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Abstract

Il concetto di inflazione è stato introdotto nei primi anni ’80 per risolvere alcuni
problemi del modello cosmologico standard, quali quello dell’orizzonte e quello della
piattezza.
Le predizioni dei più semplici modelli inflazionari sono in buon accordo con le os-
servazioni cosmologiche più recenti, che confermano sezioni spaziali piatte e uno
spettro di fluttuazioni primordiali con statistica vicina a quella gaussiana.
I più recenti dati di Planck [1], pur in ottimo accordo con una semplice legge di
potenza per lo spettro a scale k > 0.08 Mpc−1, sembrano indicare possibili devi-
azioni a scale maggiori, seppur non a un livello statisticamente significativo a causa
della varianza cosmica.
Queste deviazioni nello spettro possono essere spiegate da modelli inflazionari che
includono una violazione della condizione di lento rotolamento (slow-roll) e che
hanno precise predizioni per lo spettro.
Per uno dei primi modelli, caratterizzato da una discontinuità nella derivata prima
del potenziale proposto da Starobinsky [2], lo spettro ed il bispettro delle fluttuazioni
primordiali sono noti analiticamente [3].

In questa tesi estenderemo tale modello a termini cinetici non standard, calcolan-
done analiticamente il bispettro e confrontando i risultati ottenuti con quanto pre-
sente in letteratura.
In particolare, l’introduzione di un termine cinetico non standard permetterà di ot-
tenere una velocità del suono per l’inflatone non banale, che consentirà di estendere
i risultati noti, riguardanti il bispettro, per questo modello.
Innanzitutto studieremo le correzioni al bispettro noto in letteratura dovute al fatto
che in questo caso la velocità del suono è una funzione dipendente dal tempo; suc-
cessivamente, cercheremo di calcolare analiticamente un ulteriore contributo al bis-
pettro proporzionale alla derivata prima della velocità del suono (che per il modello
originale è nullo).
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Introduction

General Relativity (GR) and Quantum Field Theory (QFT) are two of the most
remarkable developments of the last century.
From the beginning, scientists tried to unify these two theories, but they quickly
realized that it is not possible to treat gravity like the other forces, because this
theory is not renormalizable: for this reason, gravity is often considered as a back-
ground, a curvature of space-time where the other forces act on. Such a semiclassical
approach is called Quantum field theory in curved space-time.
One of the first subjects this theory was applied to has been cosmology, particularly
for the study of the early stages of the Universe. The Standard Cosmological Model
presents some problems which are not explainable within the standard theory of
Big Bang (e.g. the flatness and the horizon problem). In order to solve this issues,
in late 70s/early 80s the idea of inflation was introduced: it consists in a fast,
quasi-exponential expansion in space starting about 10−37s after a possible initial
singularity. In terms of a QFT, the simplest models involve a real scalar field, called
inflaton, as the responsible for this quasi-exponential expansion.
As already stated, the idea of inflation was able to explain some important results
of observations, as the high level of isotropy of the cosmic microwave background
(CMB), the spatial flatness, the nearly scale-invariant spectrum of nearly Gaussian
perturbations, in agreement with the large-scales structure (LSS).
With the results available from the Planck satellite (which can be found, e.g., in
[1, 4], and [5, 6]) the tilt of the primordial power spectrum has been accurately
measured and the level of non-Gaussianity has been tightly constrained, confirming
that the simplest models of slow-roll inflation are a good fit to CMB observations,
whereas non-standard models producing large non-Gaussianities are not.
On the other side, few puzzles in the CMB pattern of temperature anisotropies on
large scales appear, from unexpected features in the temperature power spectrum.
For instance, a low amplitude at ` < 40 and a dip in the temperature power spec-
trum lower than that expected in a simple ΛCDM model.
Recently, many models which predict a temporary violation of the slow-roll condi-
tion have been proposed to explain the low amplitude cited above; some of these
models can also produce a feature at ` ∼ 20.
Inflationary models which aim at explaining this feature at ` < 40 generally predict
non-Gaussian signals which can be compared with CMB data. Since the anomaly
in temperature power spectrum is not statistically significant because of the cosmic
variance, it is important to search for additional, possible counterparts at the bis-
pectrum level.
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viii INTRODUCTION

This thesis is devoted to study inflationary models which can explain these fea-
tures. In particular, this work aims to study non-Gaussianities which are originated
by a sudden jump in the speed of sound. To obtain such a jump, we consider theo-
ries for which the inflaton Lagrangian contains a non-standard kinetic term and a
discontinuity in the first derivative of the potential (this model, with a standard ki-
netic term, was proposed by Starobinsky in 1992, [2]). On the one hand, in this way
we are able to recover the results found in [3] in a suitable limit, while on the other
hand we can provide its generalization which comes from the terms proportional to
the derivative of cs. In addition, we can also compute a second contribution to the
bispectrum which comes from a vertex proportional to the logarithmic derivative of
the speed of sound, which for the model with a standard kinetic term vanishes.
In details, the following work is structured as follows:

i) In chapter 1 we briefly review some basic concepts of cosmology, such as the
Friedman equations and the conceptual issues which led to inflation. We then
discuss more advanced topics, as inflation driven by a field with a general
Lagrangian.

ii) In chapter 2 we review the relativistic theory of cosmological perturbations; we
then introduce the Mukhanov-Sasaki equation for the gauge-invariant scalar
field fluctuations and the curvature perturbation.

iii) In chapter 3 we discuss in general power spectrum and bispectrum of curvature
perturbations, giving details of their calculations.

iv) In chapter 4 we present the model with a discontinuity in the first derivative of
the potential, originally introduced by Starobinsky, describing the motivations
for which it is interesting in the comparison with observations. We compute
both the power spectrum and the bispectrum (the latter given in [3]).

v) In chapter 5 we provide two different extensions to the model originally intro-
duced in [2], obtained by generalizing the Lagrangian with higher order powers
in the kinetic term. We first compute the correction to the bispectrum found in
the previous chapter, and then we consider another contribution to the bispec-
trum which comes from a different vertex, which vanishes for the model with
standard kinetic term.

vi) In the two appendixes we briefly review the concepts of classical Gaussian
and non-Gaussian random fields. In the second one, instead, we give the full
expressions of the original result for the bispectra for the models studied in
chapter 5.

Throughout this work, we consider natural units for simplicity, i.e. units for which
c = ~ = kB = 1. In addition, we assume the metric signature (−,+,+,+), while for
tensors we use Greek letters for space-time indexes (µ = 0, . . . , 3) and Latin letters
for spatial indexes (i = 1, . . . , 3).
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Chapter 1

The Standard Big-Bang
Cosmological Model

Modern cosmology aims to explain the origin and the evolution of our universe.
The first models were developed just after the publication of the Theory of General
Relativity (1916).
On the one hand, modern cosmology is based on three assumptions: General Rel-
ativity is the theory which describes the evolution of our universe; there is homo-
geneity and isotropy; we can model the universe as a perfect fluid. On the other
hand, there are three observational evidences which are predicted by the model:
the expansion of the universe, the existence of the cosmic microwave background
(CMB) and the abundance of light elements from the primordial nucleosynthesis.
Applying General Relativity to our universe, in which the matter energy-momentum
tensor is that of a perfect fluid, leads to the Standard Big-Bang Cosmological Model.
This model is usually referred to as ΛCDM, since it assumes the existence of both
cold dark matter (CDM in the acronym) and dark energy (denoted by Λ): indeed
“visible” matter constitutes only about 5% of the total energy [7]; about 26% is
matter which only acts by means of the gravitational attraction (for this reason
called ‘dark’), while the leftover 69% is called ‘dark’ energy, and it is thought to be
the responsible for the accelerate expansion of our universe.
However, as we shall see, this model exhibits some conceptual issues, which are
solved by introducing the concept of inflation.
This chapter is divided in two sections:

i) in the first one, we briefly present a summary of how General Relativity applies
to our universe, from the Friedman equations, to some considerations about its
geometry, up to the definition of the concepts of horizon which are significant
for our purposes.

ii) in the second section, instead, we derive the concept of inflation in a straightfor-
ward way, i.e. from the problems of the standard model to their solution with
the concept of a field which permeates the universe. Eventually, we generalize
this concept to the so called k-inflations, which will be widely used later.
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2 CHAPTER 1. THE STANDARD BIG-BANG COSMOLOGICAL MODEL

1.1 Friedman-Lemâıtre-Robertson-Walker universe

The starting point is the assumption of the cosmological principle, which states that
there are neither preferred observers nor directions: this is equivalent to assume
homogeneity and spatial isotropy.

1.1.1 Friedman equations

These assumptions strongly reduce the number of degrees of freedom: for instance,
the cosmological principle requires that the line element can be rewritten as [8, 9]

ds2 = −dt2 + a2(t)

[
dr2

1− k r2
+ r2 dΩ2

]
, (1.1)

which defines the Friedman-Lemâıtre-Robertson-Walker metric (FLRW).
Here dΩ2 = dθ2 + sin2 θ dϕ2 is the angular part of the spherical line element, while
k is a parameter called curvature which can take just three values

k =


+1

0

−1

, (1.2)

which correspond to closed, flat and open spatial sections, respectively.
The coordinates r is dimensionless, while the scale factor a(t) has the dimension of
a length.

It will be useful to deal with a new time coordinate, the conformal time, defined as

dτ ≡ dt

a(t)
, (1.3)

so that eq. (1.1) becomes

ds2 = a2(τ)

[
−dτ2 +

dr2

1− k r2
+ r2 dΩ2

]
. (1.4)

The cosmological principle also applies to Einstein equation

Rµν −
1

2
Rgµν = 8πGTµν , (1.5)

with Tµν is the energy-momentum tensor of the fluid

Tµν = pgµν + (p+ ρ)uµuν . (1.6)

A first equation which comes from (1.5) is [10]

3ä = −4πG(ρ+ 3p)a , (1.7)

where ˙ denotes the derivative with respect to t.
A second one is

aä+ 2ȧ2 + 2k = 4πG(ρ− p)a2 . (1.8)
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Combining the two, and defining the Hubble parameter

H ≡ ȧ

a
, (1.9)

we get the system of two equation

H2 =
8

3
πGρ− k

a2
(1.10a)

ä = −4

3
πG(ρ+ 3p)a , (1.10b)

which constitute the Friedman equations.
Together with these equations, we also have a continuity equation

ρ̇ = −3H(ρ+ p) . (1.11)

It is important to note that eqs. (1.10a), (1.10b) and (1.11) are not independent,
but one of these comes from the combination of the other two.
The continuity equation (1.11) can be recast as

ρ ′ = −3H(ρ+ p) , (1.12)

where ′ which denotes the derivative with respect to τ and H is the Hubble param-
eter in conformal time

H ≡ a′

a
. (1.13)

Taking the derivative of (1.10a) with respect to t, and using (1.11), we also have

Ḣ = −4πG(ρ+ p) . (1.14)

Since they will be widely used in the following, it is worthwhile to write the Friedman
equation in conformal time

H2 =
8

3
πGρa2 , (1.15)

which can combined together to obtain some other useful relations

H2 −H′ = 4πGa2(ρ+ p) (1.16a)

2H′ +H2 = −8πGpa2 . (1.16b)

It is useful to rewrite the Friedman equation in a slightly different form; by defining
a critical density ρc and a density parameter Ω as

ρc ≡
3H2

8πG
(1.17a)

Ω ≡ ρ

ρc
, (1.17b)

the preceding relation becomes

H2(Ω− 1) =
k

a2
. (1.18)
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It is then clear that the hierarchy between Ω and 1 has a one-to-one correspondence
with the spatial geometry of the universe.

On the one hand, for fluids with a state equation parameter w ≡ p
ρ > −1

3 , the
r.h.s. of eq. (1.10b) is always negative; on the other hand, observations suggest
that H > 0, i.e. the universe is expanding. This implies that the scale factor is a
concave function of time, and therefore that there always exists a time t = 0 for
which a(t = 0) = 0: this is what in the standard model of universe is known as
Big-Bang.

Figure 1.1: Evolution of the scale factor as a function of time.

This fact is independent from the curvature: the behaviour at late times, instead,
depends on the value of k.
Furthermore, it is possible to get a rough estimate of the age of the universe by
considering the inverse of the Hubble parameter, i.e. H−1: in fact, from Fig. 1.1 we
see that at a given instant t∗ the scale factor can be approximated with a straight
line of equation y(t) such that a(t∗) = y(t∗). The slope of this line is clearly a′(t∗),
so that its equation is

y(t) = a′(t∗)(t+ δ) . (1.19)

By evaluating this at t = t∗ we have

a(t∗) = y(t∗) = a′(t∗)(t∗ + δ), ⇒ t∗ =
1

H(t∗)
− δ . (1.20)

Therefore, at a given instant t∗, the age of the universe can be approximated by
excess as H(t∗)−1: for example, at the present time H0 = 67.3(10) km s−1 Mpc−1

[7], and consequently

t0 = 4.59× 1017 s ≈ 1.45× 1010 yr (1.21)

Another very important quantity to describe the evolution of our universe is the
redshift z, which relates the scale factor at a certain time with the scale factor today:
it is defined as

1 + z ≡ a0

a
, (1.22)
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where a0 ≡ a(ttoday), and usually it is assumed a0 = 1 (since now on we make this
assumption), so that z varies from 0 to +∞.

As previously noted, for each value of k there is a time in which a = 0: nev-
ertheless, for big z (early times), we can see that the curvature is negligible, i.e.
k ≈ 0. To prove this, let’s consider a single-component fluid with equation of state

p = w ρ . (1.23)

From eq. (1.11), the density depends on the scale factor as

ρ ∼ a−3(1+w) , (1.24)

so that the Hubble parameter can be expressed as a function of the redshift as

H2(z) = H2
0 (1 + z)2

[
1− Ω0 + Ω0(1 + z)1+3w

]
. (1.25)

Now, dividing eq. (1.18) by itself evaluated at the present time t0, thanks to (1.25),
we get

Ω(z) =
Ω0(1 + z)1+3w

1− Ω0 + Ω0(1 + z)1+3w = 1− 1− Ω0

1− Ω0 + Ω0(1 + z)1+3w −−−→z→∞
1 (1.26)

10 - 2 0.1 1 10 100 1000

1

Figure 1.2: Evolution of the density parameter as a function of the redshift.

This aspect is very important since if we go sufficiently back in time we can
approximate the universe as spatially flat, considering the so called Einstein-de
Sitter (EdS) model of universe.
If k = 0, the second equation of (1.10) can be integrated to get

a ∼ t
2

3(1+w) ⇒ H =
2

3(1 + w)

1

t
, (1.27)

and from the previous discussion we know that we can use these results every time
we study the very early universe.
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1.1.2 Particle horizon and Hubble radius

Let’s consider the line element (1.4) for a photon which propagates radially in a
spatially flat universe [11]: it is characterized by

dτ = ±dr . (1.28)

Therefore, the maximum comoving distance from which an observer will be able to
receive signals at time t is

χP (t) ≡
∫ t

ti

dt

a(t)
=

∫ τ

τi

dτ = τ − τi , (1.29)

where ti is the time corresponding to the initial singularity (we do not denote it
with 0 for a reason which will be clear in a moment). The quantity χP (t) is called
comoving particle horizon. The corresponding physical particle horizon is simply

RP (t) = a(t)

∫ t

ti

dt

a(t)
. (1.30)

Another very important quantity is the comoving Hubble radius, defined as

χH ≡
1

aH
, (1.31)

together with its physical counterpart

RH =
1

H
. (1.32)

Thanks to (1.27), the comoving Hubble radius can also be expressed by

χH =
a

1+3w
2

H0
, (1.33)

from which we note that the Hubble radius grows with time if w > −1
3 ; in addition

χP =

∫ ln a

ln ai

d ln a

aH
=

1

H0

∫ ln a

ln ai

d ln a a
1+3w

2 =
2

3(1 + w)H0

(
a

1+3w
2 − a

1+3w
2

i

)
=

= τ − τi . (1.34)

For standard fluids, the comoving horizon gets a negligible contribution from early
times since

τi ∼ a
1+3w

2
i

w>− 1
3−−−−→

ai→0
0 . (1.35)

Thus, the particle horizon at time t is given by

χP (t) =
2

3(1 + w)H0
a(t)

1+3w
2 =

2

3(1 + w)

1

aH
=

2

3(1 + w)
χH (t) , (1.36)

which ensures that the particle horizon and the Hubble radius are of the same order.
Anyway, even if they are of the same order, their meaning is quite different: while
the particle horizon χP is the maximum (comoving) distance photon have travelled
from the Big-Bang, the Hubble radius is the distance over which photon can travel
in a Hubble time, i.e. roughly the time in which the scale factor doubles.
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1.2 Inflation

In this subsection, we present some of the conceptual problems of the standard
cosmological Big-Bang scenario. Secondly, we show how these can be solved by
inflation, and we discuss its simplest formulation in terms of a real scalar field.
Eventually, we generalize this formulation to the so called k-inflations, in which the
Lagrangian has a non-trivial kinetic term.

1.2.1 Problems of the Standard Big-Bang Cosmological Model

The Standard Big-Bang Cosmological Model we introduced in the previous section
exhibits some problems, both from theoretical and observational points of view.
Among these, we could cite the flatness problem, the horizon problem, the entropy
and the relics problem. Here, we discuss in detail the first two issues.
These problems were solved in early 80s by introducing the idea of inflation as a
phase of the universe characterized by a fast, quasi-exponential, expansion with a
non-standard equation of state.

Horizon problem

We have seen from eq. (1.35) that if the universe is filled by a standard fluid, the
initial singularity takes place at τi = 0. Moreover, from eq. (1.33) we know that if
we go sufficiently back in time two points are always separated by a distance which
is grater than the Hubble sphere: this means that it is always possible to find an
instant in which two points are not in causal contact.
This is represented in figure 1.3

Figure 1.3: Representation of the horizon problem (figure taken from [12]).

At this point an issue arises: observations suggest that the CMB is characterized
by an almost isotropic radiation. This seems to violate the concept of causal contact:
distant points in the sky should not have influenced each other in remote past times
since their past light cones did not overlap at the time of CMB formation (about
380 000 years after Big-Bang). This is known as the horizon problem.
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Flatness problem

Another typical issue related to the Cosmological Standard Model is the flatness
problem: it can be viewed as a fine-tuning problem.
Let’s consider the evolution of the density parameter Ω [13]: from eqs. (1.18) and
(1.27) we have

Ω− 1 ∼ k

a2 a−3(1+w)
∼ a1+3w , (1.37)

which indicates that for standard state parameters the density parameter increases
in time.
So, if we consider the ratio between the density parameter today and at a given
past time, e.g. at the Planck time (assuming that our physics theory is valid till to
those scales), we have

|Ω− 1|t0
|Ω− 1|tPL

∼ a2
0

a2
PL

∼
T 2
PL

T 2
0

∼ 1064 , (1.38)

where, again, we have neglected the matter-dominated phase for simplicity and
assumed that radiation-dominated phase began with the Big-Bang.
In any case, since we know that today Ω ∼ O(1), we see that in the past Ω had to
be extremely close to 1: as we do not know any reason why this should be happen,
we consider this as a fine tuning problem.

1.2.2 Inflationary solution to Standard Big-Bang Cosmological Model
problems

Both the horizon and the flatness problem can be naturally solved with the same
idea, which naturally leads to the concept of inflation.

Solution to the horizon problem

Since we have seen that, ultimately, the horizon problem arises from the fact that
past light cones of two distant points do not overlap in the remote past, we could
search for a scenario in which it is always possible to have a region of overlapping
between the past light cones of any two points. We see that this request is satisfied
if we accept a phase of a shrinking Hubble radius [12]: in other words, we want

d

dt
χH =

d

dt

1

aH
< 0 . (1.39)

From eq. (1.10b) we have that

d

dt
χH = − 1

aH2
(H2 + Ḣ) =

4πGρ

3aH2
(1 + 3w) < 0 ⇔ w < −1

3
. (1.40)

Hence, to have a Hubble radius which decreases in time, it is necessary to have a
violation of the standard equation of state for fluids.
This request has also another consequence: similarly to eq. (1.35), we have

τi ∼ a
1+3w

2
i

w<− 1
3−−−−→

ai→0
−∞ . (1.41)
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Thus, a shrinking Hubble sphere implies that the Big-Bang singularity happens at
a negative infinite conformal time; in such a way the horizon problem is naturally
solved. In fact, now, it is no more possible to approach the initial singularity enough
to get two points separated by a region greater than the Hubble radius: conversely,
there always exists an instant in past in which the past light cones overlap, as shown
in figure 1.4

Figure 1.4: Representation of the solution to horizon problem (figure taken from
[12]).

A particular case, i.e. w ≈ −1, is particularly simple. From the continuity
equation (1.11), in fact, we find that in this case ρ ≈ const, which implies that the
solution to the Friedman equation (1.10a) is

a(t) ≈ e

√
ρ

3M2
Pl

t

. (1.42)

This stage, characterized by a scale factor which grows quasi-exponentially in time,
is known as inflation. Since the equation of state parameter w = −1 is typical of
the cosmological constant Λ, this is usually written as

a(t) ≈ e
√

Λ
3
t
, (1.43)

which represents a quasi-de Sitter expansion. If this holds true, we get from eq.
(1.3)

τ = − 1

aH
. (1.44)

In this way we have the asymptotic behaviours at early and late times, i.e.

