 N. It is 

noteworthy that, since this residual parameter governs the time stepping adopted and the number 

of iterations required over each time step, the use of a very small value will ensure an accurate 

solution, but will lead to a very large number of steps and iterations to achieve it. Thus, the user 

must decide which value is most suitable to guarantee a sufficient accurate numerical solution, 

without requiring a too big number of calculations and a too heavy computational effort to the 

program. 

In addition, the user must provide the value of the maximum allowable time step: this will be the 

time step that the program will try to use in the first iteration, before computing the residual. 

Three factors should be considered when selecting this value: the rate of variation of the applied 

loading, the complexity of the nonlinear damping and stiffness properties, and the typical period 
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of vibration of the structure. Usually, a maximum increment equal to 1/10 of the first period of 

the structure is a good rule of thumb for obtaining acceptable results. Some tests with different 

values of the half-time residual tolerance have been analyzed, to understand the sensitivity of the 

time integration method adopted to this parameter. Figure 5-12 shows the horizontal reaction for 

two different values of the residual tolerance. The test presented doesn’t belong to those 

subjected to laboratory experiments, but has been developed just for analytical studies: the ID is 

sine-start test #106. The harmonic input has an amplitude equal to 100 mm, and frequency of 0.6 

Hz. The analysis is run in ABAQUS, using Der Kiureghian’s model and accounting for constant 

flexural stiffness. 

Figure 5-12: Test #106, horizontal reaction for different residual tolerance values 
 

The blue curve corresponds to a given value of 1e5 N for the residual tolerance. Since the biggest 

peak of horizontal reaction is about 350 N, this residual tolerance value doesn’t ensure a priori an 

high accuracy of the solution. The red curve represents a smaller value of residual tolerance, 

equal to 1e2 N: this is intend to be about 1/10 of the biggest force in the system, that corresponds 

to highly accurate solutions. No difference between the two curves is visible. This means that 
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both the two values allow obtaining stable and highly accurate solutions. Therefore, the bigger 

value is suitable for this kind of analyses with these inputs, and it can be used without the risk of 

unfeasible results. Since smaller values of residual tolerance require bigger computational 

efforts, in the following proceedings a half-step residual tolerance equal to 1e5 N or less will be 

adopted. 

 

5.5 Element Formulation 

Beam theory is the one-dimensional approximation of a three-dimensional continuum, resulting 

under the slenderness assumption that the dimensions of the cross-section are small compared to 

typical dimensions along the axis of the beam [30]. The axial dimension must be interpreted as a 

global dimension and not the element length, such as the distance between supports, the distance 

between significant changes in cross-section, or the wavelength of the highest vibration mode of 

interest. In out model a beam element is a one-dimensional line element in two-dimensional 

space that has stiffness associated with deformation of its axis. These deformations consist of 

axial stretch and curvature change (flexural bending): being in a two-dimensional space, torsion 

is not taken into account. Beam formulations can also offer additional flexibility associated with 

transverse shear deformation, but this aspect is negligible for slender beam, such as cables. The 

main advantage of using beam elements is that they are geometrically simple and with few 

degrees of freedom: this is achieved by assuming that the element deformation can be fully 

estimated from variables functions of position along the beam axis only. Thus, the key issue is to 

judge whether such one-dimensional modeling is appropriate. The fundamental assumption used 

is that the beam section cannot deform in its own plane. This assumption should be carefully 

considered using beam elements especially for cases involving large amounts of either bending 

or axial forces of non-solid cross-sections such as cables. A possible different choice consists of 

modeling the entire cross-section with shell elements, in order to take into account the in-plane 

deformations of the cross-section, but this means losing the simplicity of a one-dimensional 

approach for the element. After evaluating different options, the choice of beam element is 

deemed the best one, together with the use of a refined mesh; that means modeling the cable with 

a big number of elements. Beam elements are implemented for small or large displacements and 
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large rotations with small strains: this second option is used to properly take into account the 

geometrical nonlinearity of the cables. 

For dynamic problems, also the rotary inertia of the beam cross-section plays a role: it is usually 

insignificant for slender beam structures, except for twist around the beam axis, but it is neglect 

in the following analyses, since they are two-dimensional. For Timoshenko beams the inertia 

properties are calculated from the cross-section geometry: the rotary inertia associated with the 

torsional mode is used for all rotational degrees of freedom. Different beam formulations are 

employed in ABAQUS, thanks to a vast library, and their differences are discussed below. For 

the analyses in FEAP, a specific beam formulation for large displacements and rotations with 

exact energy is used, since it has the capability to be handled by the energy and momentum 

conserving algorithm implemented in the program. 

5.5.1 Timoshenko Linear Formulation 

Timoshenko beams [29] allow for transverse shear deformation, thus can be used for thick as 

well as slender beams. For beams made from uniform material, this theory can provide useful 

results for cross-sectional dimensions up to 1/8 of typical axial distances or the wavelength of the 

highest natural mode that contributes significantly to the response. All the cable subjected to 

study are characterized by this dimensions, thus the Timoshenko theory is completely valid and 

provides adequate accuracy. The response of the cables is characterized mostly by the bending 

behavior than the transverse shear one, thus the Timoshenko theory is not necessarily required, 

but it is employed for these analyses because it provides the same efficiency of the Euler-

Bernoulli and has no additional disadvantages. The transverse shear behavior of Timoshenko 

beams is assumed linear elastic with a fixed modulus and, thus, independent of the response of 

the beam section to axial stretch and bending. As mentioned before, since the bending behavior 

of the cable predominates the transverse shear due to the slenderness of the beam, there’s no 

need of accuracy in the shear stiffness definition. The Timoshenko beams can be subjected to 

large axial strains. The linear Timoshenko beam elements use a lumped mass formulation with a 

1/2, 1/2 distribution, while the quadratic Timoshenko beam elements in dynamic procedures use 

a 1/6, 2/3, 1/6 distribution: due to the very refined mesh used for modeling the cable, the lumped 

mass formulation is deemed to be sufficiently accurate. 
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5.5.2 Euler-Bernoulli Cubic Formulation 

In order to check the importance of both transverse shear deformation and consistent mass 

formulation, some tests with a different beam formulation are analyzed. Instead of using a 

Timoshenko linear formulation, the Euler-Bernoulli cubic formulation is chosen [16]. These 

elements do not allow for transverse shear deformation, that means plane cross-sections initially 

normal to the axis of the beam remain plane and normal to it. This formulation is adequate only 

for modeling slender beams: the cross-sectional dimensions of the beam should be small 

compared to the significant distances along its axis. Typically, for beams made of uniform 

material the cross-section should be less than 1/15 of significant axial distances, in order to 

consider negligible the transverse shear flexibility: this ratio is usually called slenderness ratio. 

The geometry of the cable completely satisfies these requirements, therefore the Euler-Bernoulli 

formulation can be successfully used. The Euler-Bernoulli beam elements use cubic interpolation 

functions, which guarantee reasonable accuracy for cases involving distributed loading along the 

beam, such as the own weight of the cable, considered as a dead load. Therefore, they are well 

suited also for dynamic vibration studies, where the inertia forces provide additional distributed 

loading. The cubic beam elements have the capability of small-strain and large-rotation analysis, 

thus can successfully handle the geometrical nonlinearity of cable dynamics. They also use a 

consistent mass formulation, unlike the Timoshenko linear formulation. This should lead to an 

even better accuracy for the mass matrix. 

5.5.3 Hybrid Formulation 

A third possibility in ABAQUS is to use hybrid formulation elements [17]. The hybrid beam 

elements are designed to handle very slender situations, where the axial stiffness of the beam is 

very large compared to the bending stiffness. To do so a mixed method, where axial force is 

considered as an independent unknown, is required. For the Timoshenko theory hybrid beams, 

the transverse shear forces are also treated as independent unknowns. Hybrid beam elements are 

designed for use in cases where it is numerically difficult to compute the axial and shear forces 

in the beam by using common finite element displacement method. These problems usually arise 

for highly geometrically nonlinear analysis, when the beam undergoes large displacements and 

rotations and is very rigid in axial and transverse shear deformation: this is the case of a long 

flexible cable. More deeply, in such cases slight differences in nodal positions may generate very 
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large forces, causing large motions in other directions. This difficulty can be overcome by hybrid 

elements by using a more general formulation, treating the axial and transverse shear forces in 

the elements as primary variables, along with the nodal displacements and rotations. It is to be 

noted that this formulation makes these elements more computationally expensive, but they 

generally converge much faster for large beam rotations and, therefore, are more efficient 

overall. 

5.5.4 Comparisons 

Some comparisons between the different formulations adopted for the element constituting the 

cable are presented in Figure 5-13. The vertical axis shows the horizontal reactions measured for 

the frequency-sweep test #130, processed with ABAQUS using Der Kiureghian’s model and the 

constant bending stiffness. For the sake of completeness, the horizontal reactions represented are 

only those generated in the dynamic part, without considering the traction due to the vertical 

dead load applied with a quasi-static process. This has been done, since the different element 

formulation was supposed to eventually only affect the dynamic part, but not the static one: for 

the static one, each of them is suitable to obtain trustworthy results. 
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Figure 5-13: Test #130, horizontal reaction for different element formulations 
 

The three curves, each representing a different formulation for the elements, are completely 

superimposed. This means that each of them is suitable to describe the cable dynamics, and to 

account for all the variables governing this kind of problem. As a matter of fact, the shear 

deformation is absolutely negligible in the cable that is an extremely slender structure. 

Furthermore, the axial force in the cable doesn’t affect directly the node displacements of the 

elements, but its influence is limited to the change of eigenfrequencies. Thus, the use of hybrid 

formulation elements doesn’t improve the solution with respect to the more classical either 

Timoshenko linear elements or Euler-Bernoulli cubic elements. In the next analyses, there is no 

difference considering one or another among these element formulations: they are all suitable for 

this kind of configuration, with these harmonic inputs. 

 

5.6 Time Integration Method 

Cables experience very large deformations and non negligible changes in geometry varying with 
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-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0,2

0,25

0,5 0,8 1,1 1,4 1,7 2

[kN]

[Hz]

Horizontal Reaction

Timoshenko Linear Formulation

Euler-Bernoulli Cubic Formulation

Hybrid Formulation



 

128 

method. Since most of usual structural loading are in the field of nonlinear cable dynamics, a 

method that can adequate address this particular class of problems must be used. For a dynamic 

problem, the general finite-element problem described by the equilibrium equation must be 

extended to a second-order problem taking into account inertial effects. This requires a time-

stepping algorithm capable to calculate the solution from the beginning of the time step to the 

end of it. One of most widely spread time-stepping schemes used in commercial finite-element 

programs is the implicit Newmark-Beta algorithm [2]. It is a particular sub-case of the general 

Newmark family of algorithms [23], but it’s not completely suitable for cable dynamics for many 

reasons. First of all, this family of algorithms usually fails to conserve total angular momentum 

for nonlinear systems; since the cable elements are subjected to non negligible angular motion, 

this would jeopardize the accuracy of the results obtained. Next, the axial stiffness in the cable in 

the dynamic regime leads to spurious high-frequency oscillations that totally contaminate the 

response of the system. To limit such effects, many algorithms have been devised to incorporate 

high-frequency numerical dissipation. One of the most popular schemes is the HHT-alpha 

method [2], but it also fails to conserve angular momentum and energy. 

A time-stepping scheme preserving angular momentum has been presented by Simo [27], and 

it’s implemented in the finite-element program FEAP. It’s highly recommended for adequately 

treating cable dynamics problems. Another example of its applications to seismic interaction in 

interconnected substation equipment has been presented by Der Kiureghian [10]. As pointed out 

by many authors, when this conserving algorithm is to be used for cable dynamics, it requires 

light numerical damping, in order to avoid the high-frequency oscillation discussed above. This 

slightly compromises the conservation of total energy, but it turns out to be acceptable. 

Recommended values for setting the algorithm parameters accordingly found to be adequate in 

the presented simulations. 

5.6.1 HHT-alpha Method 

ABAQUS provides the so-called Hilber-Hughes-Taylor-alpha general direct-integration method 

[2], which is an extension of the trapezoidal rule. This operator is implicit, that means that the 

integration operator matrix must be inverted, and a set of nonlinear dynamic equilibrium 

equations must be solved simultaneously at each time increment: this is done iteratively using 

Newton's method. This equation solving process is very expensive, and it is increasingly difficult 
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to obtain a solution since the equations are highly nonlinear. Conversely, it is to be noted that 

nonlinearities are usually more simply taken into account in dynamic situations than in static 

ones, since the inertia terms provide numerical stability to the system. This can guarantee the 

success of the method in all but the most extreme cases. In the context of nonlinear equations it 

isn’t possible to establish stability results for integration operators, but nevertheless the linear 

stability results provide an approximate indication of the properties of the integration method 

also for nonlinear systems. One of the principal advantages of the Hilber-Hughes-Taylor 

operator is indeed that it is unconditionally stable for linear systems; this is an indication of a 

certain form of stability also for nonlinear and highly nonlinear systems. 

