
1



2



Alma Mater Studiorum · Università di Bologna
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Introduction

The aim of this work is to present, in the context of algebraic category
theory, some results concerning regular and exact categories. The notions
of regularity and exactness recapture many of the exactness properties of
abelian categories, but do not require additivity, which is a very strong
condition on the Hom sets’s structure. In particular we will prove that
an abelian category is additive and exact (i.e. a regular category in which
equivalence relations are effective). Finally, to provide the reader with a
wide range of examples, we will prove that an elementary topos is an exact
category.

The language of exact categories supplies a handy structure to work with.
The usefulness of properties as the existence of an epi-mono factorization
or the stability under pullback of epimorphisms becomes apparent as soon
as we start working with this sort of categories. Moreover, such a language
allows to talk about homology, cohomology and even homotopy (see [EC]).

Lo scopo di questo lavoro è quello di presentare, nell’ambito della teo-
ria delle categorie algebrica, alcuni risultati riguardanti categorie regolari
ed esatte. Le nozioni di esattezza e regolarità catturano molte delle pro-
prietà di esattezza delle categorie abeliane, ma non richiedono l’additività
che risulta essere una condizione molto forte sulla struttura degli Hom set.
In particolare dimostremo che una categoria abeliana altro non è che una
categoria esatta (i.e. regolare le cui relazioni di equivalenza sono effettive)
e additiva. Infine, con lo scopo di fornire al lettore un ampio spettro di
esempi, dimostreremo che un topos elementare è una categoria esatta.

Il linguaggio delle categorie esatte fornisce una struttura comoda su cui
lavorare: l’utilità di proprietà come l’esistenza di una fattorizzazione epi-
mono o la stabilità per pullback degli epimorfismi diviene chiara non appena
si inizia a lavorare con categorie di questo tipo. Inoltre tale linguaggio
permette di parlare di omologia e comologia ed addirittura di omotopia (si
veda [EC]).
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Chapter 1

Preliminaries

This chapter is intended to give some basic definitions and results in
category theory. For all the definitions, results and notations which are
taken for granted please refer to [H1].

1.1 Pullbacks

We will not give a wide view on limits and their properties. We will give
a few results on pullbacks which may be useful for the reading of further
chapters.

Diagram 1.1.

A
a //

c
��

B

(I)

b //

d
��

C

(II) e
��

D
f
// E g

// F

Proposition 1.1.1 (see [H1] 2.5.9). In a category C consider Diagram 1.1,
which is commutative.

1. If the square (I) and (II) are pullbacks, the outer rectangle is a pullback.

2. If C has pullbacks, if the square (II) is a pullback and the outer rect-
angle is a pullback, then (I) is a pullback.

Proposition 1.1.2 (see [H1] 2.5.6). Consider a morphism f :A // B in
a category C. The following conditions are equivalent:

1. f is a monomorphism;

2. the kernel pair of f exists and is given by (A, 1A, 1A);

3. the kernel pair (P, α, β) of f exists and α = β.

7
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Proposition 1.1.3 (see [H1] 2.5.7 and 2.5.8). In a category C, if e is a
coequalizer and it has a kernel pair, then it is the coequalizer of its kernel
pair. Furthermore, if a kernel pair (a, b) has a coequalizer, it is the kernel
pair of its coequalizer.

Proposition 1.1.4 (see [JC] 11.13). If T is a terminal object, then the
following are equivalent:

P
pA //

pB
��

A

��
B // T

1. the diagram above is a pullback square;

2. (P, pA, pB) is the product of A and B.

1.2 Epi-mono factorizations

Definition 1.2.1. In a category, an epimorphism is called regular if it is
the coequalizer of a pair of morphisms.

Diagram 1.2.

A

u
��

f // B

w~~
v
��

X // z
// Y

Definition 1.2.2. In a category C, an epimorphism f :A // B is called
strong when, for every commutative square v ◦ f = z ◦ u as in diagram 1.2,
with z :X // Y a monomorphism, there exists a unique arrow w :B // X
such that w ◦ f = u and z ◦ w = v.

Proposition 1.2.3. In a category C,

1. the composite of two strong epimorphisms is a strong epimorphism;

2. if a composite g◦f is a strong epimorphism, g is a strong epimorphism;

3. a morphism which is both a strong epimorphism and a monomorphism
is an isomorphism;

4. every regular epimorphism is strong.
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Proof. (1) Suppose f and g to be strong epimorphisms. In diagram 1.3
choose z◦u = v◦g◦f with z monomorphism. Since f is a strong epimorphism
there exists w :B // X such that v ◦ g = z ◦ w. Since g is a strong

epimorphism there also exists w′ :C // X such that v = z ◦ w′ and
w′ ◦ f = w. From the last equation we get w′ ◦ (g ◦ f) = w ◦ f = u, therefore
w′ is the required factorization.

Diagram 1.3.

A

u
��

f // B
w

~~

g // C

w′
ww

v
��

X // z
// Y

(2) Now suppose that g ◦ f is a strong epimorphism in Diagram 1.3
choose z ◦ w = v ◦ g, with z monomorphism. Putting u = w ◦ f we get a
factorization w′ such that w′ ◦ g ◦ f = u, z ◦ w′ = v since g ◦ f is a strong
epimorphism. From z ◦ w′ ◦ g = v ◦ g = z ◦ w we deduce w′ ◦ g = w since z
is a monomorphism. Therefore w′ is the required factorization.

(3) If f is both a strong epimorphism and a monomorphism, we find,
considering diagram 1.4, r such that f ◦ r = 1B and r ◦ f = 1A.

Diagram 1.4.

