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If people do not believe that mathematics is simple,

it is only because they do not realize how complicated life is.

John von Neumann





Introduction

Digital Tomosynthesis (DT) is an X-ray based tomographic imaging tech-

nique. It is a non-invasive and non-destructive method for the three-dimensional

visualization of the inner structures of an object, in which the projection-view

images are acquired at a limited number of angles over a limited angular

range.

DT is known as an attractive low-dose alternative to Computed Tomogra-

phy (CT) in medical and non-medical imaging applications, when the data

acquisition over the full angular range is impossible or infeasible if the object

is too large or if only a small part of the object is of interest.

The primary application of DT is the screening of breast cancer, DT is used

together with traditional mammography for the detection of microcalcifica-

tions and tumors.

The problem of reconstructing 3D images from the projections provided in

the Digital Tomosynthesis is an ill-posed inverse problem.

The standard strategy to solve this kind of problem is to minimize an object

function that contains a data fitting term and a regularization term.

The data fitting term is generally represented by the square of the 2-norm of

the residual, namely we generally search for the solution of a least squares

problem, and the regularization term is a function of the norm of the solu-

tion.
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The contribution of this thesis is to use the techniques of the compressed

sensing, in particular replacing the least squares problem of data fitting with

the problem of minimizing the 1-norm of the residuals, and using as regular-

ization term the Total Variation (TV).

We will propose two different algorithms: a new alternating minimization

algorithm, and a version of the more standard scaled projected gradient al-

gorithm that involves the 1-norm.

The first chapter contains some general notions on digital tomosynthesis, on

the mathematical model of image reconstruction, and the tools involved in

the resolution of this problem. In particular it describes the system matrix,

the functional object of the minimization problem that involves the 1-norm

of the residual, and some recalls on the total variation.

In the second chapter we described a minimizing alternating method, with its

convergence results, and we show the numerical results obtained from testing

the algorithm on noisy projections of the CIRS phantom.

In the third chapter an algorithm of scaled and projected gradient is pre-

sented in which we have replaced the data fitting term with the 1-norm of

the residual, and we show the convergence results for this method and the

experiments of the algorithm on the same CIRS phantom of Chapter 2.



Introduzione

La tomosintesi digitale (DT) è una tecnica di imaging tomografica basata sui

raggi X. È un metodo non invasivo e non distruttivo per la visualizzazione

tridimensionale delle strutture interne di un oggetto, nel quale le proiezioni

sono acquisite ad un numero limitato di angoli in un limitato range angolare.

La DT è nota come una conveniente alternativa alla tomosintesi computeriz-

zata (CT) a bassa dose di radiazioni, utilizzata nelle applicazioni mediche e

non mediche, utile quando l’acquisizione dei dati a 360 gradi è impossibile o

non attuabile, se l’oggetto è troppo grande o se si interessati a indagare solo

una parte di esso.

L’applicazione primaria della DT è lo screening del cancro al seno, per in-

dividuare insieme alla mammografia tradizionale le microcalcificazioni e i

tumori.

Il problema di ricostruire immagini 3D a partire dalle proiezioni fornite della

tomosintesi digitale è un problema inverso mal posto.

La strategia standard per risolvere questo genere di problema è quello di

minimizzare una funzione oggetto che contiene una parte di fitting dei dati

e una parte di regolarizzazione. Il fitting dei dati è generalmente rappresen-

tato dal quadrato della norma 2 del residuo, ovvero si cerca la soluzione di un

problema di minimi quadrati, e il termine di regolarizzazione è una funzione

della norma della soluzione.
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Il contributo di questa tesi è quello di utilizzare le tecniche del compressed

sensing in particolare sostituendo il problema di minimi quadrati nel fitting

dei dati con il problema di minimizzare la norma 1 del residuo e utilizzando

come termine di regolarizzazione la variazione totale (TV).

Proporremo due diversi algoritmi: un nuovo algoritmo di minimizzazione al-

ternata, e una versione del più standard algoritmo del gradiente scalato e

proiettato che coinvolge la norma 1.

Nel primo capitolo sono richiamate alcune nozioni generali sia sulla tomosin-

tesi digitale che sul modello e sugli strumenti matematici coinvolti nella

risoluzione del problema. In particolare è descritta la matrice del sistema,

il funzionale oggetto del problema di minimo che coinvolge la norma 1 del

residuo, e alcuni richiami sulla variazione totale.

Nel secondo capitolo è descritto il metodo di minimizzazione alternata, con

i risultati di convergenza di tale metodo, e sono riportati i risultati numerici

ottenuti dalla sperimentazione dell’algoritmo su proiezioni rumorose del fan-

toccio CIRS con livello di rumore pari a 10−3

Nel terzo capitolo è infine presentato un algoritmo di gradiente scalato e proi-

ettato in cui abbiamo sostituito la parte di fitting dei dati con la norma 1 del

residuo, e anche per questo metodo sono riportati i risultati di convergenza e

le sperimentazioni dell’algoritmo sul medesimo fantoccio CIRS del Capitolo

2.
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Chapter 1

Digital tomosynthesis model

and Total Variation

1.1 Digital tomosynthesis

Digital tomosynthesis (DT) is an X-ray based limited angle imaging tech-

nique. In tomosynthesis projection images are acquired over a limited angular

range. It is a non-invasive and non-destructive method for three-dimensional

visualization of the inner structures of an object. Computed radiography

(CR) and digital radiography (DR) are used for planar imaging when a three-

dimensional object is mapped onto a two-dimensional plane. Tomosynthesis

is historically the first X-ray based tomographic technique. However, it has

been forgotten with the development of computed tomography (CT). Only

recently, developments in the field of digital X-ray detectors and computer

technologies have led to a renewed interest in this technique. A high in-plane

resolution, three-dimensionality and a low radiation dose make DT an attrac-

tive alternative to CT in many imaging applications. The most widely used

DT application in medical imaging is breast imaging, DT is used together

1



2 1. Digital tomosynthesis model and Total Variation

with traditional mammography for the detection of microcalcifications and

masses. In contrast to CT, the DT projection dataset is incomplete, be-

cause the X-ray source and the detector do not completely rotate around

the patient. Although DT is a volumetric imaging technique and provides

dimensional information about the location of structures, the complete three-

dimensional information about the object cannot be reconstructed. There-

fore, one of the major issues is the improvement of the tomosynthesis image

quality.

1.2 Mathematical model

A DT data acquisition includes measuring a limited number of low-dose two-

dimensional projections of an object. This is done by moving a detector and

an X-ray tube around the object within a limited angular range.

The restricted quantity of data measured by DT leads to the compressed sens-

ing (CS): in data processing, the traditional practice is to measure (sense)

data in full length and then compress the resulting measurements before

storage or transmission. In such a scheme, recovery of data is generally

straightforward. This traditional data-acquisition process can be described

as “full sensing plus compressing”.

Compressed sensing, also known as compressive sensing or compressive sam-

pling, represents a paradigm shift in which the number of measurements is

reduced during acquisition so that no additional compression is necessary.