5.6.2 Energy-Conserving Algorithm 

The dynamic analysis of a cable with large displacements and rotations is a highly nonlinear 

elasto-dynamic problem, that has no known analytical solution, and for such a problem even a 

numerical solution is challenging. During the dynamic response, whenever the cable is fully 

stretched the axial stiffness dominates the cable behavior and significant high frequency effects 

are generated. With finite element spatial discretization, these high frequency effects may give 

rise to errors and instability in the numerical computations. Under these conditions, the 

Newmark time integration method [23] does not lead to either stable or accurate results. 

Furthermore, the classical Newmark family of algorithms with their variants usually fails to 

conserve total angular momentum for nonlinear dynamics. Since the angular momentum plays a 

big role on cable dynamics, this is a significant lack. 

In order to overcome this lack, an algorithm that preserves the conservations law has been 

presented by Simo et al [27]. FEAP provides a modified version of this algorithm that, by 

controlling parameters, introduces numerical damping to stabilize the computations while only 

slightly affecting on the conservation of energy. Experience showed [10] that this algorithm with 

parameters of � = 0.55 K = 0.5 # = 1 

and time step 

Δ( = 0.005 � 
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works successfully for the cable dynamics problem. For the sake of completeness, it must be 

noted that parameter values of � = 0.5 K = 0.5 # = 1 

correspond to the energy-conserving algorithm with no numerical damping. 

5.6.3 Comparisons 

The two time integration methods discussed above have been compared on the frequency-sweep 

test #130. Their horizontal reactions are shown in Figure 5-14. The present analysis is processed 

in FEAP, since it implements both the HHT-alpha time integration method and an energy-

conserving algorithm. Dastous’ model with variable bending stiffness is adopted, in order to 

account for both geometrical and material nonlinearities, that turn out into a higher global 

nonlinearity, likely to undergo unstable solutions. 

Figure 5-14: Test #130, horizontal reaction for different time-integration methods 
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The two solutions don’t show any significant difference. Both the two methods have the 

capability of getting reliable and accurate solutions for these dynamic problems. Therefore, 

ABAQUS is as suited as FEAP for treating cable dynamics, even if it implements only the HHT-

alpha method. The slight dissipation of energy for the two methods is the same, and doesn’t 

represent a big lack of accuracy for these analyses, involving a relatively small time period. 

 

5.7 Convergence of Solution 

As mentioned earlier, being the cable dynamics highly nonlinear, it’s not possible to define 

conditional or unconditional stability. Therefore, it isn’t possible to fix a time step small enough 

to ensure a stable and accurate solution. Different time step must be used, and by their 

comparison a qualitative evaluation of the stability of the solution can be done. First of all, 

judging the results obtained, it’s possible to see if they show sudden and very large amplification 

from one step to another, that could be symptom of numerical instability. It is noteworthy that 

it’s more important to check the forces than the displacements: this is due to the fact that the 

finite-element program works with the displacement method. Thus, the primary unknowns 

solved by the program are displacements, while forces are built from those in a post-process: this 

means that displacements will be always more accurate than forces. 

This study of accuracy is not done directly on the dynamic problem, but on the static one. This is 

due to different reasons. First of all, as mentioned above, the automatic time stepping is adopted 

for the dynamic solution, thus the convergence and the accuracy are left to the choice of the half-

step residual tolerance, while the most suitable time step is computed by consequence. 

Furthermore, setting on purpose too big time steps, in order to obtain a non accurate solution, 

will require a very large of iteration by the program, because it will try unsuccessfully to achieve 

a convergence: therefore, the solution of this problem will require a very big computational 

effort. This is why this study is carried on the static part only. It is to be noted that nevertheless, 

if the solution is not accurate and unstable in the static part, it will be even less accurate for the 

dynamic part, because the affection due to the high geometrical as well as mechanical 

nonlinearity is more important than the improvement due to the activation of the inertia forces. 
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5.7.1 Time Stepping 

The influence of time stepping on the stability of the solution obtained is studied for the static 

part common to all the sine-start test, since they present the same configuration of the cable 

(same own weight, same total length and span). It is decided to focus on the static part for two 

reasons. First, if the time stepping is not suitable to find a stable solution for the static part, the 

dynamic part of the analysis will be affect by consequence, since it follows the quasi-static 

loading procedure. Second, a dynamic analysis with a non suitable time stepping will require a 

lot of iterations for each step, trying to achieve the equilibrium: therefore, it requires a very big 

computational effort, turning in complex analyses and time wasted. 

The comparisons are processed separately for the HHT-alpha time integration method 

implemented in ABAQUS, and the energy-conserving algorithm implemented in FEAP, because 

different time integration methods could need different time stepping. It is noteworthy that in a 

quasi-static procedure the analysis is calculated for equivalent time steps: the total load is 

meshed in sub-steps that are considered as time just for the sake of simplicity. In this case, the 

total period of the static analysis is supposed to be 1 s, applying the vertical dead load from 0 to 

0.5 s and linearly moving horizontally the two ends from 0.5 to 1 s. This is valid both for 

Dastous’ and Der Kiureghian’s model, since the static part is the same: the only difference 

consists after that part, either in removing or not the internal forces before applying the harmonic 

input. Therefore, the same discussion made for the number of steps in a static analysis is valid 

for the dimension of the time steps in a dynamic one. 

Figure 5-15 shows the horizontal reaction measured in the static part of each sine-start and 

frequency-sweep test for the 1796-MCM cables, solved in ABAQUS with the HHT-alpha 

method. 
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Figure 5-15: ABAQUS static part, horizontal reaction 
 

It is to be noted that the application of the vertical dead load doesn’t generate big deflections and 

displacements, thus also a small number of steps is sufficient to achieve the equilibrium. 

Conversely, when the horizontal displacements are applied at the two ends of the cable, big 

vertical displacements and curvatures are involved. This turns out into high nonlinearity, and 

requires a larger number of steps to follow the equilibrium path of the system. As a matter of 

fact, using only 20 steps for the whole static analysis, the equilibrium can’t be achieved for the 

first step after applying the horizontal displacements, and the solution is lost. Increasing the order 

of magnitude of the steps, it is possible to achieve an equilibrium position for the system, even 

when very big sudden displacements and high nonlinearities are involved. Figure 5-16 presents 

the same study for the energy-conserving algorithm implemented in FEAP. 

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

0 0,25 0,5 0,75 1

[kN]

[s]

Horizontal Reaction

20 time steps

200 Time Steps

2000 Time Steps



 

134 

Figure 5-16: FEAP static part, horizontal reaction 
 

It is to be noted that the value of the horizontal reactions are different from the ABAQUS graph, 

since in this model the variable bending stiffness is adopted: this was chosen in order to increase 

the possible sources of nonlinearity in the system. In this case, the total 20 steps for the static part 

are not sufficient, and the solution can’t be obtained after applying the horizontal displacements, 

but it can be seen that there is a lack of accuracy also for the vertical dead load itself. This means 

that a larger number of steps should be required also for the first 0.5 s. 

Generally, increasing by an order of magnitude the adopted time steps, a stable and accurate 

solution can be found. This study has a big importance, since a large number of time steps turns 

into a heavier computational effort, and bigger times required for the analysis. It is important to 

maximize the efficiency of the solution method, by choosing if possible the smallest number of 

steps suitable to find an accurate and stable result, in order to minimize the numerical 

calculations the program has to do. 
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5.8 Modeling of Conductor Only 

In order to set a reliable analytical benchmark to model future experimental tests of electrical 

equipment items interconnected by flexible conductors, it is important to match the results 

obtained for the conductor only [4]. The geometrical as well as the material nonlinearities of the 

system arise from the cable, while the two equipment items, whatever they consist of, doesn’t 

require specific studies. Conversely, it’s very important to develop deep studies on the cable 

dynamics, to understand its behavior and accounting for all the possible different aspects 

regarding its motion. Since some experimental tests are already available from Dastous’ testing 

campaign [4], supplying results for a configuration of cable common in electrical substations 

undergoing a harmonic motion for a large range of amplitudes and frequencies, they are used as 

a reference for the finite-element model. The parameters and the data for all these tests have been 

presented earlier in the previous chapter. Since the two cable tested (1796-MCM and 4000-

MCM) differ only for some parametric value, there is no meaningful difference in modeling 

either one or the other: thus, it is decided to model only the 1796-MCM cable configuration, due 

to a bigger number of experimental tests available. All the discussions about the various issues 

bound to the modeling, presented earlier in this chapter, are used to refine reliable models, 

describing the experimental tests. 

It is decided to develop two different models for every test. The first is based on Dastous’ 

approach, with the dynamic input suddenly following the quasi-static horizontal displacement of 

the two ends, without removing the internal forces. Furthermore, the variable bending stiffness is 

used to account for material nonlinearity and provides an accurate description of the dynamic of 

a cable made of wrapped strand undergoing large rotations. All the data necessary for defining 

the variable bending stiffness for the 1796-MCM cable are presented in Table 4-4. The model is 

implemented in FEAP, in order to take advantage of the energy-conserving time integration 

method available, that leads to more stable solution also when high nonlinearities are involved. 

As well as for the time integration algorithm, the element formulation is a particular energy-

conserving one with the capability of undergoing large displacements and rotations: otherwise, 

using any other formulation, the advantages of the time integration method would vanish. It is to 

be noted that this kind of algorithm doesn’t require any half-step residual tolerance. The 

convergence of the solution is depending on the time stepping, that is directly plugged in by the 
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user. The static part is divided in 2000 steps, respectively 1000 for applying the gravity load of 

the cable, and 1000 for the linearly increasing horizontal displacement of the two ends. The total 

equivalent time period of the static procedure is up to 1 s. The time step dimension for the 

dynamic solution is assumed equal to 0.005 s. This requires a lot of steps, but it turns out into an 

acceptable numerical effort since the total period of the harmonic motion is always less than 10 

s. All the damping of the system is considered to be lumped with equivalent viscous dashpots at 

each node of the cable, without adding any Rayleigh damping. This aims to be consistent with 

the real damping in the cable, which is dependent on the curvature. The value of equivalent 

viscous damping assumed for each dashpot is that discussed above for cable 1796-MCM: 

10 ∙
5

100
= 0.5 � ∙� ∙ � 

This value is set to be only proportional to the rotation velocity, trying to give a realistic 

approximation of the physical phenomenon. The material the cable consists of, is aluminum: 

therefore, the IEEE recommended value for the Young’s modulus was adopted (69900 MPa). 

The mass of the cable is accounted for by providing the density of the material (2700 kg/m
3
), and 

the consistent mass matrix is used. For the sake of simplicity, the gravity load is converted in a 

vertical dead load concentrated ad each node of the cable. The value of these lumped vertical 

forces is: 

� =
2700 ∙ !9.1 ∙ 10�� ∙ 5.52 ∙ 9.81"

99
= 1.34 � 

The second model is based on Der Kiureghian’s approach, with the dynamic input that is applied 

to the already deformed cable without any internal force. This is obtained taking the same static 

part common with Dastous’ model, then removing all the internal forces and using only the 

deflected shape of the cable. In the dynamic analysis the harmonic input is applied at the two 

ends of the cable obtained plugging in the shape computed at the end of the static procedure. It is 

to be noted that the choice of removing all the internal forces has a clear explanation. Above in 

the chapter, it is shown how the compression forces inherent the cable can completely modify the 

dynamic behavior of the cable itself, shifting its natural frequencies. Since it is found from the 

experimental tests that the initial compression for this cable configuration is quite low (about 50 

N), this value doesn’t change significantly the natural frequencies of the cable. This axial force 

turns out just into a translation of the response curve, but it doesn’t affect its general shape: thus, 
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this shift can be either added or removed in the post-processing, to compare the solutions without 

its influence. Therefore, it is preferable to begin the dynamic procedure without any internal 

forces, neglecting the initial compression, than having an initial value so big that turns out into a 

complete change of the first natural frequency of the flexible conductor, thus misunderstanding 

its dynamic properties. It is noteworthy that this additional step (the removal of the internal 

forces) is needed only if using the constant bending stiffness, turning out in a very large 

compression due to the horizontal motion of the two ends. Using the variable bending stiffness, 

accounting for the interlayer slippage and the friction forces, the initial compression in the cable 

is much lower, close to the real value measured from the experiments: therefore it doesn’t affect 

so much the eigenfrequencies, and the internal forces removal is not required. Der Kiureghian’s 

model is implemented in ABAQUS, using the HHT-alpha time integration method, since it is 

found to lead to solutions as accurate and stable as for the energy-conserving algorithm available 

in FEAP, as shown in the earlier specific paragraph. For this method, the automatic time stepping 

is adopted, as it is supposed to be more accurate. The half-step residual tolerance is set to a value 

equal to 1e4 N: this is chosen after comparing the reaction forces involved for the current cable 

configuration and dynamic inputs. Generally, it turns out into a bigger number of steps than 

those for FEAP: it means that this time integration method needs smaller time steps, in order to 

achieve the same accuracy for the solution. Conversely, the static part, necessary only to 

compute the initial shape of the cable, is divided in 2000 steps, as for FEAP: 1000 for applying 

the vertical dead load and 1000 for the horizontal displacement of the two ends. The Timoshenko 

linear element formulation is used, due to its validation from the previous study presented above. 

In particular, the “general section” option is used for the beams. As a matter of fact, since the 

cable is made of wrapped individual strands, it’s not possible to define a single parameter of this 

cross section, from which obtaining all the geometric values of the section. Therefore, it is 

necessary to directly provide the program both the cross section area and the moment of inertia 

for bending: all the other data are not needed, since the model is only bi-dimensional. The cross-

section area is set equal to the real value for the 1796-MCM cable. The moment of inertia for 

bending is assumed equal to that recommended by the IEEE guidelines, and discussed above. 

