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Abstract

Questo lavoro di tesi si inserisce nel recente filone di ricerca che ha lo scopo di
studiare le strutture della Meccanica quantistica facendo impiego della geome-
tria differenziale. In particolare, lo scopo della tesi é analizzare la geometria
dello spazio degli stati quantistici puri e misti. Dopo aver riportato i risultati
noti relativi a questo argomento, vengono calcolati esplicitamente il tensore
metrico e la forma simplettica come parte reale e parte immaginaria del ten-
sore di Fisher per le matrici densitá 2×2 e 3×3. Quest’ultimo altro non é che
la generalizzazione di uno strumento molto usato in Teoria dell’Informazione:
l’Informazione di Fisher. Dal tensore di Fisher si puó ottenere un tensore
metrico non solo sulle orbite generate dall’azione del gruppo unitario ma an-
che su percorsi generati da trasformazioni non unitarie. Questo fatto apre
la strada allo studio di tutti i percorsi possibili all’interno dello spazio delle
matrici densitá, che in questa tesi viene esplicitato per le matrici 2 × 2 e af-
frontato utilizzando il formalismo degli operatori di Kraus. Proprio grazie a
questo formalismo viene introdotto il concetto di semigruppo dinamico che ri-
flette la non invertibilitá di evoluzioni non unitarie causate dall’interazione tra
il sistema sotto esame e l’ambiente. Viene infine presentato uno schema per
intraprendere la stessa analisi sulle matrici densitá 3× 3, e messe in evidenza
le differenze con il caso 2× 2.
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Introduction

This work belongs to the recent attempts to describe Quantum Mechanics
using differential geometry. During the last decades the interest in geometri-
cal aspects of Quantum Mechanics arose higher and higher for many reasons.
First of all this subject opens fundamental questions and leads to the heart of
Quantum Mechanics. For example, one requires the space of quantum states
to be a linear space in order to incorporate the superposition principle that
characterizes the behaviour of quantum “objects”. In fact, this is expressed in
one of the Quantum Mechanics postulates. Alternatively, you can consider the
postulate on composite systems, whose content has also a geometrical nature:
one requires that the states space of the composite system is the tensorial
product of the states space of each sub-system.
Second, the most successful quantum theories have a solid geometrical back-
ground. This is so in Quantum Field Theory, in gauge field theory in particular.
One can simply consider the very first definitions in Quantum Field Theory:
we are used to defining fields according to their transformations under the ac-
tion of the Lorentz group. These kind of definitions are purely geometrical.
Furthermore one of the most fascinating theory of the 20th century, General
Relativity by Einstein, is in essence a geometrical theory. Even if, until now,
nobody has been able to unify Quantum Theory with General Relativity, sev-
eral attempts have been made to rephrase Quantum Theory as a Geometrical
Theory. Hence, the study of geometrical aspects of Quantum Mechanics could
bring new results in this context.
It is also interesting to notice that Quantum Theory reveals its geometrical
nature when considering systems with a finite number of (internal) degrees of
freedom, as q-bits or more generally q-dits or d-level systems. This is also
connected to another important theory of our days: Quantum Information
Theory. In fact, in this contest, the q-bit (a two levels Quantum system) plays
the main role. Quantum Information Theory has a wide range of applications,
from quantum computing to quantum metrology, that is the study of making
high-resolution and highly sensitive measurements of physical parameters us-
ing Quantum theory to describe the physical systems.
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12 Introduction

Thus, in this work our first issue will be a geometrical description of the space
of quantum states. In fact, it is well known that the Hilbert space is not the
most natural space to describe a Quantum system: due to the probabilistic in-
terpretation, a Quantum state is not specified by a vector in the Hilbert space
but by a normalized vector. Also one has to eliminate a redundant phase. This
leads to the projective Hilbert space that is the space of equivalence classes
of vectors that represent the same physical state. Unluckily, the projective
Hilbert space is not a linear space and the easiest way to face up with this
problem is using tensorial techniques. This problem is presented in Chapter 1,
where, following [5], we analyse the space of pure states of a d-level Quantum
system. Nevertheless, for practical and theoretical application, the whole space
of states that contains both pure and mixed quantum states is more interest-
ing. The whole space of states has a more complex and richer geometrical
structure than the space of pure states. To characterize this space we will find
a metric tensor and a symplectic form. These can be found, essentially, in two
ways.
The first approach, that is presented in Chapter 2, was pointed out in [10]. It
consists in seeing the whole space of states as the set of density matrices, and,
in turn, the set of density matrices is seen as a convex cone in the space of the
Hermitian matrices. These latter form the Lie algebra of the unitary group.
Hence we study the action of the Unitary group on the Hermitian matrices
analysing the orbits of Hermitian matrices under the co-adjoint action of the
unitary group. With this method it is possible to define explicitly a metric
tensor and a symplectic form on each unitary orbit. In particular, we evaluate
these tensors for a two-level quantum system (i.e q-bit) and for a three-level
quantum systems (q-trit).

On the other hand, as was pointed out in [8, 6, 7], the space of density matrices
can be studied considering it as a stratified space where each stratum is an
orbit obtained by the co-adjoint action of the quotiented unitary group. In this
context it is possible to define the so called Fisher Tensor on each unitary orbit,
and one can obtain from this a metric tensor and a symplectic form. Quantum
Fisher Information is the Quantum counterpart of the classical Fisher informa-
tion, a tool which is widely used in the field of information and optimization
theory. Both classical and Quantum Fisher Information are used to evaluate
how much information an observable random variable carries about a param-
eter on which the variable depends on. Actually, in this work we will study
the tensorial generalization of the quantum Fisher Information. In particular
in Chapter 3 we have review the theoretical framework while in Chapter 4 we
explicitly evaluate the symplectic form and the metric tensor for q-bits and
q-trits. We will show that these tensors and the previously calculated ones are
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essentially the same, up to normalisation constants. Moreover we discuss how
the Fisher Tensor allows to define a metric on general paths on the whole space
of density matrices and not only on unitary orbits. In particular in Chapter
4 we also evaluate the metric tensor, for the q-bit and q-trits case, for the
transversal paths that connect different unitary orbits.
Finally, in the last part of the thesis, we will try to give an interpretation of
such transverse direction in term of dynamical evolution. Indeed, it is well
known that an unitary transformation describes the dynamical evolution of a
closed Quantum system. Thus the unitary orbits have a precise physical mean-
ing: they are the path that a state “draws” in the space of density states when
it evolves without interacting with other systems or with the environment. But
what is the physical meaning of the transversal path? In Chapter 5 we answer
to this question by introducing the superoperator formalism. It turns out that
the transversal paths are “ drawn” by a state that evolves interacting with
other systems or with the environment. Hence, this kind of paths describes
the evolution of an open quantum system. In particular, using the Kraus Rep-
resentation of a superoperator, we are able to show the semi-group structure
underlying these “transversal” evolutions. This means that, in general, when
an open system evolves there is an arrow on time so that the system cannot be
brought back to the initial state. In Chapter 5 we explicitly present all these
features for a q-bit, while in Chapter 6 we show how we would like to proceed
the study for q-trits. This latter case is more complex than the q-bit one and
we start our analysis the space of diagonal density matrices finding out the
existence of a precise and regular pattern that could be useful to continue the
research.



14 Introduction



Chapter 1

The Geometry of Quantum
Mechanics

In this chapter we will first recall some basic notions in order to fix the lan-
guage and the notation that will be employed. We will show that the Hilbert
space can be seen as the total space of a principal bundle with base space the
projective Hilbert Space and fiber C0. Moreover, we will point out the isomor-
phism between the projective Hilbert Space and the rank-one projectors. Finally
we will show that the space of rank one-projectors is a Khäler manifold. In this
chapter we will follow the articles [5, 10], where all the proofs can be found.

1.1 An alternative description

Dirac’s approach to Quantum Mechanics uses Hilbert spaces as fundamental
object to start with, as a consequence of the fact that one needs a superposition
rule, and hence a linear structure, in order to gain an appropriate description
of the interference phenomena that are at the heart of Quantum Mechanics.
For what follows it should be noticed that a Complex Hilbert space carries a
natural complex structure (naively, multiplication of vectors by the imaginary
unit).
Nevertheless, it is well known that a complete measurement in Quantum Me-
chanics does not provide us with a uniquely defined vector in some Hilbert
space, but with a “ray”. A ray is an equivalence class of vectors that differ by
multiplication through a non-zero complex number. Even if it is possible to fix
a normalisation condition, an overall phase remains unobservable. Considering
a finite-dimensional Hilbert space H with dimHC = n and quotienting it with
respect to both multiplication operation, i.e. multiplication by the norm of a

15



16 CHAPTER 1. THE GEOMETRY OF QUANTUM MECHANICS

complex number and multiplication by a phase, one obtains a double fibration:

R+ −−−→ H0y
U(1) −−−→ S2n−1y

P(H)

(1.1)

where H0 = H − 0, S2n−1 is the 2n-1-dimensional sphere and P(H) is the
projective Hilbert space.

Definition 1.1. The Projective Hilbert Space P(H) is defined as:

P(H) = {[|ψ〉] : |ψ〉 , |ϕ〉 ∈ [|ψ〉]⇔ |ψ〉 = λ |ϕ〉 , |ψ〉 , |ϕ〉 ∈ H0, λ ∈ C0} (1.2)

where [|ψ〉] denotes the equivalence class to which |ψ〉 ∈ H belongs, and C0 =
C− {0}.

Remark 1. By definition P (H) ≡ CP n−1 also known as complex projective
space.
Remark 2. Notice that in this way H acquires the structure of a principal fiber
bundle, with base space P(H) and typical fiber C0 = U(1)× R+.

Definition 1.2. In general a principal fiber bundle is composed by

1. a t-dimensional manifold T , called total space;

2. a m-dimensional manifold M , called base space;

3. a map π : T 7→ M , called projection, such that π is surjective and
continuous function;

4. a topological space F, called typical fiber, such that F is omeomorphic
to all the fibers π−1(m) with m ∈M)

In symbols:
F −−−→ T

π

y
M

(1.3)

If the total space is the direct product of two manifolds T = M × N , the
projection is simply given by π : T → M,π(m,n) = m where m ∈ M and we



1.1. AN ALTERNATIVE DESCRIPTION 17

have that, for all n ∈ N , π−1(m0 ∈ M) = {(m0, n), n ∈ N} is homeomorphic
to N, that is the fiber of the point m0, while M is the base of the product. This
structure is said trivial bundle and it is usually represented with this notation:

N −−−→ T = M ×N

π

y
M

(1.4)

The Hermitian structure ofH allows the association of the equivalence class
[|ψ〉] with the rank-one projector

ρψ = |ψ〉 〈ψ|
〈ψ|ψ〉

(1.5)

with the properties:
ρ†ψ = ρψ; (1.6)
Trρψ = 1; (1.7)
ρ2
ψ = ρψ. (1.8)

The space of rank one-projectors is usually denoted as D1
1(H) and it is easy to

understand that we can identify it with P (H) and conclude that a complete
measurement will yield a rank-one projector also called pure state. Moreover
transition probabilities and expectation values of self-adjoint linear operators
(associated to the dynamical variables) depend only on the projectors associ-
ated with the states. In particular:
if A = A† the expectation value in the state |ψ〉 is

〈A〉ψ = 〈ψ|A|ψ〉
〈ψ|ψ〉

≡ Tr{ρψA} (1.9)

if |ψ〉 and |φ〉 are two states, the normalized transition probability from |ψ〉 to
|φ〉 is

| 〈ψ|φ〉 |2

〈ψ|ψ〉 〈φ|φ〉
≡ Tr{ρψρφ} (1.10)

Hence it is clear that the most natural setting for QuantumMechanics is not the
Hilbert space itself but P(H), or, equivalently, the space D1

1(H). Nevertheless,
the superposition rule remains a fundamental quantum feature. It is possible
to show [5] that a superposition of rank-one projectors which yields another
rank-one projector is possible, but requires the arbitrary choice of a fiducial
projector.
In conclusion, the whole Quantum Mechanics can be formulated using objects
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that belong to the Projective Hilbert space. The latter is no more a linear space
but it carries a rich manifold structure. In this context, the notion of linear
transformation loses meaning and we are led to consider the tensor counterpart
of all the Quantum Mechanics features.

1.2 Kähler structure on the space of pure states

1.2.1 HR as a Kähler manifold
Let H an n-dimensional vector space on C. The Geometric approach to Quan-
tum Mechanics is based on considering the “realification” HR di H. HR coin-
cides with H as a group (Abelian under addition) but in which only multiplica-
tion by real scalars is allowed. Now we are going to build HR. Let (e1, ....., en)
be a basis for H, once a basis has been chosen H ≡ Cn. Then a basis for HR
is (e1, .....en, ie1, ....., ien) in this way HR ≡ R2n.
If x ∈ Cn then x = xkek with xk = uk + ivk where xk ∈ C and uk, vk ∈ R. In
short x correspond to the vector in HR: u+iv or (u,v) where u,v ∈ Rn.
Let A : H → H be a linear operator, we could build its realified counterpart:
AR : HR → HR.
We are looking for AR that coincides pointwise with A: if Ax = x’
with x = u + iv and x’ = u’ + iv’, then AR(u,v) = (u’,v’).
So we can represent A with a matrix of the form: A = α + iβ where α and β
are n× n real matrices and AR with a 2n× 2n real matrix:[

α −β
β α

]
(1.11)

The multiplication for the imaginary unit in H will be reproduced in HR defin-
ing a linear operator J . If −ix = −i(u + iv) = −iu + v
then in short: [

u
v

]
−→

[
v
-u

]
(1.12)

moreover [
α −β
β α

] [
u
v

]
=
[
αu− βv
βu + αv

]
(1.13)

It is trivial understand that α = 0 and β = −1; hence:

J =
[
0n×n In×n
−In×n 0n×n

]
(1.14)

with the property J2 = −I2n×2n In order to prove that the projective Hilbert
Space is a Kähler manifold we have to introduce some definitions.



1.2. KÄHLER STRUCTURE ON THE SPACE OF PURE STATES 19

Definition 1.3 (Complex Manifold). A manifold Z that can be mapped on Cn

and with analytic diffeomorphism as compatibility condition between charts
is called to be a Complex Manifold. Then, on the tangent bundle TZ we can
define the complex structure J0 : TZ → TZ such that:

∀v ∈ TZ : J0(v) = −iv (1.15)

and J2
0 = −I

Definition 1.4 (Kähler Manifold). Let K be a real and even-dimensional
manifold with:

• a complex structure J such that J2 = −I

• a closed, non-degenerate two-form satisfying:

ω(x, Jy) + ω(Jx, y) = 0 (1.16)

with x, y ∈ TK. In other words ω is a symplectic structure.

• a positive (0,2)-tensor g(., .) such that:

g(., .) =: ω(., J(.)) g(x, y) =: ω(x, Jy) (1.17)

Note that equation (1.16) implies that g is symmetric and non-degenerate
iff ω is non-degenerate. In this latter case g is a metric.

In this case K is said Kähler Manifold.

Remark 3.
The property J2 = −I implies:

ω(Jx, Jy) = ω(x, y); g(Jx, Jy) = g(x, y) (1.18)

while the equation (1.17) implies:

g(x, Jy) + g(Jx, y) = 0 (1.19)

Using equation (1.17) and substituting y → Jy we obtain:

ω = −g(., J(.)) (1.20)

This equation permits to define a Kähler manifold starting from a metric.
Moreover, using the same tricks, we could start from g and ω and require
that J = g−1 ◦ ω is such that J2 = −1. In literature (g, ω, J) is said to be a
compatible triple.
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Coming back to the complex vector space, if it is endowed with the Hermi-
tian product 〈x, y〉H (being by convention C-linear in y and anti-linear in x),
then H is a complex Hilbert space. Using the Hermitian product we can build
up a metric and a symplectic form. Firstly we can separate the real part of
the Hermitian product from the imaginary one:

h(x, y) = g(x, y) + iω(x, y) (1.21)

with
g(x, y) = Re h(x, y) and ω = Im h(x, y)

Note that in this case x, y are vectors in H. Being h(., .) a positive-definite
sesquilinear form and non-degenerate, it is easy to show that g is symmetric,
positive and non-degenerate and ω is antisymmetric and non-degenerate. Let
us consider HR with is tangent bundle THR = HR ×HR.
Remark 4. We will make use of the following notation.
Points in HR will be denoted with Latin letters, while points in the tangent
space TxHR will be denoted with Greek letters. For example (x, φ) ∈ THR
denotes a point x ∈ HR and a tangent vector in x: φ ∈ TxHR ≈ HR.

In order to promote g and ω to (0,2)-tensor fields, we associate with every
point x ∈ H the constant vector field:

Xψ =: (x, ψ) (1.22)

Hence we consider g and ω as (0,2)-tensor fields, defining:

g(x)(Xψ, Xφ) =: g(ψ, φ) and ω(x)(Xψ, Xφ) =: ω(ψ, φ) (1.23)

in this way g becomes a Riemannian metric and ω a symplectic form. In the
same way we can define:

J(x)(Xψ) = (x, Jψ) (1.24)

where Jψ = −iψ. Then J has been promoted to a (1,1) tensor field. It is easy
to show that g, ω and J satisfy the compatibility conditions encoded in the
equations (1.16),(1.17) and (1.18), hence HR is a Kähler Manifold, with J as
the complex structure. Explicitly, if (e1, ...en) is an orthonormal basis for H,
and x = (u, v) and y = (u′, v′) then

g(x, y) = u · u′ + v · v′ and ω(x, y) = u · v′ − v · u′ (1.25)

Introducing real coordinates x1, ...x2n on HR ≈ R2n we can write:

g = gijdx
i ⊗ dxj (1.26)
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ω = ωijdx
i ∧ dxj (1.27)

J = J ijdx
j ⊗ ∂

∂xi
(1.28)

Hence
J2 = −I⇔ J j kJ

k
i = −δi j (1.29)

1.2.2 The tensorial approach
We have just proved that HR is a linear Kähler manifold. Because of the
non-linearity of P (H) ( remeber the definition 1.2) we will use a tensorial
description of these structures.
Being g and ω non-degenerate, seen as (0,2)-tensor field on THR, they have
their inverses: two controvariant (2,0)-tensors. In particular G, that is a metric
tensor, and Ω, that is a Poisson tensor, both map T ∗HR to THR, such that:

G ◦ g = Ω ◦ ω = ITHR (1.30)

These two controvariant tensors can be used to define a Hermitian product on
the cotangent bundle T ∗HR ≈ H∗R, i.e. the dual Hilbert space. Hence: given
two one-forms α and β in H∗R, we have:

〈α, β〉H∗R = G(α, β) + iΩ(α, β) (1.31)

These tensor fields induces two real brackets on smooth, real-valued functions
on HR:

1. the symmetric Jordan bracket {f, h}g := G(df, dh)

2. the anti-symmetric Poisson bracket {f, h}ω := Ω(df, dh)

We can extend these brackets to complex functions by complex linearity and
set:

{f, h}H = 〈df, dh〉H∗R = {f, h}g + i{f, h}ω (1.32)

To make all these structures more explicit we can choose an orthonormal
basis{ek}k=1,...n in H. This induces global coordinates (qk, pk) with k = 1, ..., n
on HR by:

〈ek, x〉 = (qk + ipk)(x), ∀x ∈ H (1.33)
Then

J = dpk ⊗ ∂

∂qk
− dqk ⊗ ∂

∂pk
(1.34)
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g = dqk ⊗ dqk + dpk ⊗ dpk (1.35)

ω = dqk ⊗ dpk − dpk ⊗ dqk (1.36)

It is easy to show that:

G = ∂

∂qk
⊗ ∂

∂qk
+ ∂

∂pk
⊗ ∂

∂pk
(1.37)

and
Ω = ∂

∂qk
⊗ ∂

∂pk
− ∂

∂pk
⊗ ∂

∂qk
(1.38)

In this way the brackets just defined become:

{f, h}g = ∂f

∂qk

∂h

∂qk
+ ∂f

∂pk

∂h

∂pk
(1.39)

{f, h}ω = ∂f

∂qk

∂h

∂pk
− ∂f

∂pk

∂h

∂qk
(1.40)

Moreover

G+ iΩ =
(
∂

∂qk
⊗ ∂

∂qk
+ ∂

∂pk
⊗ ∂

∂pk

)
+ i

(
∂

∂qk
⊗ ∂

∂pk
− ∂

∂pk
⊗ ∂

∂qk

)
(1.41)

Using complex coordinates zk = qk + ipk

G+ iΩ = 4 ∂

∂zk
⊗ ∂

∂z̄k
(1.42)

and

{f, h}H =2
(
∂f

∂zk
∂h

∂z̄k
+ ∂h

∂zk
∂f

∂z̄k

)
+ i

[
2
i

(
∂f

∂zk
∂h

∂z̄k
− ∂h

∂zk
∂f

∂z̄k

)]
=

=4 ∂f
∂zk

∂h

∂z̄k

(1.43)

Every complex linear operator A ∈ gl(H) on H induces the quadratic function

fA(x) = 1
2 〈x|Ax〉H = 1

2z
†Az (1.44)

Remark 5. Note that fA is real if and only if A is Hermitian, A = A†



1.2. KÄHLER STRUCTURE ON THE SPACE OF PURE STATES 23

Using the definitions of Jordan and Poisson brackets it is easy to show that

{fA, fB}g = fAB+BA and {fA, fB}ω = fAB−BA
i

(1.45)

where, A,B ∈ gl(H). So it is clear that the Jordan bracket of two quadratic
functions fA and fB is related to the Jordan bracket between the operators A
and B, that is:

[A,B]+ = AB +BA (1.46)
The same thing is true for the Poisson bracket between the quadratic functions
that is related to the Poisson bracket between operators:

[A,B]− = AB −BA
i

(1.47)

Moreover from these relations, it is easy to check that

{fA, fB}H = 2fAB (1.48)

Let us consider real and smooth functions on HR; we can define ∀ f on HR
two vector fields

Definition 1.5 ( Gradient vector field ). ∀ f , smooth function on HR, the
gradient vector field (gradf ) associated with f is defined as

g(gradf , .) = df or gradf = G(., df) (1.49)

Definition 1.6 ( Hamiltonian vector field ). ∀ f , smooth function on HR, the
hamiltonian vector field (Hamf ) associated with f is defined as

ω(Hamf , .) = df or Hamf = Ω(., df) (1.50)

So that

gradf = ∂f

∂qk
∂

∂qk
+ ∂f

∂pk
∂

∂pk
Hamf = ∂f

∂pk
∂

∂qk
− ∂f

∂qk
∂

∂pk
(1.51)

and then we can rewrite:

{f, h}g = g(gradf , gradh) {f, h}ω = ω(Hamf , Hamh) (1.52)

Remark 6.
J(gradf ) = Hamf (1.53)

in fact,using equations (1.51), (1.34) we have:

J( ∂f
∂qk

∂

∂qk
+ ∂f

∂pk
∂

∂pk
) = (dpt ⊗ ∂

∂qt
− dqt ⊗ ∂

∂pt
)( ∂f
∂qk

∂

∂qk
+ ∂f

∂pk
∂

∂pk
)
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Moreover, using the orthonormality conditions between the basis of the coor-
dinate system:

dpk
∂

∂pt
= dqk

∂

∂qt
= δkt dqk

∂

∂pt
= dpk

∂

∂qt
= 0 (1.54)

we obtain:
∂f

∂pk
∂

∂qk
− ∂f

∂qk
∂

∂pk
= Hamf

Turning to linear operators, ∀A ∈ gl(H) such that A : H → H, we can
associate:

1. a quadratic function, as explained before

fA(x) = 1
2 〈x|Ax〉H = 1

2z
†Az (1.55)

2. a vector field Ã such that H → TH via x→ (x, ψ = Ax)

3. a (1,1)-tensor field TA: TxH 3 (x, ψ)→ (x,Aψ)

Theorem 1.2.1.
gradfA = Ã (1.56)

Proof. From one side we have

g(Ã(z), ψ) = g(Az, ψ) = Reh(Az, ψ) = 1
2(〈Az|ψ〉H + 〈ψ|Az〉H) (1.57)

from the other one, using (., .) as the pairing between vectors and covectors,
we have:

(ψ, dfA) =
(

(ψi ∂
∂zi

+ ψ̄i
∂

∂z̄i
), (∂fA

∂zk
dzk + ∂fA

∂z̄k
dz̄k)

)

=
(

(ψ ∂

∂z
+ ψ†

∂

∂z†
), (∂fA

∂z
dz + ∂fA

∂z†
dz†)

)

Moreover
fA = 1

2z
†Az

∂fA
∂z̄†

= 1
2Az

∂fA
∂z

= 1
2 z̄A

Then (
(1
2dz

†Az + 1
2z
†Adz), (ψ ∂

∂z
+ ψ†

∂

∂z†
)
)

=
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= (1
2ψ
†Az + 1

2z
†Aψ) = 1

2(〈Az|ψ〉H + 〈ψ|Az〉H)

In conclusion we have just proved that

g(Ã(z), ψ) = (ψ, dfA) ∀ψ (1.58)

Looking at the very first definition of gradf is clear that this latter equality
proves the theorem.