The price to pay is that more sophisticated recovery procedures become nec-

essary.

In particular in DT each measured two-dimensional intensity image I(f ; θ)

represents the decreased signal, where f is measured object. The decrease
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is caused by photon-matter interactions. If no object is present, the initial

intensity I0 will be measured. The model of tomosynthesis measurements is

based on the well known exponential Beer-Lambert law for a monoenergetic

spectrum

I(f ; θ) = I0e
−

∫
L µ(x) dx (1.1)

A projection image g(f ; θ) has a linear relation to the attenuation coefficients

µ(x) and is defined as

g(f ; θ) =

∫
L

µ(x) dx (1.2)

So we can write the image reconstruction problem as

g = Kf (1.3)

where f is the exaxt image, and K is the model of emission and detection

process described above.

Image reconstruction consists in solving equation (1.3) in order to determine

the value of f , based on a set of observation of g. This problem can not be

linearly solved due too the high number of f values to be calculated, and to

the high number of g values to be considered. One of the ways of finding

the solution of the problem will pass by an iterative process of gradually

approaching an estimation of f to its real values. The success of this task

will be highly dependent on the iterative procedure used to approach the

estimation to the real values and from how realistic is the model K in (1.3).

Since we have a finite number of measurements, we have to consider the

observation g in a discrete form gi, having a value for each possible Line of

Response (LOR) i. We can also assume that the image f can be approx-

imated by a linear combination of a finite set of basis functions fi, which

are known as voxels, namely cube-shaped elements covering the 3D space.

When looking to the problem from this perspective, we should rewrite (1.3)
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into (1.4)

gi =
∑
j

Ki,jfj (1.4)

In this new formulation, the process of emission and detection can now be

seen as a matrix, composed of elements Ki,j.

In this thesis the system matrix K is calculated by a ray-driven method

described in [5], in which each system matrix element is defined as the length

of segment of the LOR i in the voxel j.

It is important to note that although the line integrals g are measured, the

image f is of interest

f = K−1g

However, the direct matrix inversion of this equation is practically infea-

sible due to the large size of the equation system. Moreover, in the case

of limited angle tomosynthesis acquisition geometry, this system is severely

under-determined.

This leads to the need of an alternative algorithm. One such approach is to

formulate an optimization problem, which minimizes some pre-defined cost

function to find the

f = argmin
f≥0

T (f)

The cost function is constructed of two components: a data fitting term and

a regularization or penalty term with a regularization parameter µ

T (f) = DataF itting(g;Kf) + µRegularizationTerm(f)

In this thesis we chose as data fitting term

‖Kf − g‖1
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instead of the more classical least squares term

‖Kf − g‖2
2

in order to increase the sparsity of the solution.

There are two main classes of regularizer:

• The first one is the Tikhonov-like category, including

RegularizationTerm(f) =
∑

j‖Djf‖2 where Dj’s stands for a finite

difference operator; in these methods the resulting objective functions

T (f) are quadratic so is relative simple to minimize them. However

Tikhonov-like regularizers tend to produce a solution overly smooth,

and rarely succeed to maintain important image details such as sharp

edges.

• The second class of regularizer employs the Total Variation (TV).

The methods of this class can better preserve sharp edges or object

boundaries that are usually the most important features to recover,

however the TV model is computionally more difficult to solve.

For these reasons we chose as penalty term the Total Variation and we ob-

tained a method designed to give piece-wise constant solutions.

We want to solve the minimization problem

minT (f) = ‖Kf − g‖1 + µTV (f) (1.5)

In the next section we briefly discuss some of the Total Variation properties

and its discretized form.
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1.3 Total Variation

We begin our discussion over Total Variation with the classical definition of

Total Variation of a function f defined on the interval [0, 1]

TV (f) = sup
∑
i

|f(xi)− f(xi−1)| (1.6)

where supremum is taken over all partition 0 = x0 < x1 < · · · < xn = 1 of in-

terval. If f is piecewise constant with a finite number of jump discontinuities,

then TV (f) gives the sum of the magnitudes of the jump, if f is smooth, one

can multiply and divide the right hand side of (1.6) by ∆xi = xi − xi−1 and

take the limits as the ∆xi → 0 to obtain the representation

TV (f) =

∫ 1

0

| df
dx
| dx (1.7)

An obvious generalization of (1.7) to three-dimensional space dimension is

TV (f) =

∫ 1

0

∫ 1

0

∫ 1

0

|∇f | dx dy dz (1.8)

where∇f = (∂f
∂x
, ∂f
∂y
, ∂f
∂z

) denotes the gradient, and |(x, y, z)| =
√
x2 + y2 + z2

denotes the Euclidian norm.

TV (f) can be interpretated geometrically as the lateral surface area of the

graph of f , if f has many large amplitude oscillation, then it has large lateral

surface area, and hence TV (f) is large.

Then it is easy to understand why Total Variation is useful in image recon-

struction: with Total Variation one can effectively reconstruct function with

jumps discontinuity, and this reconstruction tends to produce qualitatively

correct reconstructions of blocky images.

By blocky we mean that the image is nearly piecewise constant with discon-

tinities, and the length of the curves on which the discontinuities occur is

relatively small.
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1.3.1 Numerical methods for Total Variation

We want to obtain regularization solution to operator equation described in

(1.3) by minimizing the functional

T (f) = ‖Kf − g‖1 + µTV (f) (1.9)

However, the representation (1.7) is not suitable for the implementation of

the numerical methods that we will present in Chapter 2 and Chapter 3 due

to the non-differentiability of the Euclidean norm at the origin. To overcome

this difficulty, one can take an approximation of the Euclidean norm |(x, y, z)|

like this
√
x2 + y2 + z2 + β2 where β is a small positive parameter.

This yelds the following approximation of TV (f), valid for a smooth function

f defined on the unit interval in one dimension

Jβ(f) =

∫ 1

0

√(
df

dx

)2

+ β2 dx

In three space dimensions, this becomes

Jβ(f) =

∫ 1

0

∫ 1

0

∫ 1

0

√(
df

dx

)2

+

(
df

dy

)2

+

(
df

dz

)2

+ β2 dx dy dz (1.10)

1.3.2 A one-dimensional discretization

Now we need to represent the approximation of Total Variation given above

in a discete form. We first present a one-dimensional discretization that will

be generalized for the three-dimensional space case.

Let us suppose f(x) is a smooth function defined on the unit interval in R and

f = (f0, . . . , fn) with fi ≈ f(xi), xi = i∆x,∆x = 1/n. Take the derivative

approximation

Dif =
fi − fi−1

∆x
, i = 1, . . . , n
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with the matrix representation Di = [0, . . . , 0,−1/∆x, 1/∆x, 0, . . . , 0].