The damping, the gravity load and the Young’s modulus are the same discussed for the other 

model. One important difference is adopted for the mass matrix. It is observed that, whether 

using the two lumped masses representing the load cells at the two ends of the cable, a fake first 
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natural mode is introduced by the solver. In order to avoid it, the two lumped masses are 

removed and substituted increasing the density of the two end elements of the cable: this is a way 

to distribute the two masses as a mass per length. Since the density of aluminum is 2700 kg/m3 

and the two lumped masses are 7.1 kg each, to be distributed along an element with a cross-

section area of 910 mm
2
 and a length of 55.2 mm, the increased density for the two end elements 

is found to be: 

.∗ = 2700 +
7.1!9.1 ∙ 10��" ∙ 0.0552

= 144044 
�) ��4  

This second model, even if less accurate than Dastous’ one, is developed for the sake of 

simplicity, since it requires less computational effort, the variable flexural stiffness user-defined 

approach doesn’t need to be plugged in, and its disadvantages are not meaningful for the further 

developments. 

5.8.1 Sine-Start Tests 

All the experimental sine-start test are made on 1796-MCM cables, with a total length equal to 

5.52 m and a distance of 5.00 m between the two clamped ends. The tests differ only for the 

characteristics of the harmonic motion horizontally applied at the two ends, amplitude and given 

frequency. The quantity selected for the comparison is ΔS, the difference between the maximum 

and minimum horizontal reaction force measured for a given cycle of applied displacement at a 

given amplitude and frequency. This choice is due to the measurement made in the experiments. 

The precision of the sensors themselves may lack some precision when tension is low, around 

values close to zero. The load cells used in the experimental setup had 4500 N capacity (1000 

lbs) and a precision within +/- 2% [4]. So at the observed initial tension of about 50 N this value 

is within 1 % of the sensor scale, meaning that the load cell may have measured an initial tension 

that ranges from -40 N to 140 N, if 40 N is the correct value. Therefore, this is why it is preferred 

to compare ΔS rather than absolute values. 

The dynamic input is a harmonic displacement applied out-of-phase at the two ends of the cable 

in the horizontal direction. To avoid numerical instability cause by non-zero initial conditions, 

the sinusoidal function is multiplied by a loading ramp. The form of the motion is therefore: 

T!(" = U1 − P��:∙
.	∙�∙�V ∙ � ∙ ��	!2H ∙ � ∙ (" 



 

139 

where � is the frequency and � is the amplitude. 

The duration of the input is different for each test: as a matter of fact, the term inside the square 

brackets governs the time needed to reach a perfectly harmonic motion, and therefore a steady 

response by the system. This term depends on the frequency of the input, thus every test needs a 

different time to reach the perfectly harmonic motion. Table 5-1 summarizes the comparisons of 

forces measured from the experiments on the 1796-MCM flexible conductor [4]. 

Table 5-1: Results of the Experimental Sine-Start Tests 

Test ID Cable 
A 

(mm) 

f 

(Hz) 

DF measured 

(N) 

#134 1796 150 1 225 

#135 1796 80 2 500 

#136 1796 40 3 530 

#137 1796 20 3 260 

#138 1796 20 5 760 

#139 1796 20 1 25 

#140 1796 20 2 108 

 

Table 5-2 shows the comparisons of forces predicted by Dastous’ model with the experimental 

tests. 
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Table 5-2: Comparison between Dastous’ Model and the Experimental Sine-Start Tests 

Test ID Cable 
A 

(mm) 

f 

(Hz) 

DF measured 

(N) 

DF calculated 

(N) 

Diff. 

(%) 

#134 1796 150 1 225 232 3.1 

#135 1796 80 2 500 531 6.2 

#136 1796 40 3 530 535 0.9 

#137 1796 20 3 260 262 0.8 

#138 1796 20 5 760 730 -4.0 

#139 1796 20 1 25 24 -4.8 

#140 1796 20 2 108 125 13.6 

 

It is observed that this model reproduces very well the measured ΔS, with a maximum error of 

13.6% and an average error of 4.8% for the 7 tests compared. This leads to conclude that this 

model is completely adequate to accurately describe the dynamic of flexible cable usually 

interconnecting high-voltage substation equipment. Table 5-3 presents the same comparisons of 

ΔS, with the absolute values and the percentage errors, for Der Kiureghian’s model with the 

experimental results. 

Table 5-3: Comparison between Der Kiureghian’s Model and the Experimental Sine-Start 
Tests 

Test ID Cable 
A 

(mm) 

f 

(Hz) 

DF measured 

(N) 

DF calculated 

(N) 

Diff. 

(%) 

#134 1796 150 1 225 228 -1.3 

#135 1796 80 2 500 311 -37.8 

#136 1796 40 3 530 505 -4.7 

#137 1796 20 3 260 233 -10.4 

#138 1796 20 5 760 968 27.3 

#139 1796 20 1 25 25 0.0 

#140 1796 20 2 108 68 -32.0 
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In this case, the maximum error is 37.8% and the average error is 16.2% for the 7 tests 

compared. 

As expected, those errors are bigger than those for Dastous’ model, since Der Kiureghian’s one 

is less accurate, due to the constant flexural stiffness, not adequate to account for the material 

nonlinearity, and the neglect of the initial compression arising from the static procedure. This 

initial compression remains constant through the entire dynamic analysis, thus just shifts the 

curve of the reactions and doesn’t affect directly the value of ΔS, that is the difference between 

the two peaks for a given cycle. Nevertheless, this compression can affect the natural frequencies 

of the cable, resulting in a different dynamic behavior. This can be observed in Figure 5-17, that 

presents the horizontal reactions of sine-start test #134 for the two different analytical models. 

Unfortunately, no time-history plots are available for the experimental tests. 

Figure 5-17: Test #134, horizontal reaction for Der Kiureghian’s and Dastous’ 
model 

 

In the graph the positive reactions correspond to compression. 
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It is clear how the different value of compression (for Dastous’ model) or traction (Der 

Kiureghian’s model) can affect the natural frequencies of the system. The two curves present 

very similar difference between the values of the peaks, but they are completely out-of-phase. 

This means that their first natural frequencies are not either both bigger or both smaller than the 

given frequency of the input (1 Hz), but one is bigger and one is smaller. In particular, Der 

Kiureghian’s model presents a response out-of-phase with the acceleration at the end where the 

response is measured: this acceleration, multiplied times the lumped mass representing the load 

cell, is the input force in the system. Conversely, Dastous’ model response is in-phase with the 

input force. As discussed earlier, this is similar to the dynamic behavior of a single degree of 

freedom system undergoing an harmonic motion: its reaction is out-of-phase with the input force 

for low frequencies, but when the frequency of the input crosses the natural frequency of the 

system the reaction experiences a shift of 180 degrees, and thus becomes in-phase. This means 

that the cable analyzed with Der Kiureghian’s model has a first natural frequency higher than 1 

Hz, while with Dastous’ model it has a first natural frequency lower than 1 Hz, which is the 

given frequency of the input. This difference of eigenfrequencies is explained by the presence of 

compression, even if not so huge, in Dastous’ model. It is to be noted that, as already mentioned, 

due to a slack of precision of the measurement, there is uncertainty whether the cable is 

subjected to initial traction or compression in the experimental tests. 

Increasing the given frequency of the sinusoidal input, the first natural frequency is crossed also 

for Der Kiureghian’s model, and the response of the two models becomes the same. This can be 

seen in Figure 5-18 for the sine-start test #138. 
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Figure 5-18: Test #138, horizontal reaction for Der Kiureghian’s and Dastous’ 
model 

 

In this case, the given frequency of the input is equal to 5 Hz, and is bigger than the first natural 

frequency of both the models. Therefore, both the reactions are in-phase with the acceleration 

input at the same end where the reaction is computed. 

The explanation for the discrepancies between the experimental results and those predicted by 

the two analytical models are several. First, every parameter included in the analysis has a 

certain influence on the solution, as discussed in the previous paragraphs of this chapter: some 

errors arise from the choice of these parameters. Other approximations are not involved in the 

finite-element models, but in the experimental tests themselves. Among them is the deformation 

inherently present in the actual cable, which is not a perfect straight line at first, since it was 

initially rolled on a wooden turret. Therefore when such a cable is installed attached at the two 

clamps, it may try to fight its initial curvature, varying the inherent tension. Furthermore, even 

though the experimental setup aimed at reproducing a perfectly harmonic motion, there was 

some backlash in the mechanisms (gears) transmitting the motion, and some deformation in 

torsion in the shaft transmitting the motion at both ends. This may have led to some additional 
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peak accelerations that contaminated the harmonic motion sought and therefore, may have 

resulted in additional forces. As a matter of fact, it is very difficult in dynamic experiments to 

perfectly reproduce a given motion: there is most often contamination of the signal due to the test 

setup itself, which is not perfect. Therefore, even the experimental analyses are not perfect. 

5.8.2 Frequency-Sweep Tests 

As for the sine-start tests, one of the frequency-sweep test is analyzed with both the finite-

element models discussed above. It is decided to reproduce only one of them, since the time 

duration of the analysis, much bigger than for the sine-start test, turns out into a big 

computational effort and a long time required completing the solution. Furthermore, while it is 

necessary to run many sine-start tests to understand the response of the system under different 

frequencies, in this case the form of the analysis itself provides a sweep over a range of 

frequencies. Therefore, the response of the cable under all the frequencies comprised in the range 

is obtained. The experimental frequency-sweep tests differ only for the highest frequency of the 

range, and the amplitude of the motion. The amplitude itself affects mainly only the order of 

magnitude of the reactions, and only in a minor way the general dynamic behavior of the cable, 

that is mostly influenced by the frequency of the input. It is noteworthy that this is true only for 

configuration slack enough so that the applied displacement doesn’t turn into a big variation in 

the shape of the cable. This is the case of the configuration presented in this study, showing a sag 

/ span ratio equal to 19%. Conversely, for tighter cables, big amplitude of the harmonic motion 

could turn out into reaching the straight position of the cable, thus generating big changes in the 

shape of the cable. This means big changes of the natural frequencies of the cable during the 

motion itself, and developing big tractions. 

In the presented case, the sine-start tests already showed that the dynamic behavior is influenced 

mainly by the frequency, and in a minor way by the amplitude. Therefore, the most meaningful 

frequency-sweep test would be #130, with a frequency range from 0.5 up to 5 Hz: this range 

covers up all the ranges of the other experimental frequency-sweep tests. For the sake of 

simplicity, only test #132 is modeled, since it has a smaller range (up to 2 Hz), requiring a 

smaller computational effort, but covering the frequencies that were found to be interesting as 

related to the first natural frequency of the cable (about 1.25 Hz). Furthermore, from Dastous’ 

paper [7], it is known to be the test with the better agreement between experimental and 
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numerical results. It is noteworthy that the frequency-sweep input has duration of 60 s, that is 6 

times the longest duration adopted for the sine-start tests (10 s): thus, it requires something like 

15000 steps to be solved, turning out into a huge numerical effort. 

The formula of the displacement input is: 

���� = �1 − ��� 	−2
 ∙ 0.1 ����� +
����−����

2

 ��
������ ∙ � ∙ ��� 	2
 ����� +

����−����

2

 ��
����� 

where �+%, is the lowest frequency of the range (0.5 Hz), �+;� is the highest frequency (2 Hz), 

A is the amplitude (80 mm), and (�<�  is the duration of the input (60 s). 

As well as for the sine-start test, the quantity selected for the comparisons was ΔS, for the same 

reasons. Table 5-4 shows the horizontal reaction measured during the experimental test, and the 

comparison with the values predicted by Dastous’ model. 

Table 5-4: Comparison between Dastous’ Model and the Experimental Frequency-Sweep 
Tests 

Test ID Cable 
A 

(mm) 

fMIN 

(Hz) 

fMAX 

(Hz) 

DF measured 

(N) 

DF calculated 

(N) 

Diff. 

(%) 

#132 1796 80 0.5 2 500 503 0.6 

 

Also in this case, it is observed that the model predicts the measured reactions with acceptable 

precision, albeit with a smoothing of the model response over some frequencies, as opposed to 

the experimental results where smaller variations were observed. This is likely to be related to 

the way the damping was approximated in the models. Table 5-5 presents the same comparison 

of reactions predicted by Der Kiureghian’s model with those measured from the experiments. 

Table 5-5: Comparison between Der Kiureghian’s Model and the Experimental Frequency-
Sweep Tests 

Test ID Cable 
A 

(mm) 

fMIN 

(Hz) 

fMAX 

(Hz) 

DF measured 

(N) 

DF calculated 

(N) 

Diff. 

(%) 

#132 1796 80 0.5 2 500 330 -34% 

 

This model provides a bigger error that can be explained looking at the whole time-history of the 

response, presented in Figure 5-19. 
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Figure 5-19: Test #132, horizontal reaction for Der Kiureghian’s and Dastous’ 
model 

 

It is easily observed how the two models have completely different behaviors. In particular, Der 

Kiureghian’s one shows a beat, characterizing the cross of a natural frequency. In the previous 

paragraphs the sources of this behavior have already been discussed. Dastous’ model, that has an 

initial compression, doesn’t cross any natural frequency, thus its reaction is always increasing. 

