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Abstract

Il lavoro svolto si concentra sul trasporto di carica e spin in dispositivi trilayer

La0.7Sr0.3MnO3/SrTiO3/Co multifunzionali. Questi dispositivi mostrano sia magne-

toresistenza che resistive switching, con un’interessante interazione fra i due effetti. Le

giunzioni SrTiO3 sono state scelte per questo lavoro sia per via dei precedenti studi

su SrTiO3 come barriera in dispositivi spintronici (cioè dispositivi con magnetore-

sistenza), sia perché sono promettenti come materiale base per costruire memristor

(cioè dispositivi con resistive switching). Il lavoro di tesi è stato svolto all’Istituto per

lo studio dei materiali nanostrutturati (ISMN-CNR) a Bologna.

Nella prima parte di questa tesi illustrerò la fisica dietro al resistive switching e alla

magnetoresistenza di dispositivi trilayer, mostrando anche risultati di studi su dispos-

itivi simili a quelli da me studiati. Nella seconda parte mostrerò la complessa fisica

degli ossidi utilizzati nei nostri dispositivi e i possibili meccanismi di trasporto at-

traverso essi.

Nell’ultima parte descriverò i risultati ottenuti. I dispositivi La0.7Sr0.3MnO3/SrTiO3/Co

sono stati studiati tramite caratterizzazione elettrica, di magnetotrasporto e con spet-

troscopia di impedenza. Le misure ottenute hanno mostrato una fisica molto ricca

dietro al trasporto di spin e carica in questi dispositivi, e la mutua interazione fra

fenomeni spintronici e di resistive switching rappresenta una chiave per comprendere

la fisica di questi fenomeni. Analisi dati della dipendenza della resistenza della tem-

perature e caratteristice corrente-tensioni saranno usati per quantificare e descrivere

il trasporto in questi dispositivi.





Abstract

This thesis focuses on the transport of charge and spin in trilayer

La0.7Sr0.3MnO3/SrTiO3/Co multifunctional devices. These devices show both magne-

toresistance and resistive switching, with an interplay between the two effect. SrTiO3

junctions were chosen because of the extensive studies conducted on/SrTiO3-based

spin valves (devices showing magnetoresistance) and SrTiO3based memristors (de-

vices showing resistive switching). The thesis work was carried out at the Institute of

Nanostructured Materials (ISMN-CNR) in Bologna, Italy.

In the first part of this thesis I will illustrate the physics behind resistive switching

and magnetoresistance of trilayer devices, showing also previous results of studies on

similar multifunctional devices. In the second part I will explain the complex physics

of the oxides used in our studied device. Then I will show the possible transport

mechanisms in insulating junction, applicable to SrTiO3 junctions.

The La0.7Sr0.3MnO3/SrTiO3/Co devices were studied through extensive electrical,

magnetotransport and impedance spectroscopy. These measurements show very rich

physics underlying the transport of charge and spin in these device, and the interplay

between resistive switching and spintronic properties represents a key to understand-

ing the physics behind these effect. Data analysis on the temperature dependence of

the resistance and current-voltage characteristics will be used to quantify and describe

the transport in these devices.
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Chapter 1
Memristive and spintronic devices

In this thesis I will study trilayer junctions that are both memristors – devices that

feature resistive switching – and spin valves – devices that feature magnetoresistance.

These devices are interesting both for the fundamental device physics and for the

potential applications. Memristors are two terminal devices and, while they are used

for many applications in computing, are conceptually different from the three-terminal

physics of CMOS technology; thus a third input, the magnetic field, that can modulate

the device, makes these devices more attractive for beyond CMOS technology. The

second reason is that the knowledge on resistive switching explains how spin transport

works in certain devices while the presence of resistive switching in spintronic devices

can lead to novel applications of such devices.

1.1 Memristors

In 1971, the engineer Leon Chua theorized the existence of element of electric

circuits that no one had yet found – the memristor [7]. Chua argued that there exist

four fundamental variables in a circuit: the electric current i, voltage v, charge q and

magnetic flux φ. Since charge and current are governed by

i = dq/dt

and voltage and magnetic flux are governed by Faraday’s law

v = dφ/dt

it means there are four possible circuit elements that can connect the variables: the

resistor (R = dv/di), the capacitor (C = dq/dv), the inductor (L = dφ/di) and the

fourth, never seen before, memristor (M = dφ/dq). The relationship between circuit

elements and variables is outlined in fig. 1.1.
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Figure 1.1: The four fundamental circuit elements.

From the memristor equation and using Faraday’s law and the conservation of charge,

we obtain

v = Mi. (1.1)

If M is a constant then we have obtained nothing more than a normal resistor, but if

M depends q itself we obtain the general and more interesting formula.

v = M(q)i, (1.2)

but no physical model was able to give this simple equation. Chua and Kang gener-

alized the concept of memristor to a system described by the equation

v = R(w, i)i (1.3)

where
dw

dt
= f(w, i). (1.4)

R and f can be functions of time but this analysis is restricted to the case of time-

independent devices. It is clear from these equation that we are essentially talking

about devices that feature resistive switching

Strukov et al. [8] produced a model of a device that acted as a memristor device

described by the equation 1.2. Consider a semiconductor of thickness D sandwiched

between two metallic contacts. In a region of thickness w with a high density of

dopants and resistance RONw/D while the rest has low density of dopants and a
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higher resistance ROFF (1−w)/D, as in fig 1.2. An equivalent circuit to this device is

a series of two variable resistors where their resistance is determined by w (the first

is RONw/D and the second ROFF (1− w/D)). Thus the ohmic law of this circuit is

v(t) =
(
RON

w

D
+ROFF

(
1− w

D

))
i(t). (1.5)

Applying a voltage to this devices moves the charged dopants, giving rise to the

resistive switching. Linear ionic drift of the dopants in an uniform field, with mobility

µD, gives
dw

dt
= µD

RON
D

i(t), (1.6)

which is then integrated, giving

w = µD
RON
D

q(t). (1.7)

Combining eq. 1.5 and 1.7, and considering ROFF � RON gives

M(q) = ROFF

(
1− µDRON

D
q2(t)

)
, (1.8)

which is the charge-dependent memristor predicted by Chua. It is also interesting to

note that in no part of this treatment was any magnetic field involved, even though

the concept of the memristor itself revolves around the magnetic flux.

There is an obvious boundary to w = q(t)µDRON/D, which is

0 ≤ w ≤ D (1.9)

outside of which this treatment is not viable and the system is not a memristor. A

simulation of such a device is in fig. 1.2b, where it is interesting to note the hysteretic

behavior the produces different (differential) resistances around v = 0 in different

loops.

While this behavior resembles the already observed bipolar resistive switching but the

mechanism itself is quite different since the model used linear diffusion and the result

is a multi-state device since w can take any value between 0 and D. If we consider

nonlinearities in the ionic motion, instead of eq. 1.6 we have

dw

dt
= µDRON

w(D − w)

D3
i(t) (1.10)

obtained by multiplying the right hand side of eq. 1.6 by w(D − w)/D2 to take into

account that the drift will start to slow down when w is close to 0 and D. In this

regime the resistive switching is almost bipolar: when w is close to 0 and D (meaning

w(D −w)/D2 ≈ 0) it takes a huge charge or voltage to move w and when an applied
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Figure 1.2: (a) Schematic of a memristive device and equivalent circuit (V is a
voltmeter, A is an ammeter) (b) Simulation of the memristive device with w(t) =
w0 sin(ω0t) with ω0 = 2πD2/µV v0 and ROFF /RON = 160.

bias is big enough to move w away from these values, w will immediately go from 0 to

D or vice versa, so we can approximately say that w is either 0 or D. This behavior

is seen in fig. 1.3 where the simulation with nonlinear ionic diffusion closely resembles

the resistive switching of a typical TiO2 device.

The fact that all resistive switching devices are in fact memristors has been claimed

by Chua [7], also noting that the ”fingerprint” of a memristor is the pinched hysteresis

loop at V = 0, like the one seen in fig. 1.3.

1.2 Spintronic devices

Spintronics (spin transport electronics) is an exciting field of Solid State Physics

conventionally born in 1988 with the discovery of the Giant Magnetoresitance, by

A. Fert and P. Grunberg [1][2], who both won the Nobel Prize for Physics in 2007

because of this discovery. While the phenomenology of this effect is very simple (a

thin magnetic multi-layer device under a sufficiently high magnetic field undergoes

a giant change in resistance), this discovery spurred the creation of spin valves by

IBM researcher S. Parkin, revolutionizing the world of hard disk drives, and opened
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Figure 1.3: (a) Simulation of a memristive device with nonlinear contribution. (b)
Resistive switching of an oxygen deficient TiO2.

physicists to the idea of studying the effects of spin on transport of electrons.

Spintronics itself originates from the older magnetoelectronics, which studied the effect

of magnetic field on electric current but ignoring the insights of quantum mechanics

in the spin properties of electrons. A basic but important concepts in spintronics

the Mott’s two current model [3], which was used to explain the sudden increase in

resistance of a ferromagnet as it is heated over the Curie temperature. In this model,

electron currents can be completely separated in two distinct spin channels that have

different transport properties. This model works when the basic assumption of no

spin flip (due to magnons).

While this Mott’s hypothesis would seem inconsequential in non-magnetic materials

since electrons with spin up or spin down should act the same way, in ferromagnets

one should be more careful. Since ferromagnets have a net magnetizations, electrons

in these materials feel a magnetic field and their spins interact with this field with

energy −µ · ~B, where µ is the spin magnetic moment of the electron. This interaction

causes a band splitting of 2µB (fig. 1.4) and so the Fermi level the density of states

is different for the two spin states. If conduction takes places in an electron band

with band splitting, causing different DOS at EF , the current will be spin-polarized,

meaning that an electron will have a 50/50 chance of having either spin and thus the

whole current will have a net polarization.

1.2.1 Tunneling Magnetoresistance

The first spintronic effect was observed by Jullière in 1975 [4] but was largely

ignored for two decades. Tunneling Magnetoresistance (TMR) is the change in resis-

tance of a Magnetic Tunnel Junction (MTJ) represented in fig. 1.5, a device consisting

of two ferromagnetic electrodes sandwiching a thin non-magnetic insulator. The first

observed device to show TMR was a Co/Ge/Fe MTJ that, at 4.2K, showed a decrease

of conductance of ∆G = 14% between the states of parallel and antiparallel magneti-
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Figure 1.4: Example of a generic band splitting in a ferromagnet.

Figure 1.5: Schematic representation of a typical MTJ.
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zation of the two electrodes. Knowing that the only possible way that electrons could

pass from one electrode to the other was tunneling, Jullière produced a model assum-

ing that the tunneling current is spin polarized to explain the variation of resistance.

The spin polarization of the i-th electrode is defined as

Pi =
Ni↑(EF )−Ni↓(EF )

Ni↑(EF ) +Ni↓(EF )
, (1.11)

where Niσ is the density of states of the i-th electrode of the spin state σ, and simply is

the expectation value of the spin of an electron in an electrode at the Fermi level EF .

Working with the two current model and assuming that the tunneling probability and

thus the conductance for a certain spin channel is only proportional to the product of

the density of states at the Fermi level of the two electrodes at a certain alignment of

the magnetizations (i.e. electrons with different spins see the same energy barrier),

GP = N1↑(EF )N2↑(EF ) +N1↓(EF )N2↓(EF ) (1.12)

and

GAP = N1↓(EF )N2↑(EF ) +N1↑(EF )N2↓(EF ). (1.13)

This is graphically explained in fig. 1.6. The TMR ratio defined as

TMR =
RAP −RP

RP
=
GP −GAP

GAP
(1.14)

and can be computed from eqs. 1.13 and 1.12, obtaining

TMR =
2P1P2

1− P1P2
. (1.15)

A trivial but important fact is that if even one electrode is unpolarized the TMR ratio

is 0. Another important thing to note is that the sign of the TMR ratio is negative

only when the two electrode polarizations are of the opposite sign.

As long as there is no voltage applied to the junction, the tunneling process is sym-

metric and no current is (obviously) produced. When applying a voltage, electrons

have a higher tunneling rate from the low voltage to the high voltage electrode and a

current is produced.

The main failure of this model is that it doesn’t account for the TMR dependence

on the applied bias and on the choice of the barrier material. This will be shown in

subsection 2.2.1 for LSMO/STO/Co MTJs.

In 1991, after the discovery of GMR, interest in TMR was rekindled by the discovery

of a TMR of 2.7% at room temperature. These devices have been improved to the

point of a TMR of 200% room temperature and now are commonly used as read-heads

in hard-disk drives and in magnetic random-access memories (MRAM).
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Figure 1.6: Graphical explanation of the TMR effect. The tunneling electrons are
approximated as free electrons and the splitting between the two spin states is given
by the magnetization of the electrode. The increase in resistance in the antiparallel
state is because the majority ↑ electrons tunnel to the minority ↓ state and thus find
less states available.

1.2.2 Giant magnetoresistance

While Jullière’s experiments in the ’70s did not attract much attention, during the

’80s thin film technology was developing and a the Giant Magnetoresistance (GMR)

was discovered in 1988 both by Fert’s and Grunberg’s groups [1][2]. This discovery

attracted much more attention because of higher resistance ratios and because of and

easier was to control the magnetization of the ferromagnetic layers.