We assume a discretized penalty functional of the form

J(f) =
1

2

n∑
i=1

ψ
(
(Dif)

2
)

∆x (1.11)

where ψ is a smooth approximation to twice the square root function ψ(t) =

2
√
t+ β2

To minimize (1.9) we need the gradient of J . For any v ∈ Rn+1,

d

dτ
J(f + τv) =

n∑
i=1

ψ′
(
(Dif)

2
)

(Dif)(Div)∆x (1.12)

= ∆x(Dv)Tdiag(ψ′(f))(Df) (1.13)

= 〈∆x(Dv)Tdiag(ψ′(f))(Df),v〉 (1.14)

where diag(ψ′(f)) denotes the n×n diagonal matrix whose ith diagonal entry

is (ψ′((Dif)
2), D is the n×(n+1) matrix whose ith row isDi, and 〈·, ·〉 denotes

the Euclidean inner product on Rn+1.

From this we obtain the gradient

gradJ(f) = L(f)f (1.15)

L(f) = ∆xDTdiag(ψ′(f))D (1.16)

where L(f) is a symmetric positive semidefinite (n+ 1)× (n+ 1) matrix.

1.3.3 A three-dimensional discretization

We now generalized the discretization given above at the three-dimensional

case.

Suppose f = fijk is defined on an equispaced grid in three space dimensions,

{(xi, yj, zk)|xi = i∆x, yj = l∆y, zk = k∆z, i = 0, . . . , nx, j = 0, . . . , ny,
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k = 0, . . . , nz}. In an analogous manner to the one-dimensional case, we

define the discrete penalty functional

J(f) =
1

2

nx∑
i=1

ny∑
j=1

nz∑
k=1

ψ
(
(Dx

ijkf)2 + (Dy
ijkf)2 + (Dz

ijkf)2
)

(1.17)

where

Dx
ijkf =

fi,j,k − fi−1,j,k

∆x
, Dy

ijkf =
fi,j,k − fi,j−1,k

∆y
, Dz

ijkf =
fi,j,k − fi,j,k−1

∆z
(1.18)

To simplify the notation we dropped the factor ∆x∆y∆z from the right-

hand side of (1.17); this factor can be absorbed in the regularization para-

menter µ in (1.9).

Gradient computations are similar to those in one dimension

d

dτ
J(f+τv)|τ=0 =

nx∑
i=1

ny∑
j=1

nz∑
k=1

ψ′ijk
[
(Dx

ijkf)(Dx
ijkv) + (Dy

ijkf)(Dy
ijkv) + (Dz

ijkf)(Dz
ijkv)

]

where ψ′ijk = ψ′((Dx
ijkf)2 + (Dy

ijkf)2 + (Dz
ijkf)2)).

Now let f = vec(f) and v = vec(v), corresponding to lexicographical column

ordering of the three-dimensional array components, let Dx, Dy and Dz de-

note the resulting nxnynz × (nx + 1)(ny + 1)(nz + 1) matrices corresponding

to the grid operator in (1.18), let diag(ψ′(f)) denote the nxnynz × nxnynz

diagonal matrix whose diagonal entries are the ψ′ijks and let 〈·, ·〉 denotes the

Euclidean inner product on R(nx+1)(ny+1)(nz+1). Then

d

dτ
J(f + τv)|τ=0 =〈diag(ψ′(f))(Dxf), Dxv〉+ 〈diag(ψ′(f))(Dyf), Dyv〉+

+ 〈diag(ψ′(f))(Dzf), Dzv〉
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From this we obtain a gradient representation like (1.15), but now

L(f) = DT
x diag(ψ′(f))Dx +DT

y diag(ψ′(f))Dy +DT
z diag(ψ′(f))Dz = (1.19)

= [DT
xD

T
yD

T
z ]


diag(ψ′(f)) 0 0

0 diag(ψ′(f)) 0

0 0 diag(ψ′(f))



Dx

Dy

Dz

 (1.20)

We now have a discrete representation of the minimization problem described

in (1.5), and we can present the numerical methods to find its solution.



Chapter 2

An Alternating Minimization

Algorithm

2.1 Introduction to the algorithm

In this chapter we introduce an algorithm for recostructing 3D data from

noisy projections.

The algorithm we are going to describe is a modified version of the alternating

minimization method for Total Variation image recostruction proposed in [3]

and in [4] by Wang Y., Yang J. and Zhang Y., that we readjusted to recostruct

3D data.

Let f ∈ Rn2m be an original n × n × m grayscale object, K represent a

blurring operator, ω be additive noise, and g be an observation that satisfies

the relationship

g = Kf + ω (2.1)

Then, give K and g, f is recoverd from the model

(2.2)

11



12 2. An Alternating Minimization Algorithm

where Dif ∈ R3 denotes the discete gradient of f , and the sum
∑
‖Dif‖ is

the discrete Total Variation of f .

Since TV norms are essentially L1 norms of derivatives, L1 estimation pro-

cedures are more appropriate for the subject of image restoration.

Our algorithm used a variable-splitting and penalty techniques in optimiza-

tion, specifically let z ∈ Rn2m be an auxiliary variable that approximates

Kf − g and for each voxel let wi ∈ R3 an auxiliary variable introduced to

transfer Dif out of the nondifferential term ‖·‖1. For convenience, we let

w = [w1, . . .wn2m].

Then, by adding quadratic terms to penalize the difference between every

pair of original an auxiliary variables, we obtain the following approximation

problem

min
w,z,f

∑
i

(
‖wi‖1 +

β1

2
‖wi −Dif‖2

1

)
+ µ‖z‖1 +

β2

2
‖z − (Kf − g)‖2

1 (2.3)

with a sufficiently large parameters β1 and β2.

From the theory of penalty methods, the solutions of (2.3) converge to that

of (2.2) as the penalty parameters go to infinity.

The motivation for this formulation is that it is numerically easier to minimize

by an iterative and alternating approach, due to the fact that with any two

of the three variables w, z, and f fixed, the minimizer of (2.3) with respect

to the third one has a closed-form formula that is easy to compute.

In addiction this approach is numerical stable for large values of β1 and β2.

2.1.1 Notation

Let D(j) ∈ Rn2m×n2m be finite differences matrices, and in particular let

D(1), D(2) and D(3) be the first-order forward finite difference matrices with

appropriate boundary conditions in the three different directions respectively.
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As is used in (2.2), Di ∈ R3n2m is a three-row matrix formed by stacking the

ith rows of D(1), D(2) and D(3).

From here the norm ‖·‖ refers to the 1-norm.

We introduce three auxiliary vectors w1, w2 and w3 to approximateD(1)f,D(2)f

and D(3)f respectively; we denote w = (w1, w2, w3) ∈ R3n2m and D =

(D(1), D(2), D(3)) ∈ R3n2m×n2m.

2.1.2 An alterating minimization algorithm

We begin with assuming β1 = β2 ≡ β in (2.3) which does not cause loss of

generality.

It is easy to see that for a fixed f the minimization with respect to w and z

can be done in parallel because they are separable in (2.3). In addition, for

all subscript i, the first two term in (2.3) are separable with respect to wi

and the last two terms are separable with respect to each component of z.