This is because the first natural frequency is shifted to a value less than 0.5 Hz (a previous hand 

calculation shows that it’s about 0.3 Hz). This turns out into the absence of any beat, and the 

reaction is free to get bigger with the increase of the frequency, as it is expected to be. 

Conversely, Der Kiureghian’s model crosses the first natural frequency, and this causes a large 

decrease of the total horizontal reaction, since the input force and the cable response are out-of-

phase until the frequency input is lower than the first natural frequency. After the cross of the 

first natural frequency, the reactions begin again to increase with the input frequencies, but the 

difference between the positive and negative peaks is still affected by the previous decrease. In 

particular, comparing the ΔS for the two models around 1.25 Hz (presence of the beat), it is 

noted that Der Kiureghian’s model shows ΔS ≅ 0, while Dastous’ model has ΔS ≅ 175. 

Therefore, for this frequency the discrepancy between the two models is 175 N. This value is 
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absolutely the same that separates the final values of ΔS for a given frequency of 2 Hz. This 

means that the final error is completely caused by the difference in presence of the beat, and the 

remaining part of the time-history of ΔS just shows a shift equal to 175 N. 

It is to be noted that all those discrepancies between the two models arise from the presence of 

initial compression due to the horizontal motion of the two ends of the cable necessary to reach 

the desired span. 

Whether a straight cable has to be modeled, all these differences vanish. 
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CHAPTER 6 

INTERCONNECTED EQUIPMENT: SENSITIVITY STUDY 

 

6.1 Conductor & Two Flexible Posts 

The studies presented in the previous chapter aimed to understand the dynamic behavior of a 

flexible stranded conductor, and how to obtain a suitable finite-element model furnishing reliable 

results. This is the first step to understand all the issues related to the dynamic behavior of 

electrical equipment items interconnected by flexible conductors. All the geometrical as well as 

the mechanical nonlinearities involved in this kind of problems arise mainly from the cable 

interconnecting the two equipment items, and not from the two standalone facilities. 

As mentioned earlier, the equipment items most common in typical high-voltage electrical 

substation are mainly characterized by their first natural mode, that has a participant mass about 

80%; therefore, they can be considered as a single degree of freedom systems, whose only 

degree of freedom is the horizontal displacement of the top, where the cable is attached. This 

means that, during a seismic event, the ground motion doesn’t affect directly the cable, but it is 

filtered by the equipment items that transmit the input to the ends of the cable; therefore, the 

cable experiences something very similar to a sinusoidal displacement of its ends, which 

frequency is equal to the first natural frequency of the electrical item it is attached to. This reason 

suggests to first investigating the response of the cable subjected to harmonic sinusoidal motion 

of its ends, in order to look insight its dynamic behavior and set an appropriate numerical model. 

This was the scope of the first experimental tests made by Dastous and the Hydro-Québec 

Research Institute [4], as well as the analytical investigations carried on by Der Kiureghian [10] 

and Dastous himself [7]. 

Other meaningful experimental tests as well as analytical models of seismic response of 

electrical substation equipment interconnected by flexible conductors have been presented by 

Filiatrault [12, 13, 14]. 
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The same purpose constitutes the first part of the current study. First, all the issues affecting the 

cable dynamics have been studied, as well as how to develop a reliable and accurate model for 

the stranded flexible conductor; this has been presented in the previous chapter. Next, an 

analytical model is created for new possible experimental tests, in this case involving both the 

flexible conductor and the interconnected equipment. The interconnected electrical equipment 

items will be dynamically tested applying either sinusoidal displacements or earthquake 

simulations at their bases. To do this, they will be installed on shake tables providing the 

dynamic motions. The dimension and geometry of the configuration are given by two different 

factors. First, we want to reproduce a typical high-voltage electrical substation configuration, in 

order to have a meaningful description of the dynamic response of such equipment undergoing 

an actual earthquake. Next, it is noteworthy that the configuration must match the requirements 

due to the characteristics of the laboratory facilities that don’t allow too big dimension. 

Nevertheless, it is possible to create and test full-scale specimens, representing typical high-

voltage electrical substation equipment items. Since those items are several, it’s not possible to 

reproduce all their combination in interconnected equipment. Therefore, it is decided to use 

items that have already been tested, and whose dynamic properties are well known. In this way, 

all the uncertainties regarding the interconnected equipment items are removed, and the study 

can be focused on the flexible conductor and its influence on the global dynamic response. Once 

developed a validated model, the two interconnected equipment items can be changed simply 

varying the characteristics of the equivalent beams representing them. 

It is to be noted that two basic configurations are adopted. This is chosen in order to make a 

broader representation of the possible configurations assumed by the cable, in typical substation. 

Since the big variety of field conditions, the cables have a range of sag / span ratio that goes from 

0 to about 20%, depending on the structural and electrical requirements. Therefore, the only 

study of a single slackness configuration cannot be fully significant for the rest of the range: it is 

advisable to investigate the different behavior of the two configurations corresponding to the 

extreme values of the sag / span ratio. The first adopted configuration presents a straight cable 

interconnecting the two equipment items. This shape doesn’t allow relative displacements 

between the two attachment points, thus it is expected to produce the more severe conditions on 

the system for a given ground motion. It is to be noted that this configuration can only be tested 

with a given acceleration at the bases of the two interconnected items, and not with out-of-phase 
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applied displacements, since no relative displacements are allowed. Conversely, the second 

configuration adopted is characterized by a sag / span ratio equal to 19%, that is almost the 

biggest common value (20%). This value is directly taken from the configuration of the 1796-

MCM cable in Dastous’ experiments [4]: the same ratio between total length and span is used, 

turning out into the same slackness ratio. 

6.1.1 Tests Setup 

As discussed earlier, two electrical equipment items that have already been dynamically tested 

are adopted as interconnected facilities. In particular, a current transformer and a transformer 

bushing were available with some already evaluated structural properties, since they have been 

subjected to seismic qualification. The structural properties of the two equipment modeled 

(equipment #1 and equipment #2) are inspired to their structural properties. Both the items are 

not considered in a standalone configuration, but installed with other structural parts representing 

the common installation that are present in high-voltage electrical substations. It is obvious that, 

since the equipment items are always installed on other structural parts, they must be tested in 

such a configuration; otherwise, the dynamic input they are subjected to and their global 

dynamic properties would be completely misunderstood. Since the study is focused only on the 

global behavior of the items, in order to understand the dynamic motion of the two attachment 

points it’s not necessary to test the actual specimens for the structures they are mounted on, but 

it’s sufficient to use adequate support structures. These structures must have equivalent dynamic 

properties so that the global dynamic behaviors of the as-installed equipment #1 and equipment 

#2 are matched. For this reason, equipment #1 is tested mounted on the top of a circular steel 

post. Equipment #2 is bolted at about the middle of its height on a steel plate, fixed on the top of 

a frame structure made of steel beams. 

Figure 6-1 shows the actual test setup with the two electrical equipment items interconnected by 

a straight cable. This configuration is used for the base motion tests. The test setup used for the 

sine-start tests, considering a slack cable to allow the relative displacement between the two 

ends, is shown in Figure 6-2. 
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Figure 6-1: Test setup with straight cable 
 

Figure 6-2: Test setup with slack cable 
 

The geometry and the sections of the beams constituting the steel post and the support structure 

are completely known.  The properties known for equipment #1 and equipment #2 are different. 

The data available for equipment #1 comes from an impact hammer test, performed for its 

seismic qualification. In the qualification test, impact hammer tests were run with equipment #1 

mounted on a tubular steel post bolted to floor, to determine the as-installed natural frequency. 3 

accelerometers were installed at the top, and damping value was determined by curve fitting 

method. The first as-installed natural frequency of equipment #1 was found to be about 4 Hz, 
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with a negligible damping: although this structure is a single degree of freedom. Furthermore, the 

total height of equipment #1, its total weight and the position of its center of gravity are known. 

Table 6-1 shows the geometric data for the tubular steel post. 

Table 6-1: Equipment #1 Support Geometric Properties 

Material Steel 

Total Height (mm) 2438.5 

Inside Diameter (mm) 298.5 

Outside Diameter (mm) 324 

 

Since the steel post is symmetric, the total mass of 292.5 kg (obtained multiplying the density of 

steel times the volume of the post) is lumped in the middle of the post, being the center of 

gravity. 

Table 6-2 shows the known data for equipment #1. 

Table 6-2: Equipment #1 Geometric Properties 

Total Height (mm) 3269 

Center of Gravity from below (mm) 838 

Total Mass (kg) 630 

As-installed Frequency (Hz) 4 

 

For the sake of simplicity, it is decided to model both the steel post and equipment #1 with one 

single beam each, with equivalent properties. This is consistent with the previous assumption 

that the total equipment supporting the cable is a single degree of freedom, only allowing 

horizontal displacement of its top. The geometric data available for the steel post are already 

sufficient to determine the structural properties of the equivalent beam. This beam, as every other 

beam in the model, has a Timoshenko linear formulation. Conversely, the equivalent parameters 

for equipment #1 have to be computed, since the complete geometry and the fixed-base stiffness 

and frequency are unknown. To do this, two beams have been modeled with a finite-element 
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program, one on top of the other. The beam below, representing the steel post, has the cross-

section and the material of the actual equipment item, while equipment #1 is modeled with the 

actual height and weight, and iterative attempts for the equivalent rigidity EI are made, trying to 

match the as-installed frequency. Finally, the equivalent EI to be used is found to be: 
3��,�=>�? = 1.1P12 � ∙��� 

A slightly different choice of modeling the electrical equipment items with two beams is made 

for equipment #2. Since the actual equipment #2 is bolted on the steel plate at a intermediate 

point of its height, it consists of two parts, an upper and a lower one. For this reason, it is decided 

to model it with two separate beams, while the whole frame support structure is modeled with 

only one. Due to the fact that the frame support structure is known in every single detail, but no 

data are directly available for the modeling of an equivalent beam, it is necessary to compute 

them. The final goal of this modeling is an accurate representation of the dynamic behavior of 

the total equipment, and not of its separated parts. Therefore, equipment #2 has been modeled 

first, since the data for the equivalent beam are already known from the qualification test, and 

then the equivalent properties of the support structure have been computed from the as-installed 

model. The data extracted from the qualification test for equipment #2 are shown in Table 6-3 

and Table 6-4, respectively for the upper and the lower part: 

Table 6-3: Upper Equipment #2 Properties 

Total Height (mm) 2316.5 

Center of Gravity from below (mm) 1158 

Total Mass (kg) 140 

Equivalent Rigidity (Nmm
2
) 4.145e11 

 

Table 6-4: Lower Equipment #2 Properties 

Total Height (mm) 1511 

Center of Gravity from above (mm) 755.5 

Total Mass (kg) 91.5 

Equivalent Rigidity (Nmm
2
) 4.145e11 
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It is to be noted that the equivalent rigidity has been adopted equal to the mean value of those 

computed from a static and a dynamic test. As a matter of fact, the qualification test consisted of 

both a frequency extraction of the fixed-base standalone equipment #2 and a pull test in the same 

configuration. From the pull test, the translational stiffness for the horizontal displacement of the 

top of the upper equipment #2 is found to be: W-� = 1.05 ∙ 10�  � �4  

Therefore, the equivalent rigidity is computed considering the upper equipment #2 as a 

cantilever: 


3-� = W-� ��

3
= 1.05 ∙ 10� 2.3165�

3
= 4.35 ∙ 10�  � ��4  

From the frequency extraction, the first natural frequency of the fixed-base standalone upper 

bushing is 8.32 Hz. Considering the upper bushing as a cantilever with the mass lumped in the 

center of gravity, the computation of the stiffness is a little more complex. First, it’s necessary to 

translate the translational mass lumped in the center of gravity into a rotational mass: 

�0 = � ∙ ��
2
�� = 187 � ∙� ∙ �� 

Now, the rotational stiffness can be computed: W@A,0 = �0 ∙ 8� = 187 ∙ !2H ∙ 8.32"� = 5.11 ∙ 10� � ∙� 

Now this rotational stiffness can be translated into the stiffness for the horizontal displacement of 

the top of equipment #2: 

W@A, =
W@A,0�� =

5.11 ∙ 10�

2.3165� = 9.52 ∙ 10�  � �4  

From this translational stiffness, the equivalent rigidity of the cantilever can be computed in the 

same way used for the static test: 


3@A, = W@A, ��

3
= 9.52 ∙ 10� 2.3165�

3
= 3.94 ∙ 10�  � ��4  

It is to be noted that the two values differs by 9.2%. 

This difference can be addressed to some errors during the measurements. Since we don’t know 

whether the static test or the dynamic test is more accurate, it is decided to adopt a value of 

equivalent rigidity that is the mean of the two computed values: 


3�B-C,�=>�? =

3-� + 
3@A,

2
=

4.35 ∙ 10� + 3.94 ∙ 10�

2
= 4.145 ∙ 10� � ∙�� 
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For the sake of symmetry, the same equivalent rigidity has been used also for the lower part of 

equipment #2. 