In 1986 Grunberg discovered that two thin film of Fe separated by a Cr layer less

than 1 nm thick are anti-ferromagnetically coupled. This is because of the RKKY

(Ruderman-Kittel-Kasuya-Yosida) interaction, which is an indirect exchange mecha-

nism between nuclear spins that interact with each other through a cloud of conduc-

tion electrons (that interact with the nuclei via hyperfine interaction). The exchange

coupling between two nuclear spins separated by ~R takes the usual form

E(~R) = −J(~R) ~S1 · ~S2 (1.16)

where J(~R) can take different signs as seen in fig. 1.7.

As a consequence, for certain thickness of the Cr layer in a Fe/Cr superlattice, the

Fe layers are anti-ferromagnetically aligned at zero magnetic field. Applying a field

aligns the magnetizations of the Fe layers and reduces the overall resistance of the su-

perlattice in the configuration corresponding to the alignment of the magnetizations

of the Fe layers. Figs. 1.8a and 1.8b show the first reports of GMR by the two groups.

The explanation brought forward by A. Fert is the dependence of the conduction

of different spin states in the Fe layers: one spin state feels a resistivity lower than the

other. In the anti-parallel configuration (no magnetic field applied) each spin states
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Figure 1.7: Coupling constant of the RKKY interaction mechanism. At small dis-
tances the coupling is ferromagnetic.

Figure 1.8: (a) GMR of a Fe/Cr(001) superlattice; the maximum GMR ratio obtained
was 80% [1] (b) GMR of a Fe/Cr/Fe trilayer; the maximum GMR ratio obtained was
1.5% [2]
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Figure 1.9: Schematic interpretation of the effect of spin dependence of electrical
conductivity on the resistance in different magnetization states and equivalent circuit
of the parallel resistor model.

feels low resistivity in one layer and high resistivity in the other and overall the resis-

tance of each channel is the same. In the parallel configuration one of the spin states

feels lower conductivity in both layers while the other feel high conductivity in both;

the latter channel thus has lower resistance and causes a short-circuit lowering the

resistance of the whole device compared to the anti-parallel case.

The reason different spin channels feel different resistance is due to the spin-

dependent scattering mechanisms that Mott hypothesized in 1939 and that Fert ob-

served in 1968. For a spin σ with effective mass mσ and DOS n(EF ), the resistivity

is

ρσ =
mσ

nσ(EF )e2τσ
, (1.17)

where τσ is the relaxation time that can be evaluated as

τ−1σ = |Vσ|2n(EF ) (1.18)

with Vσ the scattering potential and n(EF ) the density of states of the the final

scattering state. In transition metals like cobalt, conduction is carried out by the

”light” 3s electrons and their strongest scattering is towards the ”heavier” 3d electrons.

Since the 3d band is split, the two spin channels feel different relaxation times and

thus different resistivities. In cobalt, the 3d↑ is below the Fermi energy and so nσ↑ ≈ 0,

giving the ↓ channel a much lower resistance than the ↑ channel.

While the first experimental observations of GMR effect where is current-in-plane

(CIP) geometries, I will focus on the current-perpendicular-to-plane (CPP) geometry

since it is currently the most common. A straightforward explanation is the parallel

resistor model, shown in fig. 1.9, which works well for trilayers of FM/NM/FM. In
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the antiparellel configuration, both spin channels will be majority (↓) in on FM and

minority (↑) in the other, so the total resistance is

RAP =
R↑ +R↓

2
. (1.19)

In the parallel configuration, the majority spin channel is the same in both FMs,

leading to the short-circuit effect. In this case the total resistance is

RP =
2R↑R↓
R↑ +R↓

. (1.20)

The GMR ratio is defined as the TMR

GMR =
RAP −RP

RP
(1.21)

and in this parallel resistor model

GMR =
(α− 1)2

4α
(1.22)

where α = R↓/R↑ is the spin asymmetry parameter. As with TMR, GMR exists

entirely because of the spin splitting of the electron bands.

The parallel resistor model works with a few basic assumptions. First of all, it is

assumed that the ferroelectric electrodes are completely identical (material and thick-

ness) and that the resistivity of the space is not relevant. If the latter assumption is

not true, the GMR can be modified as

GMR =
(α− 1)2

4(α+ pdNM/dFM )(1 + pdNM/dFM )
(1.23)

where p = ρNM/ρ↑. Since the GMR decreases with increasing pdNM/dFM , it is im-

portant that the thickness and the resistance of the nonmagnetic spacing be small.

In many cases, negative GMR is measured when the ferromagnetic layers are of dif-

ferent materials; this also can be interpreted with this simple model. In this case the

GMR becomes

GMR =
(α1 − 1)(α2 − 1)

α1(1 + q) + α2(1 + q−1)
(1.24)

where q = ρ1↑/ρ2↑ and α1 and α2 are the spin asymmetry parameters of the two FM

layers. Similarly to the TMR effect where negative TMR ratios are observed when

the polarizations of the electrodes have opposite signs, here negative GMR ratios are

possible when α1 > 1 and α2 < 1 or vice versa. From eqs. 1.17 and 1.18, we have

ρσ ∝ n(EF )
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Figure 1.10: (a) Schematic of a spin valve device (b) Magnetization and magnetore-
sistance loops of a NiFe(6 nm)/Cu(2.2 nm)/NiFe(4 nm)/FeMn(7 nm) device. [5]

and thus, like in TMR, negative GMRs are possible the the two electrodes have dif-

ferent spin splitting.

Spin valves

To observe a GMR effect it is necessary to be able to switch from the anti-parallel

configuration to the parallel by applying magnetic fields. In the first GMR experi-

ments, this was obtained using the RKKY coupling between ferromagnetic layers but

it is not necessarily the most useful method. Another option is the spin valve (SV)

device [5], which is now used in most spintronics experiments. These devices, similar

to the ones used to first observe TMR, are thin film stacks of three layers; the first

is a ferromagnet coupled to an anti-ferromagnet or ferrimagnet to obtain a pinning

of its magnetization, the second is the non-magnetic layers and the third is the other

ferromagnetic electrode. This way, the magnetization of the fist electrode is pinned

and an applied magnetic field only modifies the magnetization of the second layer.

The behavior of a typical SV is in fig. 1.10

Another option is the pseudo spin valve (although normally called spin valve) where

the electrodes are made of materials with different coercive fields. This way, when

at zero field the magnetizations are parallel, applying a magnetic field in the oppo-

site directions first reverses the magnetization of the softest material, obtaining an

antiparallel configuration, and only at higher field reverses the magnetization of the

hardest material, obtaining a parallel magnetization again. This behavior is described

in fig. 1.11. These devices are the ones studied in this thesis.
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Figure 1.11: Schematic representation of electrode hysteresis loop and MR curve of
a spin valve device. At high magnetic field the top electrode (red line) and the bot-
tom electrode (blue line) magnetic moments are aligned and the device is set in the
low resistance parallel configuration RP . When the top electrode magnetization is
reversed the device is switched in a resistance state antiparallel configuration RAP .
Finally, when the bottom electrode moment is also reversed, the parallel configura-
tion is restored. Pictured is also the correspondence between the coercitivies of the
electrode and the increase and decrease of the resistance of the device when switching
from parallel to antiparallel and vice versa.

Some materials that have been recently studied as junctions in spin valves and MTJs

include MgO, SrTiO3, AlOx and organic semiconductors such as Alq3.

1.3 Memristive Spin Valves

As I previously pointed out, devices that are both memristors and spin valves

are interesting for fundamental and applied physics. In this section I report two

experiments, both showing the applications of such devices and how knowledge of one

mechanisms transports to the other.

1.3.1 Memristive organic spin valves

Interest in memristors has sparked since the publication of Strukov et al.’s article

[8], as these devices can be applied in ultradense memories, logic gates and neuromor-

phic computing. A few years later, while working on spin valves with organic semicon-

ductor junctions, Prezioso et al. [10] [11] reported an La0.7Sr0.3MnO3/Alq3/AlOx/Co
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Figure 1.12: Schematic of the multifunctional device investigated by Prezioso et al.
[11]. From top to bottom: a Co magnetic electrode, a thin AlOx barrier, Alq3 or-
ganic semicondutor and a La0.7Sr0.3MnO3 electrode. The device was measured in four
contact mode by applying a bias voltage at INPUT B, reading the current generated
with an ammeter A an measuring the voltage VR produced in the two remaining con-
tacts. The resistance is defined as R = VR/A. The magnetoresistance is measured by
applying a magnetic field parallel to the Co electrode.

thin film device showing both spin valve and resistive switching effects witch various

different resistive states. Furthermore, the spin valve magnetoresistance (SVMR) was

shown to be controlled by the resistive state of the device, disappearing at the highest

resistance.

A schematic of the device is in fig. 1.12. The different resistive states and their mag-

netoresistance are shown in fig. 1.13. The different resistive states were non-volatile

(a necessary condition for a memristor). Based on this interplay between between

magnetoresistance and resistive switching, it is possible to create a logic gate based

on this device.

A universal Boolean logic gate is a logic gate that is able to reproduce the behavior of

every other logic gate. One of the universal gates is the material implication (IMP)

gate, which is simply the truth table of the statement A → B. To realize this gate

with such a device, the input A’s 0 value is assigned to the saturation magnetic field

of 3 kOe while the 1 value is the field that creates an antiparallel configuration (see

fig. 1.13c). Input B’s 0 value is assigned to the programming bias leading to the

lowest resistance state (that also has the highest SVMR percentage) and the 1 value

is assigned to the programming bias leading to the highest resistance state (that has

no spin valve effect). The output is read by applying a -0.1 V bias and by measuring

the current; considering that the lowest possible resistance (and thus highest possible

current) is in the low resistance state with the electrodes in the antiparallel config-

uration (since the SVMR is negative), this current value is assigned to the 0 value

while lower currents are assigned to the 1 value. This is obtained by setting a current

threshold: if the current exceeds this threshold the output is 0, otherwise it is 1. The
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Figure 1.13: I−V and magnetoresistance measurements from a device (fig. 1.12) with
a 200 nm thick Alq3 layer. a) Resistive switching hysteresis I − V curve typical of a
memristor. Note the different resistance around V = 0 for the two different states.
b) 32 different resistive states produced by reaching increasingly higher negative pro-
gramming biases. In red are the curves that produced states that showed SVMR at
-0.1 V. c) Magnetoresistance curves taken at -0.1 V of the different resistive states. d)
Resistance and SVMR of the different states.
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Figure 1.14: a) Logical outputs of the device operating as an IMP gate after setting
the inputs. The straight line is the threshold over which the current produces an 0
output value. b) Truth table of the device.

device’s operation as an IMP logic gate is shown in fig. 1.14.

There are two main advantages for using such a device as an universal IMP gate.

The first is that with traditional memristors an universal IMP gate was only possible

with two different memristor devices. The second is that, since one of the inputs is a

magnetic field, it can be applied to a whole arrays of gates.

Many theories have been brought forward to explain resistive switching in devices

with Alq3 and other organic semiconductors but no definite proof has been found

for every one of them. A phenomenological model brought forward by Rozenberg et

al. is commonly used to explain. According to this model, the Alq3 barrier contains

metallic domains (dopants, vacancies, metallic clusters) which can be grouped in top

electrode, bottom electrode and middle domains, assuming that the middle domains

vastly outnumber the other electrode domains. A representation of this structure is

in fig. 1.15a. Applying a high enough voltage to move charges into the injecting

electrode domains thus trapping them.

Using a modified Jullière model to take into account spin depolarization, the spin

valve magnetoresistance (SVMR) is

SVMR =
P1P2e

− τt
τs

1− P1P2e
− τt
τs

(1.25)
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Figure 1.15: a) Metallic domains inside the Alq3 junction b) In low resistance states,
no or few domains are trapped and thus the spin diffusion length is low; on the
right side the blue bar indicates the local spin polarization of the current c) In high
resistance states, many domains are trapped and thus the spin diffusion length is low;
on the right side the blue bar indicates the local spin polarization of the current.

where P1 and P2 are the polarizations of the electrodes, τt the transit time of the spin

carrier and τs the spin coherence time. As domains are trapped, the spin diffusion

length increases and thus the polarization of the current arriving at the top (analyzer)

electrode decreases.

1.3.2 Memristive TaOx spin valves

A second memristor with spin valve effect was reported by Jang et al. [12] in 2012.

In their article they reported a ferromagnet/oxide/ferromagnet vertical device that

feature resistive switching and magnetoresistance in only one resistive state, at room

temperature. The device is a Co(60 nm)/TaOx(16 nm)/Cu(5 nm)/Py(Supermalloy,

60 nm); the supermalloy layer is a soft ferromagnet while cobalt is a hard ferromagnet.

I − V curves were taken at room temperature and feature resistive switching with an

OFF/ON ratio of 105 (fig. 1.16). Resistive switching in Pt/Ta2O5/Cu had already

been attributed to copper filaments created and annihilated by bias voltages and these

filaments are typically of a diameter of 10 nm.

MR measurements were taken at a temperature of 77 K and are pictured in fig. 1.17.

The magnetic field was swept from -25 mT to 25 mT so that only the magnetization

of the Py layer is reversed. The MR of the ON states features a small but clear 0.3%

spin valve signal while the OFF state features no spin valve effect. This behavior

of the magnetoresistance indicates that spin transport happens only in the copper
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Figure 1.16: I − V double-logarithmic curve of a TaOx junction pictured in the top
inset, featuring resistive switching. In the bottom inset is the zoomed linear curve

Figure 1.17: Magnetoresistive measurements of the Co/TaOx/Cu/Py in both resistive
states, pictured above. The magnetic field applied was lower than the coercive field of
the copper layer so that the MR curve resembling the soft hysteric behavior of the su-
permalloy layer clearly implies the dependence of the resistance on the magnetization
of the supermalloy layer, and thus spin transport in the device.
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filaments formed in the ON states of the devices. Another important finding that the

resistance of the ON state is lower at 77 K than at room temperature indicating a

metal-like conduction while the OFF state at 77 K has a higher resistance than at

room temperature, indicating an insulating-like conduction.