Based on these observations, it is easy to apply alternating minimization to

(2.3): first for a fixed f the minimizer function of wi is given by a multidi-

mensional shrinkage

wi = max

{
‖Dif‖ −

1

β
, 0

}
sgn(Dif) , i = 1, 2, · · · , n2m (2.4)

where the convenction 0 · (0
0
) = 0 is followed. The minimization with respect

to z is given by the one-dimensional shrinkage:

z = max

{
|Kf − g| − µ

β
, 0

}
◦ sgn(Kf − g) (2.5)

where ◦ represents the pointwise product, and all other operations are im-

plemented componentwise.

Second, for fixed w and z, the minimization with respect to f is a least
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squares problem:

minf
∑
i

‖wi −Dif‖2
1 + ‖Kf − (g + z)‖2

1 (2.6)

In this thesis we solve the least squares problem using the conjugate gradient

method for least squares problem (CGLS) with a relative stopping condition

on the residual norm in addition to a condition on the maximum number of

iterations.

Is well known that the CGLS method solves a lineare least squares problem

min
x

Φ(x) =
1

2
‖Qx− c‖2 =

1

2
xTQTQx− xTQT c (2.7)

that is a quadratic form problem where Q ∈ Rm×n, n ≤ m. Solve (2.7) is

equivalent to solve the normal equations system

QTQx = QT c (2.8)

If the matrix QTQ is positive definite we can use the CG method in order to

solve (2.8).

Now we present the pseudo-code of the CGLS algorithm:
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Algorithm 1: CG method for least squares problem

Given x0 ∈ Rn, tol > 0

r0 ← b−Qx0, z0 ← QT r0, p0 = z0, k ← 0 ;

while norm(rk) ≥ tol do

wk ← Qpk ;

αk ←
zTk zk
wT

k wk
;

xk+1 ← xk + αkpk ;

rk+1 ← rk − αkwk ;

zk+1 ← QT rk+1 ;

βk+1 ←
zTk+1zk+1

zTk zk
;

pk+1 ← zk+1 + βk+1pk ;

k ← k + 1 ;

end

We present the scheme for the alternating minimization algorithm we de-

scribed:

Algorithm 2: ADM methods with CG

Given g,K, µ > 0 , and β > 0.

f ← g ;

while ”not converged” do

(1) Given f , compute w and z by (2.4) and (2.5) respectively ;

(2) Given w and z compute f by solving (2.6) using CGLS ;

end

There is two stopping conditions for the extern cycle, one is the maximum

number of iteration criteria, that stops the algorithm at the 2000th iteration,

the other is a condition based on semiconvergence: we stopped it when the
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relative error of the current iteration overcomes the error at the previous one.

2.2 Convergence analysis

In this section we analyse the convergence property of Algorithm 2 for a fixed

β > 0; we will omit most of the proofs, but the reader can refer to [3].

First we prove that the sequence {(wk, fk)} generated by Algorithm 2 from

any initial point converges to a solution of (2.3).

For t ∈ R, let the one-dimensional shrinkage de defined by

sµ(t) = max
{
|t| − µ

β
, 0
}
· sgn(t)

For t ∈ R3 we define the three-dimensional shrinkage operator s : R3 → R3

as

s(t) = max
{
‖t‖ − 1

β
, 0
} t

‖t‖

where the convention 0 · (0/0) = 0 is followed.

It is easy to see that

s(a) = a− P(a)

where P : R3 → R3 is the projection onto the closed ball B = {t ∈ R3, ‖t‖ ≤
1
β
} For v ∈ RN , let sµ(v) = (sµ(v1); . . . ; sµ(vN)) ∈ RN .

For vectors f, v, w ∈ RN , N ≥ 1 is defined S(f, v, w) : R3N → R3N as

S(f, v, w) = (s(t1); . . . ; s(tN)) where ti =


fi

vi

wi


namely S applies three-dimensional shrinkage to each triplet (fi, vi, wi) ∈ R3

for i = 1, . . . N .
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The first convergence result is (2.2.1) and we take a few step to prove it: first

we prove the nonexpansiveness of the shrinkage operator s.

Proposition 2.2.1. For any t1, t2 ∈ R3, it holds that

‖s(t1)− s(t2)‖2 ≤ ‖t1 − t2‖2 − ‖P(t1)− P(t2)‖2

Furthermore, if ‖s(t1)− s(t2)‖ = ‖t1 − t2‖, then s(t1)− s(t2) = t1 − t2.

We will make use of a mild assumption in our convergence analysis:

Assumption 1 N (K)∩N (D) = {0}, where N (·) represents the null space of

a matrix.

We will use the following two symmetric and positive definite matrix:

H = (D;K) and M = DTD +KTK = HTH (2.9)

and Assumption 1 ensures that M−1 is well defined. Furthermore let v =

(w; z) we also define the operator ĥ : R3n3 → R3n3
as ĥ(v) = (h(v);h(3)(v))

where h(v) = (h(1)(v), h(2)(v)), and

h(j)(v) = D(j)M−1
(
HTv +KTg

)
, j = 1, 2

h(3)(v) = KM−1(HTv +KTg)− g

Let Ŝ ◦ ĥ = (S ◦h; sµ ◦h(3)) Using the above notation we can rewrite the two

iterative steps of Algorithm 2 as

vk+1 = (wk+1, zk+1) = S(D(1)fk;D(2)fk;D(3)fk; sµ(Kfk − g)) = Ŝ ◦ ĥ(vk),

(2.10)

fk+1 = M−1
(
HTvk+1 +KTg

)
(2.11)

Since the objective function in (2.3) is convex, bounded below, and coer-

cive (its value goes to infinity as ‖(w, z, f)‖ → ∞)), (2.3) has at least one

minimizer pair (v∗, f ∗) = (w∗, z∗, f ∗) that must satisfy

v∗ = S(D(1)f ∗;D(2)f ∗;D(3)f ∗; sµ(Kf ∗ − g)) = Ŝ ◦ ĥ(v∗), (2.12)
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f ∗ = M−1
(
HTv∗ +KTg

)
(2.13)

In particular (2.12) means that v∗ is a fixed point of Ŝ ◦ ĥ.

Now we show that ĥ is nonexpansive

Proposition 2.2.2. For any v1 6= v2 ∈ R3n3
, it holds that

‖ĥ(v1)− ĥ(v2)‖ ≤ ‖v1 − v2‖

and the equality holds if and only if ĥ(v1)− ĥ(v2) = v1 − v2.

Then the following lemma gives a useful property for fixed points of the

operator Ŝ ◦ ĥ:

Lemma 2.2.1. Let v∗ be any fixed point of Ŝ ◦ ĥ. For any v we have ‖Ŝ ◦

ĥ(v∗)‖ < ‖v − v∗‖ unless v is a fixed point of Ŝ ◦ ĥ.

Now we are ready to prove the convergence of Algorithm 2.

Theorem 2.2.1. For any fixed β > 0 under Assumption 1 the sequence

{(wk, zk, fk)} generated by Algorithm 2 from any starting point (w0, z0, f 0)

converges to a solution (w∗, z∗, f ∗) di (2.3).