A //
f // // B

r��
A //

f
// // B

(4) Finally, if f = Coker(a, b) and in diagram 1.5 we choose z ◦u = v ◦f
with z monomorphism, since f ◦ a = f ◦ b we find z ◦ u ◦ b = v ◦ f ◦ b =
v ◦ f ◦ a = z ◦ u ◦ a thus u ◦ b = u ◦ a since z is a monomorphism. Therefore
we get some factorization w through f = Coker(a, b). From w ◦ f = u we
deduce z ◦w◦f = u◦z = v ◦f and thus z ◦w = v since f is an epimorphism.

Diagram 1.5.

M
a //
b
// A

u
��

f // // B

w~~
v
��

X // z
// Y

Definition 1.2.4. A category C has strong epi-mono factorization when
every morphism f of C factors as f = i ◦ p, with i a monomorphism and p
a strong epimorphism.
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Proposition 1.2.5. Let C be a category with strong epi-mono factoriza-
tions. The strong epi-mono factorization of an arrow is unique up to an
isomorphism.

Proof.

Diagram 1.6.

A
p // //

p′ ����

I

u

��

��

i
��

I ′ //
i′
//

v

??

B

Given i ◦ p = i′ ◦ p′ with p, p′ strong epimorphisms and i, i′ monomor-
phisms, consider diagram 1.6. There exists u such that u ◦ p = p′, i′ ◦ u = i
because p is a strong epimorphism and i′ is a monomorphism. Since p′ is
a strong epimorphism and i is a monomorphism there exists v such that
i ◦ v = i and v ◦ p′ = p. Therefore i ◦ v ◦ u ◦ p = i′ ◦ p′ = i ◦ p thus v ◦ u = 1I .
In a similar way u ◦ v = 1I′

1.3 Additive and abelian categories

Definition 1.3.1. By a zero object in a category C, we mean an object 0
which is both an initial and a terminal object. Moreover, in such a category
a morphism is called zero morphism when it factors through the zero object.

Proposition 1.3.2. Consider a category C with a zero object 0, there is
exactly one zero morphism from each object A to each object B.

Proof. This is just the composite of the unique morphisms A // 0 , where
0 is considered as a terminal object, and 0 // B , where 0 is considered
as an initial object.

Proposition 1.3.3. In a category with zero object 0, the composite of a
zero morphism with an arbitrary morphism is again a zero morphism.

Proof. Of course, the composite factors through 0.

Definition 1.3.4. In a category C with zero object 0, the kernel of an arrow
f :A // B is, when it exists, the equalizer of f and the zero morphism
between A and B. The cokernel of f is defined dually.

Proposition 1.3.5. Let f be a monomorphism in a category with a zero
object. If f ◦ g = 0 for some morphism g, then g = 0.

Proof. f ◦ g = 0 = f ◦ 0, thus g = 0.

Proposition 1.3.6. In a category with zero object the kernel of a monomor-
phism f :A // // B is just the zero morphism 0 // A .
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Proof. The composite 0 // A
f // B is the morphism between 0 and

B, if another composite f ◦ g is zero,

X
g //
0
// A

f // B

then f ◦ g = f ◦ 0 and therefore g = 0, which means that g factors uniquely
through 0.

Proposition 1.3.7. In a category with zero object, the kernel of a zero
morphism 0 :A // B is just the identity on A.

Proof. 0 ◦ 1A = 0 and then, given g :X // A with 0 ◦ g = 0; there exists
a unique factorization of g through 1A: it is g itself.

Definition 1.3.8. By a preadditive category we mean a category C together
with an abelian group structure on each set C(A,B) of morphisms, in such
a way that the composition mappings

cABC :C(A,B)× C(B,C) // C(A,C)

are group homomorphisms in each variables.

Proposition 1.3.9. In a preadditive category C, the following conditions
are equivalent:

1. C has an initial object;

2. C has a terminal object;

3. C has a zero object.
In that case the zero morphisms are exactly the identities for the
abelian group structures.

Proof. 3. implies 1. and 2. and, since preadditivity is autodual (see [H2] 1.1
and 1.2.2), it suffices to prove 1. implies 3. Let 0 be a initial object. The
set C(0,0) has a single element, which proves that 10 is the zero element of
the group C(0,0). Given an object C. C(C,0) has at least one element: the
zero element of that group. But if f :C // 0 is any morphism, f = 10 ◦f
must be the zero element of C(C,0). Thus 0 is a terminal object as well.

Since cC0D :C(C,0)× C(0, D) // C(C,D) is a group homomorphism,

we have 0(C,0) ◦ 0(0,D) = (0(C,0) + 0(C,0)) ◦ 0(0,D) = 0(C,0) ◦ 0(0,D) + 0(C,0) ◦
0(0,D) which implies 0(C,0) ◦ 0(0,D) = 0(C,D).

Proposition 1.3.10. Given two objects in a preadditive category C, the
following conditions are equivalent:
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1. the product (P, pA, pB) of A,B exists;

2. the coproduct (P, sA, sB) of A,B exists;

3. there exists an object P and morphisms

pA :P // A , pB :P // B , sA :A // P , sB :B // P

with the properties

pA ◦ sA = 1A, pB ◦ sB = 1B, pA ◦ sB = 0, pB ◦ sA = 0,
sA ◦ pA + sB ◦ pB = 1P .

Morever, under these conditions

sA = KerpB, sB = KerpA, pA = CokersB, pB = CokersA.

Proof. By duality it suffices to prove the equivalence between 1. and 3.
Given 1. define sA :A // P as the unique morphism with the prop-

erties pA ◦ sA = 1A, pB ◦ sA = 0. In the same way sB :B // P is such
that pB ◦ sB = 1B, pA ◦ sB = 0. It is now easy to compute that

pA ◦ (sA ◦ pA + sB ◦ pB) = pA + 0 = pA,
pB ◦ (sA ◦ pA + sB ◦ pB) = 0 + pB = pB,

from which sA ◦ pA + sB ◦ pB = 1P .
Given condition 3. consider C ∈ C and two morphisms f :C // A ,

g :C // B . Define h :C // P as h = sA ◦ f + sB ◦ g. We have

pA ◦ h = pA ◦ sA ◦ f + pA ◦ sB ◦ g = f + 0 = f ,
pB ◦ f = pB ◦ sa ◦ f + pB ◦ sB ◦ g = 0 + g = g.