20



21

Chapter 2
Oxides for memristive and
spintronic devices

2.1 LSMO

Perovskite manganites are a class of materials widely studied for their colossal

magnetoresistance (CMR) and, more recently, for their near-100% spin current po-

larization. These materials are R1-xMxMnO3 (0 < x < 1), where R is a rare earth

material (La, Pr, Ce) and M is an alkaline earth metal (Sr, Ca) and they take their

name from their crystal structure described in fig. 2.1. These materials also feature

rich phase transitions with different compositions. In this thesis I will concentrate

specifically on La0.7Sr0.3MnO3 (LSMO).

Interest in these materials sparked in the ’50s with the discovery of CMR but interest

faded as the field needed to obtain this effect were too great. In the decades, as spin-

tronics began to develop, this class of materials has been studied for their peculiar

characteristic of being a half-metal, meaning that one spin state has a metallic behav-

ior while the other feels a band gap and thus is insulating. This means that at the

Fermi level there is only one spin state with a non-zero density of states and so the

current is nearly 100% spin polarized. Recent experiments [13] have shown that the

bulk polarization is actually lower and that the high current polarization is actually

due to the different mobilities of the minority and majority spins.

2.1.1 Jahn Teller rffect and rxchange interaction

It is interesting to study the 3d valance electrons of manganese atoms, contained

inside the oxygen octahedron. First of all, since the octahedron is a non-uniform

distribution of positive charge there is a first splitting of the 3d levels described in fig.

2.3. The split energy levels are represented in fig. 2.2; in this case the atom in the
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Figure 2.1: Perovskite crystal structure. In a R1-xMxMnO3 perovskite manganite, the
corner atoms are Mn atoms, the body centered atoms are dopants (R and M) and the
face centered atoms are O. This crystal structure takes the name from the mineral
CaTiO3 called perovskite.

Figure 2.2: Jahn-Teller effect: splitting of the energy level of an atom inside an
octahedron of oxygen due to the distortion of the latter.
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Figure 2.3: Representation of how the crystalline environment influences electron
energy levels. dxy electrons have lower overlap with the neighboring orbitals of the
oxygen atoms and thus have lower energies than dx2−y2 atoms that have higher overlap
with the neighboring oxygen orbitals.
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Figure 2.4: LSMO phase diagram showing transport and magnetic properties as a
function of Sr concentration x. In the range 0, 175 < x < 0, 45 the compound becomes
ferromagnetic and metallic under a Curie temperature, which has a maximum at
x = 0.3.

center of the octahedron has four valence electrons and the electronic configuration

is in the weak crystal field case, meaning that is energetically convenient to place the

fourth electron in the higher energy eg orbital since the energy difference is lower than

the Coulomb energy required to pair two different electrons in the same orbital.

A second splitting of the energy levels is the Jahn-Teller effect, which is the distortion

of the lattice since it is energetically convenient for the atoms inside an octahedron

of oxygens to be in a distorted environment. The stretching of the octahedron splits

the eg and t2g further, as described in fig. 2.2. If the atom has four valence electrons,

this is energetically convenient since the eg electron lowers its energy and thus the

octahedron distorts itself; if the atom has only three valence electrons the Jahn-Teller

effect is not present since there is no lowered energy to cause the distortion.

2.1.2 Doping and exchange properties

Most interesting properties of La1−xSrxMnO3 come from the fact that Mn atoms

exists in two different oxidation states because of the rich phase transitions due to

doping. LaMnO3 contains only Mn3+ with a 3d4 valence band (a Jahn-Teller atom).

The Mn atoms are far away and the only possible interaction between Mn valence

electrons is through super exchange: the Mn eg electron distorts the oxygen’s orbitals

attracting the electron with opposite spin and distances the opposite spin electron,
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Figure 2.5: Super exchange interaction: (a) if the atoms in the A and B positions are
far away enough the electron cloud is unaltered; (b) if A and B are closer the electron
cloud deforms causing an antiferromagnetic exchange force between the atoms in A
and B.

Figure 2.6: Schematic representation of double exchange mechanism. The eg electron
hopping from Mn3+ to Mn4+ ion is allowed only when t2g spins are parallel to its spin
due to Hund’s first rule.

inducing an opposite spin in an adjacent Mn atom (see fig. 2.5. The manganite is thus

insulating since no electron conduction can take place and is also antiferromagnetic

because of the interaction. With a Sr concentration of 0 ≤ x ≤ 0.175 this also holds.

Because of La and Sr doping, there is a fraction x of Mn4+ and a fraction 1 − x of

Mn3+. With a sufficient concentration of both oxidation, superexchange is no longer

relevant since it relies on the two Mn atoms separated by an oxygen to be in the same

oxidation state. In this case one Mn ion has three electrons in the lower t2g energy

level while the other also have on in the eg state. Because of Hund interaction, if

the t2g electrons of the two atoms are ferromagnetically aligned the eg electron can

freely hop to the neighboring atom. If the Mn atoms are antiferromagnetically aligned

the eg electron feels a very high energy barrier because of Hund interaction and the

material is a conducting ferromagnet. Since the ferromagnetic alignment lowers the
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Figure 2.7: The role of oxygen in double exchange.

Figure 2.8: (a) Schematic representation of an LSMO stripe connected in a two point
configuration. The magnetic field H is applied parallel the current I. (b) CMR signal
measured on a 9 nm thick LSMO film at 100 K. The CMR signal amplitude is here
defined as CMR = ∆R/R, where ∆R = R(0) − R(800Oe) as indicated by the red
lines.

kinetic energies of the eg electrons, it is energetically convenient for the manganite to

be ferromagnetic and metallic. This is called double exchange (see fig. 2.6 and 2.7)

since the hopping process is through an oxygen atom between the two Mn atoms.

At high enough temperatures thermal fluctuations dominate and destroy the ferro-

magnetic alignment of the t2g electrons, transforming the material to paramagnetic

at a Curie temperature TC and thus insulating.

The situation is actually more complicated because the carriers interact with phonons

because of Jahn-Teller effect. The strong electron-phonon coupling in this systems

implies that the carriers are actually polarons above TC , i.e. electrons accompanied

by a large lattice distortion. These polarons are magnetic and are self-trapped in the

lattice. The transition to the magnetic state can be regarded as an unbinding of the

trapped polarons.

2.1.3 Magnetoresistance

Because of the double exchange effect, the higher the magnetic ordering of the

electrons in the t2g valence state the LSMO the lower is its resistance. Thus if we

apply a magnetic field parallel to the magnetization of the LSMO we increase the
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Figure 2.9: Ferromagnetic clusters in LSMO and thei magnetization (orange). In
purple are the insulating islands.

net magnetization of the electrons in the t2g state and we lower its resistance. This

effect is called colossal magnetoresistance and is shown fig. 2.8 where we can also

observe anisotropic magnetoresistance (AMR). CMR scales linearly with the applying

magnetic field with field up to a few kOe and can reach up to 100%. From fig. 2.10 we

can see that the CMR effect has a clear peak slightly before the TC (which is actually

defined as the linear extrapolation to zero of the MR segment to the right of the peak)

and then goes to zero at T = 0. The exact explanation of both CMR (and AMR) is yet

to be discovered but it was recently proposed that phase transition happens through

nucleation of ferromagnetic clusters while the rest of the material is insulating (fig. 2.9)

that become bigger and bigger until the material becomes entirely ferromagnetically.

Figure 2.10: Measured resistance and magnetoresistance (R(0) − R(800Oe)/R(0)) of
a 9 nm LSMO strip.
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Electrons can travel easily through clusters with parallel magnetization and less easily

in clusters with other magnetizations. Applying an external magnetic field changes

the orientation of these clusters and move domain walls, gradually transforming the

material to a metallic, ferromagnetic state with a well defined magnetization. In this

picture, applying a magnetic field induces a phase transition from an insulating to a

metallic state and the CMR, the reduction of resistance with applied field, is simply

the signature of this transition.

2.2 STO

SrTiO3 is another perovskite oxide with strong paraelectric and insulating prop-

erties and also features superconductivity al low temperatures. It features an electric

constant of 300 at room temperature and 2000 at 100K, reaching 104 at low temper-

atures while approaching a ferroelectric phase transition. The material is still always

paraelectric because of quantum fluctuations. Because of the high dielectric constant,

it is commercially available in high voltage capacitors. It is also used as a substrate for

oxide thin films, especially oxide superconductors. Recently, STO has been studied

for its resistive switching properties because of the inherent property of the oxide to

harbor oxygen vacancies in point defects and the redox processes along dislocations

in the Ti sublattice of the perovskite structure.

2.2.1 STO spintronic devices

In 1999 De Teresa et al. [15] reported an LSMO/STO (2.5 nm)/Co MTJ featuring

an inverse TMR effect (i.e. the resistance is lower in the antiparallel configuration) of

50%. Since the polarization of LSMO is positive, according to Jullière’s TMR formula

(eq. 1.15), the inverse TMR is a signature of negative polarization. While Co features

positive polarization with in many MTJ, for example with Al2O3 [17], the reason Co

has negative polarization in this MTJ is because of the different hybridization of the

interface with STO. Due to d−d electron bonding with Ti and Sr at the interface and

since 3d Co electrons have higher DOS of minority states, the predominance the d−d
bonding lowers the polarization of the tunneling electrodes to the point of reversing

it [18].

In fig. 2.12 we can see the TMR for different biases. At positive biases the TMR

lowers to the point that it becomes positive. The maximum of the positive TMR is

1.5% at 1.15 V and the maximum of inverse TMR is 50% at -0.4 V. To interpret this,

we can consider the relative position of the LSMO and 3d Co electrons with these

biases (fig. 2.13.). This is because, since applying a bias changes the relative position

of the DOS of the two electrode, electrons do not tunnel from the Fermi level of one

electrode to the we need to consider all of the possible tunneling routes from the two
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Figure 2.11: (a) Resistance versus applied magnetic field for the LSMO/STO (2.5
nm)/Co MTJ at 5 K and -0.4 V. (b) Magnetization of the device versus applied
magnetic field [15].
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Figure 2.12: Measured TMR versus applied bias for the LSMO/STO (2.5 nm)/Co
MTJ at 4 K. [15].

Figure 2.13: Relative position of the DOS of the LSMO and Co (3d) electrons for
different biases: -0,4 V corresponds to the maximum of the inverse TMR and 1.15
corresponds to the maximum of positive TMR (fig. 2.12). The arrows correspond to
the most probable route of tunneling. [15]
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Figure 2.14: Bias dependence of TMR of a Co/Al2O3/STO/LSMO. [16]

shifted DOS.

At -0.4 V the inverse TMR is maximum because the electrons in the Fermi level of

the LSMO can tunnel to the maximum of the ↓ minority 3d electrons of Co, which

is 0.4 V higher than the 3d Co Fermi level. The high TMR is guaranteed by the low

DOS of minority electrons at that energy. At 1.15 V Fermi level of the the electrons

in the maximum DOS of ↑ majority electrons can tunnel to the Fermi level of the

LSMO. Since at that energy the DOS of the minority electrons is lower than that of

the majority, the TMR is positive but it is not high in absolute value because of the

high competition between the two channels.

With Co/Al2O3 the situation is different: it has been computed from first principles

[18] that the Al2O3 hybridizes forming sp− d bonds with the Al atoms that facilitate

tunneling for the positively polarized s electrons and creates a tunneling barrier for

the negatively polarized d electrons. To confirm the dependence of the TMR sign on

the interface effect, a Co/Al2O3/STO/LSMO were fabricated [16]. These device fea-

ture entirely positive TMR (fig. 2.14), consistent with tunneling from the positively

polarized s electrons.

These interesting finding show the importance of considering surface states when

studying the tunneling of electrons and are of utmost importance for the work pre-

sented in this thesis.

2.2.2 STO memristors

Memristors made of STO junctions have been reported for Fe-doped STO [43],

single crystal STO [42], policrystalline STO (which was used to realize an IMP circuit)

[44], and amorphous STO [19]. Of these I will focus of the latter since it is similar to
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Figure 2.15: a) Typical electroforming sweep in positive polarity for a- STO junc-
tion. b) Typical bipolar switching behavior of a- STO junction. c) Bipolar switching
performance of a single cell over 106 consecutive I–V sweep cycles.

the devices we have fabricated and studied.

In 2014 Nili et al. [19] reported Pt/Ti/a- STO (100 nm)/Pt memristors with

20-100 µm dimensions.. These device operate after a forming pulse (reported in fig.

2.15a). These forming pulses are the irreversible lowering of the device resistance by

sweeping the voltage up to 8-10 V (for this particular device). After this forming pulse

the devices exhibit stable, non-volatile, resistive switching behavior (fig. 2.15b,c) with

OFF/ON resistance ratios of over 103 (read voltage: ± 250 mV). These devices are

also stable in time and operate for more than 106 with no appreciable changes in the

ON and OFF resistances.

XPS spectroscopy of 100 × 100 devices was used to probe the defect chemistry of

the resistive switching mechanism. The result is in fig. 2.16: the virgin state shows

an oxygen deficiency of ≈ 3% while the formed state has an oxygen deficiency of

≈ 5%, increasing while approaching the Ti electrode. Since this technique averages

the measured concentration, we can conclude that there is an overall movement of

oxygen vacancies in the device during the forming pulse. The distribution of oxygen

vacancies around the Ti electrode denote a redox process in this metal/oxide interface.