Proof. From non expansiveness of Ŝ ◦ ĥ it is easy to show that the sequence

vk lies in a compact region, and thus it have at least one limit point v∗ =

limj→∞ v
kj .

Letting v̂ be any fixed point of Ŝ ◦ ĥ, namely Ŝ ◦ ĥ(v̂) = v̂, we get

||vk − v̂|| = ||Ŝ ◦ ĥ(vk−1)− Ŝ ◦ ĥ(v̂)|| ≤ ||vk−1 − v̂||

from the lemma 2.2.1, and so the following limit exists

lim
k→∞
||vk − v̂|| = lim

j→∞
||vkj − v̂|| = ||v∗ − v̂|| (2.14)
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Namely all limit points of the sequence vk, if more than one, have all equal

distance from v̂.

By the continuity of Ŝ ◦ ĥ we can state that

Ŝ ◦ ĥ(v∗) = lim
j→∞

Ŝ ◦ ĥ(vk) = lim
j→∞

vkj+1

Then since Ŝ ◦ ĥ(v∗) is also a limit point of vk it must have the same distance

to v̂ as v∗

‖v∗ − v̂‖ = ‖Ŝ ◦ ĥ(v∗)− v̂‖ = ‖Ŝ ◦ ĥ(v∗)− Ŝ ◦ ĥ(v̂)

Now using again lemma 2.2.1 we have v∗ = Ŝ ◦ ĥ(v∗).

Since v̂ is any fixed point of Ŝ◦ĥ, by repalcing v̂ with v∗ in (2.14) we establish

the convergence of vk, limk→∞ v
k = v∗.

The convergence of fk to some u∗ follows from (2.11).

Next we develop a finite convergence property for the auxiliary variable

w. Let

hi(w) = (h
(1)
i (w), h

(2)
i (w), h

(3)
i (w)) ∈ R3), i = 1, 2, . . . , n2m

and let L1, L2, E1 and E2 be the following index sets:

L1 =
{
i : ‖Dif

∗‖ = ‖hi(v∗)‖ ≤ 1
β

}
, L2 =

{
i : |(Kf ∗ − g)i| = |h(3)

i (v∗)‖ ≤ µ
β

}
E1 = {1, 2, . . . n2m}r L1 and E2 = {1, 2, . . . n2m}r L2

Theorem 2.2.2 (finite convergence). Under Assumption 1 the sequence

{(wk, zk, fk)} generated by Algorithm 2 from any starting point (w0, z0, f 0)

satisfies wk
i = w∗i = 0, for all i ∈ L1, and zki = z∗i = 0, for all i ∈ L2, for

all but a finite numbers of iterations that does not exceed ‖v0 − v∗‖2/ω2
1 and

‖v0 − v∗‖2/ω2
2, where

ω1 = mini∈L1

{
1
β
− ‖hi(v∗)‖

}
> 0 and ω2 = mini∈L2

{
µ
β
− |h(3)

i (v∗)|
}
> 0
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We next show the q-linear convergence of fk and the remaining compo-

nents of vk. For convenience let

L = L1 ∪ (n2m+ L1) and E = {1, . . . n2m}r L

Denote vL the subvector of v with components (vi), i ∈ L and vE be defined

similarly.

Furthermore let P = HM−1HT and PEE = [Pi,j]i,j∈E

Theorem 2.2.3 (q-linear convergence). Under Assumption 1, the sequence

{(wk, zk, fk)} generated by Algorithm 2 satisfies:

‖vk+1
E − v∗E‖ ≤

√
ρ(PEE)‖vkE − v∗E‖

‖fk+1 − f ∗‖M ≤
√
ρ(PEE)‖wkE − w∗E‖M

for all k sufficiently large.

2.3 Numerical results

In this section we present numerical results of recovering images by the pro-

posed alternating minimization algorithm.

2.3.1 Test problem

In our experiments, the test problem we used to simulate breast is called

CIRS: it is a three-dimensional grayscale phantom of size 128x128x15 that

contains three different type of structures that simulate respectively fibers,

microcalcifications and masses.
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(a) layer 6 (b) layer 7

(c) layer 8 (central layer) (d) layer 9

(e) layer 10

Figure 2.1: Cirs phantom

In figure 2.1 it is represented the central slice of the phantom, in which

we can recognize the objects descripted above, the fibers in the first row, the
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microcalcifications in the central portion and the masses in the third row,

and we show also 6th, 7th, 9th and 10th layer of the model to recognize the

different thicknesses of the structures in it.

As regards the construction of the matrix K, it has been obtained by using

the fast algorithm for the calculus of an exact radiological path for a three-

dimensional CT system presented by Robert L. Siddon in [5]. More precisely,

in this work the matrix K has been constructed by using the Siddons algo-

rithm with N = 13 equispaced projection angles from -17 to 17.

2.3.2 Numerical experiments

We set the parameters of the ADM algorithm as follows: µ = 50, β1 =

0.3, β2 = 0.1, tollerance of the CG algorithm at 10−3, and we establish

a maximum number of iteration for CG equal to 50 for the first run, and

equal to the number of iterations occured in the previous run by the second

iteration onward.

We want to reconstruct the images starting by noisy projections with a level

of noise equal to 10−3.

We arrived at a relative error

erel =
‖xk − xexact‖
‖xexact‖

in the solution equal to erel = 0.0895, and the algorithm stopped for the

condition on the maximum number of iteration in extern cycle reaching the

2000 iteration in 2600 seconds.

In Figure 2.2 we show the reconstruction obtained with the ADM algorithm,

and in particular the layers from 6 to 10.

In Figure 2.3 we show the plot of the relative error at each iteration.
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(a) Layer 6 (b) Layer 7

(c) Layer 8 (d) Layer 9

(e) Layer 10

Figure 2.2: ADM reconstruction
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(a) relative error

Figure 2.3: ADM relative error

In Figure 2.4 and 2.5 are represent the central and the 9th layer of the

ADM reconstruction and of the exact solution.

(a) ADM with tolCG=10−3 (b) exact images

Figure 2.4: Recostruction comparison (central layer)
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(a) ADM with tolCG=10−3 (b) exact images

Figure 2.5: Recostruction comparison (layer 9)

In the figures below we compare the heights of the jumps in the recon-

structions with the ADM methods in relation to the jumps present in exact

solution: we took into consideration the central and the ninth layer of the

phantom and in particular the thirtieth, the sixty-third, and the ninety-sixth

rows of both layers.