τ
a→0−−−→ −∞ (1.45a)

τ
a→∞−−−→ 0 . (1.45b)
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This expressions will be useful later on.

To determine how much inflation has to last, we can require that the Hubble radius
at the beginning of inflation tI was greater than today. Assuming that from the
end of inflation until today the universe has been dominated by radiation (w = 1

3),
we have that

χH (tE)

χH (t0)
=

a0H0

aEHE
∼ aE
a0
∼ T0

TE
∼ 10−28 , (1.46)

where E indicates the end of inflation and we have approximated TE ∼ 1015 GeV,
T0 ∼ 10−3 eV.
Imposing now that the Hubble radius at the beginning of inflation was greater than
today we get

χH (tI) > χH (t0) ∼ 1028χH (tE) . (1.47)

Since H ≈ const. it therefore implies
aE
aI
& 1028 ⇒ N ≡ ln

aE
aI
& 64 . (1.48)

N is the number of e-folds of inflation.

Solution to the flatness problem

This issue too can be solved with an inflationary phase: in particular, by requiring
that at the beginning of inflation Ω|tI ∼ O(1) and that after the end of inflation
the radiation-dominated era began, eq. (1.38) imposes

e2N =
a2
E

a2
I

∼ |Ω− 1|tE
|Ω− 1|tI

∼ |Ω− 1|t0
|Ω− 1|tI

T 2
E

T 2
0

∼ 1056 ⇒ N ∼ 64 . (1.49)

Again, with a number of e-folds of about 60-70, the flatness problem is naturally
solved.

1.2.3 Standard single-field inflation

We have seen that with inflation it is possible to solve some problems that otherwise
would seem unexplainable. In terms of modern theoretical physics, the simplest
model is to consider inflation as a stage driven by a single scalar field, called inflaton,
in a flat FLRW space-time described by the Lagrangian [14, 15]

L = −1

2
gµν∂µφ∂νφ− V (φ) . (1.50)

The corresponding energy-momentum tensor is

Tµν = −2
δL
δgµν

+ gµν L = ∂µφ∂νφ+ gµν

(
−1

2
gρσ∂ρφ∂σφ− V (φ)

)
. (1.51)

With the hypothesis of the flat space, this energy-momentum tensor is that of a
perfect fluid, so that the energy density and the pressure are

ρ = T00 =
φ̇2

2
+ V (φ) (1.52a)

p = Tii =
φ̇2

2
− V (φ) . (1.52b)
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From the Lagrangian (1.50), the equations of motion are

0 = ∂µ
(
δL
δ∂µφ

√
−g
)
−
√
−g δL

δφ
= −∂t

(
a3φ̇
)
− a3 dV

dφ
, (1.53)

and consequently the Klein-Gordon equation reads

φ̈+ 3Hφ̇+ Vφ = 0 , (1.54)

or in conformal time

φ ′′ + 2Hφ ′ + Vφa
2 = 0 . (1.55)

where prime and φ denote the derivative with respect to τ and φ, respectively.
The Friedman equations, instead, become

ä = −8πG

3

(
φ̇2 − V (φ)

)
(1.56a)

H2 =
8πG

3

(
φ̇2

2
+ V (φ)

)
. (1.56b)

In conformal time, the density and the pressure in eqs. (1.52) become

ρ =
φ ′2

2a2
+ V (1.57a)

p =
φ ′2

2a2
− V . (1.57b)

As a consequence, the state parameter takes the form

w =
p

ρ
=
φ ′2 − 2a2V

φ ′2 + 2a2V
. (1.58)

Slow-roll inflation

Taking the derivative of relation (1.56) with respect to time we get

Ḣ = − φ̇2

2M2
Pl

. (1.59)

We now introduce a quantity which will be fundamental for all future considerations.
It is defined as

ε1 ≡ −
Ḣ

H2
= −d lnH

dN
=

φ̇2

2H2M2
Pl

. (1.60)

We have seen that inflation is characterized by H ≈ const, and therefore ε1 � 1.
This condition implies that the kinetic term has a small contribution in the energy
density.
From this, we can define a second parameter ε2 as

ε2 ≡
d ln ε1
dN

=
ε̇1
Hε1

. (1.61)
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These parameters are called Hubble flow functions (HFF), or slow-roll parameters.
It is customary to make another assumption on the second HFF, i.e. ε2 � 1.
Therefore we have

ε1 � 1 −→ φ̇2 � V (φ) (1.62a)

ε2 � 1 −→ φ̈� Hφ̇ . (1.62b)

These conditions determine the so called slow-roll inflation.

Iteratively we can define the n-th slow roll parameter as

εn ≡
d ln εn−1

dN
=

ε̇n−1

Hεn−1
. (1.63)

Another interesting quantity is

δ ≡ − φ̈

Hφ̇
. (1.64)

Combining eqs. (1.60) and (1.64), the HFF ε2 can be written as

ε2 =
H

φ̇2

(
2φ̈φ̇

H2
− 2φ̇2Ḣ

H3

)
= 2

(
φ̈

Hφ̇
+ ε1

)
= 2(ε1 − δ) . (1.65)

Another parametrization which is sometimes used deals with the flow parameters
[16]

lλH ≡ (2M2
Pl)

l (H ′)l−1

H l

dl+1H

dφl+1
, , l > 1 . (1.66)

This parametrization is connected to the previous one via

d

dN
lλH = lλH

(
l − 1

2
ε2 + ε1

)
− l+1λH . (1.67)

Slow-roll inflation is usually thought as driven by a potential which is almost con-
stant in a certain region, as showed in Fig. 1.5

Figure 1.5: Potential for a slow-roll inflation.
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After the phase of slow-roll, the field starts to roll down the potential, eventually
oscillating around the minimum of the potential. This regime of coherent oscilla-
tions can be thought to be responsible for the emission of energy, the production of
particles and the thermalisation of the universe.

Slow-roll approximation allows to significantly simplify the equations: for instance,
the Friedman equation (1.56) reduces to

H2 ≈ V

3M2
Pl

, (1.68)

while the Klein-Gordon equation (1.54)

3Hφ̇+ Vφ ≈ 0 . (1.69)

In addition, it is possible to relate the HFF with another class of parameters, defined
in terms of the derivative of the potential. The first two are

εV ≡
M2
Pl

2

(
Vφ
V

)2

, (1.70)

and

ηV ≡ 2εV −M2
Pl

[(
Vφ
V

)2

−
Vφφ
V

]
. (1.71)

To determine the hierarchy between the HFF and εV and ηV , we firstly calculate
the derivatives of the potential.

- Zeroth derivative
If we can combine eqs. (1.60) and (1.68), we get [17, 1]

V = 3M2
PlH

2
(

1− ε1
3

)
. (1.72)

- First derivative
Furthermore, from the equation of motion (1.54), together with HFF (1.60)
and (1.65), we find that the first derivative of the potential can be cast as

Vφ = −φ̈− 3Hφ̇ = Hφ̇
(
−ε2

2
+ ε1 − 3

)
=

= −3
√

2ε1H
2MPl

(
1− ε1

3
+
ε2
6

)
. (1.73)

- Second derivative
Determining the second derivative is a little more tedious: first of all, if we
take the time derivative of the equation of motion (1.54), we get

...
φ + 3Ḣφ̇+ 3Hφ̈+ Vφφφ̇ = 0 . (1.74)

From eq. (1.65) we can find out an expression for φ̈ in terms of ε1 and ε2;
substituting it, together with its derivative

...
φ = (Ḣφ̇+Hφ̈)

(ε2
2
− ε1

)
+Hφ̇

(
ε̇2
2
− ε̇1

)
, (1.75)
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into (1.74), we obtain

0 =
(ε2

2
− ε1

) [
Ḣφ̇+H2φ̇

(ε2
2
− ε1

)]
+H2φ̇

(ε2ε3
2
− ε1ε2

)
− 3H2φ̇ε1+

+ 3H2φ̇
(ε2

2
− ε1

)
+ Vφφφ̇ =

= φ̇
{
−H2ε1

(ε2
2
− ε1

)
+H2

(ε2
2
− ε1

)2
+H2

(ε2ε3
2
− ε1ε2

)
− 3H2ε1+

+ 3H2
(ε2

2
− ε1

)
+ Vφφ

}
, (1.76)

where in the first line we have used the general relation (1.63) to express ε̇1
and ε̇2, and in the second line eq. (1.60) for Ḣ.
From the above equation we have

Vφφ = H2

[
5ε1ε2

2
− 2ε1

2 − ε2
2

4
+ 6ε1 −

3ε2
2
− ε2ε3

2

]
. (1.77)

Now, we just have to put these expression for V and its derivatives into eqs. (1.70)
and (1.71): so doing, we find

εV =
M2
Pl

2

(
Vφ
V

)2

= ε1

(
1− ε1

3
+
ε2
6

)2

(
1− ε1

3

)2 , (1.78)

and

ηV = M2
Pl

Vφφ
V

=
2ε1 −

ε2
2

+
5ε1ε2

6
− 2ε1

2

3
− ε2

2

12
− ε2ε3

6

1− ε1
3

. (1.79)

In the same way, after some lengthy calculations, one finds

ξ2
V ≡M2

Pl

VφφφVφ
V 2

=
1− ε1

3
+
ε2
6

(1− ε1
3

)
2

[
4ε1

2 − 3ε1ε2 +
ε2ε3

2
− ε1ε22 + 3ε1

2ε2−

− 4

3
ε1

3 − 7

6
ε1ε2ε3 +

ε2
2ε3
6

+
ε2ε3

2

6
+
ε2ε3ε4

3

]
. (1.80)

The crucial fact is that expressions (1.78)-(1.80) are exact, so that the use of the
HFF parametrization allows to reconstruct the derivatives of the potential without
any additional approximation.

As a final consideration, we note that in the slow-roll regime, the number of e-
folds can be expressed through eq. (1.69) as

N =

∫ tE

tI

H dt =

∫ φE

φI

dφ
H

φ̇
≈ − 1

M2
Pl

∫ φE

φI

dφ
V

Vφ
. (1.81)
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1.2.4 Non-standard kinetic term

As we have seen, an inflation as driven by a single scalar field constitutes the simplest
model we can think of; many extensions of this model have been developed, and
one of the most interesting is called k-inflation [18, 19], which represents a more
general class of models in which the Lagrangian density is a generic function

L = P (χ, φ) , (1.82)

where χ is the kinetic term of the theory

χ = −1

2
gµν∂µφ∂νφ . (1.83)

In the following, we consider homogeneous fields, for which φ = φ(t), so that

χ =
φ̇2

2
. (1.84)

For the moment, anyway, let’s keep χ unexpressed, so that the considerations we
make are valid in general.

The Lagrangian is indicated with P because it can be thought as a “pressure”:
we can convince of it by calculating the energy-momentum tensor from eq. (1.51).
Denoting with χ the derivative with respect to χ we get

Tµν = −2
δP

δgµν
+ gµν P = P gµν − 2Pχ

δχ

δgµν
= P gµν + Pχ ∂µφ∂νφ . (1.85)

The first term of r.h.s. is the same than (1.6) if P = p; by defining

uµ =
∂µφ√

2χ
, (1.86)

eq. (1.85) is
Tµν = P gµν + 2χPχuµuν , (1.87)

from which we can identify the energy density with

ρ = 2χPχ − P , (1.88)

and consequently write the energy-momentum tensor as

Tµν = P gµν + (P + ρ)uµuν , ,


ρ = 2χPχ − P

uµ =
∂µφ√

2χ

. (1.89)

We see from this expression that the Lagrangian (1.82) can be used to describe the
potential motions of hydrodynamical fluid as well as to draw a useful analogy with
hydrodynamics in the case of arbitrary Lagrangian for a scalar field. Indeed, if P
depends only on χ, then ρ = ρ(χ).
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An important quantity for the following analysis is the speed of sound cs, which
is defined as [18]

c2
s ≡

Pχ
ρχ

=
Pχ

Pχ + 2χPχχ
. (1.90)

Like for the slow-roll parameters, it is useful to consider the logarithmic derivative
of cs with respect to the number of e-fold: this quantity is denoted by s

s ≡ d ln cs
dN

. (1.91)

It is convenient to compute the derivative of the speed of sound firstly: this is

dcs
dN

=
1

2cs

PχN (Pχ + 2χPχχ)− Pχ(PχN + 2χNPχχ + 2χPχχN )

(Pχ + 2χPχχ)2 =

=
1

2cs

[
c2
s

PχN
Pχ
− c2

s

PχN + 2χNPχχ + 2χPχχN
Pχ + 2χPχχ

]
. (1.92)

Hence, the explicit expression for s is

s =
1

2

[
PχN
Pχ
−
PχN + 2χNPχχ + 2χPχχN

Pχ + 2χPχχ

]
(1.93)

These two quantities could obviously have been defined in the previous section, but
in that case they would have been trivial, since we would have found cs = 1, s = 0.
Now we determine the expressions for the slow-roll parameters for the lagrangian
P (χ, φ).
Combining the Friedman equation (1.10a) with the continuity equation (1.11) we
find

2HḢ = − H

M2
Pl

(P + ρ) = −2HχPχ
M2
Pl

⇒ Ḣ = −χPχ
M2
Pl

. (1.94)

The first HFF, i.e. ε1, is then given by

ε1 =
χPχ

H2M2
Pl

. (1.95)

The time derivative of ε1 is therefore

ε̇1 =
χχ̇Pχχ + χφ̇Pχφ + χ̇Pχ

H2M2
Pl

− 2χPχ Ḣ

H3M2
Pl

=

=
χ̇

H2M2
Pl

(χPχχ + Pχ) +
χφ̇Pχφ
H2M2

Pl

+ 2Hε21 . (1.96)

Thus, the second HFF ε2 reads

ε2 =
ε̇1
Hε1

=
1

H

(
χ̇Pχχ
Pχ

+
χ̇

χ
+
φ̇Pχφ
Pχ

)
+ 2ε1 . (1.97)
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For Lagrangian (1.82), the equations of motion are

0 = ∂µ
(
δ P

δ∂µφ

√
−g
)
−
√
−g δP

δφ
= ∂µ

(
Pχ

δχ

δ∂µφ
a3

)
− a3 Pφ =

= ∂t

(
a3Pχ φ̇

)
− a3∇ · (Pχ∇φ)− a3Pφ =

= a3 ∂t

(
Pχ φ̇

)
− 3a2ȧ Pχ φ̇− a3∇ · (Pχ∇φ)− a3Pφ . (1.98)

If we consider homogeneous fields we find the generalized Klein-Gordon equation

d

dt
(Pχ φ̇) + 3HPχ φ̇− Pφ = 0 . (1.99)

This equation can be also written in a different way. In fact, from eqs. (1.84) and
(1.90), we have

0 = Pχχχ̇ φ̇+ Pχφ φ̇
2 + Pχ φ̈+ 3HPχ φ̇− Pφ =

= Pχ

[
φ̈

(
1 + 2χ

Pχχ
Pχ

)
+ 3Hφ̇+

Pχφ
Pχ

φ̇2 −
Pφ
Pχ

]
=

=
Pχ
c2
s

[
φ̈+ 3Hc2

sφ̇+
Pχφ
ρχ

φ̇2 −
Pφ
ρχ

]
, (1.100)

and therefore [20]

φ̈+ 3Hc2
sφ̇+

Pχφ
ρχ

φ̇2 −
Pφ
ρχ

= 0 . (1.101)

We can also relate HFF with the speed of sound of the inflaton [21]. First of all we
note that from (1.97) we can write

ε2 = 2(ε1 − δ) + p , (1.102)

where δ is given by (1.64) and

p ≡ Ṗχ
HPχ

. (1.103)

The quantity p is

p =
Pχχ χ̇

HPχ
+
Pχφ φ̇

HPχ
=
Pχφ φ̇

HPχ
− δ

(
1

c2
s

− 1

)
. (1.104)

However, thanks to the Klein-Gordon equation (1.99), we also have

Pφ = Ṗχφ̇+ Pχφ̈+ 3HPχφ̇ = HPχφ̇ (p− δ + 3) , (1.105)

from which

p =
Pφ

HPχφ̇
+ δ − 3 . (1.106)

Combining the two expressions for p we get

p =
2q(3− δ)− δ(c−2

s − 1)

1− 2q
, (1.107)
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where we have defined

q ≡
χPχφ
Pφ

. (1.108)

If we substitute (1.107) into (1.102) we are able to express ε2 as a function of ε1, c2
s

and the derivatives of the Lagrangian.
For Lagrangians for which Pχφ = 0, we simply have

ε2 = 2ε1 −
δ

c2
s

(
c2
s + 1

)
. (1.109)

As a final comment, it is worthwhile to stress that the Lagrangian (1.82) is not the
most general we can consider. In fact, we can add to it a term [22]

G(χ, φ)�φ . (1.110)

This latter modification is sometimes called Galileon model.



Chapter 2

Relativistic perturbation theory

The Universe we observe is almost perfectly homogeneous and isotropic, as the cos-
mological principle states. However, in order to understand the formation of the
structures we observe (such as galaxies, clusters and so on), a small amount of in-
homogeneities must be accepted [14, 15, 23]. This is not a failure of the standard
theory of Big-Bang we briefly discussed in the previous chapter: on the contrary,
the cosmological perturbation theory is one of the greatest successes of modern cos-
mology.

Since observed inhomogeneities are very small, of the order of 1 part in 105, the
problem can be faced with a perturbative approach [24].

This chapter is divided in three sections:

i) in the first one, we develop the theory of cosmological perturbations in terms
of general relativity; this approach is doubly convenient: on the one hand, it is
valid on all scales, also when the Newtonian treatment of gravity is inadequate;
on the other hand, it can be applied up to relativistic energies;

ii) in the second section, instead, we define a fundamental quantity for later con-
siderations: the concept of comoving curvature perturbation. In particular, we
note how it is related to the gravitational potentials and the inflaton field;

iii) eventually, in the last section, we derive the Mukhanov-Sasaki equation, which
represents the fundamental equation of motion for the comoving curvature per-
turbation, and whose solution will be widely exploited in the next chapters to
compute the spectrum and the bispectrum of such a quantity.

2.1 Einstein equations

We consider all the quantities, i.e. the metric tensor, the energy-momentum tensor
etc., to first order in perturbation theory around a time-dependent, isotropic and
homogeneous cosmology.
In the following we denote with an overline the unperturbed quantities so that, for
instance, a generic quantity A is

A = A+ δA . (2.1)

19
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2.1.1 Metric fluctuations

From these considerations, the metric tensor is

gµν = gµν + δgµν . (2.2)

This has the consequence that, for a flat space-time, the background line element

ds2 = a2(τ)
[
−dτ2 + δij dx

idxj
]

(2.3)

takes the most general form to first order in perturbations

ds2 = a2(τ)
{
−(1 + 2A)dτ2 + 2Bi dτ dx

i + [(1 + 2C)δij + hij ] dx
idxj

}
, (2.4)

where hij is symmetric by construction.
Thus, up to second order corrections

gµν = a2

(
−(1 + 2A) Bi

Bi (1 + 2C)δij + hij

)

gµν =
1

a2

(
−(1− 2A) Bi

Bi (1− 2C)δij − hij
) . (2.5)

The metric tensor has 10 independent components: 1 comes from A, 3 from Bi, and
6 from the symmetric tensor field δij .

SVT decomposition

In order to keep track more efficiently of the equations we will obtain, it is worthwhile
to rewrite eq. (2.4) in a more useful way.
For linear perturbations, we can split the metric fluctuations in their scalar, vector
and tensor components, where this distinction depends on their transformation
properties on spatial hypersurfaces. For this reason, this kind of decomposition is
called SVT decomposition (“SVT” stands for “scalar-vector-tensor”).
In the following, we analyse in details only scalar and tensor perturbations, since
vector modes are not predicted in single-field inflation models.
Quantities in (2.5) are eigenvectors of the spatial Laplace operator, and at the linear
order the scalar, vector and tensor parts do not mix with each other. For this reason,
we can decompose both the vector and the tensor part as follows.

• Vectors.
Under very general hypothesises, a vector field vi can always be decomposed
in a scalar part and a vector, divergenceless part, i.e.{

vi = ∂iv + v̂i

∂iv̂i = 0
. (2.6)

The number of components of vi, i.e. 3, is maintained, since v contributes
with 1 component, and v̂i with 2, being divergenceless.
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• Tensors.
A similar procedure applies for a symmetric tensor field tij , which can be
decomposed in a scalar part and a vector and a traceless tensor part, both
divergenceless: 

tij = 2sδij + 2∂〈i∂j〉p+ 2∂(iûj) + 2ûij

∂iûi = 0 = ∂iûij

ûi i = 0

, (2.7)

where 
∂〈i∂j〉p ≡

(
∂i∂j −

δij
3
∇2

)
p

∂(iûj) ≡
1

2
(∂iûj + ∂j ûi)

, (2.8)

and the factors 2 are for convenience.
This kind of decomposition preserves the number of independent components,
as it has to be. From eq. (2.7) we have

s, p scalars ⇒ 1 + 1 = 2 components
ûi : ∂iûi = 0 ⇒ 3− 1 = 2 components
ûij : ∂iûij = 0 = ûi i ⇒ 6− 3− 1 = 2 components

(2.9)

Thus, we have 2+2+2=6 total components, and this is consistent with the
fact that tij is a rank 3 symmetric tensor.