No experimental investigations have been conducted on the frame support structure, thus the 

properties of the equivalent beam are computed from the finite-element model of the detailed 

structure, with the equivalent equipment #2 installed. The given data to match is the as-installed 

natural frequency of the system, that is 7.75 Hz. The only unknown is the equivalent rigidity of 

the frame support structure: its center of gravity, total mass and total height are hand-calculated 

from its actual geometry. As shown earlier, the two parts of the bushing are completely known. 

Some frequency extractions are made using the finite-element model, with iterative trial values 

for the equivalent EI of the frame support structure, until the as-installed frequency is matched. 

From this analysis, the value of the equivalent stiffness EI is found to be: 
3-B55,�=>�? = 5.0 ∙ 10D � ∙�� 

Finally, all the properties of the equivalent beam representing the frame support structure are 

shown in Table 6-5: 

Table 6-5: Frame Support Structure Properties 

Total Height (mm) 2515 

Center of Gravity from below (mm) 1713 

Total Mass (kg) 3848 

Equivalent Stiffness (Nmm
2
) 5e13 

 

The last part of the system that has to be defined is the flexible conductor interconnecting 

equipment #1 and equipment #2. For the sake of simplicity, the 1796-MCM cable is adopted, 

since its properties have already been studied in the previous experimental as well as in the 

analytical tests. All the properties of the cable are shown in the first column of Table 4-4. One 

important issue is to define its length, and the distance between the two interconnected 

equipment items. First, the distance between the two interconnected equipment items is selected 

basing on the geometry of the shake tables that will be used to run the experimental tests. The 

two shake tables in the seismic laboratory of the State University of New York at Buffalo don’t 

have a fixed position but are moveable: the holes where they can be fixed have a distance 
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between each other of 100.5’’. Therefore, considering that both equipment #1 and equipment #2 

are installed in the center of each shake table, their distance can only be a multiple of 100.5’’. In 

this case, it is decided to choose the multiple 5 of this distance: 

ℎ���I�	(�� �%�	 = 5 ∙ 100.5�� = 502.5�� = 12763.5 �� 

As discussed earlier in the chapter, two different configurations for the cable are adopted. For the 

base motion test, the cable is assumed to be straight; therefore, its initial horizontal span matches 

with the horizontal distance between the two interconnected equipment items. It is noteworthy 

that, since the two attachment points are at different heights, the total length of the cable is not 

the same as the horizontal span. In this case, the total length of the cable is: ��<� =  !5707 − 4831.5"� + 12763.5� = 12793.5 �� 

The finite-element configuration plugged in the program is shown in Figure 6-3. 

Figure 6-3: Finite-element model with straight cable 
 

For the sine-start test, a slack configuration is mandatory to allow the relative horizontal 

displacements. To have the maximum allowed sag, the ratio between the initial horizontal span 

and the desired span is set to be the same as for Dastous’ experimental tests on the 1796-MCM 

cable. In particular, in his previous tests this ratio was: 

5520 ��
5000 �� = 1.104 

In the current model the desired horizontal span is 12763.5 mm; therefore, the initial horizontal 

span should be: 
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12763.5 ∙ 1.104 = 14090 �� 

For the sake of simplicity, an initial horizontal span of 14.0 m is assumed, and the initial vertical 

separation between the two ends of the cable is assumed equal to the vertical separation between 

the two attachment points, so that there’s no need to move vertically the two ends of the cable. 

Then, the initial shape of the cable is computed as discussed in the previous chapter. The finite-

element configuration plugged in the program is shown in Figure 6-4. 

Figure 6-4: Finite-element model with slack cable 
 

For both the models, the cable is clamped at the two ends, and the gravity load is applied as a 

vertical dead load. In order to have a sufficient refined mesh, it consists of 100 Timoshenko 

linear formulation elements. The distributed vertical dead load is applied as concentrated load at 

each node of the cable, with a value equal to: 

� =
2700 ∙ !9.1 ∙ 10�� ∙ 14.0 ∙ 9.81"

99
= 3.4 � 

After, the two ends are horizontally moved one toward the other, until the desired span is 

reached. At this point, the deformed shape of the cable is recorded, and then plugged in as initial 

configuration for the interconnected system, without any internal force. For the geometry of this 

system, the central sag of the cable in its initial configuration is found to be 2425 mm, 

corresponding to a sag / span ratio equal to 19%. This value is less than the highest value of the 

feasible range, assumed to be 20%. In both cases, for the straight as well for the slack cable, the 
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damping is modeled as lumped dashpots at each node of the cable, proportional to the rotational 

velocity. The equivalent viscosity of these dashpots is: 

10 ∙
14

100
= 1.4 � ∙� ∙ � 

since the equivalent damping for unit length for the cable 1796-MCM is supposed to be �0 =

10 � ∙ �. 
For the sake of simplicity, all the dynamic analyses are run in ABAQUS using a constant 

bending stiffness, equal to the IEEE recommended value. Approximations and limits due to this 

approach will be discussed separately for the two types of tests. Nevertheless, the static step 

(applying the vertical dead load) is analyzed also in FEAP, accounting for both constant and 

variable bending stiffness, and the results are compared. The two loading steps, static and 

dynamic, and the parameters of the dynamic analyses will be deeply discussed in the next 

paragraphs. 

6.1.2 Static Step 

It is to be noted that is particularly interesting to observe the static behavior of the system with 

the straight cable, when the vertical dead load is applied. As a matter of fact, the difference 

between the slack cable with either constant or variable bending stiffness have already been fully 

developed in the previous chapter. It is known that the main differences belong to the static 

displacement of the two ends of the cable, when the constant stiffness provides a highly 

overestimated value for the flexural stiffness; therefore, the internal forces in the cable results to 

be unrealistically high. Conversely, the application of the vertical dead load on the already 

deformed cable doesn’t generate big differences both in displacements and internal forces. 

As shown in the previous chapter, the use of the either variable or constant ending stiffness, 

together with either Der Kiureghian’s or Dastous’ model respectively, turns out into a shift of the 

time-histories curves of the horizontal reactions. This is not directly due to the bending stiffness 

considered, but it comes from the removal of the internal forces after the static displacement of 

the two cable ends in Der Kiureghian’s model, made before applying the vertical dead load. In 

such a way, this model lacks the compression forces that are present in Dastous’ model. Since 

this compression can generate also a shift in the natural frequencies, this is the biggest limit of 

Der Kiureghian’s approach, despite its major simplicity. Conversely, the straight cable doesn’t 
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need any initial static displacement of its ends; therefore, Der Kiureghian’s and Dastous’ model 

completely match, and no comparison between them makes sense. For the sake of completeness, 

it is only to be seen the influence of the type of flexural stiffness considered on the static 

solution. It is noteworthy that its influence on the dynamic solution has already been deeply 

discussed for the slack cable. The results obtained can be extended also to the initially straight 

cable, since after the application of the dead load it assumes a deformed shape; therefore, it has a 

certain sag, even if small, and it can be considered as a slack cable. For this reason, no more 

dynamic comparison between the variable and constant flexural stiffness are needed. 

A comparison between the different results obtained with ABAQUS, considering a constant 

bending stiffness, and with FEAP, considering both a variable and a constant bending stiffness, 

are presented. For the two models with constant bending stiffness, one run with ABAQUS and 

the other with FEAP, the only difference is the default tolerance used by the programs to reach 

the solution at each step with the Newton-Raphson method. In each model, the vertical dead load 

is linearly increasing applied in 2000 steps, considered as an equivalent total time period of 1 s. 

The results for the obtained displacements and the reaction forces are presented separately. 

Figure 6-5 presents the relative displacements between the two ends of the cable, that are the two 

attachment points. 
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Figure 6-5: Relative displacements between the two ends of the straight cable 
under gravity load 

 

It is seen that, obviously, under its own weight the cable deflects and try to close the horizontal 

span; therefore, the relative displacement is negative, because the tops of the two equipment 

items are moving one toward the other. ABAQUS and FEAP models with the same constant 

bending stiffness provide very similar results, without significant differences. The model 

accounting for variable bending stiffness shows bigger relative displacements. This is consistent 

with the fact that this cable is less stiff than the other, thus under the same forces turns out into 

bigger deformations. The same observation can be made for the vertical displacement of the 

middle point of the cable, shown in Figure 9-5. For short, this and the following figures for the 

same static step are presented in the Appendixes. Similar comparisons are made for the 

horizontal reaction forces at the base of equipment #1 support and of equipment #2 support. 

They are respectively shown in Figure 9-6 and Figure 9-7. It is to be noted that the positive 

values are assumed acting from the left to the right. 

These results confirm what is observed for the displacements. The two models with constant 

bending stiffness don’t show meaningful differences between them. The model accounting for 
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variable bending stiffness presents bigger reaction forces, coming from bigger displacements at 

the top of each equipment, due to the smaller stiffness of the cable. Therefore, considering 

constant bending stiffness can slightly underestimate the internal forces in the two equipment 

items. Nevertheless, the difference between the horizontal reactions obtained with the two 

different approaches is found to be less than 8%. 

6.1.3 Sine-Start Tests 

Four different sine-start tests are modeled, with different sinusoidal input and the same 

configuration of the system. The cable interconnecting the two electrical equipment items is 

assumed slack, without any internal force, and its original shape is computed as described in the 

previous paragraphs. The four harmonic inputs at the bases of the two equipment items are 

sinusoidal displacement with a loading ramp, to avoid likely instability due to non-zero initial 

conditions. Their formula is: T!(" = U1 − P��:∙
.	∙�∙�V ∙ � ∙ ��	!2H ∙ � ∙ (" 
Given amplitude and frequency for each input are summarized in Table 6-6: 

Table 6-6: Amplitudes and Frequencies of the Inputs 

 
Amplitude 

(mm) 

Frequency 

(Hz) 

Sine-Start Test #1 100 0.25 

Sine-Start Test #2 100 0.84 

Sine-Start Test #3 100 4.00 

Sine-Start Test #4 100 7.75 

 

The 4 frequencies have been specifically chosen, in order to test the specimens under the most 

severe conditions. Two frequencies, 4 Hz and 7.75 Hz, respectively correspond to the first 

natural frequencies of the two equipment items in the as-installed configuration; therefore, each 

of these motions is supposed to cause resonance in one of the two interconnected facilities. The 

other two frequencies correspond respectively to the first and second natural frequencies of the 

cable itself. These frequencies have been computed for the slack cable, in its already deflected 

shape without internal forces, and with a constant bending stiffness equal to the IEEE 
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recommended value. Since the harmonic displacements are applied out-of-phase at the bases of 

equipment #1 and of equipment #2, the boundary conditions used to calculate the natural 

frequencies of the cable are two rollers at the two ends of the cable. As a matter of fact, the two 

ends must be allowed to move in the horizontal direction, but must be restrained for vertical 

displacement and rotations. To avoid the singularity of the system, one additional horizontal 

restraint must be introduced: for the sake of symmetry, it is placed in the middle node of the 

cable. It is to be noted that these two last frequencies are not supposed to generate a resonance in 

the interconnected system, for two main reasons. First, due to the geometric nonlinearity, the 

natural frequencies of the cable vary with the motion of the cable; therefore, there are no fixed 

natural frequencies, but it’s only possible to speak about frequencies likely to be excited. Next, 

since the harmonic displacements are applied at the bases of the two equipment items, the motion 

felt by the cable is the motion of the two attachment points, that is filtered by the two equivalent 

cantilever beams. Therefore, the motion of the two ends of the cable will have a frequency 

content more similar to the natural frequencies of the two interconnected equipment items than to 

the frequency content of the ground motion. Every test is analyzed with a recommended time 

step of 0.005 s, and a half-step residual tolerance of 1e4 N. The results are found to be stable for 

the first two sine-start test, since this requirement of residual tolerance never involves reducing 

the time step size. For sine-start test #3 and #4, the stability of the solution obtained can be 

validated only checking the results with the user’s experience. The total time period is different 

for each test; it’s not possible to use a same suitable period, since the lower frequencies require 

more time to get a steady response, due to the form of the loading ramp. The lower is the 

frequency, the longer is the total time period. Furthermore, the two tests with the higher 

frequencies must be stopped after a little time, since the resonance generates always increasing 

forces and displacements that are too difficult to be computed by the program. 