(a) fibers line (b) fibers
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(c) microcalcification line (d) microcalcification

(e) masses line (f) masses

Figure 2.6: Comparison of the different structures recostructions (central

layer)

(a) fibers line (b) fibers
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(c) microcalcification line (d) microcalcification

(e) masses line (f) masses

Figure 2.7: Comparison of the different structures recostructions (layer 9)

We now study the reconstruction stopping the iterative algorithm at 10,

30 and 60 seconds, to analyse the gradual appearence of the significant struc-

tures and the increasing quality of their reconstruction during successive it-

erations.
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(a) 10 secs (b) 30 secs

(c) 60 secs

Figure 2.8: Recostructions after 10, 30 and 60 seconds (layer 8)

In particular we show the profiles of the reconstruction inner structures

stopping the iterative ADM algorithm after 30 seconds.
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(a) fibers line (b) fibers

(c) microcalcification line (d) microcalcification

(e) masses line (f) masses

Figure 2.9: Comparison of the different structures recostructions after 30

seconds (central layer)
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At the end we analyse the reconstruction solution with regard to the

presence of noise: in particular we use as a parameter the signal-to-noise

ratio (SNR).

SNR is a measure that compares the level of a desired signal to the level

of background noise and is defined as the ratio of signal power to the noise

power: we use the definition

SNR = 20 ˙log10

(
Asignal
Anoise

)
(2.15)

where A is root mean square amplitude.

Since in the test problem we consider the noise is added to the projection,

and not to the exact image, we calculate Anoise using the difference between

the exact solution and the reconstructured image we computed.

We also calculate the SNR in a region of interest (ROI), indicated in red in

Figure 2.10 (b), which not interesect any of the structures mentioned above

to better measure noise level in the background.
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(a) Global SNR (b) ROI

(c) SNR in the ROI

Figure 2.10: SNR in each layer





Chapter 3

Scaled Projected Gradient

Method

In this chapter we introduce a scaled gradient projection (SGP) method

for solving the problem introduced in the Chapter 1, interpretated like a

constrained minimization problem of the general form

min f(x) s. t. x ∈ Ω (3.1)

3.1 Definition and basic properties

Given the optimization problem (3.1), we recall that x∗ ∈ Ω is a stationary

point of f over Ω if

−∇f(x∗)T (y − x∗) ≤ 0, ∀y ∈ Ω

or, if Ω is convex, if −∇f(x∗)Tw ≤ 0 for any w in the tangent cone of Ω at

x∗.

Let Ω ⊂ RN be a closet convex set and D be a symmetric positive definite

33
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N ×N matrix, we define the projection operator PΩ,D : RN → Ω as

PΩ,D ≡ arg min
y∈Ω
||y − x||D = arg min

y∈Ω

(
φ(y) ≡ 1

2
yTDy − yTDx

)
(3.2)

We observe that the operator PΩ,D is a continuous function with respect to

the elements of the matrix D and that is defined also by

(PΩ,D(x)− x)TD(PΩ,D(x)− y) ≤ 0 ∀y ∈ Ω (3.3)

Let DL ∈ RN×N be the compact set of the symmetric positive definite N×N

matrices such that ||D|| < L and ||D−1|| < L, for a given threshold L > 1.

The following lemmas state two basic properties related to the projection

operator: a Lipschitz continuity condition and a characterization for the

stationary points of problem (3.1); we omit the proofs but the reader can

find them in [6].

Lemma 3.1.1. If D ∈ DL, then

||PΩ,D(x)− PΩ,D(z)|| ≤ L2||x− z||

for any x, z ∈ RN

Lemma 3.1.2. A vector x∗ ∈ Ω is a stationary point of the problem (3.1) if

and only if x∗ = PΩ,D−1(x∗ − αD∇f(x∗)) for any positive scalar α and for

any symmetric positive definite matrix D.

3.2 The SGP method

The second lemma shows the effect of the projection operator PΩ,D−1 on the

points x∗ − αD∇f(x∗), α > 0, when x∗ is a stationary point of (3.1). In the

case x̄ ∈ Ω is a nonstationary point, PΩ,D−1(x̄− αD∇f(x̄)) can be exploited
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to generate a descend direction for the function f in x̄. This idea serves as

the basis for the SGP method.

Algorithm 3: SGP (scaled gradient projecion) method

Given x0 ∈ Ω, β, γ ∈ (0, 1), 0 < αmin < αmax, and fix a positive integer

M .

for k = 0, 1, 2, · · · do

STEP 1. Choose the parameter αk ∈ [αmin, αmax] and the scaling

matrix Dk ∈ DL ;

Projection: y(k) = PΩ,D−1
k

(x(k) − αkDk∇f(x(k))) ;

if y(k) = x(k) then

STEP 2. Stop declaring that x(k) is a stationary point

end

STEP 3. Descend direction: d(k) = y(k) − x(k) ;

STEP 4. Set λk = 1 and fmax = max0≤j≤min(k,M−1) f(x(k−j)) ;

STEP 5. Backtracking loop:

if f(x(k) + λkd
(k)) ≤ fmax + βλk∇f(x(k))Td(k) then

go to STEP 6 ;

else

set λk = θk and go to the STEP 5.;

end

STEP 6. Set x(k+1) = x(k) + λkd
(k).

end

If the projection performed in STEP 2 returns a vector y(k) = x(k), then

lemma (3.1.2) implies that x(k) is a stationary point and the algorithm stops.

When y(k) 6= x(k), it is possible to prove that d(k) is a descent direction for f

in x(k) and the backtracking loop in STEP 5 terminates with finite number

of runs.

The nonmonotone line-search strategy implemented in STEP 5 ensures that
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f(x(k+1)) is lower than the maximum of the objective function on the last

M iterations; if M = 1 then the strategy reduces to the standard monotone

Armijo rule.

3.3 Convergence analysis

The main SGP convergence result is stated in theorem 2.2.1, whose proof is

based on some crucial properties that we report in the following lemmas: the

first two lemmas are concerned with the descend condition and the bound-

edness of the direction d(k), respectively.

We will focus on the case in which the algorithm generates an infinite se-

quence of iterates, denoted by {x(k)}.

Lemma 3.3.1. Assume that d(k) 6= 0. Then d(k) is a descend direction for

the functional f at x(k), that is, ∇f(x(k))Td(k) < 0.

Lemma 3.3.2. If the sequence {x(k)} generated by the SGP algorithm is

bounded, then also the sequences d(k) is bounded.

Now we state two properties of the accumulation points of the sequence

generated by SGP.

Lemma 3.3.3. Assume that the subsequence {x(k)}k∈K, K ⊂ N, is converg-

ing to a point x∗ ∈ Ω. Then, x∗ is a stationary point of (3.1) if and only

if

lim
k∈K
∇f(x(k))Td(k) = 0

Lemma 3.3.4. Let x∗ ∈ Ω be an accumulation point of the sequence {x(k)}

such that limk∈K x
(k) = x∗, for some K ⊂ N. If x∗ is a stationary point of



3.3 Convergence analysis 37

(3.1), then x∗ is an accumulation point also for the sequence {x(k+r)}k∈K for

any r ∈ N. Furthermore,

lim
k∈K
||d(k+r)|| = 0 ∀r ∈ N

At this point we may state a convergence result for SGP:

Theorem 3.3.1. Assume that the level set Ω0 = {x ∈ Ω : f(x) ≤ f(x(0))} is

bounded. Every accumulation point of the sequence {x(k)} generated by the

SGP algorithm is a stationary point of (3.1).

