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Abstract

General Relativity (GR) is one of the greatest scientific achievements of the 20th century along
with quantum theory.
Despite the elegance and the accordance with experimental tests, these two theories appear to
be utterly incompatible at fundamental level.
Black holes provide a perfect stage to point out these difficulties. Indeed, classical GR fails
to describe Nature at small radii, because nothing prevents quantum mechanics from affecting
the high curvature zone, and because classical GR becomes ill-defined at r “ 0 anyway.

Rovelli and Haggard have recently proposed a scenario where a negative quantum pressure at
the Planck scales stops and reverts the gravitational collapse, leading to an effective “bounce”
and explosion, thus resolving the central singularity. This scenario, called Black Hole Fire-
works, has been proposed in a semiclassical framework.

The purpose of this thesis is twofold:

• Compute the bouncing time by means of a pure quantum computation based on Loop
Quantum Gravity;

• Extend the known theory to a more realistic scenario, in which the rotation is taken into
account by means of the Newman-Janis Algorithm.
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Sommario

La Relativitá Generale costituisce, assieme alla Meccanica Quantistica, una delle piú grandi
conquiste del ventesimo secolo.
Tuttavia, nonostante la loro eleganza formale e la loro compatibilitá con i risultati sperimentali,
queste due teorie risultano essere fortemente incompatibili a livello fondamentale.
I buchi neri costituiscono il palcoscenico perfetto per evidenziare le difficoltá sopracitate. In-
fatti, come ben noto, la Relativitá Generale non risulta essere in grado di descrivere adeguata-
mente la Natura per piccoli valori del raggio, e risulta essere mal definita per r “ 0.

Recentemente, Rovelli e Haggard hanno proposto un modello in cui una pressione negativa, di
natura puramente quantistica, possa presentarsi una volta raggiunta la cosiddetta densitá di
Planck, interrompendo cośı il collasso gravitazionale e causando un “rimbalzo” effettivo ed una
conseguente esplosione, risolvendo dunque il problema della singolaritá centrale che caratter-
izza la teoria classica dei buchi neri.

Le finalitá della presente tesi sono le seguenti:

• Valutare il tempo di rimbalzo, ad oggi noto solo in un contesto semi-classico, per mezzo
di un calcolo basato sulla Loop Quantum Gravity;

• Estendere i risultati di Rovelli e Haggard al caso rotante per mezzo dell’algoritmo Newman-
Janis.

iii



iv



Contents

Introduction ix

I Prologue 1

1 Introduction to Black Holes 3

1.1 Spherical Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Static and Stationary Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 The Schwarzschild Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 The Black Hole region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 White Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Extendibility & the Kruskal spacetime . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Some remarks about Singularities . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Causal Structure and Predictability 13

2.1 Asymptotically Flat Spacetimes . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Conformal Compactification . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 Asymptotic Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Black Holes & The Singularity Theorem 17

3.1 Formal definition of Black Hole . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 The Singularity Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Null Hypersurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.2 Trapped Surfaces & Penrose Singularity Theorem . . . . . . . . . . . . . 20

4 Semiclassical aspects of Black Hole physics 21

4.1 Elements of QFT in Curved Spacetime . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Uniformly accelerated observer in Special Relativity . . . . . . . . . . . . . . . 22

4.2.1 Rindler spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Massless Scalar Field in the p1` 1q-Rindler spacetime . . . . . . . . . . . . . . 23

4.4 Bogolyubov Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.5 The Unruh Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 The Hawking Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Black Holes & Quantum Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



vi CONTENTS

5 Planck Stars 31

5.1 Singularity resolution & the quantum bounce . . . . . . . . . . . . . . . . . . . 32

5.2 Resolution of the Information Paradox . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Black Hole Fireworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.4 Some Phenomenology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II On the Effective Metric of a Rotating Planck Star 37

6 Rotating Black Holes 39

6.1 The Kerr Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 Singularity and Horizon structure . . . . . . . . . . . . . . . . . . . . . . 40

6.1.2 Frame Dragging and the Ergosphere . . . . . . . . . . . . . . . . . . . . 41

6.1.3 The Penrose Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 More General Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3 The Newman-Janis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.1 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.2 From Schwarzschild to Kerr . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Rotating Hayward & Modified-Hayward Metric 49

7.1 The Rotating Hayward Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2 The Rotating Modified-Hayward Metric . . . . . . . . . . . . . . . . . . . . . . 51

7.3 Open Problems and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 54

III Black Hole Fireworks and Transition Amplitudes in Loop Quantum
Gravity 55

8 The Spin foam Approach to Loop Quantum Gravity 57

8.1 Tetrad formulation of General Relativity . . . . . . . . . . . . . . . . . . . . . . 57

8.2 The Einstein-Hilbert action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

8.3 The Hamiltonian Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.4 Spin foam Quantization of BF Theories . . . . . . . . . . . . . . . . . . . . . . 62

8.5 The Lorentzian EPRL Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.5.1 Elements of representation theory of SLp2,Cq . . . . . . . . . . . . . . . 64

8.5.2 The transition amplitudes of LQG . . . . . . . . . . . . . . . . . . . . . 65

9 Towards computing black hole tunnelling time 67

9.1 Feynman rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

9.2 Decomposition and boost Clebsch-Gordan . . . . . . . . . . . . . . . . . . . . . 68

9.3 The edge amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

9.4 Open Problems and Concluding Remarks . . . . . . . . . . . . . . . . . . . . . 73

Conclusions 75

A Energy Conditions 77



CONTENTS vii

B Angular Velocity, Area of the Horizon and Perturbations 79
B.1 Angular Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.2 Area of the Horizon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
B.3 Asymptotic Analysis and Perturbation Theory . . . . . . . . . . . . . . . . . . 80

C SUp2q and SLp2,Cq conventions 83
C.1 SUp2q conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.2 SLp2,Cq conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



viii CONTENTS



Introduction

It has been a long-standing challenge for theoretical physicists to construct a consistent theory
of quantum gravity. It is well known that General Relativity itself gives some hints of its own
limits, since given smooth initial data can evolve into singular field configurations.
Classically, this is not a problem at all if the singularities are hidden behind event horizons,
because this would mean that these singularity are not in causal contact with the rest of
the Universe. This idea, indeed, led Roger Penrose to formulate the so called “weak cosmic
censorship conjecture” in 1969.
The 70s have indeed represented a turning point for black hole physics. In this period Stephen
Hawking showed, under very general assumptions, that if we take into account the vacuum
fluctuations in a region close to the event horizon it follows that black holes emit particles.
One of the most remarkable consequences of this result is that the radiation described above
is exactly thermal and contains no information about the state of the black hole. This led to
the notorious problem of “information loss”, since particles can fall in carrying information but
what comes out is featureless thermal radiation.
It can be easily argued that this paradoxical situation would lead to non-unitary evolution of
the quantum states, so that one of the basic principles of quantum mechanics would be violated.
Another great achievement obtained in the seventies is that black holes can be treated, at least
formally, as thermodynamic-like systems. Indeed, they have an entropy and a temperature
which are given by

TH “
~κ

2π kB
, SBH “

kBA

4`2P

where κ is the surface gravity and A is the area of the horizon.
These quantities appear to be closely related to the quantum aspects of gravitation, in the
sense that they depend on both Planck’s constant ~ and Newton’s constant G. The Hawking
temperature, as well as the Bekenstein-Hawking entropy, have been derived in many indepen-
dent ways, in different settings and with different assumptions, so that they are considered
robust features to be included in any complete theory of quantum gravity.
Although none of these results deal directly with the problem of the curvature singularity, which
represents the emblematic example of a region characterized by pure quantum features, these
quantities can still be extremely useful to determinate whether a theory of quantum gravity is,
more or less, worth of trust.

Nowadays, there are different approaches to quantum gravity in which it has been possible
to recover the former quantities by means of a pure quantum computation, such as Loop
Quantum Gravity, String Theory, Asymptotic Safety and others.

ix
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However, despite the degree of progress of these theories, quantum gravity still remains a major
unsolved challenge at the core of fundamental physics and its phenomenology is still beyond
direct observations. However, recent research has brought to surface a number of different ideas
for indirect tests, and the possibility of detecting effects that occur in the Planck scale regime
does not appear completely out of reach. For example, the idea that quantum mechanical
effects may resolve the gravitational singularity has led to the notion of Planck stars, and its
associated phenomenology currently under exploration, as well as the possibility that black
holes are quantum condensates resolves most of the issues encountered in the literature.

The aim of this thesis is to give a first look at which kind of predictions can be recovered
by a recently proposed model for non-singular black holes. Moreover, we are also interested in
the consequences deriving from the application of loop quantum gravity to the quantum core
of such compact self-gravitating object.

In order to be more specific, in Part I: Prologue we present the classical description of black
holes. In this context we also introduce the most peculiar paradoxes known in the (semi)classical
theory of black holes, with particular regards for the paradox of information loss and for the
emergence of singularities in general relativity. As discussed above, these issues lie at the very
foundation of black hole physics, and represent one of the main motivation for the development
of the different approaches to quantum gravity. Moreover, in the Prologue we introduce two
different and complementary semiclassical scenarios derived by analogy with loop quantum
cosmology, i.e. the Planck Star model and Black Hole Fireworks, aimed to resolve the the
previously mentioned oddities of the “classical” theory.

In Part II: On the Effective Metric of a Rotating Planck Star, we present a generalization
of the known results for the Planck Star model. In particular, our aim is to recover an effective
description of the spacetime surrounding a rotating Planck Star in order to provide a more
realistic physical description such a star-like object. To do so we use the renowned Newman-
Janis Algorithm.

Finally, in Part III: Black Hole Fireworks and Transition Amplitudes in Loop Quantum
Gravity, firstly we introduce some basic aspects of the Spinfoam Approach to quantum gravity.
Secondly, we analyse in details the Lorentzian EPRL model also providing some generalized
rules for computing transition amplitudes in loop quantum gravity. Then, we present a poten-
tial application to these techniques to the problem of the computation of the bouncing time for
black hole fireworks together with a more realistic description of the boundary spin-network
for this scenario. However, the implementation of these computations is left for a future study.
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Chapter 1

Introduction to Black Holes

The aim of the first part of this thesis is to review some classical and semi-classical results
known in Black Hole physics which are going to be discuss and analysed extensively later.
Most of this introductory part is based on [1; 2; 3]. We have also drawn on some ideas from
the books [4; 5].

In this work we choose to use the metric signature p` ´ ´´q. Moreover, throughout most
of this thesis we shall use the so called geometrized units, i.e. c “ ~ “ G “ 1. However, we are
going to restore the values of G, ~ and c whenever necessary in order to make explicit estimates.

1.1 Spherical Symmetry

It is quite known that the only way to address the Cauchy Problem for the Einstein’s Field
Equations is to assume some underlying symmetries of the spacetime.
The most obvious assumption is then to consider a spherically symmetric gravitational field.
Indeed, this assumption represents a quite good approximation for the gravitational field cre-
ated by a star, at least in the far field limit.

Let us now give a proper mathematical characterization of the concept of Spherical Sym-
metry.
From the fundamental courses of Linear Algebra and Geometry it is well known that the set of
all isometries of a metric space forms a group. Consider the line element on the 2-sphere, S2:

dΩ2 “ dθ2 ` sin2 θ dφ2 (1.1)

The set of all the transformations that leaves this line element unchanged, i.e. the isometry
group for the 2-sphere given the former metric, is called Orthogonal Group, Op3q. For sake of
generality, if we consider the matrix representation of this group, we have that

Opnq “
 

A P GLpnq : AAT “ I
(

It is straightforward to conclude that Opnq has has two connected components.
Indeed, let A P Opnq. Since detA “ detAT we have, due to the Binet’s theorem, that
detA “ ˘1. So that we have one connected component that contains orthogonal matrices

3



4 CHAPTER 1. INTRODUCTION TO BLACK HOLES

whose determinant is one, known as the Special Orthogonal Group, SOpnq, and the other that
contains orthogonal matrices whose determinant is minus one. Moreover, SOpnq is the only
subgroup of Opnq connected with the identity operator.
Thus, both SOpnq and Opnq are Lie Group.

For our purpose, we are interested in the set of isometries that does not include reflections
of the axes, indeed we are only concerned about the invariance under rotations, at least for
what concerns the spherical symmetry.
Given the former discussion, we can then define a spherically symmetric spacetime as follows.

Definition 1. A spacetime is said to be spherically symmetric if its isometry group contains
an SOp3q subgroup whose orbits1 are 2-spheres.

In such spacetime we can define the radial coordinate in an unambiguous way. Indeed, let
M be a spherically symmetric spacetime, thus we are allowed to define the so called area-radius
function r :M ÝÑ R such that rppq “

a

Appq{4π , @p P M , where Appq is the area of the S2

orbit through p PM .

1.2 Static and Stationary Spacetimes

Definition 2. A spacetime pM, gq is said to be stationary if it admits a Killing vector field
k which is everywhere timelike, i.e. gpk, kq ą 0

Now, if we consider a hypersurface Σ ĂM nowhere tangent to k, we are allowed to choose
the coordinate as follows:

• Let xi, i “ 1, 2, 3 be coordinates on Σ;

• Now assign coordinates pt, xiq to the point parameter distance t along the integral curve
of k that starts at the point with coordinates xi on Σ

This defines a coordinate chart pt, xiq ” pt,xq at least in a neighbourhood of Σ.
In such a coordinate chart we have that k “ B{Bt. Since k is a Killing vector field, we can
cast the metric of the spacetime in such a way that it shall appear as independent from the
coordinate t, hence

ds2 “ g00pxq dt
2 ` 2g0ipxq dtdx

i ` gijpxq dx
idxj (1.2)

with g00pxq ą 0.

Next we need to introduce the notion of hypersurface-orthogonality. Let Σ be a hypersurface
specified by fpxq “ 0, where f : M ÝÑ R is a smooth function such that df ‰ 0 on Σ. Then,
df is normal to Σ. Indeed, if T is a vector tangent to Σ, thus dfpT q “ Tf “ Tα Bαf “ 0
because f is constant on Σ.
Any other 1-form n normal to Σ can be written as n “ gdf ` fn1 where g is a smooth function

1The orbit of a point under a group of diffeomorphisms is the set of points that can be reached by the starting
point by acting on it with all of the diffeomorphisms.
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with g ‰ 0 on Σ and n1 is a smooth 1-form.
So, if n is normal to Σ then:

n^ dn|Σ “ 0

Conversely,

Theorem 1 (Frobenius). If n ‰ 0 is a 1-form such that n^ dn “ 0 everywhere then
Df, g : MÑ R such that n “ g df so n is normal to surfaces of constant f i.e. n is hypersurface-
orthogonal.

Given this fundamental concept, we can now define a static spacetime as follows:

Definition 3. A spacetime is static if it admits a hypersurface-orthogonal timelike Killing
vector field.

Remark. It is straightforward to notice that a static spacetime is also stationary.

For such a spacetime, we know that k is hypersurface-orthogonal so when defining adapted
coordinates we can choose Σ to be orthogonal to k. At the same time, Σ is the surface at t “ 0,
with normal dt. Thus we must have that kα “ gαβk

β9p1,0q which implies that ki “ 0. Hence,
ki “ giαk

α “ gi0k
0 “ gi0pxq “ 0 from which we conclude that gi0pxq “ 0.

Therefore, in adapted coordinates a static metric takes the form

ds2 “ g00pxq dt
2 ` gijpxq dx

idxj (1.3)

with g00pxq ą 0.

It is quite obvious to notice that static then means time-independent and invariant
under time reversal. Both of these properties result to be fundamental in the formulation
of the model of Black Hole Fireworks.

1.3 The Schwarzschild Black Hole

We are interested in determining the gravitational field of a time-independent spherical ob-
ject so we assume our spacetime to be stationary and spherically symmetric. It can be shown
(as a part of the Birkhoff’s theorem, see below) that any such spacetime must actually be static.

The Schwarzschild metric (1916) is a solution to the vacuum Einstein’s Field Equations,
i.e. Rµν “ 0, and it is given by

ds2 “

ˆ

1´
2m

r

˙

dt2 ´

ˆ

1´
2m

r

˙´1

dr2 ´ r2dΩ2 (1.4)

where 0 ă r ă 8 is defined as above and dΩ2 “ dθ2 ` sin2 θ dφ2 is the round metric on S2.

The line element (1.4) is the unique spherically symmetric solution to the vacuum Einstein’s
equations. This result is known as Birkhoff’s theorem and it has strong implications.
More precisely,

Theorem 2 (Birkhoff). Any spherically symmetric solution of the vacuum Einstein equation
is isometric to the Schwarzschild solution.
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Remark. It is important to notice that k “ B{Bt is timelike for r ą 2m so, in this region, the
Schwarzschild solution is static.

Birkhoff’s theorem implies that the spacetime outside any spherical body is described by
the time-independent exterior Schwarzschild solution. This is true even if the body itself is
time-dependent. Moreover, the spacetime outside the star will be described by the static
Schwarzschild solution even during the collapse.

Let us then study the features of the most important type of geodesics, i.e. the radial null
geodesics. These curves are defined by the following properties:

ds2 “ 0 , dθ “ dφ “ 0

So, the line element (1.4) reduces to

0 “

ˆ

1´
2m

r

˙

dt2 ´

ˆ

1´
2m

r

˙´1

dr2

Then, if we introduce the Regge-Wheeler radial coordinate r˚, defined as

dr˚ “
dr2

1´ 2m
r

Along a radial null geodesic we have
dt

dr˚
“ ˘1

and then
t¯ r˚ “ const.

Remark. The coordinate r˚ “ r˚prq is often called tortoise coordinate, because r˚ changes only
logarithmically close to the horizon. This coordinate change maps the range r P p2m,8q of the
radial coordinate onto r˚ P R.

We can now define a new coordinate

v “ t` r˚

which is manifestly constant along ingoing radial null geodesics.
If we then want to use pv, r, θ, φq as coordinates, we could eliminate t from the line element
(1.4) by the substitution t “ v´ r˚. Hence, the Schwarzschild metric shall be recast as follows:

ds2 “

ˆ

1´
2m

r

˙

dv2 ´ 2dvdr ´ r2dΩ2 (1.5)

The latter is then the Schwarzschild metric written in terms of the so called ingoing Eddington-
Finkelstein (EF) coordinates.
Unlike the metric components in Schwarzschild coordinates, the components of the above ma-
trix are smooth for all r ą 0, in particular they are smooth at r “ 2m.

The Schwarzschild spacetime can now be extended through the surface r “ 2m to a new
region with r ă 2m. Moreover, it is obvious to see that the new line element is still a solution
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of the vacuum Einstein’s equation also in this new region.

If we now call λ the affine parameter for these radial null geodesics, then one can easily
deuce the geodesic equations for the Schwarzschild spacetime, i.e.

dt

dλ
“

ˆ

1´
2m

r

˙´1

,
dr

dλ
“ ˘1

where the upper sign corresponds to outgoing geodesics, i.e. increasing r, and the lower is for
the ingoing one.
The ingoing radial null geodesics in the EF coordinates are then defined by

v “ const. ,
dr

dλ
“ ´1

Hence such geodesics will reach r “ 0 in finite affine parameter. Since the metric is Ricci flat,
the simplest non-trivial scalar constructed from the metric is the Kretschmann scalar, i.e.

K “ RµνρσRµνρσ “
48m2

r6
(1.6)

That diverges as the radius approaches zero. Since this is a scalar, it diverges in all charts.
Therefore there exists no chart for which the metric can be smoothly extended through r “ 0.
This is a clear example of a curvature singularity, where tidal forces become infinite and
the known laws of physics break down.

Remark. Recall that for r ą 2m, the Schwarzschild solution admits the Killing vector field
k “ B{Bt. If we now change the coordinates to the ingoing EF coordinates we get that

v “ t´ r˚ ùñ k “
B

Bt
“
Bv

Bt

B

Bv
“
B

Bv

We can then use this definition in order to extend k to r ď 2m. It is easy to see that k2 “

gµνk
µkν “ gvv, which means that k is null at r “ 2m and spacelike for r ă 2m. Thus, the

extended Schwarzschild solution is static only for r ą 2m.

So far we have considered ingoing radial null geodesics (v “ const.) in the ingoing EF
coordinates. It is then interesting to study the behaviour of the outgoing radial null geodesics
in the chart. The latter, for r ą 2m, are given by u “ t´ r˚ “ const..

The simpler way to understand the underling physics behind this problem is to plot the
radial null geodesics on a spacetime diagram. In particular, if we define t˚ “ v´r, consequently
the ingoing radial null geodesics are straight lines at 45˝ in the pt˚, rq plane.
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This gives the so called Finkelstein diagram for the Schwarzschild metric in the ingoing
EF coordinates.

It is clear from the plot that the outgoing radial null geodesics have increasing r if r ą 2m.
But if r ă 2m then r decreases for both families of null geodesics. Both reach the curvature
singularity at r “ 0 in finite affine parameter. Since nothing can travel faster than light, the
same is true for radial timelike curves. Consequently, there is no signal that can be sent from
a point with r ă 2m to a point with r ą 2m. This is, indeed, the defying feature of a Black
Hole. More precisely, a Black Hole is a region of an asymptotically flat spacetime from which
we are not able to send a signal to infinity.