Given h′ :C // P with the properties pA ◦h′ = f , pB ◦h′ = g, we deduce

h′ = 1P ◦ h′ = (sA ◦ pA + sB ◦ pB) ◦ h′ =
sA ◦ pA ◦ h′ + sB ◦ pB ◦ h′ = sA ◦ f + sB ◦ g = h.

Now assuming conditions 1. and 3. let us prove that sA = KerpB. We
have already pB ◦ sA = 0. Choose x :X // P such that pB ◦ x = 0. The
composite pA ◦ x is the required factorization since the relations

pA ◦ sA ◦ pA ◦ x = pA ◦ x,
pB ◦ sA ◦ pA ◦ x = 0 ◦ pA ◦ x = 0 = pB ◦ x

imply sA ◦ pA ◦x = x. The factorization is unique because pA ◦ sA = 1A and
thus sA is a monomorphism.

The relation sB = KerpA is true by analogy and the other two relations
hold by duality.



1.3 Additive and abelian categories 13

Definition 1.3.11. Given two objects A,B in a preadditive category, a
quintuple (P, pA, pB, sA, sB) as in 1.3.10 3. is called a biproduct of A and
B. The object P will generally be written A⊕B.

Proposition 1.3.12. Let f, g :A
// // B be two morphisms in a preaddi-

tive category. The following are equivalent:

1. the equalizer Ker(f, g) exists;

2. the kernel Ker(f − g) exists;

3. the kernel Ker(g − f) exists.

When this is the case, those three objects are isomorphic.

Proof. Since in any case Ker(g, f)=Ker(f, g), it suffices to prove (1.⇔2.).
Given a morphism x :X // A , f ◦x = g◦x is equivalent to (f−g)◦x = 0,
from which the result follows.

Definition 1.3.13. By an additive category we mean a preadditive category
with a zero object and binary biproducts.

Definition 1.3.14. A category C is abelian when it satisfies the following
properties:

1. C has a zero object;

2. every pair of object of C has a product and a coproduct;

3. every arrow of C has a kernel and a cokernel;

4. every monomorphism of C is a kernel; every epimorphism of C is a
cokernel.

Theorem 1.3.15 (see [H2] 1.6.4). Every abelian category is additive.
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Chapter 2

Regular Categories

The aim of this chapter is to present some basic results concerning reg-
ular categories and also some “exactness properties” which are implied by
regularity but do not require properties of additivity unlike abelian cate-
gory theory. For an introduction to abelian categories the reader can refer
to [H2].

Notation. From this point forward // // will denote only regular epimor-
phisms; no special notation will be used for ordinary epimorphisms.

2.1 Basic results and definitions

Definition 2.1.1. A category C is regular when it satisfies the following
conditions:

1. every arrow has a kernel pair;

2. every kernel pair has a coequalizer;

3. regular epimorphisms are pullback stable, i.e. the pullback of a regular
epimorphism along any morphism exists and is also a regular epimor-
phism.

Lemma 2.1.2. In a regular category C, consider f :A // // B a regular

epimorphism and an arbitrary morphism g :B // C . In these condition

the factorization f ×C f :A×C A // B ×C B exists and is an epimor-
phism.

Proof. The pullback B ×C B of (g,g) is the kernel pair of g, thus it exists.

15



16 2. Regular Categories

Diagram 2.1.

A×C A
j // //

i
����

B ×C A h //

e
����

A

f
����

A×C B
d
// //

c
��

B ×C B
b

//

a
��

B

g

��
A

f
// // B g

// C

Since f is a regular epimorphism, the three other partial pullbacks in-
volved in diagram 2.1 exist (from the third axiom of regular categories),
yielding e, d, i, j regular epimorphisms. Then f ×C f = d ◦ i = e ◦ j exists
and is an epimorphism as composite of two epimorphisms (see 1.2.3).

Remark. In diagram 2.1 the notation of the partial pullback B×C A instead
of A×B (B ×C B) is coherent (see 1.1.1).

Theorem 2.1.3. In a regular category, every morphism admits a regular
epi-mono factorization which is unique up to isomorphism.

Proof.

Diagram 2.2.

P u
//

v //

q

��

A
f //

p
����

B

R r
//

s //
I

i

??

Consider a morphism f , its kernel pair (P, u, v) and the coequalizer p =
Coker(u, v), as in diagram 2.2. Since f ◦u = f ◦v there exists a factorization
i through the coequalizer such that i ◦ p = f . It remains to prove that i is a
monomorphism. Let (R, s, r) be the kernel pair of i. Since i ◦p ◦u = i ◦p ◦ v
there exists a unique morphism q such that r ◦ q = p ◦ u and s ◦ q = p ◦ v.
Applying the lemma to the regular epimorphism p and i, we get that

P = A×B A, R = I ×B I, q = p×B p

thus q is an epimorphism. Then r ◦ q = p ◦ u = p ◦ v = s ◦ q implies s = r
since q is an epimorphism. Therefore i is a monomorphism (see 1.1.2). p is a
regular epimorphism as the coequalizer of a pair of morphisms, thus f = i◦p
is the required factorization. The uniqueness follows from 1.2.5.

Proposition 2.1.4. In a regular category f is a regular epimorphism iff f
is a strong epimorphism.
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Proof. (⇒) has been proved in 1.2.3. Conversely a strong epimorphism
f factors as f = i ◦ p with p regular epimorphism and i monomorphism.
But then i is both a strong epimorphism and a monomorphism, thus is an
isomorphism (see 1.2.3).