The sine-start test #1 has a time period of 27 s; from 0 to 1 s the vertical dead load is applied, 

then the displacement input is applied out-of-phase at the two bases. Figure 6-6 shows the 

displacements experienced by the cable. 
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Figure 6-6: Sine-start test #1, displacement of the cable 
 

Some observations can be made. Since the amplitude of the displacement input is equal to 100 

mm and is applied out-of-phase at the two bases, the relative displacement between the two bases 

of the equipment items has amplitude of 200 mm. Looking at the relative displacement between 

the two attachment points (the black curve in the graph), it has an amplitude about 200 mm. This 

means that the two cantilever beams are subjected to relatively small deformations; therefore, 

they are not amplifying the motion they are subjected at their bases. The vertical displacement of 

the middle of the cable shows that, due to the slackness ratio and the vertical separation between 

the two attachment points, they can be even more significant than the horizontal ones. This will 

explain the presence of vertical forces in the system, even if the displacement input is only in the 

horizontal direction. Figure 6-7 presents the horizontal reactions computed at the bases of the 

two equipment items. 
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Figure 6-7: Sine-start test #1, horizontal reactions 
 

It is noted that the base of the frame support of equipment #2 is subjected to stronger forces, that 

reach a maximum value of 1.17 kN pulling the top in the inside direction. This value is 

significantly bigger than the horizontal reaction measured under the gravity load of the cable, 

that is found to be 0.176 kN. The maximum value of the horizontal reaction is approximately 6.5 

times the static force for the support structure of equipment #2. For the support of equipment #1, 

the maximum value of the absolute reaction is 0.41 kN, while the static value is again 0.176 kN 

(to respect the global equilibrium in the horizontal direction). This means that the maximum 

value of the horizontal reaction is approximately 2.3 times the static force for the support 

structure of equipment #1. Figure 6-8 shows the shear forces at the top of the two interconnected 

equipment items; the same forces, for the sake of equilibrium, are those applied at the two ends 

of the cable. In particular, the positive values correspond to traction in the cable. 
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Figure 6-8: Sine-start test #1, shear forces 
 

It’s easy to explain why the difference between equipment #1 and equipment #2 for the shear 

forces at the top are less than for those at their bases. As a matter of fact, the acceleration inputs 

are the same for both, but they own very different masses. Therefore, since the support structure 

of equipment #2 has a much bigger mass and the same acceleration input, it is subjected to 

bigger shear forces, that are additional to those due to the attached cable. Conversely, it is correct 

that the shear forces at the two attachment points, since come directly from the motion of the 

cable, are more similar. Figure 6-9 shows the vertical reactions measured at the bases of the two 

equipment items. 
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Figure 6-9: Sine-start test #1, vertical reactions 
 

In this case, the oscillations due to the dynamic behavior are relatively small, compared to the 

static value descending from the gravity load of the cable. It is to be noted that these reactions 

neglect the gravity loads of the equipment items themselves, but take into account only the 

influence of the cable. This is decided since there is no vertical component of the ground motion, 

thus the gravity load generated by the masses of the items is a constant term through all the 

analysis that would only shift the two curves. Since equipment #1 and equipment #2 don’t have 

any vertical motion, these values are not meaningful for the dynamic analysis. Only the vertical 

loads due to the presence of the cable are significant, to study the effects of the interaction. The 

bigger vertical reaction for the static load is for equipment #1, since it is the higher of the two. In 

this case, the dynamic input just causes amplification of these reactions about 3.5%. It is 

noteworthy that, neglecting the gravity loads of the two equipment items, the vertical reactions 

match the internal axial forces in them, since the ground motion has no vertical component. 

Figure 6-10 presents the moment reaction for equipment # and equipment #2. 
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Figure 6-10: Sine-start test #1, moment reactions 
 

The results show the same behavior observed for the horizontal reactions. In this case, the 

harmonic displacements cause an amplification of 2.9 times the static reaction for equipment #2, 

and about 1.65 times for equipment #1. The last interesting results are the internal moment at the 

attachment points, showed in Figure 6-11. 
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Figure 6-11: Sine-start test #1, internal moment  
 

These moments are due to the connection between the cable and the two equipment items, that is 

clamped and not a pin, and to the flexural stiffness of the cable; therefore, some internal 

moments are transferred from the cable to equipment #1 and equipment #2, and vice versa. 

These moments are non negligible, even if they are about 1/20 than those at the bases, after the 

static loading. For these moments, the dynamic amplification is about 1.3 times the static values, 

for both the equipment items. 

The same comparisons are presented for the other three sine-start tests. The sine-start test #2, 

with a given frequency equal to the second natural frequency of the cable itself, has a time period 

of 11 s; from 0 to 1 s the vertical dead load is applied, then the displacement input is applied out-

of-phase at the two bases. For short, all the figures regarding the sine-start test #2 are presented 

in the Appendixes. Figure 9-8 shows the displacements experienced by the cable. For this input 

too, since the amplitude of the displacement input is equal to 100 mm and is applied out-of-phase 

at the two bases, the relative displacement between the two bases of the equipment items has 

amplitude of 200 mm. Looking at the relative displacement between the two attachment points 
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(the black curve in the graph), it has an amplitude equal to about 200 mm. This means that the 

two cantilever beams are subjected again to relatively small deformations; therefore, they are not 

strongly amplifying the motion they are subjected at their bases. The vertical displacements of 

the middle of the cable show that they can be are similar to the horizontal ones; as well as for the 

previous sine-start test, the cable is not subjected to large vertical motion. This can be confirmed 

by comparing the maximum dynamic vertical motion of the middle of the cable, about 280 mm, 

with the initial sag for the same node, that is about 2425 mm. It means that the central sag just 

slightly changes during the ground motion by +/- 11%. Figure 9-9 presents the horizontal 

reactions computed at the bases of the two equipment items. For this input too, it is noted that the 

base of the frame support of equipment #2 is subjected to stronger forces, that reach a maximum 

value of 12.34 kN pulling the top in the inside direction. This value is very significantly bigger 

than the horizontal reaction measured under the gravity load of the cable, found to be 0.176 kN. 

Since the frequency of the applied displacement is bigger than that of the previous sine-start test 

and the amplitude is the same, the acceleration input (the second time derivative) is much larger. 

In this case, the maximum value of the horizontal reaction is approximately 70 times the static 

force for the support structure of equipment #2. For the support of equipment #1, the maximum 

value of the absolute reaction is 3.27 kN, while the static value is again 0.176 kN (to respect the 

global equilibrium in the horizontal direction). This means that the maximum value of the 

horizontal reaction is approximately 18.6 times the static force for the support structure of 

equipment #1. Figure 9-10 shows the shear forces at the top of the two interconnected equipment 

items; the same forces, for the sake of equilibrium, are those applied at the two ends of the cable. 

In particular, the positive values correspond to traction in the cable. As discussed for the 

previous sine-start test, it is correct that the shear forces at the two attachment points, since come 

directly from the motion of the cable, are more similar, while the horizontal reactions at the bases 

are different from each other and are times bigger. It is to be noted that the traction in the cable 

doesn’t experience as big dynamic amplification as the horizontal reactions at the bases of the 

two equipment items. Figure 9-11 shows the vertical reactions measured at the bases of the two 

equipment items. In this case, the oscillations due to the dynamic behavior are not so small as for 

the previous test, compared to the static value descending from the gravity load of the cable. It is 

to be noted again that these reactions neglect the gravity loads of the equipment items 

themselves, but take into account only the influence of the cable, for the same reason discussed 
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earlier. The bigger vertical reaction for the static load is that of equipment #1, since it is the 

higher of the two. In this case, the dynamic input causes an amplification of these reactions up to 

1.47 times the static ones. It is noteworthy that, neglecting the gravity loads of the two 

equipment items, the vertical reactions match with the internal axial forces in them, since the 

ground motion has no vertical component. Figure 9-12 presents the moment reaction for 

equipment #1 and equipment #2. The results shows the same behavior observed for the 

horizontal reactions: the reactions at the base of equipment #2 support are about twice those at 

the base of equipment #1 support. In this case, the harmonic displacements cause an 

amplification of 24.9 times the static reaction for equipment #2, and about 10.8 times for 

equipment #1. The last interesting results are the internal moment at the attachment points, 

showed in Figure 9-13. These moments are non negligible, even if they are about 1/285 than 

those at the bases, after the static loading. As a matter of fact, while the moment reactions at the 

bases of equipment # and of equipment #2 can increase significantly according to the 

acceleration input, the internal moments in the cable have smaller variations, since its flexural 

stiffness is much smaller. For these moments, as well as for the previous sine-start test, the 

dynamic amplification is about 1.3 times the static values, for both the equipment items. 

Next, the results for the sine-start test #3 are presented. This test has a given frequency of the 

applied displacements equal to the natural frequency of equipment #1 in the as-installed 

configuration. Whether applied to the standalone equipment #1 installed on the top of the steel 

post, it generates resonance; therefore, it is supposed to cause large amplification of the response. 

This sine-start test #3 was supposed to have a time period of 5 s, but the analysis is aborted by 

the program after about 2.13 s, due to too big forces and displacements, that don’t allow finding 

an equilibrium position solution for the end of the time step. Nevertheless, some interesting 

observations can be made. As usual, from 0 to 1 s the vertical dead load is applied, and then the 

displacement input is applied out-of-phase at the two bases. Figure 6-12 shows the displacements 

experienced by the cable. 
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Figure 6-12: Sine-start test #3, displacement of the cable 
 

In this case, the relative displacement between the attachment points is completely different from 

that between the two bases. This means that equipment #1 is experiencing an excitation close to 

its resonance, even if it’s not a perfect resonance, since the attached cable at its top slightly 

changes its behavior. The top of equipment #1 is subject to very large displacements that are 

translated to motion of the cable, and from it to displacement at the top of equipment #2. The big 

motion experienced by the cable can be observed also from the vertical displacement of the 

middle. In this case, the peak of the displacement is about 3200 mm; it is even bigger than the 

initial sag, causing a motion of the cable above the straight line connecting the two attachment 

points. It means that the central sag changes during the ground motion by 132%. About the 

relative displacement between the two ends of the cable, they close their position by 1500 mm, 

that is 7.5 the maximum relative displacement between the bases of the two equipment items 

(200 mm). Figure 6-13 presents the horizontal reactions computed at the bases of the two 

equipment items. 
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Figure 6-13: Sine-start test #3, horizontal reactions 
 

For this input, it is to be noted that the base of the frame support and of equipment #2 are 

subjected to similar forces, that reach a maximum value of about 700 kN for equipment #2 and 

about 600 kN for equipment #1, both pulling the top in the inside direction. This is because 

equipment #1 is close to resonance, thus its internal forces are increasing. These values are 

completely from the horizontal reaction measured under the gravity load of the cable, that is 

found to be 0.176 kN. This can be addressed to two main reasons. First, since the frequency of 

the input is 4 Hz, the acceleration input is bigger than for the previous test, and thus the forces 

are bigger. Furthermore, one of the two equipment items is excited close to resonance. In this 

case, the maximum value of the horizontal reaction is approximately 4000 times the static force 

for the support structure of equipment #2. For the support of equipment #1, the maximum value 

of the horizontal reaction is approximately 3400 times the static force. Figure 6-14 shows the 

shear forces at the top of the two interconnected equipment items; the same forces, for the sake 

of equilibrium, are those applied at the two ends of the cable. In particular, the positive values 

correspond to traction in the cable. 
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Figure 6-14: Sine-start test #3, shear forces 
 

In this case, it is to be noted that the traction in the cable experiences very big dynamic 

amplification too, since its ends are subjected to very large displacements. As expected, the force 

at the top of equipment  #1 is much bigger than the force at the top of equipment #2; this is 

because it is close to resonance, and has very large top displacements, that turn out into big 

horizontal forces, due to the inertia of the cable. Figure 6-15 shows the vertical reactions 

measured at the bases of the two equipment items. 
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Figure 6-15: Sine-start test #3, vertical reactions 
 

In this case, equipment #1 is subjected to strong vertical forces, due to the vertical motion of the 

cable, caused by the slackness and the vertical separation between the two ends. As for the 

previous test results, these reactions neglect the gravity loads of the equipment items themselves, 

but take into account only the influence of the cable, for the same reason discussed earlier. The 

dynamic input causes an amplification of these reactions up to 2000 times the static ones for 

equipment #1 that is the most severely tested. It is noteworthy that all these vertical forces are 

generated only by a horizontal ground motion; therefore, whether the earthquake has also a 

vertical component, these forces can be even bigger. In absence of any vertical motion, they are 

found to be smaller than the horizontal ones. Furthermore, they generate axial forces, and 

moments at the bases only through the geometric nonlinearity, while the horizontal forces 

directly generate moments and shear, that are more dangerous for the equipment items. 

Nevertheless, as just mentioned, the vertical forces can be very significant considering a vertical 

component of the ground motion; as a matter of fact, they reach meaningful values also in 

absence of any external force in their direction. Figure 6-16 presents the moment reaction for 

equipment #1 and equipment #2. 
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Figure 6-16: Sine-start test #3, moment reactions 
 

The results show the same behavior observed earlier: the reactions at the base of equipment #1 

support are slightly bigger than those at the base of equipment #2 support. In this case, the 

harmonic displacements cause an amplification of 1250 times the static reaction for equipment 

#2, and about 1200 times for equipment #1. As well as in the horizontal reactions, the response 

of equipment #1 clearly shows a harmonic behavior, with the same frequency of the 

displacement input: this confirms that this given frequency matches the first natural frequency of 

the equipment item. The last interesting results are the internal moment at the attachment points, 

showed in Figure 6-17. 
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Figure 6-17: Sine-start test #3, internal moment  
 

This time the internal moments are much smaller than the moment reactions: as discussed before, 

the internal moments depend on the flexural stiffness of the cable, that is quite low, thus can’t 

increase as fast as the reactions do. Therefore, when one of the equipment items is close to 

resonance, these internal moments are less important. Nevertheless, they are bigger than for the 

previous tests, and the dynamic amplification is more than about 1.3 times the static values, for 

both the equipment items: in particular, it is close to 35 times. 