1.4 The Black Hole region

At this stage, we could try to characterize the black hole region in a more precise mathematical
way. But first, we need to recall some important definitions.

Definition 4. A vector V is causal if it is timelike or null, i.e. V 2 ě 0. A curve is causal if
its tangent vector is everywhere causal.

Let pM, gq be a spacetime. At each point p PM, the tangent space TpM is clearly isomor-
phic to the Minkowski spacetime. Thus, at any point of a spacetime, the metric determines
two light-cones in the tangent space at that point2. Our aim is to regard one of these as the
future light-cone and the other as the past light-cone. To do so we can, for example, pick a
causal vector field and define the future light-cone to be the one in which it lies, thus

Definition 5. A spacetime is time-orientable if it admits a time-orientation, i.e. a causal
vector field T . Then, a causal vector V is future-directed if it lies in the same light cone as
T and past-directed otherwise.

Remark. Any other time orientation is either everywhere in the same light-cone as T or ev-
erywhere in the opposite light-cone. Hence a time-orientable spacetime admits exactly two
inequivalent time-orientations.

For example, for the Schwarzschild metric in the ingoing EF coordinates ξ “ B{Br is globally
null, indeed ξ2 “ grr “ 0 , @p PM, hence defines a time-orientation. Therefore we can use ξ
to define our time orientation for r ą 0.This is not the case for k “ B{Bt “ B{Bv because it is

2It is very important to empathize that the light-cone of p is a subset of TpM, not M
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timelike for r ą 2m, null for r “ 2m and spacelike for r ă 2m.
All this discussion results to be important in the proof of the following fundamental property
of the Schwarzschild metric in the ingoing EF coordinates:

Proposition 1. Let xµpλq be any future-directed causal curve. If Dλ0 such that rpλ0q ď 2m,
then rpλq ď 2m, @λ ě λ0.

This result implies that no future-directed causal curve connects a point with r ď 2m to a
point with r ą 2m. This statement makes more precise our definition of a black hole. Moreover,
the boundary of the black hole region is called the Event Horizon. In particular, it is now
straightforward to see that the surface r “ 2m is the event horizon for the Schwarzschild black
hole.

1.4.1 White Holes

If we, instead, extend the Schwarzschild spacetime with outgoing Eddington- Finkelstein coor-
dinates, i.e. u “ t´ r˚, the line element (1.4) becomes

ds2 “

ˆ

1´
2m

r

˙

du2 ` 2dudr ´ r2dΩ2 (1.7)

The same analysis reveals that ingoing photons emitted at r ą 2m or r ă 2m never cross
r “ 2m: they approach r “ 2m and hover the horizon forever. Conversely, all outgoing null
geodesics escape to infinity. Looking at the light-cones, we see that everything inside r “ 2m
is ejected. The region r ă 2m is then called White Hole and r “ 2m is said to be the white
hole horizon. It is also important to notice that this is the exact time reversal of a black
hole.

1.5 Extendibility & the Kruskal spacetime

In the previous sections we have shown that the Schwarzschild solution of the vacuum Einstein’s
equations can be analytically extended in two different ways, revealing the existence of a black
hole region and a white hole region.
It is quite important then to properly empathize the concept of analytic extension in general
relativity.

Definition 6. A spacetime pM, gq is said to be extendible if it is isometric to a proper
subset of another spacetime pM1, g1q. The latter is called an extension of pM, gq. Otherwise, a
specetime is said to be not extendible.

A canonical example is given by the relation between the Schwarzschild solution and the
Kruskal spacetime.

Let us consider r ą 2m. In this region we can define the Kruskal-Szekeres coordinates
pU, V, θ, φq by

U “ ´ exp p´u{4mq , V “ exp pv{4mq (1.8)

thus U ă 0 and V ą 0.
Note that

UV “ ´ exp pr˚{2mq “
´ r

2m
´ 1

¯

exp pr{2mq ,
U

V
“ ´ exp pt{2mq
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which give us an unambiguous determination of r “ rpU, V q and t “ tpU, V q.
Now, it is easy to see that the Schwarzschild spacetime can be rewritten as

ds2 “
32m3 exp p´r{2mq

r
dUdV ´ r2dΩ2 (1.9)

One can see by inspection that this new metric can be analytically extended, with non-vanishing
determinant, through the surfaces U “ 0 and V “ 0 to the new regions U ą 0 and V ă 0.
Moreover, from the defining equations for r and t we can see that the surface r “ 2m is actually
two surfaces (U “ 0 and V “ 0) that intersect at U “ V “ 0.
Similarly, the curvature singularity at r “ 0 corresponds to the two branches of the hyperbola
given by UV “ 1. This information, together with the causal structure of such a spacetime,
can be summarized by the Carter-Penrose diagram of the Kruskal-Szekeres spacetime.

i+

i−

i0

I−

I+

r = 0

r = 0

fu
tu
re
ho
riz
on

past horizon

t=const.

r=const.

r=const.

r=const.

Figure 1.1: Penrose-Carter diagram of the Kruskal-Szekeres spacetime.

The Kruskal-Szekeres spacetime allows us to relate the black hole and the white hole ex-
tensions of the Schwarzschild solution. In particular, this spacetime represents the maximal
extension of the Schwarzschild spacetime.

1.6 Some remarks about Singularities

By definition, a metric tensor is said to be singular if, in some basis, its components are
not smooth or its determinant vanishes. A coordinate singularity can be eliminated by
a change of coordinates, as it happens for the singularity at r “ 2m for the Schwarzschild
spacetime. These are unphysical. However, if it is not possible to eliminate the bad behaviour
by a change of coordinates then we have a physical singularity. In this chapter we have
encountered such singularities while constructing the Kretschmann scalar for the Schwarzschild
solution. However, it is also possible to have more general curvature singularities for which no



1.6. SOME REMARKS ABOUT SINGULARITIES 11

scalar constructed from the Riemann tensor diverges but, nevertheless, there exists no chart in
which the Riemann tensor remains finite. Moreover, not all physical singularities are curvature
singularities (e.g. conical singularities).
A problem in defining singularities is that they are not “places” of the spacetime with some
particular features, they, indeed, do not belong to the spacetime manifold at all, due to the
fact that we define spacetime as a pair pM, gq where g is a smooth Lorentzian metric.
A common property of singularities is that there must exist some geodesics that cannot be
extended to arbitrarily large affine parameter because they “end” at the singularity. It is this
property that we will use to define what we mean by “singular”.

Definition 7. p PM is a future endpoint of a future-directed causal curve γ : pa, bq Ñ M
if, for any neighbourhood O of p, there exists t0 P R such that γptq P O , @t ą t0. We say that
γ is future-inextendible if it has no future endpoint. Similary for past endpoints and past
inextendibility. γ is inextendible if it is both future and past inextendible.

Definition 8. A geodesic is complete if an affine parameter for the geodesic extends to ˘8.
A spacetime is geodesically complete if all inextendible causal geodesics are complete.

One can easily convince himself that a spacetime that is extendible will also be geodesically
incomplete. However, the Kruskal spacetime is both inextendible, being the maximal extension
of the Schwarzschild spacetime, but nonetheless geodesically incomplete because one can always
find a geodesic that hits r “ 0 in finite affine parameter. So we will regard a spacetime as
singular if it is geodesically incomplete and inextendible.
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Chapter 2

Causal Structure and Predictability

Almost every physical problem can be cast as an initial value problem. In particular, if we
are interested in knowing the state of a system at some moment in time, provided the state of
the system at an earlier time and the laws of physics (encoded in a set of partial differential
equations), the fact that such a problem makes sense is due to the concept of causality, i.e.
the idea that future events can be understood as consequences of certain initial conditions
coupled with the laws of physics.
In this chapter we will quickly review some of the most relevant concepts used in understanding
how causality works in general relativity and how it relates with black hole physics. In this
chapter we shall look at the problem of evolving matter field on a fixed background spacetime,
rather the the evolution of the metric itself. Our guiding principle will be that no physical
signals can travel faster then light, therefore information will only travel along null or timelike
trajectories.

Definition 9. Let pM, gq be a time-orientable spacetime and S Ă M. The chronological
future of S, denoted I`pSq, is the set of points ofM which can be reached by a future-directed
timelike curve starting on S. The causal future of S, denoted J`pSq, is the union of S with
the set of points of M which can be reached by a future-directed causal curve starting on S.
The chronological past I´pSq and causal past J´pSq are defined similarly.

Definition 10. Let S ĂM. Then S is said to be achronal if no two points in S are connected
by a timelike curve.

Now, if we consider a closed achronal set S Ă M, we can define the future domain of
dependence of S, D`pSq, as the set of all points p PM such that every past moving inex-
tendible1 causal curve through p must intersect S. It is trivial to notice that, S Ă D`pSq. The
past domain of dependence, D´pSq, is defined in a similar way. Moreover, we can also define,
roughly speaking, the future Cauchy horizon, denoted H`pSq, as the boundary of D`pSq;
analogously one can also define the past Cauchy horizon, H´pSq. It is easy to see that H˘pSq
have to be null surfaces.

The usefulness of these definition is due to the fact that, if nothing can travel faster than
light, then signals cannot propagate outside the light-cone of any p PM. Hence, if every curve
that remains inside this light-cone must intersect S, then the informations specified on S should

1It basically means that the cure does not end at some finite point.

13
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be sufficient to predict the situation at p.
The set of all points for which we can predict what happens by knowing the conditions on S
is then given by DpSq “ D`pSq

Ť

D´pSq, which is simply called Domain of Dependence of
S.

Definition 11. A closed achronal surface Σ is said to be a Cauchy surface if DpΣq “M.

Then, given the initial data on a Cauchy surface we can predict what happens throughout
all of spacetime. Nevertheless, in general DpΣq ‰M thus solutions of hyperbolic equations will
not be uniquely determined in MzDpΣq by data on Σ. Hence, given only this data, there will
be infinitely many different solutions on M which agree within DpΣq. Moreover, one can also
define the concept of partial Cauchy surface, which is basically a closed, achronal and edgeless
hypersurface of M.

Definition 12. A spacetime pM, gq is globally hyperbolic if it admits a Cauchy surface.

Theorem 3. Let pM, gq be globally hyperbolic. Then

(i) there exists a global time function;

(ii) surfaces of constant t are Cauchy surfaces, and these all have the same topology T ;

(iii) the topology of M is Rˆ T .

The concept of global hyperbolicity was firstly introduced by Leray in order to consider
well-posedness of the Cauchy problem for the wave equation on the manifold. In view of the
initial value formulation for Einstein’s equations, global hyperbolicity is seen to be a very
natural condition in the context of general relativity, in the sense that given arbitrary initial
data, there is a unique maximal globally hyperbolic solution of Einstein’s equations.

2.1 Asymptotically Flat Spacetimes

So far we have seen that it is reasonable to define a black hole, roughly speaking, as the region
of spacetime from which no information-carrying signals are allowed to escape to a distant
observer. However, in order to make this definition rigorous, one must clarify what class of
observers is meant and what is the geometrically invariant meaning of the term “distant”.
The necessary refinement is easily achieved in the physically important case in which there is
no matter and no sources of fields far from the black hole. The greater the distance from the
black hole, the smaller the deviations of the spacetime geometry are from flatness. A spacetime
with this property is said to be asymptotically flat.

2.1.1 Conformal Compactification

Consider a spacetime pM, gq.

Definition 13. A conformal transformation is a map such that

pM, gq ÝÑ pM, ḡq gpxq ÞÑ ḡpxq “ Ω2pxq gpxq

where Ω is a smooth positive function on M.
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The metrics g and ḡ agree on the definitions of timelike, spacelike and null so we have that
conformal transformations preserve the causal structure of the spacetime.
The idea of conformal compactification is to choose Ω so that points at infinity with respect
to g are at finite distance with respect to the new unphysical metric ḡ. To do this we need
Ω Ñ 0 at “infinity”. More precisely, we try to choose Ω so that the spacetime pM, ḡq is part
of a larger unphysical spacetime pM, ḡq. M is then a proper subset of M with Ω|BM “ 0 in
M. This boundary corresponds to infinity of the physical spacetime.

2.1.2 Asymptotic Flatness

Assuming that the properties of asymptotic flat spaces in the neighborhood of infinity must be
similar to those of Minkowski space, Penrose suggested the following definitions.
Firstly, let us define asymptotically simple spacetimes:

Definition 14. A spacetime pM, gq is said to be asymptotically simple if there exists
another unphysical space pM, ḡq with boundary BM ” I and a regular metric ḡ such that:

i MzI is conformal to M, and ḡ “ Ω2 g in M;

ii Ω|M ą 0, Ω|I “ 0 and BµΩ|I ‰ 0;

iii Each null geodesic in M begins and ends on I.

The unphysical space M , defined as above, is then called conformal Penrose space.

Let pM, gq be an asymptotically simple spacetime, let g be such that Ric “ 0 in the neigh-
borhood of I and assume that the natural conditions of causality and spacetime orientability
are satisfied. Then, pM, gq has the following properties:

1. The topology of M is R4;

2. I is null and consists of two disconnected components, i.e. I “ I`Ť I´, each diffeo-
morphic to Rˆ S2;

3. The generators of the surfaces I˘ are the null geodesics in M;

The first two results tell us that the global structure of the asymptotically flat space is the
same as that of Minkowski space, as we were expecting.
According to [6], in order to take into account the existence of localized regions of strong
gravitational fields which do not alter the asymptotic properties of spacetime, it is sufficient to
analyse the class of spaces that can be converted into asymptotically simple spaces by removing
certain inner regions containing singularities of some kind and by subsequent smooth patching
of the resultant holes. Such spaces are said to be weakly asymptotically simple.
Now, a weakly asymptotically simple spacetime is asymptotically flat if its metric in the
neighborhood of I satisfies Einstein’s vacuum equations.
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Chapter 3

Black Holes & The Singularity
Theorem

3.1 Formal definition of Black Hole

Now that we have given a proper definition of “infinity” as well as a detailed characterization
of the causal structure of a Lorentzian manifold, we can then make more precise our definition
of a black hole as a region of an asymptotically flat spacetime from which it is impossible to
send a signal to infinity.

Definition 15 (Black Hole). Let pM, gq be a spacetime that is asymptotically flat at null
infinity. The black hole region is

B “M z rM X J´pI`qs

where J´pI`q is defined by means of the unphysical spacetime pM, ḡq. The future event
horizon is then defined as H` “ BB.

The definition which has been just presented can be enlightened by means of a Carter-
Penrose diagram.

i−

i0

i+singularity

H
+

I+

I−

J−(I+)

Figure 3.1: General Carter-Penrose diagram for an Eternal Black Hole. The black hole region
is red-shaded while the future horizon is represented by a dashed line.

17



18 CHAPTER 3. BLACK HOLES & THE SINGULARITY THEOREM

Similarly, the white hole region is W “M z rM X J`pI´qs and the past event horizon is
H´ “ BW.

From [1], provided a time-orientable spacetime pM, gq, we have the following fundamental
theorems:

Theorem 4. Let S ĂM. Then BJ`pSq is an achronal 3d submanifold of M.

Theorem 5. Let S Ă M be closed. Then every p P BJ`pSq with pnotinS lies on a null
geodesic γ lying entirely in BJ`pSq and such that γ is either past-inextendible or has a past
endpoint on S.

These theorems tell us that H˘ have to be null hypersurfaces. Moreover, the time reversal
of the second theorem implies that the generators of H` cannot have future end- points. How-
ever, they can have past endpoints (e.g. the point in which a black hole forms in a gravitational
collapse of a star). So null generators can enter H` but they cannot leave it.

There is also another technical condition that will be relevant in the following.

Definition 16. An asymptotically flat spacetime pM, gq is said to be strongly asymptoti-
cally predictable if there exists an open region V ĂM such that tMX J´pI`qu´ Ă V , i.e.
the closure of MX J´pI`q is contained in V , and pV , ḡq is globally hyperbolic.

This definition implies that pM X V , gq is a globally hyperbolic subset of M . Roughly
speaking, there is a globally hyperbolic region M X V of spacetime consisting of the region
not in B together with a neighbourhood of H`. It ensures that physics is predictable on, and
outside, H`. A simple consequence of this definition is the result that a black hole cannot
bifurcate, i.e. split into two.

3.2 The Singularity Theorem

The Schwarzschild solution of the Einstein’s field equations clearly tells us that the final stage
of a spherically symmetric gravitational collapse might result in the formation of a curvature
singularity. It is then interesting to investigate whether such outcome is a feature of the
spherical symmetry rather then a property of more general collapses. However, in 1965 Penrose
formulated his notorious singularity theorem which basically states that singularities are a
generic prediction of general relativity.

3.2.1 Null Hypersurfaces

Null hypersurfaces have an interesting geometry, and play an important role in general relativ-
ity. In particular, as we have seen, they represent horizons of various sorts, such as the event
horizons. Let pM, gq be be a spacetime.

Definition 17. A null hypersurface is a hypersurface whose normal is everywhere null.

Let n be normal to a null hypersurface Σ Ă M. Then any vector X ‰ 0 tangent to the
hypersurface obeys n ¨X ” gµνn

µXν which implies that either X is spacelike or X is parallel to
n, i.e. null. In particular, note that n is also tangent to the hypersurface. Hence, the integral
curves of n lie within Σ.
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Proposition 2. The integral curves of a are null geodesics. These are called the generators
of Σ.

Recalling that a geodesic congruence in U ĂM is a family of geodesics such that exactly
one geodesic passes through each p P U , then we can define the null expansion scalar θ of
Σ with respect to n as a smooth function on Σ that gives a measure of the average expansion
of the null generators of Σ towards the future, and it is defined as the divergence of the vector
field n along Σ, i.e. θ “ ∇αnα.
While θ depends on the choice of n, it does so in a simple way. Moreover, a positive rescaling
of n rescales θ in the same way, i.e. ñ “ fn ñ θ̃ “ fθ. Thus the sign of the null expansion θ
does not depend on the scaling of n; therefore θ ą 0 implies expansion on average of the null
generators, and θ ă 0 means contraction on average.
It is useful to understand how the null expansion varies as one moves along a null generator
of Σ. Let λ Ñ γ “ γpλq be a null geodesic generator of Σ and assume n is scaled so that γ is
affinely parameterized. Then it can be shown that the null expansion scalar θ “ θpλq along γ
satisfies the propagation equation,

dθ

dλ
“ ´Ricpγ1, γ1q ´ σ2 ´

1

2
θ2 (3.1)

where γ1 ” pdxµ{dλqBµ “ TµBµ, Ricpγ1, γ1q “ RµνT
µT ν and σ, the shear tensor, measures

the deviation from perfect isotropic expansion. Equation (3.1) is known as the Raychaud-
huri’s equation for a null geodesic congruence and, together with a timelike version, plays an
important role in the proofs of the classical Hawking-Penrose singularity theorems.

Equation (3.1) shows how the curvature of space-time influences the expansion of the null
generators. Here, we can see, for example, a trivial consequence of this equation.

Proposition 3. Let pM, gq be a spacetime which obeys the null energy condition1 and let Σ be
a smooth null hypersurface in M. If the null generators of Σ are future geodesically complete
then the null generators of σ have nonnegative expansion, θ ě 0.

Proof. Suppose θ ă 0 at p P Σ. Let γ : r0,8q Ñ Σ such that λ ÞÑ γpλq be the null geodesic
generator of Σ passing through p “ γp0q. Let also assume γ to be affinely parametrized. Let
θ “ θpλq be the null expansion of Σ along γ; hence θp0q ă 0.
From the Raychaudhuri’s equation and the null energy condition we have that

dθ

dλ
ď ´

1

2
θ2

which implies that θpλq ă 0 for all λ ą 0.
Moreover, it is easy to see that the letter inequality can be recast as follows:

d

dλ

ˆ

1

θ

˙

ě
1

2

thus θ´1 Ñ 0, i.e. θ Ñ ´8 in finite affine parameter time (λ “ 2{|θp0q|), which is in
contradiction with the smoothness assumption for θ.

This result is strictly connected with black hole physics, indeed it is a rudimentary form of
the celebrated Hawking’s area theorem.

1Null energy condition: RicpX,Xq “ RµνX
µXν

ě 0 , @X : X2
“ 0
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3.2.2 Trapped Surfaces & Penrose Singularity Theorem

Let us begin with some definitions. Let Σ be a spacelike 2-dimensional submanifold of the
spacetime pM, gq. We are primarily interested in the case where Σ is compact (without bound-
ary), and so we simply assume this from the outset.
Each normal space of Σ, rTpΣs

K, p P Σ, is timelike and 2-dimensional, and hence admits two
future directed null directions orthogonal to Σ. Thus, if the normal bundle is trivial, Σ admits
two smooth non-vanishing future directed null normal vector fields l` and l´, which are unique
up to positive pointwise scaling.
We can then decompose the second fundamental form of Σ into two scalar valued null second
forms χ˘ related to l˘. Thus, for all p P Σ we have that

χ˘ : TpΣˆ TpΣ Ñ R , χ˘pX,Y q :“ gp∇X l˘, Y q
It can be proven that χ˘ is symmetric. Thus, they can be traced with respect to the induced
metric q on Σ to obtain the null mean curvatures, also known as null expansion scalars,

θ˘ “ Trqχ˘ “ qijpχ˘qij “ divΣl˘ (3.2)

Physically, θ` (resp., θ´) measures the divergence of the outgoing (resp., ingoing) light rays
emanating from Σ.
In regions of spacetime where the gravitational field is strong, one may have both θ´ ă 0 and
θ` ă 0, in which case Σ is called a trapped surface.