Corollary 2.1.5. In a regular category C,

1. the composite of two regular epimorphisms is a regular epimorphism;

2. if a composite g ◦ f is a regular epimorphism, g is a regular epimor-
phism;

3. a morphism which is both a regular epimorphism and a monomorphism
is an isomorphism.

Proof. Via the proposition above, this follows directly from 1.2.3.

2.2 Exact sequences

Definition 2.2.1. A diagram P
u //
v
// A

f // B is called exact sequence

when (u, v) is the kernel pair of f and f is the coequalizer of (u, v).

Proposition 2.2.2. In a regular category, pulling back along any arrow
preserves exact sequences.

Proof.

Diagram 2.3.

P ′
u′ //

v′
//

k
��

A′
f ′ //

h
��

B′

g

��
P

u //
v
// A

f // B

We consider the situation of diagram 2.3, where all the individual squares
are pullbacks and (f ;u, v) is an exact sequence. Observe that since f ◦ u =
f ◦ v, their pullbacks with g are the same and by associativity of pullbacks
(see 1.1.1) this means the existence of a single morphism k such that (u′, k)
is the pullback of (u, h) and (v′, k) is the pullback of (v, h). Now we have to
prove that (f ′;u′, v′) is an exact sequence. f ′ ◦ x = f ′ ◦ y implies f ◦ h ◦ x =
g ◦ f ′ ◦ x = g ◦ f ′ ◦ y = f ◦ h ◦ y, from which there is a unique w such
that u ◦ w = h ◦ x, v ◦ w = h ◦ y. This yields z1, z2 such that u′ ◦ z1 = x,
k ◦ z1 = w and v′ ◦ z2 = y, k ◦ z2 = w. The relations k ◦ z1 = w = k ◦ z2 and
f ′◦u′◦z1 = f ′◦x = f ′◦y = f ′◦v′◦z2 imply z1 = z2, since the global diagram
is a pullback. This yields a morphism z = z1 = z2 such that u′ ◦ z = x and
v′ ◦ z = y. The uniqueness of such a z is proved in the same way. Now f ′ is
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regular since f is. The pair (u′, v′) is the kernel pair of f ′ and f ′ is regular:
this implies that f ′ is the coequalizer of (u′, v′) (see 1.1.3).

Proposition 2.2.3. Let C be a regular category with binary products. Given
two exact sequences

P
u //
v
// A

f // B P ′
u′ //

v′
// A′

f ′ // B′

the product sequence

P × P ′
u×u′ //

v×v′
// A×A′ f×f

′
// B ×B′

is again exact.

Proof. It is just an obvious exercise on pullbacks and products to check that
(u×u′, v× v′) is the kernel pair of f × f ′. By 1.1.3, it remains to prove that
f × f ′ is a regular epimorphism.

Diagram 2.4.

A×A′ f×1 //

pA
��

B ×A′

pB
��

B ×A′ 1×f ′ //

pA′
��

B ×B′

pB′
��

A
f

// // B A′
f ′

// // B′

Observing that the squares of diagram 2.4 are pullbacks we can conclude
that f × 1 and 1× f ′ are regular epimorphisms thus f × f ′ = f × 1 ◦ 1× f ′
is a regular epimorphism (see 2.1.5).

Now we will define a class of functors between regular categories which
preserve these “exactness properties”

Definition 2.2.4. Let F :C // D be a functor between regular cate-
gories C, D. F is exact when it preserves:

1. all finite limits which happen to exist in C;

2. exact sequences.

Proposition 2.2.5. Let F :C // D be an exact functor between regular
categories C, D. The functor F preserves:

1. regular epimorphisms;

2. kernel pairs;
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3. coequalizers of kernel pairs;

4. regular epi-mono factorizations.

Proposition 2.2.6. Let F :C // D be a functor between regular cate-
gories. The following conditions are equivalent:

1. F is exact;

2. F preserves finite limits and regular epimorphisms.

Proof. (1)⇒ (2) by 2.2.5. Conversely, with the notation of 2.2.1, the regular
epimorphism F (f) has a kernel pair (F (u), F (v)), thus is its coequalizer (see
1.1.3).

2.3 Examples

In this section we will give some examples of regular and also non-regular
categories. First of all, it is necessary to prove a couple of results which
give a possible definition of regular categories in terms of regular/strong
epimorphisms.

Proposition 2.3.1. A category C is regular iff it satisfies the following
conditions:

1. every arrows has a kernel pair;

2. every arrow f can be factored as f = i◦p with i a monomorphism and
p a regular epimorphism;

3. the pullback of a regular epimorphism along any morphism exists and
is a regular epimorphism.

Proof. 2.1.3 proves the necessary condition. Conversely, consider an arrow
f , its kernel pair (u, v) and its regular epi-mono factorization f = i ◦ p.
Since i is a monomorphism, (u, v) is still the kernel pair of p and since p is
a regular epimorphism, p is the coequalizer of (u, v) (see 1.1.3).

Proposition 2.3.2. Let C be a category with all finite limits. The category
C is regular iff it satisfies the following condition:

1. every arrow f can be factored as f = i◦p with i a monomorphism and
p a strong epimorphism;

2. the pullback of a strong epimorphism along any morphism is again a
strong epimorphism.
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Proof. The necessity of conditions 1. and 2. follows from 2.1.5 and 2.3.1.
Conversely, it suffices by 2.3.1 to prove the coincidence between strong and
regular epimorphisms. To do this, let consider f :A // B , the kernel
pair (u, v) of f and a morphism g such that g ◦ u = g ◦ v; we shall prove
the existence of w :B // C such that g = w ◦ f (such a w is necessarily
unique since f is an epimorphism).

Diagram 2.5.