Overall, the total number of independent components is preserved: in fact, with
this decomposition we have 1 + 1 + 2 + 2 + 2 + 2 = 10 degrees of freedom, as in eq.
(2.5).
With such a kind of decomposition, we can rearrange the line element (2.4) as

ds2 = a(τ)
{
− (1 + 2A)dτ2+

+ 2(∂iB + B̂i) dτ dx
i +
[
(1 + 2C)δij + 2∂〈i∂j〉E + 2∂(iÊj) + 2Êij

]
dxidxj

}
.

(2.10)

Since in general relativity every system is equivalent to the others, we are always
allowed to make coordinates transformation such as

xµ → x̃µ = xµ + ξµ , ξµ = (T,L) |ξµ| � 1 . (2.11)

Such a kind of transformation is called gauge transformation.
Both T and Li are functions of time and space, i.e. T = T (τ, xi), Li = Li(τ, xi).
Again, the vector part of ξµ can be decomposed according to (2.6) as{

Li = L̂i + ∂iL

∂iL̂
i = 0

⇒

{
ξ0 = T

ξi = L̂i + ∂iL
. (2.12)

Since the metric tensor transforms as

g̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ , (2.13)
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it is quite straightforward to determine the transformation laws for the parameters
in (2.10).
Taking into account that

a2(τ)→ [a(τ + T )]2 =
[
a(τ) + T a′(τ) +O(ξ2)

]2
= a2(τ) [1 + 2H T ] +O(ξ2) ,

(2.14)
where ′ indicates a derivative with respect to τ , and H is the Hubble parameter in
conformal time, one has, for example

−a2(τ)(1 + 2A) = g00 =
∂x̃α

∂x0

∂x̃β

∂x0
g̃αβ =

∂x̃0

∂x0

∂x̃0

∂x0
g̃00 +O(ξ2) =

= (δ0
0 + T ′)

2
[
−a2(τ̃)(1 + 2Ã)

]
+O(ξ2) =

= −(1 + 2T ′)a2(τ)(1 + 2H T )(1 + 2Ã) +O(ξ2) =

= −a2(τ)(1 + 2Ã+ 2HT + 2T ′) +O(ξ2) . (2.15)

By comparison it is easy to get the expression for Ã, which reads

Ã = A− T ′ −HT . (2.16)

In a similar way all the others coefficients are computed

Ã = A− T ′ −HT
B̃ = B + T − L′
˜̂
Bi = B̂i − L̂′i

Ẽ = E − L
˜̂
Ei = Êi − L̂i
˜̂
Eij = Êij

C̃ = C −HT − 1

3
∇2L . (2.17)

From these relations we can build up a set of quantities which do not change under
gauge transformations, which for this reason are called gauge-invariant.
For instance, if we consider

Ψ ≡ A+H(B − E′) + (B − E′)′ , (2.18)

this is gauge-invariant by construction.
The same property is fulfilled by

Φ ≡ −C −H(B − E′) +
1

3
∇2E . (2.19)

These two quantities are known as Bardeen potentials.
Other invariant quantities, although not as interesting as (2.18) and (2.19), are

Ψ̂i ≡ Ê′i − B̂i , Êij . (2.20)

These gauge-invariant variables can be thought as the “real” perturbations, since
they cannot be removed by means of coordinates transformations [11].

Since, as we mentioned above, it is always possible to make a change of coordi-
nates, we can fix the gauge in order to simplify equations: some popular gauge
choices are
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- Newtonian gauge.
It is defined by

B = 0 = E . (2.21)

From relations (2.18) and (2.19), the line element (2.10) becomes

ds2 = a(τ)
[
−(1 + 2Ψ)dτ2 + (1− 2Φ)δij dx

idxj
]
. (2.22)

This choice is called “Newtonian” since the line element is that of a small devi-
ation from the flat space, from which we can identify Ψ with the gravitational
potential.

- Spatially flat gauge.
It is defined by

C = 0 = E . (2.23)

2.1.2 Perturbations of the energy-momentum tensor

In an unperturbed Universe the energy-momentum tensor is given by eq. (1.6) with
gµν → ηµν ; for a comoving observer x i = const, so that u i = 0 = ui, while

ds2 = −dτ2 ⇒ −1 = −a2(u0)
2 ⇒ u0 =

1

a
, u0 = −a , (2.24)

where u0 =
dτ

ds
.

Perturbing the relation

gµνu
µuν = −1 (2.25)

one finds

0 = gµν(uµδuν + uνδuµ) + uµuνδgµν = uµuνδgµν + 2uµδu
µ . (2.26)

Taking into account that uµ =
δµ0
a and δg00 = −2a2A, eq. (2.26) becomes

− 2A− 2aδu0 = 0 ⇒ δu0 = −A
a
. (2.27)

Defining δui = vi

a we obtain

uµ =
1

a

(
1−A, vi

)
. (2.28)

The expression for uµ can be easily found by contracting it with gµν , so that at the
leading order

uµ = a [−(1 +A), vi +Bi] . (2.29)

As for the metric tensor, the first order perturbation in Tµν is

δTµν = δµνδp+ (δp+ δρ)uµuν + (p+ ρ)(uµδuν + uνδu
µ) , (2.30)
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where we have not taken into account a possible anisotropic term.
With relations (2.28), (2.29) it is easy to get the explicit components of (2.30). In
particular, one finds

δT 0
0 = −δρ

δT 0
i = (ρ+ p)(vi +Bi)

δT i0 = −(ρ+ p)vi ≡ −qi

δT ij = δij δp

. (2.31)

In a second reference frame there will be a different energy-momentum tensor T̃µν ,
related to this by

T̃µν =
∂x̃µ

∂xα
∂xβ

∂x̃ν
Tαβ , (2.32)

while the two frames are related by (2.11).
Combining (2.11) with (2.32), it can be shown that the following relation holds true

δT̃µν = δTµν − T
µ
ν,γ ξ

γ + T
γ
ν ξ

µ
,γ − T

µ
γ ξ

γ
,ν . (2.33)

By substituting the explicit components, we readily obtain

δρ̃ = δρ− ρ ′ T
δp̃ = δp− p ′ T
q̃i = qi + (ρ+ p)Li ′

ṽi = vi + Li ′

, (2.34)

where, again, thanks to (2.6) vi can be decomposed as vi = v̂i + ∂iv.

At this point it is worthwhile to introduce a dimensionless quantity, called den-
sity contrast, defined as

δ ≡ δρ

ρ
. (2.35)

Similarly to eqs. (2.18) and (2.19), we can define the following quantity

∆ ≡ δ +
ρ ′

ρ
(B + v) , (2.36)

which is gauge-invariant by construction.

Similarly to what we have done in the case of the perturbations of the metric,
we can impose gauge conditions. In particular we can consider

- Uniform density gauge.
It is defined by

δ = 0 = δρ . (2.37)

- Comoving gauge.
It is defined by

qi = 0 = Bi . (2.38)
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Adiabatic fluctuations

A fluctuation is called adiabatic if its value at given point in the perturbed space-
time is its value in the unperturbed one at the same spatial point, but at a different
time, for every species.
In other words, it means that, for a quantity A, we have

δA(τ,x) = A(τ + δτ(x),x) ≈ A(τ,x) +A ′(τ,x) δτ(x) . (2.39)

However, from the general definition of fluctuations

δA(τ,x) ≡ A(τ + δτ)−A(τ) , (2.40)

so that
δA(τ,x) ≈ A ′(τ) δτ(x) . (2.41)

This is the case, for example, for pressure and density.
Since eq. (2.41) is valid for every species, we obtain

δτ =
δρi
ρi
′ =

δρj
ρj
′ . (2.42)

From relation (1.12) one finds

H = − ρ ′

3ρ(1 + w)
, (2.43)

in such a manner that (2.42) becomes

δi
1 + wi

=
δj

1 + wj
. (2.44)

Because of relation (2.42), the speed of sound c2
s can be computed as

c2
s ≡

δp

δρ
=
p′

ρ′
. (2.45)

This is an important consequence, as we will note.

2.1.3 Perturbations of Einstein equations

In the following we assume the Newtonian gauge defined in (2.21), so that

gµν = a2

(
−(1 + 2Ψ) 0

0 (1− 2Φ)δij

)

gµν =
1

a2

(
−(1− 2Ψ) 0

0 (1 + 2Φ)δij

) . (2.46)

The Christoffel symbols then read

Γ0
00 = H+ Ψ′

Γ0
0i = ∂iΨ

Γi00 = ∂iΨ

Γ0
ij = δij [H− 2H(Ψ + Φ)− Φ′]

Γij0 = δij(H− Φ′)

Γijk = −(δij∂kΦ + δik∂jΦ) + δjk∂
iΦ

. (2.47)
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Continuity equation

The energy momentum tensor satisfies the continuity equation

0 = ∇µTµν , (2.48)

which in fact is a system of four differential equations.

i) ν = 0

From eq. (2.31) and (2.47) we get

0 = Tµ0,µ + Γµαµ T
α

0 − Γαµ0 T
µ
α =

= −
[
ρ ′ + δρ′ + ∂iq

i + 3(H− Φ′)(ρ+ p) + 3H(δρ+ δp)
]

+O(2) ,

where O(2) means that second order perturbations have been neglected.
Separating the leading order from the first order in perturbations we get two
equations, which combined together give

δ′ + 3Hδ
(
δP

δρ
− p

ρ

)
+

(
1 +

p

ρ

)(
∇ · v − 3Φ′

)
= 0 , (2.49)

which represents the relativistic version of the continuity equation.

ii) ν = i

From eq. (2.31) and (2.47) we get

0 = Tµi,µ + Γµαµ T
α
i − Γαµi T

µ
α =

= q′i + ∂iδp+ 4qiH+ (ρ+ p)∂iΨ +O(2) .

Taking into account eq. (1.12), and the definition of qi in (2.31), one finds

v′ +Hv − 3H p ′

ρ ′
v +

∇δp
ρ+ p

+∇Ψ = 0 . (2.50)

Einstein equations

The next step is to compute the Einstein equations

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν . (2.51)

In order to do this we firstly have to calculate the Riemann tensor, and from it to
determine the Riemann symbol and the Riemann scalar.
The computation is quite easy, even if a bit tedious, so we simply write the main
stages

R00 = −3H′ +∇2Ψ + 3H(Φ′ + Ψ′) + 3Φ′′ +O(2) . (2.52)

R0i = 2∂iΦ
′ + 2H∂iΨ +O(2) . (2.53)
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Rij = δij
[
H′ − 2H′(Φ + Ψ)−HΨ′ − 5HΦ′ − Φ′′ +∇2Φ + 2H2 − 4H2(Φ + Ψ)

]
+

+ ∂i∂j(Φ−Ψ) +O(2) . (2.54)

R = g00R00 + gijRij =

=
1

a2

[
6(H′ +H2)− 2∇2Ψ + 4∇2Φ− 12Ψ(H′ +H2)− 6Φ′′ − 6H(Ψ′ + 3Φ′)

]
.

(2.55)

Due to these equations, the components of the Einstein tensor Gµν are

G00 = 3H2 + 2∇2Φ− 6HΦ′ . (2.56)

G0i = 2∂i(Φ
′ +HΨ) . (2.57)

Gij = δij
[
∇2(Ψ− Φ) + 2Φ′′ − (2H′ +H2) + 2(2H′ +H2)(Φ + Ψ) + 2HΨ′ + 4HΦ′

]
+

+ ∂i∂j(Φ−Ψ) . (2.58)

Now that we have the Einstein tensor, and the energy-momentum tensor, we can
write the Einstein equations explicitly.
Separating the components we obtain:

i) Component i 6= j
In this case Tij = 0, from which it follows

∂i∂j(Φ−Ψ) = 0 ⇒ Φ = Ψ , (2.59)

where we have assumed that the potential are regular at infinity, so that the
integration constant vanishes.

ii) Component 0i
In this case

T0i = g00T
0
i = −a2 qi , (2.60)

and consequently
∂i(Φ

′ +HΦ) = −4πGa2qi . (2.61)

By assuming again the decaying at infinity it is equivalent to

Φ′ +HΦ + 4πGa2v(ρ+ p) = 0 . (2.62)

iii) Component 00
In this case

T00 = g00 T
0

0 = a2(1 + 2Φ)ρ(1 + δ) = a2ρ(1 + δ + 2Φ) +O(2) , (2.63)

from which
3H2 + 2∇2Φ− 6HΦ′ = 8πGa2ρ(1 + δ + 2Φ) . (2.64)

It is now worthwhile to consider the unperturbed order and the perturbed one
separately: so doing we get
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- zeroth order
At the unperturbed order we recover the Friedman equation (1.15)

H2 =
8πG

3
ρa2 . (2.65)

- first order
The lowest order in perturbations gives

∇2Φ = 4πGa2δ + 3H(Φ′ +HΦ) . (2.66)

Substituting in it eq. (2.62) and then (2.36), we can recast this equation
into

∇2Φ = 4πGa2ρ∆ . (2.67)

iv) Component ii
In this case

Tii = gij T
j
i = a2δij(1− 2Φ)δj i(p+ δp) = a2(p+ δp− 2Φ) +O(2) , (2.68)

and then

2Φ′′ − (2H′ +H2) + 4(2H′ +H2)Φ + 6HΦ′ = 8πGa2(p+ δp− 2pΦ) . (2.69)

Again, let’s separate the orders in perturbations:

- zeroth order
At the unperturbed order we find

2H′ +H2 = −8πGa2p , (2.70)

which is nothing but the equation (1.16b).

- first order
At the first order we have remained with

Φ′′ + 2(2H′ +H2)Φ + 3HΦ′ = 4πGa2(δp− 2pΦ) . (2.71)

Using again eq. (1.16b) for the term proportional to p in the rhs, we have

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2δp . (2.72)

The Einstein equations we have just found are usually solved trough the expansion
in Fourier modes, so that a generic quantity A(τ,x) is substituted by

A(τ,x) =

∫
dk

(2π)3 A(τ,k) e−ik·x ≡
∫

dk

(2π)3 Ak e
−ik·x . (2.73)

By imposing that A(τ, x) has to be real, we get the reality condition

A∗k = A−k . (2.74)
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2.2 Curvature perturbation

Let’s go back to the most general expression for the perturbed metric (2.5): the
induced metric on a constant time hypersurface is

γij = a2 [(1 + 2C)δij + 2Eij ] , (2.75)

where 2Eij = hij .
As a consequence, the inverse induced metric is

γij =
1

a2
[(1− 2C)δij − 2Eij ] . (2.76)

The corresponding Christoffel symbol, considering scalar perturbations only, is

(3)Γijk = 2δi(j∂k)C + 2∂(jEk)
i − δjkC,i − Ejk,i . (2.77)

Since it is already a first order quantity in perturbations, it is quite straightforward
to find the expression for the Ricci symbol, which reads

(3)R =
1

a2

[
∂a(δ

ij (3)Γaij)− ∂i (3)Γaia

]
. (2.78)

By assumption, Eij is traceless, so that the first term is

(3)Γaij = 2∂iE
ia − ∂aC , (2.79)

while the second one is
(3)Γaia = δaa∂iC = 3∂iC . (2.80)

Thus eq. (2.78) is

(3)R =
1

a2

[
∂a(2∂iE

ia − ∂aC)− 3∂i∂iC
]

=
1

a2

[
2∂i∂jE

ij − 4∇2C
]
. (2.81)

As we mentioned, we are just considering scalar perturbations: for this reason, from
(2.10) we know that

Eij = ∂〈i∂j〉E ≡
(
∂i∂j −

δij
3
∇2

)
E , (2.82)

from which
(3)R =

1

a2

[
4

3
∇4E − 4∇2C

]
, (2.83)

and finally

a2 (3)R = −4∇2

(
C − ∇

2E

3

)
≡ 4∇2K . (2.84)

K is called curvature perturbation: from this we define a comoving curvature per-
turbation R, defined as the curvature perturbation in the comoving gauge (2.38),
characterized by Bi = 0 = qi.
However, it is convenient to have a gauge-invariant expression for R, so that we will
be able to calculate it in any gauges: since in the comoving gauge B and v vanish,
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we are free to add a linear combination of these to eq. (2.84).
All these things considered, we define

R ≡ −C +
∇2E

3
−H(B + v) , (2.85)

which is manifestly gauge-invariant if we take into account expressions (2.17) and
(2.34).

Since we will make all our considerations in the Newtonian gauge, it is worth-
while to determine some properties of the comoving curvature perturbation in such
a gauge.
Newtonian gauge is defined by condition (2.21), so that (2.85) simplifies to

R = Ψ−Hv (2.86)

From the Einstein equation (2.62) we can eliminate the velocity v to obtain

R = Ψ +H Ψ′ +HΨ

4πGa2(ρ+ p)
. (2.87)

Thanks to the Friedman equation (1.15) we can recast this equation into

R = Ψ +H 2(Ψ′ +HΨ)

3H2(1 + w)
= Ψ +

2

3

Ψ′ +HΨ

H(1 + w)
(2.88)

2.3 Mukhanov-Sasaki equation

At very high energy matter is well described in term of fields [25]; for this reason,
we should substitute in the expression for the energy-momentum tensor that for a
scalar field.
In this section, we consider the general context of k-inflation, in such a manner
that the considerations we do are valid also for the case of inflation with a standard
kinetic term. We consider the general Lagrangian (1.82) [14]

L = P (χ, φ) . (2.89)

In this context, we perturb the scalar field as

φ(τ,x) = φ(τ) + δφ(τ,x) , (2.90)

so that the kinetic terms becomes

χ = −1

2
gµν∂µφ∂νφ− gµν∂µφ∂νδφ = −1

2
g00φ ′

2 − g00φ ′δφ′ =

=
1

a2

(
φ ′

2

2
+ φ ′δφ′ − φ ′2Ψ

)
≡ χ+ δχ , (2.91)

where as usual we have chosen Newtonian gauge.
From this relation we find that the first order in perturbation of the kinetic term is

δχ =
1

a2

(
φ ′δφ′ − φ ′2Ψ

)
= 2χ

(
δφ′

φ ′
−Ψ

)
. (2.92)
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For the energy-momentum tensor we have to refer to eq. (1.89): in particular, since
it is the tensor of perfect fluid by hypothesis, it is

δT 0
0 = −δρ . (2.93)

In order to obtain an expression for δρ, let’s consider the continuity equation before:
since ρ = ρ(φ, χ), we have

− 3H(P + ρ) = ρ′ = ρφφ
′ + ρχχ

′ ⇒ ρφ = −3
H
φ′

(P + ρ)− ρχ
χ′

φ′
. (2.94)

Then, using definition (1.90) and eq. (2.92), we find

δρ = ρχδχ+ ρφδφ = ρχ

(
δχ− χ ′ δφ

φ ′

)
− 3H(P + ρ)

δφ

φ ′
=

=
P + ρ

c2
s

(
δφ′

φ ′
−Ψ− φ ′′

φ ′
2 δφ+H δφ

φ ′

)
− 3H(P + ρ)

δφ

φ ′
=

=
P + ρ

c2
s

[
d

dτ

(
δφ

φ ′

)
+H δφ

φ ′
−Ψ

]
− 3H(P + ρ)

δφ

φ ′
, (2.95)

from which

δT 0
0 = −P + ρ

c2
s

[
d

dτ

(
δφ

φ ′

)
+H δφ

φ ′
−Ψ

]
+ 3H(P + ρ)

δφ

φ ′
. (2.96)

Determining the expression for δT 0
i, instead, is simpler, since

T 0
i = g00T0i = − 1

a2
(1− 2Ψ)(P + ρ)u0ui = − 1

a2
(1− 2Ψ)(P + ρ)

∂0φ∂iφ

2χ
=

= − 1

a2
(P + ρ)

φ ′ ∂iδφ

2χ
= −(P + ρ)

∂iδφ

φ ′
= δT 0

i (2.97)

since it is first order in perturbations.
By comparison with eq. (2.31) we note that also in this case

v = −δφ
φ ′

, (2.98)

and then from (2.86)

R = Ψ +Hδφ
φ ′

. (2.99)

Furthermore, from eqs. (2.56)-(2.58), the Einstein tensor is

G0
0 = g00G00 = − 1

a2
(1− 2Ψ)(3H2 + 2∇2Φ− 6HΦ′) =

= −3H2

a2
− 2

a2
[∇2Φ− 3H(Φ′ +HΨ)] . (2.100)

G0
i = g0iG00 = − 2

a2
∂i(Φ

′ +HΨ) . (2.101)

