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Abbreviations and synonims 
 
9-amino(9-deoxy)epi-chinidine : (S)-(6-methoxyquinolin-4-

yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methanamine 
9-epi-NH2-Thiourea-QD : 1-(3,5-bis(trifluoromethyl)phenyl)-3-((1R)-(6-

methoxyquinolin-4-yl)((2R,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea 
DCM : dichloromethane 

THF : tetrahydrofuran 

TBME : methyl tert-butyl ether 

DMSO-d6 : dimethylsulfoxide 
TMS : tetramethylsilane 

HPLC : high pressure liquid chromatography 

TLC : thin layer chromatograpy 
NMR : nuclear magnetic resolution 
GC-MS : gas chromatography mass spectrometry 
R.T. : room temperature 
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1. Introduction 
 

1.1 Chirality and Asymmetric Synthesis  

 

Chirality represents the property, for any object, of having a 

nonsuperimposable mirror image , the essential condition for a molecule to 

be chiral is the absence of any plane of symmetry. 

Another important concept, is prochirality: one molecule is defined as 

prochiral if the molecule itself can be transformed from achiral to chiral after 

only one chemical step, such as in the transformation of 2-butanone to 2-

butanol after the addition of hydrogen. 

 

!
Fig. 1 Example of prochirality 

 

A molecule like aldehyde cyanohydrin is chiral 
1, it cannot have a plane of 

symmetry, because this molecule has a tetrahedral carbon that is bonded to 

four different groups, this carbon atom is known as stereogenic centre or 

chiral centre; within the structure of a chiral molecule there must be at least 

one stereogenic element, chirality is a property owned by the whole molecule, 

while a stereogenic element could be the cause of chirality itself. 

!
Fig. 2 Couple of enantiomers of aldehyde cyanohydrin 
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Two structures that have: the same connectivity of their atoms but two 

different spatial structures, are a particular type of isomers that are called 

stereoisomers. If two stereosiomers are mirror images of each other but are 

not identical, we call them enantiomers; enantiomers have: opposite 

configurations in every chiral centre (absolute stereochemistry), same 

chemical and physical properties but different specific rotation and biological 

properties. 

Stereoisomers that are not mirror images of each other are 

diastereoisomers,; diastereoisomers present opposite configurations only in 

some chiral centres (relative stereochemistry), and different chemical and 

physical properties.  

 

!
Fig. 3 Diastereoisomers and enantiomers of threonine 

 

The importance of chirality has grown during the last decades, in particular: 

the preparation and study of this kind of products, their properties and 

applications, has begun to be reported in scientific literature. The majority of 

biomolecules has an inherent chirality, thus they present at least one 

stereogenic element that promotes the distinction of two optical isomers; the 

main interactions between molecules of biological interest are guided by a 

highly stereospecific recognition, for example, a chiral molecule with a certain 

biological activity must fit the shape of the target receptor, in that way it could 

carry out its action. This is the case of L-aminoacids and D-monosaccharides, 

that are found in the majority of biological organisms2. 
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Obviously, since the biological properties owned by the two enantiomers of a 

given molecule are different, especially in the pharmaceutical field, we need 

to obtain just one enantiomer of an active ingredient, because the other 

enantiomer could be inactive, or worse, it could affect the pharmacological 

activity or it could be toxic for the organism. 

The goal of this branch of chemistry is the synthesis of chiral molecules with 

certain functions and properties, in particular it would be very important the 

development of synthetic strategies to obtain enantiopure compounds since, 

as mentioned above, are needed in pharmaceuticals. 

The main methods to get a single enantiomer of one molecule are: the 

resolution of a racemic mixture, synthesis from the chiral pool and the 

asymmetrical synthesis, which is divided into asymmetrical synthesis with 

chiral auxiliaries and reagents, and asymmetric catalysis. 

In the first case, when we obtain a chiral product from achiral reagents, we 

will be in the presence of a racemic mixture that can be resolved into its 

components through the use of a enantiopure reagent; this molecule reacts 

with the substrate to give to diastereoisomers with different properties, in this 

way we can separate easily the diastereoisomers and, after other steps of 

reaction to restore the starting materials, we will have a new mixture 

enantioenriched in one of the two enantiomers. 

The pharmaceutical industry currently realizes its chiral products mainly 

through racemic resolution or employing natural molecules from the chiral 

pool, molecules with defined chirality and commercially available, after some 

derivatizations we can obtain our products of interests.  

The asymmetric synthesis promotes the direct preparation of 

enantioenriched, or enantiopure, compounds employing chiral auxiliaries that 

promote the synthesis of a single enantiomer. Chiral auxiliaries (chiral 

reagents or chiral catalysts) can induce the chirality in prochiral starting 

materials creating an asymmetric contour and then controlling the molecule 

3-D structure during its formation. 

In that way, when we talk about asymmetrical catalysis, we refer to the use of 

chiral catalysts. In general selectivity towards one enantiomer is indicated 

through the enantiomeric excess (ee%), calculated as: 
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where R and S are the two enantiomers. In this kind of synthesis, a large 

number of transition metals chiral catalysts and enzymes have been used. 

Nowadays, the asymmetric catalysis has taken on a very important role within 

the asymmetric synthesis, in particular many efforts have been done with the 

aim of develop new methods for the enantioselective catalysis, which is a 

very efficient and cheap approach to get chiral molecules, three pioneers in 

this field William S. Knowles, K. Barry Sharpless and Ryoji Noyori shared the 

Nobel Prize in 20013.  

In this type of catalysis, enantiopure catalysts can guide the reactants during 

the transition state, facilitating the attack of only one side of the substrate, 

and finally promoting the formation of the desired enantiomeric form of the 

product. 

 

1.2 Asymmetric Organocatalysis 

 

In the last decade, the asymmetric organocatalysis has begun to go ahead, 

this particular type of catalysis exploit small organic molecules to catalyze a 

wide range of reactions, in which are often involved carbonyl compounds. 

Compared to other methods, transition metal catalysis and enzymatic 

catalysis, organocatalysis shows some practical advantages, in particular: the 

catalysts can be synthesized easily, they're stable in air so they don't need 

inert atmosphere and anhydrous solvents, they're non-toxic and they don't 

contain heavy metals; the majority of organocatalysts are natural molecules, 

like amino acids or alkaloids, they can be used unmodified or they can be 

derivatized. 

Nowadays, organocatalysis has still some limitations that make this kind of 

catalysis not very competitive at industrial level, for example the low turnover 

number (TON) and consequently the need of a larger amount of catalyst 

(from 2 to 20% mol), compared to metal catalysis and enzymatic catalysis. 

Anyway, some organic and organometallic molecules can mediate efficiently 

a variety of mechanistically distinct reactions. 
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When we consider two very related reactions, their similarities in the reaction 

profiles can be understood and exploited, thus if one catalyst performs well in 

one reaction, we can expected that this kind of catalyst could mediate a 

similar reaction. However, also less closely related reactions may be 

promoted by catalysts of the same class4.  

For example, chiral thiourea derivatives and Cinchona alkaloids are two 

examples of privileged catalysts, in particular the latter ones have an 

incredible ability to mediate an astonishingly wide variety of enantioselective 

transformations, as for chiral thioureas, they can for example catalyze the 

asymmetric hydrocyanation of imines (Strecker reaction) as well as 

asymmetric Mannich reactions5, two reactions with quite different reactivity 

and stereo induction profiles.  

During last years, site-selective reactions with organic catalysts have been 

developed and improved, in fact these reactions are very useful from a 

practical point of view since they allow the use of non-protected substrates in 

synthesis. 

Organocatalytic reactions could be divided into two main classes, the first one 

includes catalysts that form a covalent bond with the substrate, while the 

second one induces enantioselectivity without covalent interactions with the 

substrate; in the first case we can talk about "covalent catalysis", in the 

second one we can talk about "non-covalent catalysis", one example are the 

catalysts that involve hydrogen bonding or ion pairing. 

 

!
Fig. 4 Covalent Catalysis 
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!
Fig. 5 Non-covalent catalysis 

!
Organocatalysts are also very useful because they can be used in reactions, 

such as couplings (Suzuki, Sonogashira, Ullmann..), that till now have been 

performed only through transition metal catalysts; this kind of catalysts, with a 

higher molecular weight and a very complex structure, often improve not only 

the selectivity of the catalyst itself , but also the reaction kinetic. 