P
u //
v
// A

f // //

h

##
g

��

B

C B × CpCoo

pB

OO

We consider the product ofB, C and the unique factorization h :A // B × C
as in diagram 2.5, such that pB ◦h = f , pC ◦h = g. The morphism h can be
factored as h = i ◦ p with i a monomorphism and p a strong epimorphism.
We shall prove that pB ◦ i is an isomorphism and w = pC ◦ i ◦ (pB ◦ i)−1 is
the required factorization.

Diagram 2.6.

P ′

v

��

u

��

n
// //

m
����

Y y
// //

q
����

A

p
����

f

��

X

x
����

t // // Q

r
����

s // // I

pB◦i
��

A
p // //

f

@@I
pB◦i // B

Let us consider diagram 2.6, where all the individual squares are pull-
backs. Since pB ◦ i ◦ p = pB ◦ h = f , we can identify the global pullback
with the kernel pair of f , yielding P ′ = P , x ◦m = u, y ◦ n = v Since p is a
strong epimorphism, so are t, q, m, n; r, s are strong epimorphisms as well
as parts of a kernel pair, but it is not really relevant here. By commutativity
of diagram, we have immediately pB ◦ i ◦ r ◦ t ◦m = pB ◦ i ◦ s ◦ t ◦m.
On the other hand

pC ◦ i ◦ r ◦ t ◦m =
pC ◦ i ◦ p ◦ x ◦m =
pC ◦ h ◦ x ◦m =
g ◦ u =
g ◦ v =



2.3 Examples 21

pC ◦ h ◦ y ◦ n =
pC ◦ i ◦ p ◦ y ◦ n =
pC ◦ i ◦ s ◦ q ◦ n =
pC ◦ i ◦ s ◦ t ◦m

By definition of product, this yelds i ◦ r ◦ t ◦ m = i ◦ s ◦ t ◦ m, thus
r = s since i is a monomorphism and t, m are epimorphisms. This proves
that pB ◦ i is a monomorphism (see 1.1.2). But f = (pB ◦ i) ◦ p and f is
a strong epimorphism, pB ◦ i is a strong epimorphism as well and finally
pB ◦ i is an epimorphism (see 1.2.3). So we put w = pC ◦ i ◦ (pB ◦ i)−1. It is
straightforward to observe that

w ◦ f =
pC ◦ i ◦ (pB ◦ i)−1 ◦ f =
pC ◦ i ◦ (pB ◦ i)−1 ◦ pB ◦ i ◦ p =
pC ◦ i ◦ p◦ = g

On the other hand we have noticed already that such a factorization w
is unique since f is an epimorphism. This proves that f = Coker(u, v).
In particular every strong epimorphism is regular and thus regular epimor-
phisms coincide with strong epimorphisms.

2.3.1 The category of sets and functions

Theorem 2.3.3 (see [H1], 2.8.6). The category of sets is complete and
cocomplete.

Therefore we can apply 2.3.2, moreover the pullback of a strong epimor-
phism along any arrow does exist.

Lemma 2.3.4 (see [H1], 4.3.10). In Set the strong epimorphisms are exactly
the surjective functions.

Diagram 2.7.

A×C B
pA
��

pB // B

g
����

A
f

// C

We will now prove the regularity of Set. Since every function in Set

factors as a surjection followed by an injection, the second condition of 2.3.2
holds. Furthermore, the pullback of a surjection is a surjection. Indeed if
the diagram 2.7 is a pullback of sets with g a surjection,

A×C B = {(a, b)|a ∈ A; b ∈ B, f(a) = g(b)}
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Given a ∈ A, there exists b ∈ B such that f(a) = g(b), just because g is a
surjection. Therefore (a, b) ∈ A×C B and pA(a, b) = a. This proves that pA
is surjective. So Set is regular.

2.3.2 The category of topological spaces and continuous maps

The category Top of topological spaces and continuous maps is not reg-
ular.

Proposition 2.3.5 (see [H1], 4.3.10b). In Top strong epimorphisms are just
the quotient maps f :A // B , i.e. the surjections f where B is provided
with the corresponding quotient topology.

But quotient maps are not pullback stable, it is shown by the following
counterexample:
Let us put

A = {a, b, c, d} with {a, b} open,
B = {l,m, n} with {m,n} open;

C = {x, y, z} with the indiscrete topology.

We define f :A // C , g :B // C by

f(a) = x, f(b) = y = f(c), f(d) = z and g(l) = x, g(m) = z = g(n).

Now f is surjective and no subset of C has {a, b} as inverse image; thus f
is a quotient map. The product A×B has a single non-trivial open subset,
namely {a, b} × {l,m}. The pullback of f , g is thus given by

P = {(a, l); (d,m); (d, n)} with {(a, l)} open

The projection pB :P // B is not a quotient map since p−1
C (l) = {(a, l)}

while {l} is not. So Top is not a regular category.

2.3.3 Abelian categories

Theorem 2.3.6 (see [H2] 1.5.3). Abelian categories are finitely complete
and cocomplete

Proposition 2.3.7 (see [H2] 1.5.8). In an abelian category

1. every monomorphism is the kernel of its cokernel;

2. every epimorphism is the cokernel of its kernel.

Corollary 2.3.8. In an abelian category every epimorphism is regular.

Proof. Via 2.3.7, directly by 1.3.4.

Proposition 2.3.9 (see [H2] 1.7.6). In an abelian category the pullback
of an epimorphism is still an epimorphism and the corresponding pullback
square is also a pushout.

The propositions above prove that abelian categories are regular.
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2.4 Equivalence relations

Definition 2.4.1. By a relation on an object A of a category C, we mean
an object R ∈ C together with a monomorphic pair of arrows

r1, r2 :R
//// A

(i.e. given arrows x, y :X
// // R , x = y iff ri ◦ x = ri ◦ y ∀i ∈ {1, 2}). For

every object X ∈ C we write

RX = {(r1 ◦ x, r2 ◦ x)|x ∈ C(X,R)}

for the corresponding relation (in the usual sense) generated by R on the
set C(X,A).