Proof. Since every iterate x(k) lies in Ω0, the sequence {x(k)} is bounded and

has at least one accumulation point. Let x∗ ∈ Ω be such that limk∈K x
(k) for

a set of indices K ⊂ N.

We consider two cases:

a) infk∈K λk = 0 ;

b) infk∈K λk = ρ > 0.

Case a. Let K1 ⊂ K be a set of indices such that limk∈K1 λk = 0. That

implies that, for k ∈ K1, k sufficiently large, the backtracking rule fails to

be satisfied at least once. Thus, at the penultimate step of the backtracking

loop, we have

f

(
x(k) +

λk
θ
d(k)

)
> f(x(k) + β

λk
θ
∇f(x(k))Td(k)

hence
f(x(k) + λk

θ
d(k))− f(x(k)

λk
θ

> β∇f(x(k))Td(k) (3.4)
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By the mean value theorem, we have that there exists a scalar tk ∈ [0, λk
θ

]

such that the left-hand side of (3.4) is equal to ∇f(x(k) + tkd
(k))Td(k). Thus

the inequality (3.4) becomes

∇f(x(k) + tkd
(k))Td(k) > β∇f(x(k))Td(k) (3.5)

Since αk and Dk are bounded, it is possible to find a set of indices K2 ∈ K

such that limk∈K2 αk = α∗ and limk∈K2 Dk = D∗. Thus the sequence d(k)
k∈K2

converges to a vector d∗ = (PΩ,D−1
∗

(x∗−α∗D∗∇f(x∗))−x∗) and, furthermore,

tkd
(k) → 0 when k diverges, k ∈ K2. Taking limits in (3.5) as k →∞, k ∈ K2,

we obtain

(1− β)∇f(x∗)
Td∗ < 0

Since (1 − β) > 0 and ∇f(x∗)
Td∗ < 0 for all k, then we necessarily have

limk∈K2 ∇f(x(k))Td(k) = ∇f(x∗)
Td∗ = 0. Then by lemma 3.3.3, we conclude

that x∗ is a stationary point.

Case b. Let us define the point x(l(k)) as the point such that

f(x(l(k))) = fmax = max0≤j≤min(k,M−1)f(x(k−j))

Then, for k > M − 1, k ∈ N, the following condition holds:

f(x(l(k))) ≤ f(x(l(l(k)−1)))) + βλl(k)−1∇f(x(l(k)−1))Td(l(k)−1) (3.6)

Since the iterates x(k), k ∈ N belong to a bounded set, the monotone non-

increasing sequence {f(x(l(k)))} admits a finite limit L ∈ R for k ∈ K. Let

K3 ⊂ K be a set of indices such that limkinK3 λl(k)−1 = ρ1 ≥ ρ > 0 and

limk∈K3 ∇f(x(l(k)−1))Td(l(k)−1) exists; taking limits on (3.6) for k ∈ K3 we

obtain

L ≤ L+ βρ1 lim
k∈K3

∇f(x(l(k)−1))Td(l(k)−1)

that is

lim
k∈K3

∇f(x(l(k)−1))Td(l(k)−1) ≥ 0
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Recalling that ∇f(x(k))Td(k) < 0 for any k, the previous inequality implies

that

lim
k∈K3

∇f(x(l(k)−1))Td(l(k)−1) = 0 (3.7)

Then by lemma 3.3.3, (3.7) implies that every accumulation point of the

sequence {x(l(k)−1)}k∈K3 is a stationary point of (3.10).

Let us prove that the point x∗ is an accumulation point of {x(l(k)−1)}k∈K3 .

The definition of x(l(k)) implies that k −M + 1 ≤ l(k) ≤ k. Thus we can

write

‖x(k) − x(l(k)−1)‖ ≤
k−l(k)∑
j=0

λl(k)−1+j‖d(l(k)−1+j)‖, k ∈ K (3.8)

Let K4 ⊂ K be a subset of indices such that the sequence {xl(k)−1)}k∈K4

converges to an accumulation point x̄ ∈ Ω. Recalling that, from (3.7) and

lemma 3.3.3, x̄ is a stationary point of (3.10), we can apply lemma 3.3.4

to obtain that limk∈K4‖d(l(k)−1+j)‖ = 0 for any j ∈ N. By using (3.8) we

conclude that

lim
k∈K4

‖x(k) − x(l(k)−1)‖ = 0 (3.9)

Since ‖x∗ − x(l(k)−1)‖ ≤ ‖x(k) − x(l(k)−1)‖+ ‖x(k) − x∗‖ and limk∈K x
(k) = x∗,

then (3.9) implies that x∗ is an accumulation point also for the sequence

{x(l(k)−1)}k∈K3 . Hence, we conclude that x∗ is a stationary point of (3.10).

3.4 The SGP method for 3D image recon-

struction

In this section we describe SGP implementation for solving special costrained

minimization problems arising in 3D image reconstruction. We consider the

constrained minimization problem of the form

minT (f) s. t. f ≥ 0 (3.10)
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where T is a continuous differentiable convex function measuring the differ-

ence between reconstructured and measures data, and containing a penalty

term expressing additional information on the solution, while the constraint

force the nonnegativity of the solution.

In this work

T (f) = ||Kf − b||1 + λ ∗ TV (f) (3.11)

where TV (f) is a discrete approximation of the Total Variation.

3.4.1 Update the scaling matrix

The choice of the scaling matrix Dk in SGP must aim at two main goals:

avoiding to introduce significant computational costs and improving the con-

vergence rate.

A classical choice is to use a diagonal scaling matrixDk = diag(d
(k)
1 , d

(k)
2 , · · · , d(k)

N )

and in this thesis we will use the following updating rule

d
(k)
i = min

{
L,max

{
1
L
, x

(k)
i

}}
, i = 1, · · · , N

In the experiments of Section 3.5 we take L = 10.

3.4.2 Update the steplength

Steplenght selection rules in gradient methods have received an increasing

interest in the last years from both the theoretical and the practical point of

view in order to accelerate the slow convergence exibithed in most cases by

standard gradient method.

To this end, we can regard the matrixB(αk) = (αkDk)
−1 as an approximation

of the Hessian ∇2J(x(k)), and derive two updating rules for αk using the

secant equation.



3.4 The SGP method for 3D image reconstruction 41

We use the approximation ∇2J(x(k))(xk − xk−1) ≈ ∇J(xk)−∇J(xk−1) and

derive the equation

B(αk)(xk − xk−1) = ∇J(xk)−∇J(xk−1) (3.12)

From (3.12) we obtain two different equation for αk (SC1) and (SC2), which

will bring us two different updating rules. We have

αSC1
k = arg min

αk∈R
||B(αk)s

(k−1) − z(k−1)||

and

αSC2
k = arg min

αk∈R
||s(k−1) −B(αk)

−1z(k−1)||

where s(k−1) = (x(k) − x(k−1)) and z(k−1) = (∇J(x(k))−∇J(x(k−1))).