The bipolar switching is thus the rearrangement of the oxygen vacancies, due to the

applied bias, moving towards the Pt electrode forming conductive pathways, since the

oxygen vacancy alters the local stoichiometry of the STO creating a highly n-doped

structure from one electrode to the other. Furthermore, scanning probe microscopy

(SPM) and nano-contact measurements indicate the existence of structurally weak
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Figure 2.16: a) Relative oxygen concentration throughout the thickness of the oxide
layer calculated based on XPS depth profile results on 100 µm × 100 µm a-STO
cells, before and after forming pulse. b) Schematic of forming pulse and subsequent
switching mechanisms in a- STO cells.

nano-grains, distributed uniformly in the device, that act as filaments that can harbor

the oxygen vacancies and act as nano-switches, causing the resistive switching of the

device. As oxygen vacancies drift from one electrode to the other during the forming

pulse through a network of pre-existing defects, an extended network of filaments

is created. The amorphousness of the material is the key to the forming of these

filaments: the lack of crystalline order causes a non-preferential expansion of the

defects structure around the pre-existing point defects creating the pathway that can

harbor oxygen vacancies.

2.3 Conduction through insulators

Since in this thesis I will present results based on studies on insulating junction, I

will briefly show the mechanisms of electron conduction in such insulating materials

we used in this study.

2.3.1 Tunneling

When an electron tunnels from one metal to another metal through an insulator,

if the two metal electrodes are of two different materials and thus with generally

different work functions, the differential conductance G(V ) = dI/dV is, according to

the commonly used Brinkman-Rowell-Dynes model [28],

G(V ) = G(0)

[
1− A∆φ

16φ3/2
eV +

9

128

A2
0

φ
(eV )2

]
(2.1)
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Figure 2.17: Metal/insulator/metal device with an arbitrary potential barrier.

where ∆φ is the asymmetry of the barrier heights on the two sides of the insulator,

φ is the average barrier height in the insulator, A0 = 4(2m)1/2d/3~ and G(0) =

3.16 × 1010φ1/2d exp(−1.025dφ1/2). If ∆φ = 0 the formula previously obtained is

equivalent to the common Simmons formula for tunneling without considering barrier

asymmetry. There is no complete theory explaining the temperature dependence of

the resistance in a purely tunneling regime since temperature is commonly expected

not to modify the system in any way. If the tunneling states have show a strong

temperature dependence of their DOS this may influence the temperature dependence

of the resistance of the tunneling device.

2.3.2 Nearest neighbor hopping

In nearest neighbor hopping conduction, electrons hop from one empty impurity

site to the other with an activation energy W = TNNH/kb and the resistance of the

device is

R(T ) = R0 exp

(
TNNH
T

)
(2.2)

while the hopping distance is

RNNH =

(
4πNd

3

)1/3

(2.3)
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where Nd is the concentration of carriers in the junction. If we define the parameter

λ = RNNH/a, where a is the effective Bohr radius

.a =
4πε0εr~2

mee2
, (2.4)

it is expected to see NNH conduction if λ� 1. Instead, if

λ→ 1, (2.5)

Mott argues that the system should show a metallic behavior [21].

2.3.3 Mott variable-range hopping

Nearest neighbor is not the only hopping mechanism for electrons in a disordered

system. Provided that the DOS near the Fermi energy Ef is slowly varying as a

function of energy, Mott showed that the resistance of the insulator is

R(T ) = R0 exp

(
TM
T

)1/4

. (2.6)

The hopping distance is

RM =
3

8
ξ

(
TM
T

)1/4

, (2.7)

where ξ is the localization length, and the energy difference between sites is

∆M =
1

4
kbT

(
TM
T

)1

/4. (2.8)

There are two requirements that need to be satisfied for this kind of hopping to take

place instead of nearest neighbor. The hopping length RM needs to be� RNNH . The

second revolves around coulomb interaction between hopping sites: this interaction

freezes some electrons and reduces the DOS at the Fermi level in energy range of

width ∆C . Mott variable-range hopping is observed when

∆NNH > 2∆C . (2.9)

2.3.4 Efros-Schklovskii variable range hopping

What happens when the condition on the the energy difference of Mott variable-

range hopping is no longer valid? This regime is called Efros-Schklovskii variable

range hopping, where the resistance follows

R(T ) = R0 exp

(
TES
T

)1/2

. (2.10)
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Hopping length is

RES =
31/6

25/62.81/2
ξ

(
TES
T

)1/2

(2.11)

and the energy difference between sites if

∆ES =
61/2

2.81/2
kb

(
TES
T

)1/2

. (2.12)

Also, in this regime it is possible to computed the localization length as

ξ =
10.5

kbTES(πg2)1/3
, (2.13)

where

g2 =
38π2ε30ε

3
r

25e6
. (2.14)

There are four condition to fulfill so that this kind of conduction is possible:

∆ES ≥ kbT (2.15)

d� RES , (2.16)

where d is the thickness of the insulator,

RES ≥ ξ (2.17)

∆C > ∆ES . (2.18)

2.3.5 Poole-Frenkel effect

While the previous hopping mechanism are applied to disordered system such

as amorphous materials, when the insulator is a crystal and thus present a band

structure, transport can occur when thermal excitation excite the electron to the

conduction band the electron can move before relaxing to another localized state.

The temperature dependence is the same as nearest neighbor hopping, but since this

transport relies on band structure, the deformation of the electron band by the applied

bias comes in to play, giving this transport mechanism

I ∝ V exp

(
−e(φ−

√
eV/dπε0εR)

kbT

)
, (2.19)

where φ is the voltage barrier at zero bias.
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2.3.6 Zabrodskii-Zinov’eva analysis

In 1984 Zabrodskii and Zinov’eva proposed an analysis to study how to distinguish

between different hopping regimes. Suppose that the resistance of a sample follows

the law

R(T ) ∝ T−m exp(T0/T )s (2.20)

(for example, for nearest neighbor hopping m = 0 and s = 1 and for Richardson-

Schottky emission, where the resistance of an insulator is dominated by the injection

through the interface barrier, m = 1 and s = 1), if we define the function

W (T ) = −d lnR(T )

d lnT
, (2.21)

then

lnW (T ) ≈ ln(sT s0 )− s lnT. (2.22)

If we plot lnW (T ) vs lnT the slope is −s. By using this data analysis one can easily

extrapolate the value s.

This analysis cannot prove by itself that some kind of hopping takes place, for example

by finding s = 0.5 one cannot immediately say that the sample follows Efros-Schklovski

variable range hopping since one should also take into consideration the conditions

required by theory. Still, it is a very useful method to intuitively exclude certain kinds

of hopping and concentrate one’s analysis on others.
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Chapter 3
Pinholes in vertical devices

Since interest in MTJs renewed in the ’90s, it became important to find ways to

test is electron conduction is actually through single-step tunneling, which in many

cases is an unlikely conduction mechanisms though an insulator and may be shad-

ows by other competing conduction mechanisms. In particular, in a vertical ferro-

magnet/insulator/ferromagnet (F/I/F) trilayer device there may be small, metallic

conduction path from one ferromagnetic electrode to the other, paths known as pin-

holes. The pinhole originally were thought as short circuits formed by one electrode

percolating through the insulator and touching the other electrode but these results

also apply to memristors that rely on the creation an annihilation of metallic paths

through an insulator [12] [19] [20]. Since magnetic nanocontacts were found to have

magnetoresistances up to 300% many research groups have became to study effects on

pinhole in vertical trilayer devices, and in particular whether there pinhole contribute

to or degrade the magnetic properties of these devices.

Between the ’60s and ’70s, Rowell developed various criteria to determine the ab-

sence of pinholes in multilayer structures containing superconducting electrodes. In a

F/I/F trilayer, three of these criteria are commonly used: (i) an exponential insulator

thickness (t) dependence of the resistance,

R(t) ∝ exp(t/t0),

with t = ~/2
√

2mΦ, (ii) a parabolic voltage (V) dependence of the conductance G(V)

that can be fitted to theoretical models of symmetrical (Simmons model [27]) or asym-

metrical barriers (Brinkman-Dynes-Rowell model [28]), and (iii) a weak insulating-like

temperature dependence R(T). Unfortunately, it was shown that these criteria can be

bypassed by pinholes.
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Figure 3.1: Conductance as a function of film thickness for various values of s = R0/R.
[23]

3.0.1 Thickness dependence criterion

The first criterion, exponential thickness dependence of the resistance was shown

by Rabson [23] to be reproducible by pinholes by numerical calculations. Since a

tunnel junction typically has a resistance-area product of 1 kΩµm2 and a metallic

junction has a resistance-area product of 1 mΩµm2, even a small pinhole region of 1

part in 106 ensures that half of the current is through the pinhole.

Consider a first metallic electrode on top of which a perfect insulator is randomly

deposited, approximating every layer of the insulator as an L × L lattice. If the de-

position is thermal, the distribution of the height of the barrier over one single cell is

poissonian (assuming one column is independent from the others). If we then deposit

another metallic electrode over the insulator, we have short circuits only in the cell

where no columns were formed. In fig. 3.1 there is a graph of the computed conduc-

tance for various values of s = R0/R where R0 is the resistance of the nanocontact

between the electrodes and R the resistance of one block of insulator. The crossover

thickness (in monolayers) above which the conductance ceases to be exponential is

µ0 ≈ ln(2/s).

The contact resistance through a pinhole of diameter 1 Å, and assuming a typical

metallic Fermi temperature and electronic density, we have contact resistance R0 =
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Figure 3.2: (a) I –V curve for sample A at T = 90 K together with a fit to Simmons’
model (dashed line). Inset: original conductance data fitted with the BDR model
(dashed line). (b) Same for sample B at T=77 K.

104 V. The classical resistance of an insulating block is less well defined, but a minimum

resistivity 106 V cm suggests R ≥ 1014 V, so that s ≥ 10−10. For this value, the critical

thickness is µ0 = 24 monolayers.

3.0.2 Conductance criterion

Even the second Rowell criteria can be useless to probe for pinholes. Akerman et

al. [24] fabricated two different Nb/Al/AlOx/Fe, one being a standard MTJ and the

other with pinholes. At 90K, both devices had differential conductances that gave

reasonable fits with Simmons’ model. According to this model, the conductance of an

MTJ where an electron tunnels through an arbitrary energy barrier φ, the conductance

is [27]

G(V ) = G0 +G0

(
9

128

A2

φ

)
(eV )2 (3.1)
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Figure 3.3: Differential conductance of the two samples at T = 4.2 K, where the Nb
layer is superconducting. The lines indicate the gap voltage for bulk Nb, ± 1.5 mV.
The dashed line in (b) is data from for an Fe–Ta point contact with the bias scale
multiplied by the gap ratio of Nb to Ta. [24]

where A = 4(2m)1/2d/3~, d the thickness in Å. Fig. 3.2 shows the I − V curves

and conductances of both devices, giving very reasonable parameter from fits using

Simmons’s model. Fits using Brinkman-Dynes-Rowell’s model also give reasonable

parameters. To prove that one device feature tunneling while the other had pinholes,

the devices were cooled below the superconducting critical temperature of the Nb

electrode. In fig. 3.3 the first device shows the typical tunneling conductance through

a superconducting electrode: a reduced conductance near V = 0 and two symmetric

maxima after ±∆. The second device shows an increase of conductance near V = 0,

consistent with Andreev reflection at a superconductor/metal interface, and a nega-

tive conductance spike after ±∆, also typical of superconductor/metal nanocontacts.

Comparing the conductance to that of a Fe-Ta point contact further proves the pres-

ence of pinhole. It is hence safe to conclude that a fit above Tc cannot be used as a

criterion to ascertain whether or not a tunneling barrier is free of pinholes.

Zhang and Rabson used a simple model to explain this phenomena. Tunneling
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Figure 3.4: Computed normalized differential conductance for devices with pinholes
of different thicknesses. [25]

features a conductance that increases with bias, as carriers see an effectively narrower

trapezoidal barrier. This conductance can be modeled with the previously mentioned

Brinkman-Rowell-Dynes model. On the other hand, a pinhole will dissipate more heat

with greater biases and conduct less, giving a conductance with downward curvature;

the total curvature of the conductance of a device will feature an interplay between

these two channels. To quantify this behavior, a Al/AlOx (2 nm)/Fe with an Al pin-

hole in the center is modeled through numerical computation. The pinhole can have

widths up to 1.5 nm. The result of the computation is in fig. 3.4. The result is that

the curvature of the conductance is upward up to 1 nm thickness of the pinhole. These

conductances fit with Simmons model giving effective barrier heights from 0.5 eV (the

actual barrier height) to 1.6 eV (at 1 nm) and effective thicknesses of the barrier from

2 nm to 1 nm (at 1 nm pinhole width). These two experiments show how difficult it

is to properly fit I − V and conductances when there are pinholes.

3.0.3 Temperature dependence of the resistance: the parallel circuit

model

Only the third criterion, the temperature dependence of the device, still stands.