Definition 2.4.2. By an equivalence relation on an object A in a category
C, we mean a relation (R, r1, r2) on A such that, for every object X ∈ C,
the corresponding relation RX on the set C(X,A) is an equivalence relation.
More generally, the relation R is reflexive (transitive, symmetric, antisym-
metric, etc.) when each relation RX is.

Diagram 2.8.

R×A R
ρ2 //

ρ1
��

R

r1
��

R r2
// A

Proposition 2.4.3. Let C be a category admitting pullbacks of strong epi-
morphisms. A relation (R, r1, r2) on an object A ∈ C is an equivalence
relation precisely when there exist:

1. a morphism δ :A // R such that r1 ◦ δ = 1A = r2 ◦ δ;

2. a morphism σ :R // R such that r1 ◦ σ = r2, r2 ◦ σ = r1;

3. a morphism τ :R×A R // R such that r1◦τ = r1◦ρ1, r2◦τ = r2◦ρ2

where the pullback is that of diagram 2.8.

Such morphisms δ, σ, τ are necessarily unique.

Proof. The reflexivity of the relation (R, r1, r2) implies that given the pair

(1A, 1A) :A
// // A , there exists a morphism δ :A // R such that r1 ◦

δ = 1A = r2 ◦ δ. Conversely, if given a relation (R, r1, r2) such a morphism
δ exists, then for every arrow x :X // A one has

x = r1 ◦ δ ◦ x, x = r2 ◦ δ ◦ x,
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which proves that (x, x) ∈ RX and thus R is reflexive.

The pair (r1, r2) :R
//// A is obviously in RR, since r1 = r1 ◦ 1R and

r2 = r2 ◦ 1R. By symmetry of (R, r1, r2), the pair (r2, r1) :R
// // A is

in RR, yielding a morphism σ :R // R such that r1 ◦ σ = r2, r2 ◦ σ =
r1. Conversely, if given the relation (R, r1, r2) such a morphism σ exists,

then for every pair of arrows (x, y) :X
//// A in RX one has a morphism

z :X // R such that r1 ◦ z = x, r2 ◦ z = y; as consequence,

r1 ◦ σ ◦ z = r2 ◦ z = y, r2 ◦ σ ◦ z = r1 ◦ z = x

and the pair (y, x) is in RX as well, proving the symmetry of R.
Let us consider the pullback of diagram 2.8, which exists since the rela-

tions r1 ◦ δ = 1A = r2 ◦ δ imply that r1, r2 are strong epimorphisms (1.2.3).
R ×A R represents the pairs ((a1, a2), (a2, a3)) where a1 ≈ a2 and a2 ≈ a3.
Considering the diagrams

R×A R
ρ1 // A

r1 //
r2
// A , R×A R

ρ2 // A
r1 //
r2
// A

we conclude that (r1 ◦ρ1, r2 ◦ρ1) and (r1 ◦ρ2, r2 ◦ρ2) are in R(R×AR) . Since
r1 ◦ ρ1 = r2 ◦ ρ2, this implies that (r1 ◦ ρ1, r2 ◦ ρ2) are in R(R×AR), yielding

an arrow τ :R×A R // R such that r1 ◦ τ = r1 ◦ ρ1, r2 ◦ τ = r2 ◦ ρ2.
Conversely, suppose we are given a relation (R, r1, r2) with the property
that such a morphism exists. Given three arrows x, y, z :X // A with

(z, y), (y, z) ∈ RX , we get two morphisms u, v :X
//// R such that r1◦u =

x, r2 ◦ u = y, r1 ◦ v = y and r2 ◦ v = z. From the relation r1 ◦ v = r2 ◦ u
we get a morphism w :X // R×A R such that ρ1 ◦ w = u, ρ2 ◦ w = v.
Finally one has

x = r1 ◦ u = r1 ◦ ρ1 ◦ w = r1 ◦ τ ◦ w,
z = r2 ◦ u = r2 ◦ ρ2 ◦ w = r2 ◦ τ ◦ w

so that (x, z) ∈ RX and R is transitive.
It remains to observe that the morphisms δ, σ, τ are unique because

(r1, r2) is monomorphic.

Definition 2.4.4. An equivalence relation (R, r1, r2) on an object A of a
category C is effective when the coequalizer q of (r1, r2) exists and (r1, r2)
is the kernel pair of q.



Chapter 3

Exact Categories

After the categorical formulation of equivalence relations given in the
previous chapter, we can now define exact categories. Furthermore, in this
chapter we will show some examples of exact categories and emphasize how
they are a sort of “non-additive version of abelian categories”.

Definition 3.0.5. An exact category is a regular category in which equiv-
alence relations are effective.

3.1 A non-additive version of abelian categories

Lemma 3.1.1. In a non-empty and preadditive regular category C, the
biproduct A⊕A exists for every object A.

Proof. Consider an arbitrary object A ∈ C, the zero map 0 :A // A and
its kernel pair u, v :P

//// A . Given arbitrary morphisms x, y :X
//// A ,

one has 0 ◦ x = 0 ◦ y, from which there is a unique morphism z :X // P
such that u◦z = x, v ◦z = y This proves that (P, u, v) is the product A×A.
One derives the conclusion by 1.3.10.

Lemma 3.1.2. A non-empty and preadditive regular category C has a zero
object.

Proof. Choose an arbitrary object A. By 3.1.1, the zero map 0 :A // A
admits p1, p2 :A⊕A //// A as kernel pair. Let q :A // Q be the co-

equalizer of p1, p2. Given a morphism x :Q // X we have

x ◦ q = x ◦ q ◦ p1 ◦ s1 = x ◦ q ◦ p2 ◦ s1 = x ◦ q ◦ 0 = 0

from which x = 0 since q is an epimorphism. Thus 0 is the unique morphism
from Q to X and Q is an initial object. One derives the conclusion by
1.3.9.