 

Some of the most important organic molecules, used in organocatalysts till 

nowadays, would be mentioned below. 

 

- Cinchona Alkaloids 

 

Cinchona alkaloids6 are organic molecules isolated from the bark of several 

species of cinchona trees. The four main alkaloids are quinine, cinchonine 

and their corresponding pseudoenantiomers quinidine and cinchonidine. 

 

!
Fig. 6 Cinchona alkaloids 
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absolute configurations. Quinine and Quinidine, like Cinchonidine and 

Cinchonine, are two diastereoisomers and they are defined as 

pseudoenantiomers because during a chemical reaction, their centres C8 and 

C9 are the responsible for the asymmetric induction, as if they are a couple of 

enantiomers. As a result, when we use a quinine derivative as a chiral 

organocatalyst (or ligand), we obtain one enantiomer of our product, while the 

employment of the corresponding pseudoenantiomer usually gives the other 

enantiomer of the same product with comparable selectivity. 

The importance of cinchona alkaloids in organic chemistry started in 1853, 

when Pasteur's studies on racemate resolutions showed their potential as 

resolving agents; after that, cinchona alkaloids has been used in a large 

number of different reactions, for example two German chemists, Breding 

and Fiske, made the first asymmetric reaction using a cinchona base in 1912, 

than Wynberg and coworkers carried out many studies on the use of these 

alkaloids in asymmetric catalysis as a chiral Lewis base/nucleophilic 

catalysts, proving their versatility in many enantioselective transformations. 

Nowadays, cinchona alkaloids are one of the most "privileged organic 

chirality inducers", they're largely used since they're readily available in the 

two pseudoenantiomeric forms, relatively cheap, and they're very effective in 

wide range of different reactions. 

The main features of this kind of molecules are: 

- the presence of an hydroxyl function capable of coordinating electrophiles 

through H bond 

- the presence of the highly basic and bulky quinuclidinic nitrogen, which 

could deprotonate the substrate of interest. 

The quinuclidine base functionality also makes this alkaloids effective ligands 

for many metal-catalyzed reactions. 

To increase the performances of these catalysts, we can derivatize the 9-OH 

group into other groups with selective retention or inversion of the 

configuration, in this way we can increase the power of the acidic site or the 

H-bond donor; the same thing could be applied to the 6I-OMe group, in 

quinine and quinidine, using thiourea which is an effectiv H-bond donor. 

The substitution of 9-OH into the amino group with inversion of the absolute 

configuration at C9, leads to derivatives like 9-epi-(9-deoxy)aminoquinine, 
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that enable enantioselective aminocatalysis, which includes reactions of the 

enamine cycle and charge accelerated reactions via the formation of iminium 

intermediates. In general, these active sites in cinchona alkaloids and their 

derivatives act together to activate the starting material simultaneously.  

 

!
Fig. 7 Active sites potentialities of Cinchona alkaloids and derivatives6 

!
- Thiourea derivatives 

 

Jacobsen and Taylor, after several studies on Schiff bases and their capacity 

of catalyze asymmetric Strecker reaction of various imine substrates, 

developed a series of catalysts based upon urea and thiourea derivatives 

which are useful in enantioselective reactions7.  

The thiourea catalyst activates the substrate for the nucleophilic attack via 

double H-bond between the acidic NH protons and the electrophile; the H-

bonds of thioureas are non-covalent but they're strong and highly directed to 

the electrophile. The ability to donate via H-bond could be increased by the 

introduction of electron withdrawing substituents near the NH groups to 

increase thier acidity. 
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Chiral thioureas, like 1, can catalyze a wide range of enantioselective 

reactions and nowadays are one of the most used chiral H-bond donors. 

 

!
Fig. 8 Activation mechanism promoted by thiourea derivatives 

 

The thioureas developed by Jacobsen et al. are monofunctional catalysts, 

given this, during last years, researchers have started to develop new 

bifunctional organocatalysts based upon the thioureas structure, new 

catalysts contain both the H-bond donors and the new Brønsted/Lewis base 

functionalities; in this way, besides the activation of the electrophile, we also 

have the activation of the nucleophile8. 

An effective example is reported by Takemoto and co-workers, that used a 

bifunctional amine thiourea to catalyze the Michael addition between a 

malonate and a nitroolefin; the Michael acceptor is activated by the H-bond 

donors, while the nucleophilic enol is activated by the tertiary amine. 

 

!
Fig. 9 Michael addiction catalyzed by amino thiourea 
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Cinchona alkaloids could be used to create new bifunctional catalysts with 

the introduction of thiourea moieties, as we can see in the pioneering work of 

Soòs and co-workers, that produced cinchona alkaloid derived thioureas for 

the Michael addition of nitromethane to calchones. 

 

!
Scheme 1 Michael addition catalyzed by cinchona alkaloid derived thioureas 

!
- Phosphoric Acid and derivatives 

 

Another important class of chiral Brønsted acid catalysts is the chiral 

phosphoric acids derived from axially chiral biaryls; in particular, this kind of 

catalysts has been developed by modifying the substituents of BINOL 

molecule, in this way it was possible to obtain 1,1I-bi-2-naphthol (BINOL)-

derived mono phosphoric acids which are very useful chiral Brønsted acid 

catalysts for highly enantioselective transformations, as demonstrated by the 

two research groups of Akiyama and Terada9. 

 

!
Fig. 10 enantiomers of BINOL-derived monophosphoric acids 
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The main and desirable features of phosphoric acids for this type of catalysis 

are: 

- The presence of an acidic site, which is capable to form H-bond interactions 

with the electrophilic part of the substrate but without the loss of the proton. 

- The presence of the phosphoryl oxygen, which represents the Brønsted 

basic site of the catalyst 

- The presence of a ring system, that can restrict the flexibility of the chiral 

backbone 

- The introduction of substituents into the ring system, especially in positions 

3 and 3I, that provide the chiral environment for the reactions 

 

!
Fig. 11 Bifunctional catalytic site 

 

All these aspects contribute to create a catalyst that contains both acidic and 

basic functions, as for bifunctional catalysts, and the steric influence, 

promoted by the ring substituents, in that way we obtain a catalyst with an 

efficient recognition site for many substrates. 

As mentioned above, BINOL derivatives are largely employed as starting 

materials for the synthesis of these catalysts, they have C2-symmetry and 

both the two enantiomers are available and they could be easily modified 

according to steric and electronic requirements. 

Recently, BINOL phosphates have become stronger Brønsted chiral acids 

thanks to the introduction of electron-withdrawing groups, for example 

Yamamoto and Nakashima developed N-triflylphosphoramide (NTPAs) after 

the introduction of a triflylamide group. 
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!
Fig. 12 Synthesis of  NTPAs 

 

Phosphoric acids and derivatives are used in many enantioselective 

reactions: asymmetric Diels-Alder of α,β-unsaturated ketones10, Mannich and 

Strecker reaction and activation of imines that forms the basis for aza-Friedel-

Crafts of many substrates. The presence of the two aryl substituents in the 

catalyst scaffold is very important, in each of these reactions, for high 

enantioselectivity, and even small differences of the substituents properties 

(sterics and electronics) could cause pronounced variations7. 
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1.3 Base and Acid Catalysis 

 

The majority of organocatalysts can be broadly classified as : Lewis acids or 

bases and Brønsted acids or bases, everyone has its own catalytic cycle, as 

shown in Scheme 211. 

Lewis base catalysis starts the cycle via nucleophilic addition of the catalyst 

to the substrate, while Lewis acid catalysis starts the cycle via nucleophilic 

addition of the substrate, anyway in each case the obtained complex 

undergoes a reaction and it allows the recovery of the starting catalyst and 

the final product. 

Brønsted base and acid catalysis starts via partial deprotonation or 

protonation of the substrate, respectively. 

 

!
Scheme 2 Organocatalytic cycles 
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- Lewis base catalysis  

The majority of organocatalysts tend to react as heteroatom-centered Lewis 

bases that can activate both nucleophilic and electrophilic substrates; typical 

intermediates are: iminium ions and enamines. 

 

Iminium Ion Catalysis 
Reactions via iminium catalysis proceed through the formation of the active 

specie, the iminium ion, after a reversible reaction between the catalyst, 

which contains the amine group, and the carbonyl substrate; the iminium ion 

is very reactive and this aspect allows it to be employed in many reactions as 

Knoevenagel condensations, cycloadditions, nucleophilic additions and 

breaking of σ-bonds next to α-carbon, Friedel-Crafts alkylations (with 

pyrroles, indoles and benzenes) and some Michael additions (malonates and 

nitroalkanes to enones). 