Under appropriate energy and causality conditions, the occurrence of a trapped surface
signals the onset of gravitational collapse. This is the implication of the Penrose singularity
theorem, the first of the famous singularity theorems.

Theorem 6 (Penrose, 1965). Let pM, gq be globally hyperbolic with a non-compact Cauchy
surface Σ. Assume that the Einstein’s equation and the null energy condition are satisfied and
thatM contains a trapped surface T . Let θ0 ă 0 be the maximum value of θ on T for both sets
of null geodesics orthogonal to T . Then at least one of these geodesics is future-inextendible
and has affine length no greater than 2{|θ0|.

The Einstein’s equation possesses the property of Cauchy stability, which implies that
the solution in a compact region of spacetime depend continuously on the initial data. In other
words, Cauchy stability implies that if one perturbs the initial data (e.g. breaking spherical
symmetry, for which we know that singularities may occur) then the resulting spacetime will
also have a trapped surface, for a small enough initial perturbation. This shows that trapped
surfaces occur generically in gravitational collapse.

Moreover, the Penrose’s theorem can be restated equivalently as follows:

Theorem 7. A spacetime containing a trapped surface is either not globally hyperbolic or it
is not geodesically complete.

The first possibility is, however, generically excluded assuming the correctness of the strong
cosmic censorship conjecture. So, here are very good reasons to believe that gravitational
collapse leads to geodesic incompleteness. Nevertheless, the singularity theorems tell us nothing
about the nature of this singularity, indeed they they not forced to be curvature singularities
as in the spherically symmetric case.



Chapter 4

Semiclassical aspects of Black Hole
physics

It is well known that the quantum theory of fields (QFT), at lest the one used to describe the
Standard Model of particle physics, is restricted inertial observers in the Minkowski spacetime.
This combination is very peculiar for two reasons: first, the Minkowski spacetime has a timelike
Killing vector field. Secondly, no event horizons occurs for inertial observers in this spacetime.
The existence of a unique timelike Killing vector field Bt which has as eigenfunctions the modes
expp´iωtq implies that all inertial observers agree on how to split positive and negative fre-
quency modes. This splitting selects in turn the standard Minkowski vacuum |0yM . The
main feature of this vacuum state is due to the fact that no inertial observers will register
particles in the vacuum state |0yM , due to the fact that it is invariant under Poincaré transfor-
mations.
In this chapter we shall consider the more general situation. Intuitively, we might expect that
a static spacetime could be create particles if event horizon exists. Indeed, one can prove, at
least theoretically, that a thermal spectrum of particles is created close to the horizon.

4.1 Elements of QFT in Curved Spacetime

In analogy with what we do in Minkowski space, we can perform both canonical and covariant
quantisation in order to quantise classical field theories in curved spacetimes. In particular,
the latter approach is useful if we are interested in quantum corrections to the stress tensor.
The expectation value of the stress-energy tensor Tµν for the quantum field Φ in the background
of a classical gravitational field g is given by:

xTµνy “
1

Z

ż

DΦTµν exp piSrΦ, gsq , Z “ exp piW q “

ż

DΦ exp iSrΦ, gs (4.1)

If we now recall the definition of the dynamical stress-energy tensor, arising from the variational
principle for general relativity, i.e.

Tµν “ ´
2

?
´g

δSm
δgµν

(4.2)

then we have that

xTµνy “
2

?
´g

δW

δgµν
(4.3)
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Now, having calculated xTµνy, one could aim at solving the Einstein equations in the semiclas-
sical limit, i.e.

Gµν “ 8π xTµνy (4.4)

In this way, one discovers two effects:

• the gravitational background can produce particles;

• the gravitational background modifies the zero-point energies of the φ-vacuum.

It is important to notice that this approach is based on a local quantity, i.e. xTµνy “ xTµνpxqy,
thus if we can show in a specific frame that e.g. xTµνpxqy “ 0, then any observer will agree on
that. However, we will see that the expectation value for the number of particles measured in
a certain vacuum state is observer dependent.

As we have already stressed, all observers in inertial frames agree on the choice of the
vacuum and thus also on one and many-particle states. By contrast, in curved spacetimes no
inertial system can be globally extended to cover the whole manifold, thus no unique definition
of the vacuum is possible. As a consequence, the notion of particle number becomes observer
dependent, thus creation of particles becomes possible as different observers may have different
notions of vacuum state.
The first task in field theory is then to find a mapping between field operators defined with
respect to different vacua. The relation between the two sets of field operators is provided by
the so called Bogulyubov transformation.

The particle production can be seen as a consequence of two different cases: in the first
one, the space-time is time-dependent and can perform “work” and thus create particles. The
second, is the emission of a thermal spectrum of particles close to a horizon. We will consider
in the next section the second case, investigating the simplest case of an accelerated observer
in Minkowski space.

4.2 Uniformly accelerated observer in Special Relativity

In the following we refer to the Minkowski coordinates pt, x, y, zq as the lab frame. Let us
consider an observer accelerated in positive x-direction. Her proper coordinate system (the one
in the observer rest frame) is given by pτ, ξ, y, zq. The world line can then be parametrized by
the proper time τ and the observer has a 4-velocity vector

uα “
dxα

dτ
” 9xpτq , u2 ” uαuα “ 1 (4.5)

Hence, in the proper frame the 4-acceleration

aα “ :xα “ 9uα (4.6)

assumes the simple form
aα “ p0, a, 0, 0q

Consequently, this implies that
aαaα “ ´a

2 (4.7)
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in all frames. From now on we abandon the constant coordinates y and zand work in p1` 1q-
dimensional Minkowski spacetime.
The set of ordinary differential equations in (4.5) is clearly hyperbolical and has the solutions:

u0pτq “ cosh pfpτqq , u1pτq “ sinh pfpτqq (4.8)

where fpτq is a differentiable function and we assume that proper time runs into the same
direction as coordinate time, u0 ą 0.
Deriving uα and comparing with aαaα “ ´a

2 yields

fpτq “ aτ (4.9)

if we choose u1p0q “ 0 as initial condition.
If we set xp0q “ 1{a and tp0q “ 0, by integration we obtain the world line:

xµpτq “ pa´1 sinhpaτq, a´1 coshpaτqq (4.10)

where we neglect the two transverse dimensions.

4.2.1 Rindler spacetime

Recall that the trajectory of an accelerated observer is given by

tpτq “
1

a
sinhpaτq , xpτq “

1

a
coshpaτq

It describes one branch of the hyperbola x2 ´ t2 “ a´2.
To compare a quantum field in lab frame and proper (conformally flat) frame we need a
coordinate transformation tpτ, ξq, xpτ, ξq. Since the accelerated frame is not inertial it cannot
be a Lorentz transformation.
It can be shown that such transformation exists and it is given by:

tpτ, ξq “
eaξ

a
sinhpaτq , xpτ, ξq “

eaξ

a
coshpaτq (4.11)

Now, pτ, ξq P R2 are then called Rindler coordinates, and the line element can be rewritten
as

ds2 “ e2aξpdτ2 ´ dξ2q. (4.12)

which is known as the p1` 1q-dimensional conformal Rindler metric.

4.3 Massless Scalar Field in the p1` 1q-Rindler spacetime

The action of a massless scalar field φpt, xq is

Srφs “
1

2

ż

d2x
?
´g gαβBαφBβφ (4.13)

where d2x
?
´g is the invariant measure.
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Remark. The action (4.13) is conformally invariant, indeed as

gµν ÝÑ gµν “ Ω2pt, xqgµν

we have that gµν transforms as Ω´2 and while the determinant
?
´g picks up a factor Ω2.

Now, apart from a factor Ω2 “ e2aξ the Rindler spacetime is actually Minkowskian. Then
actions in the lab and in the conformal Rindler coordinates then read:

Srφs “
1

2

ż

dtdx
“

pBtφq
2 ´ pBxφq

2
‰

“
1

2

ż

dτdξ
“

pBτφq
2 ´ pBξφq

2
‰

(4.14)

The corresponding equations of motion are then given by

B2
t φ´ B

2
xφ “ 0 , B2

τφ´ B
2
ξφ “ 0 (4.15)

The general solutions are given by

φpt, xq “ Apt´ xq `Bpt` xq , φpτ, ξq “ Cpτ ´ ξq `Dpτ ` ξq (4.16)

where A,B,C and D are assumed to be arbitrary smooth functions.
Since the latter expressions solve the Klein-Gordon equations (4.15), one can formulate the
mode expansions in both sets of coordinates. Using the dispersion relation ωk “ |k|(for the
1-D spatial momentum k1 “ k), one obtains

pφpt, xq “

ż

R

dk
?

2π
a

2|k|

!

pak exp pipkx´ |k|tqq ` pa:k exp p´ipkx´ |k|tqq
)

pφpτ, ξq “

ż

R

dk
?

2π
a

2|k|

!

pbk exp pipkξ ´ |k|τqq `pb:k exp p´ipkξ ´ |k|τqq
)

(4.17)

where the field φ has been elevated to an operator-valued distribution by means of the canonical
quantization procedure. It is worth knowing that the ladder operators pak, pa

:

k and pbk, pb
:

k do
not agree in general. Consequently, the Rindler vacuum and the Minkowski vacuum differ, i.e.
|0yR ‰ |0yM , where

pak |0yM “ 0 , pbk |0yR “ 0 @k

An accelerating observer will then measure that the corresponding vacuum state |0yR has the
lowest possible energy; which will appear to be lower than that of the Minkowski vacuum state
|0yR in such reference frame. Particularly, an observer at rest in the accelerated frame will
detect particles when the scalar field is in |0yM . Conversely, the Rindler vacuum |0yR will
appear excited to an observer in the lab frame. This is known as the Unruh effect.

4.4 Bogolyubov Transformation

It is convenient to introduce the light-cone coordinates:

Minkowski : ū “ t´ x , v̄ “ t` x

Rindler : u “ τ ´ ξ , v “ τ ` ξ
(4.18)
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Recalling that t “ tpτ, ξq and x “ xpτ, ξq via (4.11), then it can be proven that:

ū “ ´
1

a
e´au , v̄ “

1

a
e´av (4.19)

The metric of the Minkowski spacetime can be written as follows:

ds2 “ dt2 ´ dx2 “ dūdv̄ “ eapv´uq dudv (4.20)

Moreover, the Klein-Gordon Equations (4.15) take the form:

BūBv̄φ “ 0 , BuBvφ “ 0 (4.21)

Then, the general solutions can be written as

φpū, v̄q “ Apūq `Bpv̄q , φpu, vq “ Cpuq `Dpvq (4.22)

To obtain the light-cone mode expansion of φpū, v̄q, the first mode expansion in (4.17) must be
split in two integrals as follows:

pφpt, xq “

ż

R

dk
?

2π
a

2|k|

!

pak exp pipkx´ |k|tqq ` pa:k exp p´ipkx´ |k|tqq
)

“

“

ˆ
ż `8

0
`

ż 0

´8

˙

dk
?

2π
a

2|k|

!

pak exp pipkx´ |k|tqq ` pa:k exp p´ipkx´ |k|tqq
)

(4.23)

Now, recalling that ω “ |k| and making use of the light-cone coordinates the latter expression
can be rewritten as

pφpū, v̄q “

ż 8

0

dω
?

2π
?

2ω

“

e´iωū paω ` h.c.` e
´iωv̄

pa´ω ` h.c.
‰

(4.24)

Then, comparing the latter with the general solutions:

pApūq “

ż 8

0

dω
?

2π
?

2ω

“

e´iωū paω ` h.c.
‰

pBpv̄q “

ż 8

0

dω
?

2π
?

2ω

“

e´iωv̄ pa´ω ` h.c.
‰

(4.25)

Analogously,

pCpuq “

ż 8

0

dΩ
?

2π
?

2Ω

”

e´iΩupbΩ ` h.c.
ı

pDpvq “

ż 8

0

dΩ
?

2π
?

2Ω

”

e´iΩv pb´Ω ` h.c.
ı

(4.26)

Now, observe that the coordinate transformations (4.18) never mix u’s and v’s. One can
therefore make the identifications

pApūpuqq “ pCpuq , pBpv̄pvqq “ pDpvq (4.27)



26 CHAPTER 4. SEMICLASSICAL ASPECTS OF BLACK HOLE PHYSICS

Now, if we take the Fourier Transform of both sides of the first equation we get:

F
”

pApūq; Ω
ı

“

ż

R

du

2π
eiΩu pApūpuqq “

“

ż 8

0

dω
?

2ω

“

F pω,Ωqpaω ` F p´ω,Ωqpa
:
ω

‰

(4.28)

F
”

pCpuq; Ω
ı

“

ż

R

du

2π
eiΩu pCpuq “

1
a

2|Ω|

#

pbΩ , Ω ą 0

pb:
|Ω| , Ω ă 0

(4.29)

where

F pω,Ωq “

ż

R

du

2π
eiωu´iωūpuq (4.30)

which has to be understood in the distributional sense.
Hence,

pApūpuqq “ pCpuq
F
ùñ

ż 8

0

dω
?

2ω

“

F pω,Ωqpaω ` F p´ω,Ωqpa
:
ω

‰

“
1

a

2|Ω|

#

pbΩ , Ω ą 0

pb:
|Ω| , Ω ă 0

(4.31)
That gives us:

pbΩ “

ż 8

0
dω

“

αωΩ paω ` βωΩ pa:ω
‰

, Ω ą 0 (4.32)

with

αωΩ “

c

Ω

ω
F pω,Ωq , βωΩ “

c

Ω

ω
F p´ω,Ωq (4.33)

Moreover, the relation for pb:Ω as well as the relations connecting paω, pa:ω and pb´|Ω|, pb
:

´|Ω| follow

from a similar reasoning.
Such transformations are called Bogolyubov transformation.

Remark. The most general Bogolyubov transformation is given by

pbΩ “

ż

R
dω

“

αωΩ paω ` βωΩ pa:ω
‰

with αωΩ and βωΩ arbitrary complex functions. In order to derive the corresponding normal-
ization conditions, we use the commutation relations of the ladder operators, i.e.

rpaω,pa
:

ω1s “ δpω ´ ω1q , rpbΩ,pb
:

Ω1s “ δpΩ´ Ω1q

from which we can deduce that

ż

R
dω pαωΩα

˚
ωΩ1 ´ βωΩβ

˚
ωΩ1q “ δpΩ´ Ω1q



4.5. THE UNRUH TEMPERATURE 27

4.5 The Unruh Temperature

The mean number of particles the accelerated observer detects in the Minkowski vacuum is
given by the Minkowski vacuum expectation value of the b-particle number operator, i.e.

x pNΩyM “ x0M |pb
:

Ω
pbΩ|0My “

“ x0M |

ż 8

0
dω

“

α˚ωΩ pa:ω ` β
˚
ωΩ paω

‰

ˆ

ż 8

0
dω1

”

αω1Ω paω1 ` βω1Ω pa:ω1
ı

|0My “

“

ż 8

0
dω |βωΩ|

2 “

ż 8

0
dω

Ω

ω
|F p´ω,Ωq|2

(4.34)

In order to proceed, we need to take a closer look at the auxiliary function F pω,Ωq. By means
of some tedious computations concerning special functions and basic complex analysis, one can
prove that

F pω,Ωq “ eπΩ{a F p´ω,Ωq , for ω,Ω, a ą 0

Now, considering the last remark of the previous section, in general we have that

ż

R
dω pαωΩα

˚
ωΩ1 ´ βωΩβ

˚
ωΩ1q “ δpΩ´ Ω1q

Now, fixing Ω “ Ω1 in the latter equation and taking advantage of properties of the auxiliary
function F pω,Ωq, one can easily get:

ż 8

0
dω

Ω

ω
|F p´ω,Ωq|2 “

δp0q

e2πΩ{a ´ 1
(4.35)

Thus, if we “divide out” the volume factor δp0q we thus obtain the number density

nΩ “
1

e2πΩ{a ´ 1
, Ω ą 0 (4.36)

Analogously,

nΩ “
1

e2π|Ω|{a ´ 1
, Ω ă 0 (4.37)

For massless 2-dimensional scalar fields |Ω| “ E. Thus, by analogy with the Bose-Einstein
distribution:

nΩ “
1

e2π|Ω|{a ´ 1
“

1

eE{T ´ 1
(4.38)

we are able to deduce that the so called Unruh Temperature is given by

T “
a

2π

Thus the Rindler horizon seems to be equipped with a thermal “atmosphere”, which temper-
ature increases the closer an accelerated observer approaches it. In other terms, we conclude
that an observer who is being accelerated by a gravitational field with strength g in relativistic
units, experiences radiation with a temperature T “ g{2π.
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4.6 The Hawking Radiation

We can now deduce the celebrated Hawking effect by means of few simple considerations, avoid-
ing every technical details of the formal proof.
As we have seen in the previous section, an observer moving with uniform acceleration (aµaµ “
´a2) through the Minkowski vacuum observes a thermal spectrum of particles with a temper-
ature given by:

T “
a

2π

It is known in the literature (see e.g. [2]) that the region of spacetime in the vicinity of the
horizon of a black hole, approximately takes the form of Rindler space. Now, the surface
gravity κ1, for a static Killing horizon, physically represents the acceleration, as exerted at
infinity, needed to keep an object at the horizon.
Thus, from these simple considerations, we are able to deduce the famous Hawking Temperature
corresponding to the thermal spectrum of a black hole:

TH “
κ

2π
(4.39)

For example, in the Schwarzschild spacetime we have that

κ “
1

4M

where M is the mass of the black hole; thus,

TH “
1

8πM
(4.40)

Notice that the energy of the Hawking radiation must come from the black hole itself (or,
more precisely, at expenses of its gravitational field). One can then estimate the rate of mass
loss by using the Stefan-Boltzmann law for the rate of energy loss by a blackbody:

dE

dt
“ σAT 4 (4.41)

Plugging in E “M with A9M2 (from the Hawking’s Area theorem) and TH91{M it gives

dM

dt
9´

1

M2

Hence the black hole evaporates away completely in a time

τ „M3

This process of black hole evaporation leads to the Information Paradox. Consider gravita-
tional collapse of matter to form a black hole which then evaporates away completely, leaving
thermal radiation. It should be possible to arrange that the collapsing matter is in a definite
quantum state, i.e., a pure state. However, the final state is a mixed state. Such a time evo-
lution would then violate the unitary time evolution of quantum states, which is one of the
fundamental postulates of quantum mechanics.

1Let k be a Killing vector field normal to the Killing horizon Σ. Then, the surface gravity κ is define as

kα∇αk
µ
“ ´κkµ

where the equation is evaluated at the horizon.
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4.7 Black Holes & Quantum Gravity

As we have seen in this chapter, some interesting new aspects appear when quantum fields
play a role. They mainly concern the notions of vacuum and particles. A vacuum is only
invariant with respect to Poincaré transformations, so that observers that are not related by
inertial motion refer in general to different types of vacua. “Particle creation” can occur in
the presence of external fields or for non-inertial observers. As we discussed, Black Holes a
paradigmatic example of the second case.

Semiclassically, a black hole is supposed to emit a black-body spectrum with a characteristic
temperature, known as the Hawking temperature, according to

TH “
~κ

2πkBc
(4.42)

where κ is the surface gravity of a stationary black hole, which by the no-hair theorem is
uniquely characterized by its mass M , its angular momentum J and its electric charge Q. In
the particular case of the Schwarzschild black hole, one has

κ “
c4

4GM
ùñ TH “

~c3

8πkBGM
„ 6.17ˆ 10´8

ˆ

Md

M

˙

K (4.43)

This temperature is unobservationally small for solar-mass (and even bigger) black holes.

The Hawking radiation was derived in the semiclassical limit in which the gravitational field
can be treated classically. According to (4.43), the black hole loses mass through its radiation
and becomes hotter. After it has reached a mass of the size of the Planck mass, i.e.

mP “

c

~c
G
„ 2ˆ 10´5 g „ 1019GeV (4.44)

the semiclassical approximation breaks down and the full theory of quantum gravity should be
needed.

