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Introduction

The EU ETS (European Union Emission Trading System) is the system adopted

from European Union to combat climate change and its key tool for reducing

industrial greenhouse gas emissions cost-effectively. It was launched in 2005 to

fight Global warming and is a major pillar of EU climate policy and it still is the

biggest greenhouse gas emissions trading scheme in the world. Indeed, as of 2013,

it covers more than 11,000 power stations, factories, airlines and other installations

with a net heat excess of 20 MW in 31 countries: all 28 EU member states plus

Iceland, Norway, and Liechtenstein. Altogether it covers around 45% of total

greenhouse gas emissions from the 28 EU countries. The greenhouse gasses included

in this scheme are carbon dioxide (CO2), nitrous oxide (N2O) and perfluorocarbons

(PFCs). The scheme is based on the ’cap and trade’, this means that it is set a

cap on the total amount of greenhouse gasses emitted by firms, then ’Allowances’

for emissions are then auctioned off or allocated for free, and can subsequently be

traded on the market.Under the EU ETS, the governments of the EU Member

States agree on national emission caps which have to be approved by the EU

commission. Those countries then allocate allowances to their industrial operators,

and track and validate the actual emissions in accordance with the relevant assigned

amount. They require the allowances to be retired after the end of each year. This

mechanism give a price to greenhouse gases emission and companies have to hand

in enough allowances to cover their emissions. If they emit too much polluting gas

they have to buy allowances and the price of these certificates increases on the

market. Conversely, if a firm has performed well at reducing its emissions, it can

sell its leftover credits. This allows the system to find the most cost-effective ways

of reducing emissions without significant government intervention. The scheme
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has been divided into a number of ’trading periods’. The first ETS trading period

lasted three years, from January 2005 to December 2007. The second trading period

ran from January 2008 until December 2012, coinciding with the first commitment

period of the Kyoto Protocol. The third trading period began in January 2013 and

will span until December 2020. Compared to 2005, when the EU ETS was first

implemented, the proposed caps for 2020 represents a 21% reduction of greenhouse

gases. This target has been reached 6 years early as emissions in the ETS fell to

1812 millions tonnes in 2014. As result of this system, emissions of greenhouse gases

from installations participating in the EU ETS are estimated to have decreased

by at least 3% in 2013. In order to fortify the scheme, the EU ETS cap has been

reduced, because the target is to reduce of 40% the level of greenhouse gas emission

of 1990 within 2030. In particular, the cap will need to be lowered by 2.2% per

year from 2021, compared with 1.74% currently.

In the first chapter we present the EU ETS mechanism in detail making some

example to make clear how it works. In particular we take a simplified model in

which are considered only two resources to produce electricity: the first intensively

polluting (carbon) and the second environmental friendly (gas). Moreover we

introduce how the scheme works in the case of multiple compliance periods but in

our treatment we only consider the case of one compliance period. Our aim is to

study this model, thus we define a mathematical model which allows us to associate

equations to this scheme. Three variable quantity are mainly involved: demand

of electricity, total emissions of greenhouse gases and the allowance certificates

price. These variables aren’t deterministic since they depend by random events. For

example we can’t know exactly the demand of electricity in the future and we can

only predict it. Then we set a probability space and we model them with stochastic

processes, and the system of equations we obtain is a system of SDE (Stochastic

Differential Equations). In particular we have two forward equations (demand of

electricityDt and total emissions Et) and a backward equation (allowance certificates

price At) with discontinuous terminal condition depending on the random variable

ET . In the second chapter we analyze a simplified model with Lipschitz terminal

condition for the process At and we associate a partial differential equation to
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the BSDE (Backward Stochastic Differential Equation) thanks to Itô’s formula

and vanishing viscosity solution to parabolic PDEs theory. The PDE we obtain

is non-linear since the equations related to the processes Et and At are a coupled

system of FBSDE (Forward Backward Stochastic Differential Equation) and we

show existence and uniqueness of the solution in a key theorem. Then we generalize

the problem to the relaxed terminal condition P{φ−(ET ) ≤ AT ≤ φ+(ET )} = 1 and

with an additional assumption we show that a solution to the PDE exist and it is

unique. Finally we consider the case with singular terminal condition and we show

that the non-standardness of this kind of equation arises from the degeneracy of the

forward component Et. We observe that the random variable ET develops a Dirac

mass at the cap Et for any starting point. Thus conditionally to the event Et = Ecap

we observe that the standard Markovian structure brakes down at terminal time,

and the terminal value of the allowance certificates cannot be prescribed as the

model would require. In chapter three we solve the problem numerically by an

explicit scheme: we set the model parameters representative of a typical market

and we solve the PDE associated to the stochastic equation. This way, we obtain a

numerical approximation of the function which represents the allowance certificate

as a function of demand, emission and time. Finally we simulate processes Dt, Et

and At with a Monte Carlo. The last chapter is dedicated to a tax fraud discovered

in late 2008 by Europol. Criminals took advantage of a weakness in the market of

allowance certificate and trading it between different EU member state they were

able to evade VAT.
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Chapter 1

The European Union Emission

Trading System - EU ETS

1.1 The Cap and Trade Scheme

Agents in the market demand electricity, the production of which causes emission

and firms can produce it using different technologies that vary in their costs of

production and their emissions intensity. Emissions cause environmental problem

and to limit the consequence of intensive emission European governments decided

to introduce a system which regulates the market of electricity to the purpose to

reduce emissions. The European Union Emission Trading System is a greenhouse

gas emission trading scheme which reduces emission of GHGs (GreenHouse Gasses),

and it is based on allowance certificate and compliance periods. Emissions of GHGs

are measured in equivalent tonnes of CO2 and from now on we write CO2 instead

of CO2 equivalent GHGs. In every compliance period there is a limit of emissions,

called "the cap of emissions", and government don’t want firms to exceed this cap.

In order to do this, firms submit allowance certificates, each one worth one EU

Allowance Unit (EUA), and permit to emit one tonne of CO2. At the end of the

compliance period firms must offset their cumulative emissions by submitting a

sufficient number of certificates. If they doesn’t, they must pay a monetary penalty;

this event is called non-compliance. For a suitable penalty we will show that it’s

not convenient for firms to exceed the fixed cap. This scheme lead to a trading of
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allowance certificate, and as always we need to establish a price for an allowance

certificate at each time.

The purpose of this trading scheme is to reduce the emission of CO2, and it

is done in two different ways: load shifting and long term abatement measures.

Load shifting is the event in which companies shift the production of electricity

from carbon to pollution friendlier resources. The cost of carbon is represented

by the allowance certificate and this makes convenient to produce electricity using

less polluting resources (like, for example, solar panel or windmill blade), although

they are obviously more expensive then oil or coal. Also long term abatement

measures are leaded by the cost of carbon, which makes attractive for firms to invest

in pollution friendly technology and resources, because if a firm hasn’t sufficient

allowance certificate to cover its emission at the end of the period, it has to pay a

monetary penalty or to buy additional certificates from other firms which haven’t

used all the certificates they have submitted. This means that polluting friendly

firms can sell certificates to other companies and take profit. This way, companies

are induced to do long term investment in less polluting technology and renewable

resources.

Indeed, nowadays, electricity is produced from fossil fuels or renewable resources

like nuclear fission, solar panel, windmill blade, hydropower, geothermal heat or

biomasses. Most of the supply of electricity comes from fossil fuel because the

process has a better production efficiency than renewable resources, but at the

same time it is more polluting. Therefore is important to identify which generators

are used in the market at any point in time. To do this we introduce the bid

stack, which aggregates the bidding behaviour of firms that supply electricity. Each

firm can supply electricity at a specific price, in particular a bid is the amount

of electricity that a firm can sell to the market at a specific price in a specific

hour during the next trading day. For example between 14 and 15 a bid can be

(700MW, 90e), (400MW, 110e), (100MW, 125e), which mens that the generator

can sell its fist 700MW at a price of 90e, the next 400MW at a price of 110e, and the

last 100MW at the price of 125e. Mathematically, each firm supplies an increasing

step function that maps electricity supply to its marginal cost. Then the market
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administrator makes a ranking list from the cheapest bid to the expensive one, so

electricity is supplied to satisfy the demand at the lowest price. The bids are decided

by firms considering fixed and variable costs, which depend on their production

cost and the most of it is represented by the used resource. Obviously fossil fuels

allow to supply a lower bid in absence of cap and trade system, and this scenario

is called business as usual. The problem is that fossil fuels are pollution intensive

resources and this will cause environmental problem and global warming. In case of

cap and trade system the cost of electricity produced by polluting resources grows

up, so it is not convenient to use only fossil fuels any more. Governments want

to reduce environmental problems and the market administrator must rearrange

bids to preserve the increasing order and, as a result, environmentally friendly

technologies are now called upon before pollution intensive ones, leading to cleaner

production of electricity. Therefore firms have to construct an equilibrium scenario

in which they can sell electricity to the market at a competitive price, keeping in

mind that they have a restriction on CO2 emission induced by allowance certificates.

Generators have to utilize their certificate for compliance, and they can also sell

unused certificate to decrease their bid. In case of non compliance, bids are increased

by an amount equal to the marginal emission rate of the plant (measured in tonne

of CO2 per MWh) multiplied by the allowance price. This price setting applies

directly to the day-ahead spot prices by uniform auctions, as in the case most

exchanges today.

Example 1.1. For sake of simplicity we consider that electricity can be produced

only from coal (intensive pollution fuel) and gas (environmental friendly fuel).

Initially, as shown in figure 1.1, the cost of carbon is lower than cost of gas so the

generator start to produce electricity from coal. This way coal bids come first in

the bid stack and the marginal emission relative to coal bids is higher the gas one.

Then emission become more costly and bid levels of both resources increase, but

the coal bid increases more rapidly. We reach a limit time in which the electricity

produced from coal is more expensive than the gas one, so the gas bid comes first

in the bid stack than the coal one. We have reach our target, that is the allowance

certificate induce to product electricity from gas (the pollution friendly resource).
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Figure 1.1: Rearrangement of the bid stack as the cost of carbon increases
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1.2 The Mathematical Model

We have shown how the trade and cap system works, but we need to formalize

it mathematically, so we can calculate allowance certificates price. First of all, we

need to quantify the demand for electricity, which isn’t a deterministic and fixed

quantity, but it depends on consumers and it has a stochastic component. Then we

introduce the electricity bid stack modelled as a continuous map from the supply of

electricity to its marginal price and consequently we model the emission stack with

a continuous map from the production of the last unity to the marginal emission.

Later, we relate supply to demand, because we need to meet it at any point at

any time and the total market emission rate, which depends on the technologies

used to product electricity. Then, we introduce the cost of carbon and we show the

difference between the business as usual system and the cap and trade one, and

lastly we observe that the EU ETS scheme concretely reduces emission of CO2 if

compared with the classical system. Finally, we deduce the differential stochastic

equations system from which we are able to calculate the risk-neutral price of

allowance certificates.

As stated previously, the demand of electricity is not a deterministic quantity,

but it has a random part at each time. Then we need to fix a filtered probability

sparse on which we can study our model. We consider a time interval [0, T ] and let

(Ω,F , P, (Ft)) be a filtered probability space satisfying all usual assumptions, and

let (Ft)t∈[0,T ] be the augmented filtration generated by a standard Brownian motion

(Wt)t∈[0,T ]. From now to the end of the section we omit the time interval [0, T ],

because we only refer to one compliance period which, without loss of generality,

starts at time 0 and ends at time T . Each firm receive an initial allocation of

allowance certificates and we assume them to be traded as liquidly financial products

in which long and short position can be taken, because their cost of carry is negligible.

Moreover we ignore the aggregation problem: we should consider the point of every

agent on the market, but we only examine the point of view of the whole market.

We can ignore this problem because we are looking for an arbitrage-free price for

allowance certificates as a function of the aggregate forces that act on the market.
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The consumers demand is represented by the Ft-adapted stochastic process

Dt. To supply this demand at any time 0 ≤ t ≤ T the aggregate of firms

generates electricity, and we assume that the market uses only the currently

available information to decide on its production level. This level is non-negative

and below a constant value that expresses the maximum production capacity. We

define the Ft-adapted process ξt as the aggregate amount of electricity generated

by all firms, and we assume:

0 ≤ ξt ≤ ξmax 0 ≤ t ≤ T (1.1)

where ξmax ≥ 0 is the aggregate maximum production capacity of all firms. The

market administrator ensures that the aggregate demand and aggregate supply of

electricity are matched on a daily basis. This means that

Dt = ξt 0 ≤ t ≤ T (1.2)

The last assumption leads to

0 ≤ Dt = ξmax 0 ≤ t ≤ T (1.3)

and this means that there are always sufficient resources to meet demand. Usually,

demand and supply are quoted in megawatts(MW). Now we want to model emissions

of CO2. We define the cumulative emission during the interval [0, t], t ≤ T by Et,

and it is measured in tonne of CO2. So we have an Ft-adapted process Et. The

cumulative emission in every interval of the type [0, t], t ≤ T is finite, then we have

the constraint

0 ≤ Et ≤ Emax 0 ≤ t ≤ T (1.4)

where Emax represent the maximum production of CO2 on the interval [0, t], t ≤ T .

In this trade and cap scheme, the regulator decides on an acceptable maximum

level of cumulative emission and we call it Ecap and issues a corresponding number

of allowance certificates. Obviously it must be

0 ≤ Ecap ≤ Emax (1.5)

At the end of the compliance period firms have to balance the quantity of CO2

emitted and the number of certificates allocated, because cumulative emissions in
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the market are offset against the initial allocation of allowances. In the case of one

compliance period, certificates that are unused expire and lose their value. If the

amount of emission for each firm exceeds the number of certificates submitted then

they must pay a monetary penalty. This penalty is π ≥ 0 for each tonne of CO2

which is not offset against allowance certificates. This means that the monetary

penalty is equal to π multiplied by the positive part of ET − Ecap:

Penalty = π(ET − Ecap)+ =

0 if ET ≤ Ecap

π(ET − Ecap) if ET > Ecap.

(1.6)

Finally we define the Ft-adapted process At, which represent the value of the

allowance certificate. We want to remark that the allowance certificate are the

traded asset in the market and we assume the existence of a risk-free asset, the

so called bond, with a constant risk-free interest rate r ≥ 0. Assuming that the

simple interest is paid more and more frequently, we have the formula of continuous

compounding with annual interest rate r:

Bt = B0e
rt (1.7)

We have just defined the process involved in this scheme, and now we have to go

on making some assumptions on the market which lead to a well posed definition

on bid stack and summarize the action of the central market.

Assumption 1. The market administrator ensures that resources are used accord-

ing to the merit order. This means that the cheapest production technologies are

called upon to satisfy a given demand and hence electricity is supplied at the lowest

possible price.

The price of electricity is strongly dependent on the technologies used to produce

it, so the marginal price is strictly increasing as the demand grows up. Then we

can model the bid stack as an increasing step function, and assuming that it has

sufficiently many steps we can approximate it by a smooth function. First we define

this function in absence of the cap-and-trade scheme, and we call it bBAU , where

BAU means Business As Usual.
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Definition 1.2. The business-as-usual bid stack is represented by the bounded

function

bBAU : [0, ξmax]→ R+

ξ 7→ bBAU(ξ)
(1.8)

Moreover bBAU ∈ C1([0, ξmax]) and dbBAU

dξ
(ξ) > 0. The quantity bBAU(ξ) represent

the bid level of the marginal of the marginal production unit measured in MWh,

and ξ the supply of electricity measured in MW.

Roughly speaking, bBAU (ξ) denotes the total cost that arises when the quantity

produced is incremented by one unit. That is, it is the cost of producing one

more unit of electricity. In general terms, marginal cost at each level of production

includes any additional costs required to produce the next unit. We remark that in

reality business-as-usual bid stack is stochastic, because it depends on fuel price

and other variable costs which fluctuate continuously. Nevertheless we ignore this

fact ad we assume the bid stack to be a continuous deterministic function because

we are only interested in the relative position of the different technologies in the

bid stack, and moreover historic data observations show that it is only relevant in

the long-run, but we only consider the one compliance period case.The emission

intensive technologies are usually cheaper then the environmental friendly ones, so

bids associated with a small level correspond to electricity produced from emission

intensive generators. Conversely, bids at the right end of the interval [0, ξmax] stem

mostly to environmental friendly technologies.

We now construct an emission stack, by creating a map from the supply of

electricity to the marginal emission associated with the supply of the last unit.

Definition 1.3. The marginal emission stack is represented by the bounded function

e : [0, ξmax]→ R+

ξ 7→ e(ξ)
(1.9)

Moreover e ∈ C1([0, ξmax]). The quantity bBAU(ξ) associates with a specific supply

of electricity ξ the emission rate of the marginal unit (measured in tonne of CO2

per MWh).
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Proposition 1.4. The business-as-usual market emission rate µBAUe is given by

µBAUe (D) = k

∫ D

0

e(ξ)dξ, for 0 ≤ D ≤ ξmax (1.10)

where k is a strictly positive constant.

Proof. Thanks to assumption 1.3 firms produce the exact amount of electricity

consumers demand, and the generation capacity associated to the interval [0, D]

is used to meet demand. Then, the market emission rate per hour is obtained

integrating the marginal emission stack over the interval [0, D], i.e. the current

level of demand. We now multiply this quantity for a strictly positive constant k in

order to obtain the market emission rate µBAUe measured on the same time that

characterises T . We rescale it because the rate e is measured per hour, but we want

µBAUe to live in the same timescale as T (for example months or years).

We are ready to introduce the cap-and trade scheme in the business-as-usual

economy defined above and see its consequences. As seen before this scheme gives

a price to carbon emission so it increases the production cost for firms. Then it

leads to use environmental friendly technologies especially for firms which mostly

rely on emission-intensive resources, because they have to buy additional allowance

certificates to avoid penalization, and it makes their electricity more expensive.

Moreover it follows that the level of their bid would be lower. Conversely, if a

firm owns more certificate than it needs, it can sell it in the market and they have

a profit. This way we can see the cost of carbon as an opportunity to increase

incomes. In the long-run, these environmental friendly firms can reduce marginal

cost and make lower level’s bid so they increase competitiveness in the market.

Nevertheless, we ignore the long-time behaviour of the long-term abatement process

because we are only interested in the direct impact on the bid stack. We assume the

cost of carbon is directly applied on the electricity price in the market in order to

maintain constant the profit margin for firms. We observe that the cost of carbon,

for each firm, is represented by allowance certificates, so we have to increase the

business-as-usual bids by an amount equal to the allowance price multiplied by the

marginal emission rate of the firm. Therefore, given an allowance price A the bid
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stack function becomes:

g(A, ξ) = bBAU(ξ) + Ae(ξ), for 0 ≤ A <∞, 0 ≤ ξ < ξmax (1.11)

and we note that if A = 0 it is equal to the business-as-usual case. Generally,

if A 6= 0 the bid stack function lose its monotonicity. Indeed, if the cost price

of allowance certificate (the cost of carbon) becomes relatively more expensive,

then bids associated with large marginal emission rates becomes relatively more

expensive to produce for firms which relies on polluting resources.

Definition 1.5. We define the set of active generation units at a given allowance

and electricity price P by

S(A,P ) = {ξ ∈ [0, ξmax] | g(A, ξ) ≤ P} for 0 ≤ A <∞, 0 ≤ P <∞

(1.12)

We can define the map

χ : [0,∞[→ R+

P 7→ λ(S(·, P ))
(1.13)

where λ denotes the Lebesgue measure. This map, by the definition of sublevel set,

is strictly increasing.