Gij = δij
[
∇2(Ψ− Φ) + 2Φ′′ − (2H′ +H2) + 2(2H′ +H2)(Φ + Ψ) + 2HΨ′ + 4HΦ′

]
+

+ ∂i∂j(Φ−Ψ) . (2.102)

As in the previous considerations, we just have to compute the Einstein equations.
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i) Component i 6= j
As usual, Tij = 0, from which it follows

∂i∂j(Φ−Ψ) = 0 ⇒ Φ = Ψ , (2.103)

where we have assumed that the potential are regular at infinity, so that the
integration constant vanishes.

ii) Component 0i
If the potential are sufficiently regular we can drop the spatial derivative to
find

Ψ′ +HΨ = 4πGa2(P + ρ)
δφ

φ ′
, (2.104)

which can be written in the equivalent form

d

dτ

(
a2Ψ

H

)
=

4πGa4(P + ρ)

H2

(
H δφ

φ ′
+ Ψ

)
. (2.105)

iii) Component 00
We directly consider the first order in perturbation: thanks to (2.104) we get

∇2Ψ− 3H(Ψ′ +HΨ) = ∇2Ψ−
��

���
���

��
12HπGa2(P + ρ)

δφ

φ ′
=

= 4πGa2

{
P + ρ

c2
s

[
d

dτ

(
δφ

φ ′

)
+H δφ

φ ′
−Ψ

]
−
���

���
�

3H(P + ρ)
δφ

φ ′

}
,

(2.106)

and using again (2.104) together with (1.16a)

∇2Ψ =
4πGa2(P + ρ)

c2
s

[
d

dτ

(
δφ

φ ′

)
+H δφ

φ ′
−Ψ

]
=

=
4πGa2(P + ρ)

Hc2
s

[
H d

dτ

(
δφ

φ ′

)
+ Ψ′ +H′ δφ

φ ′

]
=

=
4πGa2(P + ρ)

Hc2
s

d

dτ

[
H δφ

φ ′
+ Ψ

]
(2.107)

The quantity in the square brackets is nothing but R, so that this relation can be
recast, thanks to the Friedman equations, as

∇2Ψ =
3H
2c2
s

(1 + w)R′ , (2.108)

or in Fourier space as
3

2
(1 + w)R′k = −c

2
sk

2

H
Ψk . (2.109)

This equation is fundamental, since it ensures that on super-horizon scales (i.e. with
k � H) the comoving curvature perturbation is almost constant. It is customary to
say that on scales much larger than the horizon, the curvature perturbation is frozen.
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Equations (2.105) and (2.107) can be written in a different way by introducing
the variables

z ≡ a2
√
P + ρ

Hcs
(2.110a)

θ ≡ 1

zcs
=

H
a2
√
P + ρ

, (2.110b)

and

v ≡ zR =
a2
√
P + ρ

φ ′cs

(
δφ+

φ ′

H
Ψ

)
(2.111a)

u ≡ Ψ

4π
√
P + ρ

. (2.111b)

With these quantities, they become

∇2u =
z

cs

(v
z

)′
, v =

θ

cs

(u
θ

)′
. (2.112)

Applying the laplacian to the second equation, and taking into account the first
one, we get

∇2v =
1

zc2
s

d

dτ

(
zcs

z

cs

(v
z

)′)
=

1

zc2
s

(
zv′′ − vz′′

)
. (2.113)

If we now go to Fourier space, the latter reads

v′′k +

(
c2
sk

2 − z′′

z

)
vk = 0 , (2.114)

which is the generalized Mukhanov-Sasaki equation.
Equation (2.114) for the curvature perturbation R is

R′′k + 2
z′

z
R′k + c2

sk
2Rk = 0 . (2.115)





Chapter 3

Spectrum and bispectrum

3.1 Spectrum of curvature perturbation

In this section we determine the power spectrum for the curvature perturbation.
Firstly, we briefly remind some concepts of the harmonic oscillator, since the anal-
ogy between this simple system and our treatment of R is quite strong and evident.
We then define quantitatively the power spectrum, and we study how this is related
to observational parameters.

3.1.1 Brief review of harmonic oscillator

In this subsection we briefly summarize some results for the harmonic oscillator
which will be useful for our future considerations.
Let’s start from the action [26]

S =

∫
dt

(
ẋ

2
− ω2 x2

2

)
=

∫
dtL , (3.1)

where both x and ω are time-dependent, and the mass is m = 1.
From this action, the equations of motion can be found as

δS = 0 ⇒ ẍ+ ω2x = 0 . (3.2)

To quantize the system, the first step is to define the conjugate momentum p as

p =
δL

δ ẋ
= ẋ . (3.3)

Secondly, we promote both x and p to operators, and impose the commutation rule

[x̂, p̂] ≡ i . (3.4)

Now, we can decompose the position operator x̂ as

x̂ ≡ v(t)a+ h.c. , (3.5)

35
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where v is a complex number and a is a time-independent operator.
Inserting this decomposition into (3.4), we find

i = (vv̇∗ − v∗v̇)[a, a†] ≡ iW [v, v][a, a†] , (3.6)

where W is the Wronskian [27, 28].
Since we can choose, without loss of generality, v in such a manner that W [v, v] is
positive. Furthermore, by rescaling v so that W [v, v] = 1, we obtain the commuta-
tion rule

[a, a†] = 1 , (3.7)

which is the usual commutation relation between ladder operators.
The vacuum of the system is a vector |0〉, and it is defined through the action of
the destruction operator a on it, i.e.

a |0〉 ≡ 0 . (3.8)

Conversely, the excited states are defined as

|n〉 =
1√
n!

(a†)
n |0〉 . (3.9)

The Hamiltonian for the system is

Ĥ =
p̂2

2
+
ω2x̂2

2

=
1

2

[
(v̇2 + ω2v2)aa+ h.c.

]
+

1

2

[
(|v̇|2 + ω2|v|2)(aa† + a†a)

]
. (3.10)

By demanding that the vacuum state |0〉 is a state with zero energy, we find

〈0|Ĥ|0〉 = 0 ⇒ v̇ = ±iωv . (3.11)

The positivity of W [v, v] selects the minus sign, and if we choose W [v, v] = 1 we
find the normalized solution

v(t) =

√
1

2ω
e−iωt . (3.12)

3.1.2 Curvature perturbation power spectrum

We now apply the considerations for the harmonic oscillator to the variables v and
R introduced in sections 2.2 and 2.3.
First of all, we note that the Mukhanov-Sasaki equation (2.114) in real space comes
from the action [29, 30]

S =
1

2

∫
dτ dx

[
(v′)

2 − c2
s(∂iv)2 +

z′′

z
v2

]
≡
∫
dτL . (3.13)

The next step is to get the conjugate momentum of v, which is simply

π ≡ δL
δv′

= v′ . (3.14)



3.1. SPECTRUM OF CURVATURE PERTURBATION 37

Then, we follow the standard procedure to quantize a system: we promote v and π
to the operators v̂ and π̂, and impose the usual commutation relation (remember
~ = 1)

[v̂(τ,x), π̂(τ,y)] ≡ iδ(x− y), other vanishing . (3.15)

The operator v̂ follows the same equation as the corresponding classic variable [14]

v̂′′ −
(
c2
s∇2 +

z′′

z

)
v̂ = 0 , (3.16)

whose general solution can be written in Fourier space as

v̂(τ,x) =
1

(2π)3

∫
dk
[
â(k)v(τ,k)eik·x + b̂(k)v∗(τ,k)e−ik·x

]
. (3.17)

Here, â and b̂ are operators, while the mode functions fulfil the same Mukhanov-
Sasaki equation (2.114)

v′′k +

(
c2
sk

2 − z′′

z

)
vk = 0 , (3.18)

with vk ≡ v(τ,k).
The commutations rules (3.15) can be realized if we consider â and b̂ satisfying the
usual commutation relations for creator/annihilation operators[

â(k), b̂(p)
]

= (2π)3δ(k − p) , other vanishing , (3.19)

together with the condition on the mode functions

vkv
′∗
k − v∗kv′k = i . (3.20)

For this reason, we will indicate â(k) with ak and b̂(k) with a†k.

For our future considerations, it is more useful to deal with the curvature per-
turbation R̂k rather than v̂k.
Therefore we quantize Rk as [3, 31, 32]

R̂k(τ) = Rk(τ)ak +R∗−k(τ)a†−k (3.21a)[
ak, a

†
k′

]
= (2π)3δ(k − k′) , (3.21b)

so that

R̂(τ,x) =
1

(2π)3

∫
dk
[
Rk(τ)ak +R∗−k(τ)a†−k

]
eik·x . (3.22)

We have seen that the Mukhanov-Sasaki variable vk satisfies the equation

v′′k +

(
c2
sk

2 − z′′

z

)
vk = 0 , (3.23)

with

z =
a2
√
P + ρ

Hcs
=
a
√
P + ρ

Hcs
. (3.24)
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Taking into account relations (1.14) and (1.60), we can recast z as

z =
aMPl

cs

√
2ε1 . (3.25)

Eq. (3.23) is the equation for a harmonic oscillator with a time-dependent frequency

ω2
k(τ) = c2

sk
2 − z′′

z
(3.26)

From eq. (3.25) we are able to express the ratio z′′/z in terms of the HFF [20].
Let’s firstly note that

z′′

z
=
a2

z
(z̈ +Hż) . (3.27)

Thus, we have to calculate the first and the second derivative of z:

- First derivative
The first derivative is

ż = MPl

√
2

[(
ȧ

cs
− a ċs
cs2

)
√
ε1 +

a

2cs

ε̇1√
ε1

]
= z

[
H − ċs

cs
+

1

2

ε̇1
ε1

]
=

= Hz
(

1− s+
ε2
2

)
. (3.28)

- Second derivative
Taking a further derivative we find

z̈ = (Ḣz +Hż)
(

1− s+
ε2
2

)
+Hz

(
ε̇2
2
− ṡ
)

=

=
[
−H2zε1 +H2z

(
1− s+

ε2
2

)](
1− s+

ε2
2

)
+H2z

(
ε2ε3

2
− ṡ

H

)
=

= H2z

[
1− ε1 + ε2 − 2s− ε1ε2

2
+ ε1s− ε2s+

ε2
2

4
+ s2 +

ε2ε3
2
− ṡ

H

]
.

(3.29)

It is now straightforward to get the expression for z′′/z, and we have [33]

z′′

z
= a2H2

[
2− ε1 +

3ε2
2
− 3s− ε1ε2

2
+ ε1s− ε2s+

ε2
2

4
+ s2 +

ε2ε3
2
− ṡ

H

]
(3.30)

At sufficiently early times, all the modes where deep inside the horizon, which means
that k � aH = H, or equivalently |kτ | � 1. We know from eq. (1.45a) that in the
inflationary slow-roll scenario, early times correspond to infinite negative conformal
time. Thus, at zeroth order in HFF, in the remote past

ω2
k ≈ c2

sk
2 − 2

τ2

τ→−∞−−−−→ c2
sk

2 , (3.31)

where eq. (3.30) for slowly varying slow-roll parameters has been used.
In this limit, the Mukhanov-Sasaki equation (3.23) has two independent solutions
vk ∝ e±icskτ ; however, in a similar way to section 3.1.1, one can shows that the only
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acceptable mode is vk ∝ e−icskτ .
To get an explicit expression for such a mode, we exploit the normalization condition
on the wronskian, i.e. W [v, v] = 1. Expressing the mode function as vk = Ce−icskτ ,
we have

W [v, v] = 1 ⇔ C =
1√

2csk
. (3.32)

As a consequence, we find out that at very early times

vk(τ) =
e−icskτ√

2csk
. (3.33)

This defines a preferable set of mode function and a unique vacuum, called Bunch-
Davies vacuum. Eq. (3.33) is nothing but a plane wave which propagates in
Minkowski space-time.

We now presume a phase of slow-roll with a constant speed of sound [28]. At
first order in HFF, we have

z′′

z
≈ H2

[
2− ε1 +

3ε2
2

]
. (3.34)

In addition, the slow-roll parameter ε1 can be written as

ε1 = − Ḣ

H2
= 1− H

′

H2
⇒ d

dτ

(
1

H

)
= ε1 − 1 . (3.35)

If we consider ε1 as almost constant, we can integrate this equation to get

H =
1

τ(ε1 − 1)
≈ −1

τ
(1 + ε1) . (3.36)

Equation (3.30) then reduces to

z′′

z
≈ 1

τ2

[
2 + 3ε1 +

3ε2
2

]
=
ν2 − 1

4
τ2

, (3.37)

where we have defined

ν ≡ 3

2
+ ε1 +

ε2
2
. (3.38)

The Mukhanov-Sasaki (3.23) then becomes

v′′k +

(
c2
sk

2 − 4ν2 − 1

4τ2

)
vk = 0 . (3.39)

Let’s introduce now the quantity x ≡ −cskτ , so that the equation above is

d2vk
dx2

+

(
1− 4ν2 − 1

4x2

)
vk = 0 . (3.40)

By defining

vk(x) ≡
√

x

csk
y(x) , (3.41)
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we finally recast it as

x2 d
2y

dx2
+ x

dy

dx
+
(
x2 − ν2

)
y = 0 . (3.42)

This is a Bessel equation in its canonical form; therefore, the solution can be written
as a combination of the cylindrical harmonics Jν(x) and Yν(x). However, in this
case, it is more convenient to write the solution as a combination of the Hankel

functions H
(1,2)
ν (x) ≡ Jν(x)± iYν(x).

Being x = −cskτ , let’s write the solution as

vk(τ) ≡ −
√
−πτ
2

[
αkH

(1)
ν (−cskτ) + βkH

(2)
ν (−cskτ)

]
, (3.43)

with αk and βk which are called Bogoliubov coefficients.
From the property of the Hankel functions

lim
x→∞

H(1,2)
ν (x) =

√
1

xπ
(1∓ i) e±i(x−

πν
2 ) , (3.44)

we can write an expression for the mode function valid asymptotically in the past.
This is

lim
cskτ→−∞

vk(τ) = −(1− i)αk e−i(cskτ+πν
2

) + (1 + i)βk e
i(cskτ+πν

2
)

2
√
csk

. (3.45)

Evaluating this at zeroth order in HFF (ν = 3
2), if we want it to be equal to (3.33),

we constraint the Bogoliubov coefficients to be

ak = 1 , βk = 0 . (3.46)

Thus, the general solution of the Mukhanov-Sasaki equation (3.23), at first order in
HFF, for an almost constant speed of sound, is

vk(τ) = −
√
−πτ
2

H(1)
ν (−cskτ) . (3.47)

At the leading order in slow-roll parameters, ν = 3
2 ; then, the Hankel function takes

the simple form

H
(1)
3/2 (−cskτ) =

√
2

π(−cskτ)3 (−i+ cskτ)e−icskτ , (3.48)

and then

vk(τ) =
−i√
2k3c3

s

1 + icskτ

τ
e−icskτ =

e−icskτ√
2csk

(
1− i

cskτ

)
, (3.49)

which reduces to (3.33) in the asymptotic past, as it should.

Now, from definition of z in (3.25), we find the expression for Rk
1

Rk(τ) =
iH

2MPl

√
ε1csk3

(1 + icskτ)e−icskτ , (3.50)

1So far, we have treated cs as a constant. In fact, if this is not true, all the exponential factors
become ei

∫
cskdτ , in accordance with [33].
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where we have taken into account that if ν = 3
2 we have a de Sitter Universe with

a = −(Hτ)−1.

Now that we have an expression for R̂k, we are able to define a quantity which
will become fundamental later: the primordial power spectrum of curvature pertur-
bation.
The two-point correlation function of R̂k is defined in terms of the power spectrum
as

〈R̂kR̂k′〉 = 〈0|
(
Rk(τ)ak +R∗−k(τ)a†−k

)(
Rk′(τ)ak′ +R∗−k′(τ)a†−k′

)
|0〉 =

= RkR∗−k′ 〈0|aka
†
−k|0〉 = RkR∗−k′ 〈0|

[
ak, a

†
−k

]
|0〉 =

= (2π)3δ(k + k′)|Rk|2 ≡ PR(k) (2π)3δ(k + k′) , (3.51)

with the δ function which comes from commutation relation and insures the invari-
ance under translation for the background [34].
PR = |R(τ,k)|2 is the dimensional power spectrum; however, it is more useful to
define a dimensionless power spectrum PR(k) as

PR(k) ≡ k3

2π2
PR(k) =

k3

2π2
|Rk|2 . (3.52)

From eq. (3.50) we readily find

PR(k) =
H2

8π2M2
Plε1cs

[
1 +

(
csk

aH

)2
]

superhorizon−−−−−−−−→ H2

8π2M2
Plε1cs

. (3.53)

We have seen that during inflation the Hubble radius decreases (cf. eq. (1.40));
thus, if we suppose that inflation lasts a sufficient lapse of time, every scales crosses
the horizon sooner or later. However, from eq. (2.109) we know that on super-
horizon scales the comoving curvature perturbation R, and consequently the power
spectrum PR, are almost constant.
For this reason, we will approximate the curvature power spectrum at the horizon
crossing as

PR(k) =
H2

8π2M2
Plε1cs

∣∣∣∣
k=aH

. (3.54)

Since the r.h.s. of the above equation is evaluated at the horizon crossing, the
power spectrum PR is purely a function of k. In particular, if it is k-independent,
i.e. ∝ k0, we say that the power spectrum is scale-invariant.
However, since H and ε1 are functions of time, even if slowly varying, we assume a
slight deviation from scale-invariance, and parametrize the power spectrum as

PR(k) ≡ As
(
k

k∗

)ns−1

, (3.55)

where k∗ is a reference (or pivot) scale, e.g. k∗ = 0.05 Mpc−1, and ns is called scalar
spectral index, while the amplitude is given by

As =
H2

8π2M2
Plε1cs

. (3.56)
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The measured amplitude As for the spectrum at this scale k∗ is [7]

As : ln(1010As) = 3.094± 0.034 . (3.57)

From the definition of scale-invariant power spectrum, it is clear that such a con-
dition corresponds to ns = 1; in this case, PR is known as Harrison-Zel’dovich
spectrum.

If ns has no wavelength dependence, it can be determined as

ns − 1 =
d lnPR
d ln k

. (3.58)

Taking into account definitions (1.60), (1.61) and (1.91) we obtain from eq. (3.54)

ns − 1 =
d lnPR
dN

dN

d ln k
=

(
2
d lnH

dN
− d ln ε1

dN
− d ln cs

dN

)
dN

d ln k
=

= (−2ε1 − ε2 − s)
dN

d ln k
= (−2ε1 − ε2 − s)

[
d

dN
(N + lnH)

]−1

≈

≈ (−2ε1 − ε2 − s)(1 + ε1) ≈ (−2ε1 − ε2 − s) . (3.59)

Thus, the scalar spectral index is related to the HFF by

ns = 1− 2ε1 − ε2 − s , (3.60)

from which it is clear that the slow-roll parameters are the responsible for the
deviation from scale invariance.
Observations suggest that there is a slight deviation from ns = 1; in particular, for
the pivot scale k∗ = 0.05 Mpc−1, the value of the spectral index at 68% CL is [7]

ns = 0.9652± 0.0062 . (3.61)

It is important to stress that the expression for the power spectrum (3.51) is anal-
ogous to that for the two-points correlation function for a Gaussian field (see eq.
(A.13) in appendix). Therefore, we could wonder if it is correct to identify Rk with
a Gaussian random variable, with variance [35]

σ2
R = 4π3|Rk|2 . (3.62)

Indeed, this identification is correct, since when we have quantized the system, we
have treated R̂k as a quantum free field made up of a collection of harmonic oscilla-
tors with mode functions Rk. In addition, by construction, each mode started out
in its own ground state, which for a free harmonic oscillator is a stationary state
represented by a Gaussian wavepacket with variance σ2

R ∝ |Rk|2. Secondly, in ex-
pression (3.54), which is evaluated at horizon crossing, the phase of Rk are random,
expect for the reality condition, and this is another characteristic of Gaussian fields
[15].
Furthermore, linear theory does not mix up different modes, so that if two modes
start as independent, they will remain as long as the linear approximation is ade-
quate.
For it reason, it is customary to say that inflation generates primordial Gaussian
fluctuations.



3.2. TENSOR MODES 43

3.2 Tensor modes

In the previous section we have analysed the scalar curvature perturbation and its
power spectrum, which indeed come from scalar perturbations of the metric. In
a similar way, we can consider tensor perturbation, and treat them separately. In
fact, this is possible since at the linear order perturbations in the metric (2.5) do
not mix with each others.
Thus, the line element which contains tensor perturbations is

ds2 = a2
[
−dτ2 + (δij + hij)dx

idxj
]
. (3.63)

hij is a rank 3, symmetric tensor, so that it would have 6 independent components:
however, since it is traceless and divergenceless, it has only two degrees of freedom,
which are called gravitational waves polarizations.
It is customary to write

hij = h+e
+
ij + h×e

×
ij ≡

∑
s

hs e
s
ij , (3.64)

where esij (s = +,×) are called polarization tensors, and have the properties

esij = esji

kiesij = 0

esii = 0

esij
∗(k) = esij(−k)∑

s

esij
∗(k)es

′
ij(k) = 4δss′

. (3.65)

Without loss of generality, we can write

hij =

h+ h× 0
h× −h+ 0
0 0 0

 , (3.66)

which represents a perturbation in the xy-plane. This means that the wave vector
k propagates along the z-axis.