The consequences of the Hawking effect, together with the singularity theorems, suggest that
general relativity cannot be true at the most fundamental level. As the singularity theorems
and the ensuing breakdown of general relativity demonstrate, a fundamental understanding
of the early Universe, concerning in particular its initial conditions near the big bang, and of
the final stages of black hole evolution requires an encompassing theory. From the historical
analogy of quantum mechanics, the general expectation is that this encompassing theory is a
quantum theory.
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Chapter 5

Planck Stars

Black holes are, nowadays, conventional astrophysical objects. Yet, know very little about what
happen inside the classical event horizon.
Experimental observations tell us that the general theory of relativity describes well the region
surrounding the horizon, at least for r Á 3RS where RS is Schwarzschild radius. Moreover, it
is also reasonable to assume that also a substantial region inside the horizon can be described
in terms of the Einstein’s theory of gravity, under the argument that curvature scales are still
small. However, it is obvious that such a theory will fail to describe the gravitational field
at very small radii because nothing will be able to prevent quantum mechanics from affect-
ing the high curvature regions, and because classical general relativity becomes ill-defined at
r “ 0 anyway, as clearly stated by the singularity theorems under very general assumptions.
Moreover, even the semiclassical description of black holes gives rise to some very fundamental
problems, such as the information paradox.

A first hint about how to try to deal with this situation comes from the fact that an event
horizon with (semi)classical properties is not compatible with a “point-like” source. More
precisely, R. Casadio and collaborators showed (see [7]) that classical event horizons is not
consistent with a spherically symmetric source (for the gravitational filed) of a radius r À lP “
a

~G{c3 „ 10´33 cm. Another fundamental insight comes from Loop Quantum Cosmology.
Indeed, consider the Friedmann equation suitably modified in order to incorporate a term
representing the quantum gravitational effects, i.e.

ˆ

9a

a

˙2

“
8πG

3
ρ

ˆ

1´
ρ

ρP

˙

(5.1)

where ρ is the energy density of matter and where the quantum correction term in the paren-
thesis is given by the ratio of ρ to the Planck scale density:

ρP “
mP

l3P
“

c5

~G2
„ 1097 kg{m3 (5.2)

where mP “
a

~c{G and lP are the Planck mass and the Planck length, c is the speed of light
and ~ the reduced Planck constant.
It is clear from Eq. (5.1) that Nature appears to enter the quantum gravity regime when
the energy density of matter reaches some critical scale, i.e. when ρ „ ρc. What happens in

31
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loop quantum cosmology is that, once ρ reaches ρP , a collapsing spatially-compact universe
bounces back into an expanding one. The bounce is due to a quantum gravitational repulsion
which originates from the Heisenberg uncertainty. The most important point is that this may
happen well before relevant lengths l become planckian (l „ lP ). Indeed, in a matter dominated
Universe the bounce happens when:

ρ „ ρP ô
m

V
„
mP

l3P
ùñ V „

m

mp
l3P " l3P

So, and it deserves to be stressed again, quantum gravitational effects do not happen only over
Planck volumes.

Following these leads, C. Rovelli, F. Vidotto and H. M. Haggard proposed a scenario (see
[9; 10]), now known as the Planck stars model, by which we should have that, during
a gravitational collapse, when matter reaches Planckian density, quantum gravity generates
sufficient pressure to counterbalance the matter’s weight, the collapse ends, and matter then
bounces out. Then, quantum gravitational effects could be able to prevent the formation of a
singularity and liberate the information stored into a black hole when this is still macroscopic
compare with the Planck length.
This would imply the existence of a brand new phase of the gravitational collapse of
massive objects, which could be short in proper time, but, due to the strong gravitational
dilation, extremely long for an external observer.
In the following sections we will show in more details how this scenario can solve the singularity
problem and the information paradox. Moreover, we will also stress how this model leads to
two very different scenarios.

5.1 Singularity resolution & the quantum bounce

In this model we are assuming that the behaviour of a collapsing star is similar to the one
of a collapsing spatially-compact universe in loop quantum cosmology. Hence, the energy of
a collapsing star will condense into a highly compressed core with ρ „ ρP thus avoiding the
formation of a curvature singularity due to the emergence of a quantum pressure akin to the
one known in the context of loop cosmology.

Following the previous discussions, we have that the fundamental idea behind this model
lies in the fact that quantum gravity is able to affect high curvature regions of the spacetime
leading to an effective bounce also in the context of the gravitational collapse of massive objects.
This quantum bounce then leads to two extremely different new potential phases of the life of
a star:

(1) If we assume that the bouncing time is way smaller then the Hawking evaporation time of
the balck hole, i.e. τ ! τH , then the Hawking effect would appear to be almost irrelevant
if compared with the energy blast produced by the intense quantum pressure. This,
together with some other assumptions that we shall see later in further details, will lead
to the Black Hole Fireworks scenario.
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(2) If we assume the bouncing time to be of the order (or larger) of the Page time1 of the
balck hole, i.e. τ Á τH{2, then the regular core would appear to be a star-like object with
a very slow dynamics (that will be introduced in the next section). This particular new
phase of the gravitational collapse is called Planck Star. Moreover, by contrast with the
previously discussed case, in this scenario the Hawking effect is dominant with respect to
the intensity of the quantum bounce.

Now, it worth stressing that the lifetime of this new phases could be very long if measured from
very far. But, at the same time, it would appear very short, t „ m (i.e. the time that light
spends to hit the radius of the star), if measure from the “surface” of the quantum region. The
difference is clearly due to the intense time dilation.
In other terms, in both cases the proper lifetime of the new phase is very short, indeed, from
its own perspective, it is essentially a bounce. Then, due to the time dilation, an observer far
away will see the bounce in a very slow motion.

5.2 Resolution of the Information Paradox

Now, if we are interested in formulating a first rudimentary effective theory of the causal struc-
ture for a Planck Star we just need to stress the fact that we can associate to this object a
classical (external) event horizon and an internal trapping horizon, the latter related to the
size of the Planck star.

Let us now consider the Hawking radiation and its backreaction. Due to the evaporation
process, the outer horizon shrinks. Conversely, the inner horizon, i.e. the surface of the regular
core of the black hole, gains energy and then it expands. Hence, there will be a certain point
in time when the outer horizon and the growing internal one will meet. At this point, there
is no horizon anymore, the quantum gravitational pressure is then able to tear apart the star
and, consequently, all the information trapped inside can freely escape to infinity. Thus, the
outer event horizon is just a temporary optical illusion. As a consequence, the Hawking pairs
featuring the Hawking effect keep being maximally entangled which implies that the entropy
of the radiation is purified by the information stored in the Planck star.

Clearly, the very same reasoning about the purification of the entropy of the Hawking radiation
also applies to the scenario of Black Hole Fireworks.

5.3 Black Hole Fireworks

In the previous sections we have displayed the physics underlying this process, now we have
to look for an effective description. For doing so, as we shall see later, we will follow two key
insight: the first one, coming directly form general relativity, consist in the symmetric nature
of the classical theory of gravity under time reversal. The second hint, instead, comes from the
quantum theory (see [11]). The latter basically tells us that the two classical disconnected sets
of solutions for a null shell collapse, i.e. the black hole and the white hole, can be connected
by means of the quantum theory. In particular, in this semiclassical scenario a wave packet
representing an in-falling shell undergoes a quantum bounce, tunneling into an expanding wave

1Half of the evaporation time.
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packet.

Now, the invariance of general relativity under the inversion of the direction of time sug-
gests that we can search for the metric of a bouncing star by gluing a collapsing region with
its time reversal. In doing so, however, we shall disregard all dissipative effects, which are not
time symmetric. Thus our main hypothesis is that there is a time symmetric process where
a star collapses gravitationally and then bounces out. However, such a process is forbidden
in the classical theory because, after the collapse, a star would not be allowed to exit its own
horizon. Nevertheless, if we allow for for quantum gravitational corrections, as shown in [10],
the quantum effects could be actually able to pile up, over a long time, even affecting the metric
also in a small region outside the horizon. A black hole could thus be able to quantum-tunnel
into a white hole without violating causality or the underlying assumptions of the semiclassical
approximation.

Thus, Rovelli and Haggard were able to formulate an effective description of this scenario
under the following assumptions:

(i) Spherical symmetry;

(ii) Spherical null shell collapse;

(iii) Time reversal symmetry;

(iv) Classicality at large radii and at early times;

(v) No event horizons.

Their discussion can then be summarized by the following steps:

Step one: General considerations on the conformal description
Because of the assumption pvq, the conformal diagram of spacetime is trivial. From
assumption piiiq there must be a t “ 0 hyperplane which is the surface of reflection of the
time reversal symmetry. By symmetry, the bounce must then happen at t = 0. Moreover,
the metric is invariant under time reversal, so it is sufficient to describe the geometry only
for the region below t = 0 (and make sure it glues well with its future).

Step two: Conformal description of the incoming and outgoing null shells
These are represented by the two thick lines at 45 degrees.

Step three: Characterization of the quantum region
There exist two significant spacetime points, ∆ and E , that lie on the boundary of the
quantum region. The point ∆ has t “ 0 and is the maximal extension in space of the
region where the Einstein equations are violated. Point E , instead, is the first moment in
time where this happens.

Step four: Description of the various patch of the spacetime
From the previous steps we get that the spacetime can be separated into three patches,
respectively:

(I) The first region, inside the collapsing shell, must be flat by Bhirkoff’s theorem;
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(II) The second region, again by Bhirkoff’s theorem, must be a portion of the metric of a
mass m, namely it must be a portion of the (maximal extension of the) Schwarzschild
metric;

(III) Finally, the third region is where quantum gravity becomes non-negligible. We know
nothing about the metric of this region, except for the fact that it must join the rest
of the spacetime.

It is important to stress, see [10] for further details, that the point ∆ is a generic point
in the region outside the apparent horizon, which we take on the t “ 0 surface, so that
the gluing with the future is immediate. More crucial is the position of the point E .
Remember that this is the point where the in-falling shell reaches the quantum region.
Clearly this must be inside the horizon, because when the shell enters the horizon the
physics is still classical.

All the discussion above can be summarized in the following conformal diagrams.

where the continuous external lines bounding the purple-shaded regions in the diagram on the
right represent the spacetime positions of the apparent horizon.

We have built up the metric of a black hole tunnelling into a white hole by using the
classical equations outside the quantum region. The latter is bounded by a well defined classical
geometry. Thus, given the classical boundary geometry, it seems quite natural to ask whether
we can perform a computation of the quantum transition amplitude between these two classical
“states”. Indeed, this is precisely the form of the problem that is adapted for a calculation in
the Spinfoam formalism [5; 12; 13]. If this calculation can be done, we should then be able to
compute from first principles the duration τ of the bounce seen from the exterior. We shall see
later in this thesis an attempt to deal with this problem.

5.4 Some Phenomenology

For the case of Black Hole Fireworks, Rovelli and collaborators have also been able to give a
semiclassical estimate of the bouncing time τ (see [10]), i.e.

τ „ 4km2 (5.3)
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where k „ 0.05 and m is the mass of the collapsing null shell.
A Primordial Black Hole of initial mass around

m „ 1.2ˆ 1023 kg (5.4)

would have a semiclassical bouncing time of the order of the Hubble time, i.e. τ „ tH , therefore
it can be expected to “explode” into a white hole today.
If this happens, most of the energy of the black hole is still present at explosion time, because
Hawking radiation does not have the time to consume it. The exploding object should have a
total energy of the order

E “ mc2 „ 1050GeV (5.5)

compressed into a region given by the corresponding Schwarzschild radius, i.e.

RH “
2Gm

c2
„ 0.02 cm (5.6)

It has been argued in [14] that we may expect two main component of the signal from such an
explosion: a lower energy signal at a wavelength of the order of the size of the exploding object
and a higher energy signal which depend on the details of the liberated hole content. In this
paper they also point out that a possible connection between the lower energy signal and the
recently discovered Fast Radio Bursts.

Fast Radio Bursts are intense isolated astrophysical radio signals with a duration of mil-
liseconds. The frequency of these signals is in the order of 1.3GHz, namely a wavelength of
λO „ 20 cm. These signals are believed to be of extragalactic origin, mostly because the ob-
served delay of the signal arrival time with frequency agrees quite well with the dispersion due
to a ionized medium, expected from a distant source. The total energy emitted in the radio by
a source is estimated to be of the order 1041GeV . The origins and physical nature of the Fast
Radio Bursts are currently unknown.
Now, if we consider a strong explosion in a small region should emit a signal with a wavelength
of the order of the size of the region or somehow larger. Therefore it is reasonable to expect from
the black-white hole quantum transition (also known as Black Hole fireworks) the produc-
tion of an electromagnetic signal such that λT Á 0.02 cm, as discussed before. The difference
between λO and λT is around three orders of magnitude, however we must keep in mind that
the model that we are using is very rudimentary. So we might hope that further theoretical
refining of this scenario could lead to predictions closer to the experimental observations.
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Chapter 6

Rotating Black Holes

In this chapter we summarize (in a non-rigorous way) a set of theorems and conjectures con-
cerning black holes. Moreover, we also introduce the concept of rotating black hole and its
geometrical description.

6.1 The Kerr Solution

The Schwarzschild solution, which is appropriate outside a spherical, static mass distribution,
was discovered in 1916. It was not until 1963 that a solution corresponding to spinning black
holes was discovered by Roy Kerr. This solution leads to the possible existence of a family of
rotating, deformed black holes that are called Kerr black holes.
It is important to stress that the angular momentum is a very complicated thing in general
relativity. Indeed, despite the fact that in Newtonian gravity rotation produces centrifugal
effects without affecting directly the gravitational field, in the Enstein’s theory of gravity the
rotation of a gravitational field is itself a source for the field.

The Kerr metric is a vacuum solution of the Einstein’s field equations and corresponds
to the line element:

ds2 “

ˆ

1´
2mr

Σ

˙

dt2 `
4mra sin2 θ

Σ
dφdt´

Σ

∆
dr2 ´ Σdθ2

´ sin2 θ

ˆ

r2 ` a2 `
2mra2 sin2

Σ

˙

dφ2

(6.1)

where a P R and ras “ L in geometrized units, Σ “ r2`a2 cos2 θ and ∆ “ r2´2mr`a2. Here,
the set of coordinates pt, r, θ, φq are known as Boyer-Lindquist coordinates.
It is easy to see that for a “ 0 the line element (6.1) reduces to the Schwarzschild line element.
Moreover, it is also asymptotically flat for r " m and r " a.

The fact that the line element (6.1) is independent from the coordinates t and φ implies
the existence of the Killing vectors ξt “ Bt and ξφ “ Bφ. This tells us that we are dealing with
a stationary, axially symmetric spacetime.

Now, for a Killing vector field k “ kµ Bµ, the Killing equation Lk g “ 0, that can be rewritten
as ∇µkν `∇νkµ “ 0, is the statement that the symmetric part of the covariant derivative of

39
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the killing vector field vanishes, i.e. ∇pµkνq “ 0. Thus, we can define the Komar 2-form for
the Killing vector field k as:

K “
1

2
Kµν dx

µ ^ dxν “ ∇µkν dxµ ^ dxν (6.2)

Then, it is known that for a given Killing vector field k we can associate a quantity Qk, known
as the Komar Integral of k, given by

QkpBq “
c

8πG

ż

BB
‹K (6.3)

where B is a certain spacelike region of the spacetime and ‹ is the so called Hodge star linear
map, e.g. see [2] for further details.
It can be shown that, for B large enough such that all matter is inside of it and spacetime
is vacuum outside of it, QkpBq is a conserved quantity and its physical interpretation will
depend on the Killing vector k.

For appropriate choices of the regions B we find two conserved quantities for the Kerr
spacetime:

• If k “ ξt we find that: Qt “ m, so the mass of the black hole is a conserved quan-
tity. This should not be surprising because the conserved charge corresponding to the
symmetry under time translation is nothing but the total energy;

• If k “ ξφ we find that: Qφ “ ma. It is important to notice that physically the quantity
Qφ can be interpreted as the angular momentum of the black hole, i.e. Qφ “ J , thus
the Kerr parameter a has a straightforward interpretation as the angular momentum
per unit of mass, i.e. a “ J{m.

Before entering into a more detailed discussion of the singularity and horizon structure it is
important to make a remark on the geometry of the Kerr spacetime. If we consider, in Boyer-
Lindquist coordinates, 2-surfaces described by r, t “ const., it is trivial to show that they are
not described by the metric of a 2-sphere. This is going to be extremely relevant in the following.

6.1.1 Singularity and Horizon structure

It can be proven that the spacetime (6.1) has coordinate singularities at

∆ “ 0 ðñ r “ r˘ “ m˘
a

m2 ´ a2 (6.4)

And they can, indeed, be removed by a simple coordinate transformation. On the other hand,
this spacetime has also a curvature singularity in

Σ “ 0 ðñ r “ 0 , cos θ “ 0 (6.5)

which implies that the curvature singularity is only there when θ “ π{2, i.e. when we approach
r “ 0 along the equatorial plane. To be more specific, one can show that the singularity has
the topology of a ring of radius a, thus if we travel toward r “ 0 from any other angle than
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θ “ π{2, we will not encounter the singularity. Instead, we will fall through the interior of the
“ring” and emerge in a new region of spacetime (r ă 0, analytical extension of the spacetime).

Let us consider a curve in the Kerr spacetime such that t “ const., θ “ π{2 and r ă 0.
Under these assumptions we can rewrite the line element as:

ds2 “ ´

ˆ

r2 ` a2 `
2ma

r

˙

dχ2 , dχ “ dφ`
a

∆
dr (6.6)

Close enough to the singularity, where |r| ! 1 is small and negative, r ă 0, the parenthesis can
be negative and the curve is timelike. Since χ is a periodic coordinate with χ “ χ ` 2π, the
curve is also closed. This is a so called closed timelike curve or, eventually, a time machine.
However, this result is in contrast with the assumption of global hyperbolicity. Moreover,
closed timelike curves clearly violates causality. Therefore, these regions of the spacetime are
considered to be unphysical.

It is also important to notice that r` Ñ 2m as a Ñ 0. So it is a coordinate singularity of
the Kerr spacetime that turns into the coordinate singularity of the Schwarzschild spacetime as
a Ñ 0. Following these suggestions, one can formally proof (e.g. see [1]) that r` corresponds
to the event horizon of the Kerr metric. So, the property of owing an event horizon makes
the Kerr metric a black hole solution of the vacuum Einstein’s field equations. Thus the Kerr
horizon has constant Boyer-Lindquist coordinate r “ r` but it is not spherical, as we stressed
before.

6.1.2 Frame Dragging and the Ergosphere

Studying the geodesic motion of test particles, it turns out that the Kerr spacetime there is a
region around the outer horizon, called the ergosphere, in which it is impossible for any test
particle to remain stationary with respect to observers at infinity. So, everything must rotate
within this region. This happens because

gtt “ 1´
2mr

Σ
(6.7)

change sign and become positive in the region r2 ´ 2mr ` a2 cos2 θ ă 0, part of which lies
outside the event horizon r “ r` when a ‰ 0.
In the ergosphere, orbits of ξt are not timelike, so test particles cannot travel along them and
remain stationary with respect to observers at infinity. In order for a curve xµ “ pt, r, θ, φq to
be timelike, its tangent vector uµ “ dxµ{dτ must satisfy u2 “ 1. However, in the ergosphere
every term in u2 “ gµνu

µuν is positive except for gtφu
tuφ, which means that uφ “ dφ{dτ must

be non-zero. Any timelike worldline is therefore dragged around in the direction of rotation of
the black hole. This effect is an example of frame dragging.

If we consider the outer horizon r` as a sort of black hole surface then we could conven-
tionally consider the angular velocity of an observer which falls radially from infinity as a sort
of black hole angular velocity. The angular velocity of an observer which falls radially from
infinity is given by

Ω “
dφ

dt
“
uφ

ut
, u2 “ gttpu

tq2 ` 2gtφu
tuφ ` gφφpu

φq2 “ 1 (6.8)



42 CHAPTER 6. ROTATING BLACK HOLES

from which we get
putq2pgφφΩ2 ` 2gtφΩ` gttq “ 1 (6.9)

thus for ut to be real we require that gφφΩ2 ` 2gtφΩ ` gtt ą 0; since gφφ ă 0 everywhere, the
left-hand side of the inequality, as a function of Ω, gives rise to an upward pointing parabola.
Hence, the allowed range of angular velocities is given by Ω´ ă Ω ă Ω`, where

Ω˘ “
´gtφ ˘

b

g2
tφ ´ gttgφφ

gφφ
(6.10)

Now, as r “ r` we have ∆ “ 0 thus

ΩH ” Ωpr`q “ ´
gtφ
gφφ

“
a

2mr`
“

a

r2
` ` a

2
(6.11)

Form the previous discussion we can learn something very important. Indeed, if we define,
on the event horizon r “ r`, the vector field χ “ ξt ` ΩHξφ and if we set the condition
χ2pr`q “ 0, we get that

χ2 “ 0 on r “ r` ùñ ΩH “ ´
gtφ
gφφ

(6.12)

and one can also prove that χ is a Killing vector field normal to the horizon.

This result is actually quite general, indeed it follows from the following

Theorem 8 (Hawking Rigidity theorem). Let pM, gq be a stationary, asymptotically flat
solution of Einstein’s field equations, with matter satisfying suitable hyperbolic equations, that
contains a black hole. Then the event horizon H`, of the black hole is a Killing horizon.