The last presented sine-start test is #4: the fixed frequency of the displacement input is equal to 

the first natural frequency of equipment #2 in the as-installed configuration. This test, whether 

applied to the standalone equipment #2 installed on the top of the frame support structure, 

generates resonance; therefore, it is supposed to cause large amplification of the response of the 

total system. This analysis was supposed to have a time period of 5 s, but the analysis is aborted 

by the program after about 1.4 s, due to too big forces and displacements, that don’t allow 

finding an equilibrium position solution for the end of the time step. In this case, it’s a little more 

difficult to make some interesting observations, since the dynamic analysis is limited to 0.4 s, 
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when the displacement input has just made 4 cycles and is still in the loading ramp, thus the final 

amplitude is not reached yet. As a matter of fact, from 0 to 1 s the vertical dead load is applied, 

and only after that the displacement input is applied out-of-phase at the two bases. For short, all 

the figures regarding this sine-start test are presented in the Appendixes. Figure 9-14 shows the 

displacements experienced by the cable. The behavior is very similar to that observed for the 

sine-start test #3: the relative displacement between the attachment points is completely different 

from that between the two bases. This confirms that equipment #2 experiences an excitation 

close to its resonance; the only difference from resonance in its behavior is due to the restraint 

provided by the presence of the cable attached at its top. In this case the very large displacements 

at the top of equipment #2 are translated to motion of the cable, and from it to displacement at 

the top of equipment #1. The vertical displacement of the middle of the cable shows the big 

motion it experiences. The peak of the displacement is about 3600 mm; this value is even bigger 

than that for the resonance of equipment #1, and it is bigger than the initial sag. This causes a 

motion of the cable above the straight line connecting the two attachment points. The central sag 

changes during the ground motion by about 150%. It is to be noted that the range of frequencies 

of the cable likely to be excited during the motion is very large, since the geometry of the cable 

undergoes very big changes. In some instants, the sag of the cable is flipped from the initial one. 

The maximum relative displacement between the two ends of the cable is about 1200 mm, that is 

6 times the maximum relative displacement between the bases of the two equipment items (200 

mm). This value is smaller than for the sine-start test #3: this is because the installed equipment 

#2 is stiffer than equipment #1, thus its top displacement in resonance are smaller than the top 

displacement of equipment #1 in resonance. Figure 9-15 presents the horizontal reactions 

measured at the bases of the two equipment items. It is clear that equipment #2 (the red curve) is 

in resonance, because the reaction at its base has a harmonic shape, with very big amplitude and 

a frequency equal to the input one. Conversely, the reaction at the base of equipment #1 has 

different frequency content, since it is a combination of the ground motion and the forces at the 

attachment point transmitted by the cable. In this case, the maximum value of the horizontal 

reaction is approximately 8000 times the static force for the support structure of equipment #2, 

and twice those obtained when equipment #1 is in resonance. For the support of equipment #1, 

the maximum value of the horizontal reaction is approximately 4500 times the static force. It is 

to be noted that the forces are likely to get even bigger in the analysis, if it is not aborted after 0.4 
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s of dynamic input. Figure 9-16 shows the shear forces at the top of the two interconnected 

equipment items; the same forces, for the sake of equilibrium, are those applied at the two ends 

of the cable. In particular, the positive values correspond to traction in the cable. The shear 

forces at the top of equipment #1 are negligible, while those at the top of equipment #2 are very 

significant. This is because the forces are transmitted by equipment #2 to the cable, thus the 

shear forces are not caused directly by the motion of the cable, but the displacement of the top of 

equipment #2 restrained by the cable. This is also why, as expected, the force at the top of 

equipment #2 is much bigger than the force at the top of equipment #1. Figure 9-17 shows the 

vertical reactions measured at the bases of the two equipment items. In this case, both the 

electrical equipment items are subjected to strong vertical forces, due to the vertical motion of 

the cable, caused by the slackness and the vertical separation between the two ends. As discussed 

earlier, these reactions neglect the gravity loads of the equipment items themselves, but take into 

account only the influence of the cable. The dynamic input causes an amplification of these 

reactions up to 3000 times the static ones for equipment #2 that is the one experiencing 

resonance. As well as for the horizontal reactions, this value is supposed to increase if the 

solution is not aborted. For this imposed ground motion without vertical component, the vertical 

reactions are found to be smaller than the horizontal ones. Nevertheless, as mentioned for the 

previous sine-start test, the vertical forces can be very significant considering a vertical 

component of the ground motion; this is confirmed by the fact that they reach meaningful values 

also in absence of any external force in that direction. Figure 9-18 presents the moment reaction 

for equipment #1 and equipment #2. The behavior is the same observed for the horizontal 

reactions. The moments at the base of equipment #2 support are the bigger ones, and they clearly 

show resonance: the amplitude reaches very elevated values, and there is one dominant 

frequency. In this case, there is an amplification of about 2800 times the static reaction for 

equipment #2, and about 1300 times for equipment #1. The last interesting results are the internal 

moment at the attachment points, showed in Figure 9-19. As well as for the previous sine-start 

test, the internal moments are much smaller than the moment reactions; in this case, they are 

about 1/400 the moment reactions. Nevertheless, they experience a dynamic amplification about 

90 times the static values, for both the equipment items. 
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6.1.4 Base Motion Tests 

The second type of test conducted on the electrical equipment items interconnected by the 

flexible cable is a seismic simulation. In order to test the most severe conditions, the cable is 

assumed to be straight between the two attachment points. This is possible since no relative 

displacements between the bases of the two equipment items are needed. The configuration of 

the system is that already described in the previous paragraphs. The ground motion is chosen 

from ATC-63. The data of this recorded earthquake are presented in Table 6-7. 

Table 6-7: Ground Motion Data 

EQ Index 3 

EQ ID 120412 

PEER-NGA Record Sequence Number 1602 

Owner ERD 

Lowest Useable Frequency (Hz) 0.06 

Horizontal Acceleration Time History File DUCZE/BOL090.at2 

Year 1999 

Recording Station Bolu 

PGA (g) 0.82 

 

It is to be noted that, since all the analysis is bi-dimensional, only one of the two perpendicular 

components of the ground motion is needed. In this case, the second component is used, since it 

has the highest PGA. The time history of the base motion input is presented in Figure 6-18. 
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Figure 6-18: Acceleration input record  
 

The time step of the record of the input is 0.01 s. The same value is used for the recommended 

size of the analysis time step, together with a residual tolerance equal to 1e4 N, that has the same 

order of magnitude of the expected reactions. In order to check the sensitivity of the total system 

to the presence of the interconnection, the same ground motion is used to test each the two 

electrical equipment items in their standalone configuration. Next, the comparison of their 

responses is made. It is to be noted that the interconnected system has non-zero initial conditions, 

both for displacements and forces, at the beginning of the dynamic analysis. This is because the 

presence of the cable undergoing its own weight introduces some reactions and displacements in 

the static part of the analysis; as a matter of fact, the cable deflects and pulls the two attachment 

points of equipment #1 and of equipment #2. Obviously, this is absent for the standalone 

equipment items, since there is no cable; therefore, no static analysis is needed before applying 

the dynamic input. For the sake of comparison, the initial values of the results for the standalone 

equipment items are shifted, so that they match the non-zero initial conditions for the 

interconnected system. In this way, it is possible to check the differences that rise from the 
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dynamic behavior, neglecting those only due to different static conditions. It is to be noted that in 

this paragraph are presented only the figures regarding the results for equipment #1, while the 

correspondent figures for equipment #2 are presented in the Appendixes for short. Figure 6-19 

shows the comparison for the relative horizontal displacements of the attachment point at the top 

of equipment #1. 

Figure 6-19: Base motion, relative horizontal displacements of the top of 
equipment #1 

 

Comparing the two curves, it can be seen that the cable provides a restraint for the first seconds, 

when the ground motion is still relatively small. Around 12 s, after the biggest peaks of the 

acceleration input, the presence of the cable tends to amplify these displacements. The values of 

the biggest displacements for the two configurations are similar, but there is a very significant 

difference. In the standalone configuration, the horizontal displacements reach a peak with 

amplitude of about 25 mm, and then the response gets smaller and oscillates with an amplitude 

of 15 mm. In the interconnected configuration, after a peak with amplitude of about 30 mm, the 

response continues to oscillate with that amplitude, and doesn’t get smaller. This is due to the 
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presence of the cable, that begins a very large motion and the inertia of this effect keeps the top 

of equipment #1 moving with large amplitudes. Figure 9-20 presents the horizontal 

displacements of the attachment point at the top of equipment #2. One meaningful observation 

can be made. The displacements experienced by the top of equipment #2 are smaller than those 

experienced by the top of equipment #1 in the standalone configuration; the amplitude of the 

peak is about 15-20 mm instead of 25. Nevertheless, considering the interconnection represented 

by the flexible cable, the amplitude of the displacement at the top of equipment #2 gets bigger 

and reaches 35-40 s; therefore, it is even bigger than equipment #1 one. Looking at the forces, 

the horizontal reactions measured at the base of the support of equipment #1 are shown in Figure 

6-20. 

Figure 6-20: Base motion, horizontal reaction at the base of equipment #1 
 

In this case, the reactions developed in the interconnected configurations are twice those for the 

standalone configuration. Furthermore, the peak of the reactions in the interconnected system 

doesn’t match the peak of the acceleration input, but is shifted along the time axis. This means 

that the peak of reactions is not directly due to the input at the base, but is mainly caused by the 
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forces transmitted by the cable at the attachment point. Therefore, the presence of the cable 

doesn’t change only the scale of the time history of the reaction, but the whole dynamic 

behavior. Figure 9-21 shows the same reactions for the other equipment item. For this 

equipment, the peak of the reactions in the standalone configuration (50 kN) is bigger than that 

in the interconnected configuration (40 kN). As expected, since equipment #2 and its frame 

support structure are the stiffer and heavier of the two equipment items, the reactions are mainly 

influenced by the dynamic behavior of the equipment itself, and less by the cable. Conversely, 

because of a minor dimension and a larger flexibility, equipment #1 mounted on the steel post is 

mainly influenced by the forces transmitted by the cable at the attachment point. Figure 6-21 

presents the time history of the vertical reaction at the base of the support of equipment #1. 

Figure 6-21: Base motion, vertical reaction at the base of equipment #1 
 

It is to be noted that, since the ground motion has only a horizontal direction, the standalone 

equipment doesn’t have any vertical component of motion; as for the sine-start tests, we are 

neglecting the static vertical forces due to the gravity load of the equipment items themselves. In 

this case, the presence of the cable in the interconnected configuration introduces significant 
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vertical forces. This is mainly due to the vertical separation between the two attachment points, 

since in this test the cable is straight and doesn’t present vertical changes in the sag, like it 

happens for the slack cable. Therefore, in this case the effect of the vertical inertia of the cable is 

less important than the vertical separation. This separation plays a big role, since the cable 

mainly transmit axial forces in the direction of its axis, and smaller shear forces and moments: 

the vertical separation between the two ends of the cable thus provides a slope to the direction of 

the axial forces transmitted between the two equipment items. This is the source of the vertical 

component of the forces in the system. Figure 9-22 presents the same time history for equipment 

#2. The observations that can be made are the same already made for the other equipment. The 

only difference is that these reactions are 10 times smaller than those at the base of equipment 

#1. The difference between the two reactions is equilibrated by the effect of the vertical inertia of 

the cable: as a matter of fact, since the ground motion has only a horizontal component, the only 

element with a vertical motion is the cable. This explains another role played by the presence of 

the cable, through its inertia. Figure 6-22 shows the moment reaction computed at the base of the 

support of equipment #1. 

Figure 6-22: Base motion, moment reaction at the base of equipment #1 
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The general behavior is very similar to the time history of the horizontal reaction. It is observed 

that the response in the interconnected configuration is slightly bigger than the standalone 

configuration one, but the biggest difference is the absence of a decrease after the peak of the 

acceleration input. Figure 9-23 presents the same comparison for equipment #2. In this case too, 

the behavior is very similar to that of the horizontal reactions. This is because the two equipment 

items are considered as cantilevers, and the moments at their bases come from the horizontal 

external forces; therefore, horizontal and moment reactions are related to each other. In this case, 

the maximum moment at the base of equipment #2 is 1.5 times the maximum moment at the base 

of equipment #1. This agrees with the fact that also the horizontal forces are bigger for 

equipment #2. Furthermore, since equipment #2 has the more severe response in the standalone 

configuration, the presence of the cable provides a restraint that slightly decreases the maximum 

peak. It is noteworthy that a comparison for the internal moments at the top of each equipment 

doesn’t make any sense. As a matter of fact, considering the two equipment items as cantilevers 

with the mass lumped in the center of gravity, the internal moment at their top will always be 

zero. The internal moments can only be generated by the presence of the attached cable. 

Nevertheless, the maximum possible internal moments will be generated when one of the 

elements of the interconnected system is in resonance, thus their maximum possible values have 

already been observed with the sine-start test. Therefore, it is not meaningful to check them for 

the base motion test. 