To study the effect of pinholes on the resistance-temperature curve of the device,

Ventura et al. [29] developed a simple phenomenological model to quantify the effects

of pinholes of the R(T). In this model, a metallic channel and a tunneling channel are
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Figure 3.5: Temperature dependence of the resistance of an MgO MTJ with the
electrodes in the antiparallel and parallel state. [29]

placed in a parallel circuit. This model is extremely simple but works simply with

the assumption that geometrical effects are irrelevant and that the two channels are

independent (i.e. we ignore tunneling from an electrode to the pinhole and, vice versa,

tunneling from somewhere in the pinhole to an electrode). Thus the resistance of the

device is
1

Rd
=

1

Rm
+

1

Rt
(3.2)

where Rd is the resistance of the devices, Rm the resistance of the metallic pinhole

and Rt the resistance of the tunneling. Simply using linearly increasing and decreas-

ing resistance for the pinhole and the tunneling, respectively, R(T) curves of MgO

MTJ were fitted both in parallel and antiparallel state of the magnetization of the

electrodes. These devices featured a room temperature TMR of at least 60%. The

antiparallel state (fig. 3.5) clearly shows a crossover temperature (where dR/dT goes

from positive to negative) reproducible by a parallel of two linearly increasing and

decreasing resistance channels

Rm = Rm0 + αm ∗ T Rt = Rt0 + αt ∗ T. (3.3)
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Then fitting the parallel state while keeping the pinhole channel parameter set (i.e.

assuming that the magnetoresistance is entirely attributable to the tunneling channel

gives unreasonable parameters for the tunneling channel: a negative αt and a MR

of 220% for the tunneling channel, implying a higher resistance in the parallel state

which is the opposite of what has always been found in pinhole-free Mg0 junctions. A

second fit with all four parameters was used, obtaining similar parameters compared

to the antiparallel state for the tunneling channel but very different, indicating that

the MR is attributable also to the pinholes.

3.0.4 Ballistic magnetoresistance

The problem of explaining magnetoresistance in pinhole conduction still remains.

Garcia has shown that ballistic electron conduction through sufficiently small pinholes

yields the same spin polarizations tunneling through an oxide layer, so that magne-

toresistance cannot distinguish the two processes [30]. The theory for ballistic contact

from one ferromagnetic electrode to another states [31]

BMR =
Rap −Rp

Rp
=

2P 2

1− P 2
× F (λ, kF ) (3.4)

with

F (λ, kF ) =
1

2

(
1

cosh2 πkFλ
+

1

cosh2 πPkFλ

)
(3.5)

which accounts for spin depolarization due to domain wall scattering. λ is the width

of the domain wall and kF the Fermi wave vector. If the domain wall width at the

nanocontact λ is very small, F ≈ 1 and the BMR formula is exactly the same as the

Jullière TMR formula. The reason the formulas are same is because the processes

arise from the same physical principles, which is the matching of the wave functions

at both sides of the pinhole [30]. The only difference between the two processes is

that in ballistic contacts the transmissivity is almost 1 while in tunneling it decays

exponentially with the junction length l.
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Chapter 4
Experimental setup

The devices studied in this thesis are made of a bottom electrode of LSMO, a layer

of STO and a top electrode of Cobalt, as in fig. 4.1. In this chapter I will describe both

the fabrication process and the equipment and techniques used to study the devices.

4.1 Device fabrication

The spin-valve devices are fabricated by shadow masking following the steps il-

lustrated in fig. 4.2. As a substrate a 10 × 5 mm2 NGO (110) single crystal from

CRYSTAL GmbH is used. The crystal is cleaned by sonication in isopropanol. This is

a good substrate for LSMO growth because of the very small difference between lattice

parameters (NGO is an orthorombic material with a = 0.544 nm and b = 0.550 nm,

since the subrate is (110), over one NGO cell are deposited two LSMO cells, which

has a cell parameter of 0.387 nm). With LSMO on NGO the dead layer (a thin layer

of LSMO which has no magnetic properties because of strain) is roughly 3 nm.

Figure 4.1: Schematic representation of a device. A layer of STO is sandwiched
between the two perpendicular electrodes (LSMO and Co) [11].
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Figure 4.2: Fabrication steps for a spin-valve device. (a) STO substrate. (b) LSMO
bottom electrodes with gold contacts on top. (c) Spacer layer. (d) AlOx tunnel barrier
(only for organic Alq3 spacers). (e) Co top electrode with gold contacts.

Figure 4.3: Photo and schematic of a Channel Spark Ablation machine. [32]
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4.1.1 LSMO electrodes and STO barrier

To deposit the oxides we used a Channel Spark Ablation (CSA) machine, shown

in fig. 4.3. The same figure shows the working principle of the CSA: a negative high

voltage (5-30 kV) power supply is directly connected to a hollow cathode (a) and a

capacitor (b). The latter is grounded through an air gap (c) having a floating electrode

which is decoupled from the capacitor by charging resistor (d). Between the charging

resistor and the floating electrode of the air gap a triggering anode plate (e) is located

and inserted in the bulb (f). At a sufficient high voltage a spark breaks down the air

gap (c), a rapid variation of the electric field between the hollow cathode and the anode

plate ionizes the gas molecules in the bulb triggering plasma in the cathode cavity (a),

where the amplification of the discharge happens. Because of the high resistance of the

charging resistor, the capacitor discharge happens through the low impedance electron

beam in the Pyrex channel(h). The electron beam current would be continuous if the

power supply could provide a sufficient current, but since its limited in current, the

electron beam cannot be sustained and the discharge extinguishes up to the new spark

in the air gap. As a consequence the beam assumes a pulsed character. The current

supplied to charge the capacitors defines the charging time and, hence, the operating

frequency. The high voltage and the capacitance determine the accumulated charge

and the total energy. The energy distribution of the electrons in the beam and the

length of the pulse is determined by the accelerating voltage and gas pressure [32].

The electron beam then hits and oxide stochiometric target that heats up and creates

a plasma plume, directed at the desired substrate.

After the deposition of bottom LSMO electrodes at 850 oC in an atmosphere of 10−2

mbar of O2, the sample is then annealed at 250 oC for 30 min in order to restore the

LSMO surface the sample and STO is deposited (at 750 oC for epitaxial STO and 350
oC for amorphous STO). The epitaxial growth of STO is guaranteed by the similar

lattice parameter of the the two perovskite oxides: 0.386 nm for LSMO an 0.390 nm

for STO. The sample is then exposed to air and introducedin a load lock chamber at

a base pressure of 10−6 mbar, where gold contacts are evaporated on LSMO stripes

as illustrated in fig. 4.2. The sample is then transferred into the main chamber.

4.1.2 Cobalt electrode

The sample is transferred in the metal-deposition chamber at a base pressure of

10−8 mbar. A mini e-flux e-beam evaporator from tectra GmbH is used to evaporate

the cobalt top electrode. A coiled tungsten filament (ground potential) is placed in

close vicinity of a cobalt rod with a diameter of 2 mm (kept at the positive potential of

2 kV). The thermionically emitted electrons are accelerated towards the rod producing

a current of 8-10 mA with extremely high heating-power densities. High-purity cobalt
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Figure 4.4: (a) Top view of a substrate with three devices, whose active region cor-
responds to the cross section between LSMO and cobalt electrodes. Organic layer is
deposited inside the region indicated by the red dashed line. (b) Samples located on
the cryostat sample holder. The copper pads connect the devices to the external plug.
Position 1 and position 2 allow to rotate the sample respectively in plane and out of
plane.

(99.99%) is then evaporated on the sample as top electrode in the cross-bar geometry

described in fig. 4.2. A Sycon Thickness Monitor STM-1 is used to control the

deposition rate (0.4-0.5 Å/s). Finally the sample is moved again in the load lock

chamber, where gold contacts are deposited on cobalt.

4.2 Electrical characterization

Fig. 4.4a shows three spin-valve devices on a STO substrate. LSMO and cobalt

electrodes are connected to gold wires with a diameter of 50 nm by means of indium.

The samples are located on the cryostat sample holder and the wires are soldered

to the copper pads (fig 4.4b), which connect the DUT (device under test) to the

external plug. Electrical characterizations have been carried out by using a Keithley

236 Source Measure Unit (SMU). Fig. 4.5 shows the SMU electrical scheme in the

Source V-Measure I configuration, both for remote sense (4-points) and local sense

(2-points) mode. An ammeter is connected between the voltage source (Vsource) and

Output HI. Sense circuitry is used to constantly monitor the output voltage and make

adjustments to Vsource as needed. Vmeter measures the voltage at the output (local

sense) or at the DUT (remote sense) and compares it to the programmed voltage

level. If the sensed level and the programmed value are not the same, Vsource is

adjusted accordingly ensuring that the programmed voltage appears at the DUT.

Triaxial cables (triax) are used to accurately measure low currents. Guard is kept at

the same potential as the Output HI by the buffer circuit to eliminate the effects of the

leakage current (and capacitance) that exists between the Output HI and the Output
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Figure 4.5: Electrical scheme of Keithley 236 SMU in the SourceV-MeasureI config-
uration. The instrument has an integrated feedback system: the measured voltage
Vmeter is compared with the programmed voltage level and, if they are not the same,
Vsource is adjusted accordingly. In local sense mode, Vmeter measures the voltage
at the output, while in the remote sense mode it measures the effective voltage across
the DUT.

LOw. A keithley 708A switching system has been used to automatically redirect the

signals from the SMU to the desired electrodes as schematically represented in fig.

4.6a. The SMU and the switching system are connected in series to a PC through a

GPIB to USB converter and I-V characteristics are acquired by means of a software

developed in LabView programming environment (fig. 4.7).

The fabricated device are measured with in four contact mode shown in fig. 4.1: this

way we can ignore complications due to contacts and measure directly the resistance

of the junction between the two electrodes.

4.3 Magnetic characterization

The sample holder is introduced into the inner chamber of a gas-exchange cryostat

from Oxford Instruments, filled with nitrogen gas up to the pressure of 102 mbar. The

outer chamber is kept at 100−5 mbar, in order to thermally insulate the system. The

intermediate chamber is part of the nitrogen circuit: liquid nitrogen is pumped into

the chamber from the dewar and the exhausted gas is pumped out, as described in

fig. 4.8. The samples can be cooled down to 77 K and heated up to 400 K at the

desired rate (K/min) by means an Oxford ITC 503S temperature controller. The coils
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Figure 4.6: (a) Schematic representation of the circuitry connecting the SMU to the
cryostat plug. The source signals (OH, OL) and the sense signals (SH, SL) from
the SMU are sent to a Keithley 708A switching system which redirects them to the
desired outputs (OH1, OH2, OH3, OL, SL, SH1, SH2, SH3). The core pins of the triax
from the switching system are collected into the cryostat plug. (b) Device contacts
corresponding to the pins of the cryostat plug. As an example device 1 in remote
sense configuration is illustrated.

Figure 4.7: User interface of the LabView VI used to acquire I-V characteristics.
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Figure 4.8: Experimental setup for magnetoresistive characterizations. The blue ar-
rows indicate the position of the samples between the magnetic poles.

of the EPR electromagnet are connected to an Elind KL power supply through an

high power switcher which allows to change the current direction. The right current-

to-field conversion factor was obtained by calibrating the magnet with a gaussmeter.

The high field homogeneity over a large volume guarantees that the same magnetic

field is applied both to position 1 and to position 2. R-H characteristics have been

taken by applying a fixed bias potential to the DUT and acquiring its resistance values

as a function of magnetic field, typically ranging from -3 kOe to 3kOe (fig. 4.10). MR

as a function of temperature are also measured. The sample is kept at a fixed bias

potential and the difference between the resistance at zero and at applied field is taken,

while the temperature is slowly increased the ITC temperature controller. Moreover,

as mentioned before, the sample holder allows to rotate the sample in plane and out

of plane (fig. 4.9) making possible to study the MR as a function of angle.
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Figure 4.9: (a) Sample in position 1 can be rotated in plane. (b) Sample in position
2 can be rotated with a field component out of plane.

Figure 4.10: User interface of the LabVIEW VI used to acquire R-H characteristics.
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Chapter 5
Structural characterization

The uniformity of the thicknesses of the materials of our devices is crucial to

guarantee their proper functioning. Atomic force microscopy (AFM) measurements

were taken after the growth of the LSMO electrodes on NGO substrates, described in

the previous chapter. An image of 10 nm thick LSMO electrodes is in fig. 5.1. The

root mean square roughness of the surface is 0.15 nm (1.5%). Since the percentage of

root mean square roughness is known to lower with lower thicknesses, we can expect

that the 5 nm LSMO electrodes (used in the devices studied in this thesis) has a root

mean square roughness less than 0.075 nm (1.5%). This number has to be compared

to the cubic cell parameter of the STO (0.390 nm); this means that the grown LSMO

electrodes are essentially smooth to the scale of a cubic cell.

To check the crystalline quality of our devices, transmission electron microscopy

(TEM) images were taken by K. O’Shea at the University of Glasgow. These images

are in fig. 5.2: the Co electrode is policrystalline due to is granular appearance, the

epitaxial growth of LSMO con NGO is good (due to the compatible cell dimensions);

Figure 5.1: AFM image of a 10 nm thick LSMO electrode on an NGO substrate.
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Figure 5.2: TEM images of a 25 nm thick amorphous STO device (SP228) and a 2.5
nm thick epitaxial STO device (SP229).
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Figure 5.3: TEM spectra showing the chemical composition of a 25 nm thick amor-
phous STO device (SP228) and a 2.5 nm thick epitaxial STO device (SP229).
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Figure 5.4: Impedance spectroscopy of a 5 nm thick a-STO device.

the STO grown at 350 oC is completely amorphous while the STO grown at 750 oC

is completely crystalline. Taking the spectrum of the TEM images to investigate the

chemical composition of the device (fig. 5.3) shows that, surprisingly, the oxygen signal

is half of the titanium signal, indicating a high concentration of oxygen vacancies. Also,

the fact that the STO imagine is very dark indicates a possible high concentration of

strontium (the heavier element).