25
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Lemma 3.1.3. A non-empty and preadditive regular category C has biprod-
ucts.

Proof. Given objects A, B the morphisms A // 0 , B // 0 to the
zero object are retractions, with zero as a section. Therefore they are regu-
lar epimorphisms and the pullback of those two arrows exists, yielding the
product A×B (see 1.1.4). One derives the conclusion by 1.3.10.

Lemma 3.1.4. A non-empty and preadditive regular category C has kernels.

Proof. Take a morphism f :A // B and its kernel pair u, v :P
// // A .

The morphism u− v :P // A can be factored as u − v = i ◦ p with i a
monomorphism and p a regular epimorphism. We shall prove that i is the
kernel of f .

First f ◦ i◦p = f ◦ (u−v) = f ◦u−f ◦v = 0, which proves f ◦ i = 0 since
p is an epimorphism. Next if x :X // A is such that f ◦ x = 0 = f ◦ 0,
we get a factorization y :X // P such that u ◦ y = x, v ◦ y = 0. This
yields

i ◦ p ◦ y = (u− v) ◦ y = u ◦ y − v ◦ y = x− 0 = x

and p ◦ y is a factorization of x through i. This factorization is unique since
i is a monomorphism.

Lemma 3.1.5. A non-empty preadditive regular category C is finitely com-
plete (i.e. equivalently C has equalizers and binary products; see [H1] 2.8.1).

Proof. By 1.3.12 and 3.1.4 C has equalizers. We derive the conclusion by
3.1.3 and 1.3.10.

Lemma 3.1.6. In a preadditive category C, every reflexive relation is nec-
essarily an equivalence relation.

Proof. Consider a reflexive relation s1, s2 :S // // A . Given an object X ∈
C, the relation SX = {(s1 ◦ x, s2 ◦ x)|x ∈ C(X,S)} on the abelian group
C(X,A) contains the diagonal, just by assumption. Since SX is obviously
a subgroup of C(X,A) × C(X,A), this reduce the problem to proving the
lemma in the category of abelian groups.

Consider Ab the category of abelian groups and their homomorphisms,
we already know that all the pairs (a, a) belong to S, since S is reflexive.
Next if (a, b) ∈ S we get

(b, a) = (a, a)− (a, b) + (b, b) ∈ S

proving the symmetry of S. Finally if (a, b), (b, c) ∈ S we get

(a, c) = (a, b)− (b, b) + (b, c) ∈ S
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which proves the transitivity of S.

Notation. If A1, A2, B1 ,B2 are four object in an additive category C a
morphism

f :A1 ⊕A2
// B1 ⊕B2

is completely characterized by the following four morphisms

f11 = p1 ◦ f ◦ s1 :A1
// B1

f12 = p1 ◦ f ◦ s2 :A2
// B1

f21 = p2 ◦ f ◦ s1 :A1
// B2

f22 = p2 ◦ f ◦ s2 :A2
// B2

so that it makes sense to use the notation[
f11 f12

f21 f22

]
Moreover, the composite of two morphisms is represented by the product of
their matrices (see [H2] 1.2).

Lemma 3.1.7. In an additive exact category C, every monomorphism has
a cokernel and is the kernel of its cokernel.

Proof. Let f :A // // B be a monomorphism. Applying 3.1.3 and using
the matrix notation, let us consider the morphism

r =

[
f 1B
0 1B

]
:A⊕B // B ⊕B

This is a monomorphism, since given morphisms

a, a′ :X //// A , b, b′ :X //// B

[
f 1B
0 1B

]
◦
[
a
b

]
=

[
(f ◦ a) + b

b

]
so from the relation [

f 1B
0 1B

]
◦
[
a
b

]
=

[
f 1B
0 1B

]
◦
[
a′

b

]
We deduce b = b′ and (f ◦a) + b = (f ◦a′) + b′, thus f ◦a = f ◦a′ and finally
a = a′ since f is a monomorphism. Observing moreover that[

f 1B
0 1B

]
◦
[

0
1B

]
=

[
1B
1B

]
= ∆B
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we conclude that the monomorphism r, seen as a relation on B, contains
the diagonal ∆B. Therefore r is an equivalence relation by 3.1.6 and thus
an effective relation by the exactness of C.

Writing q for the coequalizer of the effective equivalence relation r on B,
thus we have an exact sequence

A⊕B
(0,1B)

//
(f,1B) //

B
q // Q

In particular q ◦ f = q ◦ (f, 1B) ◦ sA = f ◦ (0, 1B) ◦ sA = q ◦ 0 = 0. Now given
a morphism x :B // X such that x ◦ f = 0

x ◦ (f, 1B) = (x ◦ f, x) = (0, x) = x ◦ (0, 1B)

from which we get a unique factorization z :Q // X such that z ◦ q = x.
This proves that q = Cokerf .

It remains to prove that f is the kernel of q. Given y :Y // B such

that q ◦ y = 0 = q ◦ 0, we find a unique z :Y // A⊕B such that (f, 1B) ◦

z = y, (0, 1B) ◦ z = 0. The arrow z has the form

[
u
v

]
for some morphism

u :Y // A , v :Y // B . The arrow u is the required factorization since

0 = (0, 1b) ◦
[
u
v

]
= (0 ◦ u) + (1B ◦ v) = v

y = (f, 1B) ◦
[
u
v

]
= (f ◦ u) + (1B ◦ v) = f ◦ u+ 0 = f ◦ u

Such a factorization is unique since f is a monomorphism.

Lemma 3.1.8. An additive exact category is finitely cocomplete.