From the Einstein equations, it can be shown that the amplitudes hs satisfy the
equations

ḧs,k + 3Hḣs,k +
k2

a2
hs,k = 0 . (3.67)

Introducing the new function

h̃s,k ≡
aMPl√

2
hs,k , (3.68)

the previous equation corresponds to

h̃′′s,k +

(
k2 − a′′

a

)
h̃s,k = 0 , (3.69)
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which is the same as the Mukhanov-Sasaki equation with z′′/z → a′′/a and cs = 1.
For this reason, we do not repeat here the full calculation, but we only present the
main results.
In analogy with what we have done in the previous section, the quantity a′′/a can
be recast as

a′′

a
=

1

τ2
(2 + 3ε1) =

4νt − 1

4τ2
, (3.70)

where

νt ≡
3

2
+ ε1 . (3.71)

Therefore, the solution h̃k is the same for both the polarizations, and it is equal to
(3.47), with the substitutions cs → 1 and ν → νt.
If we consider the leading order in HFF, the power spectrum Ph(k) on superhorizon
scales is

Ph(k) ≡ k3

2π2
|hij(k)|2 =

k3

2π2

∑
s,p

esije
p
ij
∗
hs,kh

∗
p,k =

k3

2π2
4|h̃k|2

2

a2M2
Pl

≈ 2H2

π2M2
Pl

.

(3.72)
If we assume that this spectrum is almost scale-invariant, we can rewrite it as

Ph(k) ≡ At
(
k

k∗

)nt
, (3.73)

where the amplitude is given by

At =
2H2

π2M2
Pl

, (3.74)

and the spectral index for tensor modes by

nt ≡
d lnPh
d ln k

= 2
Ḣ

H2
(1 + ε1) ≈ −2ε1 = 3− 2νt . (3.75)

In the case of tensor perturbations, the scale invariance is characterized by nt = 0.

For single-field inflationary models, an important is the so called tensor-to-scalar
ratio, which is defined as

r ≡ At
As

. (3.76)

Combining eqs. (3.56) and (3.74), the so called consistency condition between the
tensor-to-scalar ratio and the tensor spectral index holds

r ≈ 16ε1 . (3.77)

The above relation holds to first order in the slow-roll parameters, and a modified
one is needed to second order. When the inflaton has non-trivial speed of sound,
the first order consistency condition in (3.77) is modified as

r ≈ 16csε1 . (3.78)
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With the pivot scale k∗ = 0.05 Mpc−1, the the Planck alone 2015 95% CL upper
limit is [1]

r0.05 < 0.11 . (3.79)

Another pivot scale which is often used is k∗ = 0.002 Mpc−1. For this different scale
the Planck 2015 upper limit is

r0.002 < 0.10 . (3.80)

At this scale, the constraints in the plane (ns, r) with some representative inflation-
ary models are shown in Fig. 3.1

Figure 3.1: Marginalized joint 68% and 95% CL regions for n s and r0.002 from
Planck in combination with other data sets, compared to the theoretical predictions
of selected inflationary models (figure taken from [1]).

3.3 Bispectrum of curvature perturbation

In the previous section we have defined the power spectrum for primordial curvature
perturbation, and we have seen that inflation gives rise to Gaussian fluctuations.
However, this is true if we calculate the correlation functions in the vacuum state,
and if we assume to be valid the approximation of a linear theory. Thus, if we in-
troduce a perturbation, it is quite natural that modes start to mix with each other,
and that they can evolve from their vacuum state.
This is the idea behind the so called in-in formalism: one tries to study how dif-
ferent modes which are initially in their vacuum state evolve in the presence of a
non-linear interaction term.

Our next goal is then to calculate the bispectrum, which is the correspondent quan-
tity for the three-points correlation function.
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As a first step, we present a summary on the key points of the in-in formalism.
Then, we show how the bispectrum can be calculated from a general third order
Lagrangian.

3.3.1 The ‘in-in’ formalism

To connect fundamental theory with observations, a central object to compute is
the time correlation function of a certain operator A(t) [28]. What one wants to
compute is therefore the quantity

〈A(t)〉 , (3.81)

where the expectation value is calculated with respect to the initial state |0in〉 [36]:
such an initial state is usually assumed to coincide with the Bunch-Davies vacuum.

This is usually realized by working in the interaction picture, in which the Hamil-
tonian of the system is written as [37, 38]

H = H0 +HI , (3.82)

where H0 is the free Hamiltonian.
In this picture, operators are assumed to evolve with the free Hamiltonian H0 as

Aint(t) ≡ e
i
~H0tA(0)e−

i
~H0t . (3.83)

States, on the other hand, are assumed to evolve as

|ψint(t)〉 ≡ e
i
~H0t |ψ(t)〉 = e

i
~H0te−

i
~Ht |ψ(0)〉 . (3.84)

Taking a time derivative of this gives

i~
∂ |ψint(t)〉

∂t
= −

(
H0e

i
~H0te−

i
~Ht − e

i
~H0tHe−

i
~Ht
)
|ψ(0)〉 = e

i
~H0tV e−

i
~Ht |ψ(0)〉 =

= e
i
~H0tV e−

i
~H0te

i
~H0te−

i
~Ht |ψ(0)〉 = HI,int |ψint(t)〉 , (3.85)

whose solution is

|ψint(t)〉 = T exp

{
− i
~

∫ t

t0

dt′Hint(t
′)

}
|ψint(t0)〉 , (3.86)

where we have omitted the subscript I , and T is the time-ordering operator.
However, given the evolution operator

U(t, t0) ≡ e−
i
~ H(t−t0) , (3.87)

it is also true that

|ψint(t)〉 = e
i
~H0te−

i
~Ht |ψ(0)〉 = e

i
~H0tU(t, t0)e−

i
~Ht |ψ(0)〉 =

= e
i
~H0tU(t, t0)e−

i
~H0te

i
~H0te−

i
~Ht |ψ(0)〉 = Uint(t, t0) |ψint(t0)〉 . (3.88)
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By comparison, then, we have an explicit expression for the evolution operator in
the interaction picture, i.e.

Uint(t, t0) = T exp

{
− i
~

∫ t

t0

dt′Hint(t
′)

}
. (3.89)

From eq. (3.84) it is immediate to find an expression for the time correlation 〈A(t)〉:
in particular, this is [28]

〈A(t)〉 = 〈0in|T exp

{
i

∫ t

t0

dt′Hint(t
′)

}
A(t)T exp

{
−i
∫ t

t0

dt′Hint(t
′)

}
|0in〉 ,

(3.90)
where we have switched to natural units, as usual, and T is the anti time-ordering
operator.
However, a more useful way to compute this time averaged was found by Weinberg
[39], and it is

〈A(t)〉 =

∞∑
n=0

in
∫ t

t0

dtn

∫ tn

t0

dtn−1 . . .

∫ t2

t0

dt1〈[Hint(t1), [Hint(t2), . . . [Hint(tn), A(t)] . . . ]]〉 .

(3.91)
The two formulations (3.90) and (3.91) can be shown to be equivalent by recurrence.
If one assumes that their time derivative are equivalent up to order N , then they
are equal also at order N + 1.
For our future computations, we will use formulation (3.91).

3.3.2 Curvature perturbation bispectrum

As for the power spectrum PR, we define the bispectrum BR as

〈R̂k1R̂k2R̂k3〉 ≡ BR(k1, k2, k3) (2π)3δ(k1 + k2 + k3) , (3.92)

where again, the δ function is a consequence of invariance under translation.
Another definition, which will be used in our future calculations, is given through
a quantity G defined as [3]

〈R̂k1R̂k2R̂k3〉 ≡
G(k1, k2, k3)

k1k2k3

P2
R(k)

k2
1k

2
2k

2
3

(2π)7δ(k1 + k2 + k3) . (3.93)

By comparison of (3.92) with (3.93) it is immediate to get

G(k1, k2, k3)

k1k2k3
=
BR(k1, k2, k3)

P2
R(k)

k2
1k

2
2k

2
3

(2π)4 . (3.94)

In literature, the l.h.s. of the above expression is sometimes indicated as S(k1, k2, k3).
Other parametrizations are given in terms of the functionsA(k1, k2, k3) ≡ k1k2k3 S(k1, k2, k3) =
G(k1, k2, k3) and F ≡ (k1k2k3)−2S(k1, k2, k3) [40].

The dependence of the bispectrum (i.e. BR or the other quantities defined above)
on k1, k2 and k3 are usually split into two kinds: the shape and the running.
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The shape refers to the dependence of BR on the ratios k2/k1 and k3/k1 while keep-
ing fixed the overall momentum K ≡ k1 + k2 + k3. Particularly important are the
equilateral shape (k2/k1 = 1 = k3/k1) and the squeezed shape (k2/k1, k3/k1 � 1).
On the other hand, the running refers to the dependence of BR on the overall mo-
mentum K = k1 + k2 + k3 while keeping fixed the ratios k2/k1 and k3/k1.

Together with these definitions, non-Gaussianities are often parametrized in terms
of a dimensionless parameter, indicated as fNL [31, 41].
At the end of the previous section, we have noted that at the leading order, we can
consider R̂ as Gaussian. Therefore we can parametrize non-Gaussianities in terms
of the power spectrum as [42, 11]

BR(k1, k2, k3) =
6

5
fNL [PR(k1)PR(k2) + PR(k1)PR(k3) + PR(k2)PR(k3)] . (3.95)

See appendix A for a brief review on Gaussian and non-Gaussian classical random
fields.
In the previous expression, the factor 6

5 is conventional and follows from the fact that
this treatise has been originally adopted for the gravitational potential Φ [43, 44],
which during matter domination is related to the curvature perturbation by Φ = 3

5 R
(another factor 2 comes from (A.25)).
If we assume a scale-invariant power spectrum PR, thanks to eq.(3.52) we can
rewrite eq. (3.95) as

BR(k1, k2, k3) =
6

5
fNL

(2π)4

4
P2
R

[
1

k3
1k

3
2

+
1

k3
1k

3
3

+
1

k3
2k

3
3

]
=

=
3

10
fNL(2π)4P2

R
k3

1 + k3
2 + k2

3

k3
1 k

3
2 k

2
3

, (3.96)

and find the usual expression for fNL [41, 28]

fNL =
10

3(2π)4

k3
1 k

3
2 k

2
3

k3
1 + k3

2 + k3
3

BR(k1, k2, k3)

P2
R

. (3.97)

Eventually, exploiting eq. (3.94) which relates BR with G we can write it as

fNL =
10

3

1

k3
1 + k3

2 + k3
3

G(k1, k2, k3) . (3.98)

3.3.3 Second and third order action

The three-point function is calculated from a third order action S3. This action
derives directly from the general action for the single inflaton field

S =

∫
dx
√
−g
[
MPl

2
R+ P (χ, φ)

]
. (3.99)

In fact, in the ADM formalism [45, 46], this action can be expanded up to the cubic
order in R.
Doing so, ones firstly find the quartic action [3, 28]

S2 =

∫
dx a3ε1MPl

(
Ṙ2

c2
s

− (∂R)2

a2

)
. (3.100)
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An explicit expression for the third order action will be given later on.

To compute the three-point correlation function, we exploit eq. (3.91) to find [3, 31]

〈R̂k1(t)R̂k2(t)R̂k3(t)〉 = −i
∫ t

t0

dt′ 〈
[
R̂k1(t)R̂k2(t)R̂k3(t), Ĥint(t

′)
]
〉 . (3.101)

Here we have taken into account just the first term of the sum in (3.91) since the
third order action is suppressed by one more order in HFF relative to the quadratic
action [28].
The Hamiltonian in the interaction picture can be obtained directly from the third
order action as [39]

Hint = −L3 where L3 : S3 =

∫
dtL3 . (3.102)

Thus, if we have an explicit expression for S3, we are immediately able to compute
the integrand of eq. (3.101).
The third order action for the k-inflation Lagrangian in (3.99) is [47, 48]

S3 =

∫
dx

{
a3C1M

2
PlRṘ2 + aC2M

2
PlR(∂R)2 + a3C3MPlṘ3 + a3C4Ṙ(∂iR)(∂iκ)+

+
a3

M2
Pl

C5∂
2R(∂κ)2 + F1

δL2

δR

∣∣∣∣
1

}
, (3.103)

where the coefficients Ci, (i = 1, . . . , 5) and F1
δL2

δR

∣∣∣∣
1

are given by

C1 =
ε1
c4
s

(
ε1 − ε2 − 3 + 3c2

s

)
(3.104a)

C2 =
ε1
c2
s

(
ε1 + ε2 − c2

s − 2s+ 1
)

(3.104b)

C3 =
Σ− c2

s(2λ+ Σ)

H3MPlc2
s

(3.104c)

C4 =
ε1
2c2
s

(ε1 − 4) (3.104d)

C5 =
ε1
4

(3.104e)

F1 = − 1

2HM2
Pl

[
∂kR∂kκ− ∂−2∂i∂j(∂iR∂jκ)

]
− 1

Hc2
s

RṘ+

+
1

4M2
Pla

2

[
(∂R)2 − ∂−2∂i∂j(∂iR∂jR)

]
(3.104f)

δL2

δR

∣∣∣∣
1

= −2M2
Plε1

[
a3

c2
s

(
3HṘ+Hε2Ṙ − 2HsṘ+ R̈

)
− a∂2R

]
(3.104g)

κ =
M2
Plε1
c2
s

∂−2Ṙ (3.104h)

Σ = χPχ + 2χ2Pχχ (3.104i)

λ = χ2Pχχ +
2

3
χ3Pχχχ (3.104j)
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with ∂−2 the inverse of Laplacian.
In the cubic action (3.103), the last term of r.h.s. survives only at second order in
R. Thus, when we will evaluate the three-point function, we will not take it into
account [47].

From the expression of the coefficients Ci, (i = 1, . . . , 5), it is clear that in stan-
dard slow-roll inflation, the bispectrum is always negligible with respect to the
power spectrum, since it is at least proportional to HFF.
In order to get a significant bispectrum, there are several possibilities: first of all,
one can consider a temporary violation of the slow-roll regime; secondly, Lagrangian
with a non-trivial speed of sound can be taken into account; eventually, one can
study a system described by multiple field.
In the following, we will widely study the case of a violation of slow-roll, together
with non-standard Lagrangians which give rise to a variable speed of sound.



Chapter 4

Discontinuity in the first
derivative of the inflaton
potential

4.1 Primordial perturbations and CMB power spec-
trum

We have seen that the inflationary scenario predicts an almost scale-invariant power
spectrum. The observable quantities which allow to reconstruct such a power spec-
trum are the CMB anisotropies and the large-scale structures (LSS). However, the
inflationary paradigm cannot predict exact initial conditions, but just their statis-
tical properties: for this reason, a statistical analysis of data is required. Since we
have just one realization of our Universe, the mean values are inevitably affected
by an error, which is called cosmic variance.
As far as the CMB is concerned, the statistical analysis has to be done on a spherical
surface, since the cosmic microwave background originated about 300 000 yr after
the Big-Bang (z ≈ 1100), and propagated from a spherical surface which is called
last scattering surface. In particular, we are able to measure the fluctuations in
temperature of the CMB as a function of the angle, and from these to constrain the
cosmological parameters.
The most natural set of functions to describe these fluctuations is constituted by
the spherical harmonics Y`m, so that

∆T

T
(θ, φ) =

∑
`m

a`mY`m(θ, φ) . (4.1)

From the coefficients a`m we define the angular power spectrum C` as

C` ≡ 〈|a`m|2〉 . (4.2)

It is customary to define an angular power spectrum as

DTT` ≡ `(`+ 1)
C`
2π

. (4.3)

From Planck 2015 data, we have that this spectrum is [7]

51
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Figure 4.1: The Planck 2015 temperature power spectrum (figure taken from [7]).

The multipole ` is related to the angle by the formula

θ ≈ π

`
, (4.4)

from which we see that the biggest uncertainty in the above spectrum corresponds
to large angular scales (and therefore to large scales). In addition, we see that in
the power spectrum there is a feature at ` ≈ 20, a dip which is lower than the
prediction of the simple ΛCDM model. For this reason, many models have been
studied in order to improve the fit at low `. One possibility is to consider a scenario
in which the slow-roll regime is not valid at all scales, but it is temporarily broken.
Observations seem to suggest such a scenario; furthermore, this breaking in the
slow-roll condition should have taken place at large scales, so that this could be
a good way to further constrain the temperature power spectrum at large angular
scales.

4.2 The original model with a discontinuity in the first
derivative of the potential

In this section we introduce and discuss a model firstly introduced by Starobinsky
characterized by a discontinuity in the first derivative of the inflaton potential [2].
This model is included in the context of standard single-field inflation, i.e. with the
standard Klein-Gordon equation (1.54) and Friedman equation (1.56b).
The Starobinsky model consists of a linear potential with a sharp change in its slope
at a given point, which we define with φ0. Let the slope of the potential, before and
after such a transition, be A+ and A− (both assumed to be positive), respectively.
In other words, the potential is

V (φ) =

{
V0 +A+(φ− φ0) , φ > φ0

V0 +A−(φ− φ0) , φ < φ0

, (4.5)

which can also be written in a single line as

V (φ) = V0 + [A− + (A+ −A−) θ(φ− φ0)] (φ− φ0) , (4.6)
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with θ Heaviside step function.

4.2.1 Evolution of the background

In this subsection we study the background for this model, i.e. we determine the
dependence of the inflaton field and the Hubble flow function on time.

For our future numerical estimations, we use the following values for the parameters
[32]

Parameter Value

φ0 0.707MPl

V0 2.37× 10−12M4
Pl

A+ 3.35× 10−14M3
Pl

A− 7.26× 10−15M3
Pl

Table 4.1: Numerical values for the potential in (4.6).

With these values, the shape of the potential is

0 0.2 0.4 0.6 0.8 1

0.998

1.000

1.002

1.004

1.006

Figure 4.2: Potential for the Starobinsky model.

The simple structure of the potential in (4.6) allows us to study separately the
evolution before and after the transition, and then to match these two regimes with
appropriate conditions.

- Before the transition.
Consider the case where the field is rolling down the potential from an initial
value φi > φ0. In slow-roll approximation, we have seen that the number of
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e-folds can be expressed as (cf. eq. (1.81))

N = − 1

M2
Pl

∫ φE

φi

dφ
V

Vφ
= − 1

M2
Pl

∫ φE

φi

dφ

(
V0

A+
+ φ− φ0

)
=

=
1

2

[
φ2 + 2φ

(
V0

A+
− φ0

)
− 2

V0φi
A+
− φ2

i + 2φ0φi

]
. (4.7)

By solving for the inflaton field, we get

φ+ = −
(
V0

A+
− φ0

)
+

[(
φi − φ0 +

V0

A+

)2

− 2M2
PlN

] 1
2

, (4.8)

where the subscript + indicates that we are considering quantities before the
transition.
The number of e-folds at which the field reaches the values φ0 is therefore

N0 =
φi − φ0

2M2
Pl

[
φi − φ0 +

2V0

A+

]
. (4.9)

Taking the derivative with respect to the number of e-folds gives

dφ+

dN
= −M2

Pl

[(
φi − φ0 +

V0

A+

)2

− 2M2
PlN

]− 1
2

. (4.10)

Actually, the Starobinsky model assumes that for a range of φ around φ0, the
constant V0 is the dominant term in the potential, i.e. |V − V0| � V0, which
means that the potential is vacuum dominated [3].
With this assumption, the expression (4.8) for φ+ simplifies, and we get

φ+ ≈ −
V0

A+
+

[
V 2

0

A2
+

+ 2φi
V0

A+
− 2M2

PlN

] 1
2

≈

≈ − V0

A+

[
1−

(
1 + 2φi

A+

V0
− 2M2

PlN
A2

+

V 2
0

) 1
2

]
≈

≈ − V0

A+

[
−φi

A+

V0
+M2

PlN
A2

+

V 2
0

]
= φi −

A+M
2
Pl

V0
N , (4.11)

from which
dφ+

dN
≈ −

A+M
2
Pl

V0
. (4.12)

Note that these equation can also be obtained from the Klein-Gordon equation
in which the Hubble parameter is assumed to be

H2 ≈ V0

3M2
Pl

≡ H2
0 . (4.13)

The approximation for the trajectory as a straight line with a negative slope
is very accurate before the transition, as it is shown in fig.1 of [32].
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- After the transition.
After the transition, however, the slow-roll approximation ceases to be valid,
and we have to consider the exact Klein-Gordon equation

φ̈− + 3Hφ̇− + Vφ = 0 , (4.14)

where the subscript − indicates that we are considering quantities after the
transition.
Switching to derivatives with respect to the number of e-folds, indicated with

N , the above equation is

H2φNN,− + (3− ε1)H2φN,− + Vφ = 0 . (4.15)

Since we have assumed the potential is dominated by the constant term V0,
at the leading order we can approximate the Hubble parameter as a constant,
which implies ε1 � 1.
Thus the Klein-Gordon equation simplifies to

H2
0φNN,− + 3H2

0φN,− +A− ≈ 0 , (4.16)

whose solution is

φ− = − A−
3H2

0

N − α e−3N

3
+ β . (4.17)

The integration constants α and β are determined by demanding that the field and
its first derivative are continuous at the transition, i.e.