Assumption 2.

λ

({
ξ ∈ [0, ξmax]

∣∣∣∣ ∂bBAU

∂ξ
(ξ) + A

∂e

∂ξ
(ξ) = 0

})
= 0 (1.14)

Under assumption 2 the function χ becomes continuous and therefore invertible.

Then, using 1.12, the market bid stack is defined by

b(A, ξ) = (λ(S(A, ·)))−1(ξ) for 0 ≤ A <∞, 0 ≤ ξ < ξmax (1.15)

And it implies the market price of electricity definition

P = b(A,D) for0 ≤ A <∞, 0 ≤ D < ξmax (1.16)

Proposition 1.6. In presence of the cap and trade scheme and given an allowance

price A and demand level D, the market emission rate is given by

µe(A,D) = k

∫
Sp(A,D)

e(ξ)dξ, for 0 ≤ A <∞, 0 ≤ D ≤ ξmax (1.17)

where Sp(A,D) = S(A, b(A,D)), and k is a positive time scaling constant.
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Proof. The constant k is defined as in the proof of proposition 1.4. Under business-

as-usual, demand D is satisfied by the generation capacity [0, D], which is seen

as a subset of the domain of the emission stack. The cap and trade scheme leads

to a shift of this interval to the right or, depending on the shape of the marginal

emission stack, split into multiple sets, and we call this effect load shifting. We

define this new set as Sp(A,D) = S(A, b(A,D)), and the proof is complete.

Note that if A = 0 then Sp(A,D) = [0, D]. Now we show that the emission rate µe

just defined has some properties which makes it well defined, that is its behaviour

is what we intuitively expect to be from the real case. Moreover it is a regular

function and it will be useful in the following. To explain this we have the lemma:

Lemma 1.7. The market emission rate µe satisfies:

(P1) The map D 7→ µe(·, D) is:

(i) strictly increasing

(ii) Lipschitz continuous

(P2) The map A 7→ µe(A, ·) is:

(i) non increasing

(ii) Lipschitz continuous

(P3) µe is bounded.

Proof. (P1) (i) For 0 ≤ D1 < D2 ≤ ξmax, we have Sp(·, D1) ⊂ Sp(·, D2) thanks to

assumption 2. Moreover e(ξ) is positive on the interval [0, ξmax], then

µe(A,D1) = k

∫
Sp(A,D1)

e(ξ)dξ ≤ k

∫
Sp(A,D2)

e(ξ)dξ = µe(A,D2)

For all 0 ≤ A <∞ fixed.

(ii) For 0 ≤ D1 < D2 ≤ ξmax we define ∆DSp(D2, D1) = Sp(·, D2)§p(·, D1).

Therefore

µe(·, D2)− µe(·, D1) = k

∫
∆DSp(D2,D1)

e(ξ)dξ ≤

≤ Kλ(∆DSp(D2, D1)) max
ξ
e(ξ) =

= k(D2 −D1) max
ξ
e(ξ)
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where λ is the Lebesgue measure. For 0 ≤ D2 < D1 ≤ ξmax the proof is

analogous.

(P2) (i) For 0 ≤ A1 < A2 < ∞, we define ∆ASp(A1, A2) = Sp(A1, ·)§p(A2, ·).

Therefore

µe(A1, ·)− µe(A2, ·) = k

∫
∆ASp(A1,A2)

e(ξ)dξ − k
∫

∆ASp(A2,A1)

e(ξ)dξ

Fixed 0 ≤ D ≤ ξmax, we have:

• λ(∆ASp(A1, A2)) = λ(∆ASp(A2, A1))

• e(ξ) = (g(A2, ξ) − g(A − 1, ξ))(A2 − A1)
−1 > (b(A2, D) − b(A −

1, D))(A2 − A1)−1 on ∆ASp(A1, A2)

• e(ξ) = (g(A2, ξ) − g(A − 1, ξ))(A2 − A1)
−1 ≤ (b(A2, D) − b(A −

1, D))(A2 − A1)−1 on ∆ASp(A2, A1)

then

µe(A1, ·)− µe(A2, ·) > kλ(∆ASp(A1, A2))(b(A2, D)− b(A− 1, D))(A2 − A1)−1−

− kλ(∆ASp(A1, A2))(b(A2, D)− b(A− 1, D))(A2 − A1)−1 =

= 0

thus µe(A1, ·) > µe(A2, ·) for A1 < A2.

(ii) Assume that 0 ≤ A1 < A2 <∞. Since e(ξ) is bounded and λ(∆ASp(A1, A2)) =

λ(∆ASp(A2, A1)) we have

|µe(A1, ·)− µe(A2, ·)| = k

∫
∆ASp(A1,A2)

e(ξ)dξ − k
∫

∆ASp(A2,A1)

e(ξ)dξ ≤

≤ C1λ(∆ASp(A1, A2))

with C1 ≥ 0. It is clear that ∆ASp(A1, A2) and ∆ASp(A2, A1) can be

written as a finite union of intervals. As A1 increases to A2, there are

three possibilities:

(a) existing intervals grow or shrink;
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(b) new intervals appear or existing ones disappear;

(c) the intervals remain unchanged.

Now we differentiate the level curve g(A, ξ) = b(A,D) for a given D:

∂g

∂ξ
+
∂g

∂A
· dξ
dA

=
∂b

∂A

because ξ implicitly depends on A. And it follows:

dξ

dA
= −

(∂g
∂ξ
− ∂b

∂A
)

∂g
∂ξ

and thanks to assumption 2 it is bounded by a constant C2 ≥ 0. Then,

in each case (a)-(c), as A changes, the intervals describing ∆ASp(A2, A1)

don’t move faster than C2(A2 − A1), and analogously it is true also for

∆ASp(A1, A2). Similarly we can obtain the same result for A1 > A2, and

the statement is proved.

(P3) Since Sp(A,D) ⊆ [0, ξmax] for all A ≥ 0 and 0 ≤ D ≤ ξmax and keeping in

mind that by definition e(ξ) is bounded we obtain:

|µe(A,D)| = k

∫
Sp(A,D)

e(ξ)dξ ≤

≤ C1λ([0, ξmax]) =

= C1ξmax <∞

We have just defined instantaneous emission, and to see the effect to load

shifting and the following reduction of marginal emission we have to calculate

cumulative emission. We can do this by integrating instantaneous emission up to

the current time 0 ≤ t ≤ T . In figure 1.2 we can see the difference between the

business-as-usual market and the cap-and-trade scheme. Thanks to function b,

the supply of resources to meet demand [0, D] is led to be shifted to the interval

[ξ1, ξ2]. Therefore,assuming that under BAU dirtier production technologies are

placed further to the left in bid stack, instantaneous emission are now given by

the smaller integral over the emission stack from ξ1 to ξ2. Then also cumulative

emissions are smaller then the business-as-usual case.
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Figure 1.2: The effect of cap-and-trade scheme on the bid stack and on the emission

stack
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Now we are ready to set up the problem of determining the arbitrage-free price

of an allowance certificate. In order to do this we need to make the following

assumption:

Assumption 3. There exist an equivalent martingale measure Q ∼ P ,under which,

for 0 ≤ t ≤ T , the discounted price of any tradable asset in the market is a

martingale. We refer to Q as the risk-neutral measure.

This technical assumption guarantees that our market is arbitrage-free. Indeed,

if assumption 3 is true it is verified the First Fundamental Theorem of Asset Pricing.

Theorem 1.8. A market is arbitrage-free if and only if there exist at least one

equivalent martingale measure.

First of all, we want to make some additional assumption about the the cumula-

tive emission process Et an demand process Dt. At time t = 0, we assume to know

the the demand of electricity, i.e. we assume to know D0. Moreover we assume Dt

to evolve according to an Itô diffusion. It means that, for each time 0 ≤ t ≤ T , Dt

is given by the stochastic differential equation

dDt = µd(Dt)dt+ σd(Dt)dWt, D0 = d ∈ (0, ξmax) (1.18)

We should write W̃t instead of Wt, because Wt is an Ft-adapted standard Brownian

motion on the probability space (Ω,F , P, (Ft)), but we have changed the probability

measure and W̃t is an Ft-adapted standard Brownian motion on the probability

space (Ω,F , Q, (Ft)). This is only a technical clarification and from now, keeping

in mind this remark, we write Wt instead of W̃t. Both coefficient µd and σd are

functions of demand only, but in reality they should depend explicitly on time

because demand of electricity has seasonal variation. Moreover we assume µd

and σd to be positive, globally Lipschitz continuous and exhibits at most linear

growth.These assumption will be relevant in the following.

Let’s talk about cumulative emission process: cumulative emission are measured

starting from the initial time 0, so it must be E0 = 0. To calculate it we have to

integrate instantaneous market emission rate µe on the interval [0, t]. Therefore we
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have

dEt = µe(At, Dt)dt, E0 = 0 (1.19)

Clearly Et is not decreasing as we intuitively expected it to be because it is a

cumulative quantity. Finally, we have to characterise the process At which model

the allowance price certificate. The problem is we do not know the value of At at

time t = 0, so we can not represent this process with a forward stochastic differential

equation as we do for processes Et and Dt. In this case we know the value of the

allowance certificate at the end of period. In the event of non-compliance, at the

end of the period, the price of a certificate is equal to the monetary penalty π.

This value is given by an arbitrage argument, because if AT > π we can build an

arbitrage strategy, that is we can short sell certificates to the market making a sure

risk-free profit equal to AT − π. Thus AT ≤ π and moreover, it can not be AT < π

because of the penalization system. We conclude AT = π in case of non-compliance.

On the other hand, clearly, in case of compliance AT takes value 0.

AT =

 0, if 0 ≤ ET ≤ Ecap

π, if Ecap ≤ ET ≤ Emax
(1.20)

We observe that, different from other processes, this is a backward stochastic

problem and it must be solved with different techniques. In particular, we proceed

in the same way we solved BSDE (Backward differential stochastic Equations) in

section B.2 of appendix B. We know, thanks to assumption 3, that discounted

allowance price is a martingale under measure Q. Then we can represent the process

At at each time as the discounted conditional expectation of its terminal condition

under measure Q.

At = EQ
[
πe−r(T−t)I[Ecap,∞)

]
, 0 ≤ t ≤ T (1.21)

or equivalently

er(T−t)At = EQ
[
πI[Ecap,∞)

]
, 0 ≤ t ≤ T (1.22)

Note that the price process At takes value only in the interval [0, π]. The we have
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the following system of stochastic differential equations:
dDt = µd(Dt)dt+ σd(Dt)dWt, D0 = d ∈ (0, ξmax);

dEt = µe(At, Dt)dt, E0 = 0;

At = πe−r(T−t)EQ
[
I[Ecap,∞)(ET )

∣∣Ft] , AT = πI[Ecap,∞)(ET ).

(1.23)

On the other hand, the process At is a martingale under measure Q and the filtration

(Ft)t is natural, so we can apply the Martingale Representation Theorem. Then

there exist an unique process Zt ∈ L2(Ft) such that

d(er(T−t)At) = ZtdWt, 0 ≤ t ≤ T (1.24)

This means that we can represent At as an Itô integral respect to the Brownian

motion Wt. It follows

ZtdWt = d(er(T−t)At) =

= −re−rtAt + e−rtdAt

therefore

e−rtdAt = re−rtAt + ZtdWt

and finally

dAt = rAtdt+ ertZtdWt, 0 ≤ t ≤ T (1.25)

Thus we can rewrite system 1.23 as follows
dDt = µd(Dt)dt+ σd(Dt)dWt, D0 = d ∈ (0, ξmax);

dEt = µe(At, Dt)dt, E0 = 0;

dAt = rAtdt+ ertZtdWt, AT = πI[Ecap,∞)(ET ).

(1.26)

Note that the problem 1.26 is a FBSDE (Forward Backward Stochastic Differen-

tial Equation) and in particular, we have two forward equations and one backward.

Moreover the demand equation is independent from the others, but the equations

for emission and allowance certificate price are coupled, and this is a complicated

mathematical problem. For an introduction to this type of equations see appendix

B and for a complete treatment see [6].
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1.3 Multiple compliance periods

We have seen the scheme for a compliance period, but this model also considers

the case of multiple compliance period. In this section we shortly expose how EU

ETS scheme regulate the transition from a compliance period to the following one.

We do this for completeness, but it’s not theme of this thesis because we will solve

the problem only in the case of one compliance period.

Governments have introduced three mechanism to regulate the transition be-

tween subsequently compliance periods and they go the by names of banking,

borrowing and withdrawal. At the end of the first compliance period they may

haven’t used all certificates they have submitted, so these certificates become per-

fect substitutes for certificates issued in the second period. This feature is called

banking and in the event of compliance the unused certificates are exchanged with

certificates valid for the second period. Moreover, in case of compliance, it increases

the price of allowance certificates at the end of the period from zero to the price

of certificates of the sequent period because a firm can use in the second period a

certificate saved in the first one. The purpose is to reduce emission of CO2, so they

introduce the mechanism called withdrawal, which makes banking stronger. Indeed,

thanks to banking, in case of compliance, the price of the allowance certificate in

the first period is equal to the price at the beginning of the second one. In case

of non compliance at the end of the first period, each firm has to pay a monetary

penalty and moreover the number of surplus certificates is withdrawn form the

sequent allocation. It follows that there are fewer certificates in the second period

and it propels firms to emit less tonne of CO2. So the price of the certificate in

the first period increases, because these two mechanism lead to the first period

allowance certificate taking the value of the sum of the second period certificate

and the penalization. This means that withdrawal can be seen as a supplement

penalization. Roughly speaking, this is an incentive to save certificates; indeed,

thanks to the withdrawal mechanism, there could be less certificates on the market

and those saved could have a greater value. The third mechanism is borrowing,

which, together with banking and withdrawal, keeps consecutive compliance periods
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Figure 1.3: Banking and withdrawal mechanisms in an emission market with two

periods

connected, and decreases the probability with which non compliance occurs. This

feature allows firms to bring forward certificates from the second allocation and use

them in the first period. This way the case of non compliance occurs only if the

entire allocation of certificates of the second period is borrowed to supplement the

aggregate supply during the first period. This mechanism does not affect the aggre-

gate supply of certificates because the number of certificates borrowed is subtracted

from the second period allocation. Putting together these three mechanism, we

Figure 1.4: Borrowing mechanism in an emission market with two periods

have a model which keeps under control by authority the global emission of CO2,

and it is flexible enough for firms to manage the energy production and to supply
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the demand of electricity. Flexibility is very important because we have to keep in

mind that companies have to sell electricity at a competitive price.
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Chapter 2

Solution of the problem and

associated PDE

In the previous chapter we have formulated mathematically the EU ETS scheme,

and in this chapter we want to show that exist a solution to the stochastic system:


dDt = µd(Dt)dt+ σd(Dt)dWt, D0 = d ∈ (0, ξmax);

dEt = µe(At, Dt)dt, E0 = 0;

At = πe−r(T−t)EQ
[
I[Ecap,∞)(ET )

∣∣Ft] , AT = πI[Ecap,∞)(ET ).

(2.1)

Moreover we want to associate a Cauchy problem to the previous stochastic system.

Guided by intuition, with a purely formal procedure, we can obtain the desired

PDE, but we use this method only to show our target. Indeed, to do this we assume

the existence of the solution of the stochastic system and of the Cauchy problem,

but now we don’t know it. In appendix B we show the connection between PDEs

and linear SDEs and the hypothesis under which we can apply Itô’s formula, but

this time our problem isn’t linear and we have to use different techniques. Assume

that the the following Cauchy problem has a solution


σd(x)2

2
∂2u
∂x2

+ µd(x)∂u
∂x

+ µe(u, x)∂u
∂y

+ ∂u
∂t
− r = 0

u(T, x, y) = πI[Ecap,∞)(y) (x, y) ∈ [0, ξmax]× [0, Emax]

(2.2)
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and assume that problem 2.1 has a solution u = u(t, x, y) ∈ C1,2. In this hypothesis

we can apply Itô’s formula to the process At = u(t,Dt, Et):

dAt =
∂u

∂t
dt+

∂u

∂x
dDt +

σ2
d

2

∂2u

∂x2
dt+

∂u

∂x
dEt =

=

(
∂u

∂t
+
σ2
d

2

∂2u

∂x2
+ µd

∂u

∂x
+ µe

∂u

∂y

)
dt+ σd

∂u

∂x
dWt

(2.3)

Since At is the price of traded security with neutral risk drift r, we equate the drift

of At to r and we obtain:

∂u

∂t
+
σ2
d

2

∂2u

∂x2
+ µd

∂u

∂x
+ µe

∂u

∂y
− r = 0 (2.4)

Thus this semilinear PDE is the one associated to the process At. Following this

intuition we want to study this relation formally.

2.1 A simplified problem - Lipschitz terminal con-

dition

We first consider the simplified problem
Dt =

∫ t
0
µd(Ds)ds+ σd(Ds)dWs, D0 = d ∈ (0, ξmax);

Et =
∫ t

0
µe(As, Ds)ds, E0 = 0;

At = EQ
[
g(DT , ET )

∣∣Ft] , AT = g(DT , ET ).

(2.5)

where g is a globally Lipschitz continuous function. For shake of simplicity we

omit the martingale measure Q, because we assume to have that measure unless we

specificate it. Note that this is an easier case because πe−r(T−t)I[Ecap,∞)(ET ) is not

a Lipschitz function since it is not even continuous, and this assumption is crucial

in the proof which we are going to show. The first equation is independent form

the other two, so we can solve it independently, and it is a typical SDE. Moreover,

we know from general theory that in our regularity assumption on the coefficients

µd and σd it has a solution. Thus, in the following, we assume the process Dt to

be known and Dt ∈ L2. On the other hand, the other two equations are coupled,

that is they must be solved together because Et depends on the value of As until
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the time t, and At depends on the final value of Et. In other words the process At

depends on its own evolution. First of all, we want to associate a PDE to these

stochastic equations as we have done for linear stochastic differential equations

in appendix B. From above, intuitively, this PDE will not be linear because its

coefficients depend on the solution itself. In particular we want to show that the

considered PDE exist and it is:
σd(x)2

2
∂2u
∂x2

+ µd(x)∂u
∂x

+ µe(u, x)∂u
∂y

+ ∂u
∂t

= 0 in ]0, T ]× R2

u(T, x, y) = g(x, y) (x, y) ∈ R2

(2.6)

The solution of this semilinear Cauchy problem represent the value of the process

At and allow us to solve it numerically by a computer. We will show the existence

of a viscosity solution of 2.6 in the sense of [10] and we characterize it introducing

a vanishing viscosity solution of the regularized problem:
σd(x)2

2
∂2u
∂x2

+ ε2 ∂2u
∂y2

+ µd(x)∂u
∂x

+ µe(u, x)∂u
∂y

+ ∂u
∂t

= 0 in ]0, T ]× R2

u(T, x, y) = g(x, y) (x, y) ∈ R2

(2.7)

with ε ∈]0, 1]. Then we will study the behaviour of the solution as ε → 0. Note

that in the regularized problem, the PDE is a parabolic second order differential

equation, and we cam look for a solution as in [10]. Equation 2.6 is not parabolic

because coefficients matrix of the second order derivative is singular, thus it is

necessary to regularize the PDE to show the existence of a solution.