Macmillan’s enantioselective Diels-Alder between α,β-unsaturated aldehydes 

and ketones with dienes, using chiral amino acid derived imidazolidinones as 

catalysts, is one of the first examples of iminium catalysis in the field of 

organocatalysis. 

 

!
Scheme 3 Example of iminium catalysis with Macmillan's catalyst 

 

α,β-Unsaturated carbonyl compounds can undergo various nucleophilic 

additions reactions and cycloadditions, this kind of reactions can be 
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is lowered12. 
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The iminium catalysis simulate the Lewis acids activation of carbonyl 

compounds, the LUMO energy decreases and the reaction is favoured. 

The main steps of the iminium catalytic cycle are: 

- Formation of the iminium ion 

- Key bond forming reaction 

- Hydrolysis of the iminium ion 

 

Together with the amine, that can be a secondary or a primary one, in these 

reactions is added a small amount of a co-acid, this secondary proton source 

helps in the formation of the iminium ion and the hydrolysis. 

 

!
Scheme 4 Catalytic cycle via iminium ion 
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Aldehydes and ketones condense with both primary and secondary amines, 

in the first case we can obtain imines that are basic and in acidic solution 

exist as iminium ions, in the second case, after the condensation, we obtain 

an iminium ion that can be isolated as salt of strong acids, because it cannot 

be deprotonated to give the correspondent imine13. 

The formation of the iminium salt activates the carbonyl substrate toward the 

nucleophilic attack, thus the iminium salt is more electrophilic than the 

corresponding starting material. 

For iminium catalysis, the most used are secondary amines, like molecules 

from the imidazolidinone family, cyclic amines, pyrrolidines, proline and its 

derivatives. 

 

!
Fig. 13 Secondary amines 

 

After many studies about the formation of enamine and iminium ion 

intermediates, it was found that primary amine catalysis is better when we 

need to functionalize sterically hindered carbonyls, in fact the equilibrium 

constants for iminium ion formation show that secondary amines are more 

influenced by the structure of the substrate than primary amines14. 

Moreover, secondary enamines hydrolyze faster than the tertiary ones, this is 

due also to steric factors, tertiary enamines are very hindered at the nitrogen 

atom thus the entire system cannot reach the planar conformation necessary 

to maximize the interactions between the double bond and the ion pair on the 

nitrogen.  
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!
Fig. 14 Secondary and primary amines with hindered substrates 

 

Primary amine are largely used nowadays, very useful molecules of this type 

are aromatic amines, like aniline derivatives, diamines like BINAM and 9-

amino(9-deoxy)-epi-cinchona alkaloids; the recent introduction of a primary 

amine moiety inside the scaffold of cinchona alkaloids, make them effective 

covalent-based activators of hindered carbonyl compounds.  

 

!
Fig. 15 Primary amines 

 

- Brønsted base catalysis 

 

The use of this kind of catalysis, as a valid method to obtain enantiopure 
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- Specific acid catalysis (3), here the substrate is activated via protonation 
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!
Scheme 5 Asymmetric Brønsted acid catalysis 

 

The first class includes catalysts as thioureas and TADDOL derivatives, while 

the second one includes phosphoric acids, N-triflyl phosphoramides and 

dicarboxylic acids. 

Jacobsen and co-workers11 developed a series of enantioselective reactions, 

like Mannich and Strecker, employing ureas and thioureas, while the 

research group of McDougal and Schaus developed the enantioselective 

asymmetric Morita–Baylis–Hillman reaction using a chiral BINOL-derived 

Brønsted acid. 

During the last years, many bifunctional catalysts have been developed, one 

of the two functionalities present in these catalysts is often a Brønsted acid, 

which is coupled, for exemple, with a Lewis base. 
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1.4 Friedel-Crafts Alkylation Reaction 

 

The F-C reaction usually involves treating benzene with an alkyl chloride and 

a Lewis acid, such as AlCl3. The Lewis acid removes the chlorine atom from 

the substrate and generates the electrophilic carbocation for the alkylation, 

after that, the nucleophilic double bond of the arene attacks the carbocation 

giving a new carbocationic intermediate; finally, we obtain our product by 

deprotonation. 

The Friedel-Crafts (F-C) alkylation is one of the most important reactions that 

enable to synthesize enantiopure aromatic derivatives, after the insertion of 

unsaturated compounds to the arene; first examples of asymmetric and 

catalytic F-C, date back to the 80s, they were performed using metal-based 

catalysts, nowadays the use of organocatalysts is increased considerably15. 

Using an acid chloride, instead of the alkyl chloride, we promote the F-C 

acylation, through the formation of an acylium ion, to obtain an aromatic 

ketone. 

Herein are reported some approaches for asymmetric F-C alkylation like: 

ring-opening of epoxides (I), enantioselective 1,2-additions of aromatic 

systems to carbonyl groups (II) and 1,4-conjugate additions to α,β-

unsaturated carbonyl compounds (III) 16. 

!
Scheme 6 Asymmetric Friedel-Crafts alkylation approaches 
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1.4.1 Stereocontrolled ring opening of epoxides 

 

The reaction between epoxides and arenes, catalyzed by Lewis acids or 

bases, could be a very interesting way to synthesyze optically active aromatic 

compounds, even if sometimes there could be absence of regioselectivity. 

We can find examples of F-C alkylations using Indium(III) salts, such as InBr3 

or InCl3, which promote alkylation of aromatic compounds with high 

stereoselectivity. 

The research group of Umani-Ronchi, Bandini and Melchiorre developed the 

alkylation of functionalyzed indoles with enantiomerically pure aryl epoxides 

and InBr3 (Fig. 22a), the reaction proceeds exclusively through a regio- and 

stereoselective SN2-type pathway at the benzylic position of the epoxide16. 

Another reaction presented by the same research group, is the first example 

of catalytic kinetic resolution of racemic epoxides through a carbon–carbon 

bond-forming (Fig.22b). The reaction between 2-methylindole with styrene 

oxide using [Cr(salen)Cl] as catalyst, gave the unconverted styrene oxide and 

the indolyl derivative with ee% of 55% and 56% respectively. 

 

!
Fig. 16 Exemples of stereocontrolled ring-opening of epoxide 
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1.4.2 Asymmetric addition to carbonyl compounds 

 

A wide number of functionalized compounds are obtained after the addition of 

arenes to carbonyl compounds like aldehydes, ketones, and imines. 

One of the first examples in this area was the reaction between 1-naphthol 

and pyruvic acid esters, using a zirconocene chiral complex. Many progress 

have been made by Johannsen and Mikami and co-workers, they produced 

N-tosyl-α-amino acids and organofluoro compounds respectively with tol-

binap/CuPF6 and a chiral substituted binol–titanium complex as catalysts. 

Jørgensen and co-workers demonstrate the versatility of F-C alkylation 

obtaining aromatic mandelic acid esters and heteroaromatic 

hydroxytrifluoromethyl acid esters, the high stereoselectivity is given by a tBu-

box–copper(II) triflate complex and chelating substrates; under these 

conditions many substrates, such as aromatic amines, anisoles, and 

heteroaromatic compounds, can undergo highly enantioselective F-C 

alkylations, demonstrating the wide applicability of the catalytic system. 

 

1.4.3 Asymmetric addition to α,β-unsaturated carbonyl compounds 

 

α,β-unsaturated carbonyl compounds are valid substrates for F-C reaction, 

even if stereoselective examples are still few. 

We can find highly enantioselective 1,4-additions in the presence of a chiral 

box-copper(II) complex and a pseudo-C3-symmetric trisoxazoline complexed 

with Cu(ClO4)2·6!H2O, reported by Jørgensen and Zhou and Tang 

respectively; thus, one of the best strategies to obtain high stereoselectivity, 

is the employment of chelating substrates together with chiral cationic Lewis 

acids. 