− A−
3H2

0

N0 −
α e−3N0

3
+ β = φ0 (4.18a)

A−
3H2

0

+ αe−3N0 =
A+M

2
Pl

V0
, (4.18b)

from which

φ− ≈ φ0 +
∆A

9H2
0

[
1− e−3(N−N0)

]
− A−

3H2
0

(N −N0) , (4.19)

where ∆A ≡ A− −A+.
The first derivative is

dφ−
dN
≈ − A−

3H2
0

+
∆Ae−3(N−N0)

3H2
0

. (4.20)

The assumption for the Hubble parameter (4.13) gives the simple solution a(t) =
exp{H0t}. Furthermore, the condition ε1 � 1 is equivalent to say that inflation
never ends, even if the slow-roll regime is temporarily broken.
For our future considerations, it will be useful to express the quantities in conformal
time: for the previous considerations the conformal time and the scale factor are
simply

τ = −e
−H0t

H0
(4.21a)

a(τ) = − 1

H0τ
. (4.21b)
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In addition, since H ≈ H0, the relation between τ and N is

τ = −e
−N

H0
. (4.22)

Eqs. (4.11),(4.12),(4.19) and (4.20) become [3]

φ+ ≈ φi +
A+

3H2
0

ln(−H0τ) (4.23a)

dφ+

dτ
≈ A+

3H2
0τ

(4.23b)

φ− ≈ φ0 +
∆A

9H2
0

(
1− τ3

τ3
0

)
+

A−
3H2

0

ln

(
τ

τ0

)
(4.23c)

dφ−
dτ
≈ 1

3H2
0τ

(
A− −∆A

τ3

τ3
0

)
≡ A−

3H2
0τ

(
1− ρ3τ3

)
. (4.23d)

where we have defined ρ3 ≡ ∆A

A−

1

τ3
0

.

The first HFF is given by eq. (1.60), and it is

ε1 =
φ̇2

2H2M2
Pl

=
φ′2

2H2a2M2
Pl

≈ φ′2τ2

2M2
Pl

. (4.24)

For this model, we therefore find

ε1,+ ≈
A2

+

18M2
PlH

4
0

(4.25a)

ε1,− ≈
A2
−

18M2
PlH

4
0

(
1− ρ3τ3

)2
, (4.25b)

The second slow-roll parameter is

ε2 = 2

(
φ̈

Hφ̇
+ ε1

)
. (4.26)

Before the transition we have, at the first non-vanishing order

φ̈+ =
d

dt

φ′+
a
≈ − d

dt

A+

3H
= −A+ε1,+

3
, (4.27)

so that

ε2,+ = 2

(
φ̈+

Hφ̇+

+ ε1,+

)
≈ 2(ε1,+ + ε1,+) = 4ε1,+ . (4.28)

After the transition, the calculation is a bit more elaborated. First of all, let’s write
eq. (4.23c) in terms of the cosmic time, i.e.

φ− ≈ φ0 +
∆A

9H2
0

(
1− e−3H(t−t0)

)
− A−t

3H
. (4.29)



4.2. DISCONTINUOUS FIRST DERIVATIVE OF THE POTENTIAL 57

Taking the first and the second derivative of this with respect to t we find

φ̇− ≈
∆A

3H
e−3H(t−t0) − A−

3H
= −A−

3H

(
1− ρ3τ3

)
, (4.30)

and

φ̈− ≈ −∆Ae−3H(t−t0) − A−ε1
3

= −A−
3

(
ε1 + 3ρ3τ3

)
, (4.31)

where the second term comes from considering the Hubble parameter as a slowly
varying quantity.
Thus, taking into account eq. (4.25b)

ε2,− = 2

(
φ̈−

Hφ̇−
+ ε1,−

)
≈ 6ρ3τ3

1− ρ3τ3
+ 2ε1

2− ρ3τ3

1− ρ3τ3
. (4.32)

From this expression, we know that much after the transition we get again the
slow-roll approximation ε2,− ≈ 4ε1,−, but just after it we have a transient term
which is dominant (note that the second term in (4.32) is sub-dominant because
proportional to ε1, which is always small).
Furthermore, eq. (4.32) is more accurate than eq. (2.17) in [32], where the correc-
tive term is simply 4ε1.

The two HFF have the following shapes (with values in table 4.1)
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Figure 4.3: First and second HFF as a function of τ .

In addition, we can easily convince that the second term in (4.32) is sub-
dominant with respect to the other by directly comparing the two
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With corrective term

Without corrective term

- 4
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Figure 4.4: Comparison between the complete expression (4.32) and its dominant
term.

As we can see, the correction due to the term proportional to ε1 is negligible.

4.2.2 Power spectrum

In this section we calculate the spectrum of primordial curvature perturbation for
the Starobinsky model. In particular, we follow the considerations made in section
3.1, and specialize them for this model.

First of all, since we are considering a model in which the Lagrangian has a standard
kinetic term, the speed of sound is trivial, i.e. cs = 1.
Before the transition, since we are in slow-roll regime, the solution to the Mukhanov-
Sasaki equation (2.114) is given simply by (3.49), and it is

vk,+(τ) =
−i√
2k3τ

(1 + ikτ) e−ikτ (4.33)

or equivalently

Rk,+(τ) =
iH

2MPl

√
ε1k3

(1 + ikτ)e−ikτ . (4.34)

After the transition, however, the slow-roll approximation is no more valid, at least
for a transitory period.
Therefore we could expect that the time-dependent frequency in the Mukhanov-
Sasaki equation (2.114) is different from 2H2.
Since the first slow-roll parameter is always small, relation (3.30) simplifies to

z′′

z
= a2H2

[
2 +

3ε2
2

+
ε2

2

4
+
ε2ε3

2

]
. (4.35)

However, being Vφφ = 0, from eq. (1.77) we have

3ε2
2

+
ε2

2

4
+
ε2ε3

2
≈ 0 , (4.36)
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which allows us to consider even after the transition z′′/z ≈ 2H2.
In this case we already know the solution; we just have to take into account the
general solution (3.43) for ν = 3

2 (since this is the case for z′′/z ≈ 2H2)

vk,−(τ) ≈ −i√
2k3τ

[
αk(1 + ikτ)e−ikτ − βk(1− ikτ)eikτ

]
. (4.37)

Therefore, the corresponding curvature perturbation Rk,− is [33]

Rk,−(τ) ≈ iH0

2MPl

√
ε1,− k3

[
αk(1 + ikτ)e−ikτ − βk(1− ikτ)eikτ

]
. (4.38)

It is then clear that we have to determine the two Bogoliubov coefficients αk and
βk to achieve a complete solution of the problem. In order to do this, we impose
matching conditions on vk and v′k at the transition.

First of all, from eqs. (4.25a) and (4.25b), together with z = aMPl

√
2ε1, we find

z+ ≈ −
A+

3H3
0τ

(4.39a)

z− ≈ −
A−

3H3
0τ

(1− ρ3τ3) , (4.39b)

and then

z′+ ≈
A+

3H3
0τ

2
(4.40a)

z′− ≈
A−

3H3
0τ

2
+

2A−ρ
3τ

3H3
0

. (4.40b)

At the time when the transition occurs, i.e. τ0, we have

[z(τ0)]± = 0 (4.41a)[
z′(τ0)

]
± = − ∆A

H3
0τ

2
0

, (4.41b)

where [X]± ≡ X+ −X−.
At the transition (or in a small interval around it, i.e. τ ≈ τ0), we can express z′ as

z′(τ ≈ τ0) ≈ z′+(τ ≈ τ0)−
[
z′(τ ≈ τ0)

]
± θ(τ−τ0) ≈ A+

3H3
0τ

2
0

+
∆A

H3
0τ

2
0

θ(τ−τ0) . (4.42)

Therefore, we can take one more derivative and write it in terms of a δ function, so
that [2, 32]

z′′

z
= − 3∆A

A+τ0
δ(τ − τ0) . (4.43)

With this expression, we are able to obtain the two matching conditions on vk.

i) Combining eqs. (2.114) and (4.43) we know that vk has to be continuous at
the transition, i.e.

[vk(τ0)]± = 0 . (4.44)
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ii) By integrating the Mukhanov-Sasaki equation in a small interval around the
transition τ0, the last term of r.h.s. of (2.114) is negligible since we can treat
vk as a constant. Therefore, given ε� 1, taking into account the condition on
vk

0 ≈ lim
ε→0

∫ τ0+ε

τ0−ε
dτ

(
v′′k +

3∆A

A+τ0
δ(τ − τ0) vk

)
≈

≈ v′k(τ0 + ε)− v′k(τ0 − ε) +
3∆A

A+τ0
vk(τ0) [θ(ε)− θ(−ε)] ≈

≈ −[vk(τ0)]± +
3∆A

A+τ0
vk(τ0) . (4.45)

The second matching condition at the transition is, in this way

[v′k(τ0)]± ≈
3∆A

A+τ0
vk(τ0) . (4.46)

At this point we can match relations (4.33) and (4.37) requiring that at the transi-
tion the conditions (4.44) and (4.46) are satisfied.
Doing so, we obtain [3]

αk = 1 +
3i∆A

2A+

k0

k

(
1 +

k2
0

k2

)
(4.47a)

βk = −3i∆A

2A+

k0

k

(
1 +

ik0

k

)2

e
2ik
k0 , (4.47b)

where we have indicated with k0 the characteristic wave number of modes which
leave the horizon at the transition. Since we are in a quasi-de Sitter universe, we
have that

k0 = a0H0 = − 1

τ0
. (4.48)

The curvature power spectrum at late times (i.e. τ → 0) is simply

PR(τ → 0) ≈ k3

2π2

H2
0

4M2
Plε1k

3
|αk − βk|2 =

=
9H6

0

4π2A2
−

{
1− 3∆A

A+

k0

k
sin

(
2k

k0

)
+

+
3∆A

2A2
+

(
k0

k

)2 [
3∆A

[
1 + cos

(
2k

k0

)]
− 4A+ cos

(
2k

k0

)]
+

+
3∆A

A2
+

(
k0

k

)3

(A+ − 3∆A) sin

(
2k

k0

)
+

9∆A2

A2
+

(
k0

k

)4

−

− 9∆A2

A2
+

(
k0

k

)5

sin

(
2k

k0

)
+

+
9∆A2

2A2
+

(
k0

k

)6 [
1− cos

(
2k

k0

)]}
. (4.49)
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This expression is the same as the original result, cf. eq. (10) in [2], simply written
in a different way.

We can easily find two asymptotic values, in the limit of small and large scales.
In the limit of k � k0 we have

PR(τ → 0)
k�k0−−−→ 9H6

0

4π2A2
+

. (4.50)

Conversely, when k � k0

PR(τ → 0)
k�k0−−−→ 9H6

0

4π2A2
−
. (4.51)

Overall, the spectrum of curvature perturbation is

10 - 2 0.1 1 10 100 1000

10 - 10

10 - 9

10 - 8

Figure 4.5: Spectrum of curvature perturbation at late times for the Starobinsky
model.

The two asymptotic behaviours can be understood as follows: since on super-
horizon scales the curvature perturbation is frozen, we can think that the power
spectrum at late times is determined by the moment in which a certain wavelength
crosses the Hubble radius. Then, large scales (which correspond to small k) cross
the horizon before the transition, when the slow-roll regime is again valid, and their
spectrum will be simply

PR
k�k0−−−→ H2

8π2M2
Plε1,+

≈ 9H6

4π2A2
+

(4.52)

On the other hand, small scales (big k) exit the horizon much after the transition,
we the slow-roll regime is restored. Thus, their power spectrum will be

PR
k�k0−−−→ H2

8π2M2
Plε1,−

≈ 9H6

4π2A2
−

(4.53)

Between these two limits there are all the modes that cross the horizon in proximity
of the transition: for such modes, the above considerations are no more valid, and
one has to take into account the whole expression for PR, which is a function of the
wave number k.
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4.2.3 Bispectrum

In the previous section we have computed the curvature power spectrum for the
Starobinsky model. Now, we are ready to specialize the results of section 3.3 for
this model and to calculate the bispectrum.

First of all, let’s note that only the coefficients C1 and C2 of eq. (3.103) are dominant
for this model, and they are simply

C1 ≈ −ε1ε2 (4.54a)

C2 ≈ ε1ε2 . (4.54b)

As a consequence, the third order action is

S3 ≈ −M2
Pl

∫
dt

∫
dx
[
a3ε1ε2RṘ2 − aε1ε2R(∂R)2

]
=

= −M2
Pl

∫
dt

∫
dx aε1ε2

[
RR′2 −R(∂R)2

]
. (4.55)

After an integration by parts, neglecting the boundary term, we come thanks to
(3.102) to the Hamiltonian in the interaction picture [3, 32]

Hint(τ) = M2
Pl

∫
dx aε1ε2

[
RR′2 +

1

2
R2∂2R

]
. (4.56)

In literature [40, 49] it is possible to find the previous third order action written as

S3 ≈M2
Pl

∫
dτ

∫
dx

a2

2
ε1ε
′
2R2R′ . (4.57)

We can easily show that the formulations (4.55) and (4.57) are equivalent: by
integrating by parts and neglecting the boundary term, we obtain

S3 ≈ −M2
Pl

∫
dτ

∫
dx

a2

2
ε1ε2

[
2
a′

a
R2R′ + ε′1

ε1
R2R′ + 2RR′2 +R2R′′

]
=

= −M2
Pl

∫
dτ

∫
dx

a2

2
ε1ε2

{
2RR′2 +R2

[
R′′ + 2R′

(
a′

a
+

ε′1
2ε1

)]}
=

= −M2
Pl

∫
dτ

∫
dx

a2

2
ε1ε2

{
2RR′2 +R2

[
R′′ + 2

z′

z
R′
]}

=

= −M2
Pl

∫
dt

∫
dx aε1ε2

[
RR′2 +

1

2
R2∂2R

]
, (4.58)

where we have used the Mukhanov-Sasaki (2.115) in real space, and switched to
cosmic time.

Once we have the Hamiltonian in the interaction picture, we can calculate the
three-points correlation function via eq. (3.101) as

〈R̂k1(0)R̂k2(0)R̂k3(0)〉 ≈ −i
∫ 0

−∞
dτ ′ a 〈

[
R̂k1(0)R̂k2(0)R̂k3(0), Ĥint(τ

′)
]
〉 . (4.59)
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Taking a time derivative of (4.38) we have

R′k,−(τ) ≈ iH0

2MPl

√
ε1,− k3

{
αk

[
ε′1,−
2ε1,−

(1 + ikτ) + k2τ

]
e−ikτ −

− βk

[
ε′1,−
2ε1,−

(1 + ikτ) + k2τ

]
eikτ

}
=

=
iH0

2MPl

√
ε1,− k3

{
αk

[
k2τ − ε2,−

2τ
(1 + ikτ)

]
e−ikτ−

− βk

[
k2τ − ε2,−

2τ
(1 + ikτ)

]
eikτ

}
. (4.60)

From the definition (3.21a) of R̂k and the commutation rules (3.21b) for the cre-
ation/annihilation operators, we find [3]∫

dx
[
R̂k1(0)R̂k2(0)R̂k3(0), R̂(τ,x)R̂′ 2(τ,x)

]
=

= (2π)3δ(k1 + k2 + k3)2
[
Rk1(0)Rk2(0)Rk3(0)R∗k1

(τ)R′∗k2
(τ)R′∗k3

(τ) −
− R∗−k1

(0)R∗−k2
(0)R∗−k3

(0)R−k1(τ)R′−k2
(τ)R′−k3

(τ) + 1↔ 2 + 1↔ 3
]

= (2π)3δ(k1 + k2 + k3)4i=
[
Rk1(0)Rk2(0)Rk3(0)R∗k1

(τ)R′∗k2
(τ)R′∗k3

(τ)
]

+

+ 1↔ 2 + 1↔ 3 , (4.61)

and

1

2

∫
dx
[
R̂k1(0)R̂k2(0)R̂k3(0), R̂2(τ,x)∂2R̂(τ,x)

]
=

= −(2π)3δ(k1 + k2 + k3)
[
k2

1

(
Rk1(0)Rk2(0)Rk3(0)R∗k1

(τ)R∗k2
(τ)R∗k3

(τ) −
− R∗−k1

(0)R∗−k2
(0)R∗−k3

(0)R−k1(τ)R−k2(τ)R−k3(τ)
)

+ 1↔ 2 + 1↔ 3
]

=

= (2π)3δ(k1 + k2 + k3)2i=
[
k2

1Rk1(0)Rk2(0)Rk3(0)R∗k1
(τ)R∗k2

(τ)R∗k3
(τ)
]

+

+ 1↔ 2 + 1↔ 3 , (4.62)

where we have taken into account thatRk depends on the wave number just through
its amplitude, i.e. Rk = R−k.
Putting these two results together, we find [3]

〈R̂k1(0)R̂k2(0)R̂k3(0)〉 ≈ (2π)3δ(k1 + k2 + k3) 2M2
Pl=

[
Rk1(0)Rk2(0)Rk3(0)·

·
∫ 0

−∞
dτ a2ε1ε2R∗k1

(τ)
(

2R′∗k2
(τ)R′∗k3

(τ)− k2
1R∗k2

(τ)R∗k3
(τ)
)]

+

+ 1↔ 2 + 1↔ 3 . (4.63)

The above integral can be split in two contributions, before and after the transition,
respectively. Here, we focus on the computation after the transition, since it is the
more important one for the comparison with observations.
In addition, we consider the equilateral limit (defined as that configuration in which
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k1 = k2 = k3 ≡ k) for simplicity.
In other words, we want to calculate the quantity

BR(k) ≈ 6M2
Pl=

[
R3

k(0)

∫ 0

τ0

dτ a2ε1ε2R∗k(τ)
(

2R′∗k
2
(τ)− k2R∗k

2(τ)
)]

. (4.64)

This calculation, even if a bit elaborated, can be done analytically with the assump-
tions we made. The result is

BR(k) ≈ −729π3∆AH12
0 k8

0

2A3
−A

4
+k

15{
9∆A

(
k2

k2
0

+ 1

)2

k cos

(
k

k0

)[
9∆A+ (A− − 3A+)

(
k

k0

)2

+ 2A+

(
k

k0

)4
]
−

− 9k0

(
k2

k2
0

+ 1

)2

sin

(
k

k0

)[
9∆A2 −

(
A2
− − 4A+A− + 3A2

+

)( k

k0

)4
]
−

− k cos

(
3k

k0

)[
81∆A2 − 9∆A (9A+ − 7A−)

(
k

k0

)2

− 9∆A (5A− − 11A+)

(
k

k0

)4

− 3
(
9A2
− − 32A+A− + 27A2

+

)( k

k0

)6

− 2A+ (7A− − 13A+)

(
k

k0

)8
]

+

+ k0 sin

(
3k

k0

)[
27∆A2 − 54∆A2

(
k

k0

)2

− 54∆A (2A− − 3A+)

(
k

k0

)4

− 2
(
9A2
− − 16A+A− + 9A2

+

)( k

k0

)6

−
(
−9A2

− + 60A+A− − 67A2
+

)( k

k0

)8

−

− 4A2
+

(
k

k0

)10
]}

. (4.65)

This expression is an original result of this work, but it is easy to check that its
asymptotic behaviours coincide with the results obtained in [3]. In particular, in
the limit of large scales (k � k0) we have

BR(k)
k�k0−−−→ ≈ −37H12

0 ∆A

20A4
+A−

1

k6

[(
k

k0

)2

+

+
10228680A2

− − 13970880A−A+

17463600A2
−

(
k

k0

)4

+

+
2794176A2

+ − 5983054A2
− − 5231072A−A+

17463600A2
−

(
k

k0

)6

+

+
1127045A2

− + 2508440A+A− − 190960A2
+

17463600A2
−

(
k

k0

)8
]
. (4.66)
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On the other hand, in the limit of small scales (k � k0) we find

BR(k)
k�k0−−−→ ≈ 729H12

0 ∆A

4A3
−A

3
+

1

k6

[
k

k0
sin

(
3k

k0

)
−

− 9∆A

2A+
cos

(
k

k0

)
+

13A+ − 7A−
2A+

cos

(
3k

k0

)]
. (4.67)

These two expressions coincide with eqs. (3.16)-(3.17) in [3].

Now that we have the explicit expressions for the three-point function and the
power spectrum, we can calculate and plot the function G(k1, k2, k3), which is de-
fined in eq. (3.93).
In particular, if we are interested in the limit of large and small scales, we just have
to take into account relations (4.50) and (4.51), together with (4.66) and (4.67).
Denoting with < the quantities for which k � k0 we have

G<(k)

k3
≈ BR(k)

(2π)4

k6

P2
R,<(k)

, (4.68)

which is
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Figure 4.6: Function G(k)
k3 for large scales.