To further test the quality of our amorphous STO, we used impedance spectroscopy

at 100 K to determine its dielectric constant. In fig. 5.4 is the results for a 5 nm thick

a-STO device. Apart from deviations starting at 10 kHz, the device acts like a RC

parallel circuit. Fitting the complex impedance of the device with the impedance of

a RC parallel circuit

Z(ω) =
R

jωRC + 1
(5.1)

gives C = 9.6 nF. For a parallel plate capacitor

C =
Aε0εr
d

(5.2)

where A is the area of the capacitor and d is the thickness. With our devices A = 0.2

µm2 and d = 5, so

εr =
Cd

ε0A
= 28.
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Chapter 6
Transport and forming pulse in
amorphous and epitaxial STO

In this chapter I will show data relating to the transport of charge in La0.7Sr0.3MnO3/

SrTiO3/Co devices, both with epitaxial SrTiO3 (e-STO) and amorphous SrTiO3 (a-

STO).

6.1 Amorphous STO devices

We fabricated LSMO/a-STO/Co devices with a-STO thickness of 5 nm and 25

nm. The LSMO thickness was of 5 nm, because of the smoothness of these thin films

(reported in chapter 5) and, since memristive effects with oxide junctions rely on redox

processes, the resistive and magnetoresistive behavior of the electrode could be used

to probe these effects. I will focus the analysis on the data of the 5 nm thick devices

but the same results are applicable to the other devices.

6.1.1 Hopping in a-STO junctions

The samples were fabricated with the techniques outlined in chapter 4 and set in

the sample holder inside the cryostat described in the same chapter. The samples

were then brought to 100K at a rate of 0.3 K/min, taking one resistance measurement

every minute.

In this chapter I will consider two sample devices even though the same results were

obtained on the others. At 100 K, device A showed forming pulse, lowering its re-

sistance from 53 MΩ to 1 MΩ (at -0.1 V), by sweeping the applied voltage from 0

V to -2 V, as shown in fig. 6.1. The I-V curve shows negative differential resistance

(NDR) and the two steps in this region suggests forming of two filamentary pathways,

as proposed by Nili et al [19] [20]. The R(T) measurements both before and after this

forming pulse are shown in fig. 6.2.



60

Figure 6.1: I-V measurement showing forming pulse. The arrows in indicate the
direction of the sweep.

Figure 6.2: Measured R(T) curves (at -0.1V) of an a-STO device before and after
forming pulse. The arrows in indicate the direction of the sweep.
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Figure 6.3: Zabrodskii-Zinov’eva analysis of device A in virgin state.

It is interesting to note the very evident fact that the resistance of device A in the

virgin state, that we interpret as not featuring pinholes, is very dependent on tem-

perature and thus we can conclude that no single step tunneling is taking place. So,

we can consider either hopping mechanisms or Richardson-Schottky injection in the

insulating barrier. We exclude a priori Richardson-Schottky phenomena, where the

resistance is given by the interface barrier, because of the observed metallic paths in

STO created with forming pulses [19] – if the behavior of the resistance were deter-

mined by the interface, so would the the resistance of the filamentary path in the

device and thus the this path could not be metallic. Because of this inconsistency it is

justified to consider only hopping mechanisms through the amorphous insulator. Hop-

ping through such insulator is possible because of the strong defect structure formed

by oxygen vacancies that are able to harbor electrons hopping from one part of the

barrier to the other.

Fitting device A’s virgin state with nearest-neighbor hopping (NNH), Mott variable-

range hopping (M-VRH) and Efros-Schklovskii variable range hopping (ES-VRH)

doesn’t give good fits. To further analyze the device in this state, I used Zabrod-

skii and Zinov’eva’s approach to studying hopping mechanisms shown in subsection

2.3.6, computing the function

W (T ) =
d lnR(T )

d lnT
.
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Figure 6.4: Fit of device A in the virgin state, from 100 K to 150 K the fit is ES-VRH
and from 200 K to 300 K the fit is NNH.

By plotting lnW (T ) vs lnT , in the regions where the resistance follows the law

R ∝ exp(−T0/T )s

(where s = 1 for NNH, s = 0.5 for ES-VRH and s = 0.25 for M-VRH), the result-

ing plot is a straight line with slope −s. The latter plot for device A in the virgin

state is in fig. 6.3. The main sources of noise in this plot are temperature instability

during the sweep from 100 K too 300 K and the very high density of points (because

of the deriving algorithm). From 300 K to 175 K (where lnT = 5.17) the plot can

be clearly fitted with a downwards line, giving a slope of s = 1.18, indicating NNH

respectively. At temperatures lower that 175 K it is more difficult to interpret the

plot, so I tentatively used ES-VRH hopping as a working hypothesis since fitting from

175 K o 100 K gives a slope of s = 0.45. This is very similar to the crossover found

in hydrogenated amorphous silicon by Yildiz et al [34] where the insulating junction

showed NNH hopping above 220 K and ES-VRH for lower temperatures.

I fitted the resistance of device A from 100 K to 150 K the fit is ES-VRH and from

200 K to 300 K the fit is NNH (fig. 6.3). The TNNH is 1096 K, which gives an energy

barrier between different states W = 90 meV, a very reasonable energy barrier. The

characteristic temperature TES from the low temperature fit is 6160 K, which is a

temperature higher than those typically measured.

A good fit is not enough to prove that ES-VRH is applicable. We can compute
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the localization length from this TES from the formula in eq. 2.13 which gives us

ξ = 0.19 nm (the dielectric constant at 100 K was taken from impedance spectroscopy

measurements). This localization length is one order or magnitude less than those

normally measured around 1 nm but this information alone is not enough to dis-

prove that ES-VRH is actually happening. There are four criteria for the hopping

parameter (Coulomb gap ∆C , mean ES-hopping energy ∆ES hopping distance RES

and localization length ξ) already shown in subsection 2.3.4. The first is

∆ES

kBT
=

61/2

2.81/2

(
TES
T

)1/2

≥ 1.

With our parameter, at 150 K, ∆ES/kBT = 12.

Secondly,

∆C > ∆ES

which gives

T <
TES
π2.82

.

With our parameters TES/(π2.82) = 250 K and since we see ES-VRH below 175 K the

parameter TES fits with criterion. The last two criteria concern the hopping length,

which is given by the equation

RES =
31/6

25/62.81/2

(
TES
T

)1/2

ξ

that gives us RES = 0.48 nm. This hopping length satisfies the last two requirements,

d� RES

(d is the thickness of the device), and

RES > ξ,

but it is still a problematic length since it is only slightly more than the cubic cell

parameter of STO (0.390 nm). To further prove the validity of this crossover one

would have to compute the crossover temperature TC = Wξ/(rkB), where r is the

NNH distance defined by

r =

(
4πNd

3

)1/3

where Nd is the carrier concentration, and compare the obtained value with the mea-

sure crossover temperature of ≈ 175 K Unfortunately we were not able to measure

the carrier concentration Nd.

For the sake of completeness, the R(T ) curve was fitted with M-VRH, both in the
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Figure 6.5: Zabrodskii-Zinov’eva analysis of device A in the virgin state: from 100 K
to 130 K and from 175 K to 300 K the resistance follows two different nearest neighbor
hopping regimes with a transition in the middle (which could also be an instrumental
error).

whole temperature region and in the two different regions, giving very high TM pa-

rameters, the lowest of which is TM = 4 × 106. Since the requirement for M-VRH

conduction

∆Mhop > 2∆C

implies [37]

T > TM/465,

and since TM/465 ≈ 104 for the lowest TM , we can conclude that no M-VRH is taking

place in the STO junction.

In conclusion, the crossover from ES-VRH to NNH conduction at ≈ 175 K is

consistent with their respective theories, but the low localization length ξ and ES

hopping distance REShop together with the the fact that ES-VRH is rarely seen above

100 K strongly suggest that it is not a realistic transport mechanism. The Zabrodskii-

Zinov’eva analysis can be interpreted in a more realistic manner by considering NNH

from 300 K to 175 K and the again from 130 K to 100 K, since the latter region is

clearly a straight line, giving s = 1.01, obviously compatible with NNH (fig. 6.5).

What happens between 130 K and 175 could be simply instability during the temper-

ature sweep, but I also report another device, this time with 25 nm thick a-STO, that

similarly cannot be fitted with NNH in the whole 100-300 K region but has realistic

fits in two separate temperature regions (fig. 6.6.

In conclusion, I have shown crossover from NNH to ES-VRH hopping conduction in

pinhole-free a-STO junctions is consistent with the theory but it is physically unreal-

istic. I thus propose that transport in a fully insulating a-STO junction is essentially
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Figure 6.6: Fit of 25 nm thick device in the virgin state, from 100 K to 150 K the fit
is NNH and from 200 K to 300 K the fit is again NNH, but the curve cannot be fitted
with NNH in the whole temperature region.
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Figure 6.7: Schematic of the parallel model. The red dots are defects containing oxy-
gen vacancies; forming pulses create dense networks of defects that form a conducting
path from one electrode to the other.

NNH with a mid-temperature region showing a transition which should be subject of

further study. This is a new result, both interesting for fundamental studies of this

interesting material and because this knowledge will be useful to study conduction in

the memristive a-STO spin-valves presented in the next subsection.

6.1.2 Parallel circuit model in a-STO junctions

To interpret the transport in device A after the formation of metallic filaments

through forming pulse, we use the model first proposed by Ventura et al. [29], a

parallel circuit between a metallic, filamentary pathway and and either a hopping

pathway, so that the resistance of the device is given by

1

Rd(T )
=

1

Rm(T )
+

1

Rh(T )
. (6.1)

In this case, as proposed by Nili, the filaments are made of networks of defects that

can accommodate oxygen deficiencies along their path; these pathways in insulating

oxides can actually be metallic as reported by many groups [19] [39]. But how can

electron behave as if they were inside a metal, while they are inside an insulator? The

fact that oxygen vacancies in STO create localized states inside the insulating barrier

has been shown [40]. If these states are far away from each other, electrons hop from

one state to the other. Mott argued that if the hopping length is comparable to the

effective Bohr radius of these localized states, a metallic band is formed inside the

insulator. I propose that oxygen vacancies, normally distant enough so that electron

transport in the insulator is hopping, can form filamentary paths that can act like



CHAPTER 6. TRANSPORT AND FORMING PULSE IN AMORPHOUS AND EPITAXIAL STO67

metals because of these considerations.

The forming pulse creates these paths and controlling the oxygen vacancy along these

pathways is the means through which resistive switching is performed (this will be

studied in the following chapter). Since forming pulses can be with both positive and

negative voltages, these defect networks can be formed by electrons heating the a-STO

junction and locally creating defects where the oxygen vacancies collect and alter the

stoichiometry with a redox process [33]. As stressed by Nili et al., the formation of

these filaments has to do with the amorphous nature of the junction since it facilitates

the creation of such extended defect network .

The main idea behind this treatment is schematized in fig. 6.7. As previously

stated, this model is extremely simple but works simply with the assumption that

geometrical effect are irrelevant and that the two channels are independent (i.e. we

ignore hopping from an electrode to the pinhole and, vice versa, hopping from some-

where in the pinhole to an electrode). Also, while the whole area of the device featuring

hopping can be simply considered as a single channel, it is simplistic to considered the

parallel between different metallic paths as a single metallic pathway. Still, the model

is able to reproduce and explain many observed phenomena in devices with conduct-

ing paths through insulating materials (either pinhole made of electrode percolations

or filamentary paths created by electroforming pulses).

As already stated in chapter 3, the only clear way to distinguish between conduction

in pinholes and tunneling in insulating junctions is the temperature dependence, this

model will be applied to the measure R(T ) to show its validity.

The low resistance state of the previously studied device A can be interpreted with

this model. The temperature dependence of the resistance of the metallic channel is

linearly increasing

Rm(T ) = Rm0 +mT

and the hopping channel is simply a NNH channel

Rh(T ) = Rh0 exp(−T0/T ).

While I have shown that there is a crossover from NNH to ES-VRH at ≈ 175 K, for

this treatment it is reasonable to ignore the ES-VRH conduction al low temperatures.

At low temperatures, if there is a metallic path significantly modifying the resistance

of the device, the resistance of this channel is low while the resistance of the hopping

channel is exponentially increasing. So, if

Rh � Rm
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Figure 6.8: Fit of the low resistance state of device A with the parallel circuit model,
with a linear metallic resistance and a NNH channel.

then
1

Rh
� 1

Rm

and thus
1

Rd
=

1

Rh
+

1

Rm
≈ 1

Rm
.

This behavior is commonly observed in such devices. On the other hand, the resis-

tance of the metallic channel is only growing linearly, so this approximation is not

viable at high temperatures and even if hopping is the dominant mechanism since the

metallic channel can significantly modify the R(T ) curve of the device.

I fitted the low resistance R(T ) of device A, with the constraint that Rm0 and m be

> 0. The fit is in fig. 6.8. While it is a good fit, the parameter m converged to 0 giving

a constant resistance of the metallic region. This is because in the temperature region

where we measured the resistance NNH conduction is always dominating and even

if the metallic filament actively modifies the total resistance we do not have enough

data. It is still interesting to note that the parameter TES changed from 1096 K to

1240 K. This is consistent with the observed change in oxygen concentration after a

forming pulse in a-STO devices [19].