The stationary Killing field ξt must be tangent to H`. Indeed, if it is normal to H` then
it can be shown that the spacetime is static. Thus, if ξt is not normal there must exist (due
to the Rigidity theorem) another Killing field χ that is normal to the horizon. It can then be
further shown that there is a linear combination, ψ, of ξt and χ whose orbits are spacelike and
closed, i.e., the spacetime is axisymmetric. Thus, a stationary black hole must be static or
axisymmetric.
We can choose the normalization of χ a so that

χ “ ξt ` ΩHξφ (6.13)

where ΩH is a constant that corresponds to the angular velocity of the horizon.

6.1.3 The Penrose Process

The Penrose process is a process that allows us to extract energy from a rotating black hole.
Imagine sending a particle into the ergosphere. Prepare it such that that, once in the ergosphere,
it decays into two particles, one of which falls into the black hole and one of which escapes the
ergosphere again. Denote the energy of the initial particle by E and that of the final particles
by E1 and E2. Conservation of four-momentum implies that E “ E1 `E2. The fact that ξt is
spacelike in the ergosphere, as well as the fact that E “ ξµt pµ where pµ is the four-momentum
of the particle, allows us to arrange the decay such that the energy of the particle that falls
into the black hole is negative: E1 ă 0 with respect to us. Then E1 is negative and E2 ą E:
the particle that re-emerges from the ergosphere has more energy than the particle we sent in.
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6.2 More General Black Holes

In general, we can define a black hole as an asymptotically flat solution of Einstein’s field
equations in vacuum, curvature singularity concealed by the horizon. Black holes form in the
gravitational collapse of stars, if they are sufficiently massive.
When a black hole forms in a gravitational collapse, since gravitational waves emission and
other dissipative processes damp its violent oscillations, we can expect that, after some time, it
settles down to a stationary state. Thus, stationary black holes are considered the final
outcome of gravitational collapse.

There are some remarkable theorems on stationary black holes, derived by S. Hawking,
W. Israel, B. Carter and R. Penrose which completely characterize black hole in the classical
theory:

• A stationary black hole is axially symmetric;

• Any stationary, axially symmetric black hole, with no electric charge, is described by the
Kerr solution.

• Any stationary, axially symmetric black hole described by the so called Kerr-Newman
solution, which is the generalization of the Kerr solution with non-vanishing electric
charge, is characterized by only three parameters: the mass M , the angular momentum
J “Ma, and the charge Q.

All other features the star possessed before collapsing, such as a particular structure of the
magnetic field, mountains, matter current, differential rotations etc, disappear in the final
black hole which forms. This result has been summarized, by Penrose, with the sentence: “A
black hole has no hair”, and for this reason the previous uniqueness theorems are also called
no hair theorems.

6.3 The Newman-Janis Algorithm

Two years after the discovery of Kerr metric, Newman and Janis presented an algorithm for
converting Schwarzschild geometry into Kerr geometry. This approach basically consist in
extending the Schwarzschild solution by means of a simple, analytic, complex coordinate trans-
formation.
The reason of the success of such procedure (at least for this particular case as well as for many
others) can be traced back to the behaviour of the Einstein’s Field Equations.
More recently, the NJA has been invoked to explore axially symmetric inner solutions and ro-
tating vacuum solutions in various different contexts, such as alternative theories of gravitation,
non-linear electrodynamics (DBI), non-Abelian black holes, spinning loop black holes, string
theory and so on.

Basically, the NJA is a technique used to generate solutions of the Einstein’s Field
Equations starting from known static spherical symmetric solutions. However, as
shown in many papers, a solution obtained from the NJA may be affected by severe patholo-
gies (e.g. see [17]), e.g. naked singularities, and also may not keep being a solution of the field
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equation from which one have started (in particular, it has been shown that this technique can
actually modify the stress-energy tensor from which it started). At the same time, there are
also other problems regarding a sort of ambiguous definition of the complex coordinate
transformation.

6.3.1 The Method

As widely explained in [15] (introducing, however, a fatal mistake in the first pages of the
paper that may invalid the whole discussion) and properly corrected in [18] by Caravelli and
Modesto, the NJA is a five steps procedure with the aim of generating new solutions of
the Einstein’s field equations starting form known static spherically symmetric ones. However,
it is still unknown whether a similar approach can be successfully applied to metrics which are
not spherically symmetric.
Let us discuss those steps in more details:

1. It is given a static spherically symmetric seed metric, i.e.

ds2 “ e2Φprq dt2 ´ e2λprq dr2 ´Hprq dΩ2 ”

” Gprq dt2 ´
dr2

F prq
´Hprq dΩ2

(6.14)

The first step then consist in changing coordinates, in particular, we have to rewrite the
line element in terms of the advanced null coordinates, i.e. pu, r, θ, ϕq, where

u “ t´ r˚ and dr˚ “
dr
?
FG

The line element above then becomes,

ds2 “ Gprq du2 ` 2

d

Gprq

F prq
dudr ´Hprq dΩ2 (6.15)

while the non zero components of the inverse metric are

guϕ “ e´Φprq´λprq , gϕϕ “ ´rHprq sin2 θs´1 ,

gθθ “ ´Hprq´1 , grr “ ´e´2λprq .

2. The second step of the algorithm consist in expressing the inverse matrix element of the
metric in terms of a null tetrad, such that

gµν “ lµnν ` lνnµ ´mµm̄ν ´mνm̄µ ” 2lpµnνq ´ 2mpµm̄νq (6.16)

with

l2 “ n2 “ m2 “ 0 , lµn
µ “ ´mµm̄

µ “ 1 , lµm
µ “ nµm

µ “ 0 (6.17)
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where a2 ” aµa
µ. In particular, taking into account the line element (6.15) we get:

lµ “ δµr

nµ “

c

F

G
δµu ´

F

2
δµr

mµ “
1

?
2H

ˆ

δµθ `
i

sin θ
δµϕ

˙

(6.18)

It is also useful to introduce the Newman-Penrose notation:

eµa ” pl
µ, nµ,mµ, m̄µq with a “ 1, 2, 3, 4.

3. The third step is the most important and also the most ambiguous, indeed we have to
replace the coordinate xρ with a new set of complex coordinates rxρ P C, i.e.

xρ P R ÐÑ rxρ “ xρ ` iyρpxσq (6.19)

where yρ “ yρpxσq are analytic real functions. It is important to stress that what we
have done so far in this step is not a coordinate transformation, indeed it is just a formal
substitution.
Simultaneously, we require that the null tetrad vector is replaced as follows:

eµapxq ÐÑ reµaprx, rxq (6.20)

becoming a function of both rxρ and rx
ρ
, with the condition that the complexified null

tetrad vector reµaprx, rxq reduces to eµapxq when rxρ is real, i.e.

reµaprx, rxq
ˇ

ˇ

ˇ

rxρ“rx
ρ “ eµapxq (6.21)

In summary, the result of this step is to create a new metric whose components
are real functions of complex variables, taking also into account the latter
constraint, i.e.

gµν ÐÑ rgµν P R , while reµaprx, rxq
ˇ

ˇ

ˇ

rxρ“rx
ρ “ eµapxq (6.22)

This step is the first part of the so called complexification procedure and it is certainly the
most ambiguous part of the entire algorithm. Indeed, the choice of (6.19) and (6.20) is
clearly not unique under the conditions (6.22); for example, there is no a priori restriction
concerning the choice of the complexified null tetred vector.

4. In the forth step a new metric is obtained by means of a complex coordinate
transformation:

rxρ ÝÑ rxρ “ x1
ρ
` iγρpxq , x1

ρ
, γρpxq P R (6.23)

which leads to a transformation of the complexified null tetred vector given, as usual, by:

e1
µ
a “

Bx1µ

Brxν
reνa (6.24)
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So we get the new metric:

g1
µν
“ l1

µ
n1
ν
` l1

ν
n1
µ
´m1

µ
m1

ν
´m1

ν
m1

µ
(6.25)

which is the new metric that we where looking for.

The complexification is usually chosen as:

r P R`0 ÝÑ r P C , r “ r1 ´ ia cos θ , r1, a P R
u P R ÝÑ u P C , u “ u1 ` ia cos θ , u1, a P R

(6.26)

But there is not any formal explanation which suggest to prefer this particular choice
rather then some others.
By means of this specific transformation, we get the following tetrad

l1
µ
“ δµr

n1
µ
“

d

rF

rG
δµu ´

rF

2
δµr

m1
µ
“

1
a

2 rH

ˆ

ia sin θ pδµu ´ δ
µ
r q ` δ

µ
θ `

i

sin θ
δµϕ

˙

(6.27)

Thus, the non zero components of the inverse metric (6.15) become, after the transfor-
mation,

guu “ ´
a2 sin2 θ

rHpr, θq
, guϕ “ ´

a

rHpr, θq
,

gϕϕ “ ´r rHpr, θq sin2 θs´1 , gθθ “ ´ rHpr, θq´1 ,

grr “ ´
a2 sin2 θ

rHpr, θq
´ e´2rλpr,θq , grϕ “

a

rHpr, θq
,

gur “
a2 sin2 θ

rHpr, θq
` e´

rΦpr,θq´rλpr,θq

(6.28)

where the prime have been omitted for the sake of clarity.
Thus,

guu “ rG , gur “

b

rG{ rF , gθθ “ ´ rH ,

guϕ “ a sin2 θ

ˆ

b

rG{ rF ´ rG

˙

,

grϕ “ ´a

b

rG{ rF sin2 θ ,

gϕϕ “ ´ sin2 θ

„

rH ` a2 sin2 θ

ˆ

2

b

rG{ rF ´ rG

˙

(6.29)

5. The fifth and last step of the algorithm is a change of coordinates. In some cases, we
can write the metric in the Boyer-Lindquist form, in which the only non-vanishing
off-diagonal term is gtϕ. Indeed, by means of some tedious calculations (see [15] for
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further details) it can be show that the former metric can be rewritten in Boyer-Lindquist
coordinates as follows:

pBLqgµν “

¨

˚

˚

˚

˚

˚

˚

˚

˝

rG 0 0 a sin2 θ

ˆ

b

rG{ rF ´ rG

˙

¨ ´
rH

rH rF`a2 sin2 θ
0 0

¨ ¨ ´ rH 0

¨ ¨ ¨ ´ sin2 θ

„

rH ` a2 sin2 θ

ˆ

2

b

rG{ rF ´ rG

˙

˛

‹

‹

‹

‹

‹

‹

‹

‚

(6.30)
where rG “ rGpr, θq, rF “ rF pr, θq and rH “ rHpr, θq (in particular, if we consider a spherically
symmetric seed metric, we have Hprq “ r2 and then rHpr, θq “ Σ “ r2 ` a2 cos2 θ).

Remark. This method is quite successful when applied to (almost) any spherically symmet-
ric solution derived in fpRq-gravity, it also gives the correct answer when applied to rotating
dilaton-axion black hole models but, it is important to stress that although the static spherically
symmetric charged dilaton black hole is also a solution to the truncated theory without axion
field (i.e. Einstein-Maxwell-dilaton gravity), the result coming form the NJA is not. Moreover,
whenever we apply this technique in the framework of Braneworld, it does not furnish a metric
that satisfies the condition to be a valid braneworld solution, i.e. R “ 0. It is also known that
the NJA fails when applied to the Born-Infeld theory.

6.3.2 From Schwarzschild to Kerr

Consider the Schwarzschild metric:

ds2 “

ˆ

1´
2m

r

˙

dt2 ´
dr2

1´ 2m
r

´ r2 dΩ2 (6.31)

which can be written in terms of the Advanced Eddington-Finkelstein coordinates as

ds2 “

ˆ

1´
2m

r

˙

du2 ` 2dudr ´ r2 dΩ2 (6.32)

So we have that

Gprq “ F prq “ 1´
2m

r
, Hprq “ r2

If we apply the algorithm as prescribed above, we have to choose a complexification of the r2

and of 1{r term. If we choose:

r2 ÝÑ rr̄ ,
1

r
ÝÑ

1

2

ˆ

1

r
`

1

r̄

˙

“
Re r

rr̄
(6.33)

which, using (6.26), leads to

r2 ÝÑ Σ ” r1
2
` a2 cos2 θ ,

1

r
ÝÑ

r1

Σ
(6.34)
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From the latter we can construct the new null tetrad as:

l1
µ
“ δµr

n1
µ
“ δµu ´

1

2

ˆ

1´
2mr1

Σ

˙

δµr

m1
µ
“

1
?

2Σ

ˆ

ia sin θ pδµu ´ δ
µ
r q ` δ

µ
θ `

i

sin θ
δµϕ

˙

(6.35)

The metric defined by the latter tetrad is the Kerr metric in Kerr-Schild coordinates.



Chapter 7

Rotating Hayward &
Modified-Hayward Metric

7.1 The Rotating Hayward Metric

As it is well known in the literature, the Hayward spacetime is one of the most famous
prototypical model for non-singular black holes. In particular, we have that the line element is
given by:

ds2 “ fprq dt2 ´
dr2

fprq
´ r2 dΩ2 (7.1)

where

fprq “ 1´
2Mprq

r
, Mprq “ m

r3

r3 ` g3

where m is the mass of the black hole and g ą 0 is a constant measuring the deviations from
the Schwarzschild solution.

The rotating Hayward spacetime has been worked out in [19], by means of the Newman-
Janis algorithm, using the following complexification for the mass term:

rfpr, θq “ 1´
2ĂMr

Σ
, ĂMγ,δ pr, θq “ m

r3`γΣ´γ{2

r3`γΣ´γ{2 ` g3 rδΣ´δ{2
(7.2)

where γ, δ P R are arbitrary parameters.
The rotating Hayward spacetime displayed in [19] is then given, in advanced coordinates, as
follows

gµν “

¨

˚

˚

˚

˚

˝

rf 1 0 a sin2 θ
´

1´ rf
¯

¨ 0 0 ´a sin2 θ
¨ ¨ ´Σ 0

¨ ¨ ¨ ´ sin2 θ
”

Σ` a2 sin2 θ
´

2´ rf
¯ı

˛

‹

‹

‹

‹

‚

(7.3)

In particular, it has been pointed out in [19] that for the latter spacetime we can distinguish
two classes of solutions.
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1. Complexification Type-I : γ “ δ.

• The spacetime is of Petrov type D;

• The spacetime is regular everywhere for g ‰ 0;

• The weak energy condition, satisfied in the non-rotating case, is violated for a ‰ 0.

2. Complexification Type-II : γ, δ P Rzt0u.

• There is no global transformation that allows us to write the new metric in Boyer-
Lindquist coordinates(that can happen because we are not in the vacuum and the
stress-energy tensor is not the one of a Maxwell electromagnetic field);

• The spacetime is regular everywhere for g ‰ 0;

• The weak energy condition is not satisfied.

Now, let’s discuss some properties of this spacetime.

Claim 4. The Rotating Hayward spacetime admits event horizons given by the roots of the
following equation:

r∆ ” r2 ´ 2ĂMγ,δ r ` a
2 “ 0 (7.4)

Proof. Basically, an event horizon for a stationary axisymmetric spacetime is a null surface
with the following features:

Φpu, r, θ, ϕq “ Φpr, θq “ 0 , nµ „ BµΦ , gµνnµnν “ 0 (7.5)

where nµ is the normal to the surface.
Hence, the general condition for a surface to be an event horizon for a stationary axisymmetric
spacetime is given by:

grr pBrΦq
2 ` gθθ pBθΦq

2 “ 0

Now, we can choose our coordinates pr, θq in such a way that we can write the equation of the
surface as Φprq “ 0, i.e. as a function of r alone. In this case we get

grr pBrΦq
2 “ 0

Thus, we see that an event horizon occurs when grr “ 0, i.e. r∆ ” r2 ´ 2ĂMγ,δ r ` a
2 “ 0.

Claim 5. The Rotating Hayward spacetime admits an ergosphere defined by the equation:

r2 ´ 2ĂMγ,δ r ` a
2 cos2 θ “ 0 (7.6)

Proof. In order to evaluate the properties of the ergosphere we have to study the behavior of
the norm of the timelike Killing vector ξpuq “ ξptq. Indeed, the ergosphere is defined as the
region outside the black hole where the timelike Killing vector becomes spacelike.
Hence, the external boundary of the ergosphere is given by

gµν ξ
µ
puq ξ

ν
puq “ guu “ 0 (7.7)

Thus,

rf “ 1´
2ĂMγ,δ r

Σ
“ 0 ùñ r2 ´ 2ĂMγ,δ r ` a

2 cos2 θ “ 0 (7.8)

assuming Σ ‰ 0.
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Claim 6. There are no Closed Timelike Curves (CTC) in the Rotating Hayward spacetime for
r ě 0.

Proof. In order to deal with the CTC’s problem we have to study the norm of the Killing vector
ξpϕq. Indeed, it is easy to see that

gµν ξ
µ
pϕq ξ

ν
pϕq “ gϕϕ “ ´ sin2 θ

”

Σ` a2 sin2 θ
´

2´ rf
¯ı

ď 0 , @r ě 0 , θ P r0, 2πq (7.9)

which means that there are no CTC in the Rotating Hayward spacetime for r ě 0.

Now, in order to simplify our analysis, we may select a specific complexification for the
Hayward mass. In particular, if we want to remain close to the analysis developed for the Kerr
spacetime, we have to choose a complexification that allows us to write the metric (7.3) in
Boyer-Lindquist coordinates. It is easy to see that this is the case when γ “ δ.
Thus, the metric (7.3) can be written in a Kerr-like form as:

ds2 “

ˆ

1´
2M r

Σ

˙

dt2 `
4aMr sin2 θ

Σ
dtdϕ´

Σ

r∆
dr2

´ Σ dθ2 ´ sin2 θ

ˆ

r2 ` a2 `
2a2Mr sin2 θ

Σ

˙

dϕ2

(7.10)

where

M “Mprq “ m
r3

r3 ` g3
, r∆ “ r2 ´ 2M r ` a2 (7.11)

This spacetime is clearly stationary and axisymmetric, with Killing vectors ξptq “ B{Bt and

ξpϕq “ B{Bϕ. Moreover, the horizons are then given by the roots of the equation r∆prq “ 0.

7.2 The Rotating Modified-Hayward Metric

Spacetime metrics describing “non-singular” black holes are commonly studied in the literature
as effective modification to the Schwarzschild solution that mimic quantum gravity effects
removing the central singularity. In [21], De Lorenzo et al. pointed out that, in order to be
physically plausible, such metrics should also incorporate the 1-loop quantum corrections to the
Newton potential and a non-trivial time delay between an observer at infinity and an observer
in the regular center. As previously discussed, they were able to present a modification of the
well-known Hayward metric that features these two properties, i.e.

ds2 “ GprqF prq dt2 ´
dr2

F prq
´ r2 dΩ2 (7.12)

with

F prq “ 1´
2Mprq

r
, Mprq “

mr3

r3 ` g3
and Gprq “ 1´

αβm

αr3 ` βm
(7.13)

where α incorporates the the time delay and β represents the 1-loop corrections to the
Newtonian potential.
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In terms of advanced null coordinates, we have that (7.12) can be rewritten as

ds2 “ GprqF prq du2 ` 2
a

Gprq dudr ´ r2 dΩ2 (7.14)

At this stage we just need to find an appropriate complexification of the functions F prq and
Gprq. For what concerns the function F prq, we could assume the one proposed in [19], i.e.

rF pr, θq “ 1´
2ĂMr

Σ
, ĂM “ m

r3`γΣ´γ{2

r3`γΣ´γ{2 ` g3 rδΣ´δ{2
(7.15)

where γ, δ P R are arbitrary parameters.
However, as a first attempt we avoid complexifications of the 1-loop corrections, i.e. of the
function Gprq.

We may choose to make the following choice for the complexification:

rF pr, θq “ 1´
2ĂMr

Σ
, rGpr, θq “ Gprq “ 1´

αβm

αr3 ` βm
(7.16)

Under these assumptions, if we follow the prescriptions stated in [18] we get:

guu “ G rF , guϕ “ a sin2 θ p
?
G´G rF q ,

gϕϕ “ ´ sin2 θ rΣ` a2 sin2 θ p2
?
G´G rF qs , gθθ “ ´Σ ,

grϕ “ ´a
?
G sin2 θ , gur “

?
G

(7.17)

Now, let’s discuss some properties of this spacetime.

Claim 7. The Rotating Hayward spacetime admits event horizons given by the roots of Eq.
(7.4).

Claim 8. The Rotating Modified Hayward spacetime admits an ergosphere as defined in (7.6).

Proof. In order to evaluate the properties of the ergosphere we have to study the behavior of
the norm of the timelike Killing vector ξpuq “ ξptq. Indeed, the ergosphere is defined as the
region outside the black hole where the timelike Killing vector becomes spacelike.
Hence, the external boundary of the ergosphere is given by

gµν ξ
µ
puq ξ

ν
puq “ guu “ 0 ðñ guu “ Gprq rF pr, θq “ 0 (7.18)

Recalling that Gprq ą 0 it is straightforward to see that the ergosphere for the Modified case
is the same as before. Indeed,

rF “ 1´
2ĂMγ,δ r

Σ
“ 0 ùñ r2 ´ 2ĂMγ,δ r ` a

2 cos2 θ “ 0 (7.19)

assuming Σ ‰ 0.