Theorem 1.2.2.
HamfA = iA (1.59)

Proof. Using the compatibilty conditions encoded in (1.18),(1.17) ,(1.16), and
the previous result we have:

(ψ, dfA) = g(Ã(z), ψ) = ω(Az, Jψ) = −ω(JAz, ψ) = ω(iAz, ψ) ∀ψ (1.60)

This proves the Theorem.

1.2.3 The momentum map
We consider now the action of the unitary group U(H) onH. Notice that U(H)
is the group that preserves both the metric g and the symplectic form ω,hence
the triple. In what follows we will denote with u(H) the Lie algebra of U(H) of
anti-Hermitian operators and u∗(H) the dual space of u(H). In particular we
use the following convention: we will identify the space of Hermitian operators
(A = A†) with the dual u∗(H) of the Lie algebra u(H) of the Unitary group
U(H) on H, according to the pairing between Hermitian operators A ∈ u∗(H)
and anti-Hermitian operators T ∈ u(H):

〈A, T 〉 = i

2Tr(AT ) (1.61)

In this way the multiplication by i establishes an isomorphism between u(H)
and his dual: u(H) 3 T 7→ iT ∈ u∗(H). This is fundamental since this
isomorphism allows us to identify the adjoint action of the group U(H) with
the co-adjoint one. The notions of adjoint and co-adjoint action are very deep
and have a lot of applications. An interested reader can find a thorough work
on these subjects in [11]. Nevertheless, for our purpose, the following naive
and intuitive explanations that can be found in Appendix D, are enough.
The adjoint action of the group U(H) can be defined as:

AdU(T ) = UTU † (1.62)
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where T ∈ u(H) and U ∈ U(H). On the other hand the co-adjoint action of
U(H) is the action on u∗(H); because of the just noticed isomorphism, it is
possible to define it like the adjoint action: AdU(A) = UAU † where A ∈ u∗(H)
and U ∈ U(H).
Moreover, it is easy to check that u∗(H) is a Lie Algebra endowed with:

[A,B]− = AB −BA
i

(1.63)

and considering the Jordan Bracket:

[A,B]+ = AB +BA (1.64)

we have that: if A,B ∈ u∗(H) then [A,B]+ ∈ u∗(H) as well.
It is possible to equip u∗(H) with an inner product:

〈A,B〉u∗ = 1
2Tr(AB) (1.65)

Remark 7. The following relations hold:

〈[A,C]−, B〉u∗ = 〈A, [C,B]−〉u∗ 〈[A,C]+, B〉u∗ = 〈A, [C,B]+〉u∗ (1.66)

Proof.

〈[A,C]−, B〉u∗ = 1
2Tr([A,C]−B) = 1

2i(Tr(ACB)− Tr(CAB)) =

= 1
2i(Tr(A(CB − CB))) = 〈A, [C,B]−〉u∗

In the same way it is easy to show the second equality.

In what follows we use the definitions and properties recalled in Appendix
D. With any A ∈ u∗(H), we can associate the so-called fundamental vector
field that corresponds to the element 1

i
A ∈ u(H) defined by the formula

d

dt
e−

t
i
A(x)|t=0 = iA(x) = φA

i
(x) ∀x ∈ H (1.67)

Now, we would like to define the momentum map.
Definition 1.7 (Momentum Map). Let µ : HR 7→ u∗(H) be a smooth map.
For every element in u(H), i.e. A

i
, we denote with:

µ
A
i : HR 7→ R ∀A ∈ u∗(H) (1.68)

the smooth map such that

µ
A
i (x) = 〈µ(x), A

i
〉 ∀x ∈ HR (1.69)

µ is said a momentum map if:
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1. The map µ is U-equivariant (Appendix D)

2. ∀ξ ∈ u(H) (without loss of generality we can assume ξ = A
i
) the funda-

mental vector field of A
i
is the Hamiltonian vector field of µA

i , using the
definitions we have:

dµ
A
i = ω(φA

i
, .) (1.70)

We already know that the fundamental vector field of A
i
is φA

i
= iA, but

we also know from (1.59) that iA = HamfA . Hence:

dµ
A
i = d 〈µ, A

i
〉 = ω(φA

i
, .) = ω(HamfA , .) = dfA.

Finally :
µ
A
i (x) = 〈µ(x), A

i
〉 = fA(x) = 1

2 〈x,Ax〉H (1.71)

In such a way we have obtained explicitly the momentum map; in particular:

〈µ(x), A
i
〉 = i

2Tr(µ(x)A
i

) = 1
2Tr(µ(x)A) (1.72)

Hence Tr(µ(x)A) = 〈x,Ax〉H and then we can write µ in Dirac notation:

µ(x) = |x〉 〈x| . (1.73)

Moreover with every A ∈ u∗(H) we can associate the linear function Â :
u∗(H) 7→ R defined as

Â =: 〈A, .〉u∗ (1.74)
After the identification between the tangent space at every point of u∗(H) with
u∗(x) itself we can consider Â as a one-form.
Then, we can define two controvariant tensors, a symmetric tensor:

R(Â, B̂)(C) =: 〈C, [A,B]+〉u∗ (1.75)

and a Poisson tensor:

I(Â, B̂)(C) =: 〈C, [A,B]−〉u∗ (1.76)

where A,B,C ∈ u∗(H)
Remark 8. We notice that the quadratic function fA is the pull-back of Â via
the momentum map. In fact:

µ∗(Â)(x) = Â◦µ(x) = 〈A, µ(x)〉u∗ = 1
2Tr(A |x〉 〈x|) = 1

2 〈x,Ax〉H = fA(x)
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Moreover if ξ = µ(x)

(µ∗G)(Â, B̂)(ξ) = G(dfA, dfB)(x) = {fA, fB}g(x) = f[A,B]+ = R(Â, B̂)(ξ)
(1.77)

where the last inequality follow from {fA, fB}g = fAB+BA.
We can do the same with Ω and I. In short we have proved that

µ∗G = R µ∗Ω = I (1.78)

Summing up: we have found that there exists a map µ : HR 7→ u∗(H);
then we have prove that the push-forward via µ of contravariant tensors, G
and Ω defined in HR correspond to the contravariant tensors, R and I, defined
in u∗(H). We also notice that R and I together form a complex tensor related
to the Hermitian product on u∗(H)

(R + iI)(Â, B̂)(ξ) = 2 〈ξ, AB〉u∗ (1.79)

In conclusion we would like to define two (1,1)-tensors that will be used in the
following paragraph. In particular, R̃ and J̃ : Tu∗(H) 7→ Tu∗(H) such that:

R̃ξ(A) =: [ξ, A]+ = R(Â, .)(ξ) j̃ξ(A) =: [ξ, A]− = I(Â, .)(ξ) (1.80)

Where the last equalities follow from the relations shown in Remark 7.
Remark 9. Actually

R(Â, .)(ξ) = 〈ξ, [A, .]+〉u∗ = 〈[ξ, A]+, .〉u∗ (1.81)

ant then
R̃ξ(A) =: 〈[ξ, A]+, .〉u∗ (1.82)

In short, we write
R̃ξ(A) =: [ξ, A]+ (1.83)

1.2.4 The space of pure states
We have seen that the image of H under the momentum map consists of the
set of all non-negative Hermitian operators of rank one that we will denote as

P 1(H) = µ(x) = |x〉 〈x| ; |x〉 ∈ H − {0} (1.84)

Notice that |x〉 is not necessarily normalized. Moreover the co-adjoint action
of the unitary group U(H), as defined before, (U, ρ) 7→ UρU † where U ∈ U(H)
and ρ ∈ P 1(H), foliates P 1(H) into the space

D1
r = |x〉 〈x| : 〈x, x〉H = r (1.85)
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In fact unitary transformations do not change the norm of |x〉. In particular
we have already defined D1

1(H), the space of pure states, and we have argued
that this space, rather than the whole Hilbert space, is enough to develop a
quantum description of the system. Now, D1

1(H) can be seen, in a more formal
way, as the image via the momentum map of the unit sphere:

SH = {x ∈ H, 〈x, x〉 = 1} (1.86)

In what follows we will, finally, show that D1
1(H) is a Kähler Manifold.

Let ξ ∈ u∗(H) be the image via momentum map of a unit vector x ∈ SH, then
ξ = |x〉 〈x| with 〈x|x〉 = 1 and ξ2 = ξ. The tangent space of the coadjoint
U(H)-orbit at ξ is generated by vectors of the form [A, ξ]− = 1

i
(Aξ − ξA).

The Poisson tensor field as defined before is: I(Â, B̂)(ξ) = 〈ξ, [A,B]−〉u∗ =
〈[ξ, A]−, B〉 and it can be used to define a new invertible map Ĩ that associates
to any one-form Â the tangent vector at ξ:

Ĩξ(Â) := I(Â, .)(ξ) = [ξ, A]− (1.87)

Denoting η̃ξ its inverse such that

η̃ξ([ξ, A]−) = Â (1.88)

We can define a canonical two-form on u∗(H)

ηξ([A, ξ]−, [B, ξ]−) := (η̃[A, ξ]−, [B, ξ]−) =
(
−Â, [B, ξ]−

)
= −〈A, [B, ξ]−〉 .

(1.89)
Using the invariance of the u∗-inner product, it is easy to check that the fol-
lowing equalities hold:

ηξ([A, ξ]−, [B, ξ]−) =
(
−Â, [B, ξ]−

)
= −〈A, [B, ξ]−〉 =

= 1
2iT r(ABξ − aξB) = 1

2iT r(ξ(AB −BA)) = −〈ξ, [A,B]−〉u∗ =

= + 〈A, [ξ, B]−〉u∗ = 〈[A, ξ]−, B〉u∗

(1.90)

We have proved the following theorem:

Theorem 1.2.3. The restriction of the two-form ηξ to the U(H)-orbit on
D1

1(H) defines a canonical symplectic form η characterized by the property

ηξ([A, ξ]−, [B, ξ]−) = 〈[A, ξ]−, B〉u∗ = −〈ξ, [A,B]−〉u∗ (1.91)
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In the same way we could star from the Jordan tensor R(Â, B̂)(ξ) =:
〈ξ, [A,B]+〉u∗ and define a tensor R̃(Â) := R(Â, .) = [ξ, A]+ and consider its
inverse σ̃ξ([ξ, A]+) = Â.
We obtain a covariant tensor:

σξ = (([ξ, A]+), [ξ, B]+) = 〈[ξ, A]+, B〉u∗ = 〈ξ, [A,B]+〉u∗ (1.92)

Nevertheless, at this step σξ is only a “partial” tensor; in fact it is defined only
on vectors of the form [A, ξ]+, that are not the most general vectors in the
distribution tangent to the U(H)−orbit, but they are the vectors that belong
to the image of the map R̃. On the other hand we are working on D1

1(H) where
we have some remarkable properties

[A, ξ]− = [A, ξ2]− = [A, ξ]− + ξ[A, ξ]− = 1
i
(Aξξ − ξAξ + ξAξ − ξξA) =

= ([A, ξ]−ξ + ξ[A, ξ]−) = [[A, ξ]−, ξ]+

So that
σξ([A, ξ]−, [B, ξ]−) = σξ

(
[[A, ξ]−, ξ]+ , [[B, ξ]−, ξ]+

)
(1.93)

And for the definition of σ we have

σξ([A, ξ]−, [B, ξ]−) = 〈ξ,
[
[[A, ξ]−, ξ]+ , [[B, ξ]−, ξ]+

]
+
〉

With some algebra, using the commutator properties, it is easy but a little
tedious to show that[

[[A, ξ]−, ξ]+ , [[B, ξ]−, ξ]+
]

+
= [[A, ξ]−, [B, ξ]]+

Then
σξ([A, ξ]−, [B, ξ]−) = 〈ξ, [[A, ξ]−, [B, ξ]]+〉

Finally using the trace properties

〈ξ, [[A, ξ]−, [B, ξ]]+〉u∗ = 1
2Tr(ξ[[A, ξ]−, [B, ξ]]+) = 1

2Tr(ξ[[A, ξ]−[B, ξ]]+) =

= 〈[A, ξ]−, [B, ξ]−〉u∗

Hence we have proved:

Theorem 1.2.4. On the U(H)-orbit D1
1(H) we can define a symmetric co-

variant tensor σ such that:

σ([A, ξ]−, [B, ξ]−) = 〈[A, ξ]−, [B, ξ]−〉u∗ (1.94)
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In order to define a Kähler structure we need also a complex structure. In
[10] the detailed proof of the following theorem can be found:

Theorem 1.2.5. When restricted to D1
1(H) the (1,1)-tensor Ĩ, satisfies:

Ĩ3 = −Ĩ (1.95)

and become invertible.Then: Ĩ2 = −I, and therefore it can be used to define a
complex structure j such that the compatibility relations hold:

ηξ([A, ξ]−, jξ([B, ξ]−)) = σξ([A, ξ]−, [B, ξ]−) (1.96)

ηξ(jξ([A, ξ]−), jξ([B, ξ]−)) = σξ([A, ξ]−, [B, ξ]−) (1.97)

All together the three previous theorems establish the proof of the following
theorem, which is the main result of this paragraph:

Theorem 1.2.6. (D1
1, j, σ, η)is a Kähler manifold.

In conclusion we would like to enunciate as a result the following theorem
which has an intuitive meaning:

Theorem 1.2.7. For any y, y′ ∈ H the vectors (µ∗)x(y), (µ∗)x(y′) are tangent
to the U(H)-orbit in u∗(x) at ξ = µ(x) and

σξ((µ∗)x(y), (µ∗)x(y′)) = g(y, y′) (1.98)

ηξ((µ∗)x(y), (µ∗)x(y′)) = −ω(y, y′) (1.99)
jξ(µ∗)x(y) = (µ∗)x(Jy) (1.100)

This last theorem says that the Kähler structure of D1
1(H) come from the

original Kähler manifold structure of HR.
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Chapter 2

The Space of Mixed States

In this chapter, at first, we will discuss the main features of the space of density
states ([13, 14]). Then, we will recollect a geometrical description of density
states space given by [10]. In particular we will prove that each unitary-orbit,
through the density states space, is a Kähler Manifold. Finally we will explicitly
evaluate the metric and symplectic form for the space of density states related
to a two and three levels quantum system.

2.1 Density states
In the previous chapter we argued that,in order to describe the state of a
quantum system, one should use the projector associated with the vector lying
in the Hilbert Space. In fact we can make the following association

|ψ〉 ⇐⇒ ρψ = |ψ〉 〈ψ|
〈ψ|ψ〉

∀ψ ∈ H (2.1)

to avoid phase ambiguities and normalization.
Moreover we have already proved that ρψ is a projector, that is:

ρψ = ρ2
ψ ρψ = ρ†ψ (2.2)

and that:
Tr[ρψ] = 1 (2.3)

One can easily see that the following properties are true as well:

‖ρψ‖ = 1 〈ξ| ρψ |ξ〉 ≥ 0 ∀ |ξ〉 ∈ H (2.4)

An operator with the previous five properties is said pure density operator or
pure density matrix. Hence we could show that any pure state is in ono-to-one

33
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correspondence with a density matrix. We have talked about pure states to
distinguish them from another kind of states called mixed states. Sometimes
it is not possible to know precisely the state of a quantum system a priori but
it is only known that the system can be in a given state among a set of states
compatible with the boundary conditions. For example you could think about
a beam of unpolarized electrons; taken by chance an electron from the beam
you only know that this electron has a probability equal to 50% to be spin
up (|+〉) or to be spin down (|−〉). Naively speaking, while a pure state has
an uncertainty because of its quantum nature, a mixed state has in addition
a classic uncertainty. For example we can think about two pure states of an
electron such as:

|e1〉 =
√

3
2 |+〉+ 1

2 |−〉 |e2〉 = 1√
2
|+〉+ 1√

2
|−〉

In the first case, evaluating the spin of the electron, it will be found a spin up
electron with probability 3/4 and a spin down electron with probability 1/4,
while in the second one it will be found a spin up electron with probability
1/2 and a spin down electron with probability 1/2. On the other hand to
build a mixed state we have to mix classically some pure states, adding a
classic contribution to the uncertainty; for example we can consider a polarized
electron beam in which, taking by chance an electron it will be in the state
|e1〉 with probability 2/5 and in the state |e2〉 with probability 3/5. How can
we describe suitably this situation? Moreover, it is clear that this situation
actually occurs very frequently in the experimental environment. Thus it is
fundamental to give a rigorous description of mixed states. Let denote the
compatible states with |ψk〉 with k ∈ I. We will only deal with a discrete I.
We suppose that the system is in the state |ψk〉 with a probability pk, then
obviously:

0 6 pk 6 1
∑
k∈I

pk = 1 (2.5)

Specifying the couple (|ψk〉 , k) for each k ∈ I, we define a statistical ensemble.
We can use the density matrices formalism and define the density matrices of
a mixed state:

ρ =
∑
k∈I

pk |ψk〉 〈ψk| =
∑
k∈I

pkρk (2.6)

Clearly a pure state is a mixed state with only one pk̄ 6= 0⇒ pk̄ = 1. Coming
back to the example above we see that the pure states are described by rank-
one projectors:

ρe1 = |e1〉 〈e1| ρe2 = |e2〉 〈e2| (2.7)
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while the mixed one is given by the density matrix:

ρ = 2
5ρe1 + 3

5ρe2

The mixed state density matrix inherits some properties from the pure state
density matrix; in particular:

1. ρ is bounded because it is a combination of unitary norm operators

2. ρ† = ∑
pkρ

†
k = ∑

pkρk = ρ

3. ρ is positive because it is a linear combination, with positive coefficients,
of positive operators

4. Tr[ρ] = ∑
pkTr[ρk] = ∑

pk = 1

We have lost the idempotence property with respect to the density matrix
associated with a pure state. Thanks to this we could prove that:

Theorem 2.1.1. Given a ρ operator with the properties from 1 to 4, then ρ
is associated with a pure state if and only if ρ2 = ρ.

Moreover

Theorem 2.1.2. ρ is associated with a pure state iff Tr[ρ2] = 1,otherwise
Tr[ρ2] ≤ 1.

It is possible to find other properties and the redefinitions of quantum
postulates for the density matrices in a variety of texts, for example in [14].

2.2 Geometry of the space of density states
We are now ready to give a geometrical description of the Density states space.
First of all we will define the space of non-negatively operator from gl(H),the
space of non-negatively operator from gl(H) with rank k and the set of density
states

Definition 2.1. The space of non-negatively defined operators is

P (H) = {ρ|ρ = T †T ∀T ∈ gl(H)}

Note that ρ ∈ P (H)⇒ ρ ∈ u∗(H).
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Definition 2.2. The space of non-negatively defined operators with rank k is

P k(H) = {ρ|ρ ∈ P (H), rank(ρ) = k}

Definition 2.3. The set of density states is

D(H) = {ρ|ρ ∈ P (H), T r(ρ) = 1} (2.8)

From these definitions we can also define:

Dk(H) = D(H) ∩ P k(H)

Remark 10. It is well known, [2], that the state of density matrices D(H) is
a convex cone in u∗(H). In particular, every matrix in D(H) can be written
as a convex combination of pure states, then the pure states are the extreme
points of D(H). This result will be used later.

2.2.1 Density matrices and unitary orbits
We would like to exploit more deeply the connection between the space of
density states D(H) and the co-adjoint orbit of the unitary group. Later in this
chapter we will study unitary orbits in the space u∗(H) of hermitian matrices,
bigger than D(H), this will allow us to built and calculate explicitly a metric
tensor, a symplectic form, and a complex structure. We want now to focus
only on the set of density matrices, in fact the co-adjoint action of the unitary
group on a density matrix, leaving the trace invariant and, generates orbit that
“contains” only density matrices. Nevertheless working only on D(H) we can
use other results[8, 17] that we will recollect in what follows. First of all we
have the following proposition from linear algebra:

Proposition 2.2.1. Let ρ1 and ρ2 two density matrices on H ' Cn then:
ρ1 and ρ2 are unitarly equivalent ( i.e. ρ2=Uρ1U

† for some unitary matrix U)
if and only if ρ1 and ρ2 have the same spectrum; that is the same eigenvalues
including multiplicity. Moreover we have Tr[(ρ2)r] = Tr[(ρ1)r] for all r =
1, 2, . . . , n

This has an important consequence: the orbit Oρ = {UρU †|U ∈ U(n)} is
uniquely determined by the spectrum of ρ. In particular two density matrices
belong to the same orbit iff they have the same eigenvalues λi with the same
multiplicities ni. Moreover each orbit can be represented by a diagonal density
matrix:

ρ = diag{λ1In1 , . . . , λrInr} (2.9)
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where we can ordinate the λi such that λi > λj if i < j in order to have an
unique representation. Recalling that each λi ∈ [0, 1] such that ∑r

i=1 λini = 1,
we see that there infinitely many distinct orbits that correspond to the infinite
choices for λi. We can conclude that U(n) partitions the set D(H) into a
infinite (uncountably) family of orbits or strata. To understand the nature of
these strata we have to use the notion of subgroup of isotropy or stabilizer that
can be found in the Appendix C, and recall that U(n) , being a compact Lie
group, is a compact topological group.

Proposition 2.2.2. If G is a compact topological group acting on a Haus-
dorff space X and Gx is the stabilizer at x then the mapφ : G/Gx 7→ Ox is a
homeomorphism.

Using this preposition is easy to prove [17]

Theorem 2.2.3. Let U(n) act on D(H) by the co-adjoint action and ρ a
density matrix with r ≥ 1 eigenvalues λi with multiplicity ni, then the orbit of
ρ is homeomorphic to the manifold

U(n)/[U(n1)× U(n2)× · · · × U(nr)] (2.10)

of real dimension n2 −∑r
n=1 n

2
i .

As consequence of this last theorem we have for a pure state of a n-level
quantum system:

U(n)/[U(1)× U(n− 1)] = P(H) (2.11)

We will illustrate these results with explicit applications in the following part
of this work.

2.3 Orbits on u∗(H)
As anticipated before, we are ready to study the geometry of u∗(H)

2.3.1 Smooth manifold on P k(H)
In [10] it is shown that P k is a smooth manifold in two way:

1. choosing explicitly a coordinates system

2. studying the geometry of u∗(H)

For our purpose is enough to focus on the second one only.
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Definition 2.4 (u∗k+,k−(H)). Let us denote with u∗k+,k−(H) the set of Hermitian
operators ξ whose spectrum contains k+ positive and k− negative eigenvalues
counted with multiplicities, respectively. Then rank(ξ) = k = k− + k+.

Note that comparing the definitions of P k(H) and u∗k+,k−(H) we have that
P k(H) = u∗k,0(H). Fixing an orthogonal basis in H we can identify u∗k+,k−(H)
with u∗k+,k−(n) i.e. n× n Hermitian matrices of rank k with the corresponding
spectrum.
Let Dk+

k−
the diagonal matrix diag(1, ..., 1,−1, ...,−1, 0, ...0) with k+-times 1

and k−-times -1. We can build with D
k+
k−

a “semiHermitian” product in Cn,
that we denote with 〈., .〉k+,k−

defining for a, b ∈ Cn:

〈a, b〉 =
n∑

i,j=0
āi[Dk+

k−
]i,jbj =

k+∑
j=0

ājbj −
k++k−∑
j=k++1

ājbj (2.12)

We can prove the following

Theorem 2.3.1. Any ξ = (aij ∈ u∗k+,k−(n) can be written in the form ξ =
T †D

k+
k−
T with T ∈ GL(n,C).