In the rest of this subsection I will analyze another device (B). This device pre-

sented a forming pulse at 100 K from from 1.3 MΩ to 18 kΩ (fig. 6.11). I then studied

the temperature stability of the states after the initial forming pulse of the devices: I

acquired R(T ) curve sweeping the temperature from 300 K to 80 K, where the device’s

resistance was 22 kΩ, at that temperature I lowered the device’s resistance with a 0
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Figure 6.9: I − V showing the forming pulse to 18 kΩ at 100 K of device B.

V → 4 V sweep to 3 kΩ. At that point I swept the temperature to 300 K and then

back to 80 K where the device was at 18 kΩ. This behavior was observed in most

devices: after the initial forming pulse, which we interpret as the creation of the oxy-

gen vacancies defect filaments, the resistance of these filaments can be lowered further

in a way that is irreversible only by increasing the temperature. This suggests that

the mechanism is a modification of the filament is oxygen vacancies moving to the

filament and thus lowering its resistance and the temperature instability is thermally

assisted detrapping of oxygen vacancies from the filament to the LSMO electrode (the

Co electrode oxidizes but no CoOx is in contact with the a-STO junction so we can as-

sume that the relevant oxygen vacancy migration is from the LSMO electrode). R(T )

curves of such unstable devices typically show sudden increases of resistance (see fig.

6.12). For clarity, I will refer to forming pulse only as the thermically-irreversible

creation of filaments and not to these thermically-reversible modification of the fila-

ment’s resistance. To test this idea further, I brought third device (C) to a formed,

low resistive state by applying a 0-4 V voltage sweep after the initial forming pulse.

Device B was already in a thermically stable state (i.e., after the forming pulse the

device was brought back to room temperature and then brought back to 100 K). At

this point I brought both the devices to a certain T0 and, after the devices had ther-

malized, brought them back to 100 K, measuring their resistance after the devices

had thermalized again. The result of these measurements is in fig. 6.10: device B in

the already stable state randomly changed the measured resistance by less than 10%

while device C, in the unstable state, increased it measured resistance at 100 K by

20%.
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Figure 6.10: Temperature stability tests of device C in low resistance state by applying
a 0-4 V voltage sweep after the initial forming pulse (left) and device B in a thermically
stable state, the procedure is described in this section.

Thus, reliable R(T ) fits can only be made from thermally stable states since we

can assume that the characteristics of the two channels and thus their parameters are

changing while the temperature is rising, giving unreliable fitting parameters. Fitting

the (1) state from fig. 6.11 using a NNH mechanism as a hopping channel and a

linearly increasing resistance as the metallic channel doesn’t give good results. This

is because at low temperatures the curve is concave-up while the fitting function can

only be concave-down, so we need to consider more complicated scattering mecha-

nisms that can give rise to a concave-up R(T ) of the metallic channel so that the

whole parallel can be concave-up.

Any kind of impurity of surface scattering mechanisms that the electrons can be sub-

ject to would have temperature-independent mobility and so it would only add a

constant to the resistance. There are two remaining mechanisms: electron-electron

scattering and the full Bloch-Grüneisen treatment of electron-phonon scattering. Since

the former has never been observed at such temperatures, even in one-dimensional

systems (even though such could be a valid subject of study), we will ignore it even

though it can give reasonable fits in some devices. The Bloch-Grüneisen formula [38]

R(T ) = C

(
T

TD

)5 ∫ TD/T

0

x5

(ex − 1)(1− e−x)
, (6.2)

TD being the Debye temperature, is the most general treatment of electron-phonon

interaction. This R(T ) starts to deviate from linearity only when T � TD. During

the writing of this thesis, I received another confirmation of the validity of this treat-

ment from an article from Hueso’s group [39] where ”leaky” 1.2 nm AlOx junctions

were studied (for their use in organic semiconductor spin valves). The measured R(T )

curve of such junction is in fig. 6.13. The junctions present metallic feature and are

another example of oxide junctions with conductive filaments. We can clearly see a
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Figure 6.11: R(T ) curves of three different states of device B. The colored curves
indicate the direction of the temperature sweep, the dashed downwards arrow indicates
the 0 V → 4 V sweep that lowered the resistance to 3 kΩ and the upwards dashed
arrow indicates that the resistance increased by itself during the two hours between
the two temperature sweeps.

Figure 6.12: R(T ) curves of different state 2 of device B.
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Figure 6.13: Temperature dependence of the resistance of an AlOx junction, confirm-
ing the metallic behavior of the AlOx ”leaky” barrier. [39]

Bloch-Grüneisen trend of the resistance. In this particular AlOx junction we only see

a metallic trend of the resistance; this means that the resistance of such channel is so

low that the parallel circuit model in this case is simply a short-circuit through this

very low resistance channel.

A fit of the temperature dependence of state 1 of device B using a parallel

between BG and NNH is in fig. 6.14. The fitting parameters are reasonable: the

TNNH of the NNH channel is 1580 K, giving an energy barrier between hopping states

W of 18 meV. The Debye temperature of the metallic channel is 562, which is very

close to the epitaxial STO TD = 513 K [41]. One has to be cautious while comparing

the two temperatures. On one hand the electrons traveling in the approximately one-

dimensional filament can interact with bulk phonons from the rest of the junction,

which is amorphous. On the other hand the interaction with phonons can be with

the one dimensional phonons in the filament (the electrons are metallic, so are able to

form band structures and thus we can assume these one dimensional phonons exist)

but their is no clear link between the TD of such filament and the TD of the bulk

material. A fit of the temperature dependence of state 3 of device B is in fig. 6.15. In

this state TD = 714 K and T0 = 1710 K, so both parameters have increased from the

fit of the previous state.

Again we used only NNH conduction as the hopping channel ignoring the crossover

to ES-VRH. From the fits of state 1 of device B we have Rh/Rm = 3 × 10−3 at 150

K, and since so we can effectively say that Rd ≈ Rm in the temperature region of the

crossover to ES-VRH and so the crossover has no actual relevance on the resistance

of this device.

It has been previously suggested that the observed temperature dependence of

such devices depends on the resistance of the LSMO electrode, which also features

similar R(T ) curves with a maximum at 250-350 K because of polaron transport in
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Figure 6.14: Fit of the temperature dependence of state 1 of device B using a parallel
circuit between a Bloch-Grüneisen channel and a nearest neighbor hopping channel.
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Figure 6.15: Fit of the temperature dependence of state 3 of device B using a parallel
circuit between a Bloch-Grüneisen channel and a nearest neighbor hopping channel.
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the LSMO [14]. Similar temperature dependences of the resistance have been reported

by many groups [45] [46] [47]. These bumps in the R(T ) curve have been attributed to

an ordering temperature of the LSMO/STO interface that is lower than the ordering

temperature (TC) of the bulk LSMO. If this were the case, one could observe a kink in

the temperature dependence magnetoresistance at temperatures around the maximum

of the R(T ). Also, this explanation relies on the presence of manganites but similar

behaviors have been observed with different electrodes [29]. An LSMO/STO interface

showing lower TC than that of the bulk LSMO has been considered mostly because

of the fact that there is no correlation between the temperature of the maximum of

the R(T ) of the device and of the LSMO electrode; on the other hand, devices with

Alq3 junctions and LSMO electrode feature the same temperature dependence of the

resistance. Lastly, as reported in this thesis, we have seen LSMO/STO/Co devices

showing an entirely insulating-like R(T ). For these reasons, I propose the parallel

circuit model as an explanation of the temperature dependence of such devices.

It has also been proposed that our a-STO device features polaron transport through

the filaments; in this case we would have a net transition from a metallic conduction

to hopping. It is important to stress that in our case, while similar to a transition

from metallic conduction to hopping, is not the same as the polaron case. In the

polaron model there is only one single channel where the conduction undergoes a

transition and, at temperature far away from the transition the conduction is entirely

either metallic or hopping. In our model, the two channel are always coexisting and

the non-dominant channel can always influence the resistance of the whole device; as

previously stated, at low temperature sufficiently far away from the ”bump” of the

R(T ) curve, since the hopping channel has exponentially rising resistance, the parallel

circuit is essentially a short circuit through the metallic channel which completely

dominates the conduction of the device. On the other hand the resistance of the

metallic channel is only growing linearly, so this approximation is not viable at high

temperatures and even if hopping is the dominant mechanism, the metallic channel

can significantly modify the R(T ) curve of the device.

To test the parallel circuit model against the polaron one we can use the simple

but powerful Zabrodskii-Zinov’eva approach: if the temperature is far away from the

maximum of the resistance (the transition region) is hopping than this analysis would

yield reasonable results confirming the polaron model. The result of the computation

in the 250-350 K temperature region is in fig. 6.16. If there were temperature region

with a pure hopping we would expect to see a linearly decreasing region in the lnW

vs lnT plot. This is not the case (the last ten points are because of noise during the

temperature sweep and anyway have a slope of -20 and could not be interpreted as

hopping) so we can exclude polaron conduction in our device.

To further prove the validity of the model we are using we can still use the Zabrodskii-
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Figure 6.16: Zabrodskii-Zinov’eva analysis of the resistance of state 1 of the device B
in the 250-350 K region.

Zinov’eva analysis: if we actually have a hopping channel in parallel to a metallic chan-

nel whose R(T ) curves is already known, we can compute the R(T ) of the hopping

channel as
1

Rh(T )
=

1

Rd(T )
− 1

Rm(T )
(6.3)

where Rd is the resistance of the whole device. As we have previously shown at low

enough temperatures the resistance of the device is just the resistance of the metallic

channel so fitting Rd(T ) in that region actually gives us the fit of Rm(T ). With these

considerations in mind I fitted the R(T ) curve of state 1 of device B in the 80-150

K region with the Bloch-Grüneisen formula (eq. 6.2) plus a constant to account for

temperature-independent scattering mechanisms and used eq. 6.3 to obtain the data

of the resistance of the hopping channel in parallel to the metallic channel that I had

just fitted. Computing lnW vs lnT in the 200-300 K region gives us linearly descend-

ing data and by fitting it we obtain s = 0.94, which indeed is a coefficient compatible

to NNH.

Even though the inability to use I−V fits to check for conductive channels inside

an insulator has been shown in subsection 3.0.2, we can still use I − V to test our

parallel circuit model. In fig. 6.18 is the I − V curve of device B at 300 K which

is approximately linear, consistent with NNH that doesn’t predict non-linear I − V
curves.

In fig. 6.19 are the I − V curves of the same device, at 100 K, before forming pulse
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Figure 6.17: Zabrodskii-Zinov’eva analysis of the resistance of the extrapolated hop-
ping channel of state 1 of the device B in the 200-330 K region.

Figure 6.18: I − V curve of device B at 300 K.
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Figure 6.19: I − V of the device B at 100 K in two different states.

and in its 3 kΩ state (state 2). Both are nonlinear, but why? The nonlinearity of

filamentary conductive channel has been shown in MTJ to be simply a ”parasitic”

effect of the electrons that are tunneling and not passing through the pinhole. As

reported in subsection 3.0.2, it has been computed that in an MTJ as much as 88%

of the current can be passing through the pinhole while the device still has a differ-

ential conductance (dI/dV ) with a positive curvature (such as these two I − V s); in

general the more current is flowing through the pinhole, the lower is the normalized

conductance (see fig. 3.4).

I computed the normalized different conductance for two different resistance states

states, plotted in fig. 6.20. We can see that the lower resistance of the state has

lower conductance: by lowering the resistance of the filamentary channel we change

the ratio of current passing through this channel and thus we lower the normalized

conductance. We can conclude that the I−V curves of these filamentary devices both

agree with previous experiments [24] and theory [25]. But where does the tunneling

come from? In the parallel circuit model we have ignored tunneling: our devices have

sufficiently high thicknesses so that electrons ”prefer” to either hop through the oxy-

gen vacancies or pass through the conductive filaments. At 100 K the resistance of

the hopping channel is so low that it is almost as if it didn’t exist (because Rh � Rm)

and we can see the residual effects of tunneling only when measuring the conductances

of our devices. Another possible explanation is that the conducting filaments do not

completely short circuit the metal/oxide barrier and tunneling from the electrode to

the filament, which cannot be probed with the temperature dependence of the resis-

tance, is only visible from conductance measurements. This was also reported by Nili

[19].
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Figure 6.20: Normalized conductance of device B before forming pulse in a formed 18
kΩ state (state 3) and a formed 3 kΩ state (state 2).

6.2 Epitaxial STO devices

While crystalline STO was extensively studied by De Teresa, we wanted to use

the techniques used in the previous part of this subsection on these devices to test

these devices. Epitaxial STO is known to have filamentary paths of dislocations where

oxygen vacancies can settle and create conductive filaments [42]. Because of this, we

can use the parallel circuit model to study conduction trough these kinds of devices.

While the e-STO devices we fabricated showed no memristor effect, it is still interesting

to study the effects of filamentary conduction channels in these well known devices.

We fabricated 2.5 and 10 nm thick LSMO/e-STO/Co devices. The crystalline quality

of the STO junction was verified with SEM measurements shown in chapter 5. We have

seen no forming pulse in these devices but nonetheless the temperature dependence

of the device suggests conductive channel in parallel to a tunneling/hopping channel

as with the a-STO devices. We exclude nearest neighbor hopping and variable range

hopping as they are mechanisms seen in amorphous and disordered system. We also

exclude Richardson-Schottky for the same reason as with the a-STO device: if the

behavior of the resistance were determined by the interface, so would the the resistance

of the filamentary path in the device and thus the this path could not be metallic.