Michael-type additions of arenes to nonchelating α,β-unsaturated carbonyl 

compounds were reported by the research groups of MacMillan and Umani-

Ronchi, Bandini and Melchiorre; the first group showed examples of 1,4-

additions of pyrroles, indoles and aniline derivatives to α,β-unsaturated 

aldehydes, using organocatalysts (chiral tailored benzyl imidazolidinone·HX 

salts) instead of metal-based catalysts, as reported in the previous examples. 
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Unfortunately this procedure doesn't work well with ketones, thus the second 

research group tried a new procedure for the enantioselective 1,4-addition of 

indoles to α,β-unsaturated aryl ketones, using the chiral [Al(salen)Cl] complex 

in the presence 2,6-lutidine as catalyst, the aluminium complex and the 

amine promote enantio-discrimination during the alkylation step. 

 

1.4.4 Organocatalysts for asymmetric Friedel-Crafts reactions 

  

The majority of the F-C alkylation examples reported above, are conducted 

through the use of metal-based catalysts. 

Nowadays, we can find several exemples of enantioselective F-C alkylation 

involving many different organocatalysts like: imidazolidinones, cinchona 

alkaloids, thioureas, phosphoric acids and N-triflyl phosphoramides; the last 

three are classified as chiral Brønsted acids, they're very useful because they 

combine their strong acidity with a good chiral environment, they facilitate the 

activation of substrates as carbonyl compounds, imines and α,β-unsaturated 

compounds, through the decreasing in energy of the LUMO that promotes the 

nucleophilic attack to the double bond17. 

Herein, I'll report just some reactions conducted through the use of some of 

the main organocatalysts that I've mentioned in the previous chapter. 

 

- Cinchona Alkaloids 

 

These catalysts have been employed in order to realize: 

• Enantioselective hydroxyalkylation of indoles with ethyl 

trifluoropyruvate, reaction developed by Török, Parkash et al., they find 

out that the catalyst is responsible of both the chiral environment and 

the activation of the carbonyl compound through the formation of an 

intermediate between the two substrates and the catalyst itself. 

• Enantioselective hydroxyalkylation of indoles with α-keto esters (e.g. 

aryl, alkynyl or alkyl α-keto esters) or glyoxalate derivatives, developed 

by Deng et al. using 6-OH bifunctional cinchona alkaloids (QD-PHN or 

Q-PHN). 
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• First mediated F-C alkylation of phenols with ethyl trifluoropyruvate, 

reported by Liu, Chen et al., phenols are not very good nucleophiles so 

they're less reactive for F-C alkylations, and in addition their OH-group 

could interact with the catalyst, promoting a decrease in selectivity; 

using cinchona alkaloids derivatives they obtained a wide range of 

para-substituted phenols. 

• Reaction of 8-amino-2-naphthol derivatives for the synthesis of non-

biaryl atropisomers, reported by Jørgensen et al., employing 

dihydrocupreidines; they also demonstrate that cinchona alkaloids 

themselves are a suitable substrate for this kind of amination, thus 

new  derivatives with better enantioselective features can be obtained. 

• Enantioselective alkylation between indole and α,β-unsaturated 

ketones using primary amine catalysts, developed by the two research 

groups of Chen and Melchiorre, the first one showed the validity of 

cinchonine derivatives in these transformations, while the second one 

performed the reactions with the help of an acid and chiral co-catalyst. 

 

- Thiourea derivatives 

 

We have several examples of asymmetric F-C reaction carried out with this 

family of organocatalysts: 

• Enantioselective Pictet-Spengler reaction for the production of 

tetrahydro-β-carbolines, by Jacobsen et al., using a thiourea catalysts 

together with an acylating agent, the second one promotes the 

formation of a more reactive intermediate that is further activated by 

the catalyst. 

• Asymmetric synthesis of 3-indolyl methanamines, developed by Deng 

et al., employing the two enantiomers of chiral thiourea functionalized 

with a cinchona alkaloid; this reaction can be performed with different 

imine derivatives, including alkyl imines, obtaining both the 

enantiomers of the product. 

• F-C reaction between 2-naphthol and nitroolefins, by Chen et al., using 

thiourea derived from cinchonine; some variations have been applied 
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to this reaction, such as the use of substituted naphthols, other 

nitroalkenes and other types of electrophiles. 

• Sequence F-C alkylation/cyclization for the synthesis of naphthopyrans 

using α,α-dicyanoolefins as starting material, reported by Yang, Zhao 

et al., the use of dicyanoolefins substituted with electron-withdrawing 

groups gives better yields and in addition, they also described the 

synthesis of naphthopyran derivatives through the use of β,γ-

unsaturated α-keto esters bearing electron-withdrawing substituents. 

 

- Phosphoric acid derivatives 

 

These catalysts have started to be employed in asymmetric F-C reactions 

only in the last decade: 

• First asymmetric F-C alkylation of 2-methoxyfuran with N-Boc 

aldimines, developed by Terada et al., various aldimines have been 

tested with differences in the sostitution of the phenyl ring and also 

naphthyl and furyl substrates have been tried. 

• Asymmetric Pictet-Spengler reaction between aldehydes and 

geminally disubstituted tryptamines, by List et al., using chiral 

phosphoric acids; this reaction has been subsequently investigated by 

Hiemstra et al., they reported the same reaction employing sulfenyl-

substituted tryptamines, in this way the iminium ion is stabilized by the 

presence of the sulfenyl group, the intramolecular cyclization is 

favored and the geminal disubstitution of the tryptamine becomes 

unnecessary. 

• Addition of indoles to N-sulfonylaldimines, by You et al., some 

variations have been applied to this reaction, such as the use of 

different indole ring bearing electron-withdrawing or electron-donating 

groups. 

• Synthesis of an α-amino acid from indoles, reported by Hiemstra et 

al.,employing N-sulfenyl protected imines. 

• Synthesis of asymmetric indolylmethanamines using electronrich 

alkenes, by Terada et al., they tried enamines with linear, branched 

alkyl group and aromatic substituents, in addition they noticed that the 
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reaction proceeds through the imine intermediate generated by the 

tautomerization of the N-protected enamine. 

• Synthesis of indolylethylamine which bears a quaternary asymmetric 

center, reported by Zhou et al., α-aryl enamines employed as 

substrates for the reaction can have an electron-withdrawing or 

electron-donor substituent in meta or in para of the ring, both the 

nitrogens of the enamine and the indole don't have to be protected 

because in these conditions the reaction does not work. 

• Alkylation of indoles with β,γ-unsaturated α-keto esters, by Rueping et 

al., using an acidic N-triflylphosphoramide as catalyst; other tests have 

been done with different catalysts containing a binaphthol core. 

This same reaction has been proposed by Zhou, He et al. and 

Acocella et al. employing indoles and α,β-unsaturated aromatic 

ketones. 

• Intramolecular F-C alkylation of indoles with α,β-unsaturated ketones, 

developed by You et al.; subsequently, they proposed a tandem 

double F-C alkylation, where the phosphoric acid catalyst is used to 

activate the aldehyde and promote the intermolecular F-C of the 

indole, the final product is obtained through the intramolecular F-C of 

the carbocation  intermediate created in the previous step. 
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2. Projects and results 
 

2.1.  Aim of the project 

 

In this thesis project, which has been performed at the department of 

Industrial Chemistry "Toso Montanari", we tried to develop an intramolecular 

and asymmetric Friedel-Crafts alkylation of chalcones, exploiting mostly 

organocatalysts, in order to simultaneously obtain a new chiral center and a 

chiral axis, in the moment in which the new C-C bond is formed. 

 

2.2.  Starting point 

 

In a previous study carried out by the same research group18 in which I have 

done this project, an enantioselective intermolecular F-C alkylation between 

indenones and α- and β-naphtholes via iminium ion has been reported, the 

catalysts used were primary amines and, in particular, the best results have 

been gained using 9-amino(9-deoxy)epi-quinidine. 

 

!
Scheme 7 Reaction between indenones and α- and β- naphtholes via iminium ion  
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inside the structure of the two starting products, 2-naphthols and indenones, 

could support the control of the absolute configuration of both the chiral 

centre and the chiral axis, which are formed after the reaction2. 

 

!
Scheme 8 Study upon the substituents inside the reaction between 2-naphthols and indenones 
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substrates is still not known. Many examples of F-C reaction have been 

reported using different substrates and catalytic systems like: 

• indoles and β-substituted α,β-unsaturated phosphonates and α,β-

unsaturated 2-acyl imidazoles, catalyzed by Bis(oxazolinyl)pyridine-

Scandium(III) triflate complexes 19 

• pyrroles and indoles with α′-hydroxy enones under Cu(II)-simple 

bis(oxazoline) catalysis 20 

 

2.3.  Synthesis of substrates 

 

For the synthesis of chalcones, our substrates for the F-C reaction, we have 

followed two different pathways. We focused on the use of 3'-

hydroxyacetophenone, since our previous researches showed that the 

presence of the -OH group, inside the structure of the starting product for the 

intermolecular alkylation, was necessary (see chapter 2.4). 