Claim 9. There are no CTC in the Rotating Modified Hayward spacetime, for r ě 0.
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Proof. In order to deal with the CTC’s problem we have to study the norm of the Killing vector
ξpϕq. Indeed, it is easy to see that

gµν ξ
µ
pϕq ξ

ν
pϕq “ gϕϕ “ ´ sin2 θ rΣ` a2 sin2 θ p2

?
G´G rF qs ď 0 , @r ě 0 , θ P r0, 2πq (7.20)

which means that there are no CTC in the Rotating Hayward spacetime, for r ě 0.

Now, in order to simplify our analysis, we may select a specific complexification for the
Hayward mass. In particular, if we want to remain close to the analysis developed for the Kerr
spacetime, we have to choose a complexification that allows us to write the metric (7.17) in
Boyer-Lindquist coordinates. It is easy to see that this is the case when γ “ δ.
Thus, the metric (7.17) can be written in a Kerr-like form as:

ds2 “ G rF dt2 ` 2a sin2 θ
?
G
´

1´
?
G rF

¯

dtdϕ´
Σ

r∆
dr2

´ Σ dθ2 ´ sin2 θ
”

Σ` a2 sin2 θ
?
G
´

2´
?
G rF

¯ı

dϕ2
(7.21)

where

M “Mprq “ m
r3

r3 ` g3
, r∆ “ r2 ´ 2M r ` a2 (7.22)

This spacetime is clearly stationary and axisymmetric, with Killing vectors ξptq “ B{Bt and

ξpϕq “ B{Bϕ. Moreover, the horizons are then given by the roots of the equation r∆prq “ 0, as
in the unmodified case.

It is worth noting that the equation for the horizon, for γ “ δ, can be rewritten in the
following form:

r5 ´ 2mr4 ` a2r3 ` g3pr2 ` a2q “ 0 (7.23)

assuming r ‰ ´g, m ě 0 and g ą 0.
Using perturbation theory, we can find an approximate solution of the latter equation, under
the assumption that g ! 1. Hence, we find that, at the first order in ε “ g3, the solution is
given by:

r
p1q
H “ r0, H ´

25g3pr2
0, H ` a

2q

r2
0, Hp5r0, H ´ 4m´

?
16m2 ´ 15a2qp5r0, H ´ 4m`

?
16m2 ´ 15a2q

(7.24)

where

r0, H “ m`
a

m2 ´ a2 (7.25)

is the solution of the unperturbed equation, i.e. g “ 0.
This result is useful in order to compute approximately the area of the event horizon and
the angular velocity of the black hole. For further details and explicit computations refer to
Appendix B.
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7.3 Open Problems and Concluding Remarks

Starting from Eq. (7.12) we wanted to investigate an appropriate metric for a rotating Planck
star by means of the NJA. What we found was the metric (7.17) which contains, however, a
singularity. Indeed, the Kretschmann scalar has the following properties:

lim
rÑ0

K “ fpαq for θ ‰
π

2
where fpαq

αÑ0
ÝÑ 0

lim
rÑ0

K “ 8 for θ Ñ
π

2

(7.26)

for all γ, δ P R.
Basically, we started from a non-singular black hole and, after the application of the NJA, we
obtained a singular spacetime. By contrast, if we set G “ 1, as in the Hayward case, after the
application of the NJA we recover a new metric which is still non-singular.
Unfortunately, from a physical perspective, we do not know how to explain the re-introduction
of the singularity in the rotating metric by the NJA. We can just say that this is not a feature
of the choice of the modification function, but it rather seem to be a property of the algorithm
itself. Indeed, we proved that, independently from the choice of a function G “ Gpr, θq to plug
into the rotating metric (7.3), we always gain the emergence of a curvature singularity.

Now, in order to overcome this problem, we can always try to look for a suitable rotating
metric following the same reasoning that we used in the static case (see [21]), i.e. we have to
properly modify guu.
Indeed, let us consider:

ds2 “ rfdu2 ` 2a sin2 θp1´ rfq ´ 2a sin2 θ ´ Σdθ2

´ sin2 θ
”

Σ` a2 sin2 θp2´ rfq
ı

dϕ2
(7.27)

where rf and Σ are defined in Section 7.1. Thus, if we modify guu as:

guu “ rfpr, θq ÝÑ guu “ gprq rfpr, θq (7.28)

examining the Kretschmann scalar one can deduce that, in order to avoid the emergence of the
singularity, we have to require that g1pr “ 0q “ g2pr “ 0q “ g3pr “ 0q “ 0. Then one find that
a suitable function is given by:

gprq “ 1´ α

„

1´ exp

ˆ

´
βm

αr3

˙

(7.29)

where α represents the time delay and β ą 0.
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Chapter 8

The Spin foam Approach to Loop
Quantum Gravity

In the following section we quickly review the fundamental concepts lying at the very basis
of the canonical formulation of Loop Quantum Gravity (LQG). After that we introduce the
modern formulation of LQG through a covariant approach commonly known as the Spin foam
formalism. In this introductory part we will mostly follow the line of resining presented in
[22; 5].

Remark. In the following, in order to remain consistent with the references, we will use the
metric signature p´ ` ``q.

8.1 Tetrad formulation of General Relativity

Let pM, gq be a Lorentzian manifold.

Definition 18 (Tetrad). The set of 1-form teIµpxq , I “ 0, 1, 2, 3u such that

gµν “ ηIJ e
I
µe
J
ν , ηIJ ” diagp´1, 1, 1, 1q (8.1)

is said to be a tetrad.

Clearly, a tetrad provides a local isomorphism between a general reference frame and an
inertial one, characterized by the flat metric η. A local inertial frame is defined up to a Lorentz
transformation, and in fact notice that the definition is invariant under

eIµpxq ÝÑ peIµpxq “ ΛIJpxqe
I
µpxq

This means that the internal index I carries a representation of the Lorentz group.
From a geometrical point of view, the tetrad provides an isomorphism between the tangent
bundle T pMq and a Lorentz principal bundle F “ pM, SOp1, 3qq, i.e. T pMq » F . On this
bundle we have a connection ωIJµ which we can use to define covariant differentiation of the
fibres,

Dµv
Ipxq “ Bµv

Ipxq ` ωIµ Jv
Jpxq (8.2)

We can also define a derivative for objects equipped with both spacetime and internal lorentzian
indices, such as a tetrad, i.e.

DµeIνpxq :“ Bµe
I
νpxq ` ω

I
µ J e

J
ν pxq ´ Γλνµe

I
λpxq (8.3)
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As Γpgq is metric compatible, we can define the so called spin-connection as follows

Definition 19. A connection ωµ on the Lorentz principal bundle F is called spin-connection
if it is tetrad compatible, i.e. DµeIν “ 0.

From this definition we immediately get the following

Proposition 10. Let ωµ be a spin-connection, then

Dpµe
I
νq “ Γλpνµqe

I
λ , Drµe

I
νs “ Γλrνµse

I
λ “ 0 (8.4)

Proof. It follows trivially form the metric compatibility and from the latter definition.

From the last proposition, one can easily deduce the following relation between the spin
and Levi-Civita connections,

ωIµ J “ eIν ∇µeνJ (8.5)

as well as the fact that the spin connection satisfies the Cartan’s first structure equation,
i.e.

dω e
I :“ deI ` ωIJ ^ e

J “ Dµe
I
ν dx

µ ^ dxν “ 0 (8.6)

Given the connection, we define its curvature as

F IJ :“ dωIJ ` ωIK ^ ω
KJ (8.7)

whose spacetime components are

F IJµν “ Bµω
IJ
ν ` ωIK µω

KJ
ν ´ tµ Ø νu (8.8)

Now, given the previous relation between the spin-connection and the Levi-Civita connection,
we can prove that

F IJµν pωpeqq “ eIρeJσRµνρσpeq (8.9)

where Rµνρσpeq is the Riemann tensor. This relation is known as Cartan’s second structure
equation. It shows that general relativity is a gauge theory whose local gauge group
is the Lorentz group, and the Riemann tensor is nothing but the field-strength of the spin
connection.

8.2 The Einstein-Hilbert action

The Einstein-Hilbert action can be rewritten as a functional of the tetrad in the following way
(setting 16πG “ 1)

SEHpeq “
1

2
εIJKL

ż

eI ^ eJ ^ FKLpωpeqq (8.10)

Indeed,

SEHpgpeqq “

ż

d4x
?
´ggµνRµν “

ż

d4x e eµI e
ν IRµρνσe

ρ
Je
σ J “

“

ż

d4x e eµI e
ρ
JF

IJ
µρ pωpeqq “

1

4

ż

d4x εIJKL ε
µραβ eKα e

L
βF

IJ
µρ pωpeqq “

“
1

2
εIJKL

ż

eI ^ eJ ^ FKLpωpeqq “ SEHpeq

(8.11)
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where we have made use of the definition of tetrad, the Cartan’s second structure equation and
the relation between the determinants e2 “ ´g.
A fact which plays an important role in the following is that we can lift the connection to be
an independent variable, and consider the new action

SEHpe, ωq “
1

2
εIJKL

ż

eI ^ eJ ^ FKLpωq (8.12)

Although it depends on extra fields, this action remarkably gives the same equations of motion
as the previous one. In particular, from the variation of the action we get the following equations
of motions:

deI ` ωIJe
J “ 0 ðñ Torsion-less

F IJpωpeqq “ 0 ðñ Einstein’s Field Equations
(8.13)

If we insist on the connection being an independent variable, it is worth noting that there exists
a second term that we can add to the Lagrangian that is compatible with all the symmetries:

δIJKL e
I ^ eJ ^ FKLpωq (8.14)

where we used δ ” δIrKδLsJ . This term does not appear in in the ordinary second order metric
since:

ωµ “ e ¨∇µe ùñ δIJKL e
I ^ eJ ^ FKLpωq “ εµνρσ Rµνρσ “ 0

If we then add this term, multiplied by a coupling constant 1{γ, we get the so called Holst
action:

Spe, ωq “

ˆ

1

2
εIJKL `

1

γ
δIJKL

˙
ż

eI ^ eJ ^ FKLpωq (8.15)

Assuming non-degenerate tetrads, this action leads to the same field equations of general rela-
tivity, i.e.

ωµ “ e ¨∇µe , Gµνpeq “ 0

This result is completely independent of the value of γ, which is thus a parameter irrelevant in
classical vacuum general relativity. It will however turn out to play a key role in the quantum
theory, where it is known as the Immirzi parameter.

8.3 The Hamiltonian Formulation

The ADM formalism provides a change of variables which simplifies the canonical description
of Einstein-Hilbert action. Let us consider a spacetime pM, gq with a topology such that
M » RˆΣ where Σ is a fixed three-dimensional manifold of arbitrary topology and spacelike
signature. Under this assumption we build up two fields starting from the metric gµν , i.e.

N “
a

´g00 , Ni “ g0i i “ 1, 2, 3. (8.16)

These two field are respectively called Lapse and Shift functions. This change of variables
turns out to be extremely useful because if we write the action in terms of these variables
one discovers that the Lagrangian does not de- pend on the time derivatives of Lapse and
Shift (they are Lagrange multipliers), and this immediately simplifies the canonical analysis.
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Moreover, N and Ni have a nice intrinsic geometrical interpretation. Indeed, if we consider
the hypersurface Σt at t “ const.. It is easy to see that the Lapse function is the proper time
elapsed between a point on Σt and a point on Σt`δt, along the normal to the surface. The
Shift function measures, instead, the shift of the spatial coordinates from one constant surface
to the next, with respect to the coordinates that observers not moving on the initial surface
would carry with them.
The Lapse can equivalently be defined by

N2 detpqq “ detpgq

where q is the 3-metric induced on the spacelike surface Σt at constant time. From this definition
it follows that

g00 “ ´N
2 `NiN

i

so that the line element in the ADM variables reads

ds2 “ ´pN2 ´NiN
iqdt2 ` 2Nidx

idt` qijdx
idxj (8.17)

Now, the extrinsic curvature of Σt is given by

kij “
1

2N
p 9qij ´DpiNjqq (8.18)

where the dot indicates the derivative with respect to t and Di is the covariant derivative of
the three-metric.

Now, it is easy to see that a tetrad for (8.17) is given by

eI0 “ NnI `NaeIa , δije
i
ae
j
b “ gab (8.19)

where nI “ nµeIµ with nµ normal to Σt and where the triad eia is the spatial part of the tetrad.

In order to simplify the discussion, it is customary to work in the time gauge, i.e. eIµn
µ “ δI0 .

In such a gauge, we introduce the so called Ashtekar variables:

• the Densitized Triad: Eai :“ e eai “
1
2 εijk ε

abc ejbe
k
c

• the Ashtekar-Barbero connection: Aia :“ γω0i
a `

1
2 ε

i
jk ω

jk
a

These variables turns out to be conjugated. In fact, we can rewrite the Holst action in terms
of the new variables as

SrA,E,N,Nas “
1

γ

ż

dt

ż

Σ
d3x

´

Eai
9Aia ´A

i
0Gi ´NH ´N

aHa

¯

(8.20)

where

Gi :“ DaE
a
i ” BaE

a
i ` εijkA

j
aE

a k

Ha “
1

γ
F iabE

b
i ´

1` γ2

γ
kiaGi

H “
“

F iab ´ p1` γ
2qεimn kmaknb

‰ εiklE
a kEb l

detE
`

1` γ2

γ
GiBa

Eai
detE

(8.21)
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We have three kind of constraints, the one defined by HpA,Eq and HapA,Eq, known as the
Hamiltonian and space-diffeomorphism constraints, and an extra set of constraints, defined by
Gi, known in the realm of gauge theories as the Gauss constraint. It is also physically relevant
to stress that the resulting algebra of the constraints is of the first class1.
It is also easy to check that Eai and Aia transform respectively as an SUp2q vector and as an
SUp2q-connection under the gauge transformation generated by the Gauss constraints.
Summarizing, in this formulation of General Relativity the theory is described by an extended
phase space of dimension 18 ¨ 83 with the fundamental Poisson bracket

!

Aiapxq, E
b
jpyq

)

“ γ δbaδ
i
j δ

3px´ yq (8.22)

This new internal index i corresponds to the adjoint representation of SUp2q, and we can re-
cover the 12 ¨ 83 dimensional phase space on the constraint surface Gi “ 0 dividing by gauge
orbits generated by G.

Now, we have to smear the algebra in order to proceed with the canonical quantization.
Considering the fact that the densitised triad is a 2-form, it is natural to smear it on a surface
S,

EipSq :“

ż

S
d2σnaE

a
i na “ εabc

Bxb

Bσ1

Bxc

Bσ2
(8.23)

This quantity represents the flux of E across S.
The connection on the other hand is a 1-form, so it is natural to smear it along a 1- dimensional
path. Let us consider a path γ parametrized as γ : r0, 1s Ñ Σ, s ÞÑ xapsq. Then, we can
associate an element of SUp2q to the Ashtekar-Barbero connection defined as Aa :“ Aiaτi,
where τi are the generator of SUp2q. Then we can integrate Aa along γ as

Aia ÝÑ

ż

γ
A (8.24)

Next, we define the holonomy of A along γ to be

hγ “ P exp

ˆ
ż

γ
A

˙

(8.25)

where P stands for the path-ordered product.

For a detailed discussion of the canonical quantization of the theory, described in terms of
Ashtekar-Barbero variables, see [22; 13].

1A first class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson
bracket vanishes on the constraint surface with all the other constraints
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8.4 Spin foam Quantization of BF Theories

It is now relevant to briefly present the general Spin foam quantization for a BF theory due
to the fact, as it will appear obvious in the following discussion, that classical gravity can be
regarded as a particular case of this large class of models.

First of all, let G be a compact group whose Lie algebra g has an invariant inner product
here denoted by x,y and M a d-dimensional compact, orientable manifold.
A classical BF theory is defined by an action

SrB,ωs “

ż

M
xB ^ F pωqy (8.26)

where B is a g-valued pd ´ 2q-form and ω is a connection on a G principal bundle over M.
One can easily notice that the theory has no local excitations or, more precisely, the gauge
symmetries of the action are the local G gauge transformations

δB “ rB,αs , δω “ dω α

where α is a g-valued 0-form, and the topological gauge transformation

δB “ dω η , δω “ 0

where η is a g-valued 0-form. Moreover, it is worth remarking that the theory has only global
or topological degrees of freedom.

The partition function Z is formally defined as

Z :“

ż

DrBsDrωs exp

ˆ

i

ż

M
xB ^ F pωqy

˙

(8.27)

then, formally integrating over the B, we get

Z “
ż

Drωs δpF pωqq (8.28)

Thus the partition function can be understood as the “volume” of the space of flat connections
on M.

Now, in order to extract some physics from this model, we want to approximate the d-
dimensional manifold M with a suitable triangulation ∆. Thus, let us replace M with an
arbitrary cellular decomposition ∆ in the previous expressions. Given a cellular decomposi-
tion ∆, we can define the associated dual 2-complex of ∆, denoted by ∆‹, as a combinatorial
object consisting of

• vertices v P ∆‹, dual to d-cells in ∆;

• edges e P ∆‹, dual to pd´ 1q-cells in ∆;

• faces f P ∆‹, dual to pd´ 2q-cells in ∆
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Hence, if we consider ∆ to be a triangulation, we have that:

1. the field B is associated with Lie algebra elements Bf assigned to faces f P ∆‹ via

B ÝÑ Bf “

ż

pd´2q´cell
B

2. the connection ω is discretized by the assignment of group elements ge P G to edges
e P ∆‹ as follows

ω ÝÑ ge “ P exp

ˆ
ż

e
ω

˙

Thus, the discretized version of the partition function is given by

Zp∆q “

ż

ź

e

dge
ź

f

dBf exp piBfUf q “

ż

ź

e

dge
ź

f

δpge1 ¨ ¨ ¨ genq (8.29)

where Uf “ ge1 ¨ ¨ ¨ gen denotes the holonomy around faces. The last expression can then be
regarded as the discrete analogue of (8.28).

Remark. The integration measure dBf is the standard Lebesgue measure, while the integration
in the group variables is done in terms of the Haar (unique and invariant) measure in G.

Now, if we recall the

Theorem 9 (Peter-Weyl). A basis on the Hilbert space L2pG, dµHaarq of functions on a com-
pact group G is given by the matrix elements of the unitary irreducible representation of the
group.

one can derive a very useful formula for the Dirac delta distribution

δpgq “
ÿ

ρ

dρ Trrρpgqs (8.30)

where ρ are irreducible unitary representations of G.
Thus, inserting the resolution of the Dirac delta distribution into (8.29), we get

Zp∆q “
ÿ

C:tρuÑtfu

ż

ź

e

dge
ź

f

dρf Trrρf pge1 ¨ ¨ ¨ genqs (8.31)

If we were interested in the integration over the connection, this could be performed as
follows. In a triangulation ∆, the edges e P ∆‹ bound precisely d different faces; therefore, the
ge’s appear in d different traces. Thus, the spin foam amplitude of SOp4q BF theory, Zp∆q,
can be recast in the following form:

ZBF p∆q “
ÿ

C:tρuÑtfu

ź

f

dρf
ź

e

P einvpρ1, . . . , ρdq (8.32)

where

P einvpρ1, . . . , ρdq :“

ż

dge ρ1pgeq b ¨ ¨ ¨ b ρdpgeq (8.33)

is a projector onto Invrρ1 b ¨ ¨ ¨ b ρds.
In other words, the BF amplitude associated to a two complex ∆‹ is simply given by summing
over the numbers obtained by the natural contraction of the network of projectors Pe according
to the pattern provided defined by the two-complex ∆‹. It is also important to stress that the
sum is over all possible assignments of irreducible representations of G to faces.
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8.5 The Lorentzian EPRL Model

8.5.1 Elements of representation theory of SLp2,Cq

It is well known in the literature that studying the representation theory of SLp2,Cq one
discovers that its unitary irreducible representations are labelled by a positive real number
p P R` and a half-integer k P N{2 and they act on the infinite dimensional Hilbert spaces
denoted by Hpp,kq, see [23]. The two Casimirs are C1 “ L2´K2 and C2 “ K ¨L where Li are
the generators of an arbitrary rotation subgroup and Ki are the generators of the corresponding
boosts.
Given |p, ky P Hpp,kq the Casimirs act on these vectors as follows

C1 |p, ky “ pk
2 ´ p2 ´ 1q |p, ky , C2 |p, ky “ pk |p, ky

The definition of the EPRL model requires the introduction of an (arbitrary) subgroup SUp2q Ă
SLp2,Cq. This subgroup corresponds to the internal gauge group of the gravitational phase
space in connection variables in the time gauge.
The link between the unitary representations of SLp2,Cq and those of SUp2q is given by the
decomposition

Hpp,kq “
8
à

j“k

Hj (8.34)

where Hj is a dj “ 2j ` 1 dimensional space that carries the spin j irreducible representation
of SUp2q. Therefore, we can choose a basis |p, k; j,my for Hpp,kq, with j “ k, k ` 1, . . . and
m “ ´j, . . . , j.