In fig. 6.21 is show the temperature dependence of the resistance a a 10 nm thick

e-STO junction and a fit with the parallel circuit model, using Bloch-Grüneisen as

one resistance and Richardson Schottky as the other. It is a good fit by itself: the
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Figure 6.21: R(T ) of a 10 nm thick LSMO/e-STO/Co device and a fit with a parallel
of a Bloch-Grüneisen channel and a Frenkel Poole emission.
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Figure 6.22: I −V of the 10 nm e-STO device at 100 K (left) and 300 K (right) fitted
with Poole-Frenkel.

Debye temperature Td is 270 K (we could have used a linearly increasing resistance

giving the same fit) and the characteristic temperature

T0(V ) = e(φ−
√
eV/dπε0εR)/kb,

where φ is the energy barrier that an electron must cross to move from one atom to

another in the crystal, d the thickness, in this fit is kbT0(V ) = 0.211 eV. With our

values
√
eV/dπε0εR = 0.002 eV � φ = 0.211 V and thus the eφ ≈ kbT0 = 0.211 eV.

This is a reasonable energy barrier, but it is genuine Poole-Frenkel effect we must also

fit the I − V s (eq. 2.19).

The fit at 300 K with the Poole-Frenkel I − V is in fig. 6.22. It is a good fit, but

computing the εR from the fitting coefficient

B =
e
√
e/dπε0εR
kbT

gives εR = 1.4. While I was not able to obtain a εR of the e-STO junction (our

impedance spectroscopy instrument only worked in two-contact mode and because of

the high resistance of the LSMO electrode, which features capacitance effect because

of grain boundaries, overshadowed the lower resistance of the e-STO junction), at

room temperature this value is typically εR = 300 and thus conclude that this is not

a genuine Poole-Frenkel conduction.

We suggest that in parallel to the conducting filament channel is simply tunneling:

this would explain the non-linear IV of the device at 300 K (the conductance of a tun-

neling channel increases with bias, as carriers see an effectively narrower trapezoidal

barrier.). The strong temperature dependence of tunneling channel could be because

of the temperature dependence of the LSMO electrode and of the LSMO/STO barrier.
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Chapter 7
Memristive and spintronic
amorphous STO devices

In this chapter I will show the memristive and spintronic properties of the devices

reported in the previous chapter.

Device C, after the initial forming pulse, showed bipolar resistive switching (fig.

7.1), switching reversibly from 90 kΩ to 136 kΩ (read at -0.1 V), lowering its resis-

tance at 1.7 V and increasing it at -1.3 V. To check the polarity of the switching, after

lowering the resistance at positive voltages (1.7 V) I applied even higher voltages (2.5

V) and measured the resistance again, with no significant changes. After increasing

the resistance at negative voltages (-1.3 V) I applied even lower voltages (-2 V) and

measured the resistance at the same bias, with no significant changes. This procedure

is shown is fig. 7.2. After a resistive switch at negative voltages, applied another

negative pulse shown no kind of hysteretic behavior while after a resistive switch at

positive voltages the current saturated to compliance, but a successive resistance mea-

surements showed no signs of change.

To test the stability of the device I applied a SET LOW voltage (2 V), then 0

bias (to avoid non-volatile effects) and then a READ voltage of -0.1 V was applied

ten times, measuring the resistance, and then setting the bias to 0 after every READ.

Then the SET HIGH (-1.6 V) was applied and the resistance read ten times like pre-

viously described. The result of this measurement is in fig. 7.3. Unfortunately this

device isn’t very stable.

The same bistability was seen in device A (fig. 7.4. Like the previous devices,

this resistive switching is bipolar, with the same polarity (positive voltage lower the

resistance and negative voltages lower it) and it is entirely non-volatile. The same

stability test were carried out with better results (fig. 7.5).

The voltage is applied with the Co electrode as the ground, so the decrease of the

resistance at positive voltages and the increase of the resistance at negative voltage is
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Figure 7.1: I−V measurement showing the bipolar resistive switching of an LSMO/a-
STO/Co device (C).

Figure 7.2
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Figure 7.3: Stability test of the bipolar resistive switching of device C: the arrows indi-
cate SET HIGH and SET LOW voltages and the data is the subsequent measurement
of the resistance at -0,1 V.

Figure 7.4: I−V showing bipolar bistability (left) and comparison between the I−V
curves in the two different states.
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Figure 7.5: Stability test of the bipolar resistive switching of device B: the arrows indi-
cate SET HIGH and SET LOW voltages and the data is the subsequent measurement
of the resistance at -0,1 V.

consistent with oxygen vacancies transported from the LSMO electrode to the STO

junction and vice versa, since the increase in concentration of oxygen vacancies lowers

the resistance of the metallic filament. We also cannot exclude that oxygen vacancies

diffuse in the rest of the STO junction and thus changing the properties of the hop-

ping channel. Because of the low OFF/ON resistance ratio (≈ 115%), we can say that

unlike the results of Jang [12] and Nili [19], this is not the creation of annihilation of

the metallic filament but only a modification.

OFF/ON ratio can be improved by controlling the oxygen vacancy concentration in

the SrTiO3 junction; we expect to do this by growing the amorphous SrTiO3 in ar-

gon and oxygen atmosphere instead of an oxygen atmosphere. Changing the LSMO

electrodes with other ferromagnetic materials (for example permalloy, Ni.80Fe.20) may

also improve the resistive switching properties of the devices since oxygen vacancy

diffusion also depends on the metal/oxide interface properties.

I will now show the spintronic properties of the amorphous STO devices and their

correlation to the resistive switching. While devices A and B showed no spin valve

effect in any of the resistive states, device B showed both spin valve magnetoresistance

and an interesting interplay between magnetoresistance and resistive switching.

Device B, after forming pulse, in its low resistance state showed a magnetoresistance

represented in fig. 7.6. We can clearly see a negative spin valve magnetoresistance

(SVMR = 1.1%) with coercitivities 80 Oe and 1100 Oe. The coercitivies of the LSMO

and Co electrode are measured from the AMR (the increase of resistance when apply-
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Figure 7.6: Magnetoresistance measurements of the low resistance state (left) and
high resistance state (right) of device B.

Figure 7.7: Bias dependence of the inverse SVMR of device A.

ing a magnetic field with the magnitude of the coercive field, respectively parallel and

perpendicular to the current) and are respectively 50 Oe and 1100 Oe. The fact that

these two sets of coercivities do not match is commonly observed but not yet explain;

one hypothesis is that the transport is not from states with bulk properties but from

other states at the surface (for example, grain with different coercitivies because of

their shape or oxidized regions of the electrodes). The maximum of the SVMR is at

-0.1 V. The full voltage dependence of the MR is in fig. 7.7.

In its high resistance state, the device showed a clear modification of the magnetore-

sistance: no clear SVMR is seen but only an almost-linear decrease of the resistance

with the applied field. We have regularly seen what could look like SVMR with very

high coercive fields. These signal were not reproducible and appear to be some noise

of unknown origin. The linear decrease is also commonly observed in device with

LSMO electrodes and is not yet explained, but it is qualitatively similar to the CMR

of the LSMO electrode (see fig. 2.8).

We can attribute the SVMR to the conductive filaments for two reason. In the
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parallel circuit model, from eq. 6.1, we can compute the magnetoresistance of the

whole parallel circuit as a first order modification of the resistance (MR < 10%):

MRd =
MRd ×Rh +MRh ×Rm

Rm +Rh
. (7.1)

If the contribution of the hopping channel to the magnetoresistance of the device is

comparable to the contribution of the metallic channel,

MRd ×Rh ∼MRh ×Rm

implies
MRh
MRd

∼ Rh
Rm

.

This ratio is of the order of 105, computed from the fits from the previous chap-

ter, at 100 K. Since the hopping mechanism would have to have unrealistically high

magnetoresistances, and considering that

Rh � Rm

at 100 K, we can say

MRd ≈MRm.

As we have previously seen, resistive switching can be seen as the modification of the

metallic channel of the device: in the low resistance state the device has a magnetore-

sistance that can be explained by BMR theory [30], in the high resistance state the

filament is modified and lacks some oxygen vacancies compared to the low resistance

state, giving this state a higher resistance. This modification is responsible for the

disappearance of the spin valve magnetoresistance observed in this state, although it is

interesting as to why such a small increase of the resistance can modify the transport

of spin in the device.

The difference between the voltage dependence of our device and of the devices re-

ported by De Teresa (fig. 2.12) is also to be noted. Since BMR and TMR are the

matching of the electron wave function at both sides of the pinhole, the fact that

we see negative MR can be attributed to the Co hybridization at the STO interface.

We can attribute the difference of the voltage dependence to either a difference in

stechiometry caused by the amorphousness (the TEM images suggest and abundance

of Sr compared to Ti in the STO junction) and because of the effect of oxygen content

on spin transport [45].

Since transport of spin is through an approximately one-dimensional metallic chan-

nel, the spin valve effect can be explained with BMR theory shown in subsection 3.0.4.
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Figure 7.8: Magnetoresistance of a 10 nm thick e-STO device, at -0,1 V and 100 K.

The reason why the observed MRs are so low in magnitude is the because the length

of the filaments, and thus their resistance, is too high. Thus phonon scattering is too

high, lowering the spin diffusion length and thus lowering the observed SVMR. Devices

with less resistive filaments may transport spin in a completely ballistic regime and

thus have higher MR ratios. This may be observed both with devices with a higher

concentration of oxygen vacancies in the STO junction, which we could achieve by

fabricating the device in an argon atmosphere instead of an oxygen one. Lowering the

thickness of the STO junction may also work, but it has to be noted that the interplay

between resistive switching and spin valve works because if the electron is not trans-

ported through the metallic filament it is transported through hopping, a channel not

featuring magnetoresistance. If we lower the thickness of the device, hopping may not

favored and we may end up with a parallel circuit of metallic conduction and tun-

neling. Since tunneling also transports spin, the device could have a lesser interplay

between the two effects.

We can use the parallel circuit model to interpret the magnetoresistance of the

previously shown epitaxial STO junctions. At room temperature the device showed

no SVMR because of the TC of the LSMO electrode is around room temperature. At

100 K it presented a clear spin valve signal magnetoresistance of 12% at -0.1 V, in fig.

7.8. This spin valve is negative as the previous devices for the same reasons concerning

Co/STO interface hybridization. As we previously shown, from BMR we expect that

a ballistic channel has the same magnetoresistance of a tunneling channel because the

physics from which the two phenomena arise is the same. In we have a parallel circuit

of two channels that feature the same magnetoresistance, the magnetoresistance of the

whole device is the same as the two channels. If instead the metallic channel does not

provide any magnetoresistance (perhaps because it is too long and the spin diffusion

length is too low), then the effect of this metallic filament is to lower the magnitude,
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but not any other property, of the magnetoresistance, following eq. 7.1: if the metallic

channel has no magnetoresistance,

MRd =
Rm

Rm +Rt
MRt.

In our specific case, we do not have enough information on the temperature dependence

of the tunneling channel and thus we can not quantify how the metallic filament

modifies the magnetotransport properties of the junction.
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Conclusions

In conclusion, we have investigated La0.7Sr0.3MnO3/amorphous-SrTiO3 (5 nm)/Co

devices featuring bipolar resistive switching, with the low resistance state showing a

clear spin valve magnetoresistance that switches off in the high resistance state. Both

the magnetoresistance and resistive switching are attributed to a complex interplay be-

tween conductive and hopping channels. The polarity of the bistable resistive switch-

ing is compatible with oxygen vacancy movement from and to the LSMO electrode

and the sign of the observed magnetoresistance is consistent with previous theories

concerning SrTiO3/Co interface hybridization that modify the effective polarization

of the electrode.

I have put significant effort in expanding a previously proposed model to account for

metallic channels throughout the insulating SrTiO3 junction. Using this model I have

shown that the amorphous SrTiO3 device acts like a parallel circuit between metallic

channels whose resistance is described by the Bloch-Grüneisen formula and a nearest

neighbor hopping channel. The magnitude of the magnetoresistance measured in the

low resistance state is due to both on the quality of the interface between the SrTiO3

junction and the electrodes and on the low scattering in the metallic filaments created

by forming pulse. The magnitude of the OFF/ON ratio also depends on the quality

of the metallic channels, presumably filaments. Both the magnetoresistance and the

OFF/ON ratio can be improved by controlling the oxygen vacancy concentration in

the SrTiO3 junction and we seek to do this by growing the amorphous SrTiO3 in

argon and oxygen atmosphere instead of an oxygen atmosphere.

I have also provided a formula to compute the magnetoresistance of the parallel circuit

between the metallic and the hopping/tunneling circuit (depending on the material

of the device). This formula can account for and quantify how the metallic filament

through the insulating junction can alter or degrade the spintronic properties of a

magnetic tunnel junction.

In this thesis for the first time I show an La0.7Sr0.3MnO3/SrTiO3/Co device showing

both magnetoresistance and resistive switching, using knowledge on one phenomenon
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to interpret the other. This device is, to my current knowledge, the third reported

device to feature both these effects. I have also expanded a previously proposed phe-

nomelogical model to account for metallic filaments in an insulating junction and have

used this model to study the reported devices. At the time of writing, I am currently

working on applying this model on spin valves with Alq3 junctions as these devices

feature many similarities to the amorphous SrTiO3 devices. Since the scope of this

thesis is both to show how such devices may be used for a computing compatible to

beyond CMOS technology and to provide insight on the physics behind transport in

SrTiO3 junctions it is expected that this work will offer both ideas on the fabrication

of multifunctional devices and on the charge and spin transport in such devices.
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