In other words this theorem means that the matrix element aij can be
obtained using 〈., .〉k+,k−

; in particular aij = 〈αi, αj〉k+,k−
where αi denotes the

i−th column of T .
Proof
ξ is hermitian so it can be diagonalized using an unitary matrix U :

UξU † = diag(λ1, ..., λn)

where λ1, ..., λk+ > 0,λk++1, ..., λk++k− < 0 and λk+k−+1, ..., λn = 0. Then
ξ = T †D

k+
k−
T where T = CU and C = diag(

√
|λ1|, ...,

√
|λk++k−|, 1, ..., 1),in

fact:
ξ = U †C†D

k+
k−
CU ⇒ diag(λ1, ..., λn) = UξU † = C†D

k+
k−
C

We are now ready to show an important result that allow us to consider P k(H)
a smooth manifold.

Theorem 2.3.2. The family

{u∗k+,k−(H) : k+, k− > 0, k = k+ + k− ≤ n}

of subsets of u∗(H) is exactly the family of orbits of the smooth action of the
group GL(H) given by:

GL(H)× u∗(H) 3 (T, ξ) 7→ TξT † ∈ u∗(H). (2.13)
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In particular, every u∗k+,k−(H) is a connected submanifold of u∗(H) and the
tangent space to u∗k+,k−(H) at ξ is characterized by:

B ∈ Tξu∗k+,k−(H)⇔ [〈Bx, y〉H = 0]∀x, y ∈ Ker(ξ).

Moreover for P k(H) we have another result:

Theorem 2.3.3. the following statements are equivalent:

1. u∗k+,k−(H) intersect P (H)

2. u∗k+,k−(H) is contained in P (H)

3. k− = 0

4. u∗k+,k−(H) = P k(H) with k = k+ + k−

Proof. If u∗k+,k−(H) intersect P (H), then it contains an element with non-
negative spectrum; but u∗k+,k−(H) is a GL(H)-orbit and we have just proved
that the number of negative eigenvalues cannot change along the orbit, then
k− = 0. From definition we have P k = u∗k+,0 when k− = 0 and obviously
P k(H) ⊆ P (H).

With this theorem we have proved that P k is a smooth manifold. Moreover
in [10] the authors shows that:

Theorem 2.3.4. Let γ : R 7→ u∗(n) be a smooth curve in the space of Hermi-
tian matrices which lies entirely in P (n) we have:

γ(t) ∈ P k(n) =⇒ ˙γ(t) ∈ Tγ(t)P
k(n) (2.14)

This theorem means that smooth curves in u∗(n) which lies entirely in P (n)
cannot cross P k(n) transversally. Moreover recalling that D(n) = P (n)∩{T ∈
u∗(n) : Tr[T ] = 1}, we can see D(n) as the level set of the function
Tr : P (H) 7→ R corresponding to the value 1. Since Tr[tρ] = tT r[ρ] and P k is
invariant with respect to homoteties with t > 0, we have that the function Tr
is regular on each P k. Hence also Dk is a smooth manifold. Because we have
that topologically P k ' Dk × R the manifolds Dk are also connected. Then:

Theorem 2.3.5. The space Dk(H) of density states of rank k ≤ n are smooth
and connected submanifold in u∗(H). Moreover the stratification into subman-
ifolds Dk(H) is maximal; i.e. every smooth curve in the space of Hermitian
matrices which lies entirely in D(H) is such that:

γ(t) ∈ Dk(n) =⇒ ˙γ(t) ∈ Tγ(t)D
k(n) (2.15)
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We conclude this section with another result from [10].

Proposition 2.3.6. The boundary ∂D((H)) = ∪k<nDk(H) of the density
states is not a submanifold of u∗(H) if n = dimH > 2

We will see example if this result when we will study the space of states for
a q-trit.

2.4 Metric and symplectic tensor on U(H)-orbits
Now we would like to obtain an explicit formula to evaluate a metric tensor
and a symplectic form on the orbits of the co-adjoint action of the unitary
group. Let us consider the fundamental vector field in ξ ∈ u∗k+,k− generated by
a ∈ gl(H) with respect to the smooth action defined in the theorem 2.13, that
is:

ã(ξ) = d

dt
(τe−taξ) |t=0 = d

dt

(
e−taξe−ta

†) |t=0 = −aξ − ξa†

This satisfies
[
ã, b̃

]
= −˜[a, b] in fact:

[
ã, b̃

]
(ξ) = ã(b̃(ξ))− b̃(ã(ξ)) = ã(−bξ − ξb†)− b̃(−aξ − ξa†) =

= +abξ + aξb† + bξa† + ξb†a† − a↔ b = [a, b]ξ + ξ[a, b]† =

= −˜[a, b](ξ)
In the next step we will prove that the foliations into submanifolds u∗k+,k−(H)
can be obtained directly from the tensors I and R. We have already shown
that the distribution DI (see Appendix B) induced by the tensor I, defined in
the previous chapter, is generated by vector fields of the form IA(ξ) = [A, ξ].
Note that we are talking about distribution because we are considering only
the space tangent to an U(H)-orbit. We have also proved that the distribution
DR induced by R is generated by vectors of the form RA = [A, ξ]+. After some
simple calculations it is easy to see that:

Theorem 2.4.1. The family {IA, RA|A ∈ u∗(H)} of vector fields on u∗(H) is
the family of fundamental vector fields of the GL(H)-action:

IA(ξ) = 1
i
(Aξ − ξA) = −(iA)ξ − ξ(iA)† = ĩA(ξ)

RA(ξ) = (Aξ + ξA) = Aξ + ξA† = −̃A(ξ)
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In particular,

[IA, IB] = I[A,B]− [RA, RB] = I[B,A]− [RA, IB] = R[A,B]−

so the distribution induced jointly by the tensors I and R is completely inte-
grable and u∗k+,k−(H) are the maximal integrate submanifolds.

A corollary descends from this theorem:

Corollary 2.4.2. The distributions Dgl = DR + DI and DI on u∗(H) are
involutive and can be integrated in foliations Fgl and FI respectively. The
leaves of the foliations Fgl are the orbits of the GL(H)-action ξ 7→ TξT †, the
leaves of FI are the orbits of the U(H)-action.

Recall that we have defined, in the previous chapter, two (1, 1)-tensor fields:
R̃, J̃ :Tu∗(H) 7→ Tu∗(H) such that:

R̃ξ(A) =: [ξ, A]+ = Rξ(A) J̃ξ(A) =: [ξ, A]− = Iξ(A) (2.16)

where A ∈ u∗(H) ' Tξ(H). Obviously the image of J̃ is DI and the image of
R̃ is DR.
Remark 11. It should be noticed that:

J̃ξ ◦ R̃ξ(A) = [[A, ξ]+, ξ]− = [A, ξ2]− = [[A, ξ]−ξ]+ = R̃ξ ◦ J̃ξ(A)

Recall that the U(H)-orbits O, as we have shown in the previous chapter,
carry a canonical symplectic structure η, this structure is U(H)-invariant and
then (O, ηO) ia a symplectic manifold. We have already shown that this sym-
plectic structure is a part of a Kähler structure (D1

1, σ, η, J) and are now ready
to generalize this result.

Theorem 2.4.3. 1. The image of J̃ξ is TξO, where O is a U(H)-orbit, and
Ker(J̃ξ) is the orthogonal complement of TξO

2. The J̃2
ξ is a self-adjoint (with respect to 〈., .〉u∗) and negatively defined

operator on TξO

3. The (1, 1)-tensor J on u∗(H) defined by

Jξ(A) = (−(J̃ξ)2|TξO)−1/2J̃ξ(A) (2.17)

induces an U(H)-invariant complex structure J on every orbit O
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4. The tensor
γOξ (A,B) = ηOξ (A, Jξ(B)) (2.18)

is an U(H)-invariant Riemannian metric on O and

γOξ (Jξ(A), B) = ηOξ (A,B). (2.19)

In particular, (O,J ,ηO,γO) is a Kähler manifold. Moreover, if ξ ∈ u∗(H)
is a projector and ξ ∈ O, then Jξ = J̃ξ and γO(A,B) = 〈A,B〉u∗

Proof. 1. Recalling that J̃ : Tu∗(H) 7→ Tu∗(H) is such that
J̃ξ(A) =: [ξ, A]− = Iξ(A) where Iξ(A) are the fundamental vector field of
the U(H)-action and then they generate the space tangent to the O-orbit,
it is easy to see that TξO is the image of J̃ξ. Moreover:

〈J̃ξ(A), B〉u∗ = 〈[A, ξ]−, B〉u∗ = 〈A,−[B, ξ]−〉u∗ = −〈A, J̃ξ(B)〉u∗

then
B ∈ Ker(J̃ξ)⇐⇒ B⊥J̃ξ(A)

∀A ∈ u∗(H).
This implies that B is orthogonal to the image of J̃ξ that is TξO.

2. From the equality 〈J̃ξ(A), B〉u∗ = −〈A, J̃ξ(B)〉u∗ we have:
J̃†ξ = −J̃ξ. Then:

〈J̃2
ξ (A), B〉

u∗
= −〈J̃ξ(A), J̃ξB〉u∗ = 〈A, J̃2

ξB〉u∗

This implies that (J̃2
ξ )† = J̃2

ξ Moreover:

〈J̃2
ξ (A), A〉

u∗
= 〈[[A, ξ], ξ], A〉u∗ = −〈[A, ξ], [A, ξ]〉u∗ < 0

for [A, ξ] ∈ TξO and [A, ξ] 6= 0

3. J̃ is U(H)-invariant:

J̃UξU†(UAU †) = [UAU †, UξU †] = UAξU † − UξAU † =
= U [A, ξ]U † = U(J̃ξ(A))U †

Hence, (−J̃2
ξ )− 1

2 is U(H)-invariant and its composition J .
The tensor J defines an almost complex structure ( cfr. the Appendix
A) on every orbit O:

J2 = [(−(J̃)2)−1/2J̃ ]2 = (−(J̃2))−1J̃2 = −I
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This means that each orbit is an almost complex manifold. Moreover if
we show that J is also integrable then each O is a complex manifold.
To show that J is integrable we have to consider the distribution N in
the complexified tangent bundle TO⊗C made of vectors such that:X ∈
N ⇐⇒ J(X) = iX and we have to prove that the Lie bracket of two
vectors in N is still in N . Because of the U(H)-invariance it is sufficient
to check it at one point ξ ∈ O. Let −k2

1, ... − k2
m, where k1, ..., km > 0,

be the eigenvalues of (J̃2
ξ ). J̃ξ has eigenvalues ±ikk with eigenvectors a±k ,

k = 1, ...,m. Hence:

Jξ(a±k ) = (−(J̃ξ)2)−1/2J̃(a±k ) = ±ikk(−(J̃ξ(a±k ))2)−1/2 = ±ia±k
This means that Nξ is spanned by the vectors a+

k that are also eigenvec-
tors of J̃ξ, that is J̃ξ(a+

k ) = ikka
+
k . Now it is easy to prove that the Lie

bracket of two vectors in N is still in N .

J̃ξ([a+
k , a

+
l ]−) = [[a+

k , a
+
l ]−, ξ]− =

= 1
i2

(a+
k a

+
l ξ − ξa+

k a
+
l − a+

l a
+
k ξ + ξa+

l a
+
k ) =

= 1
i2

(a+
k a

+
l ξ − ξa+

k a
+
l − a+

l a
+
k ξ + ξa+

l a
+
k

+a+
k ξa

+
l − a+

k ξa
+
l + a+

l ξa
+
k − a+

l ξa
+
k ) =

= [[a+
k , ξ]−, a+

l ]− + [a+
k , [a+

l , ξ]−]− =
= [ikka+

k , a
+
l ]− + [a+

k , ikla
+
l ] =

= i(kk + kl)[a+
k , a

+
l ]−

Then [a+
k , a

+
l ]− is still in N .

4. The tensor γOξ (A,B) = ηOξ (A, Jξ(B)) is U(H)-invariant because it is a
composition of U(H)-invariant objects.From J̃† = −J̃ and (J̃2)† = J̃2,
we have J†ξ = −Jξ. Moreover since J and J̃ commute we have:

Jξ([A, ξ]) = Jξ ◦ J̃ξ(A) = J̃ξ ◦ Jξ(A) = [Jξ(A), ξ]

Then,recalling the theorem (1.2.3) that is:

ηξ([A, ξ]−, [B, ξ]−) = 〈[A, ξ]−, B〉u∗ = −〈ξ, [A,B]−〉u∗

, we have:

ηOξ ([A, ξ]−, Jξ([B, ξ]−)) = ηOξ ([A, ξ]−, [Jξ(B), ξ]−) =
= 〈[A, ξ]−, Jξ(B)〉u∗ = −〈Jξ([A, ξ]−), B〉u∗ = −〈[Jξ(A), ξ]−, B〉u∗ =

= −ηOξ ([Jξ(A), ξ]−, [B, ξ]−)
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Knowing this it is easy to show that γ is symmetric and proves 2.19.
From theorem 1.2.3 we have also:

γOξ ([A, ξ]−, [A, ξ]−) = 〈[A, ξ]−, Jξ(A)〉u∗ = 〈A,−J̃ξJξ(A)〉u∗

but −J̃ξJξ = (−J̃2)1/2 that is a positive operator so
γOξ ([A, ξ]−, [A, ξ]−) > 0 for [A, ξ] 6= 0.
Finally if ξ is a projector,ξ2 = ξ then, J̃2

ξ = −[a, ξ] so Jξ = J̃xi and:

γOξ ([A, ξ]−, [B, ξ]−) = 〈[A, ξ]−, Jξ(B)〉u∗ = 〈[A, ξ]−, [B, ξ]−〉u∗

2.5 An explicit choice of local coordinates
Now we will make the above theorem more explicit. Let us consider the case of
matrices and suppose that ξ = diag(λ1, ..., λn) ∈ u∗(n). For simplicity we can
start with gl(n) = u∗(n)⊗C equipped with the bracket [a, b]− = ab−ba

i
and with

the hermitian product 〈a, b〉gl = 1
2Tr(a

†b). In this way we can consider u∗(n)
a Lie (real) subalgebra in gl(n) with an induced hermitian product 〈a, b〉u∗ =
1
2Tr(ab).
Let Ek

l be the matrix with the element in the kth row and in the lth column
equal to 1 and all the other entries equal to 0. We will now list some equalities,
but we will give only one explicit calculations because to show the following
identities one always uses the same technique.

〈Ek
l , E

r
s〉gl = 1

2(δlsδrk) (2.20)

Proof.
〈Ek

l , E
r
s〉gl = 1

2Tr((E
k
l )†Er

s) = 1
2Tr(E

l
kE

r
s)

Introducing the notation (Ek
l )ab to indicate the element of the ath row and bth

column of the matrix Ek
l so that:

(Ek
l )ab =

{
0 ∀a, b with a 6= k or b 6= l
1 a = k, b = l

we can compute:
(Ek

l E
r
s)ab =

∑
c

((Ek
l )ac(Er

s)cb)

It is clear that if a 6= k or b 6= s we obtain zero. Then we only have to find
the element (Ek

l E
r
s)ks . Moreover with this notation it is obvious that only if
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c = l = s this element is equal to 1 otherwise it is 0. In this way we have
proved that the matrix product (Ek

l E
r
s) is a matrix with 1 at the kthe and sth

column if and only if l = r. In conclusion:

Ek
l E

r
s = Ek

s δ
r
l

Now we can easily compute the trace:

1
2Tr(E

l
kE

r
s) = 1

2Tr(E
l
sδ
r
k) = 1

2δ
r
kδ
l
s

Following the previous proof it is easy to see that:

[Ek
l , E

r
s ]− = δrlE

k
s − δksEr

l

i
(2.21)

After noticing that:

Ek
l ξ = Ek

l λl and ξEk
l = Ek

l λk

we have:

J̃ξ(Ek
l ) = [Ek

l , ξ]− = i(λk − λl)Ek
l J̃2

ξ (Ek
l ) = −(λk − λl)2Ek

l (2.22)

and the complex structure reads

Jξ(Ek
l ) = i · sgn(λk − λl)Ek

l . (2.23)

Then the complexified tangent space TξO ⊗ C is spanned by those Ek
l with

(λk − λl) 6= 0, while the distribution N mentioned in the previous proof is
spanned by Ek

l for which (λk − λl) > 0 We are ready to evaluate explicitly the
symplectic form (defined only on TξO ⊗ C ):

ηOξ ([Ek
l , ξ]−, [Er

s , ξ]−) = 〈[Ek
l , ξ]−, Er

s〉gl = 〈i(λk − λl)Ek
l , E

r
s〉gl

Hence:
ηOξ ([Ek

l , ξ]−, [Er
s , ξ]−) = 1

2(−i)(λk − λl)(δlsδrk) (2.24)

On the other hand:

ηOξ ([Ek
l , ξ]−, [Er

s , ξ]−) = ηOξ (i(λk − λl)Ek
l , i(λr − λs)Er

s) =
= −i(λk − λl)i(λr − λs)ηOξ (Ek

l , E
r
s)
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Comparing this last equation with (2.24) we have the following useful expres-
sion :

ηOξ (Ek
l , E

r
s) = 1

2i(λr − λs)
(δlsδrk) (2.25)

From this we can compute also the metric:

γOξ (Ek
l , E

r
s) = ηOξ (Ek

l , Jξ(Er
s)) = 1

2i|λr − λs|
(δlsδrk) (2.26)

Let us focus on u∗(n), in which we can choose the following basis:

Akl = Ek
l + El

k, k ≤ l Bk
l = iEk

l − iEl
k, k < l (2.27)

Using the definition 2.27 and the previous identities it very easy to see that

Jξ(Akl ) = sgn(λk − λl)Bk
l Jξ(Bk

l ) = sgn(λl − λk)Akl (2.28)

Moreover

ηOξ (Bk
l , A

r
s) = − δkr δ

l
s

(λk − λl)
, ηOξ (Bk

l , B
r
s) = ηOξ (Akl , Ars) = 0 (2.29)

with λk − λl,λr − λs 6= 0. In a similar way we obtain

γOξ (Bk
l , A

r
s) = 0, γOξ (Bk

l , B
r
s) = γOξ (Akl , Ars) = δkr δ

l
s

|λk − λl|
(2.30)

with λk − λl,λr − λs 6= 0. We can also rewrite the simplectic form and the
metric:

ηOξ =
∑

λk−λl 6=0

1
λk − λl

dakl ∧dbkl γOξ =
∑

λk−λl 6=0

1
|λk − λl|

(dbkl ⊗dbkl +dakl ⊗dakl )

(2.31)
where a ∧ b = ab− ba and:

bkl = 〈Bk
l , .〉u∗ Akl = 〈Akl , .〉u∗

are coordinates on u∗(N) such that Bk
l = ∂bk

l
and Akl = ∂ak

l
.

2.5.1 The case U(2)
To make everything more explicit we will perform the calculation for 2 × 2
density matrices focussing our attention on Hermitian matrices. Every 2 × 2
Hermitian matrix can be written, in a suitable basis, as:

ξ =
[
λ1 0
0 λ2

]
(2.32)
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We start from evaluating Ek
l :

E1
1 =

[
1 0
0 0

]
, E1

2 =
[
0 1
0 0

]
, E1

2 =
[
0 0
1 0

]
, E2

2 =
[
0 0
0 1

]
(2.33)

Then we can evaluate Akl = Ek
l +El

k, k ≤ l Bk
l = iEk

l − iEl
k, k < l,that

are the basis of the tangent space:

A1
1 =

[
2 0
0 0

]
, A2

2 =
[
0 0
0 2

]
A1

2 =
[
0 1
1 0

]
, B1

2 =
[

0 i
−i 0

]
(2.34)

We can also evaluate:

ηOξ = da1
2 ∧ db1

2
λ1 − λ2

= da1
2 ⊗ db1

2 − db1
2 ⊗ da1

2
λ1 − λ2

(2.35)

Finally
γOξ = db1

2 ⊗ db1
2 + da1

2 ⊗ da1
2

|λ1 − λ2|
(2.36)

We can also evaluate the complex structure J using (2.28); in particular

J(A1
2) = sgn(λ1 − λ2)B1

2 and J(B1
2) = sgn(λ2 − λ1)A1

2 (2.37)

and then we can write:

J = sgn(λ1 − λ2)(da1
2 ⊗ ∂b1

2
− db1

2 ⊗ ∂a1
2
) (2.38)

2.5.2 The case U(3)
We can repeat the same calculation for 3× 3 Hermitian matrices, that we can
write as:

ξ =

λ1 0 0
0 λ2 0
0 0 λ3

 (2.39)

Also in this case we star by evaluating the basis for the 3×3 Hermitian matrices:

A1
1 =

2 0 0
0 0 0
0 0 0

 , A2
2 =

0 0 0
0 2 0
0 0 0

 , A3
3 =

0 0 0
0 0 0
0 0 2



A1
2 =

0 1 0
1 0 0
0 0 0

 , A1
3 =

0 0 1
0 0 0
1 0 0

 , A2
3 =

0 0 0
0 0 1
0 1 0

 ,

B1
2 =

 0 i 0
−i 0 0
0 0 0

 , B1
3 =

 0 0 i
0 0 0
−i 0 0

 , B2
3 =

0 0 0
0 0 i
0 −i 0



(2.40)
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We can also calculate the simplectic form and the metric:

ηOξ = da1
2 ∧ db1

2
λ1 − λ2

+ da1
3 ∧ db1

3
λ1 − λ3

+ da2
3 ∧ db2

3
λ3 − λ2

(2.41)

That is:

ηOξ = da1
2 ⊗ db1

2 − db1
2 ⊗ da1

2
λ1 − λ2

+ da1
3 ⊗ db1

3 − db1
3 ⊗ da1

3
λ1 − λ3

+ da2
3 ⊗ db2

3 − db2
3 ⊗ da2

3
λ2 − λ3

(2.42)
Finally

γOξ = db1
2 ⊗ db1

2 + da1
2 ⊗ da1

2
|λ1 − λ2|

+ db1
3 ⊗ db1

3 + da1
3 ⊗ da1

3
|λ1 − λ3|

+ db2
3 ⊗ db2

3 + da2
3 ⊗ da2

3
|λ2 − λ3|

(2.43)
We can also evaluate the complex structure J using (2.28); in particular

J(A1
2) = sgn(λ1 − λ2)B1

2 and J(B1
2) = sgn(λ2 − λ1)A1

2

J(A1
3) = sgn(λ1 − λ3)B1

3 and J(B1
3) = sgn(λ3 − λ1)A1

3

J(A2
3) = sgn(λ2 − λ3)B2

3 and J(B2
3) = sgn(λ3 − λ2)A2

3

(2.44)

and then we can write:

J = sgn(λ1 − λ2)(da1
2 ⊗ ∂b1

2
− db1

2 ⊗ ∂a1
2
)+

+ sgn(λ1 − λ2)(da1
3 ⊗ ∂b1

3
− db1

3 ⊗ ∂a1
3
)+

+ sgn(λ2 − λ3)(da2
3 ⊗ ∂b2

3
− db2

3 ⊗ ∂a2
3
) (2.45)



Chapter 3

The Fisher Tensor

In this chapter we introduce the Fisher tensor starting from a well known
instrument from the Quantum Information Theory: the Fisher Informa-
tion. Motivated by the result, shown in [8], that the symmetric and the anti-
symmetric part of the Fisher tensor are respectively a metric and a Symplectic
form on the Co-adjoint orbit of the unitary group, we will calculate explicitly
the Fisher Tensor for 2 × 2 and 3 × 3 density matrices. To reach this aim
we will face up with the calculation of the Symmetric logarithmic derivative,
introducing an “Algebraic method”([7]) to calculate it.