At first we focused on the synthesis of chalcones via Wittig reaction; this 

choice was made because of hte presence of the -OH group, since we feared 

that the synthesis via aldol condensation, the main used reaction for the 

synthesis of our wanted substrates21, could have many problems and it could 

be less effective. 

This first pathway we have chosen has 3 reaction steps: 

• Bromination of the starting material 3'-hydroxyacetophenone, 

synthesis of 2-bromo-3'-hydroxyacetophenone 

• Synthesis of the phosphorane 

• Wittig reaction between the phosphorane and various substituted 

naphthaldehydes  
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!
Scheme 9 Synthesis of chalcones via Wittig reaction 

!
The first step of reaction was performed employing a procedure found in 

literature22, which involved the use of ground CuBr2 as brominating agent and 

ethyl acetate as solvent, the reaction mixture had to be maintained under 

reflux for at about 6 hours; we were able to optimize the reaction through a 

few additions of CuBr2, as it deactivated it was filtered and replaced, in that 

way we obtained high conversion and we were able to characterize the 

product 2-bromo-3'-hydroxyacetophenone. 

The second step of reaction, for the synthesis of the phosphonium ylide, was 

also performed employing a reported procedure23, in this case we added a 
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chalcones were obtained in very low yield and then in inadequate quantity to 

perform the following tests for the F-C reaction; there probably have been 

problems during the synthesis of the phosphonium ylide or in the Wittig 

reaction itself.  

Given the impracticability of the first synthetic pathway, we moved to the 

synthesis of chalcones via aldol condensation, in particular we followed a 

procedure described in an american patent24, the only one example reported 

in literature about an aldol condensation between 3'-hydroxyacetophenone 

and aromatic aldehydes; this reaction which consisted of a single step 

compared to the Wittig reaction, required that 3'-hydroxyacetophenone was 

placed under reflux for 3 hours together with the aromatic aldehyde, in our 

case 1-naphthaldehyde or p-nitrobenzaldehyde, Ba(OH)2 and ethanol as 

solvent. 

 

!
Scheme 10 Synthesis of chalcones via Aldol Condensation 

 

The reaction mixture was cooled and put in 1M HCl, the precipitate was 
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2.4.  Study upon the intramolecular Friedel-Crafts alkylation 

 

After the synthesis of chalcones, we began the tests for the reaction of 

interest, for these tests we used both organocatalysts and Lewis Acids. 

 

!
Fig. 17 Catalysts for the intramolecular F-C alkylation 

!
The presence of the -OH group, in the meta position of the aromatic ring 

present in acetophenone, turns out to be very useful now, thanks to the 

electron releasing effect, it allows an increase in nucleophilicity in the ortho 

and para position, in this way the aromatic ring can be activated and the 

nucleophilic attack towards the β carbon of the double bond, the chalcone 
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!
Fig. 18 Effect of the -OH group and activation of the meta position 

 

Catalytic system C1 should provide the activation of the chalcone via iminium 

ion, while catalyst C2 provide the activation of the β-position of the chalcone 

via H bond and the aromatic moiety via base catalysis. The choice of these 

two systems was made with the intention to check if their utilization is 

possible also for the intramolecular reaction. The first system exploits an 

organic acid as co-catalyst, this one operate as counterion to increase the 

effectiveness of the catalysts itself and to form a catalytic salt; in this case we 
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2.4.1. Reaction A: synthesis of 4-hydroxy-3-(naphthalen-1-yl)-2,3-

dihydro-1H-inden-1-one 

 

!
Scheme 11 Reaction A: intramolecular F-C 

 

We made some tests of intramolecular F-C reaction upon chalcone A 

using THF as solvent and trying different catalytic systems: 

• 9-amino(9-deoxy)epi-quinidine + 2-hydroxy-5-nitrobenzoic acid 

• 9-epi-NH2-Thiourea-QD 

• NiCl2 

• InCl3 

• Mg(ClO4)2 

 

Reaction Catalyst Solvent T(C°) Time(h) Conversion(%) 

R41 C1 Toluene rt 24 / 

R41b C1 THF 40 72 / 

R42 C1 THF rt 72 / 

R43 C3 THF rt 72 / 

R44 C4 THF rt 72 / 

R45 C5 THF rt 72 / 

R46 C2 THF rt 72 / 

Table 1 Reaction A: catalysts tests 
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reproduce the same reaction changing solvents and temperature, while all 

the other tests were done at room temperature. 

In anyone of the tests we obtained good results, the 1H NMR analysis 

shows, in fact, that the signals related to the α and β carbons of the 

double bond conjugated to the carbonyl are still present, in their place no 

new singal, we could trace back to the formation of our product of interest, 

was found. 

 

2.4.2 Reaction B: synthesis of 4-hydroxy-3-(4-nitrophenyl)-2,3-dihydro-1H-

inden-1-one 

 

!
Scheme 12 Reactioin B: intramolecular F-C 
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solvent and trying some of the catalytic systems we used for reaction A: 

• 9-amino(9-deoxy)epi-quinidine + 2-hydroxy-5-nitrobenzoic acid 

• 9-epi-NH2-Thiourea-QD 

• Mg(ClO4)2 
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Reaction Catalyst Solvent T(C°) Time(h) Conversion(%) 

R51 C5 THF rt 24 / 

R51b C5 THF 50 72 / 

R52 C2 THF rt 24 / 

R52b C2 THF 50 72 / 

R53 C1 THF rt 24 / 

R53b C1 THF 50 72 / 

Table&2&Reaction&B:&catalysts&tests&

Each reaction, after 24 hours, was brought from r.t. to 50°C because we 

did not see any difference in the reaction mixture composition, which was 

controlled by TLC. Also in this case we had bad results and the 1H NMR 

analysis confirmed the absence of the reaction product. 

 

2.5 Study upon the intramolecular Friedel-Crafts reaction of epoxy derivatives 

 

Given the poor results obtained with the tests reported above upon the direct 

intramolecular F-C reaction, we decided to adopt a different strategy. 

We decided to change the electrophilic partner of our reaction. Instead of 

using a Michael acceptor we envisaged to use an expoxide (Fig. 19), which 

could be easily obtained from our chalcone by a simple oxidation reaction. In 

this way, we hoped to exploit the high reactivity that epoxides show towards 

the classical ring opening reactions. Moreover, the use of the epoxide as the 

starting material brings about an additional degree of complexity to the 

system. In fact, the starting epoxide is chiral and performing the asymmetric 

intramolecular F-C reaction on the racemic  mixture may result in a kinetic 

resolution of the epoxide that, in the best case, would lead us to a single 

enantiomer of our product (Fig.19). 
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!
Fig. 19 Epoxide enantiomers and example of kinetic resolution 

For the kinetic resolution we used different catalytic systems: organocatalysts 

and Lewis acids. 

Among all the organocatalysts, we primarily tested phosphoric acids and their 

derivatives; these catalysts are Brønsted acids which are widely used to 

activate substrates in many reactions, such as Mannich, Friedel-Crafts and 

Diels-Alder25, furthermore the presence of their substituents in 3,3' position 

increases the enantioselectivity of these systems. 

Of the category of Lewis acids, we used mainly InCl3 and some metal 

complexes which are generally called salen. Salen are a category of organic 

compounds that are often used as ligands for metals, we usually obtain them 

from the reaction between pro-ligands and metal precursors, for example the 

research group of Jacobsen et al. developed a type of salen which contains 

Mn and it is called Jacobsen's catalyst; this kind of catalysts is usually used 

for kinetic resolutions of racemic epoxides to obtain enantioenriched 

mixtures26. Inside the structure of these catalysts it is necessary the presence 

of bulky groups to promote tha catalytic activity, and elements of chirality can 

be included into the structure via the diamine backbone, via the phenyl ring, 

or both27. 
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!
Fig. 20 Catalysts for the kinetic resolution 
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2.5.1 Synthesis of epoxides 

 

The epoxide of chalcone A was synthesized employing a procedure found 

in literature21. The chalcone of interest was dissolved in a mixture of H2O-

THF (1:2) and then a solution of 5M NaOH was added dropwise keeping 

the reaction mixture stirring, after 10 minutes we added a solution of H2O2 

maintaining the stirring. After 10 hours we made the work-up and the 

reaction mixture was added to a flask with H2O, the resulting epoxide 

should be in form of a precipitate but no differences were observed; since 

that the presence of the -OH group of the chalcone can give some 

problems when the reaction suffers pH changes, we tried to acidify the 

reaction mixture using HCl till neutrality. 