Conversely, if we indicate with > the quantities for which k � k0 we have

G>(k)

k3
≈ BR(k)

(2π)4

k6

P2
R,>(k)

, (4.69)

which is
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Figure 4.7: Function G(k)
k3 for small scales.

However, we can also consider the whole bispectrum (4.65), together with the
formula for the power spectrum (4.49) which is valid on all scales: this time we have
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Figure 4.8: General behaviour of the function G(k)
k3 .

As we can see, the bispectrum for this model is characterized by a growth for
large k which never ends. This is due to the fact that we are an instantaneous
transition in the potential (it is parametrized by a step function in eq. (4.6)). If
one assumes that such a transition takes place in a finite lapse of time, for instance
smoothing the step function with a hyperbolic tangent, the corresponding bispec-
trum is characterized by a growth followed by a suppression at large k, as discussed
in [42, 50].

Moreover, if we want to calculate the parameter fNL, from (3.98), we see that
in the equilateral limit it is trivially

fNL ≈
10

9

G(k)

k3
. (4.70)
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Eventually, we can also evaluate the function BR(k) trough eq. (3.94)

BR(k) ≈ P2
R(k) (2π)4G(k)

k9
. (4.71)





Chapter 5

The effect of a non trivial speed
of sound

In this chapter we provide an extension of the model originally studied by Starobin-
sky. In particular, we generalize the kinetic term in the Lagrangian.
We present two different non-standard models, characterized by different powers in
higher orders of the kinetic term χ.
Under the same approximations, we discuss the contributions to the curvature spec-
trum and bispectrum for a model which is characterized at the transition by a jump
in both ε2 and s, but with continuous ε1 and cs. It is important to calculate the
bispectrum for this model because, as it was showed in [33], for this model the
power spectrum is degenerate with respect to a jump in ε2 or s (i.e., it is possible
to obtain the same power spectrum considering the a jump in s rather than in ε2).

5.1 Overview on the models

In this section we present two different generalizations to the model with a disconti-
nuity in the first derivative of the potential which are characterized by a non-trivial
speed of sound. In addition, we assume a cosmological constant dominating the
potential term in the Lagrangian, so that we can solve exactly the background
dynamics after the transition.

5.1.1 First model

We consider the following Lagrangian

P (χ, φ) = χ+
χ2

Λ4
− V0 − [A− + (A+ −A−) θ(φ− φ0)] (φ− φ0) , (5.1)

where Λ is a reference scale with the dimension of a mass and again, the potential
is dominated by the constant term V0.
It is easy to see that in the limit χ� Λ4, we recover a standard kinetic term, and
the model falls into the case studied in section 4.2

69
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Evolution of the background

Proceeding like in section 4.2.1, we first study the background for this model.
The expressions of the first two HFF ε1 and ε2 are given in eqs. (1.95) and (1.97),
while those for c2

s and s in (1.90) and (1.93). Then, we just have to specialize P in
eq. (5.1) and its derivatives to this model:

Pχ = 1 +
φ̇2

Λ4
, Pχχ =

2

Λ4
, χN =

φ̈φ̇

H
, PχN =

2

HΛ4
. (5.2)

With these expressions, we determine the dependence of the HFF, c2
s and s on φ̇.

The background quantities are

ε1 =
φ̇2

2H2M2
Pl

(
1 +

φ̇2

Λ4

)
(5.3a)

ε2 = 2

(
φ̈

Hφ̇
+ ε1

)
+

2φ̈φ̇

H(Λ4 + φ̇2)
(5.3b)

c2
s =

Λ4 + φ̇2

Λ4 + 3φ̇2
(5.3c)

s =
φ̈φ̇

H

[
1

Λ4 + φ̇2
− 3

Λ4 + 3φ̇2

]
. (5.3d)

The key point is that the introduction of a non-standard kinetic term in the La-
grangian makes possible to have a speed of sound which is different from 1. In
particular, for the Lagrangian (5.1), c2

s varies between 1/3 and 1.

Following the same procedure as in 4.2.1, we study the Klein-Gordon equation
(1.99) before and after the transition, separately.

- Before the transition.
Before the transition we assume that the slow-roll approximation holds. Since

d

dt
(Pχ φ̇+) ∝ φ̈+ + φ̇2

+Pχχφ̈+ ∝ φ̈+ , (5.4)

we can neglect the first term in the l.h.s. of the Klein-Gordon equation.
Therefore, before the transition, the latter reduces to

3H0Pχ φ̇+ ≈ Pφ . (5.5)

Also in this case, we approximate the Hubble parameter with H0, which means
that the energy density is vacuum-dominated.
Thus, the above equation can be written as

φ̇3
+

Λ4
+ φ̇+ +

A+

3H0
≈ 0 . (5.6)
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This equation has three solutions, but only one of these is real: in particular,
it is

φ̇+ ≈
−2 3
√

3H2
0 Λ4 + 3

√
2
[
H2

0 Λ4
(√

9A2
+ + 12H2

0 Λ4 − 3A+

)] 2
3

62/3H
5/3
0 Λ4/3

(√
9A2

+ + 12H2
0 Λ4 − 3A+

) 1
3

. (5.7)

From this expression, we see that there is a critical value of Λ (be Λχ2,+) which
distinguishes two different regimes. In particular, this value is

Λ2
χ2,+ =

√
3A+

2H0
. (5.8)

If the condition Λ� Λχ2,+ is satisfied, we can consider a Taylor expansion of

this equation, and get an expression for φ̇+ in the opposite limit with respect
to the Starobinsky model: in this case, we have

φ̇+

Λ�Λχ2,+−−−−−−→ −
(
A+Λ4

3H0

) 1
3

. (5.9)

In the opposite limit, i.e. Λ � Λχ2,+, we obviously recover the Starobinsky
model, and therefore eq. (4.23b).
For the values of the parameters given in table 4.1, we have that

Λχ2,+ ≈ 2× 10−4MPl . (5.10)

- After the transition.
After the transition, we have to consider the complete Klein-Gordon equation

d

dt
(Pχ φ̇) + 3H0Pχ φ̇− Pφ ≈ 0 . (5.11)

Taking into account the expressions in (5.2) this is

φ̇3
−

Λ4
+ φ̇− +

A−
3H0

−Be−3H(t−t0) ≈ 0 . (5.12)

In this case too only one solution is real, and it reads

φ̇− ≈
e−H0(t−t0)Λ4/3

9 3
√

2H
1/3
0

[
81
√

3

√[
3
(
A−e3H0(t−t0) − 3BH0

)2
+ 4H2

0 Λ4e6H0(t−t0)
]
−

− 243A−e
3H0(t−t0) + 729BH0

] 1
3

−

− 3
3
√

2H
1/3
0 Λ8/3eH0(t−t0)×

×

[
81
√

3

√[
3
(
A−e3H0(t−t0) − 3BH0

)2
+ 4H2

0 Λ4e6H0(t−t0)
]
−

− 243A−e
3H0(t−t0) + 729BH0

]− 1
3

(5.13)
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If we impose the condition that φ̇ is continuous at the transition, we find that
B has to be

B =
1

3H0
(A− −A+) , (5.14)

so that

φ̇− ≈
e−H0(t−t0)Λ4/3

9 3
√

2H
1/3
0

[
81
√

3

√[
3
(
A−e3H0(t−t0) −∆A

)2
+ 4H2

0 Λ4e6H0(t−t0)
]
−

− 243
(
A−e

3H0(t−t0) −∆A
)] 1

3

−

− 3
3
√

2H
1/3
0 Λ8/3eH0(t−t0)×

×

[
81
√

3

√[
3
(
A−e3H0(t−t0) −∆A

)2
+ 4H2

0 Λ4e6H0(t−t0)
]
−

− 243
(
A−e

3H0(t−t0) −∆A
)]− 1

3

. (5.15)

In this case too, we can determine a critical value of the scale Λ which distin-
guish two regimes. In this case, this value is evidently

Λ2
χ2,− =

√
3
(
A− −∆Ae−3H0(t−t0)

)
2H0

< Λ2
χ2,+ . (5.16)

In the limit Λ � Λχ2,−, after the transition, the expression for φ̇− simplifies
to

φ̇−
Λ�Λχ2,−−−−−−−→ −

[
Λ4
(
A− −∆Ae−3H0(t−t0)

)
3H0

] 1
3

. (5.17)

Again, in the other limit Λ � Λχ2,− (after the transition), we recover eq.
(4.23d).

Now that we have determined the explicit dependence on time for φ̇, we can inves-
tigate the values of Λ for which the non-standard kinetic term in (5.1) is dominant.
In order to do so, we consider the ratio

χ2

Λ4

χ2 +
χ2

Λ4

=
φ̇2

φ̇2 + 2Λ4
. (5.18)

With the numerical values of table 4.1, we have
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Figure 5.1: Ratio φ̇2/(φ̇2 + 2Λ4) as a function of time. The characteristic scale for

this system is V0
1
4 = 1.24× 10−3MPl.

From this figure we note that for Λ & 3 × 10−4MPl the non-standard kinetic
term in Lagrangian (5.1) is small. In addition, we see that this value is consistent
with the critical scale Λχ2 given in (5.8), which implies that when Λ� Λχ2 we can
treat the non-standard kinetic term as a small perturbation.

5.1.2 Second model

A second generalization can be realized with a different kinetic term, i.e.

P (χ, φ) = χ+
χ

3
2

Λ2
− V0 − [A− + (A+ −A−) θ(φ− φ0)] (φ− φ0) , (5.19)

Evolution of the background

Proceeding like in section 4.2.1, we first study the background for this model.
The expressions of the first two HFF ε1 and ε2 are given in eqs. (1.95) and (1.97),
while those for c2

s and s in (1.90) and (1.93). Then, we just have to specialize P
and its derivatives to this model. Here, we just list their values.

Pχ = 1 +
3
√

2

4Λ2
|φ̇| Pχχ =

3
√

2

4Λ2

1

|φ̇|
χN =

φ̈φ̇

H

PχN =
3
√

2

4HΛ2
φ̈
φ̇

|φ̇|
PχχN = − 3

√
2

4HΛ2

φ̈

φ̇2

φ̇

|φ̇|

, (5.20)

where we have taken into account that χ
1
2 = |φ̇|/2 if we do not know the sign of φ̇.

With these expressions, it is quite simple to determine the dependence of the HFF,
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c2
s and s on φ̇. They are

ε1 =
φ̇2

2H2M2
Pl

(
1 +

3
√

2|φ̇|
4Λ2

)
(5.21a)

ε2 = 2

(
φ̈

Hφ̇
+ ε1

)
+

3
√

2φ̈

4HΛ2

1 +
3
√

2|φ̇|
4Λ2

φ̇

|φ̇|
(5.21b)

c2
s =

1 +
3
√

2|φ̇|
4Λ2

1 +
3
√

2|φ̇|
2Λ2

(5.21c)

s = −

3
√

2φ̈

8HΛ2(
1 +

3
√

2|φ̇|
4Λ2

)(
1 +

3
√

2|φ̇|
2Λ2

) φ̇

|φ̇|
. (5.21d)

While in the previous model the speed of sound varies from 1/3 to 1, in this case
the minimum value it can take is 1/2.

Following the same procedure as in 4.2.1, we study the Klein-Gordon equation
(1.99) before and after the transition, separately.

- Before the transition.
Before the transition the slow-roll approximation is always valid. Since

d

dt
(Pχ φ̇+) ∝ φ̈+ + φ̇2

+Pχχφ̈+ ∝ φ̈+ , (5.22)

we can neglect the first term in the l.h.s. of the Klein-Gordon equation.
Therefore, before the transition, the latter reduces to

3H0Pχ φ̇+ ≈ Pφ . (5.23)

Also in this case, we approximate the Hubble parameter with H0, which means
that the energy density is vacuum-dominated.
Thus, the above equation can be written as

3
√

2

4Λ2
φ̇+ |φ̇+|+ φ̇+ +

A+

3H0
≈ 0 . (5.24)

For χ � Λ4 we recover eq. (4.12). Then, since A+ > 0, we have that φ̇+ is
always negative, so that we have solved the ambiguity upon its sign. Thus,
eq. (5.24) becomes a quadratic equation for φ̇, which once solved gives

φ̇+ =

√
2Λ2

3

1±

√
1 +

A+

√
2

H0Λ2

 . (5.25)
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Again, to establish the sign in the bracket, we consider the asymptotic be-
haviour

φ̇+

∣∣∣
χ�Λ4

≈ − A+

3H0
. (5.26)

Expanding eq. (5.25) we have

φ̇+ ≈
√

2Λ2

3
(1± 1)± A+

3H0
. (5.27)

This result is consistent with the previous equation only if we take the − sign.
So doing, we find

φ̇+ =

√
2Λ2

3

1−

√
1 +

A+

√
2

H0Λ2

 ≡ √2Λ2

3
(1− r+) . (5.28)

For this model, the critical value of Λ (denoted by Λχ3/2) is given by

Λ2
χ3/2,+

=

√
2A+

H0
. (5.29)

With the parameters of table 4.1, its numerical value is

Λχ3/2,+ ≈ 2.3× 10−4MPl . (5.30)

- After the transition.
After the transition, we have to consider the complete Klein-Gordon equation

d

dt
(Pχ φ̇) + 3H0Pχ φ̇− Pφ ≈ 0 . (5.31)

Taking into account the expression in (5.20), its solution is

3
√

2

4Λ2
φ̇− |φ̇−|+ φ̇− − α ≈ 0 , (5.32)

where

α ≡ Be−3H0(t−t0) − A−
3H0

, (5.33)

and B is a constant of integration.
To determine B, we can consider the limit of big Λ and impose the continuity
with φ̇+ at the transition: this gives

B =
1

3H
(A− −A+) . (5.34)

Since for our parametrization A+ > A−, even φ̇− is always negative. Solving
eq. (5.32) gives

φ̇− ≈
√

2Λ2

3

1±

√
1 +

√
2

HΛ2

[
A− − (A− −A+)e−3H0(t−t0)

] (5.35)
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Once more, we consider the asymptotic behaviour χ � Λ4 at late times; in
this configuration we know from eq. (4.23d) that

φ̇−

∣∣∣
χ�Λ4,t�t0

≈ − A−
3H0

, (5.36)

from which we know that in (5.35) we have to take the − sign, in such a way
that

φ̇− ≈
√

2Λ2

3

1−

√
1 +

√
2

HΛ2

[
A− −∆Ae−3H0(t−t0)

] ≡ √2Λ2

3
(1− r−) .

(5.37)
After the transition, the critical value of Λ is

Λ2
χ3/2,− =

√
2

HΛ2

[
A− −∆Ae−3H0(t−t0)

]
< Λ2

χ3/2,+
. (5.38)

Like for the first model, we can investigate the values of Λ for which the non-
standard kinetic term in (5.19) is dominant. In this case, the ratio to be considered
is

χ
( χ

Λ4

) 1
2

χ+ χ
( χ

Λ4

) 1
2

=
φ̇

φ̇−
√

2Λ2
. (5.39)

With the numerical values of table 4.1, we find

0

1. × 10 - 3

2. × 10 - 3

5. × 10 - 3

1. × 10 - 2

Figure 5.2: Ratio φ̇/(φ̇−
√

2Λ2) as a function of time. The characteristic scale for

this system is V0
1
4 = 1.24× 10−3MPl.

From the figure we note that the limit value for Λ, above which we can make a
perturbative expansion, is different for the first model; in particular, while for the
first model the perturbative approach was good for Λ & Λχ2 , for this model we have
to choose Λ & 4Λχ3/2 (here, we indicate with ‘good’ a ratio between the two kinetic

terms smaller than 10−2).
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5.1.3 Comparison between the models

Now that we have the explicit expression of the HFF, c2
s and s for both the models,

we can make a direct comparison between them.
In the following, we consider the time evolution of these quantities for two different
values of the scale Λ: the first value of Λ is chosen so that the non-standard kinetic
term is always much smaller that the standard one. This value is chosen to be
Λ = 5× 10−2MPl, so that

10 - 12

10 - 10

10 - 8

10 - 6

Figure 5.3: Ratio between the non-standard and the standard kinetic term for
Λ = 5×10−2MPl. The characteristic scale for this system is V0

1
4 = 1.24×10−3MPl.

On the other hand, the second value we consider is Λ = 5× 10−5MPl, for which
the non-standard kinetic term begins to become important

1. × 10 - 4

5. × 10 - 4

1. × 10 - 3

1. × 10 - 2

Figure 5.4: Ratio between the non-standard and the standard kinetic term for
Λ = 5×10−5MPl. The characteristic scale for this system is V0

1
4 = 1.24×10−3MPl.

If we now consider the first two HFF, we find that their time evolution is
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Figure 5.5: Evolution of ε1 as a function of t for different Λ. The characteristic
scale for this system is V0

1
4 = 1.24× 10−3MPl.

0
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- 3
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- 1

0

Figure 5.6: Evolution of ε2 as a function of t for different Λ. The characteristic
scale for this system is V0

1
4 = 1.24× 10−3MPl.

As we can see from the figure, the first slow-roll parameter ε1 remains always
much smaller than 1, as required from the Starobinsky model which assumes that
inflation never ends.
On the other hand, ε2 is always discontinuous, and the jump do to the model with
χ2 is smaller than the other one.
Furthermore, as we could expect, these two model are almost indistinguishable for
Λ = 5 × 10−2MPl, which confirms that the non-standard kinetic term is negligible
at this scale Λ.

If we now consider the speed of sound and its logarithmic derivative, i.e. c2
s and s,

we find
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Figure 5.7: Evolution of c2
s as a function of t for different Λ. The characteristic

scale for this system is V0
1
4 = 1.24× 10−3MPl.
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Figure 5.8: Evolution of s as a function of t for different Λ. The characteristic scale
for this system is V0

1
4 = 1.24× 10−3MPl.

Again, for the first value of Λ the two models reproduce the Starobinsky model
almost perfectly. For the second value of Λ, instead, we note that this time the
jump in s is smaller for the model with χ

3
2 .

5.2 Bispectrum of curvature perturbation

If we consider a model in which not only ε2, but also s jumps, we can compute the
bispectrum of curvature perturbation following the procedure indicated in section
3.3.3. First of all, we note that the vertex from which we have got the bispectrum in
the previous chapter has to be corrected, since in this case we deal with a non-trivial
speed of sound.
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From the expressions of the coefficients C1 and C2 in eq. (3.103), we have that such
a vertex reads

S3,ε2 = −M2
Pl

∫
dt

∫
dx aε1ε2

[
RR′2

c4
s

+
R2∂2R

2c2
s

]
, (5.40)

which implies that the bispectrum takes the form

BR(k)ε2 ≈ 6M2
Pl=

[
R3

k(0)

∫ 0

τ0

dτ a2ε1ε2R∗k(τ)
(2R′∗k

2(τ)

c4
s

− k2R∗k
2(τ)

c2
s

)]
. (5.41)

However, we stated that we there is a jump in s: therefore, we also have to take
into account this second contribution. Again, from the considerations in sec. 3.3.3,
the latter is

S3,s = −2M2
Pl

∫
dt

∫
dx a

ε1s

c2
s

R2∂2R . (5.42)

Taking into account this expression, the three-point function can be computed as

〈R̂k1(0)R̂k2(0)R̂k3(0)〉 ≈ −i
∫ 0

−∞
dτ ′ a 〈

[
R̂k1(0)R̂k2(0)R̂k3(0), Ĥint(τ

′)
]
〉 , (5.43)

with

Ĥint = 2M2
Pl

∫
dx a

ε1s

c2
s

R̂2∂2R̂ . (5.44)

From the definition (3.21a) of R̂k and the commutation rules (3.21b) for the cre-
ation/annihilation operators, we find that the commutator in (5.43) is of the same
kind as in eq. (4.62).
The correspondent bispectrum in the equilateral limit is therefore

BR(k)s ≈ 12M2
Plk

2=

[
R3

k(0)

∫ 0

τ0

dτ a2 ε1s

c2
s

R∗k
3(τ)

]
. (5.45)

In the following, we treat the contributions coming from the two vertexes separately,
in order to make evident the relative hierarchy.

The expression of the comoving curvature was found in [33], and it is

Rk(τ) =
iH

2MPl

√
ε1csk3

[
αk(1 + icskτ)e−i

∫
cskτ dτ − βk(1− icskτ)ei

∫
cskτ dτ

]
.

(5.46)
Its first derivative is therefore

R′k(τ) =
iH

2MPl

√
ε1csk3

×

×
{
αk

[
c2
sk

2τ − 1

2

(
ε′1
ε1

+
c′s
cs

)
(1 + icskτ)e−i

∫
cskτ dτ

]
−

− βk

[
c2
sk

2τ − 1

2

(
ε′1
ε1

+
c′s
cs

)
(1− icskτ)ei

∫
cskτ dτ

]}
. (5.47)
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In addition, the expressions for the Bogoliubov coefficients are

αk = 1 +
i(∆s−∆ε2)(1 + c2

sk
2τ2)

4(cskτ)3 (5.48a)

βk =
i(∆s−∆ε2)(1 + icskτ)2e−2icskτ

4(cskτ)3 , (5.48b)

where we have defined ∆ as the difference of a quantity evaluated after and before
the transition respectively, i.e. ∆A ≡ A− −A+.