Now we use a probabilistic technique to show the existence of a viscosity solution,

and it is based on the system of stochastic differential equations 2.5. To obtain

the regularized Cauchy problem we introduced a Brownian perturbation, that is

we consider a standard Brownian motion Bt Ft-adapted on the filtered probability

spaces (Ω,F , P, (Ft)) defined in the previous chapter, and a positive constant

ε ∈ [0, 1[. Thus we have a perturbed backward stochastic system:E
ε
t =

∫ t
0
µe(A

ε
s, Ds)ds+ εBt, E0 = 0;

Aεt = E
[
g(DT , E

ε
T )
∣∣Ft] , AT = g(DT , ET ).

(2.8)

In the following we often use properties of conditional expectation (see [1]) and
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Hölder’s inequality in the form(∫ T

0

f(t)dt
)2

= T

∫ T

0

(f(t))2dt

Theorem 2.1. Let the foregoing hypothesis hold and let ε ∈ [0, 1[ and Tk1(k2 +1) <

1, where k1 is the Lipschitz constant of µe = µe(x, y), and k2 is the Lipschitz constant

of g = g(x, y) respect to the second variable. Then there exists a unique solution

(Eε
t , A

ε
t) ∈ L2 × L2 to the system 2.8.

Proof. The key of this proof is Banach fixed-point theorem (also known as the

contraction mapping theorem), thus we define an operator related to the system 2.8,

and we show that under suitable condition it is contractive. It implies, thanks to Ba-

nach fixed-point theorem, existence and uniqueness of the solution of 2.8. We remark

that the space L2 of adapted process X such that ‖X‖L2 = E
[(∫ T

0
|Xs|2ds

)]
<∞

is a Banach space under the previous norm. Moreover the product space L2 ×L2 is

a Banach space under the norm ‖(X, Y )‖L2×L2 = E
[(∫ T

0
(|Xs|+ |Ys|)2 ds

)]
. Let

(A,E) be in L2 × L2. Consider the following operator:

Λ(E,A)t =

F (E,A)t

G(E,A)t

 =

=

 ∫ t
0
µe(A

ε
s, Ds)ds+ εBt

E
[
g(DT , F (E,A)T )

∣∣Ft]


This operator is well defined from L2 × L2 to itself, as the following shows:

‖Λ(E,A)t‖2
L2×L2 = E

[∫ T

0

(|F (E,A)t|+ |G(E,A)t|)2 dt

]
(2.9)

|F (E,A)t| =
∣∣∣ ∫ t

0

µe(As, Ds)ds+ εBt

∣∣∣ ≤
≤
∫ t

0

|µe(As, Ds)|ds+ ε|Bt| ≤

≤
∫ t

0

|µe(As, Ds)|ds+ ε|Bt| =

=≤
∫ t

0

|µe(As, Ds)− µe(0, 0) + µe(0, 0)|ds+ ε|Bt| ≤

≤
∫ t

0

(k1|As|+ k1|Ds|+ |µe(0, 0)|) ds+ ε|Bt| ≤

≤ T |µe(0, 0)|+ k1

∫ t

0

(|As|+ |Ds|) ds+ ε|Bt| ≤

(2.10)
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|G(E,A)t| =
∣∣E [g(DT , F (E,A)T )

∣∣Ft] ∣∣ ≤
≤ E

[
|g(DT , F (E,A)T )− g(DT , 0) + g(DT , 0)|

∣∣Ft] ≤
≤ E

[
k2|F (E,A)T |+ |g(DT , 0)|

∣∣Ft] =

= E

[
k2

∣∣∣ ∫ T

0

µe(As, Ds)ds+ εBt

∣∣∣+ |g(DT , 0)|
∣∣∣Ft] ≤

≤ E

[
k2T |µe(0, 0)|+ k1k2

∫ T

0

(|As|+ |Ds|) ds+ k2ε|Bt|+ |g(DT , 0)|
∣∣∣Ft]

(2.11)

putting 2.10 and 2.11 in 2.9 we obtain:

‖Λ(E,A)t‖2
L2×L2 ≤

∫ T

0

E
[(
T |µe(0, 0)|+ k1

∫ t

0

(
|As|+ |Ds|

)
ds+ ε|Bt|+

+ E
[
k2T |µe(0, 0)|+

+ k1k2

∫ T

0

(|As|+ |Ds|)ds+ k2ε|Bt|+ |g(DT , 0)|
∣∣∣Ft])2]

dt ≤

≤
∫ T

0

E
[(
T 2(k2 + 1)2|µe(0, 0)|2 + |g(DT , 0)|2 + ε2(k2 + 1)2|Bt|2+

+ Tk2
1(k2

2 + 1)2

∫ T

0

(
|As|+ |Ds|

)2

ds
]
dt <∞

(2.12)

Indeed, g is a continuous function and Dt and At are stochastic process in L2. Thus

the operator Λ : L2 × L2 → L2 × L2 is well defined. Now we have to show it is

a contraction. Let (E1, A1), (E2, A2) ∈ L2 × L2 be stochastic processes and we

estimate:

|F (E2, A2)t − F (E1, A1)t| =
∣∣∣ ∫ t

0

(µe(A
2
s, Ds)− µe(A1

s, Ds))ds
∣∣∣ ≤

≤
∫ t

0

k1

(
|A2

s − A1
s|+ |Ds −Ds|

)
ds =

= k1

∫ t

0

|A2
s − A1

s|ds =

(2.13)

|G(E2, A2)t −G(E1, A1)t| =
∣∣∣E[g(DT , F (E2, A2))− g(DT , F (E1, A1)T )

∣∣∣Ft]∣∣∣ ≤
≤ E

[∣∣∣g(DT , F (E2, A2))− g(DT , F (E1, A1)T )
∣∣∣∣∣∣Ft] ≤

≤ k2E
[∣∣∣F (E2, A2)T − F (E1, A1)T

∣∣∣∣∣∣Ft] ≤
≤ k1k2E

[ ∫ T

0

|A2
s − A1

s|ds
∣∣∣Ft]

(2.14)
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Thus, by conditional expectation property, we obtain

‖Λ(E2, A2)t − Λ(E1, A1)t‖2
L2×L2 =

∫ T

0

E
[(
|F (E2, A2)T − F (E1, A1)T |+

+ |G(E2, A2)T −G(E1, A1)T |
)2]

dt ≤

≤
∫ T

0

E
[(
k1(k2 + 1)

∫ T

0

|A2
s − A1

s|ds
)2]
≤

≤ k2
1T

2(k2 + 1)2E
[ ∫ T

0

(
|E2

s − E1
s |+ |A2

s − A1
s|
)2

ds
]
≤

≤ (k2 + 1)2k2
1T

2‖(E2, A2)− (E1, A1)‖2
L2×L2

(2.15)

Which imply

‖Λ(E2, A2)t − Λ(E1, A1)t‖L2×L2 ≤ (k2 + 1)k1T

|(E2, A2)− (E1, A1)‖L2×L2

(2.16)

By hypothesis we have Tk1(k2 + 1) < 1 and we conclude that Λ is a contraction,

and we can apply Banach fixed-point theorem. Thus it exist an unique solution

(Eε
t , A

ε
t) ∈ L2 × L2.

Remark 2.2. Analogously we can show existence and uniqueness of the solution

of the unperturbed problemEt =
∫ t

0
µe(As, Ds)ds, E0 = 0;

At = EQ
[
g(DT , ET )

∣∣Ft] , AT = g(DT , ET ).
(2.17)

because the the proof is the same except of the perturbation term εBt, and this

does not affect the scheme of our proof and the final result. Thus, if Tk1(k2 +1) < 1,

then the coupled system of stochastic differential equations 2.17 has unique solution

(Et, At) ∈ L2 × L2.

Remark 2.3. Note that in the above theorem we assume that Tk1(k2 +1) < 1, then

it must be T < 1
k1(k2+1)

, and it means we have an unique solution (Et, At) ∈ L2×L2

of problem 2.17 only for suitable small T . Thus we have study the problem only

for time interval [0, T ] small enough.
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Remark 2.4. The bound on the norm of the solution (Eε
t , A

ε
t) ∈ L2 × L2 of the

perturbed problem 2.8 can be made independent of ε. Indeed we can write the

following inequalities:

|Eε
t | ≤ k1

∫ t

0

(|Aεs|+ |Ds|)ds+ ε|Bt|+ T |µe(0, 0)|

|Aεt | ≤ E
[
k2T |µe(0, 0)|+ |g(DT , 0)|+ k2ε|BT |+ k1k2

∫ T

0

(|Aεs|+ |Ds|)ds
∣∣∣Ft]
(2.18)

Putting together the foregoing inequalities and since ε < 1 we have

|Eε
t |+ |Aεt | ≤ E

[
T (k2 + 1)|µe(0, 0)|+ |g(Dt, 0)|+ |Bt|+ k2|BT |+

+ k1(k2 + 1)

∫ T

0

|Ds|ds+ k1(k2 + 1)

∫ T

0

(|Es|+ |As|)ds
∣∣∣Ft] (2.19)

We remember the following equalities:

E[

∫ T

0

|BT |2dt] = T · T = T 2

E[

∫ T

0

|Bt|2dt] =

∫ T

0

E[Bt]
2dt =

∫ T

0

tdt =
1

2
T 2

(2.20)

and Schwartz inequality of the form

(α + β)2 ≤ (1 +
1

a
)α2 + (1 + a)β2 (2.21)

where a > 0 if a suitable large constant.

Squaring both sides of 2.19 and applying 2.21 we get(
|Eε

t |+ |Aεt |
)2

≤ E
[
(k2 + 1)2k2

1T
(

1 +
1

a

)∫ T

0

(
|Eε

s |+ |Aεs|
)2

ds+ (1 + a)β2
∣∣∣Ft]
(2.22)

where

β2 =
(
T (k2 + 1)|µe(0, 0)|+ |g(Dt, 0)|+ |Bt|+ k2|BT |+ k1(k2 + 1)

∫ T

0

|Ds|ds
)2

(2.23)

Integrating both sides of 2.22 from 0 to T and taking expectation we get

E
[ ∫ T

0

(
|Eε

t |+ |Aεt |
)2

dt
]
≤ E

[
(k2 + 1)2k2

1T
2
(

1 +
1

a

)∫ T

0

(
|Eε

s |+ |Aεs|
)2

ds+ (1 + a)β2
]

(2.24)
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And it implies

E
[ ∫ T

0

(
|Eε

t |+ |Aεt |
)2

dt
]
≤ (1 + a)

1− (k2 + 1)2k2
1T

2
(

1 + 1
a

)E[ ∫ T

0

β2dt
]

(2.25)

with

E
[ ∫ T

0

β2dt
]
≤ E

[
(k2 + 1)2T 3|µe(0, 0)|2 + T |g(Dt, 0)|2 +

(
k2

2 +
1

2

)
T 2+

+ (k2 + 1)2k2
1T

2‖Dt‖2
L2

] (2.26)

and this estimate is independent of ε. Moreover, taking expectation of 2.22 and

plugging 2.25 back into 2.22 and we have

E
[(
|Eε

t |+ |Aεt |
)2]
≤ (k2 + 1)k2

1T
(

1 +
1

a

) (1 + a)

1− (k2 + 1)2k2
1T

2
(

1 + 1
a

)E[ ∫ T

0

β2dt
]
+

+ (1 + a)E
[
β2
]
≤

≤ C

(
k1, k2, T, a, g, µe, Dt,

1

1−
(

1 + 1
a

)
(k2 + 1)2k2

1T
2

)

(2.27)

In conclusion, thanks to Doob’s inequality for submartingales (see [13]) we have

also the following bound

E
[

sup
0≤t≤T

(
|Eε

t |+ |Aεt |
)2]
≤ 2 sup

0≤t≤T
E
[(
|Eε

t |+ |Aεt |
)2]
≤

≤ 2C

(
k1, k2, T, a, g, µe, Dt,

1

1−
(

1 + 1
a

)
(k2 + 1)2k2

1T
2

)

(2.28)

which is independent of ε.

We have shown existence of an adapted solution (Eε
t , A

ε
t ) of 2.8. We now apply

Brownian Martingale representation Theorem which is exhibited in appendix A

to the process At. We can do this because it is a Brownian martingale. Thus we

can write the backward component of our system as two stochastic integrals of

predictable processes Zε
t , where Zε

t is relative to the Brownian motion Bt and Hε
t

to Wt.

Aεt = g(DT , ET )−
∫ T

t

Hε
sdWs −

∫ T

t

Zε
sdBs (2.29)
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Moreover

E
[ ∫ T

0

[(Hε
s )

2 + (Zε
s)

2]ds
]
<∞

With this representation, it follows the continuity in t of the process At, because

the stochastic integrals in 2.29 are continuous in t.

As we can see in [3], under our hypothesis (Brownian environment and g

deterministic function), the solution of a stochastic system is a Markov process. It

follows that the solution (Eε
t , A

ε
t ) of the system 2.8 is a couple of Markov processes.

Hence, for all (t, x, y) ∈ [0, T ]× R2, the associated flows of solution
Dt,x
s = x+

∫ s
t
µd(D

t,x
r )dr +

∫ s
t
σd(D

t,x
r )dWr

Eε,t,x,y
s = y +

∫ s
t
µe(A

ε,t,x,y
r , Dt,x

r ) + ε(Bs −Br)

Aε,t,x,ys = E
[
g(Dt,x

T , Eε,t,x,y
T )

∣∣∣Fs]
(2.30)

define a deterministic function

uε(t, x, y) = Aε,t,x,yt (2.31)

We can define this deterministic function thanks to Blumenthal’s 0− 1 law (C.8)

and the Markov property of solution processes. In particular, Blumenthal’s 0− 1

law is a dichotomic law which implies that Aε,t,x,yt is a constant random variable

P (x,y)-almost surely on (Ω, F̃t, P (x,y)), where F̃t is a σ-algebra of the universal

filtration (see C). Thus, for any t ∈ [0, T ] and (x, y) ∈ R2 it is a deterministic

function. The following proposition show the Hölder regularity of the function

uε(t, x, y).

Proposition 2.5. Under the above hypothesis uε is globally Lipschitz in x, y and

Hölder of order 1
2
in t with constant C0 independent of ε ∈ [0, 1[. In compact form

we write:

|uε(t2, x2, y2)− uε(t2, x1, y1)| ≤ C0(|x2 − x1|+ |y2 − y1|)

|uε(t2, x2, y2)− uε(t1, x2, y2)| ≤ C̃0(1 + |(x1, y1)|)|t2 − t1|
1
2

(2.32)

Proof. Take t1, t2 ∈ [0, T ], and without loss of generality assume that t1 ≤ t2, then

consider (x1, y1), (x2, y2) ∈ R2. We can define the flows associated to these starting

point. We can extend naturally the flows on the whole interval as follows

(Dti,xi
s , Eε,ti,xi,yi

s , Aε,ti,xi,yis ) = (Dti,xi
ti , Eε,ti,xi,yi

ti , Aε,ti,xi,yiti )
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for any s ≤ ti, i = 1, 2. Our target is to estimate |Aε,t2,x2,y2t2 − Aε,t1,x1,y1t1 |. For

simplicity, we use the convenient notation X i = Xε,ti,xi,yi for any process that

appears in this proof. Moreover we remember that we denote respectively by

k1,k2,k3,k4 the Lipschitz constant of µe,g,µd,σd. For any t ∈ [0, T ] we have

|D2
t −D1

t | ≤ |x2 − x1|+
∫ t2∨t

t2

|µd(D2
s)− µd(D1

s)|ds+

∫ t2∧t

t1∧t
|µd(D1

s)|ds+

+

∫ t2∨t

t2

|σd(D2
s)− σd(D1

s)|dWs +

∫ t2∧t

t1∧t
|σd(D1

s)|dWs

|E2
t − E1

t | ≤ |y2 − y1|+
∫ t2∨t

t2

|µe(A2
s, D

2
s)− µe(A1

s, D
1
s)|ds+

∫ t2∧t

t1∧t
|µe(A1

s, D
1
s)|ds+

+ ε|Wt2∨t −Wt2 −Wt1∨t +Wt1|

|A2
t − A1

t | ≤ E
[
|g(D2

T , E
2
T )− g(D1

T , E
1
T )|Ft

]
(2.33)

Putting together |E2
t − E1

t | and |A2
t − A1

t | and squaring both sides we get

(|E2
t − E1

t |+ |A2
t − A1

t |)2 ≤
{
E
[
(k2 + 1)|y2 − y1|+ k1(k2 + 1)

∫ T

0

|A2
s − A1

s|ds+

+ k1(k2 + 1)

∫ T

0

|D2
s −D1

s |ds+ k1(k2 + 1)

∫ t2

t1

|µe(A1
s, D

1
s)|ds+

+ (k2 + 1)ε|Wt2∨t −Wt2 −Wt1∨t +Wt1|
∣∣∣Ft]}2

(2.34)

As we have done before in 2.24, we apply Shwartz inequality for a suitable large

a > 0, take expected value and we integrate from 0 to T . Thus we obtain

E
[ ∫ T

0

(
|E2

t − E1
t |+ |A2

t − A1
t |
)2

dt
]
≤ (1 + a)T

1− (k2 + 1)2k2
1T

2
(

1 + 1
a

)E[A2
]

(2.35)

where

E
[
A2
]
≤ (k2 + 1)2|y2 − y1|2 + (k2 + 1)2(t2 − t1)E

[ ∫ t2

t1

|µe(A1
s, D

1
s)|2ds

]
+

+ (k2 + 1)2ε2T |Bt2 −Bt1|2 + Tk2
1(k2 + 1)2E

[ ∫ T

0

|D2
s −D1

s |2
] (2.36)
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From 2.34 we can estimate E
[ ∫ T

0
|D2

s −D1
s |2
]

E
[ ∫ T

0

|D2
s −D1

s |2
]
≤ T |x2 − x1|2 + T 2k2

3E
[ ∫ T

0

|D2
s −D1

s |2
]

+ Tk2
4E
[ ∫ T

0

|D2
s −D1

s |2
]
+

+ T (t2 − t1)E
[ ∫ t2

t1

|σd(D1
s)|2
]
≤

≤ T |x2 − x1|2 + T (t2 − t1)E
[ ∫ t2

t1

|σd(D1
s)|2
]
+

+ T (Tk2
3 + k2

4)E
[ ∫ T

0

|D2
s −D1

s |2
]

(2.37)

And this implies

E
[ ∫ T

0

|D2
s −D1

s |2
]
≤ T

T (1− Tk2
3 + k2

4)

[
|x2 − x1|2 + (t2 − t1)E

[ ∫ t2

t1

|σd(D1
s)|2
]]
≤

≤ TC1(k3, k4, T )|x2 − x1|2 + TC1(k3, k4, T )(t2 − t1)E
[ ∫ t2

t1

|σd(D1
s)|2
]

(2.38)

Plugging the last inequality back in 2.36 we get

E
[
A2
]
≤ (k2 + 1)2|y2 − y1|2 + (k2 + 1)2(t2 − t1)E

[ ∫ t2

t1

|µe(A1
s, D

1
s)|2ds

]
+

+ (k2 + 1)2ε2T |Bt2 −Bt1|2 + C1T
2k2

1(k2 + 1)2|x2 − x1|2+

+ C1T
2k2

1(k2 + 1)2E
[ ∫ t2

t1

|σd(D1
s)|2
]
≤

≤ C2(x1, y1, k1, k2, k3, k4, µe, σd, T, a)(|t2 − t1|+ |x2 − x1|2 + |y2 − y1|2)

(2.39)

Thus

E
[ ∫ T

0

(
|E2

t − E1
t |+|A2

t − A1
t |
)2

dt
]
≤

C3

(
x1, y1, k1, k2, k3, k4, µe, σd, T, a,

1

1−
(

1 + 1
a

)
(k2 + 1)2k2

1T
2

)
·

· (|t2 − t1|+ |x2 − x1|2 + |y2 − y1|2)

(2.40)

Finally, using the properties of Brownian motion and the fact that ε < 1, proceeding
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as we have done before in remark 2.4 we obtain the following estimate

E
[

sup
0≤t≤T

(|E2
t − E1

t |+|A2
t − A1

t |)2
]
≤

≤ C4

(
x1, y1, k1, k2, k3, k4, µe, σd, T, a,

1

1−
(

1 + 1
a

)
(k2 + 1)2k2

1T
2

)
·

· (|t2 − t1|+ |x2 − x1|2 + |y2 − y1|2)

(2.41)

Since the last estimate hold uniformly in t, it is also true for t1, hence we get

|uε(t2, x2, y2)− uε(t2, x1, y1)|2 ≤

≤ |Aε,t2,x2,y2t2 − Aε,t2,x1,y1t2 |2 ≤

≤ C4(|x2 − x1|2 + |y2 − y1|2) ≤

≤ C2
0(|x2 − x1|+ |y2 − y1|)2

|uε(t2, x2, y2)− uε(t1, x2, y2)|2 ≤

≤ |Aε,t2,x2,y2t2 − Aε,t1,x2,y2t1 |2 ≤

≤ C4|t2 − t1| ≤

≤ C̃0

2
(1 + |(x1, y1)|)2|t2 − t1|

(2.42)

And we conclude

|uε(t2, x2, y2)− uε(t2, x1, y1)| ≤ C0(|x2 − x1|+ |y2 − y1|)

|uε(t2, x2, y2)− uε(t1, x2, y2)| ≤ C̃0(1 + |(x1, y1)|)|t2 − t1|
1
2

(2.43)

The next proposition shows that the function uε just defined is a viscosity

solution of
σd(x)2

2
∂2u
∂x2

+ ε2 ∂2u
∂y2

+ µd(x)∂u
∂x

+ µe(u, x)∂u
∂y

+ ∂u
∂t

= 0 in [0, T [×R2

u(T, x, y) = g(x, y) (x, y) ∈ R2

(2.44)

and to do this we use Itô’s formula on uε.