3.1 Fisher Information
We start considering a generic quantum state ρ(θ), that could be pure or mixed,
and in general depend on a real parameter θ. Let χ be a measurable space with
measure dx, which represents the space of all possible outcomes of a measure.
We can define a collection of non negative and self-adjoint operators M(x)
such that: ∫

χ
M(x)dx = I. (3.1)

This set of operators defines a Positive-Operator Valued Measure (for a clear
introduction on POVM see [16]). Assuming that the outcomes of a measure on
ρ is a random variable X taking value on χ, we have that for any measurable
subset B ∈ χ:

Pr(X ∈ B) = tr[ρM(B)], where M(B) =
∫
B
M(x)dx (3.2)

Hence the outcomeX of a measure on ρ(θ) is described by a probability density:

p(x, θ) = Tr[ρ(θ)m(x)] (3.3)

49
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Now we can give some definitions:

Definition 3.1. The Score Function is

lθ = log p(x, θ) (3.4)

Definition 3.2. Classical Fisher information is the expected value of the
square derivative of the score function, so:

i(θ,M) = E((dlθ)2) =
∫
χ
(dlθ)2p(x, θ)dx (3.5)

where we indicate with d the differential along the curve parametrized by θ

Using the definition above is quite simple to prove that:

i(θ,M) =
∫
χ

(Tr[dρ(θ)M(x)])2

Tr[ρ(θ)M(x)] dx (3.6)

In fact:
dlθ = d

dθ
log p(x, θ) = 1

p(x, θ)
dp(x, θ)
dθ

= Tr[dρM ]
Tr[ρM ]

The result follows immediately.

Definition 3.3. The Symmetric logarithmic derivative dlρ of ρ is

dρ = ρdlρ+ dlρρ

2 (3.7)

We can rewrite the classical Fisher information as:

i(θ,M) =
∫
χ+

(ReTr[dρ(θ)M(x)])2

Tr[ρ(θ)M(x)] dx (3.8)

where χ+ = χ− χ0 and χ0 = {x : p(x, θ) = 0}.

Proof.
Tr[dρ(θ)M(x)] = Tr[ρdlρM(x)] + Tr[dlρρM(x)]

2
Because Tr[AT ] = Tr[A] and then Tr[A†] = Tr[A]∗ we could rewrite Tr[A†]∗ =
Tr[A]. Hence:

Tr[dlρρM ] = (Tr[(dlρρM)†])∗ = Tr[Mρdlρ]∗ = Tr[ρdlρM ]∗

Tr[dρ(θ)M(x)] = Tr[ρdlρM(x)] + Tr[ρdlρM(x)]∗
2 = Re(Tr[ρdlρM(x)])

substituting this result in the integrand numerator, we conclude the proof.
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One can also define:

Definition 3.4. Quantum Fisher information is the expectation value of the
square of Symmetric logarithmic derivative on ρ

Iθ ≡ E((dlρ)2) = Tr[ρ(θ)(dlρ(θ))2] (3.9)

To be clear we specify that in this case, we implicitly assume a symmetric
tensor product, that is:

(dlρ(θ))2 = dlρ(θ)⊗ dlρ(θ) + dlρ(θ)⊗ dlρ(θ)
2 = dlρ(θ)⊗S dlρ(θ) (3.10)

3.1.1 Geometric interpretation of Fisher information
We have already said that a pure state of a quantum system is not simply a
vector in the Hilbert space, it would be more correct to think of it as a ray
in the Hilbert Space. This led us to identified a d−dimensional Hilbert space
with the base space of the following double fibration:

R+ −−−→ H0y
U(1) −−−→ S2n−1y

P(H)

(3.11)

We have done this defining a momentum map π : |ψ〉 ∈ H = Cd 7→ |ψ〉〈ψ|
〈ψ|ψ〉 .

It is a well known result (see for example [2] and [9] ) that in the projective
Hilbert Space P(H) one could define a metric g called Fubini Study metric and
a compatible simplectic form ω. Together they form an hermitian structure
h = g + iω. The pull back to H of these tensor via π acquires the form:

h = 〈dψ|dψ〉
〈ψ|ψ〉

− 〈dψ|ψ〉 〈ψ|dψ〉
〈ψ|ψ〉2

(3.12)

Actually to use a correct notation we should write:

h = 〈dψ| ⊗ |dψ〉
〈ψ|ψ〉

− 〈dψ|ψ〉 ⊗ 〈ψ|dψ〉
〈ψ|ψ〉2

(3.13)

In this contest it has been shown ([9]) that the quantum Fisher information,
seen as a tensor, can be identified with the symmetric part of the Hermitian
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form (3.12) that is:

h = 〈dψ| ⊗S |dψ〉
〈ψ|ψ〉

− 〈dψ|ψ〉 ⊗S 〈ψ|dψ〉
〈ψ|ψ〉2

(3.14)

We can prove this result heuristically following [6]. We supposeH = Cd and we
choose an orthonormal basis {|i〉}di=1. To simplify the notation, we will omit
the θ dependence, but in the following the symbol d denotes the derivative
with respect to it. We can choose the basis such that:

ρ = |ψ〉 〈ψ| with |ψ〉 = |1〉 (3.15)

|dψ〉 =
d∑
i=1

ai |i〉 , (3.16)

and considering M(x) operators as rank-one projector we can also write

M = |ξ〉 〈ξ| with |ξ〉 =
d∑
i=1

ξi |i〉 (3.17)

where the coefficients must satisfy
∫
χ ξi(x)∗ξj(x) = δij. If we note that 〈ψ|ψ〉 =

1 implies that the coefficient a1 = 〈dψ|ψ〉 is pure imaginary and so can be
rewrite as a1 = ia with a ∈ R. It is not difficult to check that

dlρ = 2dρ (3.18)

We can proceed in evaluating the quantum Fisher information using the equa-
tion (3.18) :

I = Tr[ρ(dlρ)2] = 4Tr[ρ(dρ)2] = 4[〈dψ| ⊗S |dψ〉 − 〈dψ|ψ〉 ⊗S 〈ψ|dψ〉] (3.19)

Note that in this formula dρ indicates a matrix of one-forms. This result
can be obtained from a different point of view that will be useful for the
following discussion when we will generalize these concepts to mixed states.
Let |ψ0〉 ∈ H0 ≡ Cd−0 be a normalized vector that we consider as a reference
vector. If one acts on it with the unitary group U(d), it is possible to reach any
point on the unit sphere S2d−1. We also notice that the stabilizing subgroup is
isomorphic to U(d− 1). Because of a result from group theory we can write:

S2d−1 = U(d)
U(d− 1) (3.20)

If we want obtain the ray space, we have to eliminate the phase freedom, so:
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P(H) =
( U(d)
U(d−1))
U(1) ∼ U(d)

U(d− 1)× U(1) (3.21)

This result can be seen as an explicit application of the theorem 2.2.3: a
pure state can be represented by a diagonal matrix with 2 eigenvalues with
multiplicity n1 = 1 and n2 = d−1 As we have seen previously, we can consider
as the projective space a subset of the dual u∗(d) of the Lie algebra of the
unitary group U(d). More specifically, we have seen that the base space of this
double fibration is one of the orbit of the co-adjoint action of U(d) on the dual
of its algebra u∗(d). In fact we can take ρ0 = |ψ0〉 〈ψ0| ∈ u∗(d) and act upon it
with the co-adjoint action of U(d):

ρ = Uρ0U
†, U ∈ U(d) (3.22)

Obviously ρ0 is invariant under the action of the stabilizer subgroup of |ψ0〉
and under the action of U(1). We have also shown that a generic tangent
vector to the co-adjoint orbit is such that:

X ∈ Tρu∗ ⇒ X = [K, ρ]− = −i[K, ρ] (3.23)

where K ∈ u∗(d). Moreover if ρ = |ψ〉 〈ψ| we have:

|ψ〉 = U |ψ0〉 = eAt |ψ0〉 = |ψ0〉+ At |ψ0〉+O(t2) = |ψ0〉+ t |χ〉+O(t2)

but,

1 = 〈ψ0|ψ0〉 = 〈ψ0|U †U |ψ0〉 = 〈ψ|ψ〉 = 〈ψ0|ψ0〉 = 1 + t 〈ψ0|χ〉+ c.c+O(t2)

hence 〈ψ0|χ〉 = 0. Considering the previous result it is easy to calculate:

X = |χ〉 〈ψ|+ |ψ〉 〈χ| with 〈ψ0|χ〉 = 0 (3.24)

Using (3.23) it is easy to check that:

K = i(|χ〉 〈ψ| − |ψ〉 〈χ|) (3.25)

Given two vectors X, X̃ ∈ Tρu∗, identified by the operators K, K̃ determined
respectively by the vectors |χ〉 , |χ̃〉, it has been proved ([2]) that the metric
tensor ( the Fubini Study tensor) and the compatible Kostan Kirillov Souriau
symplectic form ( that is the canonical symplectic form on a co-adjoint orbit
), that together form the Hermitian structure H = gfs + iωkks on P(H), are:

gfs(X, X̃) = 1
2Tr[ρ[K, K̃]+] = Re 〈χ|χ̃〉 , (3.26)
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ωkks(XX̃) = −1
2Tr[ρ[K, K̃]−] = Im 〈χ|χ̃〉 (3.27)

Noticing that putting |dψ〉 = ia |ψ〉 + |χ〉 where 〈χ|ψ〉 = 0 we have dρ =
X = [K, ρ]− where K is the same as in (3.25). So it is easy to associate the
Quantum Fisher information with the real part of the hermitian structure on
the Projective Hilbert space. In fact we have:

I = Tr[ρ(dρ)2] = 2Tr[ρ[K,K]+]. (3.28)

3.1.2 The Fisher tensor
Let us consider again the definition of the quantum Fisher information:

I(θ) = Tr[ρ(dlρ)2] (3.29)

where, until now we meant, implicitly, to take the square as a symmetrized
tensor product.
Now we would like to generalize this object and relax this restriction in order
to compute the full Fisher Tensor:

Definition 3.5. The Fisher Tensor is defined as

F = Tr[ρ(dlρ⊗ dlρ)] (3.30)

In the next pages we will focus mainly on this tensor or in some strategy to
calculate it; for this reason it is important to understand why we are interested
in Fisher tensor. The answer is quite simple to understand naively and it is
enough for our scope, but more mathematical details can found on [8]. In
this last work, the authors proved that the symmetric and the antisymmetric
part of the Fisher Tensor are respectively a metric and a symplectic tensor.
This will led us to show a quite easy way to evaluate the metric and the
symplectic form on the space of density states, and allow us to explore “new
directions” of evolution of a state with respect to what has been done in the
previous chapter. Specifically, if in the previous chapter we have considered
only unitary evolution that corresponds to an evolution of the basis states,
keeping the eigenvalues of the density matrix fixed, now we can also study
the case of density matrices whose eigenvalues are variable. We will call these
directions traverse directions.

3.2 The Symmetric Logarithmic One-Form
Since the Fisher tensor contains the Symmetric Logarithm derivative and the
latter is defined implicitly by the “ordinary” derivative, we need an explicit
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formula to evaluate it. Now we will present a general method (following [7])
that resolves the problem any time the structure costants of the Lie Group are
known. Note that, in this section, dρ denotes a section of the cotangent bundle
that is a one form.
Let ρ be a rank-m matrix that represents a mixed state of a quantum n-level
system. As we have discussed before we can write this n× n matrix as:

ρ =
m∑
i=1

kiPi (3.31)

where:

P 2
i = Pi, P †i = Pi,

∑
i

ki = 1 with ki ≥ 0 ∀i

As we have shown in Chapter 2, each ρ lies on a orbit O(m)
n , passing from a

reference point ρ0, of the co-adjoint action of the unitary group where:

O(m)
n = {ρ ∈ u(n)|ρ = Uρ0U

†, U ∈ U(n)} (3.32)

and ρ0 is diagonal:
ρ0 = diagn{k1, ..., km, 0, ...0} (3.33)

Moreover we can identify each ρ0 with its expansion on the Lie algebra gen-
erators of su(n) plus the identity matrix, in fact these form a basis for the
Hermitian matrices vector space.

ρ = ρII +
n2−1∑
k=1

ρktk (3.34)

where the tk’s are the Lie algebra generators in the n-dimensional fundamental
representation, normalized with the usual scalar product between Hermitian
matrices, i.e. 〈ti, tj〉 = Tr[titj ]

2 = δij. Note that ρ0 has an expansion restricted
to the diagonal generator tk̂ which are n− 1, which we suppose to be included
in the set of all generators, that is:

ρ0 = ρII +
n−1∑
k̂=1

ρk̂tk̂ = ρII +
n2−1∑
k=1

ρktk (3.35)

Because of the identification between u(n) and u∗(n) we have similar expan-
sions for:

dρ = DII +
n2−1∑
k=1

Dktk (3.36)
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and

dlρ = LII +
n2−1∑
k=1

Lktk (3.37)

In which Li and Di are one forms.
Remark 12. In the following we will consider only derivatives at ρ0 because
the expressions of ρ, dρ, dlρ can be found ,by adjoint acting on the base point
expression given above. We can see this feature studying the tangents vectors
that are in 1-1 correspondence with the 1-forms. In particular, considering ki
fixed, as we always assume unless we specify differently, if ρ0(θ) = ∑

kiPi we
have:

Xρ0 = ∂θρ0(θ) =
∑

ki∂θPi(θ)

and then because of the independence of U from θ:

Xρ = ∂θ(Uρ(θ)U †) = UXρ0U
†,

where Xρ0 and Xρ are seen as tangent vector to the curve ρ(θ).
This argument is valid also for θ-dependent parameters ki(θ), in fact

Xρ0 = ∂θρ0(θ) =
∑

ki(θ)∂θPi(θ) +
∑

∂θki(θ)Pi(θ)

Notice that the second term contains only derivative of the scalar coefficients
and commute with ρ0 because they both are diagonal matrices. We will con-
sider this latter case later on, after having developed an explicit way to imple-
ment this kind of transformations.

Coming back to the main point and recalling that:

dρ = 1
2{ρ, dlρ} (3.38)

we can put in this last equation the expansions (3.34),(3.36) and (3.37). We
obtain:

dρ = DII +
n2−1∑
i=1

Diti = 1
2{ρII +

n2−1∑
k=1

ρktk, LII +
n2−1∑
j=1

Ljtj}.

Using the relation {ti, tj} = 4
n
δij + 2∑l fjkltl we have:

DII +
n2−1∑
l=1

Dltl = (LIρI + 2
n

n2−1∑
j=1

Ljρj)I +
n2−1∑
l=1

(ρILl + LIρl +
n2−1∑
j,k=1

Ljρkfjkl)tl.

(3.39)
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This expression yields a set of equations that relate the coefficients of the
ordinary and logarithmic derivatives.

DI = LIρI + 2
n

n2−1∑
j=1

Ljρj

Dl = ρILl + LIρl +
n2−1∑
j,k=1

Ljρkfjkl

(3.40)

Recalling that tangent vectors to co-adjoint orbits are of the form [K0, ρ]− =
K0ρ−ρK0

i
∈ Tρu

∗(n) ' u∗(n) with K0 hermitian and that if A ∈ u∗(n) then
iA ∈ u(n) ' T ∗ρ u(n)∗, we can conclude that a one form in general has the
form:

dρ0 = [K0, ρ0], where K0 = KII +
n2−1∑
l=0

Kltl. (3.41)

If now we define [ti, tj] = 2i∑k cijktk where cijk = 0 if ti, tj are diagonal and
then commuting each other, we can recast dρ0 as:

dρ0 = [
n2−1∑
k=1

Kktk,
n2−1∑
i=1

ρiti] =
n2−1∑
k,i=1

Kkρi[tk, ti] = 2i
n2−1∑
k,i=1

Kkρi
∑
l̄

ckil̂tl̄

where l̄ are the indices of the non-diagonal generators. In conclusion we find

dρ0 = 2i
n2−1∑
l̄,k,i

Kkρickil̄tl (3.42)

i.e. dρ0 has non vanishing components only on non diagonal generators tl̄. This
last result means that some equations of the system (3.40) are homogeneous,
in particular the equations for the components along the diagonal generators,
that read:

DI = LIρI + 2
n

n2−1∑
j=1

Ljρj = 0

Dl̂ = ρILl̂ + LIρl̂ +
n2−1∑
j,k=1

Ljρkfjkl̂ = 0
(3.43)

We have turn the problem of evaluating the symmetric logarithmic derivative
into a linear algebra problem. In order to find the expression of the symmetric
logarithmic derivative we have to solve the system 3.40 for n2 unknown Lj
while the homogeneous system 3.43 expresses the freedom in the definition
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of the symmetric derivative. This result is not surprising, in fact from the
definition it is clear that dlρ is defined up to matrices that anti-commute with
ρ0. However it is easy to prove that if ρ0 is full rank there is non trivial
Hermitian matrix that anti-commute with it. This means that in the latter
case we have an unique solution for dlρ0. Moreover the homogeneous system
(3.43) contains equations only for the diagonal components Lî of dlρ0. In
fact ρjLj = 0 if j refers to a non diagonal generator,and ρj = 0 because ρ0 is
diagonal. Moreover because fk̂jl̂ ∝ Tr[{tk̂, tj}tl̂] = 0 also the term ρk̂Ljfk̂jl̂ = 0
whenever Lj is a non diagonal component. So the unique solution of (3.43) is
the trivial one and then dlρ0 has only non-diagonal components.

3.2.1 Trasverse direction
We note that a priori dρ can be defined in the whole (dual) Lie Algebra rather
then on the orbit only, allowing the weights ki to vary. So we have:

dtotρ = dTρ+ dρ (3.44)

where we have used dTρ to indicate ∑ dkiPi that is the differential along trans-
verse direction. One may wonder why we are calling these directions transver-
sal. The answer is quite intuitive if we recall the results reported in the previous
chapter. There we have explained that the space of the (mixed) density matrix
foliates into co-adjoint orbits. Each orbit passes through one and only one di-
agonal matrix ρ0. So if change the diagonal elements of ρ we are moving from
an orbit to another one. So according to [7] we consider:

dtotρ = dTρ+ dρ = 1
2{d

T
l ρ, ρ}+ 1

2{dlρ, ρ} (3.45)

where we have introduced the transversal symmetric logarithmic derivative
dTl ρ.



Chapter 4

Fisher Tensor for Q-bits &
Q-trits

In the following sections we will work out explicit calculations to evaluate the
symmetric logarithmic derivatives and then the Fisher Tensor for two and three
levels quantum systems. Moreover we will explore the “ new directions” that
we have introduced before and we compare our results with the result obtained
in the previous chapter.

4.1 Two-level system
For a two-level system or q-bit the most general mixed state can always be
expressed as:

ρ0 = k1 |ψ1〉 〈ψ1|+ k2 |ψ2〉 〈ψ2| or
[
k1 0
0 k2

]
(4.1)

where |ψi〉’s form an ortonormal basis, k1 + k2 = 1 and ki ≥ 0 ∀i. The
generators of U(2) are the Pauli matrices and the identity matrix, so we can
decompose ρ0 with respect to the basis:

tI =
[
1 0
0 1

]
, t1 =

[
0 1
1 0

]
,

t2 =
[
0 −i
i 0

]
, t3 =

[
1 0
0 −1

]
.

(4.2)

Using the scalar product defined for Hermitian matrices 〈A,B〉u∗ = 1
2Tr[AB]

it is easy to find the decomposition of ρ0 in this basis of matrices; in particular
we evaluate the coefficients:

59



60 CHAPTER 4. FISHER TENSOR FOR Q-BITS & Q-TRITS

ρi = 〈ti, ρ0〉u∗ (4.3)
and we obtain

ρI = k1 + k2

2 , ρ1 = 0, ρ2 = 0, ρ3 = k1 − k2

2 (4.4)

and then:
ρ0 = k1 + k2

2 tI + k1 − k2

2 t3. (4.5)
Note that, as we have said before, ρ0 has components only along the “direc-
tions” with diagonal generators.

4.1.1 Symmetric logarithmic derivative
The homogeneous system (3.43) is quite easy to solve because the structure
constants fijk vanish and we are left with:{

DI = ρILI + ρ3L3 = 0
D3 = ρ3LI + ρIL3 = 0 (4.6)

If ρ0 is a real mixed state that is ki 6= 0 ∀i the system has a unique solution
LI = L3 = 0 and, as discussed above, the symmetric logarithmic form is
uniquely defined.
The system 3.40 becomes:

Dl = ρILl + ρlLI = ρILl with l = 1, 2 (4.7){
D1 = ρIL1
D2 = ρIL2

⇔
{
L1 = D1

ρI

L2 = D2
ρI

(4.8)

We have just found the expression for the symmetric logarithmic derivative as
a function of the coefficients of the standard derivative:

dlρ0 = 2
k1 + k2

(D1t1 +D2t2) (4.9)

Remark 13. The matrix associated to the homogeneous system is such that:

det

[
ρI ρ3
ρ3 ρI

]
= k1k2 (4.10)

In this form it is obvious that:
1. if k1 and k2 are not null, the system has as solution the trivial one;

2. if ρ0 is a pure state, for example k1 = 1 and k2 = 0 the system has infinite
solutions that depend on one parameter L3 = −LI.

Before calculating the coefficients Di we evaluate the Fisher Tensor as func-
tion of these.
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4.1.2 Fisher tensor
Recall that the coefficients Di and Li are one-forms, then:

F = L1⊗L1Tr[ρ0t1t1]+L1⊗L2Tr[ρ0t1t2]+L2⊗L1Tr[ρ0t2t1]+L2⊗L2Tr[ρ0t2t2]
(4.11)

and then:

F = (k1 + k2)L1⊗L1 + (k1 + k2)L2⊗L2 + i(k1− k2)L1⊗L2− i(k1− k2)L2⊗L1
(4.12)

We introduce now A � B = A⊗B+B⊗A
2 and A ∧ B = A⊗B−B⊗A

2i . Note that in
the previous chapter we used A ∧ B = A⊗B −B ⊗ A, so we have to remind
this notation when we will compare the results. Note also that A�A = A⊗A.
In this notations we can rewrite F as:

F = (k1 + k2)[L1 � L1 + L2 � L2]− 2(k1 − k2)(L1 ∧ L2) (4.13)

It is manifest that the first term is symmetric and second one is anti-symmetric
in the indices 1,2.