Now, we want the simplicity constraint to be fulfilled in the classical limit, i.e. we want
that

Ki
f ´ γL

i
f “ op~q (8.35)

where the label f makes reference to a face f P ∆‹. Thus, in the formal limit ~Ñ 0 (or, more
precisely, j Ñ8, ~Ñ 0 and ~j “ const.) we want to recover

Ki ´ γLi “ 0

Given this relations, in the classical limit we can rewrite the Casimirs as

C1 “ L2 ´K2 “ p1´ γ2qL2 , C2 “ K ¨ L “ γL2 (8.36)

Thus, from the representation theory of SLp2,Cq, we get the following relations
#

k2 ´ p2 ´ 1 “ p1´ γ2qjpj ` 1q

pk “ γjpj ` 1q
(8.37)

from which we get
p “ γj , k “ j for j " 1 (8.38)

The first of these two relations is a restriction on the set of the unitary representations. The
second picks out a subspace within each representation. Therefore, the states that satisfy these
relations take the form

|p, k; j,my “ |γj, j; j,my (8.39)
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Notice that these states are in one to one correspondence with the states in the represen-
tations of SUp2q. We can thus introduce a map Yγ as

Yγ : Hj ÝÑ Hpγj,jq , |j;my ÞÝÑ |γj, j; j,my (8.40)

and all the vectors in the image of this map satisfy the simplicity constraints, in the weak sense,
i.e.

xYγψ|K
i ´ γLi|Yγφy

jÑ8
ÝÑ 0 (8.41)

Thus we assume that the states of quantum gravity are constructed from the states |γj, j; j,my
alone.
The so called Y -map extends naturally to a map from functions over SUp2q to functions over
SLp2,Cq. Indeed,

Yγ : L2rSUp2qs ÝÑ F rSLp2,Cqs ,

Ψrhs “
ÿ

jmn

cjmnD
pjq
mnphq ÞÝÑ Ψrgs “

ÿ

jmn

cjmnD
pγj,jq
jmjn pgq

(8.42)

where D
pjq
mnphq are the Wigner matrices and D

pp,kq
jmj1npgq are the matrix elements of the pp, kq-

representation in the |p, k; j,my basis that diagonalizes L2 and Lz of the canonical SUp2q
subgroup.
And therefore we have a map from SUp2q spin-networks to SLp2,Cq spin-networks. It is also
well known that the Y -map is the core ingredient of the quantum gravity dynamics. Indeed,
it depends on the Einstein-Hilbert action and encodes the way SUp2q states transform under
SLp2,Cq transformations in the theory. This, in turn, codes the dynamical evolution of the
quantum states of space.
The physical states of quantum gravity are thus SUp2q spin-networks, or, equivalently, their
image under Yγ . Notice that this space carries a scalar product which s well defined: the one
determined by the SUp2q Haar measure. The fact that the scalar product is SUp2q and not
SLp2,Cq invariant reflects the fact that the scalar product is associated to a boundary, and
this picks up a Lorentz frame. For further informations about the spin-networks states for the
4D theory one can refer, for example, to [5].

8.5.2 The transition amplitudes of LQG

Now, following [5; 24; 25], one can rewrite the transition amplitudes of Loop Quantum Gravity
in the form

Z∆rhls “

ż

SLp2,Cq
dgev

ż

SUp2q
dhef

ÿ

jf

ź

f

dff χ
pγjf ,jf q

¨

˝

ź

ePBf

g
εef
ef

˛

‚

ź

ePBf

χjf phef q (8.43)

where ∆‹ is the dual 2-complex bounded by the graph Γ “ B∆ with nodes n and links l, χjphq is
the spin-j SUp2q character and χpp,kqpgq is the SLp2,Cq character in the pp, kq-representation.
Moreover, inside the SLp2,Cq character we find εef which is a sign depending on the orientation
of the graph Γ and gef is defined as

gef “

#

gesehefg
´1
ete , for the (internal) edges

hl P SUp2q , for the links (i.e. boundary edges)
(8.44)
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Here se and te are respectively the source and target vertices of the edge e. For further details
on the definition see [25].



Chapter 9

Towards computing black hole
tunnelling time

9.1 Feynman rules

The classical definition of a spin foam vertex amplitude is via the evaluation of its boundary
spin network. This definition applies to arbitrary vertices, and allows to immediately apply
the integrability criterion conjectured by Baez and Barrett in [26] and proved by Kaminski in
[27].

For every vertex whose boundary is a 3-link-connected graph, the spin foam amplitude is
obtained taking:

1. a factor Dγj,j
jmjnpgq for all links;

2. a SLp2,Cq integral for all nodes minus a redundant one.

These rules have the advantage of being compact, but they use an explicit gauge fixing which
makes appearing the SUp2q subgroup that stabilizies the time gauge direction. refer to things
that are not Lorentz invariant, namely the Wigner matrix for simple projected spin networks.
Nonetheless, the Lorentz-invariance was proved in [25].

If this is the physical boundary, the magnetic indexes are free, or contracted with the
Wigner’s matrix of the boundary link holonomy. If this vertex is part of the bulk, the indexes
are summed over in the next vertex, and the face spin are summed over too. In this way, one
obtains the spin foam amplitude as also in [13], as a product of BF delta distributions on the
faces expressed in the Plancherel decomposition and reduced by the action of the Y projector
on the edges.

It is also important to recall that the orthogonality formula
ż

dgDρ,k
jmlnpgqD

ρ1,k1

j1m1l1n1pgq “
δpρ´ ρ1q

ρ2 ` k2
δkk1δjj1δll1δmm1δnn1 (9.1)

defines a distribution in L2rSLp2,Cqs but not in the space K of γ-simple projected spin net-
works.

67
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The model is usually defined using a 5-valent vertex dual to a 4-simplex, and the corre-
sponding evaluation of Feynman rules represented by the following drawing (see [13]),

Z “
ÿ

jf ,ie

ź

f

p2jf ` 1q
ź

v

(9.2)

The key object here is the projector on the simplicity constraints, represented by the Y map
next to the integration boxes. However, the model can be defined for an arbitrary foam as
discussed above.

9.2 Decomposition and boost Clebsch-Gordan

Just like in the Euclidean case, these amplitudes are given by contractions of Clebsch-Gordan
(CG) coefficients. However, unlike for SUp2q in the Euclidean case, the Clebsch-Gordan co-
efficients of the Lorentz group are not explicitly tabulated. However, only a special class of
Clebsch-Gordan is needed explicitly, i.e. those concerning boosts along the z axis. This is
because every group element can always be parametrized as

g “ u e
r
2
σ3 v´1 (9.3)

where u and v are arbitrary rotations. This parametrization is clearly redundant, possessing
a Up1q symmetry of common rotations of u and v along the z axis. However, since this is a
compact orbit, it is possible to use everywhere this parametrization and replace the SLp2,Cq
integrals by

dg “
1

4π
sinh2 r drdudv (9.4)

where du and dv are the Haar measures for the two copies of SUp2q, and the normalisation
comes from the explicit computations showed in [23].

The version of Eq. (9.3) in an arbitrary irreducible representation, irrep for short, is

D
pρ,kq
jmlnpgq “ Dj

mppuqd
pρ,kq
jlp prqD

l
pnpv

´1q (9.5)

The matrix element of z-boosts are explicitly known via an integral form [23],

d
pρ,kq
jlp prq “

a

dj
a

dl

ż 1

0
dt djkpp2t´ 1qdlkpp2tr ´ 1q

`

te´r ` p1´ tqer
˘iρ´1

,

tr “
te´r

te´r ` p1´ tqer

(9.6)

in terms of Wigner’s SUp2q matrices, djmnpcosβq.

For the Barrett-Crane model, only the special representations with k “ j “ 0 matter, for
which we have the simple form

d
pρ,0q
000 prq “

sinpρrq

ρ sinh r
(9.7)
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which allows an explicit evaluation of the Clebsch-Gordan coefficients. For the ERPL model,
the situation is a bit more complicated. The relevant representations are now the so called
γ-simple, for which

ρ “ γk, k “ j. (9.8)

Notice the Lorentz-breaking nature of the second condition; this is where the choice of time
gauge explicitly shows up in the quantization procedure. Nonetheless, the EPRL model is
perfectly covariant, see [25]. The associated d-matrix can be given a compact expression in
terms of hypergeometric functions,

dγjp prq :“ d
pγj,jq
jjp prq “ dj

2j!

pj ` pq!pj ´ pq!
e´pr

ż 1

0
dt

tj`pp1´ tqj´p

pte´r ` p1´ tqerq1`jp1´iγq

“ e´rjp1´iγq`p`1sr
2F1rj ` p` 1, jp1´ iγq ` 1, 2j ` 2, 1´ e´2rs

(9.9)

Therefore, evaluating SLp2,Cq Clebsch-Gordan amounts to evaluating integrals of these hy-
pergeometric functions and gluing them with usual SUp2q Clebsch-Gordan.
In particular, a nice feature is that one obtains a complete factorisation of the amplitude in
terms of SUp2q nj-symbols on the vertices glued by boost edge amplitudes:

Zσ “
ÿ

jf ,ie

ź

f

p2jf ` 1q
ź

e

Aγe pjf , ieq
ź

v

tnjuvpjf , ieq (9.10)

This result is, probably, known to everyone who has actually done any explicit calculation, but
it does not appear easily in the literature and we think it is worth stressing.

9.3 The edge amplitude

A priori, the simplest possible boundary is given by 2 links sharing two nodes. However, the
spin foam with a single vertex is not integrable. Thus one has to consider two vertices inside
the two-link dipole.

v1 v2

Where the continuous lines corresponds to the links of the spin network, the external dots
are the nodes of the spin network, the dots labelled with v1 and v2 are the vertices of our spin
foam and the dashed lines are the edges of the spin foam.
Each vertex amplitude, in this case, corresponds to a 4-valent vertex with tetrahedral boundary
graph. Therefore, we study the tetrahedral boundary graph, knowing that we could take it as
a building block for the simplest contribution to the 2-link dipole, or directly for a transition
amplitude with a tetrahedral boundary graph.

For this diagram, the transition amplitude is

Arh12, . . . h34s “
ÿ

jf

ź

f

p2jf ` 1q
ź

e

Aγe pjf qt6juΨ6jrh12, . . . h34s (9.11)
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and

Aγpjiq “

ˆ

j1 j2 j3
p1 p2 p3

˙
ż

dµprqdj1p1prqd
j2
p2prqd

j3
p3prq

ˆ

j1 j2 j3
p1 p2 p3

˙

. (9.12)

Then, there are a couple of interesting rewritings of this expression. First, one can swap
the integral with the infinite series defining the hypergeometric function, obtaining

ż

dµprqdj1p1prqd
j2
p2prqd

j3
p3prq “

8
ÿ

n1,n2,n3“0

pa1qn1 ¨ ¨ ¨ pb3qn3

pc1qn1pb2qn2pc3qn3

Bp1
2α, n1 ` n2 ` n3q

n1!n2!n3!
(9.13)

where B is Euler’ β function, paqn the Pochammer symbol entering the definition of the hyper-
geometric series, and α the overall coefficient in the exponential of r.

The second interesting form comes from the factorisation of the pi dependence, which allows
to isolate the sums over the SUp2q CG:

Aγ “

ż 1

0
dt1dt2dt3

ÿ

p1,p2,p3

ˆ

j1 j2 j3
p1 p2 p3

˙2 3
ź

i“1

ˆ

ti
1´ ti

˙pi ż

dµprqF pr, tiqe
ř

i jiSpr,tiq (9.14)

where

F pr, tiq “
3
ź

i“1

1

tie´r ` p1´ tiqer
(9.15)

Spr, tiq “ ln

ˆ

tip1´ tiq

tie´r ` p1´ tiqer

˙

` iγ lnptie
´r ` p1´ tiqe

rq (9.16)

However, in both cases it can not be evaluated explicitly, nor of course by hand nor with Math-
ematica.
In this form it unfortunately appears even slower to compute numerically. In this second case,
we can use the fact that both 6j and 3m have known asymptotic expressions, and compute the
asymptotic value of the integral at the saddle point. The intermediate step for doing this is an
expression for large values of the parameters of the hypergeometric functions. Unfortunately
these do not appear to be known, and the difficulty shows up immediately if one tries to com-
pute it.

As a case study, we can take a single hypergeometric function. The relevant part is the
following integral:

I :“

ż 1

0

dt

pte´r ` p1´ tqerq1`jp1´iγq
tj`pp1´ tqj´p “

ż 1

0
dtfptqejSptq (9.17)

where

fptq “
1

te´r ` p1´ tqer
, Sptq “ ln

ˆ

tp1´ tq

te´r ` p1´ tqer

˙

`
p

j
ln

ˆ

t

1´ t

˙

`iγ lnpte´r`p1´tqerq

(9.18)
A standard saddle point approximation for all r fails because the function is not complex ana-
lytic, in particular the real part and imaginary parts of the gradient do not vanish at the same
point in t. Another difficulty comes from the fact that a priori the magnetic labels can also
be large, which forces us to put the second term in the action. While the first term is always
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negative, with maximum at fixed r given at t “ er{p1` erq by r´ 2 lnp1` erq, the second term
becomes positive at t “ 1{2, and if p is close enough to ˘j, the whole real part of the action
can become positive for t close enough to 1 (respectively 0), and its value grows as r goes away
from zero to the right (respectively left).

A way to improve the situation is to consider projections of these functions along SUp2q
coherent states, as proposed in [28], and indeed key to the 4-simplex asymptotic analysis. The
advantage is that one takes combinations of I with weights that are decreasing functions of p,
with the result of obtaining an action with real part bounded from above by zero:

xωω̄|Y |j, ζy “

j
ÿ

m“´j

f
pγj,jq
j,m pωAq xj,m|j, ζy “

2j ` 1

π
||ω||2piγj´1q

ˆ

xω|ζy

||ω||

˙2j

. (9.19)

where the argument of the last bracket is less or equal to one.
Here,

|j, ζy “
ÿ

m

cmpζq |j,my , cmpζq “
1

p1` |ζ|2qj

ˆ

2j
j `m

˙1{2

(9.20)

is a normalized Perelomov coherent state in the j irrep.
This technique is used in [28], and leads to the famous Regge-like asymptotic behaviour. That
analysis shows that at the saddle point, what really matters of the group element is its z-boost.
It is then interesting to combine the SUp2q factorisation here discussed with the projection
on the coherent states. To do so, we simply substitute the resolutions of the identity in the
magnetic index pi in (9.12) with integrals over the coherent states. In doing so, we preserve the
factorised SUp2q tnju vertex structure, and just have coherent states in the edge amplitude.
This is of course slightly different from Barrett’s procedure, where the coherent states are
attached to the gluing of adjacent 4-simplices.
The result is now

Aγpjiq “

ż

ź

i

dµpζiqdµpζ
1
iq

ÿ

pi,qi

ˆ

j1 j2 j3
p1 p2 p3

˙

ź

i

cpipζiq

ˆ

j1 j2 j3
q1 q2 q3

˙

cqipζ
1
iq (9.21)

ˆ

ż

dµprqdj1
ζ1ζ11
prqdj2

ζ2ζ12
prqdj3

ζ3ζ13
prq.

where the coherent state representation of the d-matrix is simply

D
pγj,jq
jζ jζ1 pe

r
2
σ3q “

ÿ

m

xj, ζ|j,my d
pγj,jq
jjm prq xj,m|j, ζ 1y “: djζζ1prq. (9.22)

This formula can be obviously generalized to a edge of arbitrary valence, where now the gen-
eralized Wigner’s m-coefficients will carry a dependence on the intertwiner labels.
Although this manipulation appears as a complication at first, it is needed as explained above
to perform the saddle point approximation. The interest in doing so comes also from the fact
that the resulting contractions of coherent states with the CG coefficients admit very elegant
and compact expressions. For instance, we have

ˆ

j1 j2 j3
m1 m2 m3

˙

cm1pz1qcm2pz2qcm3pz3q “

«

ś

ip2jiq!

pj1 ` j2 ` j3 ` 1q!
ś

iăj aij !

ff
1
2
ź

iăj

rzi |zjy
aij

(9.23)
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where aij “ ji`jj´jk. In particular, the dependence on the spinors can be nicely exponentiated
to

ź

iăj

rzi |zjy
aij “ exp

3
ÿ

i“1

ji ln oipziq, o1pziq :“
r1 |2y r3 |1y

r2 |3y
, etc. (9.24)

This formula, which is a special case of a more general formula proved in [29], can be easily
proved using the explicit Racah formula for the 3m-coefficients. It is also important to notice
that this expression is dominated by closed configurations.

To give the explicit expression of (9.32), we recall first that (notice we are using right action
so columns associated to source and rows to target nodes)

D
pγj,jq
jn jmpgq “

ż

PC2

dµpωAqf
pβj,jq
j,n pgωAqf

pγj,jq
j,m pωAq, (9.25)

Then,

D
pγj,jq
jζ jζ1 pgq “

2j ` 1

π

ż

dµpωAq
exppswq

||gω||2||ω||2
, srω, g, ; ζ, ζ 1s “ iγj ln

||ω||2

||gω||2
` 2jΦ, (9.26)

where

Φ :“ ln

ˆ

xζ|gωy

||gω||

xω|ζ 1y

||ω||

˙

. (9.27)

The argument in the oscillatory part can be recognised as the boost angle of covariant twisted
geometries,

Ξ :“ ln
||ω||2

||ω̃||2
. (9.28)

The action has real part bounded by zero, with configurations for which this maximum is at-
tained well known from Barrett’s semiclassical paper.

Notice that in the case when g “ expp r2 σ3q is a z-boost,

||gω||2 ” ||ω||2 dpr, tq , dpr, tq :“ te´r ` p1´ tqer (9.29)

where

t “
|ω1|2

||ω||2
, (9.30)

and
Ξ “ ´ ln dpr, tq (9.31)

Introducing the homogeneous coordinate w :“ ω0{ω1, we have

djζζ1prq “
2j ` 1

π

i

2

ż

d2w

p1` |w|2q2`2j

pxζ|gwy xw|ζ 1yq2j

dpr, tq1`jp1`iγq
(9.32)

In any case, bringing to the exponent (9.23), we see that the 3-valent edge amplitude is char-
acterised by an action

Spr, wi, ζi, ζ
1
iq “

3
ÿ

i“1

ji

”

iγΞi ` 2Φi ` ln oipziq ` ln oipz
1
iq

ı

(9.33)

“

3
ÿ

i“1

ji

„

ln
xζ|gwy xw|ζ 1y

dpr, tiq2p1`iγq
` ln oipziq ` ln oipz

1
iq



(9.34)



9.4. OPEN PROBLEMS AND CONCLUDING REMARKS 73

In this form, we can compute the semiclassical limit of EPRL on an arbitrary graph. Further-
more, we bring in the action the coherent state labels using the nice factorisation property.
There are many questions and potential applications of this formula, hopefully some of them
actually computable.

9.4 Open Problems and Concluding Remarks

Let us now get back to the physics of the Black Hole fireworks. As we discussed in Chapter 5,
this scenario can be modelled as a collapsing spherical null shell bouncing back to an outgoing
spherical null shell due to quantum gravitational effects appearing when the energy density of
the collapsing matter reaches a critical density.

In the previous sections we have formulated some general computational rules for the Lorentzian
EPRL model. We can now rewrite our physical scenario in the time gauge in order to be able
to compute the quantum transition amplitude by means of the previously discussed techniques.
The time-gauge (which is the gauge in which LQG transition amplitudes are written) form of
the metric of a black hole has been found by Lemaitre and It reads:

ds2 “ ´dt2 `
2m

rs
dr2 ` r2

sdΩ2 (9.35)

where rs “ rspr, tq defined by

rs “ p2mq
1{3

ˆ

3

2
pr ´ tq

˙2{3

(9.36)

The line element (9.35) shows that rs is the Schwarzschild radial coordinate. The Lemaitre
time t is related to the Schwarzschild coordinates ts and rs by

t “ ts ` 2
?

2mrs ` 2m ln

ˇ

ˇ

ˇ

ˇ

ˇ

a

rs{2m´ 1
a

rs{2m` 1

ˇ

ˇ

ˇ

ˇ

ˇ

(9.37)

The Lemaitre coordinates cover both the exterior and the interior of the black hole.
A t “ const. hypersurface crosses the ts “ 0 hypersurface at a sphere S of Schwarzschild radius
rsptq, which is given by setting ts “ 0 in (9.37). It is convenient to parametrize the radius as

rs “ 2mp1` δq (9.38)

because in the following we will be interested in the regime 0 ă δ ! 1. In this regime (9.37)
reduces to

t “ 2m ln δ (9.39)

thus the Lemaitre time goes logaritmically to ´8 when we approach the horizon on the ts “ 0
surface.
Consider then the ingoing and outgoing null shells studied in Chapter 5, to which we will refer
as B´ and B` respectively, and the map between the extended Schwarzschild and the firework
spacetime. As we discussed above, these two hypersurfaces B´ and B` surround the quantum
region, and can be taken as initial and final surfaces for computing the tunnelling amplitude.
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However, in order for B “ B´YB` to be mapped to the firework spacetime, S must be outside
the radius R where the shells cross.