Proposition 2.6. Let ε ∈]0, 1]. Then the function uε is a viscosity solution of the

problem 2.44.
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Proof. In the previous proposition we have shown the continuity of uε, thus now

we only have to show it is both a viscosity subsolution and supersolution. We

only show the subsolution case because the the proof of the supersolution case is

analogous.

We have observed that Aε,t,x,ys is a Markov process and from the pathwise uniqueness

of the solution process of the problem 2.8 we have uε(s,Dt,x
s , Eε,t,x,y

s ) as surely for

any s ∈ [t, T ].

Let us consider a point (t, x, y) ∈ [0, T ]× R2 and a function ϕ ∈ C1,2([0, T ]× R2),

with bounded derivatives, and such that

uε(t, x, y)− ϕ(t, x, y) = 0

Moreover we assume, without loss of generality, that (t, x, y) is a global maximum

for uε(t, x, y)− ϕ(t, x, y). In this hypothesis, for any Ft-stopping time τ , we have

uε(τ,Dt,x
τ , Eε,t,x,y

τ )− ϕ(τ,Dt,x
τ , Eε,t,x,y

τ ) ≤ 0 (2.45)

In order to simplify the notation in the following of this proof we omit the superscript

of u,D,E,A. Since ϕ is regular, it satisfy the hypothesis of itô’s formula, and we

apply it in the interval [t, τ ], with τ Ft-stopping time. Thus we get

ϕ(τ,Dτ , Eτ ) = ϕ(t, x, y) +

∫ τ

t

(
ϕt(τ,Dr, Er) + µd(Dr)ϕx(τ,Dr, Er)+

+ µe(u(r,Dr, Er), Dr)ϕy(τ,Dr, Er) +
σ2
d(Dr)

2
ϕxx(τ,Dr, Er)+

+
ε2

2
ϕyy(τ,Dr, Er)

)
dr +

∫ τ

t

σd(Dr)ϕx(τ,Dr, Er)dWr+

+

∫ τ

t

εϕy(τ,Dr, Er)dBr

(2.46)

and thanks to the Brownian Martingale Representation Theorem we have

u(t, x, y) = At = Aτ −
∫ τ

t

ZrdWr =

= u(τ,Dt,x
τ , Eτ )−

∫ τ

t

ZrdWr

(2.47)

which imply

u(τ,Dt,x
τ , Eτ ) = u(t, x, y) +

∫ τ

t

ZrdWr (2.48)
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Substituting equalities 2.46 and 2.48 in 2.45 we obtain

uε(τ,Dτ , Eτ )− ϕ(τ,Dτ , Eτ ) = u(t, x, y)− ϕ(t, x, y) +

∫ τ

t

ZrdWr−

−
∫ τ

t

(
ϕt(τ,Dr, Er) + µd(Dr)ϕx(τ,Dr, Er)+

+ µe(u(r,Dr, Er), Dr)ϕy(τ,Dr, Er)+

+
σ2
d(Dr)

2
ϕxx(τ,Dr, Er)+

+
ε2

2
ϕyy(τ,Dr, Er)

)
dr − ε2

2
ϕyy(τ,Dr, Er)

)
dr+

+

∫ τ

t

σd(Dr)ϕx(τ,Dr, Er)dWr−

−
∫ τ

t

εϕy(τ,Dr, Er)dBr ≤ 0

(2.49)

Now we take expectations in the previous equality, and since the martingale part

do not give any contribute we get

E
[
Φ(τ,Dr, Er)

]
≥ 0 (2.50)

where

Φ =
σ2
d(·)
2

ϕxx+
ε2

2
ϕyy + µd(x)ϕx + µe(u, ·)ϕy(τ,Dr, Er) + ϕt (2.51)

Since the equality is verified at time T , because of the definition of A, to show that

u is a viscosity subsolution of 2.44 we must verify Φ(t, x, y) ≥ 0 (see remark 2.7).

Note that the coefficient of the second order derivative respect to the variable y is
ε
2
instead of ε, but imposing ε̃ = ε√

2
we obtain the same equation.

By contradiction we assume Φ(t, x, y) < 0, that is we assume there exist an δ < 0

such that Φ(t, x, y) < δ. We define the Ft-stopping time τ1 as follows

τ1 = inf

{
r > t

∣∣∣Φ(r,Dr, Er) ≥
δ

2

}
∧ T

By construction τ1 > t almost surely, and since Inequality 2.50 holds for any

stopping time, we have

0 >
δ

2
E(τ1 − t) ≥ E

[
Φ(τ,Dr, Er)

]
≥ 0
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and this is clearly a contradiction. Thus Φ(t, x, y) ≥ 0 and u is a viscosity subsolution

of 2.44. Analogously it can be shown that u is a viscosity supersolution of 2.44,

hence u is a viscosity solution of 2.44 and this complete the proof.

Remark 2.7. In [10], the function Φ(t, x, y) is asked to be≤ 0, but in the hypothesis

of the viscosity subsolution definition the sign of the of the second order derivatives

is ”− ”. In our case the sign is ” + ”, thus to show that u is a viscosity subsolution

we have to change sign and we have to verify Φ ≥ 0.

We have just proved the existence of a viscosity solution of the problem 2.44,

and in the next statement we will show uniqueness of this viscosity solution.

Proposition 2.8. Le ε ∈ [0, 1[. If u is a subsolution and v a is a supersolution of

problem 2.44 such that both verify Hölder estimate 2.32, then u ≤ v.

Proof. We set S% =]0, %[×R2 and consider the function

H(t, h) = exp

(
|h|2

1− (2%)−1t
− σt

)
(t, h) ∈ S̃% (2.52)

We compute the following derivatives:

Ht = H

(
x2 + y2

2%(1− (2%)−1t)2
− σ

)
Hx = H

(
2x

1− (2%)−1t

)
Hy = H

(
2y

1− (2%)−1t

)
Hxx = H

(
4x2

1− (2%)−1t
+

2

1− (2%)−1t

)
Hyy = H

(
4y2

1− (2%)−1t
+

2

1− (2%)−1t

)
and we have

Ĥ(ε, t, h) =

σ2
d

2
Hxx + ε2Hyy + (µe(u, x) + µe(v, x))Hy + µd(x)Hx +Ht

H
=

=
σ2
d

2

(
4x2

1− (2%)−1t
+

2

1− (2%)−1t

)
+ ε2

(
4y2

1− (2%)−1t
+

2

1− (2%)−1t

)
+

+ (µe(u, x) + µe(v, x))

(
2y

1− (2%)−1t

)
+ µd(x)

(
2x

1− (2%)−1t

)
+

+
x2 + y2

2%(1− (2%)−1t)2
− σ

(2.53)
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Since µe and µd are globally Lipschitz and u, v verify estimates 2.32,it is possible

to choose sufficiently large positive constants %−1,σ such that for every ε ∈ [0, 1[

sup
S%

Ĥ(ε, t, h) < 0 (2.54)

We want to prove that u ≤ v in Ĥ(S%), thus we suppose, by contradiction, that

there exist z ∈ S% such that u(z)− v(z) > 0.

We define the following functions defined on [0, %[×R2

w =
u

H
− δ

%− t

ω =
v

H
+

δ

%− t

and we take δ > 0 suitably small such that w(z) − ω(z) = u(z)−v(z)>0
H(z)

− 2δ
%−t > 0.

We have

lim
|h|→∞

(w − ω)(t, h) = − 2δ

%− t
< 0 (2.55)

and

lim
|h|→%−

(w − ω)(t, h) = −∞ (2.56)

uniformly in h ∈ R2. Now we can double the number of spatial variables and, for

α > 0, consider the function

Φα(t, h, h′) = w(t, h)− ω(t, h′)− α

2
|h− h′|2 (2.57)

Let (tα, hα, h
′
α) be a maximum point of Φα in [0, %[×R2. The maximum is achieved

in view of upper semicontinuity of w − ω, compactness of [0, %]× R2 and 2.55,2.55

(see [4]). Moreover we have

0 < w(z)− ω(z) ≤ Φα(tα, hα, h
′
α) ≤ sup

S%

(w − ω) < +∞ (2.58)

By proposition D.2 in appendix D, we get

lim
α→∞

α|hα − h′α|2 = 0 (2.59)

so that, by 2.55 and 2.58,there exist a compact subsetM of R2 such that hα, h′α ∈M

for every α > 0. Hence we may suppose that there exist the limit

lim
α→∞

(t0, h0, h
′
0) ∈ [0, %]× R2 × R2 (2.60)
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If t0 = 0, then Φα(tα, hα, h
′
α)→ −2δ%−1 and this contradicts 2.58. Hence tα > 0 if

α is large. Analogously, by 2.56 and 2.58, t0 < δ. Then D.2 in appendix D yields

lim
α→∞

Φα(tα, hα, h
′
α) = w(t0, h0)− ω(t0, h0) = sup

[0,%[×R2

(2.61)

Thus we may apply theorem D.6 in appendix D to infer that there exist a ∈ R and

some matrices Xw, Y ω such that

(a, α(hα − h′α), Xw) ∈ P 2,+
S%

w(tα, hα)

(a, α(hα − h′α), Y ω) ∈ P 2,−
S%

ω(tα, h
′
α)

Xw ≤ Y ω

(2.62)

Since

u =

(
w +

δ

%− t

)
H

v =

(
ω − δ

%− t

)
H

(2.63)

by theorem D.4 in appendix D we deduce that

(dut , (d
u
x, d

u
y), X

u) ∈ P 2,+
S%

w(tα, hα)

(dvt , (d
v
x, d

v
y), Y

v) ∈ P 2,−
S%

w(tα, h
′
α)

(2.64)

where

dut =

((
a− δ

(%− t)2

)
H +

u

H
Ht

)
(tα, hα)

(dux, d
u
y) =

(
α(hα − h′α)H +

u

H
DhH

)
(tα, hα)

Xu =
(
XwH + 2α(hα − h′α)⊗DhH +

u

H
D2
hH
)

(tα, hα)

(2.65)

and

dut =

((
a− δ

(%− t)2

)
H +

v

H
Ht

)
(tα, h

′
α)

(dvx, d
v
y) =

(
α(hα − h′α)H +

v

H
DhH

)
(tα, h

′
α)

Y v =
(
Y ωH + 2α(hα − h′α)⊗DhH +

v

H
D2
hH
)

(tα, h
′
α)

(2.66)

Next, since u is a subsolution of 2.44, we get

σ2
d(xα)

2
Xu

11 + ε2Xu
22 + µd(xα)dux + µe(u(tα, hα), xα)duy + dut +

+ µe(u(tα, hα), xα)dvy ≤ µe(u(tα, hα), xα)dvy

(2.67)
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or, in other terms

σ2
d(xα)

2
Xw

11 + ε2Xw
22 + 2α(xα − x′α)

[
σ2
d

2
(xα)

Hx

H
(tα, hα) +

µd(xα
2

)

]
+

+ α(yα − y′α)

[
2ε2Hy

H
(tα, hα) + µe(u(tα, hα), xα)

]
+ a+

δ

(%− tα)2
+

+
u

H2
(tα, hα)

[σ2
d

2
(xα)Hxx(tα, hα) + ε2Hyy(tα, hα) + µe(u(tα, hα), xα)Hy(tα, hα)+

+ µd(xα)Hx(tα, hα) +Ht(tα, hα)
]
+

+ µe(u(tα, hα), xα)
[
α(yα − y′α) +

v

H2
(tα, h

′
α)
]
≤ µe(u(tα, hα), xα)dvy

(2.68)

On the other hand, since v is a supersolution of 2.44, analogously, we get

σ2
d(x
′
α)

2
Xω

11 + ε2Xω
22 + 2α(xα − x′α)

[
σ2
d

2
(x′α)

Hx

H
(tα, h

′
α) +

µd(x
′
α

2
)

]
+

+ α(yα − y′α)

[
2ε2Hy

H
(tα, h

′
α) + µe(u(tα, h

′
α), x′α)

]
+ a− δ

(%− tα)2
+

+
v

H2
(tα, h

′
α)
[σ2

d

2
(x′α)Hxx(tα, h

′
α) + ε2Hyy(tα, h

′
α) + µe(v(tα, h

′
α), x′α)Hy(tα, h

′
α)+

+ µd(x
′
α)Hx(tα, h

′
α) +Ht(tα, h

′
α)
]
+

+ µe(u(tα, hα), xα)
[
α(yα − y′α) +

v

H2
(tα, h

′
α)
]
≥ µe(u(tα, hα), xα)dvy

(2.69)

Finally, subtracting 2.68 from 2.70, for α > 0, we obtain

Iα + Jα ≥ 0 (2.70)

where

Îα = α
〈
hα − h′α,

σ2
d(x
′
α)

2

Hx

H
(tα, h

′
α −

σ2
d(xα)

2

Hx

H
(tα, hα) +

µd(x
′
α)

2
− µd(xα)

2
,

2ε2Hy

H
(tα, h

′
α)− 2ε2Hy

H
(tα, hα) + µe(u(tα, h

′
α), x′α)− µe(u(tα, hα), xα)

〉
−

− α(yα − y′α)
2δ

(%− t)2

(2.71)
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and

Jα =
u

H2
(tα, hα)

[σ2
d(xα)

2
Hxx(tα, hα) + ε2Hyy(tα, hα) + µe(u(tα, hα), xα)Hy(tα, hα)+

+ µd(xα)Hx(tα, hα) +Ht(tα, hα)
]
− v

H2
(tα, h

′
α)
[
σ2
d(x
′
α)Hxx(tα, h

′
α)+

+ ε2Hyy(tα, h
′
α) + µe(u(tα, h

′
α), x′α)Hy(tα, h

′
α) + µd(x

′
α)Hx(tα, h

′
α) +Ht(tα, h

′
α)
]

(2.72)

thus, putting Iα = Îα + α(yα − y′α) 2δ
(%−tα)2

, we get

Iα + Jα ≥
2δ

(%− tα)2
> 0 (2.73)

As α goes to infinity, we have Iα → 0 and

Jα →
u− v
H

(t0, h0)
σ2
dHxx + ε2Hyy + (µe(u, .) + µe(v, .))Hy + µdHx +Ht

H
(t0, h0) =

=
u− v
H

(t0, h0)Ĥ(ε, t0, h0)

(2.74)

Finally, since u−v
H

(t0, h0) > 0 and supS% Ĥ(ε, t, x) < 0 we have

0 < Iα + Jα →
u− v
H

(t0, h0)Ĥ(ε, t0, h0) < 0 (2.75)

and this is clearly a contradiction. Thus we have proved u ≤ v in S%. Repeating

this procedure finitely many times, we conclude the proof.

Remark 2.9. The uniqueness of the solution follows directly from the last propo-

sition because if u and v are both viscosity solution of 2.44,by definition, they are

both viscosity subsolution and supersolution. Hence, from the proposition, if we

take v as subsolution and u as supersolution, we have v ≤ u. Analogously we obtain

u ≤ v, thus we conclude u = v.

From general theory of second order parabolic PDEs we it is well known that,

in our hypothesis (in particular Lipschitz continuity of σd, µd and µe, and Hölder

continuity of uε), there exist a function v ∈ C1+α
2
,2+a(S) ∩ C(S ∩ ∂̃S) classical

solution of the linear Cauchy problem
σd(x)2

2
vxx + ε2vyy + µd(x)ux + µe(u

ε, x)vy + vt = 0, in S

v = uε, in ∂̃S
(2.76)
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for ε > 0 and

S = {(t, x, y)|x2 + y2 < R2, t ∈]0, T [}

∂̃S = ∂S ∩ {t > 0}
(2.77)

with R > 0 fixed. For the proof of this result see, for example, [2] or [11].

Moreover, by the comparison principle for viscosity solutions D.7 in appendix D,

we have uε = v in S.

Theorem 2.10. If ε > 0, then uε is a solution of the problem 2.44 in classical

sense. Moreover uε ∈ C∞([0, T ]× R2).

Proof. From the discussion above, since R is arbitrary, we have that uε is a solution

of the problem 2.44 in classical sense. Moreover we have uε ∈ C1+α
2
,2+a([0, T ]×R2).

Now we use the following bootstrap argument: we apply the same procedure again

with the new regularity of uε in the equation 2.76, thus we obtain the solution

v ∈ C3+α
2
,3+a(S), and again we get uε ∈ C3+α

2
,3+a([0, T ] × R2). Applying this

procedure infinitely many times we have uε ∈ C∞([0, T ]× R2).

Finally, we can prove the main result.