4.1.3 Evaluation of the ordinary differential
To compute the standard differential we have to consider an orbit generated
by the co-adjoint action of the unitary group acting on ρ0, since at the moment
we are considering unitary transformations. In general

ρ
′ = Uρ0U

† where U = exp(ixItI + i
3∑

k=1
xktk) (4.14)

In this way we have introduced a set of coordinates xi so we calculate the
differential using this particular choice of coordinates system. Before starting
the evaluation we should note that:

dρ
′ = d(U(xI, x1, x2, x3)ρ0U

†(xI, x1, x2, 0)) = d(U(0, x1, x2, 0)ρ0U
†(0, x1, x2, 0))

Writing the co-adjoint action in infinitesimal form (expanding the exponentials
up to the first order in the xi’s) it is easy to see that the transformations
along the tI, t3 direction disappear, because these matrices are diagonal and
commute with ρ0. So we can put xI = 0 and x3 = 0 and consider only unitary
transformations that do not stabilize ρ0 that is:

U = exp(+ix1t1 + ix2t2) (4.15)
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Then
ρ
′ = exp(+ix1t1 + ix2t2)ρ0exp(−ix1t1 − ix2t2)

and

dρ0 = ∂ρ
′

∂x1

∣∣∣∣∣
x1=0

dx1 + ∂ρ
′

∂x2

∣∣∣∣∣
x2=0

dx2 (4.16)

An easy calculation yields:

dρ0 =
[ [ 0 ik2
ik1 0

]
−
[

0 ik1
ik2 0

] ]
dx1 +

[ [ 0 k2
−k1 0

]
−
[

0 k1
k2 0

] ]
dx2 (4.17)

that is[
0 i(k2 − k1)dx1 + (k2 − k1)dx2

i(k1 − k2)dx1 + (k2 − k1)dx2 0

]
. (4.18)

If we use r = k2 − k1 and change the coordinate such that z∗1 = x2 + ix1 and
z1 = x2 − ix1 we obtain:

dρ0 =
[

0 rdz∗1
rdz1 0

]
. (4.19)

Using one more time the scalar product we can decompose the differential on
the basis of hermitian matrix as we did with ρ0 and we have:

DI = D3 = 0, D1 = r
dz1 + dz∗1

2 D2 = r
dz1 − dz∗1

2i (4.20)

Putting these results in (4.8) we obtain:

L1 = 2r
k1 + k2

(dz1 + dz∗1
2 ) = 2r

k1 + k2
dx2,

L2 = 2r
k1 + k2

(dz1 − dz∗1
2i ) = − 2r

k1 + k2
dx1

(4.21)

Finally we can write F = F� + F∧

F� = 4(k1 − k2)2

k1 + k2
(dx1 � dx1 + dx2 � dx2) = 4(k1 − k2)2

k1 + k2
(dz1 � dz∗1) (4.22)

and
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F∧ = 8(k1 − k2)3

(k1 + k2)2 (dx2 ∧ dx1) =

= 8(k1 − k2)3

(k1 + k2)2 (dx2 ⊗ dx1 − dx1 ⊗ dx2

2i ) =

= 4i(k1 − k2)3

(k1 + k2)2 (dx1 ⊗ dx2 − dx2 ⊗ dx1) (4.23)

Or using z-coordinates we have:

F∧ = −4i(k1 − k2)3

(k1 + k2)2 (dz1 ∧ dz∗1) = −2(k1 − k2)3

(k1 + k2)2 (dz1⊗ dz∗1 − dz∗1 ⊗ dz1) (4.24)

4.1.4 Comparison with previous results
Following the results shown in [8, 6], we will consider separately the real part
of F, that is symmetric, and the imaginary part of F and we will compare these
with what we have found in the previous chapter,changing the eigenvalue from
λi to ki, that is:

γOξ = db1
2 ⊗ db1

2 + da1
2 ⊗ da1

2
|k1 − k2|

(4.25)

and
ηOξ = da1

2 ∧ db1
2

k1 − k2
= da1

2 ⊗ db1
2 − db1

2 ⊗ da1
2

k1 − k2
(4.26)

Recall that in these expression we have written the metric tensor and the
symplectic tensor using as coordinates the

bkl = 〈Bk
l , .〉u∗ akl = 〈Akl , .〉u∗

where Bk
l and Akl were the matrices used as basis for the space of the hermitian

matrix Tρu(2)∗ ' u(2)∗. On the other hand in this paragraph we have used as
basis for the space of hermitian matrix ti. If we note that

A1
2 = t1 = σ1, and B1

2 = −t2 = −σ2, (4.27)

we conclude that
a1

2 = x1 and b1
2 = −x2. (4.28)

Then changing the coordinates we can compare:

GFS = 4 (k1−k2)2

k1+k2
(dx1 ⊗ dx1 + dx2 ⊗ dx2) −−−→ γOξ = dx1⊗dx1+dx2⊗dx2

|k1−k2| (4.29)
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and

ΩFS = 4 (k1−k2)3

(k1+k2)2 (dx2 ⊗ dx1 − dx1 ⊗ dx2) −−−→ ηOξ = dx2⊗dx1−dx1⊗dx2
k1−k2

(4.30)

where we have used the notation −Im(F) = ΩFS and Re(F) = GFS. It is
evident that apart from the normalization coefficient, both tensors have the
same tensorial structure. Note that the normalization coefficient is constant
on every co-adjoint orbit; in fact we have already proved that each orbit passes
through one and only one diagonal ρ0 that fixes the values of k1 and k2. We
have explained in Remark 3 that one can built a complex structure J starting
from a metric and a symplectic tensor J = g−1 ◦ ω requiring J2 = −I. If we
evaluate J̃(v) = G−1

FS ◦ ΩFS(v, .) we have:

J̃ = (k1 − k2)(∂x2 ⊗ ∂x2 + ∂x1 ⊗ ∂x1)(dx2 ⊗ dx1 − dx1 ⊗ dx2) =
(k1 − k2)(dx2 ⊗ ∂x1 − dx1 ⊗ ∂x2) (4.31)

We have used J̃ because we have to find a normalization constant N such that:

JFS = NJ̃ and J2
FS = −I (4.32)

It is very easy to show that N = |(k1 − k2)| and then:

JFS = sgn(k1 − k2)(dx2 ⊗ ∂x1 − dx1 ⊗ ∂x2) (4.33)

In this way we have found the three components of a Kähler structure on the
co-adjoint orbit. We can also compare JFS with J founded previously that is:

J = sgn(λ1 − λ2)da1
2 ⊗ ∂b1

2
+ sgn(λ2 − λ1)db1

2 ⊗ ∂a1
2
. (4.34)

Performing the usual change of coordinates, we have:

J = sgn(k1 − k2)(dx2 ⊗ ∂x1 − dx1 ⊗ ∂x2) = JFS (4.35)

We have a perfect agreement between the complex structures yielded by the
two different method. In particular in the previous chapter we have built a
metric tensor starting from a symplectic form and a complex structure, while
in this chapter we have shown that starting from a metric and a symplectic
form we are able to obtain the same complex structure J than before.

4.1.5 Transverse direction
Now we are going to study the evolution of ρ0 = diag{k1, k2} when k1 and
k2 are not fixed but we will consider the basis fixed. As we explained before,
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we will evaluate the symmetric logarithmic derivative along this transversal
direction dTl ρ assuming:

dTρ = 1
2{d

T
l ρ, ρ} (4.36)

We use the condition k1 + k2 = 1 explicitly so that k1 = k and k2 = 1 − k
where k = k(θ). Moreover we can rewrite:

ρ0 = 1
2I + 2k + 1

2 t3 (4.37)

In the first step we calculate the ordinary differential:

dTρ0 = ∂ρ0

∂k
dk = t3dk (4.38)

Then, recalling the expansion on the Lie algebra generators we have only non-
vanishing coefficient D3 = dk. Using the definition dTρ = 1

2{d
T
l ρ, ρ} we have a

matrix equation:[
dk 0
0 −dk

]
= 1

2{
[
A B
C D

]
,

[
k 0
0 1− k

]
} =

[
kA B
C D(1− k)

]
(4.39)

. We obtain:
A = dk

k
, B = 0, C = 0, D = − dk

1− k , (4.40)

that is:
dTl ρ0 =

[ 1
k

0
0 − 1

1−k

]
dk (4.41)

Using the usual scalar product 〈.|.〉u∗ we cane rewrite dTl ρ0 as:

dTl ρ0 = LII + L3t3 (4.42)

with
LI = 1

2(1
k
− 1

1− k )dk and L3 = 1
2(1
k

+ 1
1− k )dk (4.43)

Now we are ready to find the Fisher tensor on this transversal direction FT :

FT = Tr[ρ(LII + L3t3)⊗ (LII + L3t3)]

After a bit tedious, even if simple, calculation, one finds:

FT = dk ⊗ dk
k(1− k) (4.44)

We observe that this term is symmetric, contributing to GFS.
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4.2 Three-level system
For a three level system or Q-trit the most general mixed state can always be
expressed as:

ρ0 = k1 |ψ1〉 〈ψ1|+ k2 |ψ2〉 〈ψ2|+ k3 |ψ3〉 〈ψ3| or

k1 0 0
0 k2 0
0 0 k3

 (4.45)

where |ψi〉’s form an ortonormal basis, k1 + k2 + k3 = 1 and ki ≥ 0 ∀i. We
choose as generators of U(3) transformations the Gell-Mann matrices and the
identity matrices:

t1 =

0 1 0
1 0 0
0 0 0

 , t2 =

0 −i 0
i 0 0
0 0 0

 , t4 =

0 0 1
0 0 0
1 0 0

 ,

t5 =

0 0 −i
0 0 0
i 0 0

 , t6 =

0 0 0
0 0 1
0 1 0

 , t7 =

0 0 0
0 0 −i
0 i 0

 ,

tI =

1 0 0
0 1 0
0 0 1

 , t3 =

1 0 0
0 −1 0
0 0 0

 , t8 =


1√
3 0 0

0 1√
3 0

0 0 −2√
3

 .

(4.46)

It is quite easy, even if very tedious, to prove that the following relations hold:

{tj, tk} = 4
3δijI + 2

8∑
l=1

fjkl, (4.47)

[tj, tk] = 2i
8∑
l=1

cjkl, (4.48)

where the totally antisymmetric structure constants are:

c123 = 1; c458 = c678 =
√

3
2 ;

c147 = c246 = c257 = c345 = −c156 = −c367 = 1
2

and the totally symmetric symbols are:

f118 = f228 = f338 = −f888 = 1√
3
,
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f448 = f558 = f668 = f778 = − 1
2
√

3
,

f416 = f157 = −f247 = f256 = 1
2 ,

f344 = f355 = −f366 = −f377 = 1
2 .

So we can decompose ρ0 on this basis and we obtain:

ρ0 = 1
3tI + k1 − k2

2 t3 + k1 + k2 − 2k3

2
√

3
t8 (4.49)

and then, using the previous notation:

ρI = 1
3 , ρ3 = k1 − k2

2 , ρ8 = k1 + k2 − 2k3

2
√

3
, (4.50)

all the other vanish. Note that, as before, ρ0 has component only along the
“directions” with diagonal generators.

4.2.1 Symmetric logarithmic derivative
Using the previous relations the homogeneous system (3.43) reads:

DI = ρILI + 2
3(ρ3L3 + ρ8L8) = 0

D3 = ρ3LI + ρIL3
1√
3(ρ3L8 + ρ8L3) = 0

D8 = ρ3LI + ρIL8 + 1√
3(ρ3L3 − ρ8L8) = 0.

(4.51)

Remark 14. We can evaluate the determinant of the matrix associated with
the homogeneous system:

det


ρI

2
3ρ3

2
3ρ8

ρ3 ρI + ρ8√
3

ρ3√
3

ρ8
ρ3√

3 ρI − ρ8√
3

 = k1k2k3.

It is evident that if ρ0 is full rank the determinant is non vanishing and then
the solution of this system is the trivial one.

On the other hand the system (3.40) becomes:

Dl = ρILl + ρlLI = ρILl with l = 1, 2 (4.52)
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

D1 = (k1 + k2

2 )L1

D2 = (k1 + k2

2 )L2

D4 = (k1 + k3

2 )L4

D5 = (k1 + k3

2 )L5

D6 = (k2 + k3

2 )L6

D7 = (k2 + k3

2 )L7

⇐⇒



L1 = ( 2
k1 + k2

)D1

L2 = ( 2
k1 + k2

)D2

L4 = ( 2
k1 + k3

)D4

L5 = ( 2
k1 + k3

)D5

L6 = ( 2
k2 + k3

)D6

L7 = ( 2
k2 + k3

)D7

(4.53)

In this way we have found the expression of the symmetric logarithmic deriva-
tive as a function of the coefficients Di of the ordinary derivative, that is:

dlρ0 = ( 2
k1 + k2

)(D1t1+D2t2)+( 2
k1 + k3

)(D4t4+D5t5)+( 2
k2 + k3

)(D7t7+D8t8)
(4.54)

Before calculating the coefficients Di we evaluate the Fisher Tensor as function
of these.

4.2.2 Fisher tensor
Recall that the coefficients Di and Li are one-forms, then

F(3,3) = Tr[ρ0(dlρ0 ⊗ dlρ0)] (4.55)

after some easy calculations we have:

F(3,3) = (k1 + k2)(L1 ⊗ L1 + L2 ⊗ L2) + i(k1 − k2)(L1 ⊗ L2 − L2 ⊗ L1)
(k1 + k3)(L4 ⊗ L4 + L5 ⊗ L5) + i(k1 − k3)(L4 ⊗ L5 − L5 ⊗ L4)
(k2 + k3)(L6 ⊗ L6 + L7 ⊗ L7) + i(k2 − k3)(L6 ⊗ L7 − L7 ⊗ L6) (4.56)

and then:

F(3,3) = (k1 + k2)(L1 � L1 + L2 � L2)− 2(k1 − k2)(L1 ∧ L2)
(k1 + k3)(L4 � L4 + L5 � L5)− 2(k1 − k3)(L4 ∧ L5)

(k2 + k3)(L6 � L6 + L7 � L7)− 2(k2 − k3)(L6 ∧ L7) (4.57)

Comparing with (4.13) we observe that this case is composed by three copies
of the F(2,2).
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4.2.3 Evaluation of the ordinary differential

To compute the standard differential we have to consider an orbit generated
by the co-adjoint action of the unitary group acting on ρ0. At the moment
we are not considering the transversal directions. As explained before we have
consider only unitary transformations that do not stabilize ρ0 that are of the
form

U = e(+ix1t1+ix2t2+ix4t4+ix5t5+ix6t6+ix7t7) (4.58)

In this way we have introduced a set of coordinates to identify

ρ = ρ(x1, x2, x4, x5, x6, x7)

and we can evaluate
dρ0 = (U(xi)ρ0U

†(xi)|x (4.59)

where the vector x has components xi with i = {1, 2, 4, 5, 6, 7}. Evaluating
explicitly we obtain the following expression:

dρ0 = [it1ρ0 + ρ0(−it1)]dx1 + [it2ρ0 + ρ0(−it2)]dx2+
+ [it4ρ0 + ρ0(−it4)]dx4 + [it5ρ0 + ρ0(−it5)]dx5

[it6ρ0 + ρ0(−it6)]dx6 + [it7ρ0 + ρ0(−it7)]dx7 (4.60)

and then:

dρ0 =

 0 r1(dx2 + idx1) 0
r1(dx2 − idx1) 0 0

0 0 0

+

+

 0 0 r2(dx5 + idx4)
0 0 0

r2(dx5 − idx4) 0 0

+

+

0 0 0
0 0 r3(dx7 + idx6)
0 r3(dx7 − idx6) 0


where we have introduced:

r1 = k2 − k1, r2 = k3 − k1 r3 = k3 − k2
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Finally we have:

dρ0 =

 0 r1(dx2 + idx1) r2(dx5 + idx4)
r1(dx2 − idx1) 0 r3(dx7 + idx6)
r2(dx5 − idx4) r3(dx7 − idx6) 0



≡

 0 r1dz
∗
1 r2dz

∗
2

r1dz1 0 r3dz
∗
3

r2dz2 r3dz3 0


(4.61)

where in the last matrix we have defined 3 complex coordinates:

z1 =x2 − ix1

z2 =x5 − ix4

z3 =x7 − ix6

(4.62)

From these last matrix we can evaluate the coefficients Di using the usual
scalar product:

Di = 〈ti, dρ0〉 = 1
2Tr[tidρ0] (4.63)

Once evaluated the Di’s we obtain the Li’s using (4.53):



D1 = r1

2 (dz1 + dz∗1) = r1dx2

D2 = r1

2i(dz1 − dz∗1) = −r1dx1

D4 = r2

2 (dz2 + dz∗2) = r2dx5

D5 = r2

2i(dz2 − dz∗2) = −r2dx4

D6 = r3

2 (dz3 + dz∗3) = r3dx7

D7 = r3

2i(dz3 − dz∗3) = −r3dx6

⇐⇒



L1 = ( 2r1dx2

k1 + k2
)

L2 = (−2r1dx1

k1 + k2
)

L4 = ( 2r2dx5

k1 + k3
)

L5 = (−2r2dx4

k1 + k3
)

L6 = ( 2r3dx7

k2 + k3
)

L7 = (−2r3dx6

k2 + k3
)D7

(4.64)
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Now we are ready to write the Fisher Tensor putting the coefficients in (4.57):

F(3,3) = 4(k1 − k2)2

(k1 + k2)2{(k1 +k2)(dx1�dx1 +dx2�dx2)+2(k1−k2)(dx2∧dx1)}

+ 4(k1 − k3)2

(k1 + k3)2{(k1 + k3)(dx4 � dx4 + dx5 � dx5) + 2(k1 − k3)(dx5 ∧ dx4)}

+ 4(k2 − k3)2

(k2 + k3)2{(k2 + k3)(dx6 � dx6 + dx7 � dx7) + 2(k2 − k3)(dx7 ∧ dx6)}

(4.65)

or

F(3,3) = 4(k1 − k2)2

(k1 + k2)2{(k1 + k2)(dx1 ⊗ dx1 + dx2 ⊗ dx2)+

+ i(k1 − k2)(dx1 ⊗ dx2 − dx2 ⊗ dx1)}+

+ 4(k1 − k3)2

(k1 + k3)2{(k1 + k3)(dx4 ⊗ dx4 + dx5 ⊗ dx5)+

+ i(k1 − k3)(dx4 ⊗ dx5 − dx5 ⊗ dx4)}+

+ 4(k2 − k3)2

(k2 + k3)2{(k2 + k3)(dx6 ⊗ dx6 + dx7 ⊗ dx7)+

+ i(k2 − k3)(dx6 ⊗ dx7 − dx7 ⊗ dx6)}

This expression can be rewritten in complex coordinates:

F(3,3) =4(k1 − k2)2

(k1 + k2)2{(k1 + k2)dz1 � dz∗1 − i(k1 − k2)dz1 ∧ dz∗1}

4(k1 − k3)2

(k1 + k3)2{(k1 + k3)dz2 � dz∗2 − i(k1 − k3)dz2 ∧ dz∗2}

4(k2 − k3)2

(k2 + k3)2{(k2 + k3)dz3 � dz∗3 − i(k2 − k3)dz3 ∧ dz∗3}

(4.66)

As before we note that the Fisher tensor has two parts a symmetric and an
anti-symmetric one.

4.2.4 Comparison with previous results
Recall that we have already found a metric tensor (2.43) and a symplectitc
form on u∗(3) (2.42) previously. Changing the eigenvalue from λi to ki they
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read:

ηOξ = da1
2 ⊗ db1

2 − db1
2 ⊗ da1

2
k1 − k2

+ da1
3 ⊗ db1

3 − db1
3 ⊗ da1

3
k1 − k3

+ da2
3 ⊗ db2

3 − db2
3 ⊗ da2

3
k2 − k3

(4.67)
Finally

γOξ = db1
2 ⊗ db1

2 + da1
2 ⊗ da1

2
|k1 − k2|

+ db1
3 ⊗ db1

3 + da1
3 ⊗ da1

3
|k1 − k3|

+ db2
3 ⊗ db2

3 + da2
3 ⊗ da2

3
|k2 − k3|

(4.68)
Comparing (2.33) with (4.46) it is easy to see that the hermitian matrices, used
as basis, are different in the two cases. In particular they are related according
these relations:

A1
2 = t1, B1

2 = −t2, A1
3 = t4 B1

3 = −t5 A2
3 = t6 B2

3 = −t7 (4.69)
Then we have to make the following change of coordinates:

a1
2 = x1, b1

2 = −x2, a1
3 = x4 b1

3 = −x5 a2
3 = x6 b2

3 = −x7 (4.70)
So we can write the symplectic form as:

ηOξ = 1
k1 − k2

{dx2 ⊗ dx1 − dx1 ⊗ dx2}+

+ 1
k1 − k3

{dx5 ⊗ dx4 − dx4 ⊗ dx5}+

+ 1
k2 − k3

{dx7 ⊗ dx6 − dx6 ⊗ dx7} (4.71)

As before we compare this expression with ΩFS = −Im(F)

ΩFS = 4(k1 − k2)3

(k1 + k2)2{(dx2 ⊗ dx1 − dx1 ⊗ dx2)}

+ 4(k1 − k3)3

(k1 + k3)2{(dx5 ⊗ dx4 − dx5 ⊗ dx4)}

+ 4(k2 − k3)3

(k2 + k3)2{(dx6 ⊗ dx7 − dx7 ⊗ dx6)} (4.72)

We can also compare the metric tensor with GFS = Re(F):

γOξ = 1
|k1 − k2|

{dx2 ⊗ dx2 + dx1 ⊗ dx1}+

+ 1
|k1 − k3|

{dx5 ⊗ dx5 + dx4 ⊗ dx4}+

+ 1
|k2 − k3|

{dx7 ⊗ dx7 + dx6 ⊗ dx6}, (4.73)
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and

GFS = 4(k1 − k2)2

(k1 + k2) {(dx1 ⊗ dx1 + dx2 ⊗ dx2)}

+ 4(k1 − k3)2

(k1 + k3) {(dx5 ⊗ dx4 − dx5 ⊗ dx4)}

+ 4(k2 − k3)2

(k2 + k3) {(dx6 ⊗ dx6 + dx7 ⊗ dx7)} (4.74)

It is evident that apart from some constant coefficients, the tensors derived
from the Fisher Tensor have the same structure of the tensors derived before
with the “geometrical” approach. As before one can build a complex structure
J starting from a metric and a symplectic tensor J = g−1◦ω requiring J2 = −I.
If we evaluate J̃(v) = G−1

FS ◦ ΩFS(v, .) we have:

G−1
FS = (k1 + k2)

4(k1 − k2)2{(∂x1 ⊗ ∂x1 + ∂x2 ⊗ ∂x2)}

+ (k1 + k3)
4(k1 − k3)2{∂x4 ⊗ ∂x4 + ∂x5 ⊗ ∂x5)}

+ (k2 + k3)
(k2 − k3)2{∂x6 ⊗ ∂x6 + ∂x7 ⊗ ∂x7)} (4.75)

It is easy to check that:

J̃ = (k1 − k2)
(k1 + k2){(dx2 ⊗ ∂x1 − dx1 ⊗ ∂x2)}

+ (k1 − k3)
(k1 + k3){dx5 ⊗ ∂x4 − dx4 ⊗ ∂x5)}

+ (k2 − k3)
(k2 + k3){dx7 ⊗ ∂x6 − dx6 ⊗ ∂x7)} (4.76)

To implement the normalisation condition it is better use the matrix notation:

J̃ =



0 k1−k2
k1+k2

0 0 0 0

−k1−k2
k1+k2

0 0 0 0 0

0 0 0 k1−k3
k1+k3

0 0

0 0 −k1−k3
k1+k3

0 0 0

0 0 0 0 0 k2−k3
k2+k3

0 0 0 0 −k2−k3
k2+k3

0


(4.77)
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If we want that J = NJ̃ is such that J2 = −I we have to set N as:

N =



|k1+k2
k1−k2

| 0 0 0 0 0

0 |k1+k2
k1−k2

| 0 0 0 0

0 0 |k1+k3
k1−k3

| 0 0 0

0 0 0 |k1+k3
k1−k3

| 0 0

0 0 0 0 |k2+k3
k2−k3

| 0

0 0 0 0 0 |k2+k3
k2−k3

|


(4.78)

Coming back to the standard notation:

JFS = sgn(k1 − k2){dx2 ⊗ ∂x1 − dx1 ⊗ ∂x2}
+ sgn(k1 − k3){dx5 ⊗ ∂x4 − dx4 ⊗ ∂x5}

+ sgn(k2 − k3){dx7 ⊗ ∂x6 − dx6 ⊗ ∂x7} (4.79)

We have already found in (2.45) a complex structure with another approach
that reads:

J = sgn(λ1 − λ2)(da1
2 ⊗ ∂b1

2
− db1

2 ⊗ ∂a1
2
)

sgn(λ1 − λ2)(da1
3 ⊗ ∂b1

3
− db1

3 ⊗ ∂a1
3
)

sgn(λ2 − λ3)(da2
3 ⊗ ∂b2

3
− db2

3 ⊗ ∂a2
3
). (4.80)

Changing the coordinates it is easy to see that the two complex structures are
the same with perfect agreement:

J = JFS (4.81)

4.2.5 Transverse direction
Now we are going to study the evolution of ρ0 = diag{k1, k2, k3} when k1,k2 and
k3 are not fixed but we will consider the basis fixed. As we explained before,
we will evaluate the symmetric logarithmic derivative along this transversal
direction dTl ρ assuming:

dTρ = 1
2{d

T
l ρ, ρ} (4.82)

We use the condition k1 + k2 + k3 = 1 explicitly so that k3 = 1− k1− k2 where
ki = ki(θ) with i ∈ {1, 2}. Moreover we can rewrite:

ρ0 = 1
2I + k1 − k2

2 t3 + 3k1 + 3k2 − 2
2
√

3
t8 (4.83)
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In the first step we calculate the ordinary differential:

dTρ0 =∂ρ0

∂k1
dk1 + ∂ρ0

∂k2
dk2 =

=(1
2t3 +

√
3

2 t8)dk1 + (−1
2t3 +

√
3

2 t8)dk2

(4.84)

Then, recalling the expansion on the Lie algebra generators we have only two
non-vanishing coefficients D3 and D8. We can also express the standard dif-
ferential in a matrix form as:

dTρ0


dk1 0 0

0 dk2 0

0 0 dk1 − dk2

 (4.85)

Using the definition dTρ = 1
2{d

T
l ρ, ρ} we have a matrix equation:dk1 0 0

0 dk2 0
0 0 dk1 − dk2

 = 1
2


A B C
D E F
G H I

 ,
k1 0 0

0 k2 0
0 0 k3


 (4.86)

i.e.dk1 0 0
0 dk2 0
0 0 dk1 − dk2

 = 1
2

 2k1A B(k1 + k2) C(k3 + k1)
D(k1 + k2) 2Ek2 F (k2 + k3)
G(k3 + k1) H(k3 + k2) 2k3T

 (4.87)

Thus we have:
B = C = D = F = G = H = 0, (4.88)

and
A = dk1

k1
, E = dk2

k2
, I = dk1 + dk2

k1 + k2 − 1 . (4.89)

We have found the matrix elements of the symmetric logarithmic derivative:

dlρ0 =


dk1
k1

0 0

0 dk2
k2

0

0 0 dk1+dk2
k1+k2−1

 . (4.90)

As usual we can extract from this matrix the coefficients Li’s, in particular

LI =1
3

(
k2 + 2k1 − 1
k1(k1 + k2 − 1)dk1 + k1 + 2k2 − 1

k2(k1 + k2 − 1)dk2

)

L3 =1
2

(
dk1

k1
− dk2

k2

)

L8 = 1
2
√

3

(
k2 − k1 − 1

k1(k1 + k2 − 1)dk1 + k1 − k2 − 1
k2(k1 + k2 − 1)dk2

) (4.91)
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Now we are ready to find the Fisher tensor on this transversal direction FT :

FT = Tr[ρ(dTl ρ)⊗ (dTl ρ)]

that is:
FT = Tr[ρ(tILI + L3t3 + L8t8)⊗ (tILI + L3t3 + L8t8)] (4.92)

FT = Tr[ρ0]LI ⊗ LI + Tr[ρ0t3]LI ⊗ L3 + Tr[ρ0t8]LI ⊗ L8+
+Tr[ρ0t3]L3 ⊗ LI + Tr[ρ0t3t3]L3 ⊗ L3 + Tr[ρ0t3t8]L3 ⊗ L8+

+Tr[ρ0t8]L8 ⊗ LI + Tr[ρ0t8t3]L8 ⊗ L3 + Tr[ρ0t8t8]L8 ⊗ L8

(4.93)

To evaluate explicitly this last expression the calculations are very long but
easy so we will report only the example for Tr[ρ0]LI⊗LI. Obviously Tr[ρ0] = 1,
moreover:

LI ⊗ LI =1
9

(
k2 + 2k1 − 1
k1(k1 + k2 − 1)

)2

dk1 ⊗ dk1+

+1
9

(
k1 + 2k2 − 1
k2(k1 + k2 − 1)

)2

dk2 ⊗ dk2+

+1
9

(
(k2 + 2k1 − 1)(k1 + 2k2 − 1)

k1k2(k1 + k2 − 1)

)
(dk1 ⊗ dk1 + dk2 ⊗ dk2)

(4.94)

After evaluated all the traces we obtain:

FT = (dk1 ⊗ dk1)
( 1
k1
− 1
k1 + k2 − 1

)
+

+ (dk2 ⊗ dk2)
( 1
k2
− 1
k1 + k2 − 1

)
+

(dk1 ⊗ dk2 + dk1 ⊗ dk1)
( 1

1− k1 − k2

)
(4.95)

Remark 15. This part of the Fisher Tensor is symmetric under the exchange
between the indices 1 and 2, so it will be contribute to the metric

Moreover one can repeat the same calculations without the condition k1 +
k2 + k3 = 1. After the same steps one obtains:

FT = (dk1 ⊗ dk1)
( 1
k1

)
+ (dk2 ⊗ dk2)

( 1
k2

)
+ (dk3 ⊗ dk3)

( 1
k3

)
(4.96)

From this last expression it is easy to obtain the previous one requiring k3 =
1− k2 − k1. So we can conclude that our Fisher Tensor it is well defined also
when some eigenvalues ki’s vanish during the evolution, in fact in this case
obviously dki = 0.