In this way we have

α
(1)
k =

s(k−1)TD−1
k D−1

k s(k−1)

s(k−1)D−1
k z(k−1)

(3.13)

and

α
(2)
k =

s(k−1)TDkz
(k−1)

z(k−1)DkDkz(k−1)
(3.14)

and we use a steplength updating rule for SGP which adaptively alternates

the values provided by (3.13) and (3.14).
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Algorithm 4: SGP steplength selection

if k=0 then

set α0 ∈ [αmin, αmax], τ1 ∈ (0, 1) and a non-negative integer Mα ;

else

if s(k−1)D−1
k z(k−1) ≤ 0 then

α
(1)
k = αmax ;

else

α
(1)
k = max

{
αmin,min

{
s(k−1)TD−1

k D−1
k s(k−1)

s(k−1)D−1
k z(k−1) , αmax

}}
;

end

if s(k−1)TDkz
(k−1) ≤ 0 then

α
(2)
k = αmax

else

α
(2)
k = max

{
αmin,min

{
s(k−1)TDkz

(k−1)

z(k−1)DkDkz(k−1) , αmax

}}
;

end

if
α
(2)
k

α
(1)
k

≤ τk then

αk = min
{
α

(2)
j , j = max 1, k −Mα, · · · , k

}
;

τk+1 = τk · 0.9 ;

else

αk = α
(1)
k ;

τk+1 = τk · 1.1 ;

end

end

3.5 Numerical results

The experiments on this section test the considered SGP method for 3D im-

age restoration, and in particular our test problem is the one described in
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Chapter 2.

As we said before, we will consider the problem in the form (3.10) and we

will use objective function T (x) defined as ( 3.11).

We study the SGP behaviour using the scaling matrix Dk defined as in Sec-

tion 3.5, and the steplength αk defined by the alternating α
(1)
k and α

(2)
k as in

the Algorithm 4, by setting Mα = 0, τ1 = 0.15, [αmin, αmax] = [10−3, 107],

α0 = 10−2.

The line-search parameter are: θ = 0.4, β = 10−4 and M = 25.

We decided to stop the algorithm if the difference ‖x(k+1)− x(k)‖ < 10−8. In

our experiment the SGP algorithm terminates at 1553 iteration.

As done with the ADM algorithm we want to reconstruct the images starting

by noisy projections with a level of noise equal to 10−3.

We managed to reach a relative error of erel = 0.095 in 2722 seconds.

The figures in Figure 3.1 below show the solution restored with the SGP

algorithm from layer 6 to layer 10. Figure 3.2 shows the relative error of the

reconstruction at each iteration. In particular we notice that the relative er-

ror drops to a value close to a minimum in the first iterations, and it remains

close to this value for a large number of iteration; this suggested that the

choice of the optimal number of iterations does not seem to be critical.

(a) Layer 6 (b) Layer 7
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(c) Layer 8 (d) Layer 9

(e) Layer 10

Figure 3.1: SGP reconstruction



3.5 Numerical results 45

Figure 3.2: SGP relative error

The figures (a) and (b) of 3.3 give a better view of the central layer of

the reconstructed image in relation to the central layer of the exact solu-

tion in order to appreciate the amplitude of the jumps obtained with the

reconstruction. In figure 3.4 we did the same for the ninth layer.

(a) SGP reconstruction (b) exact images

Figure 3.3: Recostruction comparison (central layer)
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(a) SGP reconstruction (b) exact images

Figure 3.4: Recostruction comparison (layer 9)

Then we select, both in the central layer and in the ninth layer of the 3D

image, the rows of pixels that run into the principal structures represented

in the CIRS model, namely fibers, microcalcifications and masses, and we

compare their profile with the exact solution.

(a) fibers line (b) fibers
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(c) microcalcification line (d) microcalcification

(e) masses line (f) masses

Figure 3.5: Comparison of the different structures recostructions (central

layer)

(a) fibers line (b) fibers
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(c) microcalcification line (d) microcalcification

(e) masses line (f) masses

Figure 3.6: Comparison of the different structures recostructions (layer 9)

In Figure 3.7 we show as the structures present in the computed solution

changes in time, stopping the iterative algorithm after 10, 30 and 60 seconds.
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(a) 10 secs (b) 30 secs

(c) 60 secs

Figure 3.7: Recostructions after 10, 30 and 60 seconds (layer 8)

In particular we show the profiles of the reconstruction inner structures

stopping the iterative SGP algorithm at 30 seconds.
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(a) fibers line (b) fibers

(c) microcalcification line (d) microcalcification

(e) masses line (f) masses

Figure 3.8: Comparison of the different structures recostructions after 30

seconds (central layer)
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As we did for the alternating minimization algorithm of Chapter 2 we

investigate the noise presence in reconstruction image by computing the SNR

both in the whole 3D image and in the region of interest (ROI) indicates in

red in Figure 3.9

(a) Global SNR (b) ROI

(c) SNR in the ROI

Figure 3.9: SNR in each layer





Conclusions

A DT data acquisition includes measuring a limited number of low-dose two-

dimensional projections of an object, so the limited number of data leads to

consider compressed sensing.

In this thesis we formulate the DT image reconstruction problem as a min-

imization problem involving the 1-norm and the Total Variation in order to

increase the sparsity of the solution computed.

We presented in particular two different iterative algorithms: a new alter-

nating minimization methods, and a scaled projected gradient method with

the 1-norm of data fitting.

We tested the two methods with a choice of the parameters of the algorithms

designed to be optimal in achieving a level of relative error that was as low

as possible. Performing this choice we realized that the algorithm ADM is

much less stable in the choice of parameters, namely the setting of these

parameters is very sensitive and depends on the problem on which we test

the algorithm, while the algorithm SGP is more stable and the choice of pa-

rameters is more versatile.

Despite this, once we set the parameters for the algorithm, ADM is faster

than SGP algorithm: not only it takes less time to reach a good level of rela-

tive error in the calculation of the solution to convergence, but we noticed a

more precocious and more qualitative appearance of the internal structures

53
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of CIRS already in the reconstructions performed in the first seconds. In par-

ticular, we note the appearance of the structures that simulate the masses,

which are generally structures to appear later in the iterative reconstructions,

already in the first few iterations, while with the SGP algorithm they will

appear with comparable quality only later.

An analysis of the final solution calculated by the two algorithms shows that

both the algorithms reach the same relative error, of around 0.9, but looking

at the profiles of the masses, fibers, and microcalcifications reported in the

figures of Section 2.3 and 3.5 we noticed that the SGP algorithm reconstruc-

tion maintains a more uniform and less uneven profile between the jumps

that represent the inner structures.

In addition, the solution calculated by the ADM has more noise than the

SGP’s one, with a slightly lower SNR value calculated on the ROI.

In conclusion the use of the 1-norm and the Total Variation are valid tools

in the formulation of the minimization problem for the image reconstruc-

tion resulting from Digital Tomosynthesis and the new algorithm ADM has

reached a relative error comparable to a version of the classic algorithm SGP

and proved best in speed and in the early appearance of the structures rep-

resenting the masses.
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