This radius is related to the bounce time τ by (see [10])

τ “ ´2m ln

ˆ

R´ 2m

2m

˙

“ ´2m ln δ “ ´t (9.40)

Therefore we have the remarkable result that the Lemaitre time of the crossing point is (minus)
the bounce time.
Let us choose the minimum possible radius of S, namely R` ε, then it can be proved that the
intrinsic and extrinsic geometry of B are functions of the mass m and the bouncing time τ . We
can thus compute the bouncing time τpmq by studying when the (modulus of) the transition
amplitude for a coherent boundary state Ψm,τ with the geometry of B becomes non negligible.
A more relevant description of the spin network dual to the triangulation of the 3D surface B
is given in the following figure, where each sphere is approximated by four tetrahedrons glued
together.

Hopefully, the technique discussed in the previous sections will allow us to simplify the
evaluation, at least from a numerical point of view, of the relation between the bouncing time
and the “black hole mass”, i.e. τ “ τpmq. Such a result would provide a fundamental theoretical
result which could be used to improve our theoretical predictions about the phenomenology of
such objects.



Conclusions

Black holes represent some of the most interesting macroscopic objects since they are the most
likely candidates to provide a bridge between classical General Relativity, and a possible quan-
tum theory of gravity.

In the second part of this work (Part II Ch. 7) we studied the features of the Rotating
Hayward spacetime as well as of the Rotating Modified-Hayward spacetime, both obtained by
means of the Newman-Janis Algorithm (NJA) starting from their corresponding static spher-
ically symmetric seed spacetimes known in the literature. In particular, in Ch. 7 Sec. 7.3
we delineated the problems rising from the application of the NJA to the modified Hayward
spacetime and we also presented a way to avoid the problem of the appearance of a curvature
singularity, obtaining an explicit, physically plausible, effective metric for a rotating Planck star.

In the third part of this work (Part III Ch. 9) we remarked that the Lorentzian EPRL
amplitudes are given by contractions of Clebsch-Gordan coefficients of the Lorentz group. As
a case study, we have considered the transition amplitude for a spinfoam graph consisting of
two vertices inside a two-link dipole. For this graph we then presented a parametrization of
SLp2,Cq that appears to simplify the computation in the large spin limit (semiclassical limit)
due to the decomposition properties of the irrep of SLp2,Cq. In order to perform the saddle
point approximation needed for our analysis, however, we were forced to consider explicit
projections of the SLp2,Cq irreps along SUp2q coherent states. Then, recalling some properties
of twisted geometries, we were able to set up the computation of the semiclassical limit of EPRL
amplitudes on an arbitrary graph. In Sec. 9.4 we then presented a potential application for
these techniques to the computation of the bouncing time for the black hole fireworks scenario.
In particular, we also presented a more realistic description of the boundary spin-network for
this scenario.
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Appendix A

Energy Conditions

The Raychaudhuri’s equation involves the Ricci tensor, which is related to the energy momen-
tum tensor of matter via the Einstein’s field equations. We will want to consider only physical
matter, which implies that the energy-momentum tensor should satisfy certain conditions, such
as the fact that an observer with 4-velocity uα would measure an energy-momentum current
jα “ ´Tαβ u

β. One would expect physically reasonable matter not to move faster than light, so
this current should be non-spacelike. This motivates:

Dominant energy condition: Jα “ ´Tαβ V
β is a future-directed causal vector for all future-

directed timelike vectors V “ V β Bα.

For matter satisfying the dominant energy condition, one can prove that if Tαβ is zero in
some closed region S of a spacelike hypersurface Σ then Tαβ will be zero within D`pSq.

A less restrictive condition requires only that the energy density measured by all observers
is positive:

Weak energy condition: TαβV
αV β ě 0 for any causal vectors V “ V α Bα.

A special case of this is

Null energy condition: TαβV
αV β ě 0 for any Null vectors V “ V α Bα.

Clearly, the dominant energy condition implies the weak energy condition, which implies
the null energy condition. Another energy condition is

Strong energy condition: pTαβ ´
1
2 gαβT

λ
λqV

αV β ě 0 for all causal vectors V “ V α Bα.

By means of the Einstein’s field equation one can find that the strong energy condition is
formally equivalent to Rαβ V

αV β ě 0. Physically, this condition states that gravity is attractive.
Despite its name, the strong energy condition does not imply any of the other conditions. The
strong energy condition is needed to prove some of the singularity theorems, but the dominant
energy condition is the most important from a physical point of view.
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Appendix B

Angular Velocity, Area of the
Horizon and Perturbations

B.1 Angular Velocity

As it was established by Hawking in 1972 in the rigidity theorem, under very general conditions,
if a black hole is stationary, then it must be either static or axially symmetric. This implies
that the stationary spacetime of a rotating black hole is necessary axially symmetric and that
it admits two Killing vector fields, ξt “ ξu and ξϕ. Moreover, Hawking also proved that a linear
combination of these vectors is null on the event horizon H`, i.e.

χ “ ξu ` ΩHξϕ , χ2 “ 0 on H` (B.1)

where ΩH is the angular velocity of the black hole, which vanishes if the spacetime is static.
Thus the event horizon is a Killing horizon and χ is tangent to the horizon’s null generators.

Thus, we can easily compute the angular velocity of the hole by means of Eq. (B.1). Indeed,

χ2 “ 0 on H` ùñ Ω2
Hgϕϕ ` 2guϕΩH ` guu “ 0 (B.2)

Hence,

ΩH “

´guϕ ˘
b

g2
uϕ ´ gϕϕguu

gϕϕ
(B.3)

If we now consider the metric (7.17) we get that

g2
uϕ ´ gϕϕguu “

a2 sin4 θ

Σ2prH , θq

 

a4 sin4 θr2´GprH , θqs ´GprH , θq
`

r2
H ` a

2
˘

ΣprH , θq
(

(B.4)

from which it follows that

ΩH “
2a3 sin2 θ ˘ a

b

a4 sin4 θr2´GprH , θqs ´GprH , θqpr2
H ` a

2qΣprH , θq

a4 sin4 θ ´ pr2
H ` a

2qΣprH , θq
(B.5)

where rH “ maxtr : r∆pr, θq “ 0u.
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B.2 Area of the Horizon

The area of the horizon for a black hole is of considerable importance because of the area
theorem, which states that the horizon area of a classical black hole can never decrease in any
physical process.
The horizon for the metric (7.17) is given by rH “ maxtr : r∆pr, θq “u, which implies that
rH “ rHpθq in the most general case. Since the metric is stationary, the horizon is also a surface
of constant t, or u. Thus, setting dt “ 0 and dr “ r1Hpθq dθ, we get the induced metric on the
horizon

ds2
ˇ

ˇ

H
“ ´2a sin2 θ r1Hpθq dθdϕ´ΣprH , θq dθ

2´sin2 θ
pr2
H ` a

2qΣprH , θq ´ a
4 sin4 θ

ΣprH , θq
dϕ2 (B.6)

Thus, the area of the event horizon is given by:

AH “
ż

d2x
b

|detpg|Hq| “

“

ż 2π

0
dϕ

ż π

0
dθ
b

ˇ

ˇsin2 θrpr2
H ` a

2qΣprH , θq ´ a4 sin4 θs ´ a2 sin4 θ pr1Hq2pθq
ˇ

ˇ “

“ 2π

ż π

0
dθ
b

ˇ

ˇsin2 θrpr2
H ` a

2qΣprH , θq ´ a4 sin4 θs ´ a2 sin4 θ pr1Hq2pθq
ˇ

ˇ

(B.7)

B.3 Asymptotic Analysis and Perturbation Theory

Unfortunately, without an explicit expression for rH we are not able to compute explicitly (B.5)
and (B.7) for the metric (7.17).
One way to overcome this problem is to compute the solution of the equation for the horizon,
i.e. r∆pr, θq “ 0, up to a certain order of the parameter g ą 0, which we might assume to be
small for our purposes.

For simplicity, we will consider γ “ δ in (7.17) that leads to

r∆pr, θq “ r∆prq “ 0 ùñ r2 ´
2mr4

r3 ` g3
` a2 “ 0 (B.8)

from which it follows that

r5 ´ 2mr4 ` a2r3 ` g3r2 ` a2g3 “ 0 (B.9)

where m ě 0 and g ą 0, provided that r ‰ ´g.

Now, assuming g ! 1, we can rewrite Eq. (B.9) as

r5 ´ 2mr4 ` a2r3 ` g3pr2 ` a2q “ 0 (B.10)

thus we could try to solve perturbatively this equation considering the term multiplied by
ε “ g3 ! 1 as a small perturbation. Hence, the unperturbed equation is given by

r3pr2 ´ 2mr ` a2q “ 0 (B.11)
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which gives us

rH, 0 “ m˘
a

m2 ´ a2 (B.12)

Now we recall the unperturbed equation

r5 ´ 2mr4 ` a2r3 ` εpr2 ` a2q “ 0 (B.13)

and we propose as an Ansaz for the solution the power series

rHpεq “ rH, 0 ` ε rH, 1 ` ε
2 rH, 2 ` ¨ ¨ ¨ (B.14)

that, up to the first order in ε, is given by

rHpεq “ rH, 0 ` ε rH, 1 ` opε
2q (B.15)

Now, if we plug the latter into Eq. (B.9),

prH, 0` ε rH, 1q
5´2mprH, 0` ε rH, 1q

4`a2prH, 0` ε rH, 1q
3` εrprH, 0` ε rH, 1q

2`a2s “ 0 (B.16)

then, using the fact that r5
H, 0 ´ 2mr4

H, 0 ` a
2r3
H, 0 “ 0, after a simple manipulation we get that

rH, 1 “ ´
r2
H, 0 ` a

2

r2
H, 0p5r

2
H, 0 ´ 8mr0 ` 3a2q

(B.17)

thus, the position of the event horizon up to the order one in g3 ! 1 is given by

r
p1q
H “ rH, 0 ´ g

3
r2
H, 0 ` a

2

r2
H, 0p5r

2
H, 0 ´ 8mr0 ` 3a2q

(B.18)

this gives us an explicit, although approximate, expression for the position of the event horizon
for γ “ δ. However, even in this simplified case, we are not able to extract a “nice” expression
for the angular velocity and the area of the horizon substituting this approximate solution into
(B.5) and (B.7).

Remark. It is worth stressing that the equation of the horizon for γ “ δ depends only on
the radial coordinate. Thus, rH does not depend on θ and the horizon surface is defined by
u “ const. and r “ rH “ const.. Of course, this does not implies that the horizon is 2-sphere;
indeed, we can convince ourself of this fact just looking at the induced metric on H`.
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Appendix C

SUp2q and SLp2,Cq conventions

C.1 SUp2q conventions

Algebra of Pauli matrices
σiσj “ δij ` iεijkσk (C.1)

Trpσiσjσkq “ 2iεijk, Trpσiσjσkσlq “ 2pδijδkl ´ δikδjl ` δilδjkq (C.2)

Lie algebra

rJi, Jjs “ iεijkJk, J
p1{2q
i “

σi
2
, J

p1q
i “ ´iεijk (C.3)

Spherical basis

J˘ “ J1 ˘ iJ2, J2 “ J2
3 `

1

2
J`J´ `

1

2
J´J` (C.4)

rJ3, J˘s “ ˘J˘, rJ`, J´s “ 2J3 (C.5)

Conjugation

ε “ iσ2 “

ˆ

0 1
´1 0

˙

, εσε “ σ˚, ετ3ε “ τ3 (C.6)

εgεT “ g˚ (C.7)

εpjqmn “ p´1qj`mδ´m,n “ p´1qj´nδm,´n, ε´1pjq
mn “ p´1q´j`mδ´m,n “ p´1q´j´nδm,´n (C.8)

εpjqmnε
´1pjq

np “ δm,p, εpjqmnε
pjq
np “ p´q

2jδm,p (C.9)

|j,ms ” ε |j,my “ p´1qj`m |j,´my (C.10)

Wigner matrices

Dmnpg
´1q “ Dnmpgq, Dmnpgq “ p´q

m´nD´m,´npgq “ pεDε
´1qmn,

Dmnpe
´iωJ3q “ δmne

´imω
(C.11)

Dpα, β, γq “ e´iαJze´iβJye´iγJz SOp3q : α P r0, 2πq, β P r0, πq, γ P r0, 2πq

SUp2q : α P r0, 2πq, β P r0, πq, γ P r0, 4πq

palternatively α P r0, 4πqq

(C.12)
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Dpω, n̂q “ e´iωn̂¨
~J SOp3q : ω P r0, πq

SUp2q : ω P r0, 2πq
(C.13)

Measure:

ż

SUp2q
dµpgq “

1

16π2

ż 4π

0
dγ

ż 2π

0
dα

ż π

0
dβ sinβ (C.14)

“
1

4π2

ż 2π

0
dω sin2 ω

2

ż 2π

0
dφ

ż π

0
dθ sin θ (C.15)

Useful trigonometric relations:

cos
ω

2
“ cos

β

2
cos

α` γ

2
, tan θ “

tan β
2

sin α`γ
2

, φ “
α´ γ

2
`
π

2
(C.16)

Clebsch-Gordan

xj1m1j2m2|j1j2jmy “ Cjmj1m1j2m2
p´1qj1´j2`m

a

dj

ˆ

j1 j2 j
m1 m2 ´m

˙

(C.17)

ˆ

j1 j2 j
m1 m2 m

˙

“ p´1q´j1`j2`m
1

a

dj
Cj´mj1m1j2m2

“ p´1qj1`j2`j3
ˆ

j1 j2 j
´m1 ´m2 ´m

˙

(C.18)

“ p´1qj1´j2`j3
ÿ

JM

CJMj1m1j2m2
C00
JMjm (C.19)

Dj1
m1n1

pgqDj2
m2n2

pgq “
ÿ

jmn

Cj3m3
j1m1j2m2

Cj3m3
j1m1j2m2

Dj
mnpgq (C.20)

“
ÿ

p´1q2pj1´j2`mqdj

ˆ

j1 j2 j3
m1 m2 ´m3

˙ˆ

j1 j2 j3
n1 n2 ´n3

˙

Dj
mnpgq (C.21)

ÿ

n1n2n3

Cj3n3
j1n1j2n2

Dj1
m1n1

pgqDj2
m2n2

pgqDj3
m3n3pgq “ Cj3m3

j1m1j2m2
(C.22)

ż

dgDj1
m1n1

Dj2
m2n2

Dj3
m3n3

“

ˆ

j1 j2 j3
m1 m2 m3

˙ˆ

j1 j2 j3
n1 n2 n3

˙

“
p´1qm3´n3

dj3
Cj3´m3
j1m1j2m2

Cj3´n3
j1n1j2n2

(C.23)

Hopf Section:

npζq “
1

a

1` |ζ|2

ˆ

1 ζ
´ζ̄ 1

˙

(C.24)

np´1{ζ̄q “ npζqε´1e2argζτ3 “ e´2argζτ3ε´1npζq (C.25)

Perelomov

ζ “ ´ tan
Θ

2
e´iΦ, ξ “ ´

Θ

2
e´iΦ, m “ psin Φ,´ cos Φ, 0q (C.26)
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npjqmnpζq “ eζJ`elnp1`|ζ|2qJ0e´ζ̄J´ “ eξJ`´ξ̄J´ “ e
i
2

Θm¨σ “ DpjqmnpΦ,Θ,´Φq “ U pjqmn

´

Θ,
π

2
,Φ´

π

2

¯

(C.27)

“

„

pj `mq!pj ` nq!

pj ´mq!pj ´ nq!


1
2 ÿ

q

pj ´ qq!

pj ` qq!

1

pm´ qq!pn´ qq!
p1` |ζ|2qqζm´qp´ζ̄qn´q (C.28)

“
2j!

pj `mq!pj ` nq!pj ´mq!pj ´ nq!

ζj`mp´ζ̄qj`n

p1` |ζ|2qj
2F1p´j ´m,´j ´ n,´2j,

1` |ζ|2

|ζ|2
q

(C.29)

Twisted geometries and parametrization of SUp2q:
Let us consider the following parametrizations of SUp2q:

u “ exp

ˆ

i

2
ψ ~n ¨ ~σ

˙

“ npζq exp

ˆ

i

2
ξ σ3

˙

(C.30)

where

npζq “
1

a

1` |ζ|2

ˆ

1 ζ
´ζ̄ 1

˙

, ζ “ ρ eiχ , 0 ă ρ ă 8 , 0 ď χ ă 2π;

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙
(C.31)

in the fundamental representation, moreover n “ pcosϕ sin θ, sinϕ sin θ, cos θq.

It has already been shown that these parametrizations are related as follows:

$

’

&

’

%

sinpψ{2q sin θ “ ρ{
a

1` ρ2

χ “ ξ{2` π{2´ ϕ

cos θ tanpψ{2q “ tan pξ{2q

(C.32)

where we made the identifications: ρ “ |ζ| and χ “ argpζq.

Claim 11. The Haar measure of SUp2q, in the two given parametrizations (C.30), is respec-
tively given by:

dµpuq “
1

4π2
sinpψ{2q sin θ dψ ^ dθ ^ dϕ “ dµCpζq ^

dξ

4π
(C.33)

where ψ, ϕ P r0, 2πq, θ P r0, πq, ζ P C, ξ P r0, 4πq and the measure over C has been defined as
follows

dµCpζq :“
i

2π

dζ ^ dζ̄

p1` |ζ|2q2
(C.34)

Proof. If we consider the canonical polar parametrization of the complex plane C, i.e. ζ “ ρ eiχ, we can easily
recast dµCpζq as follows:

dµCpζq “
i

2π

´2i ρ dρ ^ dχ

p1` ρ2q2
“

1

π

ρ

p1` ρ2q2
dρ ^ dχ (C.35)
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Thus,

dµCpζq ^
dξ

4π
“

1

4π2

ρ

p1` ρ2q2
dρ ^ dχ ^ dξ (C.36)

Now, in order to prove our statement, we just need to verify the following equivalence:

sinpψ{2q sin θ dψ ^ dθ ^ dϕ “
ρ

p1` ρ2q2
dρ ^ dχ ^ dξ (C.37)

If we differentiate the relations shown in (C.32) we get

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dρ “
1

2
p1` ρ2q3{2 rcospψ{2q sin θ dψ ` 2 sinpψ{2q cos θ dθs

dχ “
dξ

2
´ dϕ

dξ “ cos2pξ{2q

„

cos θ

cos2pψ{2q
dψ ´ 2 sin θ tanpψ{2q dθ



(C.38)

Now, if we substitute the letter results in the LHS of (C.37), we see that our assumption is trivially verified.

C.2 SLp2,Cq conventions

From [23]. But denoting ρRuhl ” p “ 2ρ in order to match with spin foam literature, we have:
Fundamental representation

h “ 1`
i

2
αiσi ´

1

2
ηiσi “ 1`

i

2
ωIJJIJ , ω0i “ ηi, ωij “ εijkαk (C.39)

J0i “ Ki, Jij “ εijkLk (C.40)

Irreps form a measure space

• Principal series: pp P R,m P Nq such that n˘ :“ 1
2pip˘mq ” iρ˘ k P N

It is possible to consider only positive k since pρ, kq and p´ρ,´kq are related by complex
conjugation and unitary equivalent.

• supplementary series: measure zero in the Plancherel decomposition.

Casimirs:

C1 “
1

2
JIJJ

IJ “ L2 ´K2 “ ´
1

2
I1 ÞÑ

1

2
pm2 ´ p2 ´ 4q “ k2 ´ ρ2 ´ 1

C2 “
1

2
p‹JqIJJ

IJ “ ´L ¨K “ ´
1

4
I2 ÞÑ ´

1

4
pm “ ´kρ

(C.41)

With these conventions, the matrix elements of a z boost expp1
2rσ3q read

d
pρ,kq
jlp prq “

a

dj
a

dl

ż 1

0

dt

dpr, tq1´iρ
d
pjq
kp p2t´ 1qd

plq
kp

ˆ

2
te´r

dpr, tq
´ 1

˙

(C.42)

where
dpr, tq “ te´r ` p1´ tqer (C.43)
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For the BC model for instance, the relevant function is

d
pρ,0q
000 prq “

sinpρrq

ρ sinh r
(C.44)

Instead, for the EPRL model we have

dγjp prq :“ d
pγj,jq
jjp prq “ dj

2j!

pj ` pq!pj ´ pq!
e´pr

ż 1

0

dt

d1`jp1´iγq
tj`pp1´ tqj´p (C.45)

“ e´rpjp1´iγq`p`1q
2F1rj ` p` 1, jp1´ iγq ` 1, 2j ` 2, 1´ e´2rs (C.46)

“ dγj´pprq (C.47)
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