Chapter 5

Dynamical Evolution

In this chapter, starting from the quantum mechanics evolution postulate, we
will review how systems evolve in time. In particular we will discuss the evo-
lution of open quantum systems using the Kraus representation of a super-
operator. This powerful instrument will allow us to implement explicitly the
transversal direction studied in the previous chapter. Finally we will revisit the
previous result obtained for 2× 2-density matrices using this formalism.

5.1 General theory of evolution

5.1.1 Unitary evolution
We start by saying that we do not want to give a complete treatment on the
evolution theory. The aim of this section is only to present the instruments
that we will use later. Moreover we do not provide all the proofs but only
the instructive ones. The interested reader can find all the proofs and more
explanations in [14] and [16].
First of all we enunciate the evolution postulate for a quantum mechanical
system [14, 16]:”Time evolution of a closed quantum state is unitary; that is,
the state |ψ(t1)〉 of the system at time t1 is related to the state |ψ(t2)〉 at time
t2 by a unitary operator U .

|ψ(t2)〉 = U(t2, t1) |ψ(t1)〉

The evolution is described by the Schrödinger Equation:

i~
d |ψ(t)〉
dt

= H |ψ(t)〉

where H is an Hermitian operator known as the Hamiltonian of the closed
quantum system.”

77
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Remark 16. The connection between U and H is very well known at least when
H does not depend on time; first it is easy to verify that

|ψ(t)〉 = exp(−iH(t− t1)
~

) |ψ(t1)〉

is a solution of the Schrödinger Equation. Hence we have the identifications:

U(t, t1) = exp(−iH(t− t1)
~

)

Remark 17. The postulate considers only closed quantum system; what does it
mean? One could starts an epistemological discussion on this topic but for our
aim is enough to consider a quantum system closed if it does not interact in
any way with other systems. Actually all systems, except the whole Universe,
interact with other systems. Nevertheless, there are a lot of systems that can
be considered closed in a good approximation. Moreover, in principle, every
open system can be considered as a part of a closed systems, the Universe,
whose evolution is unitary.

We can also reformulate this postulate for a density matrix. In fact we can
consider a pure state density matrix ρ, i.e. a matrix with only one eigenvalue
k = 1. If we use the basis in which the matrix is diagonal we can rewrite
ρ = |ψ〉 〈ψ|. According to the postulate |ψ〉 evolves as |ψ(t)〉 = U(t, 0) |ψ(0)〉
then, omitting the time dependence of the unitary operator, we have:

ρ(t) = U |ψ(0)〉 〈ψ(0)|U † = Uρ0U
† (5.1)

Because every mixed state can be written as a convex combination of pure
states, the previous formula remains valid for every kind of density matrix.
To understand better what follows we now present rapidly the evolution of a
pure bipartite system assuming no interaction between the two sub-systems.
A pure bipartite state is a vector |ψ(0)〉 ∈ H = HA⊗HB. If {|i(0)〉}i is a basis
for HA and {|µ(0)〉}µ is a basis for HB then we can write:

|ψ(0)〉AB =
∑
i,µ

aiµ |i(0)〉A ⊗ |µ(0)〉B (5.2)

If there is no interaction between system A and system B we can use an
Hamiltonian on HA ⊗HB of the form:

HAB = HA ⊗ IB + IA ⊗HB (5.3)

Since the Hamiltonian is time independent and has this particular form, the
two sub-systems evolve independently and we have that the unitary operator
for the combined system is:

UAB(t) = UA(t)⊗ UB(t) (5.4)
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and then

|ψ(t)〉AB = UAB(t) |ψ(0)〉AB =
∑
i,µ

aiµUA |i(0)〉A ⊗ UB |µ(0)〉B

|ψ(t)〉AB =
∑
i,µ

aiµ |i(t)〉A ⊗ |µ(t)〉B ,

where |i(t)〉A and |µ(t)〉B define a new orthonormal basis for HA and HB, since
UA, UB are unitary operators. We now focus on the evolution of the sub-system
A. Noticing that we can obtain a sub-system A from the total one using

ρA(0) = TrB[ρAB(0)] =
∑
i,j,σ

aiσa
∗
jσ |i(0)〉A 〈j(0)|A ,

and calling ρAB(t) = |ψ(t)〉AB 〈ψ(t)|AB ; we have:

ρA(t) = TrB[ρAB(t)] =
∑

i,j,µ,ν,σ

aiµa
∗
jν(|i(t)〉A 〈j(t)|A ⊗ 〈σ(t)|µ(t)〉B 〈ν(t)|σ(t)〉B)

=
∑
i,j,σ

aiσa
∗
jσ |i(t)〉A 〈j(t)|A

=UA(t)ρA(0)U †A(t)
(5.5)

This result is in agreement with what we have said before, that is, if the system
A does not interact with the system B then A evolves like a closed system.

5.1.2 Superoperators
In this section we would like to understand how a sub-system A of a bipartite
system evolves when it interacts with another sub-system E. We have chosen
the letter E to indicate the other sub-system because in this context the total
system is considered the union between the system A and the environment E.
In other words the system A is an open quantum system. Let us suppose that
the initial composite state is described by the following tensor product:

ρEA = |e0〉E 〈e0|E ⊗ ρA (5.6)

In particular the system S is described by a density matrix and the environment
is assumed to be in a pure state. Following the postulate, the system evolves
for a finite time as:

ρEA = UEA(|e0〉E 〈e0|E ⊗ ρA)U †EA (5.7)



80 CHAPTER 5. DYNAMICAL EVOLUTION

Performing the partial trace on the environment (HE) yields the density matrix
of the system A after the evolution:

ρ′A =trE
[
UEA(|e0〉E 〈e0|E ⊗ ρA)U †EA

]
=
∑
µ

〈µ|UEA|e0〉E E ρA 〈e0|UEA|µ〉E E

(5.8)

where |µ〉E is an orthonormal basis for HE and 〈µ|UEA|e0〉E E is an operator
acting on HA. If {|µ〉E ⊗ |i〉A} is an orthonormal basis for HE ⊗HA then the
operator 〈µ|UEA|ν〉E E on HA has as matrix elements:

〈i|A ( 〈µ|UEA|ν〉E E) |j〉A (5.9)

If we denote with:
Eµ = 〈µ|UEA|e0〉E E (5.10)

we can rewrite
ρ′A ≡ S(ρA) =

∑
µ

EµρAE
†
µ (5.11)

Remark 18. Notice that from the unitarity of UEA the Eµ’s satisfy the property:∑
µ

E†µEµ =
∑
µ

〈e0|UEA|µ〉E E 〈µ|UEA|e0〉E E

= 〈e0|U †EAUEA|e0〉E E = IA
(5.12)

Equation (5.11) defines a linear map S that takes linear operators to lin-
ear operators. If this map S has the property (5.12), is called superoperator
and equation (5.11) defines the operator sum representation, also called Kraus
representation of the superoperator. Moreover we can see a superoperator S
as a linear map between density operators; in fact from (5.11,5.12) we have
that ρ′A is a density matrix if ρA is, since:

1. ρ′A is hermitian: ρ′†A = ∑
µEµρ

†
AE
†
µ = ρ′A.

2. ρ′A has unit trace =∑µ tr(ρAE†µEµ) = tr(ρA) = 1.

3. ρ′A is positive: 〈ψ|A ρ′A |ψ〉A = ∑
µ(〈ψ|Mµ〉)ρA(〈M †

µ|ψ〉) ≥ 0

We have showed that from a unitary transformation on the total system (the
Universe) we obtain a Kraus representation on the sub-system (A). Moreover
the inverse is true too: from a Kraus representation on the sub-system we
could obtain the unitary transformation on the Universe.
We choose HE to be an Hilbert space whose dimension is at least equal to the
number of terms in the Kraus representation. If 〈ψ|A is a normalized vector in
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HA and {|µ〉E} are orthonormal states of HB and |e0〉E is a normalized state,
we can define the action of UEA as:

UEA(|e0〉E ⊗ |ψ〉A) =
∑
µ

|µ〉E ⊗ Eµ |ψ〉A (5.13)

It is easy to see [16] that UAE preserves the inner product on |e0〉 ⊗ HA so we
can extend UAB to a unitary operator on HE ⊗ HA. If we choose HE with
dimension equal to the number of terms in the Kraus representation and the
states {|µ〉E} such that the first vector is |e0〉E and the other are chosen to
complete the orthonormal basis, UEA has a simple matrix representation. In
fact, recalling that Eµ = 〈µ|UEA |e0〉, we have

UEA =


[E0] . . . . . . . . .
[E1] . . . . . . . . .
[E2] . . . . . . . . .
. . . . . . . . . . . .
[Eµ] . . . . . . . . .

 (5.14)

In this notation is obvious that this definition does not determine completely
the operator UEA, if we want a unitary extension we could complete the ma-
trix such that the columns, or equally the rows, form an orthonormal basis.
Moreover it is immediate that:

ρ
′

A = trB[UEA(|e0〉E ⊗ |ψ〉A)( 〈e0|E ⊗ 〈ψ|A )U †EA] (5.15)

Since any ρA can be expressed as a convex combination of pure states, we
recover the Kraus representation on a general ρA. We have introduced the
superoperators because they provide us with a powerful formalism very useful
if we wish to describe the evolution of a pure state to a mixed one. From the
definition, it is obvious that the unitary evolution of ρA can be recovered if
the Kraus representation consist of only one operator Eµ. Only in this latter
case if ρA is a pure state ρ′A is still a pure state. In general even if ρA is a pure
state we have that ρ′A is a mixed one (that is; there are at least two component
in the sum(5.11) ). Moreover it is easy to see that if S1 and S2 are two
superoperators also S2 ◦S1 is. In particular if S1 describes the evolution from
t0 to t1 and S2 describes the evolution from t1 to t2, then S2◦S1 describes the
evolution from t0 to t2. On the other hand one can show that a superoperator
is invertible if and only if it is unitary. This means that while the unitary
evolutions form a dynamical group the superoperator evolutions form only a
dynamical semi-group. Physically speaking, if a system undergoes a genuine
superoperator evolution it cannot go back to the initial state, from this point
of view we could say that there is an arrow of time even at microscopic level.
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Actually, to understand completely the powerful of the Kraus representation
we have to recollect another important result, we will omit the proof that can
be find in [16].

Theorem 5.1.1. Any map S such that:

1. S is linear,

2. S preserve hermiticity,

3. S is trace preserving,

4. S is completely positive,

has Kraus representation.

Physically speaking, the theorem says that any “reasonable” time evolution
has an operator-sum representation and then can be realized by a unitary
transformation in a certain bipartite system. Let us explain the physic content
of the hypothesis that define mathematically when an evolution is “reasonable”.
Hypothesis 2 and 3 are necessary if we want that a density matrix after the
evolution still has an unitary trace and it is still Hermitian. Hypothesis 1 is,
actually, an open question. From one hand this request permits us to maintain
an easy ensemble interpretation. For example if the mixed state ρ is a convex
combination of two pure state ρ1 and ρ2 then:

S(ρ(p)) ≡ S(pρ1 + (1− p)ρ2) = pS(ρ1) + (1− p)S(ρ2)

So if at the initial time the state ρ has probability p ( or 1−p) to be in the state
ρ1 ( or ρ2), after the evolution it has a probability p ( or 1−p) to be in the state
Sρ1 ( or Sρ2). On the other hand there are version of “quantum mechanics” in
which non linear evolution is still consistent with a probabilistic view but this
could have strange, perhaps even absurd consequences, for example look at [15].
For our aim is enough to follow the tradition and to require S linear. Finally,
we have hypothesis 4. We say, by definition that SA is completely positive if,
considering any extensions of HA to the tensor product HA ⊗HB, SA ⊗ IB is
positive for all such extensions. This is a very physical condition; first of all this
guarantees that the map takes positive operators to positive operators (i.e SA

is positive), but we are asking for more. In fact if we are studying the evolution
of the system A, there may be another system B that does not interact at all
with A. Complete positivity, with the other assumptions, ensures that if the
system A evolves and system B does not, any initial density matrix of the total
system AB evolves to another density matrix.
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5.2 Q-bit density matrix evolution
Now we are ready to use this formalism to clarify the meaning of transversal
direction and revise what we have done until now for 2×2 density matrix. But
first let us introduce an useful instrument to visualize concretely the construc-
tion we are going to build.

5.2.1 The Bloch ball
We will now give an illuminating parametrisation of the convex cone of the
density matrix. As we have already done, we can express every 2 × 2 matrix
using the Pauli Matrices and the identity, so we can do the same with 2 × 2
density matrices:

ρ = 1
2(I +R1σ1 +R2σ2 +R3σ3) (5.16)

where the coefficient associated with the identity is fixed and equal to 1
2 ; in

fact ρ must have trace equal to one and all the Pauli matrices are traceless.
Moreover, we have factorized 1

2 so that the scalar product that defines the
coefficients is Ri = Tr[σiρ]. So we have a correspondence between a density
matrices and R3 vectors R = (R1, R2, R3). If we write, in matrix notation, the
previous decomposition we have:

ρ(R) = 1
2

[
1 +R3 R1 − iR2
R1 + iR2 1−R3

]
(5.17)

To be sure that the matrix is positive a necessary condition is

detρ = 1
4(1− |R|2) ≥ 0⇐⇒ |R|2 ≤ 1 (5.18)

Note that this condition is also sufficient: because tr[ρ] = 1 then ρ cannot have
both the eigenvalues negative. Thus we have a 1− 1 correspondence between
density matrices of a single q-bit (i.e two level quantum system) and the points
on the unit 3−ball: 0 ≤ |R| ≤ 1. This ball is usually called Bloch Sphere,
but actually it is a ball. The boundary of the ball, defined by the equation
|R|2 = 1, is a 2−sphere; for these density matrices we have two conditions:

detρ = 0 and tr[ρ] = 1 (5.19)

this implies that the density matrices can have eigenvalues 0 and 1. In other
words they are one dimensional projectors and also they are pure state. There
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is also a special point in this ball: the centre. The centre is defined to have
|R| = 0 in this case the eigenvalues must satisfy:

p1 + p2 = 1 and p1p2 = 1
4 =⇒ p1 = p2 = 1

2 (5.20)

or in matrix notation: [
1
2 0
0 1

2

]
(5.21)

This matrix represents the state called maximally entangled. Notice also that
the maximally entangled state, being proportional to the identity matrix, is
invariant under the change of basis defined by the adjoint action of an unitary
matrix U , hence it is a fixed point of the co-adjoint action.
Remark 19. What we have said is an explicit application of the theorem (2.2.3).
In fact each 2× 2 matrix is unitarily equivalent to diag(k, 1− k).

1. if k = 0 or k = 1, i.e. the matrix represents a pure state, we have two
eigenvalues with multiplicity equal to 1, then the orbit of ρ is homeomor-
phic to

U(2)/[U(1)× U(1)] (5.22)

2. if 0 < k < 1 and k 6= 1
2 we are in the same situation as before

3. if k = 1
2 the orbit of ρ is omeomorphic to

U(2)/U(2) (5.23)

i.e a point, the centre of the sphere.

Recalling that, from group theory, one has the diffeomorphism U(2)/[U(1) ×
U(1)] ∼ S2, we have proved that any U(2) orbit is omeomorphic to a two-
sphere, where the centre is a sphere of null radius. Furthermore, we shall see
that, varying the value of k from 0 to 1, the union of all the co-adjoint unitary
orbits, the set of 2× 2 density matrix, is homeomorphic to a closed ball in R3:
the Bloch Ball.

We will represent the Bloch ball drawing one of its great circles as shown
in Fig.(5.1). Along the grey circumference there are pure states, among them
we have called N the one that in a certain basis {|0〉 , |1〉} can be represented
by:

ρ0 = |0〉 〈0| =
[
1 0
0 0

]
(5.24)
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Remark 20. The Bloch vector Rρ0 associated with ρ0 reads:

Rρ0 =

0
0
1

 =⇒ |Rρ0|2 = 1 (5.25)

Moreover in Fig.(5.1) we have called ME the representative point of the
maximally entangled state.

Figure 5.1: Representation of the Bloch Ball

5.2.2 Paths on the Bloch ball
We are now ready to introduce the evolution. In what follows we consider
as starting point the matrix ρ0, corresponding to N , and we investigate what
happens when evolution occurs.

Unitary evolution First of all if ρ0 is a closed system it could evolve with
an unitary evolution:

ρ0 7→ ρ1 = Uρ0U
† (5.26)

where U ∈ U(2). We can see every U ∈ U(2) as usual:

U = exp[α0I +
3∑
i=1

αiσi] (5.27)

In matrix notation it is easy to prove that:

U = eiα0

cos(|α|) + i sin(|α|)
|α| α3 i sin(|α|)

|α| (α1 − iα2)
i sin(|α|)
|α| (α1 + iα2) cos(|α|)− i sin(|α|)

|α| α3

 (5.28)
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Where |α| =
√

3∑
i=1

α2
i .

Obviously the phase factor, eiα0 , goes away since U acts according the co-ajoint
action, i.e. the transformations “along” the I direction belong to the stabilizer
of any ρ. So we can ignore eiα0 and write the most general U as:

U =
[
v u
−ū v̄

]
where u, v ∈ C such that |v|2 + |u|1 = 1 (5.29)

In this way ρ1 reads as:

ρ1 =
[
|v|2 −uv
−ūv̄ |u|2

]
(5.30)

Moreover we can evaluate the Bloch vector Rρ1 :

Rρ1 =

 −uv − ūv̄−iuv + iūv̄
|v|2 − |u|2

⇒ |Rρ1|2 = (|v|2 + |u|2)2 = 1 (5.31)

So we have obtained another pure state, i.e |Rρ1|2 = 1. This result is quite
obvious: the co-adjoint action of the unitary group is simply a change of basis,
and the rank of a matrix is invariant under this transformation. Of course the
state ρ1 is different from ρ0 but it is still on the surface of the Bloch ball. We
can represent this path, as in 5.2, like a rotation.

Figure 5.2: Representation of a unitary transformation on the Bloch Sphere

Open Evolution Now we are interested in studying an evolution that start-
ing from a pure state ends in a mixed state; the simplest case the one can
imagine is:

ρ0 =
[
1 0
0 0

]
7−→ ρ1 =

[
p 0
0 1− p

]
(5.32)
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where 0 ≤ p ≤ 1. We have just seen that the superoperator formalism provides
us the instruments to face this problem. In particular we can explicitly build
a Kraus representation of the superoperator S such that S(ρ0) = ρ1. We can
choose:

E1 = √p
[
1 0
0 1

]
, E2 =

√
1− p

[
0 1
1 0

]
(5.33)

that are defined up to unitary transformations that leave ρ0 invariant, that is
up to phases. It very easy to show that:

S(ρ0) = ρ1 = E1ρ0E
†
1 + E2ρ0E

†
2 (5.34)

and that
E†1E1 + E†2E2 = I (5.35)

In this case the Bloch Vector reads:

Rρ1 =

 0
0

2p− 1

 =⇒ |Rρ1|2 = (2p− 1)2 (5.36)

Being p ∈ [0, 1] we have |Rρ1|2 ≤ 1, then, as we have explained before, ρ1 is
a mixed state as expected, but we conclude also that the state ρ1 is inside the
Bloch Ball, (see fig.5.3).
Remark 21. In this way we have found an explicit way to implement the
transversal direction, that we have studied before. In fact taking p = p(t)
as a function of a real parameter t, we have that the eigenvalues of the density
matrix are variable. If we consider only the eigenvalues variable and ignore the
unitary transformation (i.e. the basis in which the matrix is written is fixed),
we are in the same conditions that we used to evaluate the dTρ in the previous
chapter.
Remark 22. If one sets p = 0 or p = 1 the superoperator evolution becomes a
trivial unitary evolution:

1. if p = 1 we have E2 = 0 and E1 = I. The state is unchanged after the
evolution

2. if p = 0 we have E1 = 0 and E2 = σ1. Since σ1σ
†
1 = I the pure state

ρ0 = |0〉 〈0| becomes ρ1 = |1〉 〈1| that it is still pure.