Theorem 2.11. Let 0 < T < T , with T = (k1(k2 + 1))−1. Let respectively denote

by k1, k2, k3, k4 the Lipschitz constant of µe, g, µd, σd. Then there exist a unique

viscosity solution u of problem
σd(x)2

2
∂2u
∂x2

+ µd(x)∂u
∂x

+ µe(u, x)∂u
∂y

+ ∂u
∂t

= 0 in [0, T [×R2

u(T, x, y) = g(x, y) (x, y) ∈ R2

(2.78)

such that

|u(t2, x2, y2)− u(t2, x1, y1)| ≤ C0(|x2 − x1|+ |y2 − y1|)

|u(t2, x2, y2)− u(t1, x2, y2)| ≤ C̃0(1 + |(x1, y1)|)|t2 − t1|
1
2

(2.79)

for every (x1, y1), (x2, y2) ∈ R2,t1, t2 ∈ [0, T ], where C0, C̃0 are positive constant

which depend on k1, k2, k3 and k4. For every ε ∈]0, 1[, the regularized problem
σd(x)2

2
∂2u
∂x2

+ ε2 ∂2u
∂y2

+ µd(x)∂u
∂x

+ µe(u, x)∂u
∂y

+ ∂u
∂t

= 0 in [0, T [×R2

u(T, x, y) = g(x, y) (x, y) ∈ R2

(2.80)
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has an unique classical solution uε for which 2.79 holds with C0, C̃0 independent of ε.

Moreover uε converges to u as ε goes to zero, uniformly on compacts of [0, T ]× R2.

Proof. We have already proof existence, estimate 2.32 and uniqueness of the solution

uvarepsilon ∈ C∞([0, T ]×R2) of the regularized problem 2.80. To complete the proof

we have to show that u is a vanishing viscosity solution in the sense that u is the

limit of uε, uniform on compacts as ε → 0+. The technique is the same used in

proposition 2.8, thus we only sketch the proof. Fix % > 0 suitably small so that the

function

H(t, h) = exp

(
|h|2

1− (2%)−1t
− σt

)
(t, h) ∈ S̃% (2.81)

with S% =]0, %[×R2 is such that

k̂ = sup
ε∈]0,1[

sup
S%

σ2
d

2
Hxx + (µe(u

ε, x) + µe(u, x))Hy + µd(x)Hx +Ht

H
< 0 (2.82)

We have to show that ∀R, γ > 0 exist ε0 > 0 such that |uε(z) − u(z)| ≤ γ

∀z ∈ [0, %[×B(0, R) and ε ∈]0, ε0[, where B(0, R) represent the Euclidean ball in

R2. By contradiction, we assume that for some R, γ > 0 and every ε > 0 there exist

zε ∈ [0, %[×B(0, R) such that (uε− u)(zε) > γ. We consider the following functions

defined on [0, %[×R2:

wε =
uε

H
− δ

%− t

ω =
u

H
+

δ

%− t

and we choose δ > 0 suitably small and independent of ε, so that

wε(zε)− ω(zε) > 0

Proceeding as in the proof of proposition 2.8 we can show the existence of a global

maximum (tε0, h
ε
0) of wε−ω, and analogously we obtain Iεα and Jεα and the following

inequality:

Iεα + Jεα ≥
2δ

%− tα
> 0

with

Iεα → 0
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and

Jεα →

(
uε − u
H

σ2
d

2
Hxx + (µe(u

ε, x) + µe(u, x))Hy + µd(x)Hx +Ht

H
+ ε2u

εHyy

H

)
(tε0, h

ε
0)

as α→ +∞. Setting

k = sup
S%

∣∣∣∣uεHyy

H

∣∣∣∣ <∞
as α→ +∞ we get

0 ≤ k̂
uε − u
H

(tε0, h
ε
0) + ε2k <

k̂γ

H(tε0, h
ε
0)

+ ε2k (2.83)

Since

lim
|h|→∞

(wε − ω)(t, h) = − 2δ

%− t
< 0

uniformly in ε, we have

sup
ε∈]0,1[

|hε0| <∞

Therefore, by the last inequality, 2.83 contradicts the fact that ε > 0 is arbitrarily

small and this concludes the proof.

Remark 2.12. The bound on T comes from the consideration we have done in

remark 2.3.

We have just proved, under suitable hypothesis, the existence and the uniqueness

of solution of problem 2.78, which is associated to the stochastic system 2.5. Thus

we can solve the differential problem to obtain a solution of the backward stochastic

differential equation, and we can conclude that for any d ∈ (0, ξmax), there exist

an unique solution. This result is obtained in the case of Lipschitz continuity of

the function g, but to give a price to allowance certificates the terminal condition

function is the indicator function πI[Ecap,+∞)(Et). In the next section we will

investigate on the solution of problem with this singular terminal condition.

2.2 Singular terminal condition

We will show that there is no way to construct a solution to 2.5 with terminal

condition πI[Ecap,+∞)(Et) which preserve the flow property and the expected Marko-

vian structure at terminal time T , and we will prove it trough the degeneracy of
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the inviscid Burger’s equation. Before to do this we want to study the case of the

relaxed terminal condition:

P{φ−(ET ) ≤ AT ≤ φ+(ET )} = 1 (2.84)

with

φ(x) = I[Ecap,+∞)(x)

φ−(x) = sup
x′<x

φ(x′)

φ+(x) = inf
x′>x

φ(x′)

(2.85)

Note that, for shake of simplicity, we take the penalty π equal to one. For the

general case, it is enough to take πφ instead of φ and we obtain the same result. It

can be shown the following theorem (see [15])

Theorem 2.13. Assume there exist two constants l1, l2 > 0, and 1/L ≤ l1 ≤ l2 ≤ L

with L ≥ 1 the Lipschitz constant of µe such that

l1|A− A′| ≤ |µe(D,A)− µe(D,A′)| ≤ l2|A− A′| A,A′ ∈ R

Given any initial condition (d, e) ∈ R2, there exist a unique progressively measurable

4-tuple (Dt, Et, At, Zt)0≤t≤T satisfying
dDt = µd(Dt)dt+ σd(Dt)dWt

dEt = µe(At, Dt)dt

At = rAtdt+ ertZtdWt

(2.86)

and the relaxed terminal condition 2.84. Moreover there exist a constant C depending

on L and T only, such that almost surely |Zt| ≤ C for t ∈ [0, T ].

Proof. The complete proof can be seen on the article [15], we only give an idea

of this proof. We consider a perturbed stochastic system (called mollified system)

similarly to what we have done in the previous section and to associate the solution

of the stochastic problem to a semilinear PDE. Then, for a Lipschitz smooth

terminal condition φ we have a solution uφ which depends on the terminal condition.
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Now assume φ to be a non-decreasing function, φ+ and φ− as in 2.84. Notice

that φ+ is a cumulative distribution function as a non-decreasing right continuous

function matching 0 at −∞ and 1 at +∞. Notice also that φ− is the left-continuous

version of φ+. Then we can construct two mollifying sequences for φ. let j being

a C∞ function with compact support which represent the density of a positive

random variable, and let ξ and ϑ be positive independent random variables, ξ with

φ as cumulative distribution function and ϑ with j as density. For each integer

n ≥ 1, denote by φn+ and φn− the cumulative distribution functions of the random

variables ξ − n−1ϑ and ξ + n−1ϑ respectively. Then, the functions φn+ and φn− are

non decreasing with values in [0, 1]. They are C+∞, with bounded derivatives of

any order. Moreover φn+ ≥ φ and φn− ≤ φ and the sequences (φn+)n≥1 and (φn−)n≥1

converge pointwise towards φ+ and φ− respectively as n tends to +∞. Finally∫
R
|φn+(e)− φ+(e)|de ≤

∫
R×R+

P(e ≤ ξ ≤ e+ t/n)j(t)dtde =
1

n

∫
R+

tj(t)dt→ 0

as n tends to +∞, so that the convergence of (φn+)n≥1 towards φ+ holds in L1(R)

as well. Analogously the convergence of (φn−)n≥1 towards φ− holds in L1(R). Then,

for each n ≥ 1, we obtain two solutions vφn+ and vφ
n
− to the PDE associated to

the problem 2.86 with terminal condition φn+ and φn− respectively. The sequences

(vφ
n
+)n≥1 and (vφ

n
−)n≥1 converge uniformly on compact subset of [0, T ) × R × R,

therefore

lim
n→+∞

vφ
n
+(t, d, e) = lim

n→+∞
vφ

n
−(t, d, e)

for any (t, d, e) ∈ [0, T )×R×R. By construction the limit matches the continuous

function v(t, d, e) such that At = v(t,Dd
t , E

d,e
t ) for any t < T and

φ−(Ed,e
T ) ≤ lim

t↗T
v(t,Dd

t , E
d,e
t ) ≤ φ+(Ed,e

T ) P-almost surely

where the limit exist as the almost-surely limit of a non-negative martingale.

Moreover v(t, d, e) is Lipschitz continuous respect to d and e, and it is a [0, 1]-valued

martingale with respect to the complete filtration generated by the Brownian motion

Wt. The integral martingale representation of (v(t,Dd
t , E

d,e
t ))0≤t<T is bounded by a

constant dependent on T and C (the Lipschitz constant respect to the variable e)

only. The existence of such function should be proved, and it is done in [15].
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Remark 2.14. The statement is true also for the initial time t0 ∈ [0, T ) instead of

0.

In the following we always refer to v as the function defined in the proof of

theorem 2.13, and we empathise that the function µe(a, d) is not increasing as a

function of the variable a. Now we discuss the existence of a solution in the case

φ(x) = I[Ecap,+∞)(x) and in order to do this we give some additional hypothesis:

• For any d ∈ R, the function y ↪→ µe(a, d) is differentiable with respect to a

and there exist α ∈ (0, 1] such that, for any (d, d′, a, a′) ∈ R×R×R×R, we

have

|∂yµe(a, d)− ∂yµe(a′, d′)| ≤ L(|d′ − d|α + |y′ − y|α)

• the function µd and σd are bounded by L.

For shake of convenience, we switch from the degenerate component E of the

forward process to a process E which has the same terminal value, hence leaving

the terminal condition of the backward process unchanged, and which will be easier

to manipulate. We introduce the modified process

Et = Et − E
[∫ T

t

µe(0, Ds)ds
∣∣∣Ft] (2.87)

Hence the process Et gives an approximation of ET given Ft, and in particular

ET = ET . Moreover, since µd and σd are Lipschitz continuous we have that

w : [0, T ]× R→ R is a deterministic function, and if µd, σd and µe have bounded

derivatives of any order, w is a classical solution of the PDE:

∂tw(t, d) +
σ2
d(d)

2
∂ddw(t, d) + µd(d)∂dw(t, d)− µe(d, 0) = 0 (2.88)

with terminal condition w(T,d)=0. Consequently Et is an Itô process and

dEt = dEt + d[w(t,Dt)] =

= [µe(At, Dt)− µe(0, Dt)]dt+ σd(Dt)∂dw(t,Dt)dWt

(2.89)

If the coefficients µd, σd and µe haven’t bounded derivative of any order, the equality

2.89 still holds thanks to Itô’s formula and to Martingale Representation Theorem.

But σd(Dt)∂dw(t,Dt) may not exists, and in this case the integrand of martingale
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part is given by the Martingale Representation Theorem. However we still write

σd(Dt)∂dw(t,Dt) for the integrand appearing in the stochastic integral respect to

W . In any case this integrand is bounded.

Lemma 2.15. There exist a constant C, depending on L and T only, such that

∀(t, d, d′) ∈ [0, T )× R× R, |w(t, d′)− w(t, d)| ≤ C(T − t)|d′ − d|

In particular, when it exist, the function ∂dw(t, ·) is uniformly bounded from above

by C(T-t). And, in any case, the representation term (µd(Dt)∂dw(t,Dt))to≤t≤T is

bounded by CL(T − t) provided σd is bounded by L.

Proposition 2.16. There exist a constant C and an exponent β ∈ (0, 1), depending

on α, L and T only such that

∀(t0, d, e) ∈ [0, T )× R× R,
∣∣∣v(t0, d, e)− ψ

(
e− Ecap

l(to, d, e)|T − t0|

) ∣∣∣ ≤ C(T − t0)β

where

l(t0, d, e) =

∫ 1

0

∂µe
∂a

(λv(t0, d, e), d)dλ

and e = e+ w(t, d). Moreover the function

ψ(e) = eI[0,1](e) + I(1,+∞)(e)

is the solution of the inviscid Burger’s equation

∂tu(t, e)− u(t, e)∂eu(t, e) = 0, (t, e) ∈ [0, T )× R

with terminal condition

u(T, ·) = I[0,+∞)

Note that by definition we have v(t0, d, e)l(t0, d, e) = µe(d, v(t0, d, e))− µe(d, 0).

Remark 2.17. The function ψ
(
e−Ecap
l|T−t0|

)
with l ∈ [l1, l2] constant satisfies the

inviscid Burger’s equation

∂tu(t, e)− lu(t, e)∂eu(t, e) = 0, (t, e) ∈ [0, T )× R

with terminal condition

u(T, ·) = I[Ecap,+∞)
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The choice of l in proposition 2.16 is done to consider a function µe of general form,

and not only in the affine form µe(a, d) = µe(0, d) − la. Thus for any d ∈ R the

function ψ
(

e−Ecap
l(to,d,e)|T−t0|

)
solves the equation:

∂tu(t, e)− l(t0, d, e)u(t, e)∂eu(t, e) = 0, (t, e) ∈ [t0, T )× R

with terminal condition

u(T, ·) = I[Ecap,+∞)

The next proposition shows the existence of a Dirac Mass at terminal time T .

Proposition 2.18. There exist a constant c ∈ (0, 1) depending on α and L only,

such that, if T − t0 ≤ c, p ∈ R and e−Ecap
|T−t0| ∈

[
l1
4
, 3l1

4

]
, then:

P
{
Et0,p,e
T = Ecap

}
≥ c

Remark 2.19. In particular, in the case of the allowance certificates we have

t0 = 0.

Proof. Given an initial condition (t0, d, e) ∈ [0, T )×R×R for the process (Dt, Et),

we consider the stochastic differential equations:

dE
±
t =

(
l(t,Dt, Et)ψ

[
l−1(t,Dt, Et)

E±t − Ecap
T − t

]
± C ′(T − t)β

)
+

+ σd(Dt)∂dw(t,Dt)dWt

(2.90)

with E±t0 = e as initial conditions, the constant C ′ being chosen later on. Notice

that the process appearing in l and l−1 above is E and not E±.From 2.89 and the

definition of l it follows that

dEt = l(t,Dt, Et)v(t,Dt, Et)dt+ σd(Dt)∂dw(t,Dt)dWt, t ∈ [t0, T ) (2.91)

with∣∣∣l(t,Dt, Et)v(t,Dt, Et)−l(t,Dt, Et)ψ

[
l−1(t,Dt, Et)

E±t − Ecap
T − t

] ∣∣∣ ≤ LC(T−t)β, t ∈ [t0, T )

where C is given by proposition 2.16. We now choose C ′ = LC. By the comparison

theorem for one-dimensional SDE, we deduce

E
−
t ≤ Et ≤ E

+

t , t ∈ [t0, T )
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Next we introduce the bridge equations

dZ
±
t =

(
Z
±
t − Ecap
T − t

± C ′(T − t)β
)
dt+ σd(Dt)∂dw(t,Dt)dWt, Z

±
t0

= e (2.92)

The solution is given by

Z
±
t = Ecap + (T − t)

[
e− Ecap
T − t

± C ′
∫ t

t0

(T − s)β−1ds+

∫ t

t0

(T − s)−1σd(Ds)∂dw(s,Ds)dWs

]
(2.93)

so that Z±t → Ecap as t→ T . The stochastic integral is well defined up to time T

since σd(Ds)∂dw(s,Ds) is bounded. Now, we choose e such that e−Ecap/(T − t0) ∈

[l1/4, 3l1/4] and t0 such that C ′
∫ t
t0

(T − s)β−1ds ∈ [0, l1/16], and we introduce the

stopping time

τ = inf

{
t ≥ t0 :

∣∣∣ ∫ t

t0

(T − s)−1σd(Ds)∂dw(s,Ds)dWs

∣∣∣ ≥ l1
16

}
∧ T

for any t ∈ [to, τ), so that

Z
±
t − Ecap
T − t

= l(t,Dt, Et)ψ

[
l−1(t,Dt, Et)

Z
±
t − Ecap
T − t

]
, t0 ≤ t ≤ τ

in other words,(Z±t )t0≤t≤τ and (E
±
t )t0≤t≤τ coincide. We deduce that, on the event

F = {τ = T},

Z
±
t = E

±
t , t ∈ [t0, T ]

Finally, by Markov inequality and lemma 2.15, the probability of the event F is

strictly greater than zero for T − t0 small enough. And this complete the proof.

Remark 2.20. If we consider the non-viscous case, that is when Et depends only

on At, the dynamics of Et coincides with the dynamics of the characteristic of the

associated inviscid equation of conservation law. The simplest example is the SDE: dEt = −u(t, Et)dt

Et0 = e;
(2.94)

where u satisfy the Burger’s equation in the form ∂u
∂t

(t, x)− u(t, x) ∂
∂x

(t, x) = 0

u(T, x) = I[Ecap,+∞)(x)
(2.95)
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Note that this PDE is the first order non-viscous version of the PDE

σd(x)2

2

∂2u

∂x2
+ µd(x)

∂u

∂x
+ µe(u, x)

∂u

∂y
+
∂u

∂t
= 0 (2.96)

where we take µe(u, x) = −u since µe(u, x) is decreasing in the first variable. We

want to solve the equation 2.95 with the characteristic curves method. We can

rewrite the equation as follows −∂u
∂t

(t, x) + u(t, x)∂u
∂x

(t, x) = 0

u(T, x) = I[Ecap,+∞)(x) = φ(x)
(2.97)

Now we consider curves γ(s, r) = (t(s, r), x(s, r)) along which the solution of the

PDE is constant, thus we have

du

ds
(t(s, r), x(s, r)) = 0 (2.98)

and we obtain

∂u

∂t

dt

ds
+
∂u

∂x

dx

ds
= 0 (2.99)

Comparing the last equation with we get the following system of ODE
du
ds

= 0

dx
ds

= u

dt
ds

= −1

(2.100)

with initial conditions 
u(T, r) = φ(r)

x(0, r) = r

t(0, r) = T

(2.101)

We emphasize that u in the last equation is constant because we are studying it

along a curve on which it is constant. We see that the solution is given by
u(s, r) = φ(r)

x(s, r) = us+ r

t(s, r) = T − s

(2.102)

and we obtain x(t, r) = φ(r)(T − t) + r and the characteristic curves are of the

form γ(s, r) = (T − s, φ(r)s+ r). If r < Ecap, curves are γ(s, r) = (T − s, r), that
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Figure 2.1: Characteristics

is they are vertical lines along which the solution is equal to 0. On the other hand

if r ≥ Ecap, characteristics are γ(s, r) = (T − s, s+ r), that is they are lines along

which the solution is equal to 1. We can resume this result in picture 2.1.

And we have the solution

u(t, x) =

0 if x < Ecap

1 if x ≥ Ecap + t.

(2.103)

with (t, x) ∈ [0, T ]× R. However we have a problem, in fact there is a region on

which we don’t have enough information and we have to define a solution also in this

cone. We define rarefaction solution in the interval Ecap ≤ x < Ecap + T . Here the

characteristic curves have equation x(t) = c(T − t) + Ecap with 0 < c < 1 because

they are forced to pass trough Ecap at time T . Along these curves the solution is

constant and equal to u(t, x) = c, thus we obtain u(t, x) = c = f
(
x−Ecap
T−t

)
for a

suitable function f , which will be defined later, and for t < T . We derive u respect

to t and x and we obtain

∂u

∂t
= f ′(

x− Ecap
T − t

)

(
−x− Ecap

(T − t)2

)
(2.104)

∂u

∂x
= f ′(

x− Ecap
T − t

)

(
1

T − t

)
(2.105)
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Substituting the last equalities in 2.95 we have

f ′(
x− Ecap
T − t

)

[
f

(
x− Ecap
T − t

)
− x− Ecap

T − t

]
= 0 (2.106)

The case f ′
(
x−Ecap
T−t

)
don’t satisfy Rankine-Hugoniot jump conditions because

it implies f
(
x−Ecap
T−t

)
= constant. Thus we have f

(
x−Ecap
T−t

)
= x−Ecap

T−t . We can

conclude that the solution to the PDE 2.95 is

u(t, x) =


0 if x < Ecap

x−Ecap
T−t if Ecap < x ≤ Ecap + t and t < T

1 if x ≥ Ecap + t.