5.3 Computation of power spectrum and bispectrum

After having analysed the two models, in this section we proceed to calculate the
bispectrum of curvature perturbation.
We first compute the bispectrum for the vertex with ε2 for the two models; we
expect this calculation to reproduce the results of sec. 4.2.3 for Λ4 � χ, while we
provide a first order correction in terms of powers in (χ/Λ4)

n
(with n = 1 for the

first model and n = 1/2 for the second one) for Λ4 & χ.
Secondly, we concentrate on the vertex with s. In this case, however, we limit to
the computation of the bispectrum for the first model, since for the second one the
calculation cannot be done analytically, unless with drastic approximations.

The only approximation we make is to consider the speed of sound c2
s as a con-

stant when we compute the integral (5.41), and then we substitute its value at the
transition. As a consequence, we can neglect the integrals and the term propor-
tional to c′s in (5.46) and (5.47), together with the term ∆s in (5.48a) and (5.48b).

In order to plot the function G(k)/k3, we also have to consider the first order
corrections to the power spectrum, which can be calculated analytically.

5.3.1 Curvature power spectrum

The non-standard kinetic term affects not only the curvature bispectrum, but also
the power spectrum.
If we consider a scale for which χ � Λ4 (e.g. Λ ∼ 10−2MPl), as we could expect
the power spectrum is almost the same as in the Starobinsky model
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Figure 5.9: Curvature power spectrum for Λ = 3× 10−2MPl.

In principle, we should expect that for smaller values of Λ, also the power spec-
trum would change. However, as we will see in a moment, the power spectrum is
degenerate for a jump in s rather than in ε2.

5.3.2 Contribution to the bispectrum from the ε2-vertex

We have stated that we consider a Taylor expansion in terms of powers in χ/Λ4 for
all the quantities. It is then clear that the more we consider values of Λ for which
the non-standard kinetic term is small compared to the standard one, the more this
procedure is accurate.
In order to keep track of the approximations we make more efficiently, we can inves-
tigate the accuracy of such a power expansion. In fact, we make two approximations
in the following: the first one, as already said, is to perform a Taylor expansion; the
second one, is to consider the speed of sound cs as a constant during the integration,
and then to substitute its value at the transition to the result of the integral.
However, if we consider the integrands instead of the integrals, we can take into
account also the exact expressions. In particular, in the following we make a com-
parison between the different expressions for the two integrands in (5.41). In order
to do so, we plot both the exact, unexpanded integrands, respectively with the full
expression for cs and the integral in the exponential (called ”exact, oscillating“),
and with a constant, evaluated at the transition, cs (called ”exact, non-oscillating“);
together with these, we also plot the expanded form of the integrands with cs eval-
uated at the transition (called ”approximated”). Note that for the computation of
the integrals, we have used the ”approximated” expression for the speed of sound.
Since the integrands are function of τ , k and Λ, we can plot them by keeping one of
these quantities fixed. For the first integrand in (5.41), if we fix the scale k, we plot
the exact and approximated expression for two different values of Λ, respectively
(almost) equal and slightly greater than its critical value (5.8). So doing, we find
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Figure 5.10: First integrand of (5.41) at fixed k for different values of Λ.

As we can see, just above the critical value (5.8), the approximated and the exact
forms are rather different; however, this is clear, since in this regime we consider a
Taylor expansion of a function which is not small at the point where we perform
such an expansion. Conversely, for slightly bigger scales, we note that the power
expansion is a good approximation.
By repeating the same considerations for the second integrand in (5.41), with the
same values of k∗ and Λ, we find
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Figure 5.11: Second integrand of (5.41) at fixed k for different values of Λ.
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In this case, we see that the approximation for value Λ & Λχ2,+ is even better
than in the previous one.
By performing the power expansion, we can analytically compute the correction to
the bispectrum of the Starobinsky model calculated in [3]. In appendix B, we give

the complete expressions for this quantity, for both the χ2- and the χ
3
2 -models.

As we have stated before, one could think that also the power spectrum PR(k)
in the definition (3.94) of G(k) should be expanded at first order in χ/Λ4. How-
ever, if we plot the function G(k)/k3 in the limit k � k0, we see that the result
is almost the same whether we take the full, Λ-dependent form of PR or just the
Λ-independent one.
For the first model, in fact, for Λ = 3.7× 10−4MPl, we get
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Figure 5.12: Function G(k)/k3 for small scales for the first model.

On the other hand, for the second model with Λ = 9.5× 10−4MPl we have
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Figure 5.13: Function G(k)/k3 for small scales for the second model.
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Since these plots have been obtained for the values of Λ we have used to define
“good” the Taylor expansion, we can claim that these considerations are valid for
all the range of values of Λ in which the perturbative approach is accurate. This
is a confirm that the power spectrum is degenerate for a jump in s rather than in ε2.

In this case too, when we consider values of Λ for which the non-standard kinetic
term is negligible, the two models are undistinguishable, and in particular their
bispectrum coincides with the one of the Starobinsky model.
For smaller values of Λ, instead, the bispectra are quite different for a fixed scale,
as we can see from the following figure
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Figure 5.14: Curvature bispectrum for Λ = 9.5× 10−4MPl.

As we can see, while for the χ2-model the bispectrum is again very similar to that
of the Starobinsky model, for the χ

3
2 -model the amplitude is significantly bigger.

This difference between the two models can be better understood if we consider the
asymptotic behaviours for the three-point functions for the two models. For the
first model, in the limit k � k0, we have

BR(k)χ2
k�k0−−−→ − 729∆AH12

0

4A3
−A

2
+k

5k0
sin

(
3k

k0

)
+

243∆AH10
0

4A3
−k

4k2
0Λ4

cos

(
3k

k0

)
. (5.49)

On the other hand, for the second model we find

BR(k)
χ

3
2

k�k0−−−→ − 729∆AH12
0

4A3
−A

2
+k

5k0
sin

(
3k

k0

)
+

2187∆AH11
0

8
√

2A3
−A+k4k2

0Λ2
cos

(
3k

k0

)
. (5.50)

A crucial point is that the Λ-dependent term has the same shape for both the mod-
els, even if with different amplitudes. In particular, it grows more rapidly than
the standard term found in [3]: while the Λ-independent term in the function k6BR
grows like ∼ k sin

(
3k
k0

)
, the original term found in this work grows like ∼ k2 cos

(
3k
k0

)
both for the χ2- and the χ

3
2 -models.
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From these two expressions, it is also immediate to see that the Λ-dependent terms
have different amplitudes for the two models. In fact, we find

BR(k)χ2

BR(k)χ3/2

k�k0−−−→ 4
√

2A+

9H0Λ2
. (5.51)

Therefore, since the bispectra scale with different powers of Λ, it is clear that when
the non-standard term becomes relevant, those bispectra evolve in different ways
for the same value of the scale Λ.

For smaller values of Λ, also the bispectrum for the first model becomes larger
than the standard one. In fact, we have
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Figure 5.15: Curvature bispectrum for Λ = 4× 10−4MPl.

Differently, we can get the same amplitude in the bispectrum if we consider
different scales
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Figure 5.16: Curvature bispectrum for different values of Λ.
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5.3.3 Contribution to the bispectrum from the s-vertex

The introduction of the new term in the Lagrangian allows to have another contri-
bution to the bispectrum, due to the jump in the derivative of the speed of sound,
i.e. s.
Such a contribution is given by eq. (5.45). While the preceding vertex was made
by a Λ-independent term and a first order correction, in this case we just have a
corrective term in powers of χ/Λ4.

However, only for the χ2-model such a bispectrum can be computed analytically,
so that we consider just this case. The full expression for the bispectrum calculated
from (5.45) is given in appendix B. Its shape is
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Figure 5.17: Bispectrum from the vertex proportional to s for Λ = 3× 10−4MPl.

We note that this shape is completely different to the one coming from the vertex
proportional to ε2. In particular, this bispectrum does not grow indefinitely with
the wave number, but it shows a feature near the transition, and two asymptotic
values for small and large scales.
In addition, we see that the amplitude of such a bispectrum is much smaller than
that coming from the other vertex.





Appendix A

Gaussian and non-Gaussian
random fields

In this appendix we briefly review some features of Gaussian and non-Gaussian
random fields, their principal properties and some relevant aspects for our treatise.

A.1 Gaussian random fields

Let’s consider a generic real field f(x), which can be Fourier expanded as

f(x) =

∫
dk

(2π)3 f(k)eik·x . (A.1)

Since f(x) is real, f(k) is subjected to the condition

f∗(k) = f(−k) . (A.2)

Without loss of generality, we can parametrize f(k) as f(k) ≡ fk = ak + ibk, with
a and b real and amplitude [35]

|fk| =
√
a2
k + b2k . (A.3)

For these parameters the constraint for the reality of fk is therefore

a−k = ak , b−k = −bk . (A.4)

Different configurations of fk are described by different sets of numbers (ak, bk).
For this reason, if we want to randomly generate a field configuration of fk, we have
to specify a probability distribution function (PDF) for the coefficients (ak, bk);
in particular, if we require fk to be a random Gaussian field, the PDF for the
coefficients will be tightly constrained.
We define a Gaussian distribution for a single mode k the configuration in which
the coefficients (ak, bk) are drawn from the distribution

P (ak, bk) =
1

2πσ2
k

exp

{
−
a2
k + b2k
2σ2

k

}
, (A.5)
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which is normalized to unity∫ ∞
−∞

dak

∫ ∞
−∞

dbk P (ak, bk) = 1 . (A.6)

If we assume statistical isotropy, the variance becomes a function only of the am-
plitude k = |k|, i.e. σk.
Since we can identify ak and bk, respectively, with the real and imaginary part of
fk, we can rewrite eq. (A.5) in terms of amplitude and phase of fk as

P (A, θ) =
1

2πσ2
k

exp

{
− A2

2σ2
k

}
, (A.7)

where

A ≡ a2
k + b2k (A.8a)

tan θ ≡ bk
ak

. (A.8b)

From eq. (A.7) we see that while the amplitude of fk is drawn from a Gaussian
PDF, its phase is random.

Now, let’s consider a generic functional Q [fk]: we can define its mean value as

〈Q [fk]〉 =
∏
k

∫
dak

∫
dbkQ [fk]

1

2πσ2
k

exp

{
−
a2
k + b2k
2σ2

k

}
. (A.9)

Consider the simple case in which Q [fk] = bkb−k′ : then

〈bkb−k′〉 =
∏
p

∫
dap

∫
dbp bkb−k′

1

2πσ2
p

exp

{
−
a2
p + b2p
2σ2

p

}
. (A.10)

The above integral is non-vanishing iff k = −k′. The integrals with q 6= k give 1,
so that we can write

〈bkb−k′〉 = −〈bkbk′〉 = σ2
kδ(k + k′) . (A.11)

Similarly (recall that a−k = ak)

〈akak′〉 = σ2
kδ(k + k′) . (A.12)

By combining these two results we have

〈fkfk′〉 = 〈akak′〉 − 〈bkbk′〉 = 2σ2
kδ(k + k′) . (A.13)

Then, we note that Gaussian modes are uncorrelated, i.e. modes with different k
have a vanishing correlation function.

In addition, all odd-points correlation functions vanish, while the even ones can
be expressed in term of 〈f(k)f(k′)〉. For instance

〈ak1ak2ak3ak4〉 =
∏
p

∫
dap

∫
dbp ak1ak2ak3ak4

1

2πσ2
p

exp

{
−
a2
p + b2p
2σ2

p

}
. (A.14)
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In this case the integral does not vanish only for pairs of equal momenta, i.e. (k1 =
k2, k3 = k4), (k1 = k3, k2 = k4), (k1 = k4, k2 = k3).
Therefore

〈ak1ak2ak3ak4〉 = σ2
k1
σ2
k3
δ(k1 + k2)δ(k3 + k4) + (1↔ 3) + (1↔ 4) , (A.15)

and consequently

〈fk1fk2fk3fk4〉 = 〈ak1ak2ak3ak4〉+ 〈bk1bk2bk3bk4〉+ 〈ak1ak2bk3b−k4〉+
+ 〈ak1ak3bk2b−k4〉+ 〈ak1ak4bk2b−k3〉+ 〈ak2ak3bk1b−k4〉+
+ 〈ak2ak4bk1b−k3〉+ 〈ak3ak4bk2b−k3〉 =

= 4σ2
k1
σ2
k3
δ(k1 + k2)δ(k3 + k4) + (1↔ 3) + (1↔ 4) =

= 〈fk1fk2〉〈fk3fk4〉+ 〈fk1fk3〉〈fk2fk4〉+ 〈fk1fk4〉〈fk2fk3〉 . (A.16)

It is then clear that for Gaussian random fields, all the information is encoded in
the two-points correlation function.

A.2 From Gaussian to non-Gaussian fields

From a general Gaussian curvature perturbation, i.e. fG(x), we can construct the
correspondent non-Gaussian quantity f(x) as

f(x) = fG(x) + fNL
(
f2
G(x)− 〈f2

G(x)〉
)
≡ fG(x) + fNG(x) , (A.17)

This quantity is defined “non-Gaussian” because, as we are going to demonstrate,
it has a non-vanishing three-point function.
First of all, let’s compute the Fourier transform of fNG(x): this reads

fNG(k) = fNL

∫
dx eik·x

[
f2
G(x)− 〈f2

G(x)〉
]

=

= fNL

[∫
dx

∫
dp

(2π)3

∫
dq

(2π)3 fG(p)fG(q) ei(k−p−q)·x − (2π)3δ(k)〈f2
G(x)〉

]
=

= fNL

[∫
dp

(2π)3 fG(p)fG(k − p)− (2π)3δ(k)〈f2
G(x)〉

]
=

= fNL

[∫
dp

(2π)3 f
∗
G(p)fG(k + p)− (2π)3δ(k)〈f2

G(x)〉
]
, (A.18)

where the reality condition (2.74) has been used.
Thanks to (3.51), we can write 〈f2

G(x)〉 as

〈f2
G(x)〉 =

∫
dk

(2π)3

∫
dp

(2π)3 〈fG(k)fG(p)〉 ei(k+p)·x =

∫
dk

(2π)3Pf (k) , (A.19)

and consequently

fNG(k) = fNL

∫
dp

(2π)3

[
f∗G(p)fG(k + p)− (2π)3δ(k)Pf (k)

]
(A.20)
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Now, since
〈fG(k)fG(k′)〉 = Pf (k) (2π)3δ(k + k′) , (A.21)

we have, for the reality condition (2.74)

〈f∗G(p)fG(k + p)〉 = Pf (p) (2π)3δ(k) . (A.22)

With these relation, we are able to recast eq. (A.20) as

fNG(k) = fNL

∫
dp

(2π)3 [f∗G(p)fG(k + p)− 〈f∗G(k)fG(k + p)〉] . (A.23)

Since we have expressed the non-Gaussian part of the curvature perturbation uniquely
in terms of Gaussian fields in Fourier space, can now calculate the three-point func-
tion and exploit relation (A.16) for Gaussian fields.
So doing we have

〈fG(k1)fG(k2)fNG(k3)〉 = fNL

∫
dp

(2π)3

[
〈fG(k1)fG(k2)f∗G(p)fG(k3 + p)〉−

− 〈fG(k1)fG(k2)〉〈f∗G(k)fG(k3 + p)〉
]

=

= fNL
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dp

(2π)3

[
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(((
((((

(((
(((

〈fG(k1)fG(k2)〉〈f∗G(p)fG(k3 + p)〉+
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+ 〈fG(k1)fG(k3 + p)〉〈fG(k2)f∗G(p)〉−

−
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(((
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〈fG(k1)fG(k2)〉〈f∗G(k)fG(k3 + p)〉
]

=

= fNL(2π)3
∫
dp
[
Pf (k1)Pf (k2)δ(k1 − p)δ(k2 + k3 + p)+

+ Pf (k1)Pf (k2)δ(k1 + k3 + p)δ(k2 − p)
]

=

= 2 fNL(2π)3Pf (k1)Pf (k2)δ(k1 + k2 + k3) . (A.24)

Thus, we have demonstrated that the definition of f in (A.17) gives non-vanishing
three-point function.
In general, we find [35]

〈f(k1)f(k2)f(k3)〉 = 2 fNL(2π)3δ(k1 + k2 + k3) [Pf (k1)Pf (k2) + symm.] . (A.25)



Appendix B

Analytic expressions for the
bispectrum

In this appendix we give the analytical expressions of the bispectrum for the models
studied in chapter 5, up to the first, non-vanishing order in χ/Λ4.

B.1 Contribution to the bispectrum from the ε2-vertex

Here we give an explicit expression for the bispectrum deriving from the vertex
proportional to ε1ε2, for both the two extensions of the Starobinsky model

B.1.1 First model

For the first model, i.e. the one for which the non-standard kinetic term is propor-
tional to χ2, the three-point correlation function is

〈R̂k(0)R̂k(0)R̂k(0)〉ε2,χ2 ≈ (2π)3δ(3k)
[
A1(k0F1 + k2

0F2 + k3
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0F4) +
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]
, (B.1)
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, (B.4)
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B.1.2 Second model

For the other model, i.e. the one for which the non-standard kinetic term is pro-
portional to χ

3
2 , the three-point correlation function is

〈R̂k(0)R̂k(0)R̂k(0)〉ε2,χ3/2 ≈ (2π)3δ(3k)
[
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0G3)+

+D2(G4 + k0G5 + k2
0G6 + k3

0G6)
]
, (B.13)
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B.2 Contribution to the bispectrum from the s-vertex

Here we give an explicit expression for the bispectrum deriving from the vertex
proportional to s for the model with the χ2 non-standard kinetic term.

The three-point correlation function for this model, at the lowest order χ/Λ4, is

〈R̂k(0)R̂k(0)R̂k(0)〉s,χ2 ≈ (2π)3δ(3k)
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Conclusion

In this thesis we have studied the bispectrum of curvature perturbations in an
archetypal model of inflation with violation of the slow-roll condition [2], and its ex-
tensions to non-standard kinetic terms, which are fully original results of this thesis.

The study of the bispectrum in the original model [2] which includes a disconti-
nuity in the first derivative of a linear potential has been chosen in view of many
considerations and we mention here the two most important ones:

1. This model allows fully analytical calculation of the spectrum and bispectrum
of curvature perturbations, whose accuracy in reproducing the exact (numer-
ical) results is remarkable.

2. Although not preferred at a statistical significant level, this model (and oth-
ers which also include features in the primordial curvature perturbations)
provides a fit to the most recent Planck data for the CMB temperature and
polarization anisotropies power spectrum [1] which is better than the one ob-
tained with the simplest slow-roll inflationary models. This better fit is due
to a combined effect of a lower amplitude for the spectrum for scales larger
the one corresponding to the change in the derivative of the linear potential,
followed by oscillations.

It is known that features in the primordial power spectrum are generated either
by sudden changes in the potential and by sudden changes in the speed of sound,
which is not trivial in models with a non-standard kinetic term, and that these two
effects are degenerate in the power spectrum. The main motivation of this work is
to understand how these sudden changes in the potential and the speed of sound of
inflaton fluctuations can be disantangled in the bispectrum. As a class of models
potentially amenable of analytical calculations, we have therefore considered exten-
sions of the original model introduced by Starobinsky.
It is worthwhile to mention that features in the power spectrum are also generated
by a regime of fast roll before slow-roll inflation [51]. However, this latter model
produces a modification in the power spectrum which is less preferred by CMB data
with respect to the model studied here [1].

In this work, we have first re-computed the bispectrum of curvature perturbations
in the original model following [3], verifying that the results in the equilateral limit
in the literature are obtained by considering only the varying part of the second
slow-roll parameter, i.e. ε2.
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We then have generalized this model by considering a Lagrangian with a non-
standard kinetic term. In particular, we have considered two different general-
izations obtained by the addiction of a non-standard kinetic term with a power
larger than 1.
The introduction of this new kinetic term has the important consequence to give a
non-trivial speed of sound, which in turn leads to a discontinuity in its logarithmic
derivative, s. As already said, these generalized models are characterized by degen-
erate power spectra, in the sense that the same feature for the power spectrum can
be obtained both from a jump in ε2 or s, with a suitable choice of the parameters. In
order to break this degeneracy, then, we have calculated the curvature bispectrum,
even if we have been able to get an analytic expression just for one of the models
considered.
By comparing the results obtained for the model in which the non-standard kinetic
term is proportional to (∂µφ∂

µφ)2, we have seen that the contribution to the bispec-
trum due to the vertex proportional to s is always much smaller than that coming
from the vertex proportional to ε2. This is due to the fact that for this model the
jump in s is always much smaller than the jump in ε2. Thus, in order to obtain
comparable curvature bispectra, we should find a model for which the discontinuity
in s and ε2 are of the same order. A good candidate to realize this seems to be a
model with the Born-Infeld Lagrangian, for which the background evolution seems
to suggest that there exists a regime in which we approximately have ∆s ≈ −∆ε2.
This is a promising direction which we plan to investigate in the future.
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