As we have said, superoperator evolution is a more general evolution than
the unitary one; in particular if a superaoperator can be represented with a
single Kraus Operator E then the superoperator evolution is a unitary one,
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Figure 5.3: Representation of a “Kraus” transformation on the Bloch Sphere

and only in this case a pure state remains pure after the evolution. Moreover,
we have also said that, when superoperator evolution occurs, one can reach
the initial state again with another evolution if and only if the superoperator
is unitary; otherwise it is impossible. We are going to show this result using
the Bloch vector. Let F1 and F2, a Kraus Representation of a superoperator
S1, in the same basis of the Ei, such that:

F1 = √q
[
1 0
0 1

]
, F2 =

√
1− q

[
0 1
1 0

]
(5.37)

with q ∈ [0, 1]. Let us compose this S1 with the previous S, as in fig.5.4

Figure 5.4: Composition of two “Kraus” transformations on the Bloch Sphere
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S1 ◦S(ρ0) = ρ2 = F1ρ1F
†
1 + F2ρ1F

†
2 =

F1E1ρ0E
†
1F
†
1 + F2E1ρ0E

†
1F
†
2 + F1E2ρ0E

†
2F
†
1 + F2E2ρ0E

†
2F
†
2 (5.38)

after some easy calculations we obtain:

ρ2 =
[
qp+ (1− p)(1− q) 0

0 q(1− p) + (1− q)p

]
(5.39)

First of all one can check that trace is still equal to one, and that the Block
vector is:

Rρ2 =

 0
0

(2p− 1)(2q − 1)

 =⇒ |Rρ2|2 = (2p− 1)2(2q − 1)2 (5.40)

Keeping in mind that q ∈ [0, 1] it is immediate see that |Rρ2|2 ≤ |Rρ1|2.
From this, we understand that any other superoperator can make the state
evolve only toward the centre and thus the second transformation is not able to
“bring” the mixed state back to the surface of the Block Sphere. We underline
also that if the first superoperator S takes ρ in the centre of the ball, i.e. p = 1

2
then S2 has no effects on the state. Note that, we have made an explicit proof
that the composition of two superoperators is still a superoperator, in fact you
can check that:

A1 = F1E1 A2 = F1E2 A3 = F2E1 A4 = F2E2 (5.41)

form a Kraus representation of the superoperators :S1 ◦S.

Remark 23. Notice that one could find transformations that bring the state ρ1
back to ρ0; for example:

G = 1
√
p

[
1 0
0 0

]
(5.42)

such that:

Gρ1G
† =

[
1 0
0 0

]
(5.43)

But it is easy to see that this is not a Kraus representation of a superoperator in
fact GG† 6= I. We conclude that this transformation has no physical meaning.
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Figure 5.5: A“Kraus” transformations on the Bloch Sphere, followed by an unitary one

Mixing the evolutions We are interested in mixing the previous paths on
the Bloch sphere, to generate the most general evolution, i.e. an evolution that
allows us to reach every point in the Ball. We can apply , at first, the superop-
erator S, to choose in which sphere we want the transformed state to be, then
with an unitary evolution we can move the state along this sphere (fig.5.5). Of
course this construction makes sense inly if the unitary transformation leaves
unchanged the radius (i.e. the modulus of the Bloch vector). We have just
proved this result for a pure state, and we are going to generalize this result
also for the mixed ones.

Indeed:

ρ0 7→ ρ1 = E1ρ0E
†
1 + E2ρ0E

†
2 7→ ρ2 =Uρ1U

† =
=UE1ρ0E

†
1U
† + UE2ρ0E

†
2U
† (5.44)

In matrix form:

ρ0 7→ ρ1 =
[
p 0
0 1− p

]
7→ ρ2 =

[
|v|2p+ |u|2(1− p) −uv(2p− 1)
−ūv̄(2p− 1) |u|2p+ |v|2(1− p)

]
(5.45)

Note that ρ2 is still hermitian and has trace equal to one. Moreover we can
evaluate the Bloch vector:

Rρ0 =

0
0
1

 7→ Rρ1 =

 0
0

2p− 1

 7→ Rρ2 = (2p− 1)

 −uv − ūv̄−iuv + iūv̄
|v|2 − |u|2

 (5.46)

This yields:
|Rρ0|2 = 1 ≥ |Rρ1|2 = |Rρ2|2 = (2p− 1)2 (5.47)



5.2. Q-BIT DENSITY MATRIX EVOLUTION 91

Figure 5.6: An E-transformations on the Bloch Sphere, followed by an unitary one com-
pared with an F -transformation ( green arrow)

We have followed this argument to be clear, but we want to underline that
everything would have been the same if we started from the following Kraus
operator (see fig.5.6):

F1 = √p
[
v u
−ū v̄

]
F2 =

√
1− p

[
u v
v̄ −ū

]
(5.48)

In particular it is easy to check that ρ2 = ∑2
i=1 Fiρ0F

†
i and

F †1F1 + F †2F2 = E†1E1 + E†2E2 = I

One may wonder what happens if we exchange the order of the evolutions, that
is, if at first we have an unitary evolution and then a superoperator evolution
as in (fig. 5.7). To answer this question we have to keep in mind two facts:

1. the Kraus operator Ei’s , used till now, are written in the same basis in
which ρ0 = |0〉 〈0|;

2. acting with an unitary evolution means changing the basis.

Hence, if ρ0 becomes ρ1 = Uρ0U
† then, to be consistent, we have to change

our Ei’s in:
Ẽ1 = UE1U

† Ẽ2 = UE2U
† (5.49)

First we have to check that these are still Kraus operator:

Ẽ†1Ẽ1 + Ẽ†2Ẽ2 =UE†1U †UE1U
† + UE†2U

†UE2U
† =

=E†1E1 + E†2E2 = I
(5.50)

Then we can calculate what is the evolved state:

Ẽ1Uρ0U
†Ẽ†1 + Ẽ2Uρ0U

†Ẽ†2 = F1ρ0F
†
1 + F2ρ0F

†
2 (5.51)
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Figure 5.7: An Unitary transformations on the Bloch Sphere, followed by superoperator
evolution

We have just proved that if we perform first an unitary evolution then a super-
operator one, we obtain the same result than before, with the prescription of
change the basis of the Kraus operator. This result makes us able to evaluate
all the paths we would.

Figure 5.8: equivalence between two paths

For example we can prove the equivalence between the paths showed in (fig.
5.8). On one hand we have the genuine superoperator evolution:

ρ1 = E1ρ0E
†
1 + E2ρ0E

†
2. (5.52)

On the other hand we have an unitary evolution followed by a Kraus Evolution,
that is followed, in turn, by another unitary evolution that is inverse with
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respect to the first one:

Uρ0U
† 7→Ẽ1Uρ0U

†Ẽ†1 + Ẽ2Uρ0U
†Ẽ†2 7→

7→U †Ẽ1Uρ0U
†Ẽ†1U + U †Ẽ2Uρ0U

†Ẽ†2U =
=U †(UE1U

†)Uρ0U
†(UE†1U †)U + U †(UE2U

†)Uρ0U
†(UE†2U †)U =

=E1ρ0E
†
1 + E2ρ0E

†
2

(5.53)

5.2.3 The differential for the “Transverse Direction”
With this formalism we can also check explicitly that the differential, along
the transversal direction evaluated in any point ρ, can be obtained, directly,
by applying the co-adjoint action to the differential evaluated in ρ0 where,
as usual, ρ0 is the diagonal density matrix representing the orbit of ρ. In
particular we have in :

dTρ0 = d(
∑
i

Eiρ0E
†
i )|p=0 (5.54)

where we have used a generic sum representation of a certain superoperator
Ei(p), expressed in the same basis of ρ0. If we would like to evaluate the same
differential at the point ρ = UρU †, we have to change the Kraus operators as
explained before:

Ei 7→ Ẽi = UEiU
†. (5.55)

Hence:

dTρ = d(
∑
i

ẼiρẼ
†
i )|p=0 = d(

∑
i

ẼiUρ0U
†Ẽ†i )|p=0 = UdTρ0U

† (5.56)

5.2.4 Lindblad operator and tangent vectors
In this section we would like to find the generator of a Kraus evolution for a
2× 2 density matrix ρ0. In fact, we have seen that the unitary evolutions that
do not stabilize ρ0 are generated by σ1 and σ2. Introducing a “transversal”
direction of evolution and ignoring the identity generator, we expect to use the
whole SU(2) algebra. This intuition is motivated by what we have obtained
evaluating the ordinary differential. In particular in chapter 3 we have seen
that the differential for an unitary transformation was of the form:

dρ0 = D1σ1 +D2σ2, (5.57)

while for the transversal evolution the differential reads:

dρ0 = D3σ3. (5.58)
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To answer this question we could use a Lindblad operator. Let us consider a
quantum dynamical semigroup [1].

Definition 5.1. A quantum Dynamical Semigroup is a family of linear maps
{St, t ≥ 0} such that:

1. St has a Kraus representation or equivalently St is a dynamical map

2. St ◦Ss = St+s

3. Tr[(St(ρ))A] is a continuous function of t for any density matrix ρ of the
system (without the environment) and for any hermitian and bounded
operator A defined on the Hilbert space of the system.

One can show that there exists a densely defined linear map L, called a
generator of a semigroup such that:

d

dt
ρ(t) = Lρ(t) (5.59)

where ρ(t) = St(ρ(0)). This equation has the formal solution:

ρ(t) = eLtρ(0). (5.60)

The problem of finding L has been solved in general [16], yielding:

Lρ = −i[H, ρ] +
∑
a

LaρL
†
a −

1
2L
†
aLaρ−

1
2ρL

†
aLaρ (5.61)

whereH is the effective Hamiltonian of the system; i.e. the generator of unitary
transformations, and the La’s are connected with the operators Ca that form
the Kraus representation of the superoperator.
Remark 24. We can naively motivate the form of the operator L. On one hand
we already know that:

ρ(t) =
∑
a

Ca(t)ρ0C
†
a(t), (5.62)

with the Ca’s operators that form a Kraus representation, on the other hand
we are looking for the Lindblad operator that can be obtained considering an
infinitesimal variation of the parameter t, that is:

ρ(t) = eLtρ0 ⇒ ρ(t) = (1− Lt)ρ0 ⇒ lim
t 7→0

ρ(t)− ρ0

t
= Lρ0 (5.63)

So we can write an infinitesimal evolution in the vicinity of t = 0 as:

ρ(dt) =
∑
a

Ca(dt)ρ0C
†
a(dt) = ρ0 +O(dt) (5.64)
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Then all our Kraus operators Ca(dt) are of order
√
dt, except one that is

C0 = I +O(dt). So we can write:

Ca =
√
dtLa,

C0 =I + (−iH +K)dt
(5.65)

WhereH andK are Hermitian operators andH,K and La are all t-independent.
Using the Kraus normalisation condition it is easy show that:

K =
∑
a6=0

L†aLa (5.66)

Putting all these last result in (5.62), and expressing ρ(dt) = ρ0 + dtdρ
dt
|t=0, we

obtain (5.61).
First we have to check explicitly the semi-group condition for our Super-

operator in Kraus representation, that is:
if St and Ss are superoperators we have to check that:

Ss ◦St = St+s (5.67)

This is not a trivial statement because we are required to make explicit the
dependence of the Kraus operators Ei from the variable parameter. In the
two-level system case we can find a possible solution. In particular, we can
ignore the unitary transformations, knowing that they cause only a change of
basis but they do not make the orbit change, and rewrite only a “pure” Kraus
transformation of the form (5.33) as:

E1(t) =
√

1
2 + e−t

2

[
1 0
0 1

]
, E2(t) =

√
1
2 −

e−t

2

[
0 1
1 0

]
(5.68)

Remark 25. In simple words we have chosen the parameter p of the transfor-
mation (5.33) as:

p(t) = 1
2 + e−t

2 (5.69)

With a simple algebra one can show that:

Ss ◦St(ρ0) =Ss(E1(t)ρ0E1(t)† + E2(t)ρ0E2(t)†) =
=E1(s)E1(t)ρ0E1(t)†E1(s)† + E1(s)E2(t)ρ0E2(t)†E1(s)†+
+E2(s)E1(t)ρ0E1(t)†E2(s)† + E2(s)E2(t)ρ0E2(t)†E2(s)† =
=E1(t+ s)ρ0E1(t+ s)† + E2(t+ s)ρ0E2(t+ s)† = St+s(ρ0)
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for any ρ0 of the form:

ρ0 =
[
p0 0
0 1− p0

]
.

As t changes, this transformation evolves any starting point ρ0 = ρ0(p(t = 0))
toward the centre of the Bloch sphere, along its radius. We notice that with
this Kraus representation the maximally entangled state can be reached only
asymptotically:

lim
t7→∞

[
1
2 + e−t

2 0
0 1

2 −
e−t

2

]
=
[

1
2 0
0 1

2

]
(5.70)

With this explicit expression we can calculate the tangent vector at the
curve ρ(t) = St(ρ0) at the point ρ(0) = ρ0. Considering an infinitesimal
variation δt of the parameter t, we have:

ρ(δt) =
[
(1

2 + e−δt

2 )p0 0
0 (1

2 + e−δt

2 )(1− p0)

]
+
[
(1

2 −
e−δt

2 )(1− p0) 0
0 (1

2 −
e−δt

2 )p0

]

That at the first order in Taylor expansion reads:

ρ(δt) = 1
2

[
(2p0 − 2p0δt+ δt) 0

0 (2− 2p0 + 2p0δt− δt).

]

Hence:
ρ(δt)− ρ0 = 1

2

[
δt(1− 2p0) 0

0 δt(2p0 − 1)

]
Finally:

1
2(1− 2p0)σ3 = 1

2(1− 2p0)
[
1 0
0 −1

]
= dρ(t)

dt
|t=0 (5.71)

From this result is easy to calculate the associated one-form:

dρ = 1
2(1− 2p0)σ3dt. (5.72)

We can compare this result with what we have found in (4.38), that is:

dTρ0 = ∂ρ0

∂k
dp = t3dp = σ3dp (5.73)

but:
dp = 1

2
de−t

dt
|t=0dt = −1

2dt (5.74)

and then:
dTρ0 = −σ3

2 dt. (5.75)
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This latter result is the same as (5.72) if we set p0 = 1. This means that we
can reinterpret the one-form evaluated in (4.38) as the one-form at the point
ρ0 = diag(1, 0). The next step is the evaluation of the Lindblad operator
related to this kind of transversal direction. In particular, to use the formula
(5.61), putting H = 0 because we are not interested in unitary evolution, we
need to find the operators La’s:

ρ(dt) =p(dt)Iρ0I + (1− p(dt))σ1ρ0σ1

=(1− dt

2 )Iρ0 + dt

2 σ1ρ0σ1.
(5.76)

Looking at this last expression it is easy to see that the first term is proportional
to F0 in (5.65), and that we are left with only one La: L2 =

√
1
2σ1 and then

Lρ0 = +L2ρ0L
†
2 −

1
2L
†
2L2ρ0 −

1
2ρ0L

†
2L2; (5.77)

and finally

Lρ0 = (1− 2p0)
2 σ3 (5.78)

that is in perfect agreement with the tangent vector to the transversal orbit at
ρ0 previously found, as we expected. Nevertheless it is important to underline
that the integral curve of the one parameter semi-group are not smooth curve
on the Hermitian matrices algebra.

5.3 Open questions
An interesting question comes from Quantum Estimation Theory. In this con-
text It was pointed out in [4] that the Quantum Fisher Information constitutes
an upper bound of the Classical Fisher Information; that is:

i(θ) ≤ I(θ) (5.79)

After, some authors wondered which features a measure must to have in order
to reach the equality in (5.79),i.e. to optimize the measurement. It turns out
that the optimal path followed by ρ(θ) coincides with a geodetic of the Fisher
metric [3, 12]. This holds when considering unitary orbits, i.e. to so called
Projection-Valued Measure.
It would be interesting to see if this result could be extended also to a generic
evolution defined by Kraus operators, i.e. to POVM measures.
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The answer to this question was pointed out for a general mixed state of a
two-level quantum system in. It turns out that the inequality is saturated for
measurements that are proportional to one-projectors onto states which lies in
the geodetics of the metric that comes from the Fisher Tensor. Actually, this
result refers only to the restriction of the metric on the unitary orbit. So it
could be interesting to investigate if we can extend this result for the geodetics
of the whole metric (i.e. considering the metric defined on the unitary orbits
and on transversal directions).



Chapter 6

Some Results for Q-trits

In this chapter we will point out how we would continue this research and what
are the difficulties that arise when one tries to extend this framework in more
that two dimensions.

6.1 The q-trit
In this section we recollect some results on the space of 3× 3 density matrices,
highlighting the connections with our work. First we can consider one more
time the theorem (2.2.3) to have an intuitive way to classify the orbits in this
case. Let us consider a 3× 3 matrix ρ:

1. if ρ has only one eigenvalue with multiplicity 3, that is ρ = 1
3I3×3, its

co-adjoint orbit is homeomorphic to

U(3)/U(3),

that is a point. It has a null dimension.

2. if ρ has two eigenvalues, one with multiplicity equals to 1 and the other
with multiplicity equals to 2, then its co-adjoint orbit is homeomorphic
to

U(3)/[U(2)× U(1)]
which is a 4-dimensional manifold.

3. if ρ has three distinct eigenvalues then its orbit co-adjoint is homemorphic
to

U(3)/[U(1)× U(1)× U(1)]
which is a 6-dimensional manifold.
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The difference between the 2×2 case and this case is clear: while all the orbits
of the two-level systems are homeomorphic to a 2-sphere, the orbits of a three-
level are not. We can motivate this statement in an intuitive way. First of all
we can define the generalized block vector; in fact any 3 × 3 density matrix
can be decomposed on a basis of Hermitian matrices tk plus the identity as we
have seen in chapter 3:

ρ = 1
3I + 1

2

8∑
k=1

sktk (6.1)

Then we can associate to each density matrix the vector S ∈ R8 such that
S= (s1, ..., s8). It is easy to see [17] that the distance of each unitary orbit
from the centre in R8 remains completely determined by:

|S|2 =
8∑

k=1
s2
k (6.2)

Looking at the dimension of the manifold homeomorphic to the orbit we can
easily prove the previous statement; the unitary orbit associated to a pure state
is homeomorphic to 4-dimensional manifold. Because in R8 this 4-dimensional
manifold is equidistant from the origin (i.e. |S|2 is invariant under the unitary
action) this orbit is only a sub-manifold of the 7-sphere with radius |S|. More-
over, knowing that there is only one orbit of pure state it is evident that there
are some points in the 7-sphere that do not correspond to physical states. In
[17] you can find a rigorous proof that shows why for n > 2 the correspondence
between physical states and spheres is no more surjective. From these naive
intuitions one can understand that, starting from 3-level systems, the space of
density states is much more complicated, and we have to leave the intuitive
Bloch sphere picture to continue with our study.

6.1.1 Superoperators
Even if it is not possible to visualize the whole state space of a three-level
system in a simple way, we can find some Kraus representations of superopera-
tors. As in the previous case, again we are not interested in unitary evolution,
knowing that it is only a change of basis. This means that we will define the
Kraus operators in the basis in which the matrix is diagonal. It is the same
trick that we used in (5.33) for a 2-level system. that case was particularly
simple because we have seen that to reach any state in the Bloch Ball one
should act first with a non-unitary evolution (5.33), to choose the “radius” of
the orbit, and than make an unitary evolution to reach the desired state on the
Spherical Orbit. Now there are new possibilities of Kraus evolutions. First of
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all we introduce the most general Kraus evolution that preserves the diagonal
form of the density matrix. Let us start from a maximal point,i.e. a pure state.
The Kraus representation of the superoperator S is such that:

ρ0 =

1 0 0
0 0 0
0 0 0

 7→ S(ρ0) =

p 0 0
0 q 0
0 0 1− p− q

 (6.3)

where 0 ≤ q, p ≤ 1. A possible Kraus Representation of this superoperator is:

E1 = √p

1 0 0
0 1 0
0 0 1

 , E2 = √q

0 1 0
1 0 0
0 0 1

 , E3 =
√

1− p− q

0 0 1
0 1 0
1 0 0

 .
(6.4)

again defined up to unitary matrices that leaveρ0 invariant. It is very easy to
verify the normalisation condition: ∑3

a=1E
†
aEa = I. Initially, we would like to

focus on Kraus representation with only one parameter, that can be seen as a
subset of the most general case (6.4), to obtain a simple way to visualize the
space of diagonal 3 × 3 density matrices. In fact we have seen in (4.50) that
every diagonal density matrix ρ = diag(k1, k2, k3) can be decomposed on the
basis made of the Gell-Mann matrices as:

ρI = 1
3 , ρ3 = k1 − k2

2 , ρ8 = k1 + k2 − 2k3

2
√

3
(6.5)

where ρI,ρ3 and ρ8 are the coefficients of the matrix I, t3 and t8 respectively.
So we can associate to each diagonal density matrix ρ a two dimensional vector
that is:

S = (k1 − k2,
k1 + k2 − 2k3√

3
) (6.6)

Compared with the generalized Bloch vector that we have introduced previ-
ously, it is clear that S contains only the components s3 and s8. This means
that all the diagonal density matrices can be represented in a 2-dimensional
subspace of R8. As a first example we can represent the maximally entangled
matrix as:

ρME =


1
3 0 0
0 1

3 0
0 0 1

3

⇒ S = (0, 0). (6.7)

Hence SME will be the origin of our 2-dimensional space. We will now act
with a one-parameter Kraus operators starting from the pure state ρP1 =
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diag(1, 0, 0) and we will represent the transformed states in R2 using the for-
mula (6.6). First of all we can write the three pure states:

ρP1 =

1 0 0
0 0 0
0 0 0

 , ρP2 =

0 0 0
0 1 0
0 0 0

,

 , ρP3 =

0 0 0
0 0 0
0 0 1

 (6.8)

and the respective S vectors:

SP1 = (1, 1√
3

), SP2 = (−1, 1√
3

), SP1 = (0,− 2√
3

). (6.9)

So we draw Fig.6.1. Pure states are in the same orbit of the U(3) group.

Figure 6.1: Pure states and maximally entangled state in R2

In fact starting from ρP1 one can reach the others with the following unitary
transformations:

ρP1 7→ ρP2 = U12ρP1U
†
12 where U12 =

0 1 0
1 0 0
0 0 1

 , (6.10)

ρP1 7→ ρP3 = U13ρP1U
†
13 where U13 =

0 0 1
0 1 0
1 0 0

 , (6.11)

ρP2 7→ ρP3 = U23ρP2U
†
23 where U23 =

1 0 0
0 0 1
0 1 0

 , (6.12)

that permute the eigenvalues of ρPj Moreover it is easy to check that the
representative vectors of the pure states have the same euclidean length, that
is:

|SP1|2 = |SP2|2 = |SP3|2 = 4
3 . (6.13)
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We are now ready to study the first superoperator evolution that depends on
only one parameter;

ρP1 7→ S1(ρP1) =

p 0 0
0 1− p 0
0 0 0

 , (6.14)

that can be represented with the Kraus operators:

E1 = √p

1 0 0
0 1 0
0 0 1

 , E2 =
√

1− p

0 1 0
1 0 0
0 0 1

 (6.15)

with the condition 1
2 ≤ p ≤ 1.

The choice on the range of p is not casual but respects the physics of our
system as we are going to explain. One can easily prove that if p = 1

2 any other
Kraus transformation of the same form of (6.15) cannot modify the state:

ρ1 =


1
2 0 0
0 1

2 0
0 0 0

 =⇒ S1 = (0, 1√
3

) (6.16)

Remark 26. This is the same reasoning the we have done for 2 × 2 matrices,
and reflects the physical property that a superoperator evolution that is not
unitary is neither invertible.

On the other hand we note that the matrix (6.14) can be obtained by
making the convex combination between ρP1 and ρP2:

ρP1(p) + ρP2(1− p). (6.17)

In this notation it is clear that if p ∈ [0, 1] we are parametrizing the segment
between ρP1 and ρP2. Nevertheless this convex combination has no physical
meaning (i.e. it does not represent a physical transformation). In fact, on one
hand if p could pass from p(0) = 0 to p(T ) = 1, the state ρ(0) = ρP1 will evolve
toward the state ρ(T ) = ρP2; on the other hand we have seen that for p = 1

2
there is no Kraus transformation able to decrease further p. This motivates
the choice of the range of p, and implies that with our Kraus Transformation
we parametrize the segment between ρP1 and ρ1.
Remark 27. Actually we can parametrize the segment between ρP2 and ρ2
acting with a Kraus transformation on ρP2 of the same form of (6.15) but with
p that flows from 1

2 and 0 .
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As a last property we underline that the segment between ρP1 and ρ1 is
oriented; this means that under Physical evolutions the states can only get
closer to ρ1, or at most remain equidistant from ρ1, but they never get closer
to ρP1. To show this we act with two superoperators S1 starting from ρP1 we
have:

ρP1 7→

p 0 0
0 1− p 0
0 0 0

 7→
pq + (1− q)(1− p) 0 0

0 q(1− p) + p(1− q) 0
0 0 0

 .
(6.18)

Hence p becomes pq+ (1− q)(1− p), if we check when pq+ (1− q)(1− p) ≤ p,
we obtain p ≥ 1

2 that is always true in this segment. This prove that the
orientation of the segment is from ρP1 to ρ1. We sum up all these results in
the Fig 6.2 . We can repeat all this reasoning for the superoperator S2 such

Figure 6.2: The oriented segment from ρP 1 to ρ1

that:

S2(ρP1) =

p 0 0
0 0 0
0 0 1− p

 . (6.19)

with Kraus Representation:

E1 = √p

1 0 0
0 1 0
0 0 1

 , E2 =
√

1− p

0 0 1
0 1 0
1 0 0

 (6.20)

with the condition 1
2 ≤ p ≤ 1.