(2.107)

and the characteristics are represented in picture 2.2.

T

E
cap

E
cap

E
cap

+T

Figure 2.2: Characteristics with rarefaction

Consequently the process Et in 2.94 with initial condition Et0 = e and 0 ≤ t0 < T

and e ∈ R≥0 is

Et =


e if e < Ecap

e− e−Ecap
T−t0 (t− t0) if Ecap < x ≤ Ecap + (T − t0)

e− (t− t0) if e ≥ Ecap + (T − t0).

(2.108)
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and this correspond to the picture 2.3.

As we can see in this example there is a cone of initial conditions (t0, d, e) for which

the distribution of the random variable Et0,d,e
T has a Dirac mass at a singular point

Ecap, but we empathise that’s not true for all initial point. Indeed, we have seen that

this happens only if Ecap ≤ e < Ecap+ (T − t0) in this example. Thus there is a non-

zero event scenarii for which the terminal conditions φ−(Et0,d,e
T ) and φ+(Et0,d,e

T ) differ,

and this makes the relaxation of terminal condition P{φ−(ET ) ≤ AT ≤ φ+(ET )} = 1

meaningful.

Theorem 2.21. Let the foregoing hypothesis hold and assume that

• σ2
d(d) ≥ L−1, d ∈ R

• For any d ∈ R, |∂df(d, 0)| ≥ L−1, and the function p→ ∂df(d, 0) is uniformly

continuous.

Then, for any starting point (t0, d, e) ∈ [0, T )× R2 we have P{Et0,d,e
T = Ecap} > 0

and the topological support of the conditional law of At0,d,eT given Et0,d,e
T = Ecap is

[0, 1].
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The last theorem shows that Dirac mass exist for all initial conditions (t0, d, e) ∈

[0, T )×R2. Moreover the fact that the topological support of the conditional law of

At0,d,eT given Et0,d,e
T = Ecap is [0, 1] means that all the values between 0 = φ−(Ecap)

and 1 = φ+(Ecap) may be observed in the relaxed terminal condition P{φ−(ET ) ≤

AT ≤ φ+(ET )} = 1. This implies that the σ-algebra σ(At0,d,eT ) is not included into

the σ-algebra σ(Et0,d,e
T ) and the Markovian structure brakes down a terminal time.

This fact has bad consequences for the emission market model, because a price for

the allowance certificates exist and it is unique in such a model, but its terminal

value cannot be prescribed as the model would require.
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Chapter 3

Numerical Solution

This chapter is dedicate to the numerical solution of the problem and to the

simulation of the processes involved. First of all we have to give a characterizations

of the functions involved in the model: the Marginal Emission Stack e(ξ), the

Business as Usual Bid Stack bBAU , and functions µd and σd of the Demand process.

Then we specify the model’s parameters and we present the necessary boundary

conditions. Finally we graphically present the obtained results.

The Marginal Emission Stack e(ξ) is define as follows

e(ξ) = e+

(
e− e
ξθ2max

)
ξθ2 (3.1)

with 0 ≤ ξ ≤ ξmax, e, e ≥ 0 and 0 ≤ θ2 < 1. With this choice e is strictly convex

and strictly decreasing on its domain of definition. The parameters e, e represent

respectively the maximum and the minimum marginal emission rate in the market.

In the assumption to have only two generators (gas and coal for example), e

correspond to the marginal emission rate of the more environmental friendly and e

to the marginal emission rate of the dirtier one. The parameter θ2 controls the fuel

mix in the market.The smaller the value of θ2, the smaller portion of the market

capacity that is served by the pollution intensive technology.

The Business as Usual Bid Stack bBAU is taken in the form

bBAU(ξ) = b+

(
b− b
ξθ1max

)
ξθ1 (3.2)
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with 0 ≤ ξ ≤ ξmax. Moreover b, b ≥ 0 and 2 < θ1 < infty. Under this assumption,

bBAU is strictly increasing and strictly convex and the parameters b, b represent

respectively the maximum and the minimum prices of electricity the model can

produce. The range of the allowed bids in many auction based electricity market

is well known, thus we can take them form historical data and they are relatively

easy to infer in practice. The parameter θ1 controls the stepness of the stack and

in particular how quickly marginal costs of generators increase. We note that these

functions respect all assumptions we have made in the model definition, and this

choice of bBAU and e makes the function

g(A, ξ) = bBAU(ξ) + Ae(ξ), for 0 ≤ A <∞, 0 ≤ ξ < ξmax (3.3)

to be strictly convex. Moreover the set Sp(·, ·) is always of the form [ξ1, ξ2] for

0 ≤ ξ1 ≤ ξ2 ≤ ξmax.

The functions which define the process Dt are taken in the form

µd(Dt) = −η(Dt −D)

σd(Dt) =
√

2ησdDt(ξmax −Dt)
(3.4)

where D, η, σd > 0. With this definition the processdDt = −η(Dt −D)dt+
√

2ησdDt(ξmax −Dt)dWt

D0 = d ∈ (0, ξmax)

(3.5)

ia Jacobi diffusion process and it has a linear, mean-reverting drift component and

degenerates on the boundary. Moreover, subject toD ∈ (0, ξmax) andmin(D, ξmax−

D), the process remains within the interval (0, ξmax), and its stationary distributions

is a beta distribution and its mean is given by D how we can see in [7].

For the choice of the model’s parameters we don’t take it from a particular

example of electricity market, but they can be considered representative of a medium

sized market whose fuel mix predominantly consist of coal and gas generators. In

particular we take the following parameters for the bid and emission stack:

• b = 200
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• b = 0

• θ1 = 10

• e = 1.2

• e = 0.4

• θ2 = 0.4

• ξmax = 30000

Moreover in the function µe the constant k we use to set the timescale is taken

equal to the number of production hours in a year because we want to solve the

problem with the time interval set to 1 year. That is

• k = 25 ∗ 365 = 8760

With these parameters and the processes At = 0 and Dt = ξmax for 0 ≤ t ≤ T we

find ET = 1.6519× 108. This is the maximum value that the process Et can assume,

thus we take

• Emax = 1.6519× 108

In the following list we give the parameters of the demand process

• η = 10

• D = 21000

• σd = 0.05

• r = 0.05

Now, calculating the cumulative emissions for At = 0 and demand at its mean level

Dt = D, for 0 ≤ t ≤ T , we find that ET = 1.2961× 108. This leads to choose the

cup slightly below this level, in order to incentivise a reduction in emissions. The

parameters characterising the emissions trading scheme are

• Ecap = 1.17× 108

57



• π = 100

• T = 1

and we remember that time is measured in years.

To solve numerically the Cauchy problem
σd(x)2

2
∂2u
∂x2

+ ε2 ∂2u
∂y2

+ µd(x)∂u
∂x

+ µe(u, x)∂u
∂y

+ ∂u
∂t

= 0 in [0, T [×R2

u(T, x, y) = g(x, y) (x, y) ∈ R2

(3.6)

which represent the allowance certificate price we have to give some necessary

boundary conditions. First of all, we need to understand at which boundary points

we need to specify boundary conditions in addition to the terminal condition and

what conditions make sense given the stochastic problem
dDt = µd(Dt)dt+ σd(Dt)dWt, D0 = d ∈ (0, ξmax);

dEt = µe(At, Dt)dt, E0 = 0;

At = πe−r(T−t)EQ
[
I[Ecap,∞)(ET )

∣∣Ft] , AT = πI[Ecap,∞)(ET ).

(3.7)

We can do this thanks to Fichera’s function f (see [12]). Defining n = (nd, ne) to be

the inward normal vector to the boundary, Fichera’s function for the operator

∂

∂t
+
σ2
d(D)

2

∂2

∂D2
+ µd(D)

∂

∂D
+ µe(·, D)

∂

∂E
− r (3.8)

is

f(t,D,E) =

(
µd(D)− σ2

d(D)

2

∂

∂D

)
nd + µe(u(t,D,E), D)ne on ∂UT or ∂UTi

(3.9)

In the case of the coefficients µd and σd are of the form prescribed before we have

f(t,D,E) = η
(
(D − σdξmax))(2σd − 1)

)
nd + µe(u(t,D,E), D)ne

on ∂UT or ∂UTi
(3.10)

At points were f ≥ 0 information is outward flowing and no boundary conditions

have to be specified. Conversely when f < 0 the information is inward flowing and

boundary conditions are necessary. In the parts of the boundary when corresponding
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to D = 0 and to D = ξmax, we have that f ≥ 0 if and only if min(D, ξmax −D) ≥

ξmaxσd, which is the same condition prescribed to guarantee that the process Dt

stays within the interval (0, ξmax). Thus we do not have to give boundary conditions

in these parts of the boundary. At points of the boundary corresponding to E = 0,

we find that f ≥ 0 always.On the part of the boundary on which E = Emax,

f < 0 except at the point (D,E) = (0, Emax), where f = 0, an ambiguity which

would could be resolved smoothing the domain. Therefore, no boundary conditions

are necessary except when E = Emax. In the case of one compliance period, the

boundary condition at E = Emax takes the form

u(t,D,E) = πe−r(T−t), [0, T )× (0, ξmax)× {E = Emax} (3.11)

This condition follows from the fact that, as soon as the cumulative emission surpass

the cap, every additional tonne of CO2 is penalised at a rate π at time T .

Now we will show hot we have to discretized our domain UT and the derivatives

in the PDE. We choose mesh widths ∆D,∆E and a time step ∆t. The discrete

mesh points (Di, Ej, tk) are then defined by

Di = i∆D

Ej = j∆E

tk = k∆t

(3.12)

The parameters we have we have choose to define the the mesh satisfy the Courant-

Friedrichs-Lewy (see [14])condition for the convergence of explicit schemes. In

particular we take

Dmax/∆D = 12

Emax/∆E = 200

1/∆t = 440

(3.13)

The finite difference scheme we employ produces approximations uki,j which are

assumed to converge to the true solution u as the mesh tends to zero.

We choose a backward scheme in order to work with an explicit scheme because

the partial differential equation is posed backward in time. In the E-direction we
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are approximating a conservation law PDE with discontinuous terminal condition.

The first derivative in the E-direction,relating to the non-linear part of the PDE,

is discredited against the drift direction using a one-sided upwind difference. The

characteristic information is propagating in the direction of decreasing E, this one

sided difference is also used to calculate the value of the approximation on the part

of the boundary corresponding to E = 0. In D-direction, the equation is parabolic

everywhere except on the boundary, where it degenerates. Hence we use central

differences to discretize the first and second order derivative. At the boundaries

corresponding to D = 0 and D = ξmax, where the second derivative vanishes and

and no boundary conditions need to be specified, we use a one-sided difference

in our numerical scheme. In figures 3.1, 3.2, 3.3, 3.4, 3.5 we display the obtained

results for different times.
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Figure 3.1: Allowance certificate price at t=T

For t < T , the allowance price depends on the cumulative emissions to date and

the current level of demand. For each fixed level of emission, the function u(t,D,E)

is increasing in D, and it correspond to the intuitive idea, since for higher levels of

demand, the corresponding market emission rat is greater and consequently it is

more likely that the cap will be reached. Similarly, fixing D, the function u(t,D,E)
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Figure 3.2: Allowance certificate price at t=0.75T
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Figure 3.3: Allowance certificate price at t=0.50T

is increasing in D is an increasing function of E. In particular , we can think of the

current level of cumulative emissions determining an interval for the allowance price

and the demand for electricity setting the exact price within this interval. Further,

we notice that the allowance price equals the discounted penalty, if cumulative
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Figure 3.4: Allowance certificate price at t=0.25T
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Figure 3.5: Allowance certificate price at t=0

emissions exceed the cap.

Moreover we simulate the processes Dt, Et and At with Mote-Carlo method

and we display any of these simulation in figures 3.6, 3.7 and 3.8 As expected the

cumulative emission process Et is strictly increasing and in these simulation it stay

62



0 0.2 0.4 0.6 0.8 1
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8
x 10

4 Demand Process

Time

D
em

an
d 

of
 E

le
ct

ric
ity

Figure 3.6: Simulation of three paths of Dt
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Figure 3.7: Simulation of three paths of Et

under the cap at terminal time t = T . This leads to the value of the process At at

terminal time, indeed it is equal to zero. This matches the intuitive idea that the

certificate has no value if at terminal time total emissions are under the fixed cap

Ecap.
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Finally we simulate the the process Et for different values of the penalty π. Figure

3.9 shows that cumulative emissions at terminal time are a decreasing as the penalty

increase. As expected to higher value of the penalty correspond a more aggressive

strategy in order to reduce polluting emissions. Moreover, more aggressive regulation

now only leads to small reductions in the cumulative emissions, thus our analysis

confirms the well known stylized fact that emissions trading cannot incentivise firms

to reduce cumulative emissions far below the cap.

64



0 50 100 150 200
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

Penalty

C
um

ul
at

iv
e 

em
is

si
on

 (
S

ca
le

d)

Cumulative emission at t=T

Figure 3.9: Cumulative emissions related to the value of the penalty
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Chapter 4

Tax Fraud in EU Emission Trading

Scheme

In the EU Emission Trading Scheme the volume of certificated exchanged on

the market every year is at least 90 billion euros. In late 2008 Europol launched

its inquiry because suspicious trading activities appeared and in announcing its

investigations agents said that as much as 90 percent of the entire market volume

on emissions exchanges was caused by fraudulent activities, undermining the very

viability of the ETS just as the EU is touting a similar scheme for the rest of the

world. The peak of exchanges was registered in May, when several hundreds of

certificates were bought form brokers in France and Denmark and the price of one

credit doubled. Europol estimated that this fraud cost to government coffers about

5 billion euros. The system was simple and very profitable. When anyone resident

in one EU member state buys an allowance certificate in a different country, he

doesn’t have to pay VAT. Thus, thanks to this detail, criminals establish themselves

in one EU member state and open a trading account with the national carbon

credit registry. Every country has a carbon credit registry which is coordinated by

the Cilt (Community independent transaction log) of European Commission. Then,

they buy carbon credits in a different country, which makes them exempt from

VAT. These are then sold to buyers in the original country, but with VAT attached

on, although the VAT just disappears along with the trader and the money never

arrives in government coffers. Certificates owned by criminals were very attractive
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for firms, since its price was lower. Thus firms bought these certificates and criminal

organizations made large profit since they didn’t pay VAT.

Some member states including France, the Netherlands, Spain and the UK, but not

all, changed their taxation rules on such transactions to prevent further losses, and

as soon as this particular loophole was closed in the few member states that did

deal with the problem, as much as 90 percent of the trading volume disappeared.

The European Commission for its part said that while the Europol report needed

to be looked into, it was aware of existing faults in the transfer of greenhouse gas

credits and that at a recent meeting of EU finance ministers, a general approach to

tackle the matter was considered.
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Appendix A

Brownian martingale representation

theorem

Let (Ω,F , P, (Ft)) be a filtered probability space, (Wt)t∈[0,T ] a d-dimensional

Brownian motion and u ∈ L2(FW
t ) a stochastic process, where FWt is the Brownian

filtration induced by Wt. It’s well known that the process:

Mt = M0 +

∫ t

0

usdWs (A.1)

with t ∈ [0, T ] is a FW
t -martingale. In this section we want to prove that given

aFWt -martingale, using suitable hypothesis, it can be represented by a stochastic

process u ∈ L2(FWt ) trough an integral as we see in (A.1).

We first recall the definition of martingale:

Definition A.1. Let M be an integrable adapted stochastic process on the filtered

probability space (Ω,F , P, (Ft)). We say that M is a martingale with respect to Ft
and the measure P if:

Ms = E[Mt‖Fs] for every 0 ≤ s ≤ t

Definition A.2. Let (Wt)t∈[0,T ] be a d-dimensional Brownian motion on the filtered

probability space (Ω,F , P, (Ft)) and λ ∈ L2
loc(Ft). We define the exponential

martingale associated to λ as.

Zλ
t = exp

(
−
∫ t

0

λsdWs −
1

2

∫ t

0

|λ|2ds
)

(A.2)
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Remark A.3. Applying Itô’s formula to Zλ
t wehave:

dZλ
t = −Zλ

t λtdWt (A.3)

and therefore Zλ
t is a local Ft-martingale since λ ∈ L2

loc(Ft)

Remark A.4. From now until the end of this section, unless otherwise stated, we

will always work on the spaces defined in A.2.

We now exhibit these results, leaving out the proof, useful for our purpose.

Proposition A.5. Let W be a d-dimensionale Brownian motion and σ ∈ L2 a

N × d-matrix such that ∫ T

0

|σsσ∗s |ds ≤ k

with k > 0. Therefore, taking

Xt =

∫ t

0

σsdWs

For all λ > 0 we have

P

(
sup

0≤t≤T
|Xt| ≥ λ

)
≤ 2Ne

λ2

2kN

Proposition A.6. Let X be a random variable on (Ω,F , P ) e f ∈ C1(R≥0) such

that f ′ ≥ 0 or f ′ ∈ L2(R≥0, P |X|). Then

E[f(|X|)] = f(0) +

∫ +∞

0

f ′(λ)P (|X| ≥ λ)dλ

Lemma A.7. If exist C ∈ R such that∫ T

0

|λt|dt ≤ Cq.s.

then Zλ is a martingale and

E

[
sup

0≤t≤T

(
Zλ
t

)p]
< +∞ ∀p ≥ 1

In particular Zλ ∈ Lp(Ω, P ) ∀p ≥ 1

Proof. Define

ẐT = sup
0≤t≤T

Zλ
t
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For all ξ > 0, from A.5 it follows

P
(
Ẑt ≥ ξ

)
≤ P

(
sup

0≤t≤T
exp

(
−
∫ t

0

λsdWs

)
≥ ξ

)
=

= P

(
sup

0≤t≤T

(
−
∫ t

0

λsdWs

)
≥ log(ξ)

)
≤

≤ c1e
−c2(log(ξ))2

If we take the function f(x) = xp and we apply proposition A.6 to ẐT :

E
[
Ẑp
T

]
= p

∫ +∞

0

ξp−1P
(
ẐT ≥ ξ

)
Therefore Zλ ∈ Lp(Ω, P ) ∀p ≥ 1 and Zλ is a martingale.

To prove next lemma we need some classical results on random variables. We

cite these two results without their proofs.

Proposition A.8. Let (Ω,F, P, (Fn)) be a filtered probability space and X ∈

Lp(Ω, P ) p > 1 a random variable. Then, set F∞ = σ(Fn, n ∈ N), we have:

lim
n→+∞

E[X|Fn] = E[X|F∞] in Lp

Proposition A.9. Let X,Y be random variables on (Ω,F). Then X σ(Y )-

measurable ⇔ ∃f B-measurable such X = f(Y ).