The last meaningful consideration regards the sources of the moments at the vase of equipment 

#1 and equipment #2. It is important to understand where these moments come from, since they 

are the most affecting effect on the entire interconnected system. For each equipment, the 

moment at the base comes from three components: the seismic response of the equipment itself, 

the moment transmitted by the cable at the attachment point, and the moment generated by the 

horizontal component of the axial force transmitted by the cable at the top of the equipment. The 

time history of the total moment at the base of equipment #1, as well as the components coming 

respectively from the moment at the top of the cantilever transmitted by the cable and from the 

axial force of the cable are presented in Figure 6-23. 
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Figure 6-23: Base motion, components of the moment reaction at the base of 
equipment #1 

 

In order to better understand the influences of the three components, their percentages on the 

total base moment are presented in Figure 6-24 for equipment #1. In particular, the maximum 

values and the averages of their percentage are shown in Table 6-8. 
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Figure 6-24: Base motion, percentages of the components of the moment reaction 
at the base of equipment #1 

 

Table 6-8: Maximum and Average Values of the Components of the Moment Reaction at the 
Base of Equipment #1 

 
Maximum value 

(%) 

Average 

(%) 

Seismic response of the equipment itself 100 72.9 

Moment generated by the axial force of the cable  98.9 26.7 

Moment transmitted at the top by the cable 11.6 0.4 

 

Very similar results are found for the moments at the base of equipment #2. For short, all the 

figures regarding those moments are presented in the Appendixes. The time history of the total 

moment at the base of equipment #2, as well as the components coming respectively from the 

moment at the top of the cantilever transmitted by the cable and from the axial force of the cable 

are presented in Figure 9-24. The percentages of the three components on the total base moment 
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are presented in Figure 9-25 for equipment #2. The maximum values and the averages of their 

percentage are shown in Table 6-9. 

Table 6-9: Maximum and Average Values of the Components of the Moment Reaction at the 
Base of Equipment #2 

 
Maximum value 

(%) 

Average 

(%) 

Seismic response of the equipment itself 100 72.8 

Moment transmitted at the top by the cable 99.7 26.9 

Moment generated by the axial force of the cable 9.2 0.3 
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CHAPTER 7 

CONCLUDING REMARKS 

 

This study showed the current capabilities to model high voltage electrical connectors, exhibiting 

nonlinear vibrations when subjected to time dependent loading. The study shows the big 

importance of dynamic behavior of flexible connections in response to the excitation generated 

by earthquakes. The following remarks summarize the main issues addressed in this work. 

Almost all the results showed that large forces inherent the cable might be dynamically 

generated, even when sufficient slack is provided to account for the differential displacement 

between the interconnected equipment items, indicating that it is not sufficient to seismically 

design connections based on static considerations only. Therefore, it is important to design 

flexible connections so that the range of natural frequencies at which they are likely to be excited 

are different from those of the equipment they are interconnecting, in order to avoid the risk of 

dynamic interaction and resonance between them (the natural frequencies of the interconnected 

electrical facilities are typically in the range 0.5 to 15 Hz). 

It was found that all the models are able to adequately reproduce the shape of the cable in the 

static position under their own weight: this confirms what is expected, that is finite-element 

programs based on the displacement method provide more accurate displacements than forces. 

Comparisons between the model and the experimental results on the difference between the 

maximum and minimum horizontal traction force measured for a given cycle of applied 

displacement at a fixed amplitude and frequency were made for the dynamic tests. 

It was observed that the model using an adequate variable bending stiffness reproduced with 

good accuracy the experimental results, with a maximum error of 13.6% and an average error of 

4.8% for the 7 sine-start tests compared. Conversely, the model simply considering a constant 

bending stiffness, based on the IEEE recommendation, showed a maximum error of 37.8% and 

an average error of 16.2%. This underlines the important role played by the slippage of the 

strands each over other, and the friction forces developed throughout this process. Therefore, it 

could be concluded, from both the static and dynamic comparisons, that both the presented 
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model was sufficiently adequate to representatively predict the dynamic response for short-span 

flexible conductors, typically connecting high-voltage substation electrical equipment. 

The sensitivity of the model to various parameters was analyzed, and the values most suitable to 

find good accuracy of the solution were found. These values have been used to set a valid model 

capable of adequately describing new possible dynamic tests on various interconnected electrical 

equipment items. The most important difference was found to be the compression in the cable, 

generated from the initial configuration of the cable. As a matter of fact, when the slackness ratio 

of the cable exceeds a certain quantity (0.275%), the cable is initially subjected to compression. 

The higher the flexural stiffness of the cable is, the higher the initial internal compression is. In 

particular, using a constant flexural stiffness when big rate of curvature are involved highly 

overvalues the computed value: therefore, unrealistic initial compressions are considered. When 

the compression is high enough, it causes a shift of the natural frequency, changing the dynamic 

properties of the cable: this involves a completely misunderstanding of the dynamic behavior of 

the cable. Therefore, the biggest errors in the analytical model come from the initial compression 

possibly caused by overestimated values of the bending stiffness: in particular the stiffness 

considered constant when big rate of curvature are involved, like the initial horizontal motion of 

the ends of the cable. Obviously, when a straight cable is considered, the slackness ratio is equal 

to zero, and no initial horizontal motion of the ends of the cable are needed. In this case, the 

cable undergoing the gravity load is only subjected to traction, and there is no compression 

causing any shit of the eigenfrequencies. In this case, considering either a constant or a variable 

bending stiffness only causes minor changes in the dynamic response of the cable. 

The second part of this study was focused on the dynamic behavior of electrical equipment items 

interconnected by a flexible cable, and the influence of the interconnection on the response of the 

system. It is to be noted that the two equipment items have been chosen only since experimental 

data and data for the modeling were already available. Although the items used are not typical 

for interconnecting equipment, their dynamic characteristic are representative and it was decided 

to model them, in order to evaluate the interconnected cables and equipment. Furthermore, the 

type of interconnecting cable is more common in Québec and Canada than in the United States 

of America, in particular the west coast of US. However, the parameters are realistic and allow 

testing the modeling and the interaction issues. All the representation of the two electrical 
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facilities has been made through the definition of rigidity values and lumped masses for the 

equivalent beams: if a different kind of electrical equipment has to be modeled, this can be done 

very easily just modifying the single value of rigidity and lumped mass of the equivalent beam. 

The aluminum cable has been defined through the cross-section area and the IEEE recommended 

equivalent inertia, based on the number of layer and the minimum value of bending inertia: when 

a different kind of cable has to be modeled, the new cross-section area and equivalent flexural 

inertia must be plugged in. The only purpose of this study is to validate a general model, not to 

analyze a very specific and actual electrical system: in this way, the validated model can be very 

flexible, and it can be applied to a large range of electrical interconnected system. 

The presence of the cable provides a restraint to the more severely tested equipment, slightly 

decreasing its response to the ground motion. The cable absorbs some part of the forces 

generated in the most affected equipment item, in this case equipment #2, and it transmits these 

forces to the interconnected equipment, causing a significant increase in its response. Therefore, 

the cable is redistributing the forces of the system from the more affected element to the less 

affected. This is valid for the horizontal and the moment reactions that are already present also 

for the two standalone equipment, since the ground motion has only a horizontal component. 

Conversely, in the vertical direction both the equipment items are more severely tested in the 

interconnected configuration, since the vertical forces are generated just by the presence of the 

cable, due to the vertical separation between the two ends and the vertical inertia. 

Furthermore, the presence of the cable provides both the equipment items sloped forces at the 

attachment points, generating shear forces and internal moments also at the top of each 

equipment: these forces are absent in the standalone configurations, since they are cantilevers 

with the whole mass lumped in the center of gravity. The most affecting structural effect on the 

interconnected system is the moment reaction at the base of the two equipment items. This is the 

capacity that has to be required to the structure. Looking at this value, as the more significant, it 

is seen that it comes from three different sources. One component is the seismic response of the 

electrical equipment itself, due to its mass and its stiffness: this is not directly related to the 

presence of the cable. The other two components are coming from the presence of the 

interconnecting cable: one is the moment transmitted by the cable at the attachment point, the 

second is the moment generated by the horizontal component of the axial force in the cable, that 
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is transferred at the top of the cantilever. The moment transmitted by the cable is found to have a 

very small influence, with an average percentage of less than 1%: this is consistent with the 

small value of the flexural inertia of the cable, causing small values of the inherent moment in 

the cable.  Conversely, the moment generated by the horizontal component of the axial force in 

the cable transferred at the top of the cantilever is found to have a bigger influence, with an 

average percentage on the total moment that is about 27%, but with peaks of the same order of 

magnitude of the moment due to the seismic response of the equipment itself. This underlines the 

big role played by the axial forces transmitted by the cable as concentrated forces at the top of 

the two equipment items. 

It is to be noted that these values are not directly related to the comparisons made between the 

standalone and the interconnected responses. As a matter of fact, in some instants the 

concentrated force transmitted by the cable generates a moment with an opposite sign to that of 

the moment due to the response of the equipment itself: in this case, the presence of the cable 

doesn’t aggravate the electrical equipment, but provides a force that fights the effects of the 

ground motion. Therefore, the check of the percentages themselves is not sufficient, but has to be 

done together with the check of the comparisons between the standalone and the interconnected 

seismic response, in order to understand when the cable is fighting the effects of the ground 

motion on the equipment items and when it aggravates their conditions. 

All the considerations made can be used to set a reliable finite-element model providing accurate 

description for the dynamic behavior of interconnected systems that can be subjected to 

experimental tests. The present studies shows that the model developed in ABAQUS (Der 

Kiureghian’s model with constant bending stiffness) is sufficiently accurate, even if less than 

FEAP model (Dastous’ model with variable bending stiffness), but much more flexible. 

Therefore, it is advisable to make use of ABAQUS model that can account for a big range of 

equipment items and different base motions. As already mentioned, the biggest lack of this 

model is the overestimation of flexural stiffness when big rate of curvature are involved. 

Nevertheless, big rate of curvature have been observed only when one end of the cable is 

horizontally moved to the other, and the cable switches from an initially straight to a slack shape. 

All the rates of curvature observed during the dynamic motion didn’t turn out in meaningful 

difference of flexural stiffness value between the two different models. This means that the 
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biggest differences between the two models are related to the initial motion of one end of the 

cable toward the other, in order to reach the desired span of the slack cable. It is to be noted that, 

whether the cable interconnecting the two equipment items is straight, this difference disappears, 

and both the two models provide very similar results: in this case, ABAQUS model is completely 

adequate to describe the dynamic behavior of the interconnected system. Conversely, when the 

cable interconnecting the two electrical equipment items is slack, some meaningful differences 

are present between ABAQUS and FEAP model. Nevertheless, as mentioned earlier, the 

different dynamic behavior is completely due to the initial compression value. FEAP model 

(Dastous’ model with variable bending stiffness) provides results for the dynamic part closer to 

the actual ones, but it shows also a better approximation of the initial compression value; 

ABAQUS model (Der Kiureghian’s model with constant bending stiffness) has a lack in the 

dynamic behavior that is proportional to the lack in the initial compression value. Therefore, a 

meaningful way to forecast the adequacy of ABAQUS model, when dynamic experimental tests 

are wanted to be modeled, is to compute the initial forces in the cable after the static steps (either 

compression or traction, depending on the type of cable and its slackness), and compare those 

with the forces experimentally measured in the cable under its own weight. If the analytical and 

actual values are close, it is reasonable that the finite-element model will provide an adequate 

approximation of the dynamic behavior of the cable; otherwise, the lack in the approximation of 

the dynamic behavior will be already shown by a significant difference between the analytical 

and actual initial forces in the cable. Therefore, the initial compression in the cable coming from 

the static loads is a significant parameter to evaluate the accuracy of the model for the dynamic 

analysis. 
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CHAPTER 9 

APPENDIXES 

 

 

 

Figure 9-1: Test #135, shape of the cable with the central sag moved up by 50 mm 
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Figure 9-2: Test #135 with the central sag moved up by 50 mm, horizontal reaction 
 

Figure 9-3: Test #135, shape of the cable with the central sag moved up by 100 mm 
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Figure 9-4: Test #135 with the central sag moved up by 100 mm, horizontal 
reaction 

 

Figure 9-5: Vertical displacements of the straight cable under gravity load 
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Figure 9-6: Horizontal reaction at the base of equipment #1 support for the 
straight cable under gravity load 

 

 

Figure 9-7: Horizontal reaction at the base of equipment #2 support for the 
straight cable under gravity load 
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Figure 9-8: Sine-start test #2, displacement of the cable 
 

Figure 9-9: Sine-start test #2, horizontal reactions 
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Figure 9-10: Sine-start test #2, shear forces 
 

Figure 9-11: Sine-start test #2, vertical reactions 
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Figure 9-12: Sine-start test #2, moment reactions 
 

Figure 9-13: Sine-start test #2, internal moment  
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Figure 9-14: Sine-start test #4, displacement of the cable 
 

Figure 9-15: Sine-start test #4, horizontal reactions 
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Figure 9-16: Sine-start test #4, shear forces 
 

Figure 9-17: Sine-start test #4, vertical reactions 
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Figure 9-18: Sine-start test #4, moment reactions 
 

Figure 9-19: Sine-start test #4, internal moment  
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Figure 9-20: Base motion, relative horizontal displacements of the top of 
equipment #2 

 

Figure 9-21: Base motion, horizontal reaction at the base of equipment #2 
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Figure 9-22: Base motion, vertical reaction at the base of equipment #2 
 

Figure 9-23: Base motion, moment reaction at the base of equipment #2 
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Figure 9-24: Base motion, components of the moment reaction at the base of 
equipment #2 

 

 

Figure 9-25: Base motion, percentages of the components of the moment reaction 
at the base of equipment #2 
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