In this case the oriented segment must end at:

ρ2 =


1
2 0 0
0 0 0
0 0 1

2

 =⇒ S2 = (1
2 ,−

1
2
√

3
) (6.21)
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Finally it is quite intuitive that starting from ρP2 or ρP3 one can find another
special point at:

ρ3 =

0 0 0
0 1

2 0
0 0 1

2

 =⇒ S3 = (−1
2 ,−

1
2
√

3
) (6.22)

So we can draw physical paths on R2 as in fig.6.3

Figure 6.3: The oriented segments between pure states.

Remark 28. The euclidean length of the vectors S1,S2 and S3 is the same, that
is:

|S1|2 = |S2|2 = |S3|2 = 1
3 (6.23)

Remark 29. We would like to stress that also the points ρ1, ρ2 and ρ3 are
connected each other by the unitary transformations defined in (6.10),(6.11)
and (6.12), that is, they belong to the same unitary orbit. This reasoning is
general in fact each matrix in the space of diagonal density matrices can be
written as:

ρ = pρP1 + qρP2 + (1− p− q)ρP3. (6.24)
Acting with one of (6.10),(6.11) and (6.12) we can exchange for example p with
q or (1−p−q) and so on. So, it is sufficient to study a piece of the triangle, for
example the “sub-triangle” ρ1ρP1ρME and act with unitary transformations to
study the other pieces of the triangle ρP1ρP2ρP3 .

We can repeat all this construction starting from S1,S2 and S3 or equiva-
lently from ρ1,ρ2 and ρ3. We will make only an example: we can act with S2
defined as (6.20) and we find:

S2(ρ1) = 1
2

p 0 0
0 1 0
0 0 1− p

 . (6.25)
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As before this is the parametrization of the segment between ρ1 and

ρA =


1
4 0 0
0 1

2 0
0 0 1

4

 =⇒ SA = (1
4 ,+

1
4
√

3
) (6.26)

Finding the appropriate Kraus representation to parametrize the oriented seg-
ments between ρ1,ρ2 and ρ3 is quite simple, so we will immediately report the
result: there are other two special point, i.e. where the segments end, that are
(fig.6.4 and fig.6.5):

ρB =


1
4 0 0
0 1

4 0
0 0 1

2

 =⇒ SB = (0,− 1
2
√

3
) (6.27)

and

ρC =


1
2 0 0
0 1

4 0
0 0 1

4

 =⇒ SC = (−1
4 ,+

1
4
√

3
) (6.28)

Figure 6.4: Other “special” points.

Following this pattern we can find other points and other oriented seg-
ments,closer and closer (with respect to the euclidean metric) to the origin.
We can sum up the construction: starting from the pure states we can build
a triangle. The midpoints of each side of the triangle (i.e. ρ1,ρ2 and ρ3) are



6.1. THE Q-TRIT 107

Figure 6.5: The oriented segment

special points from a physical point of view; in fact, as we have shown, acting
with a Kraus transformation on a pure state, the transformed state can only
flow toward the midpoint, it cannot flow in the opposite direction, and it can-
not cross the midpoint. Then one has to repeat the same actions considering
the three special points and act on these with other Kraus transformations
different from the ones that have been used to reach the three midpoints.
Until now we have only analysed particular evolutions (i.e. only the evolutions
that depends on one parameter) so our next step in this research will be to
study the most general Kraus evolution which depends on two parameters.
We will try to visualize the allowed evolutions using the pattern that we have
found in the 3 × 3 space of diagonal density states. In fact if we understood
how diagonal 3× 3 density matrices evolve, we could recover the dynamics of
every density matrix (i.e. even non-diagonal) by unitary acting. Moreover, we
would like to reinterpret the Fisher metric on these transversal directions; this
question is not trivial in fact in this case there are two independent directions.
Furthermore we would like to answer to the Quantum Estimation question
presented at the end of the previous chapter relatively to the case of 3 × 3
density matrices. As a final step we would like to generalize this study for an
n-level systems.
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Conclusions

To sum up what we have done in this work:
1. We have recalled some results, from [5, 10], that show how to relate the

standard Hilbert space to the Projective Hilbert Space endowed with a
Kähler structure. Moreover, following [10], we have showed how to built
a Kähler structure on the orbit of the co-adjoint action of the unitary
group starting from the Hermitian structure which the whole space of
Hermitian operators is endowed of. We have also reported the explicit
formulas of the Complex structure J , the metric tensor and symplectic
form on this Co-adjoint orbits.

2. We have explicitly evaluated the Complex structure, the metric tensor
and symplectic form, of the previous point , on the orbits passing through
a 2× 2 and 3× 3 density matrix.

3. We have recollected some results about Fisher Tensor ([8, 6, 7]), in par-
ticular we have presented an algebraic method to evaluate it. Following
the work [8], we have evaluated the real and the imaginary part of the
Fisher tensor, because they are proportional to a metric tensor and a
symlectic form. Hence, we have calculated the metric tensor and the
symplectic form, obtained from the Fisher Tensor, in the case of 2 × 2
and 3× 3 density matrices, and we have shown that these are the same
tensors founded in the previous point up to a constant normalisation
factor.

4. We have noticed that with the Fisher Tensor we can find a metric tensor
also on non-unitary paths; i.e. curves that are not generated by the
action of the unitary group. Because this kind of paths links different
unitary orbits we have called these curves transversal directions. Then
we have evaluated the metric tensor on these transversal directions for
2× 2 and 3× 3 density matrix.

5. We reflected upon what is the Physical meaning of the “ transversal
directions”. This have led us to the dynamics of open system and to the
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Kraus operators formalism. We have studied in detail the different paths
on the 2× 2 density states space using the Bloch ball to visualize them
easily.

6. In the latter case we have found an explicit formula to parametrize the
Kraus operator that make clear the semi-group structure of the “transver-
sal transformations”. This reflects the Physical property for which if the
system undergoes a non-unitary evolution there is an arrow of time.

7. We have calculated the tangent vector to a Transversal path and we
have found that the Lindblad generator of this kind of evolution is pro-
portional to the Pauli Matrix σ3, while the generators of unitary transfor-
mations,that do not stabilize the density matrices, are the Pauli Matrices
σ1 and σ2.

8. We have presented a new scheme to study the 3 × 3 density matrices,
that will be the starting point of our further research.

These results are only a small step in this new research. We hope that, studying
deeply the 3× 3 case, we can find a way to generalize these result for a generic
n-level system.



Appendix A

Complex Manifolds

In this appendix and in the following ones we recollect some definition and
results about some mathematical structures that are used in the work. There is
no completeness demand but we only want build a “ready to use” and intuitive
collection of theoretical tools.

A.1 Almost complex manifolds
First of all we recall the definition of complex manifold.

Definition A.1 (Complex Manifold). A complex manifold is a differentiable
manifold with a holomorphic atlas. They are necessarily of even dimension,i.e.
2n, they can be endowed with a collection of charts (Uj, zj) that are in one
to one correspondence with Cn such that for every non-empty intersection
Uj ∩ Ui,the map composition zj ◦ z−1

k are holomorphic.

In other words a complex manifold is like a real one but with another
request: the functions which relate the coordinates in overlapping patches are
holomorphic. An almost complex manifold, as the word says, is “not quite”
complex in fact:

Definition A.2 (Almost Complex Manifold). A real manifoldM with dimen-
sion m that can be endowed with a globally defined tensor J of rank (1,1) with
the property:

J2 = −I (A.1)
is called an almost complex manifold. Moreover J is called an almost complex
structure.

To be clear we specify that both J and I are (1,1)-tensor fields, then they
map the tangent bundle TM into itself. Making everything more explicit,
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we can consider J locally. Chosen a p ∈ M there is a endomorphism Jp :
TpM 7→ TpM such that (Jp)2 = −Ip and that depend smoothly on p. Here Ip
indicates the identity operator acting on the tangent space TpM at the point
p.Introducing a basis for the tangent space ∂

∂xµ
and a basis for the cotangent

space dxµ, where xµ with µ = 1, 2...,m are the coordinates of p; we can write:

Jp = Jνµ(p) ∂

∂xν
⊗ dxµ (A.2)

with Jνµ(p) real. Given a vector field X = Xν ∂
∂xν

Then

J(X) = (XµJνµ) ∂

∂xν

and
J2(X) = (XρJµρ J

ν
µ) ∂

∂xν

In this way we can rewrite the condition for an almost complex structure in
local coordinates:

J(p)ρµJ(p)νρ = −δνµ ∀p ∈M (A.3)

Having an almost complex structure globally defined, means that Jp is well
defined in every patch and we could join them together with no singularities.
From the property of the almost complex structure it is easy to prove that

Theorem A.1.1. Almost complex manifolds have even dimension

Now we are ready to introduce and important operation that we use ex-
tensively in this work

A.1.1 Complexification of the tangent space
It is possible to complexify the tangent space, introducing linear combinations
of vector fields with complex coefficients. Given X and Y , vector fields in TM ,
we can write:

Z = 1
2(X + iY ) Z̄ = 1

2(X − iY ) (A.4)

These kind of vector fields generate at point p the complexified tangent space
that we denote as TpMC or TpM ⊗ C

Theorem A.1.2. The eigenvalues of Jp can only be ±i on TpMC

Proof



A.2. COMPLEX AND ALMOST COMPLEX MANIFOLDS 113

On TMC one can define the projectors operators

P± = 1
2(I∓ iJ) (A.5)

such that
(P∓)2 = p± P+ + P− = I P+P− = 0

Considering an arbitrary element T ∈ TpMC and defining:

Z ≡ P+(W ) = 1
2(W − iJ(W )) Z̄ ≡ P−(W ) = 1

2(W + iJ(W ))

it is straightforward to show that J(Z) = iZ and J(Z̄) = −iZ̄
This theorem allows us to consider TpMC as a direct sum:

TpM
C = TpM

+ ⊕ TpM−

with TpM± = {Z ∈ TpMC|Jp(Z) = ±iZ}.
We call the elements in TpM± holomorphic and anti-holomorphic vectors re-
spectively.

A.2 Complex and almost complex manifolds
Definition A.3. Let (M,J) be an almost complex manifold. The almost com-
plex structure J is said integrable if the Lie Brackets of any two Holomorphic
vector fields is again a holomorphic vector field.

Definition A.4 (Nijenhuis tensor). for any two vector fields X, Y we define
Nijenhuis tensor N:

N(X;Y ) ≡ [X, Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ]. (A.6)

Theorem A.2.1. An almost complex structure J on a M is integrable if and
only if N(X, Y ) = 0

All the previous definitions and theorem are necessary to understand the
following and fundamental result

Theorem A.2.2. Let (M,J) be an almost complex manifold. J is integrable
if and only if the manifold M is complex

For this reason an almost complex structure is said complex structure if it
is integrable.
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A.3 Kähler manifolds
Definition A.5 (Kähler Manifold). Let K be a real and even-dimensional
manifold with:

• a complex structure J such that J2 = −I

• a closed, non-degenerate two-form satisfying:

ω(x, Jy) + ω(Jx, y) = 0 (A.7)

with x, y ∈ TK. In other words ω is a symplectic structure.

• a positive (0,2)-tensor g(., .) such that:

g(., .) =: ω(., J(.)) g(x, y) =: ω(x, Jy) (A.8)

Note that equation (1.16) implies that g is symmetric and non-degenerate
iff ω is non-degenerate. In this latter case g is a metric.

In this case K is said Kähler Manifold.



Appendix B

Distributions and Foliations

We give some basic and intuitive definitions and results about smooth manifold
theory. The first section introduces the notation and terminology; moreover we
try to build an intuitive idea of Distribution via an analogy with the concept
of integral curves. Then we present the Frobenius theorem and we conclude
defining the concept of Foliation and its connection to the Frobenius theorem.

B.1 Preliminaries
Let M be and m−dimensional manifold,( everything in this appendix is implic-
itly assumed smooth), TpM the tangent space to p ∈M , and TM the tangent
bundle of M . Recalling that a vector field on M is a section of TM , it can be
thought of as a choice of a tangent vector at every point in the manifold M .
Given a vector field one can consider the integral curve associated to it.

Definition B.1. An integral curve of a vector field V is a curve γ : [a, b] 7→M ,
where a and b are real numbers, such that:

γ′(t) = Vγ(t) ∀t ∈ [a, b] (B.1)

That is, the tangent vector at any point of the curve, with respect to time is
precisely the value of the vector field at that point. It is important to remem-
ber that the integral curves are connected and 1-dimensional submanifold of
M . In what follows we try to generalize this idea to connected k−dimensional
submanifold. Firstly we take the concept of vector field and increase its di-
mension.

Definition B.2. A k−dimensional (tangent) distribution on M is a choice of
a k−dimensional linear subspace Dp ⊂ TpM at each point p ∈ M . We will
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denote this with D, where

D =
⋃
p∈M

Dp ⊂ TM (B.2)

.

If D is a k−dimensional distribution it is possible to find k vector fields,
V 1, ..., V k such that the collection of vectors,V 1

p , ..., V
k
p forms a basis for Dp at

each p ∈ U , where U is neighborhood in M. Now, let D be a k−dimensional
distribution and consider a k−dimensional submanifold S ⊂M .Then for s ∈ S,
Ds is a k−dimensional linear subspace of TsM . A natural question arises: does
TsS correspond to Ds, and going further, does there exist a submanifold such
that TsS = Ds. Such S would be analogous to the integral curves but with a
higher dimension.

Definition B.3 (Integral Manifold and Integrable Distribution). An immersed
submanifold S is an integral manifold of the distribution D if TsS = Ds for all
s ∈ S, and D is said integrable if each point of M is contained in an integral
manifold of D.

To answer the previous questions we need another definition:

Definition B.4 (Involutive distribution). A distribution is called involutive if
given to vector fields V and W with Vp,Wp ∈ Dp for all p in some neighborhood
U, it follows that [Vp,Wp] ∈ Dp

Now we are ready to introduce the following:

B.1.1. If D is an integrable distribution, then D is necessarily involutive.

B.2 The Frobenius Theorem
Let U ⊂ M be an open neighbothood with parametrization φ : U 7→ Rm, and
let D a k−dimensional distribution:

Definition B.5 (Flat Parametrization and Completely Integrable Distribu-
tion). A parametrization φ is flat for D if φ(U) ⊂ Rm is a product of connected
open sets in Rk ×Rm−k and for each p ∈ U , Dp is spanned by the first k basis
vector fields. A distribution D is completely integrable if there exists a flat
parametrization for D in a neighborhood of every point of M.

Than we can report the fundamental result, known as The Frobenius The-
orem
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Theorem B.2.1. If a distribution D is involutive, then D is completely inte-
grable.

This result can be formulated in different terms, for example using the
concept of foliation, this motivates the next section.

B.3 Foliations
Naively, a foliation is an equivalence relation on an m−manifold M in which
the equivalence classes are connected immersed submanifolds of the same di-
mension k.

Definition B.6. A k−dimensional foliation on an m−manifold M is a collec-
tion of disjoint, connected,immersed k−dimensional submanifolds of M ( called
the leaves of the foliation) such that:

• the union of the leaves forms all M

• there is a parametrization φ in every neighbourhood U of p ∈ M , such
that φ(U) is a product of connected open sets in Rk × Rm−k. Moreover,
the intersection of each leaf with U has the last m− k local coordinates
constant.

We are ready to see the Foliation version of the Frobenius theorem, starting
from the following lemma.

B.3.1. If F is a k−dimensional foliation of M , then the collection of tangent
spaces to the leaves of F form an involutive distribution.

We can also re-write the Frobenius theorem as:

Theorem B.3.2. If D is an involutive distribution on M , then the collection
of all maximal connected integral manifold of D forms a foliation of M
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Appendix C

Lie Group Actions

C.1 Smooth action
Let M a smooth manifold and Diff(M) the group of diffeomorphisms from M
to M

Definition C.1. An action of a Lie group G on M is a homomorphism of
groups τ : G 7→ Diff(M). We will use equivalently the notation τ(g) and τg.

Explicitly, for any g ∈ G, τ(g) ≡ τg : M 7→ M is a diffeomorphism such
that τ(g1g2) = τ(g1) ◦ τ(g2). We also say that the action is smooth if the map:

G×M 7→M, (g,m) 7→ τg(m) (C.1)

is smooth. We will denote for brevity τ(g)(m) ≡ τg(m) by g ·m. We have just
defined the left action of a Lie group. We could also define a right action to
be an anti-homomorphism of groups i.e.

τ̂ : G 7→ Diff(M) such that τ̂(g1g2) = τ̂(g1)τ̂(g2)

Any left action τ can be converted to a right action τ̂ by requiring τ̂g(m) =
τ(g−1)(m) ≡ g−1 ·m

C.2 Orbits and stabilizers
Let τ : G 7→ Diff(M) be a smooth action.

Definition C.2 (Orbit and Stabilizer). We have:

1. the Orbit of G through m ∈M is

G ·m = {g ·m|∀g ∈ G}
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2. The Stabilizer ( also called isotropic subgroup) ofm ∈M is the subgroup

Gm = {g ∈ G|g ·m = m}

It is useful, for our aims, to recall that any orbit G · m is an immersed
submanifold of M . We denote the set of orbits by M/G. In what follows we
would like to put conditions on actions to obtain interesting results.

Definition C.3. Let Lie group G acts smoothly on M.

1. The G-action is transitive if there is only one orbit, i.e. M = G ·m for
any m ∈M

2. The G-action is effective or faithful if ⋂m∈M Gm = e.

3. The G-action is proper if the action map

α : G×M 7→M ×M, (g,m) 7→ (g · · ·m,m)

is proper, that is the inverse image of any compact set is compact.

4. The G-action is free if Gm = {e} ∀m ∈M where e is the identity element,

We are ready to enunciate some important results.

Theorem C.2.1. If the action is proper and free then M/G is a smooth man-
ifold.

Theorem C.2.2. If the action is transitive then ∀m ∈M the map:

F : G/Gm 7→M, gGm 7→ g ·m

is a diffeomorphism

In particular if the G−action on M is transitive, then ∀m ∈M ,

M ' G/Gm

Such a manifold is called a homogeneous space. For example we can consider
the action of O(n) on Sn−1. It is note that it is transitive. So Sn−1 is an
homogeneous space. Moreover, if we choose a point m ∈M it is easy to check
that the isotropy group Gm is O(n− 1).Then

Sn−1 ' O(n)/O(n− 1)

The same result hold in the unitary case.



Appendix D

Hamiltonian Actions

In this appendix we will use some definition and notion of Appendix C.

D.1 Fundamental vector fields
First of all we recall that the Lie Algebra g of a Group G can be defined as
g := TeG, that is the tangent space to G at the identity e ∈ G.

Definition D.1 (Fundamental Vector Field). For each ξ ∈ g, the fundamental
vector field on M , a smooth manifold, induced by ξ is the vector field defined
by:

(ξM)x := d

dt
τexp(−tξ)(x)|t=0

∀x ∈M

Intuitively, if we start with the curve t 7→ exp(tξ) ∈ G, whose tangent
vector at t = 0 is ξ, and transport it in M via the action τ , we obtain for
each x ∈ M the curve t 7→ τexp(tξ) with tangent vector at t = 0 equal to the
Fundamental vector field. In other word we can think the fundamental vector
field as the vector field tangent to the curve passing from x at t = 0 generated
from the action τexp(tξ)

D.2 Symplectic manifolds
Definition D.2. A symplectic structure on M is a smooth differential 2-form
ω that is closed and non-degenerate. A symplectic manifold is a pair (M,ω)
consisting of a smooth manifold M and a choice of symplectic structure ω on
it.
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Let f : M 7→ N be a smooth map between manifolds. f defines a pull-back
map f ∗ from differential forms on N to differential forms on M . In particular
is α is a differential k−form on N , then f ∗α is the k− form on M defined by:

(f ∗α)x(X1, ..., Xk) = αf(x)((Txf)X1, ..., (Txf)Xk) ∀x ∈M

where X1, ..., Xk ∈ TxM and Tf is the induced map on tangent bundles, that
is Tf = TM 7→ TN .

Definition D.3 (symplectic map and symplectomorphism). Let (M,ω) and
(N, σ) be symplectic manifolds, a smooth map f : M 7→ N is said symplectic
if f ∗σ = ω. Moreover f is said a symplectomorphism if it is a symplectic
diffeomorphism.

D.3 Hamiltonian vector fields
Let us consider the bundle isomorphism induced by the symplectic form ω on
M such that ω̃ : TM 7→ T ∗M. This ω̃ induces an isomorphism between smooth
sections of these two bundles,which are vector field and differential one-forms
respectively,defined by:

X 7→ ω̃ ◦X ≡ iXω (D.1)

For each vector field X ∈ TM . Fixed a point x ∈ M , the one-form ω̃(Xx) ∈
T ∗xM associated to the vector Xx ∈ TxM is:

ω̃(Xx) = iXxωx = ωx(Xx, .)

where the “ . ” indicates that we are waiting for a tangent vector to be plugged
in.

Definition D.4 (Hamiltonian Vector Field). Let f : M 7→ R be a smooth
function. The Hamiltonian vector field of f is the smooth vector field Xf

corresponding to the differential one-form df via the bundle map:

ω̃−1 : T ∗M 7→ TM. (D.2)

Explicitly:

ω̃−1(., df) := Xf ⇒ df = ω̃ ◦ ω̃−1(., df) = ω̃ ◦Xf = ωx(Xf , .) = iXfω

Moreover an arbitrary vector field X on M is called Hamiltonian if it is the
Hamiltonian vector field of some smooth function f : M 7→ R : X = Xf
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D.4 Hamiltonian group actions
In this section we use, for brevity, the notation 〈.|.〉 to denote the pairing
between covectors and vectors;that is 〈.|.〉 : g∗ × g 7→ R. So if λ ∈ g and ξ ∈ g
then:

λ(ξ) = ξ(λ) = 〈λ, ξ〉
Recall that the conjugation action of G on itself

φ : G 7→ Aut(G) g 7→ φg

with g, h ∈ G, induces a linear action of G on g. In fact it is easy to check
that the differential d(φg) ∈ Aut(g). In symbol

d(φg)|e:= Adg : g 7→ g

The map Ad : G 7→ Aut(g) is called Adjoint representation, where Aut(g) is
the collection of isomorphism from g to itself. This induces, in turn, a linear
action of G on the dual space g∗, denoted by Coad : G 7→ Aut(g∗) defined by:

Coadg(λ) := λ ◦ Adg−1

for all g ∈ G and λ ∈ g∗. To be clearer:

〈Coadg(λ), ξ〉 = 〈λ,Adg−1(ξ)〉

where ξ ∈ g

Definition D.5 (Momentum Map). Let φ : M 7→ g∗ be a smooth map. ∀ξ ∈ g
we denote φξ = 〈φ(.), ξ〉 the smooth map M 7→ R defined by x 7→ 〈φ(x), ξ〉.

The map φ is called momentum map for the action τ of G on (M,ω) is it
satisfies the following properties:

1. The map φ is G−equivariant, that is for all g ∈ G the diagram:

M
φ−−−→ g∗

Adg

y .Coadg

y
M

φ−−−→ g∗

(D.3)

commutes

2. ∀ξ ∈ g, the fundamental vector field ξM is the Hamiltonian vector field
corresponding to the function φξ : M 7→ R that is:

dφξ = d 〈φ, ξ〉 = ω(ξM , .).

Finally we say that a group action is Hamiltonian if it is symplectic and
there exist a moment map φ : M 7→ g∗ for it.
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