Lemma A.10. Let {tn}n∈N be dense in [0, T ] with usual topology. Therefore

the collection of random variables ϕ(Wt1 , . . . ,Wtn) with ϕ ∈ C∞0 (Rn) is dense in

L2(Ω,FWT ).

Proof. Set Fn = σ(Wt1 , . . . ,Wtn), n ∈ N a discrete filtration and observe that

FWT = σ(Fn, n ∈ N)

Let X ∈ Lp(Ω,FWT , P ) and we take the discrete martingale

Xn = E[X|Fn] n ∈ N

Frow proposition it follows

lim
n→+∞

Xn = lim
n→+∞

E[X|Fn] = E[X|FWT ] in L2
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Now, we have Xn Fn-measurable and σ(Wt1 , . . . ,Wtn)-measurable, so by proposition

∃ϕn B-measurable such that

Xn = ϕn(Wt1 , . . . ,Wtn)

Because of the density, ϕn can be approximated in L2(Rn) by a sequence ϕnk ∈

C∞0 (Rn). Then

lim
k→+∞

ϕnk(Wt1 , . . . ,Wtn) = Xn

We can conclude because we have shown that ∀X ∈ L2(Ω,FWT ) ∃ a sequence of

random variables ϕnk(Wt1 , . . . ,Wtn with ϕnk ∈ C∞0 (Rn) such that

lim
n,k→+∞

ϕnk(Wt1 , . . . ,Wtn = X in L2

Lemma A.11. Take λ ∈ L∞([0, T ],Rd) and

Zλ
t = exp

(
−
∫ t

0

λsdWs −
1

2

∫ t

0

|λ|2ds
)

Then the space of linear combinations of random variables Zλ is dense in L2(Ω,FWT , P )

Proof. For simplicity we only prove the statement in the case d = 1. Prove this

claim is equivalent to show that the following equation is true:(
< Zλ, X >L2(Ω)=

∫
Ω

XZλdP = 0⇒ X = 0 q.s.
)

(A.4)

We start considering a piecewise function

f(ξ) = eξ1Wt1 ,...,ξnWtn ξ ∈ Rn, t1, . . . , tn ∈ [0, T ], n ∈ N

By A.4 we obtain

F (ξ) =< f(ξ), X >L2(Ω)= 0 ξ ∈ Rn

We can extend F on Cn:

F (z) =< f(z), X >L2(Ω)= 0 z ∈ Cn
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and by the analytic continuation principle we have F (z) = 0 on Cn. Now let

ϕn(Wt1 , . . . ,Wtn) ∈ C∞0 (Rn) and applying the inverse Fourier transform:∫
Ω

ϕn(Wt1 , . . . ,Wtn)XdP =

∫
Ω

(
1

(2π)n

∫
Rn
eξ1Wt1 ,...,ξnWtn ϕ̂(−ξ)dξ

)
XdP =

=
1

(2π)n

∫
Rn
ϕ̂(−ξ)

∫
Ω

eξ1Wt1 ,...,ξnWtnXdPdξ =

= 0

From lemma A.10it follows that {ϕn(Wt1 , . . . ,Wtn)} is dense in L2(Ω,FWT , P ) and

we obtain X = 0.

We are ready to show the key result of this section, which states that is possible

to represent a random variable X ∈ L2(Ω,FWT , P ) by its expectation and the

stochastic integral of a process u ∈ L2.

Theorem A.12. For each random variable X ∈ L2(Ω,FWT , P ) exist a process

u ∈ L2(FW ) such that

X = E[X] =

∫ T

0

utdWt

Moreover this process is unique.

Remark A.13. The uniqueness of the process u is in the sense of the m ⊗ P -

equivalence (m represent the Lebesgue measure on [0, T ]), i.e. u = v m⊗ P -a.s..

⇔ m⊗ P ({(t, ω)|ut(ω) = vt(ω)}) = 0.

Proof. Uniqueness. Let u, v ∈ L2(FW ) such that

X = E[X] =

∫ T

0

utdWt

X = E[X] =

∫ T

0

vtdWt

Subtracting these two equations we obtain

0 =

∫ T

0

(ut − vt)dWt

Now, from the Itô isometry it follows

E

[∫ T

0

(ut − vt)dt
]

= E

[∫ T

0

(ut − vt)dWt

]
=

= 0
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Then u− v = 0 m⊗ P -a.s. ⇒ u = v m⊗ P -a.s.

Existence. First of all the existence will be proved in the case of the deterministic

function Zλ
T con λ ∈ L∞([0, T ],Rd) f, then it we are going to extend it for all

X ∈ L2(Ω,FWT , P ). Assume X of the form

Zλ
T = exp

(
−
∫ T

0

λtdWt −
1

2

∫ T

0

|λ|2dt
)

By what we have seen until now, thanks to Itô’s formula, we have

dZλ
t = −Zλ

t λtdWt

and by lemma A.7 it follows λtZλ
t ∈ L2 because λ is bounded. Then

X = 1−
∫ T

0

λtZ
λ
t dWt

This proves the claim for the class X = Zλ
T . Now let X ∈ L2(Ω,FWT ), by lemma

A.11 X it can be approximated in L2(Ω,FWT ) by a sequence of random variables

(Xn)n∈N, where Xn is a linear combination of random variables of the form Zλ
T con

λ ∈ L∞([0, T ],Rd). Therefore exist a process un ∈ L2(FW ) such that

Xn = E[Xn] +

∫ T

0

unt dWt

For n,m ∈ N we evaluate

E[(Xn −Xm)2] = E

[(
E [Xn −Xm] +

∫ T

0

(unt − umt ) dWt

)]
=

= E [Xn −Xm]2 + E

[∫ T

0

(unt − umt )2 dt

]
+

+ 2E

[
E [Xn −Xm]

∫ T

0

(unt − umt ) dWt

]
=

= E [Xn −Xm]2 + E

[∫ T

0

(unt − umt )2 dt

]
+

+ 2E [Xn −Xm]E

[∫ T

0

(unt − umt ) dWt

]
=

= E [Xn −Xm]2 + E

[∫ T

0

(unt − umt )2 dt

]

⇒ E

[∫ T

0

(unt − umt )2 dt

]
= E[(Xn −Xm)2]− E [Xn −Xm]2 −−−−−→

n,m→+∞
0
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Then {un} is a Cauchy sequence in L2(FW ) and the following limit exists:

lim
n→+∞

un = u ∈ L2(FW )

In that case

Xn = E[Xn] +

∫ T

0

unt dWt −−−−→
n→+∞

X = E[X] +

∫ T

0

utdWt

and the claim is completely proved.

Theorem A.14. Let (Mt)t∈[0,T ] be a FW -martingale such that MT ∈ L2(FWT ).

Then ∃!u ∈ L2(FW ) such that

Mt = M0 +

∫ t

0

usdWs q.s. ∀t ∈ [0, T ]

Remark A.15. As we have seen in the previous theorem, the uniqueness has to

be intended in the sense of remark A.13

Proof. Let MT ∈ L2(FWT ) then, by theorem A.12, ∃!u ∈ L2(FW ) such that

MT = E[MT ] +

∫ T

0

usdWs q.s.

We have E[MT ] = M0 because MT is a martingale and

MT = M0 +

∫ T

0

usdWs q.s.

Now, fix t ≤ T

Mt = E
[
MT

∣∣FWt ] =

= E

[
M0 +

∫ T

0

usdWs

∣∣FWt ] =

= M0 +

∫ t

0

usdWs + E

[∫ T

t

usdWs

∣∣FWt ] =

= M0 +

∫ t

0

usdWs

The above result can also be shown if (Mt)t∈[0,T ] is a local martingale, i.e. we

have the following theorem

Theorem A.16. Let (Mt)t∈[0,T ] be a local FW -martingale. Then ∃!u ∈ L2
loc(FW )

such that

Mt = M0 +

∫ t

0

usdWs q.s. ∀t ∈ [0, T ]
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Appendix B

Linear SDE and BSDE

B.1 Linear Stochastic Differential Equations

In this section we are going to show some important results of linear SDE

(Stochastic Differential Equations) without provide to demonstrate them. For a

complete report on this topic see [1].

Considered the filtered probability space (Ω,F , P,Ft). By linear SDE in RN we

mean an equation of the form

dXt = (B(t)Xt + b(t))dt+ σ(t)dWt (B.1)

where Wt is a d-dimensional Brownian motion (d ≤ N) and B, b, σ are functions in

L∞loc such that

B : R≥0 → RN × RN

b : R≥0 → RN × R

σ : R≥0 → RN × Rd

Moreover it’s given an initial condition X0 = Z. Furthermore we assume that the

following conditions are satisfied:

• Z ∈ L2(Ω, P ) and F0-measurable

• B(t)Xt + b(t) is locally Lipschitz respect to Xt and uniformly continuous

respect to t.
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• σ uniformly continuous respect to t.

• B(t)Xt + b(t) has linear growth respect to Xt.

From the SDE general theory, it follows that the linear SDE with initial conditions

X0 = Z admit an unique solution. The uniqueness of the solution has to be meant

in the sense of indistinguishable process.

Let’s introduce the Cauchy problemΦ′(t) = B(t)Φ(t)

Φ(t0) = IN

(B.2)

where IN is the identity matrix N ×N .

Proposition B.1. Let Xx
0 = x ∈ RN be the initial condition associated to the

equation B.1. Then the solution of that equation is

Xx
t = Φ(t)

(
x+

∫ t

0

Φ−1(s)b(s)ds+

∫ t

0

Φ−1(s)σ(s)dWs

)
(B.3)

Moreover the process Xx
t has multi-normal distribution for all t > 0 where

mx(t) = E [Xx
t ] = Φ(t)

(
x+

∫ t

0

Φ−1(s)b(s)ds

)
(B.4)

C(t) = cov(Xx
t ) = Φ(t)

(∫ t

0

Φ−1(s)σ(s)
(
Φ−1(s)σ(s)

)∗)
Φ∗(t) (B.5)

The matrix C(t) is positive semi-definite because d ≤ N . By definition Xx
t ∼

Nmx(t),C(t) and it means thatXx
t has the same characteristic function of Nmx(t),C(t),

i.e.

ϕXx
t
(ξ) = exp

(
i < ξ,mx(t) > −

1

2
< C(t)ξ, ξ >

)
where C(t) is a symmetric semi-definite positive matrix. Therefore, generally

speaking, it hasn’t normal density. For fixed t > 0, the matrix C(t) must to be

symmetric definite in order that Xx
t has normal distribution, and in this case we

have the function of the variable y ∈ RN :

Γ(0, x; t, y) =
(2π)−

N
2√

det(C(t))
exp

(
−1

2
< C−1(t)(y −mx(t)), (y −mx(t)) >

)
(B.6)
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for all x ∈ RN , t ∈ [0, T ]. The function Γ is said to be the transition density of the

process Xx
t . More generally we give the following definition of Γ with t < T :

Γ(t, x;T, y) =
(2π)−

N
2√

det(C(T − t))
·

· exp
(
−1

2
< C−1(T − t)(y −mx(T − t)), (y −mx(T − t)) >

)
(B.7)

The transition density of the SDE isrelated to the solution of the Cauchy problemLu = f, in ST =]0, T [×RN

u(T, ·) = ϕ

(B.8)

where f, ϕ are given functions, cij = σσ∗ and A is the characteristic operator of

the SDE obtained employing Itô’s formula. In the case of linear SDE we have:

L =
1

2

N∑
i,j=1

cij(t)∂xixj+ < b(t) +B(t)x,∇ > +∂t (B.9)

where ∇ = (∂xi , . . . , ∂xN ). The relation between fundamental solution of the

operator L and transition density is given by the following theorem:

Theorem B.2. If operator L admit fundamental solution, then it ie equal to the

transition density of the SDE B.1.

In the previous theorem we suppose the existence of a fundamental solution, so

it’s natural try to understand under which hypothesis L has a fundamental solution.

Definition B.3. The operator L is said to be uniformly parabolic if exist a positive

number λ > 0 such that

λ−2 |ξ|2 ≤
N∑

i,j=1

cij(t)ξiξj ≤ λ |ξ|2 (B.10)

where t ∈ R≥0, ξ ∈ RN

Definition B.4. Let α ∈]0, 1] and O a subset of RN+1.CP
α (O) is the space of

functions u which are bounded on O such that

|u(t, x)− u(s, y)| ≤ C
(
|t− s|

α
2 + |x− y|α

)
(B.11)

where (t, x), (s, y) ∈ O. A function u is said to be bounded and Hölder continuous

if u ∈ CP
α (O) for some α ∈]0, 1].
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Theorem B.5. Under the hypothesis:

• L uniformly parabolic in RN+1;

• cij, bj bounded and Hölder continuous for all 1 ≤ i, j ≤ N , where bj(t, x) =

bi(t) +Bij(t)xj;

the operator L has fundamental solution Γ = Γ(t, x; s, y) for x, y ∈ RN e t > s.

Moreover f if ϕ are continuous functions and there exist two positive constants c e

γ < 2 such that:

• |ϕ(x)| ≤ cec|x|
γ
x ∈ RN

• |f(t, x)| ≤ cec|x|
γ

(t, x) ∈ ST

• f locally Hölder continuous respect to the variable x and uniformly continuous

respect to t.

Le function u defined by

u(t, x) =

∫
RN

Γ(t, x;T, y)ϕ(y)dy +

∫ T

t

∫
RN

Γ(t, x; s, y)f(s, y)dyds (B.12)

with (t, x) ∈ ST e u(T, x) = ϕ(x) is classical solution of the Cauchy problem B.8

The property to be uniform parabolic of the operator L implies that C(t) is

positive definite, but, in general,the conversely isn’t true; Indeed, as shown in the

following example, exist linear SDE whose operator isn’t uniformly parabolic, but

the SDE has transition density anyway.

Example B.6. Consider this simplified form of the Langervin equation R2dX
1
t = dWt,

dX2
t = X1

t dt,

which describes the trajectory of a particle in the phase space. In particular X1
t

represent the velocity and X1
t the position. This SDE is clearly linear with d = 1

and N = 2, and the coefficient matrices are:

B =

0 0

1 0
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σ =

1

0



b =

0

0


The solution of the Cauchy problem B.2 is Φ(t) = etB =

∑∞
n=0

(tB)n

n!
Observe that

B è nilpotent, indeed we have B2 = 0. then

Φ(t) =

1 1

t 0


Moreover

c = σσ∗ =

1 0

0 0


By proposition B.1, stated x = (x1, x2), we can compute expectation and covariance

matrix:

mx(t) = etBx = (I + tB)x = (x1, x2 + tx1)

C(t) =

 t t2

2

t2

2
t3

3


Subsequently det(C(t)) = t4

12
> 0 with t > 0, and it follows that C is positive

definite for t > 0. This fact implies that the SDE has transition density and we can

compute it to have and explicit function. We obtain:

Γ(t, x;T, y) =

√
3

π(T − t)2
·

· exp
(
− y1 − x1

2(T − t)
− 3(2y2 − 2x2 − (T − t)(y1 + x1))

2(T − t)3
>

) (B.13)

Now we can compute the differential operator L associated to the SDE and it results

L =
1

2
∂x1x2 + x1∂x2 + ∂t

Since the second derivative coefficient matrix c = σσ∗ is degenerate, the operator L

isn’t uniformly parabolic. Nevertheless the SDE has transition density and L has

Gaussian fundamental solution B.13.
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Our aim is to find necessary and sufficient conditions to establish when the

covariance matrix associated to the process Xt is definite positive, independently

form the uniform parabolicity of the operator L. Applying control theory arguments,

it can be shown that Kalman e Hörmander conditions are equivalent to say that

C(t) sia positive definite. Hereafter, for shake of simplicity, we assume the matrices

B and σ to be constant and independent of time. Moreover we assume σ to have

maximal rank d.

Remark B.7. Note that the covariance matrix B.5 doesn’t depend on b(t)

Definition B.8. The pair (B, σ) is said to verify Kalman condition if the block

matrix of dimension (N × (Nd)) defined by

(σ Bσ B2σ · · · BN−1σ)

has maximal rank, i.e. it has rank N .

Theorem B.9 (Kalman rank condition). The matrix C(t) is positive definite with

t > 0 if and only if the pair (B, σ) satisfy Kalman condition.

Remark B.10. Kalman rank condition is independent of t.

Definition B.11. Let X, Y be vector fields from RN to RN . The commutator of

X with Y is:

[X, Y ] = XY −XY

Remark B.12. The commutator of two vector fields is still a vector field. For a

proof of this fact and further results see [9].

Theorem B.13 (Hörmander operator condition). Let ∂x1 , . . . , ∂xd vector fields,

Y =< Bx,∇ > and consider the Kolmogorov type operator with constant coefficients

L =
1

2
∆Rd+ < b+Bx,∇ > +∂t

associated to the linear SDE

dXt = (BXt + b)dt+ σdWt (B.14)

Then C(t) > 0 with t > 0 is equivalent to: "For all x ∈ RN the dimension of the

vector space generated by ∂x1 , . . . , ∂xd , Y =< Bx,∇ > and and their commutators

is maximal, i.e. N".
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Remark B.14. Hörmander condition is a condition on the differential operator L.

This criterion has been introduced in the PDE study, see [8].

Remark B.15. Kalman and Hörmander are equivalent for the SDE B.14. The

proof follows immediately because they are both equivalent to C(t) > 0.

B.2 Backward Stochastic Differential Equations

Throughout this section we suppose to have a d-dimensional Brownian motion

Wt on the filtered probability space (Ω,F , P,Ft).

Consider a Cauchy problem. Fix an initial or a terminal condition for the

equation is conceptually the same, because the method to solve the problem is

the same. This isn’t true for stochastic differential equations, indeed the initial

condition is a point x ∈ RN , but the final one is a stochastic process ξ ∈ L2(FT ).

We are looking for a solution of the SDE which is an adapted process, and this is

the reason why we need a different method for the backward problem. As we can

see in the following basic example, if we use a standard approach to the problem

we wont obtain an adapted solution.

Example B.16. Consider the backward problemdYt = 0, t ∈ [0, T ],

YT = ξ,

where ξ ∈ L2(FT ) is a stochastic process. The unique solution is Yt = ξ ∀t ∈ [0, T ],

but ξ isn’t necessarily a random variable Ft-measurable ∀t ∈ [0, T ] because we only

know that ξ ∈ L2(FT ), i.e ξ is FT -measurable. Then the solution process isn’t

adapted to the filtration. To solve this problem one way to proceed is the following:

we modify the solution setting

Yt = E [ξ|Ft] t ∈ [0, T ]

This way YT = ξ and Yt is adapted to the filtration. Moreover Yt is an Ft-

martingale. Suppose that Ft is a Brownian filtration. If it isn’t true we can extend
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the the probability space (Ω,F , P,Ft) to the space (Ω̃, F̃ , P̃ , F̃t) on which the this

hypothesis is satisfied, see [5]. From now we assume to work in the probability space

just defined. Then for the representation theorem for Brownian martingale A.14

exist Zt ∈ L2 such that

Yt = Y0 +

∫ t

0

ZsdWs q.s. ∀t ∈ [0, T ] (B.15)

Now we can reformulate the problem in differential form:dYt = ZtdWt t ∈ [0, T ],

YT = ξ,

Then by solution of B.16 we mean a pair of adapted process (Yt, Zt), and thanks

to this trick it’s possible to find an adapted solution to problem B.16. Roughly

speaking, change the definition of solution, adding a new component Zt, allow us

to find an adapted solution.

We can represent a BSDE in a different way through an integral formulation.