 

!
Scheme 13 Synthesis of the epoxides 

 

The product precipitated and it was filtered. 
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2.5.2 Reaction C: synthesis of  2-hydroxy-3-(naphthalen-1-yl)-2,3-dihydro-

1H-inden-1-one 

 

!
Scheme 14 Reaction C: kinetic resolution 

 

All the test were done using the epoxide C because the epoxide D was 

obtained in low yield and we had not enogh of it for our tests. The 

reactions were performed in DCM as solvent and different catalytic 

systems: 

• (S,S)-(+)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediaminocromium(III) chloride 

• (S,S)-(+)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediaminocobalt(II) 

• (S,S)-(+)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediaminocromium(III) chloride + 4-metoxy-aniline 

• InCl3 

• 9-epi-NH2-Thiourea-QD 

• N-(2,6-bis(3,5-bis(trifluoromethyl)phenyl)-4-oxidodinaphtho[2,1-

d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)-1,1,1-

trifluoromethanesulfonamide 

• (2s,11bS)-2,6-di(anthracen-9-yl)-4-hydroxydinaphtho[2,1-d:1',2'-

f][1,3,2]dioxaphosphepine 4-oxide 

• 1,1,1-trifluoro-N-((11bS)-4-oxido-2,6-di(phenanthren-9-yl) 

dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl) 

methanesulfonamide 
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Reaction Catalyst Solvent T(C°) Time(h) Conversion(%) 

R56 C7 DCM+TBME rt 72 / 

R57 C6 DCM+TBME rt 72 / 

R58 C9 DCM rt 72 / 

R59 C7+4-OMe-aniline DCM rt 72 / 

R60 C10 DCM rt 96 100 

R61 C8 DCM rt 96 / 

R62 C12 DCM rt 24 / 

R63 C11 DCM rt 24 100 

Table&3&Reaction&C:&catalysts&tests 

 

No one of the catalytic system used has led to the opening of the epoxide. 

From the 1H NMR analysis in fact we should have observed: a reduction 

of the signals corresponding to the hydrogens bonded to the two carbon of 

the epoxide ring, together with the formation of new signal corresponding 

to the product of opening of the epoxide, which was promoted by our 

intramolecular F-C reaction. We actually do not see any variations 

between the 1H NMR spectrum of the starting epoxide and the 1H NMR 

spectra of the reaction mixtures. 

The only two tests which have shown some variations in their initial 

spectra were tests R60 and R63. The crudes of these reactions were 

purified by column chromatography, however we were not able to obtain a 

perfectly pure product due to the presence of some impurities. Anyway, 

from the 1H NMR analysis, we were able to see that the signals related to 

the hydrogens of the epoxide ring (4.28 and 4.70 ppm) were all gone. This 

means that the epoxide ring has been opened but not in a selective way, 

as we expected from our kinetic resolution, it could be that both the two 

enentiomers of the starting epoxide reacted. 
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!
Scheme 15 Example of possible reaction pathways 

!
The ring opening could be occurred in two different ways (Scheme 9). If 

the ring opening has followed a reaction mechanism type SN2, we would 

get two enantiomers of our product, each of them derived from its starting 

epoxide. If the ring opening has followed a reaction mechanism type SN1, 

we would get two couples of epimers derived from the two starting 

epoxides, due to the loss of selectivity promoted by a carbocation 

intermediate, moreover the two couples III/V and IV/VI are enantiomers 

respectively. 

The presence of other signals in the spectrum, that could be related to our 

desired product, combined with a GC-MC analysis allowed us to confirm 

our hypothesis. In the GC-MC analysis the presence of a peak with a the 

same m/z of our product of interest (M = 290), together with other signals 

that could be related to the loss of the two -OH groups and of the 

naphthalene were a confirmation of the presence of our product. 
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2.6 Conclusions 

 

The tests done so far have shown that employing these catalytic systems 

and these reaction conditions, we were not be able to obtain any results in 

the intramolecular and asymmetric Friedel-Crafts alkylation of chalcones 

to produce the indenones obtained in our previous researches through the 

intermolecular F-C. 

Also the tests based upon the kinetic resolution have not given very good 

results, except for two test.  

These tests show that we have reached our goal to obtain our 

intramolecular F-C reaction, but the kinetic resolution has not occurred as 

we expected. We will probably have to study better the reaction conditions 

and the reaction pathway to develop a better intramolecular F-C reaction. 

 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
 



! 43!

3. Experimental section 
 

All the 1H NMR spectra have been done using the spectrometers Gemini 300 

MHz and Mercury 400 MHz, the samples have been prepared using 

deuterochloroform or DMSO-d6 containing TMS as internal standard. Chemical 

shifts δ are reported in ppm with respect to TMS, while the coupling constants J 

are reported in Hz. To indicate the multiplicity of protons we have used the 

following abbreviations: s, singlet; d, doublet; t, triplet; dd, double doublet; ddd, 

double doublet of doublets; bs, broad signal; m, multiplet. The conversions have 

been determined through the 1H NMR spectra of the crudes. The reaction 

progress has been monitored with TLC, purifications of all the crudes have been 

done through column chromatography employing silica gel as fixed phase. 

The purification of 2-bromo-3'-hydroxyacetophenone was made through the use 

of the reversed-phase chromatography HPLC, column Synergi 4U Polar-RP 80A, 

the azeotropic mixture Acetonitrile/Water 70:30. 

The mass spectra have been aquired through the spectrometer Focus-DSQ 

Thermo Scientific, capillary column in dimethylsilicon with 5% of phenylsilicon 

Thermo Scientific (0.25 mm Ø x 15 m). 

 

3.1  Synthesis of 2-bromo-3'-hydroxyacetophenone22 

 

To a 150 mL round bottom flask equipped with a 

magnetic stirrer and reflux condenser, was 

charged 11,34 g (50 mmol) of CuBr2, previously 

ground in a mortar, with 25 mL of Ethyl Acetate, 

this mixture was brought to reflux on a magnetic 

stirrer-hot plate. 4,08 g of 3'-

hydroxyacetophenone (30 mmol) were dissolved in 25 mL of Ethyl Acetate 

and then added to the flask. The reaction mixture was initially green, the 

stirring was maintained vigorous to ensure the complete exposure of the 

CuBr2, we can see that the reaction is finished when the CuBr2 turn white, at 

the beginning of the reaction it was black, and we can't see anymore the 

evolution of HBr from the top of the condenser. After 2 hours the reaction 

O

OH

Br
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mixture was cooled and filtered upon a layer of celite and graphite to remove 

the CuBr, the filtrate was washed with Ethyl Acetate to remove the product 

which has been collected in a round bottom flask. After the 1H NMR analysis 

we saw that inside the reaction mixture there was still some starting material 

left, thus we equipped again the flask containing the reaction mixture with a 

magnetic stirrer and the reflux condenser. We made a proportion between the 

mmol of product obtained and the mmol of starting material left, in that way 

we have calculated the amount of CuBr2 (18,36 mmol, 4,10 g) to add to the 

reaction mixture. The reaction mixture was left under reflux for 2 hours, after 

that we have followed the same procedure for the filtration. We obtained a 

very viscous amber oil. To further purification of the crude, we used reversed-

phase chromatography HPLC, the azeotropic mixture was Acetonitrile/Water 

70:30, flux 20 mL/min, column Synergi 4U Polar-RP 80A, retention time of the 

peak 4.80 min. 
1H NMR: (300 MHz, CDCl3) δ (ppm) 4.47 (s, 2H), 6.08 (s,1H), 7.15 (ddd, J = 

1.04 Hz, 2.60 Hz, 8.14 Hz, 1H), 7.35 (t, J = 7.89 Hz, 1H), 7.48-7.56 (m, 2H). 

 

3.2  Synthesis of 3'-hydroxyphenylcarbonylmethylenetriphenylphosphorane23 

 

To a 150 mL round bottom flask equipped 

with a magnetic stirrer, was charged 10,50 g 

PPh3 (40 mmol) dissolved in 25 mL of 

Toluene, after that, a solution of  8,72 g of 2-

bromo-3'-hydroxyacetophenone (40 mmol) in 

25 mL of Toluene and 5 mL of DCM was 

added dropwise to the reaction mixture, keeping everything under nitrogen. 