Sice what we seen until now, we can rewrite YT = ξ as

YT = Y0 +

∫ T

0

ZsdWs

and we can deduce:

Y0 = YT −
∫ T

0

ZsdWs

= ξ −
∫ T

0

ZsdWs

Putting this equation back into B.15 we have:

Yt = Y0 +

∫ t

0

ZsdWs

= ξ −
∫ T

t

ZsdWs ∀t ∈ [0, T ]

(B.16)

The last stochastic integral isn’t a backward Itô’s integral, but a usual one. Therefore

it represent an usual stochastic differential equation. Applying Itô’s isometry to

|Yt|2 and keeping in mind expectation’s property it results:

E
[
|ξ|2
]

= E
[
|Yt|2

]
+ E

[∫ T

t

|Zs|2ds
]
∀t ∈ [0, T ] (B.17)
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form which follow that if we have two solutions (Yt, Zt), (Ỹt, Z̃t) of the same equation

with the same terminal value ξ then they are indistinguishable. Indeed we have:

0 = E
[
|ξ − ξ|2

]
= E

[
|Yt − Ỹt|2

]
+ E

[∫ T

t

|Zs − Z̃s|2ds
]
∀t ∈ [0, T ] (B.18)

therefore Yt = Ỹt ans Zt = Z̃t. Since equation B.16 is linear we have the uniqueness

of solution. At the end of this example we observe that ifξ is a non constant random

variable then by uniqueness of the solution we have Yt = ξ and Zt = 0 solution of

the problem B.16 because they satisfy B.16. Note that we achieve our purpose

modifying the definition of solution to obtain an adapted solution of the BSDE.

Generally we have to solve a system composed by two stochastic differential

equation: one forward and one backward. This pair of equations is called FBSDE

(Forward Backward Stochastic Differential Equation) and we can consider it like a

generalization of a backward problem. Until now we only give an intuitive idea of a

solution of a BSDE; Our aim is to give a formal definition of solution of a FBSDE.

To this purpose, we need to establish notations and set some spaces:

• L2
F(Ω;C([0, T ]);Rn)= space of all continuous stochastic processes Xt and

Ft-adapted which take value in Rn such that E
[
supt∈[0,T ] |Xt|

]
<∞.

• L2
F(0, T ;W 1,∞(M,N))=set of all functions f : [0, T ] × M × N × Ω → N

(where M,N Euclidean spaces) such that, ∀θ ∈ M fixed, the mapping

(t, ω) 7→ f(t, θ, ω) define an Ft-adapted process with f(t, 0, ω) ∈ L2
F([0, T ];N).

Moreover f must be Lipschitz respect to the variable θ almost surely.

• L2
FT (Ω;W 1,∞(Rn,Rm))= set of all functions g : Rn × Ω → Rm such that

∀x ∈ Rn fixed ω 7→ (x, ω) be FT -measurable and g be uniformly Lipschitz in

Rn. Moreover it must be g(0, ω) ∈ L2
F .

• M[0, T ] = L2
F(Ω;C([0, T ]);Rn)× L2

F(Ω;C([0, T ]);Rm)× L2
F([0, T ];Rl)
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Consider a FBSDE in his general form:

dXt = b(t,Xt, Yt, Zt)dt+ σ(t,Xt, Yt, Zt)dWt,

dYt = h(t,Xt, Yt, Zt)dt+ σ̂(t,Xt, Yt, Zt)dWt,

X0 = x,

YT = g(XT ).

(B.19)

with x ∈ Rn and b, h, σ, σ̂, g functions such that, set M = Rn × Rm × Rl, satisfy

the following hypothesis:

• b ∈ L2
F(0, T ;W 1,∞(M,Rn));

• σ ∈ L2
F(0, T ;W 1,∞(M,Rn×d));

• h ∈ L2
F(0, T ;W 1,∞(M,Rm));

• σ̂ ∈ L2
F(0, T ;W 1,∞(M,Rm×d));

• g ∈ L2
FT (Ω;W 1,∞(Rn,Rm);

Definition B.17. A triple of continuous stochastic process (X, Y, Z) ∈M[0, T ] is

said to be adapted solution to the problem B.19 if, almost surely and ∀t ∈ [0, T ],

we have:Xt = x+
∫ t

0
b(s,Xs, Ys, Zs)ds+

∫ t
0
σ(s,Xs, Ys, Zs)dWs,

Yt = g(XT )−
∫ T
t
h(s,Xs, Ys, Zs)ds−

∫ T
t
σ̂(s,Xs, Ys, Zs)dWs.

(B.20)

There are examples which show that, under this assumption, the solution may

not exist.For further results see [6].
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Appendix C

Markov process and Blumenthal

Zero-One Law

In this part we introduce Markov process and we see that Brownian motion is

an example of Markov process, and finally we show the Blumenthal 0-1 law. For

simplicity, we can assume that all the filtrations are right-continuous, and this is

not a restrictive assumption. Indeed we can construct filtrations with this property

from the one considered, for example see [5].

Let (E, d) a metric space, and consider the completion B(E)µ of the Borel

σ-field B(E) respect to the finite measure µ on (E,B(E)). The universal σ-field

U(E) =
⋂
µ B(E)µ, where intersection is over all finite measures µ. A real-valued

function is said to be universally measurable if it’s U(S)-measurable.

Definition C.1. A d-dimensional Brownian family is a d-dimensional process

W = {Wt; t ≥ 0} on a measurable space (Ω,F) adapted to the filtration Ft,

together with a family of probability measures {P x}x∈Rd such that:

• for each F ∈ F , the mapping x 7→ P x(F ) is universally measurable;

• for each x ∈ Rd, P x([W0 = x]) = 1;

• under each P x, the process W is a d-dimensional Brownian motion starting

at x.
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Definition C.2. Let d a positive integer and µ a probability measure on (Rd,B(Rd)),

and (Ω,F , P µ,Ft) a filtered probability space. An adapted, d-dimensional process

X is said to be a strong Markov process with initial distribution µ if:

• P µ[X0 ∈ Γ] = µ(Γ), ∀Γ ∈ B(Rd);

• for any optional time S of {Ft}, t ≥ 0 and Γ ∈ B(Rd), we have P µ[XS+t ∈

Γ‖FS+] = P µ[XS+t ∈ Γ‖XS].

Definition C.3. Let d a positive integer and Xt an adapted, d-dimensional process

on (Ω,F ,Ft) . Xt, together with a family of probability measure {P x}x∈Rd on

(Ω,F ,Ft), is said to be a d-dimensional strong Markov family if:

• for each F ∈ F , the mapping x 7→ P x(F ) is universally measurable;

• for all x ∈ Rd, P x([X0 = x]) = 1;

• for each x ∈ Rd, t ≥ 0, Γ ∈ B(Rd), and optional time S of Ft;, we have

P x[XS+t ∈ Γ‖FS+] = P x[XS+t ∈ Γ‖XS], P x − a.s. on {S <∞};

• for each x ∈ Rd, t ≥ 0, Γ ∈ B(Rd), and optional time S of Ft;, we have

P x[XS+t ∈ Γ‖XS = y] = P y[Xt ∈ Γ], P xX−1
S − a.e. y.

Remark C.4. It’s also possible to define a Markov process and a Markov family.

For their definitions it’s sufficient to substitute the optional time S with an real

number s ∈ R in the definitions above. In particular we have that a Markov process

is a strong Markov process and Markov family is a strong Markov family.

Moreover it can be shown

Theorem C.5. A d-dimensional Brownian motion is a Markov process, and a

Brownian family is a Markov family. The statement is also true for strong Markov

process and family.

Consider a strong Markov process X with initial distribution µ on the probability

space (Ω,FX∞, P µ), where FX∞ = σ
(⋃

t≥0FXt
)
and FXt = σ(Xs; 0 ≤ s ≤ t). The

right-continuous filtration which makes this strong Markov process adapted is the

augmented filtration {Fµt }t≥0, where for each t Fµt = σ
(
FXt ∪N µ

)
, N µ = {F ⊆
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Ω‖∃t ≥ 0,∃G ∈ FXt , with F ⊆ G, P µ(G) = 0} is the collection of the sets which

have null probability respect to P µ for some t ≥ 0. This change of filtrations doesn’t

affect the property to be a Brownian motion or a strong Markov process indeed:

Theorem C.6. A d-dimensional Brownian motion W with initial distribution µ

on (Ω,FW∞ , P µ) relative to the filtration {Fµt }t≥0 is still a d-dimensional Brownian

motion. A d-dimensional strong Markov process X with initial distribution µ on

(Ω,FX∞, P µ) relative to the filtration {Fµt }t≥0 is still a d-dimensional strong Markov

process.

The filtration defined above is dependent on µ, so it’s inappropriate for Markov

and Brownian family, because we have continuum of initial conditions. Motivated

by this remark we want to construct a right-continuous filtrations which makes

the strong Markov process adapted and independent from the initial distributions.

This filtration is called "Universal filtration". Consider µ a probability measure on

(Rd,B(R)d) and a strong Markov family X,{P x}x∈R)d on (Ω,FX∞).Define

P µ(F ) =

∫
Rd
P x(F )µ(dx), ∀F ∈ F̃X∞

Now take the augmented filtration with intersection all over probability measures µ

F̃t =
⋃
µ

Fµt , 0 ≤ t ≤ ∞

This filtration is independent of µ as we want and it can be shown that it’s right

continuous. Moreover we have the chain of inclusions FXt ⊆ F̃t ⊆ F
µ
t ,therefore it

follows that if X is strongly Markovian with both filtrations {FXt }t≥0 and {Fµt }t≥0

respect to the probability measure P µ, X is Markovian with the filtration F̃t.

Finally we have this fundamental theorem:

Theorem C.7. If W , {P x}x∈R)d is a Brownian family on (Ω,FW∞ ,FWt ), then it is

also a Brownian family on (Ω, F̃∞, F̃t).

Now we are ready to proof the Blumenthal 0-1 Law:

Theorem C.8. Blumenthal Zero-One Law Let W = {Wt, F̃t; t ≥ 0},{P x}x∈Rd a

d-dimensional Brownian family on a measurable space (Ω,F), where {F̃t}t≥0 is the

universal filtration obtained from Wt. If F ∈ F̃0, then for each x ∈ Rd we have

either P x(F ) = 0 or P x(F ) = 1.
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Proof. Let F ∈ F̃0. For all x ∈ Rd there exists G ∈ FW0 such that P x(F4G) = 0.

Necessary there exist Γ ∈ B(Rd) such that G = {W0 ∈ Γ}, so P x(G) = {W0 ∈

Γ} = IΓ(x). Since P x(F4G) = 0 imply P x(F ) = P x(G), we can conclude that

P x(F ) = IΓ(x).
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Appendix D

Viscosity solutions of second order

partially differential equations

In this appendix we want to introduce some basics about viscosity solution and

exhibit a results on parabolic second order partial differential equations which is

useful for our purpose.

Consider a partial differential equation in the form F (x, u,Du,D2u) = 0 where

F : RN × R× RN × S(N)→ R is,unless otherwise said, continuous, and S(N) is

the set of symmetric N ×N matrix. We take u as a real-valued function defined

on some subset of O ⊆ RN . Moreover we require F to satisfy the following two

fundamental monotonicity conditions:

F (x, r, p,X) ≤ F (x, s, p,X) (D.1)

whenever r ≤ s and

F (x, r, p,X) ≤ F (x, r, p, Y ) (D.2)

whenever Y ≤ X, with r, s ∈ R, x, p ∈ RN , X, Y ∈ S(N), and S(N) equipped with

its usual order. The las condition is called "degenerate ellipticity". First of all

we need to define viscosity subsolution and supersolution of F = 0, then we can

give the definition of viscosity solution. Assume that u : O ⊆ R is a subsolution

of F = 0 (i.e. F (x, u,Du,D2u) ≤ 0)and suppose ϕ to be a C2 function and x̂ a

local maximum for u− ϕ, moreover fix the notations p = Dϕ(x̂), and X = D2ϕ(x̂).
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With these notations it can be shown the following inequality

u(x) ≤ u(x̂) + 〈p, x− x̂〉1
2
〈X(x− x̂), x− x̂〉+ o(|x− x̂|2) as x→ x̂ (D.3)

Fixed u and x̂, we define J2,+
O u(x̂) ⊆ RN × S(N) as the set of the couple (p,X)

such that verifies inequality D.3 for O 3 x→ x̂. J2,+
O u(x̂) is called the second order

"superjet" of u at x̂, and this defines a map J2,+
O u form O to a subset of RN ×S(N).

Analogously we can define J2,−
O u(x̂) (second order "subjet" of u at x̂) and the map

J2,−
O u. Before to define the notions of viscosity subsolution, supersolution and

solution we give the following useful notations

USC(O)={upper semicontinuous functions u : O ⊆ R}

LSC(O)={lower semicontinuous functions u : O ⊆ R}

Definition D.1. Let F satisfy D.1 and D.2 and O ⊆ RN . A viscosity subsolution

of F = 0 on O is a function u ∈ USC(O) such that

F (x, u(x), p,X) ≤ 0 for all x ∈ O and (p,X) ∈ J2,+
O u(x) (D.4)

Similarly, a viscosity supersolution of F = 0 on O is a function u ∈ LSC(O) such

that

F (x, u(x), p,X) ≥ 0 for all x ∈ O and (p,X) ∈ J2,−
O u(x) (D.5)

Finally, u is a viscosity solution of F = 0 in O if it is both a viscosity subsolution

and a viscosity supersolution of F = 0 in O.

Proposition D.2. Let O be a subset of RN , u ∈ USC(O), v ∈ LSC(O) and

Mα = sup
O×O

(u(x)− v(y)− α

2
|x− y|2)

for α > 0. Let Mα <∞ for large α and (xα, yα) be such that

lim
α→∞

(Mα − (u(xα)− v(yα)− α

2
|xα − yα|2)) = 0

then the following holds:

• limα→∞ α|xα − yα|2 = 0
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• limα→∞Mα = u(x̂− ŷ) = supO(u(x)− v(x)) whenever x̂ ∈ O is a limit point

of xα as α→∞

Now we to set the second order parabolic problem. In this case the differential

equation is in the form

ut + F (t, x, u,Du,D2u) = 0 (D.6)

where u : OT → R is a real-valued function and OT = (0, T )×O, with T > 0 and

O ⊆ R locally compact. We denote by P 2,+
O u(x̂) and P 2,−

O u(x̂) the parabolic version

the semijets J2,+
O u(x̂),J2,−

O u(x̂). In particular they are a subset of R× RN × S(N),

where the first component comes from ϕt in a Taylor expansion analog to D.3.

Definition D.3. A viscosity subsolution of D.6 on OT is a function u ∈ USC(OT )

such that

a+ F (t, x, u(t, x), p,X) ≤ 0 for all (t, x) ∈ OT and (a, p,X) ∈ P 2,+
O u(x)

(D.7)

Similarly, a viscosity supersolution of D.6 on OT is a function u ∈ USC(OT ) such

that

a+ F (t, x, u(t, x), p,X) ≥ 0 for all (t, x) ∈ OT and (a, p,X) ∈ P 2,−
O u(x)

(D.8)

Finally, u is a viscosity solution of D.6 in OT if it is both a viscosity subsolution

and a viscosity supersolution of F = 0 in O.

We also consider the case of the Cauchy-Dirichlet problem for the parabolic

type, which has the form
(i) , ut + F (t, x, u,Du,D2u) = 0 in (0, T )× Ω

(ii) , u(t, x) = 0 for 0 ≤ t ≤ T and x ∈ ∂Ω

(iii), u(0, x) = ψ(x)for x ∈ Ω

(D.9)

where Ω ⊂ RN is open and T > 0 and ψ(x) ∈ C(Ω) are given. by a subsolution

of D.9 on [0, T ) × Ω, we mean a function u ∈ USC([0, T ) × Ω) such that u is a

subsolution of (i),u(t, x) ≤ 0 for 0 ≤ t ≤ T and x ∈ ∂Ω and u(0, x) ≤ ψ(x) for
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x ∈ Ω. Analogously we can define a supersolution, and we said that u is a solution

if it is both a supersolution and a subsolution.

Theorem D.4. Let O be an open subset of R3 and z̃ = (t̃, h̃) ∈ OT . If u : OT → R3

and ϕ ∈ C2(OT , ]0,+∞[), then (a, p,X) ∈ PO
2,+
u(z̃)(closure of P 2,+

O u(z̃) if and

only if

(aϕ+ uϕt, pϕ+ uDhϕ, ϕX + 2p⊗Dhϕ+ uD2
hϕ)× (z̃) ∈ PO

2,+
uH(z̃)

where Dh = (∂x, ∂y),D2
h is the Hessian matrix respect to the spatial variables, and

(p1, p2)⊗ (q1, q2) denotes the matrix p1q1
p1q2+p2q1

2

p1q2+p2q1
2

p2q2


Remark D.5. An analogous statement holds if PO

2,+ is replaced by PO
2,−

Theorem D.6. Let ui ∈ UCS((0, T )× =i) for i = 1, . . . , k, where Oi is a

locally compact subset of RNi. Let ϕ be defined on an open neighborhood of

(0, T )×O1×, · · · ,×Ok and such that (t, x1, . . . , xk)→ ϕ(t, x1, . . . , xk) is once con-

tinuously differentiable in t and twice continuously differentiable in (x1, . . . , xk) ∈

O1×, · · · ,×Ok. Suppose that t̂ ∈ (0, T ), x̂i ∈ Oi, for i = 1, . . . , k and

w(t, x1, . . . , xk) = u1(t, x1) + · · ·uk(t, xk)− ϕ(t, x1, . . . , xk) ≤

≤ w(t̂, x̂1, . . . , x̂k)

for 0 < t < T and xi ∈ O. Assume, moreover, that there is an r > 0 such that for

every M > 0 there is a C such that for i = 1, . . . , k

bi ≤ C whenever (bi, qi, Xi) ∈ PO
2,+
ui(t, xi),

|xi − x̂i|+ |t− t̂| ≤ r and |ui(t, xi)|+ |qi|+ ‖Xi‖ ≤M.

Then for each ε > 0 there are Xi ∈ S(Ni) such that
(bi, Dxiϕ(t̂, x̂1, . . . , x̂k)) ∈ PO

2,+
ui(t̂, x̂i) for i = 1, . . . , k,

−
(

1
ε

+ ‖A‖
)
I ≤

(X1 ... 0
... ... ...
0 ... Xk

)
≤ A+ εA2,

b1 + · · ·+ bk = ϕt(t̂, x̂1, . . . , x̂k).

(D.10)

where A = (D2
xϕ)(t̂, x̂1, . . . , x̂k).
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The next theorem gives a comparison principle for viscosity solution

Theorem D.7. LetΩ ⊂ RN be open and bounded. Let F ∈ C([0, T ] × Ω) × R ×

RN × S(N) be continuous, proper and satisfy
F (y, r, a(x− y), Y )− F (x, r, a(x− y), X) ≤ ω(α|x− y|2 + |x− y|)

whenever x, y ∈ Ω, r ∈ R, X, Y ∈ S(N), and for each ε > 0

−3
ε

( I 0
0 I ) ≤

(
X 0
0 −Y

)
≤ 3

ε
( I 0

0 I )

for each fixed t ∈ [0, T [, with the same function ω. If u is a subsolution of D.9 and

v is a supersolution of D.9, then u ≤ v on [0, T [×Ω.

For the proof of these theorems and a complete treatment of this topic see [10].
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