The mixture was stirred overnight and the resulting crude was filtered and 

washed with Toluene. The gluey solid obtained was put in a flask together 

with a mixture of H2O/MeOH 1:1 (150 mL + 150 mL) and stirred for 1 hour. A 

solution of NaOH 1,5M was added to the mixture until we reached pH 8, and 

then stirred vigorously for another hour. In the end we added DMC and 

extract the organic phase, which contained the phosphorane, we dried it in 

vacuo, we recrystallized the phosphorane from Ethyl Acetate and then we 

dried it again. 

O

OH

PPh3
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1H NMR: (400 MHz, CDCl3) δ (ppm) 4.41 (d, 24.89 Hz, 1H), 6.83 (ddd, J = 

0.89 Hz, 2.51 Hz, 8.03 Hz, 1H), 7.09 (t, J = 7.84 Hz, 1H), 7.11-7.19 (bs, 2H). 

 

 

3.3 Synthesis of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-one 

(Wittg Reaction) 

 

To a 50 mL round bottom flask equipped with a 

magnetic stirrer, was charged 679 µL of 1-

naphtaldehyde (5 mmol) in 5 mL of DCM, and a 

solution with 1,98 g of 3'-

hydroxyphenylcarbonylmethylenetriphenylphosp

horane in 10 mL of DCM.  

The reaction mixture has been left at r.t. for a week, after that the reaction 

mixture has been separated using DCM and water, the organic phase was 

collected and dried in vacuo. Column chromatography was made to purify our 

crude, mixture hexane/ethyl acetate 7:3, we obtained the purified product. 
1H NMR: (300 MHz, CDCl3) δ (ppm) 7.12 (ddd, J = 0.98 Hz, 2.68 Hz, 8.12 Hz, 

1H), 7.41 (t, J = 7.97 Hz, 1H), 7.49-7.67 (m, 6H), 7.86-7.99 (m, 3H), 8.26 (d, J 

= 8.79 Hz, 1H), 8.68 (d, J = 15.48 Hz, 1H). 

 

3.4 General procedure for the synthesis of 3'-hydroxychalcone (Aldol 

Condensation)24 

 

To a round bottom flask equipped with a magnetic stirrer and reflux 

condenser, was charged 1 eq. of 3'-hydroxyacetophenone, 1 eq. of aromatic 

aldheyde, 0,5 eq. of Ba(OH)2 and absolute Ethanol. The reaction mixture is 

maintained under reflux for 3 hours, we can observe a drastic change of 

colour and the reaction mixture became very thick. Upon cooling, we added 

1M HCl and we observed the precipitation of a solid, which has been filtered 

and washed with H2O and Hexane. The solid was dried in vacuo overnight. 

 

 

O

OH
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3.4.1 Synthesis of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-

en-1-one 

Following the general procedure 

for the synthesis of 3'-

hydroxychalcone, we added 2,72 g 

of 3'-hydroxyacetophenone (20 

mmol), 2,72 mL of 1-

naphtaldheyde (20 mmol), 3,47 g 

of Ba(OH)2 • 8H2O (11 mmol) and 

20 mL of absolute Ethanol, to a 200 mL round bottom flask equipped 

with a magnetic stirrer and reflux condenser. After 3 hours the 

reaction mixture became orange and very thick, upon cooling we 

added 100 mL of 1M HCl and a yellow solid was formed. Column 

chromatography was made to purify our crude, mixture hexane/ethyl 

acetate 7:3, we obtained the purified product. 
1H NMR: (300 MHz, CDCl3) δ (ppm) 7.12 (ddd, J = 0.98 Hz, 2.68 Hz, 

8.12 Hz, 1H), 7.41 (t, J = 7.97 Hz, 1H), 7.49-7.67 (m, 6H), 7.86-7.99 

(m, 3H), 8.26 (d, J = 8.79 Hz, 1H), 8.68 (d, J = 15.48 Hz, 1H). 

 

3.4.2 Synthesis of (E)-1-(3-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-

1-one 

 

Following the general 

procedure for the synthesis 

of 3'-hydroxychalcone, we 

added 2,04 g of 3'-

hydroxyacetophenone (15 

mmol), 2,27 g of p-nitrobenzaldheyde (15 mmol), 2,60 g of Ba(OH)2 • 

8H2O (8,25 mmol) and 25 mL od absolute Ethanol, to a 200 mL round 

bottom flask equipped with a magnetic stirrer and reflux condenser. 

After 3 hours the reaction mixture became orange and very thick, 

upon cooling we added 100 mL of 1M HCl and a yellow-brown solid 

was formed. 

O

OH
NO2

O

OH
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1H NMR: (300 MHz, DMSO-d6) δ (ppm) 7.10 (ddd, J = 0.95 Hz, 2.58 

Hz, 8.23 Hz, 1H), 7.40 (t, J = 8.17 Hz, 1H), 7.49 (t, J = 2.09 Hz, 1H), 

7.65-7.70 (m, 1H), 7.79 (d, J = 15.70 Hz, 1H), 8.05 (d, J = 16.08 Hz, 

1H), 8.16 (d, J = 8.91 Hz, 2H), 8.29 (d, J = 8.90 Hz, 2H). 

 

3.5 General procedure for the intramolecular F-C reaction and synthesis of 4-

hydroxy-3-(naphthalen-1-yl)-2,3-dihydro-1H-inden-1-one 

 

All the tests have been developed using the conditions reported in the 

scheme above and in the catalysts chart (Table 4). 

 
 

In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

charged 54,9 mg of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-1-

one (0,2 mmol), 0,02 mmol of catalyst (10%) and 0,8 mL of THF. The 

reaction mixtures were left at r.t. for 72 hours, the crude was obtained after 

separation using DCM. The wanted product was not obtained. 

 

The exception for this procedure are reaction R41, R41b and R42. 

R41: In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

prepared the catalytic salt using 13 mg of 9-amino(9-deoxy)epi-chinidine 

(0,04 mmol, 20%) and 14,6 mg 2-hydroxy-5-nitrobenzoic acid (0,08 mmol) in 

0,9 mL of Toluene. After 10 minutes 54,9 mg of (E)-1-(3-hydroxyphenyl)-3-

(naphthalen-1-yl)prop-2-en-1-one (0,2 mmol) were added. After 24 hours the 

reaction mixture was controlled by TLC, no product was formed, so the 

reaction was brought to 40 °C for 72 hours (R41b). The crude was obtained 

after separation using DCM. The wanted product was not obtained. 

O
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R42: In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

prepared the catalytic salt using 13 mg of 9-amino(9-deoxy)epi-chinidine 

(0,04 mmol, 20%) and 14,6 mg 2-hydroxy-5-nitrobenzoic acid (0,08 mmol) in 

0,9 mL of THF. After 10 minutes 54,9 mg of (E)-1-(3-hydroxyphenyl)-3-

(naphthalen-1-yl)prop-2-en-1-one (0,2 mmol) were added. The reaction 

mixture was left at r.t. for 72 hours,the crude was obtained after separation 

using DCM. The wanted product was not obtained. 

 

Reaction Cat mmol % mg 

R41 9-amino(9-deoxy)epi-chinidine 0,04 20 13,00 

R41b 9-amino(9-deoxy)epi-chinidine 0,04 20 13,00 

R42 9-amino(9-deoxy)epi-chinidine 0,04 20 13,00 

R43 NiCl2 0,02 10 4,8 

R44 InCl3 0,02 10 4,4 

R45 Mg(ClO4)2 0,02 10 4,5 

R46 9-epi-NH2-Thiourea-QD 0,02 10 11,9 
Table 4 Catalysts Reaction A 

 

3.6 General procedure for the intramolecular F-C reaction and synthesis of 4-

hydroxy-3-(4-nitrophenyl)-2,3-dihydro-1H-inden-1-one 

 

All the tests have been developed using the conditions reported in the 

scheme above and in the catalysts chart (Table 5). 

 

 
 

In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

charged 53,9 mg of (E)-1-(3-hydroxyphenyl)-3-(4-nitrophenyl)prop-2-en-1-one 

(0,2 mmol), 0,02 mmol of catalyst (10%) and 0,8 mL of THF. The reaction 
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mixtures were left at r.t. for 24 hours, since no difference was found between 

the starting materials and the reaction mixture after that time, all the reaction 

were brought to 50°C and left in those conditions for 72 hours. The crude was 

obtained after separation using DCM. The wanted product was not obtained. 

 

Reaction Cat mmol % mg 

R51 Mg(ClO4)2 0,02 10 4,5 

R52 9-epi-NH2-Thiourea-QD 0,02 10 11,9 

R53 9-amino(9-deoxy)epi-chinidine 0,04 20 13,00 
Table 5 Catalysts Reaction B 

!
3.7 Synthesis of (3-hydroxyphenyl)(3-(naphthalen-1-yl)oxiran-2-
yl)methanone21 

 

To a round bottom flask equipped with a 

magnetic stirrer, was charged 2,5 g of (E)-1-

(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-

en-1-one (9,11 mmol) and 30 mL of H2O-THF 

mixture (1:2), after that, 5 mL of NaOH 5M 

were added dropwise keeping the reaction 

mixture stirred for 10 minutes. Then, 7,5 mL 

of H2O2 (30% wt) were added dropwise and the mixture was stirred at r.t. 

overnight. The resulting mixture was poured into H2O but we didn't see any 

precipitate, thus we added HCl 1M to neutralize the base. When we reached 

neutrality, we observed the formation of a precipitate which has been filtered 

and dried in vacuo. Column chromatography was made to purify our crude, 

mixture hexane/ethyl acetate 8:2, we obtained the purified product. 
1H NMR: (300 MHz, CDCl3) δ (ppm) 4.28 (d, J = 2.05 Hz, 1H), 4.70 (d, 1.84 

Hz, 1H), 7.13 (ddd, J = 0.94 Hz, 2.48 Hz, 8.06 Hz, 1H), 7.33 (t, J = 7.80 Hz, 

1H), 7.44-7.60 (bs, 6H), 7.80-8.00 (bs, 3H). 

 

 

 

 

O

OH

O
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3.8 Synthesis of (3-hydroxyphenyl)(3-(4-nitrophenyl)oxiran-2-yl)methanone 

 

To a round bottom flask equipped with a 

magnetic stirrer, was charged 2,5 g of 

(E)-1-(3-hydroxyphenyl)-3-(4-

nitrophenyl)prop-2-en-1-one (9,28 mmol) 

and 30 mL of H2O-THF mixture (1:2), 

after that, 5 mL of NaOH 5M were added 

dropwise keeping the reaction mixture stirred for 10 minutes. Then, 7,5 mL of 

H2O2 were added dropwise and the mixture was stirred at r.t. overnight. The 

resulting mixture was poured into H2O and acidified with HCl 1M to neutralize 

the base. When we reached neutrality, we observed the formation of a small 

amount of precipitate which has been filtered, the reaction mixture was 

extracted with DCM but we can not recover other product. 
1H NMR: (300 MHz, DMSO-d6) δ (ppm) 4.35 (d, J = 1.86 Hz, 1H), 4.82 (d, J = 

1.99 Hz, 1H), 7.09 (ddd, J = 0.95 Hz, 2.74 Hz, 8.07 Hz, 1H), 7.36 (t, J = 8.30 

Hz, 2H), 7.48 (d, J = 8.36 Hz, 1H), 7.72 (d, J = 8.80  Hz, 2H), 8.28 (d, J = 

8.87 Hz, 2H). 

 

3.9. General procedure for the kinetic resolution and synthesis of 4-hydroxy-

3-(naphthalen-1-yl)-2,3-dihydro-1H-inden-1-one 

 

All the tests have been developed using the conditions reported in the 

scheme above and in the catalysts chart (Table 6). 
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Since there are many differences between the tests, the procedures for the 

synthesis of this compound will be devided according to the type of catalyst. 

 
Reaction Cat mmol % mg 

R56 (S,S)-(+)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediaminocromium(III) chloride 

0,01 3,4 6,3 

R57 (S,S)-(+)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediaminocobalt(II) 

0,01 3,4 6,0 

R58 InCl3 0,03 10 6,6 

R59 (S,S)-(+)-N,N′-Bis(3,5-di-tert-butylsalicylidene)-1,2-

cyclohexanediaminocromium(III) chloride 
0,0075 10 4,7 

R60 N-(2,6-bis(3,5-bis(trifluoromethyl)phenyl)-4-

oxidodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl)-

1,1,1-trifluoromethanesulfonamide 

0,01! 5 9,0 

R61 9-epi-NH2-Thiourea-QD 0,02! 10 11,9 

R62 (2s,11bS)-2,6-di(anthracen-9-yl)-4-

hydroxydinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 

4-oxide 

0,01! 5 7,0 

R63 1,1,1-trifluoro-N-((11bS)-4-oxido-2,6-di(phenanthren-9-yl) 

dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepin-4-yl) 

methanesulfonamide 

0,01! 5 8,3 

Table 6 Catalysts Reaction C 

!
3.9.1 Salen complexes (R56, R57) 

In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

charged 87,1 mg of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-

1-one (0,3 mmol), 0,01 mmol of catalyst (3,4%) and 0,8 mL of TBME and 

0,2 mL of DCM. 

The reaction mixtures were left at r.t. for 72 hours, the crude was obtained 

after separation using DCM. The wanted product was not obtained. 

 

3.9.2 Salen complex with 4-methoxyaniline (R59) 

In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

charged 21,8 mg of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-

1-one (0,075 mmol), 0,0075 mmol of catalyst (10%), 3,6 mg of 4-

methoxyaniline and 0,8 mL of DCM. 
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The reaction mixtures were left at r.t. for 72 hours, the reaction mixture 

was controlled by TLC but the wanted product was not obtained. 

 

3.9.3 Lewis Acid InCl3 (R58) 

In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

charged 87,1 mg of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-

1-one (0,3 mmol), 0,03 mmol of catalyst (10%) and 1 mL of DCM. 

The reaction mixtures were left at r.t. for 72 hours, the crude was obtained 

after separation using DCM. The wanted product was not obtained. 

 

3.9.4. Phosforic Acid derivatives (R60,R62,R63) 

In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

charged 58,1 mg of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-

1-one (0,2 mmol), 0,01 mmol of catalyst (5%) and 0,8 mL of DCM. 

The reaction mixtures were left at r.t. for 96 hours (R60) and 24 hours 

(R62, R63), the crude was obtained after separation using DCM. The 

product was obtained, coloumn chromatography hexane/acetone (75:25) 

 

3.9.5. Quinidine Thiourea (R61) 

In a 1,5 mL vial, equipped with a screw cap and a magnetic stirrer, was 

charged 58,1 mg of (E)-1-(3-hydroxyphenyl)-3-(naphthalen-1-yl)prop-2-en-

1-one (0,2 mmol), 0,02 mmol of catalyst (10%) and 0,8 mL of DCM. 

The reaction mixture was left at r.t. for 96 hours, the crude was obtained 

after separation using DCM. The wanted product was not obtained. 

 

R60 1H NMR: (300 MHz, CDCl3) δ (ppm) 4.84 (d, J = 4.31 Hz, 2H), 4.96 

(s, 1H), 5.44 (s, 1H), 6.71 (ddd, J = 1.12 Hz, 2.57 Hz, 7.94 Hz, 1H), 6.80 

(m, 2H), 6.90 (t, J = 7.88, 1H), 7.11 (ddd, J = 1.15 Hz, 2.71 Hz, 8.01 Hz, 

1H), 7.31 (dd, J = 1.23 Hz, 7.06 Hz, 1H), 7.34-7.52 (bs, 6H), 7.82-7.90 

(bs, 3H). GC-MC: m/z (%) 209 (70) [M+], 121 (100). 

 

R63 1H NMR: (300 MHz, CDCl3) δ (ppm) 6.66-6.71 (bs, 1H), 6.73-6.91 

(bs, 2H), 7.30 (dd, J = 1.19 Hz, 7.01 Hz, 1H), 7.37-7.50 (bs, 3H), 7.53-

7.73 (bs, 3H), 7.80-7.90 (bs, 2H). 
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