Proof. By 3.1.3 we get the existence of binary coproducts, thus it suffices
to prove the existence of coequalizers, which is equivalent to the existence
of cokernels (1.3.12). Given a morphism f :A // B , we factor it as f =
i ◦ p with i a monomorphism and p a regular epimorphism. Since p is an
epimorphism, the cokernel of i, which exists by 3.1.7, is also the cokernel of
f .

Lemma 3.1.9. In an additive exact category, every epimorphism is a cok-
ernel

Proof. Let f :A // B be an epimorphism. Since the category is regular,
we can factor f as f = i ◦ p with i a monomorphism and p a regular epi-
morphism. But the monomorphism i is a kernel by 3.1.7; so it is a strong
monomorphism by 1.2.3 but i is also an epimorphism, since f is. Then i is
an isomorphism and f is a regular epimorphism. Thus f = Coker(u, v) for
some pair u, v :P // // A and therefore f = Coker(u− v), see 1.3.12.
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Theorem 3.1.10. The following conditions are equivalent:

1. C is an abelian category;

2. C is an additive exact category;

3. C is a non-empty preadditive regular category.

Proof. We have proved in the previous chapter that an abelian category is
regular. By [H2] 2.5.6d we get that abelian categories are even exact. Then
the result follows by lemmas 3.1.1, 3.1.9.

3.2 Examples

We have just proved that every abelian category is exact. In this section
we will provide a list of examples of exact categories. The main references
for this section are [EC] and [CF].

3.2.1 The category of sets and functions

In 2.3.1 we have seen that Set is a regular category. The proposition
below proves that Set is even exact.

Proposition 3.2.1 (See [CF] 2.28 (1)). In Set equivalence relations are
effective.

3.2.2 The category of compact Hausdorff spaces

CH (compact Hausdorff spaces) is complete and cocomplete, since it is
reflexive in Top. The regularity and the exactness follow by the fact that
any epimorphism is a topological quotient (see, [SS] pg. 100).

3.2.3 The category of torsion-free abelian groups

The category Abtf is an example of a regular category which is not exact.
An abelian group G is torsion-free when for every g ∈ G and every non-zero
natural number n

ng = g + g + ...+ g = 0 iff g = 0

let us first remark that the category of torsion-free abelian groups is
closed under finite limits and subobjects in Ab (see [CF] 2.28 (4)). The
regularity of Ab (it is abelian seen as the category ModZ, see [H2] 1.4.6a)
then implies that Abtf is regular. Since Abtf is additive, the exactness would
imply its abelianness. In particular we would have a short exact sequence,
in the sense of [H2] 1.8,

0 // 2Z i // Z q // Q // 0



30 3. Exact Categories

where i is the canonical inclusion of the even integers in Z and q is the
cokernel of i in Abtf . But from q(2) = 0 we get q(1)+q(1) = 0 which implies
q(1) = 0 since Q is a torsion-free group. Thus q = 0, with therefore the
identity on Z as kernel (see 1.3.7). This contradicts the fact that i should
be the kernel of q (see [H2] 1.8.5).



Chapter 4

Elementary Topoi as Exact
Categories

The aim of this chapter is to provide the reader with a wide range of
examples of exact categories, proving that every elementary topos is an exact
category.

Diagram 4.1.
Y //
��

σ
��

1

t
��

X
Φσ
// Ω

Definition 4.0.2. A category E is called elementary topos if:

1. E is finitely complete (i.e E has pullbacks and a terminal object 1);

2. E is cartesian closed (i.e. for each object X we have an exponential

functor (−)X :E // E which is right adjoint to the functor (−)×X);

3. E has a suboject classifier (i.e. an object Ω and a morphism 1
t // Ω

(called ”true”) such that, for each monomorphism Y //
σ // X in E,

there is a unique Φσ :X // Ω (the classifying map of σ) making a
pullback diagram as in 4.1).

Proposition 4.0.3 (see [TT] 1.22). A topos is balanced (i.e. a morphism
which is both a monomorphism and an epimorphism is an isomorphism).

The original definition of elementary topos, given by Lawvere and Tier-
ney, included the existence of finite colimits, but it was a redundant condi-
tion as proved by the following proposition.

Proposition 4.0.4 (see [TT] 1.36). A topos has finite colimits.

31
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Diagram 4.2.

GD′

Gd

##
sD′

��

sD′ // FD′

Fd

##
tD′

��

GD sD
//

rD
��

FD

tD
��

N
f
//M

Definition 4.0.5. Consider a category C with pullbacks and an arbitrary
functor F :D // C . Given a cocone ( tD :FD //M)D∈D on F and

a morphism f :N //M in C, we can compute the various pullbacks

(GD, rD, sD) of tD along f . Moreover, given a morphism d :D′ // D in
D, the equalities

tD ◦ Fd ◦ sD′ = tD′ ◦ sD′ = f ◦ rD′

imply the existence of a unique factorization Gd making the diagram above
commutative. In particular we have defined a functor G :D // C and a
cocone ( rD :GD // N )D∈D on this functor.

A colimit (M, (tD∈D)) is said to be universal when for every morphism
f :N //M in C, the cocone constructed above is a colimit of the corre-
sponding functor G.

In other words, colimits are universal in C if any colimit remains a colimit
in C after pulling back along an arrow (see, [HT] 6.1.1 (ii)).

Proposition 4.0.6 (see [H3], 5.9.1). In a topos, finite colimits are universal.

Theorem 4.0.7. Any morphism in a topos can be factored as an epimor-
phism followed by a monomorphism.

Proof. Given f :X // Y , form the diagram

Diagram 4.3.

R a
//

b //
X

f //

q
����

Y

Q

i

??

where (a, b) is the kernel pair of f , q is the coequalizer of (a, b) and i is
the unique map between the coequalizer and Y . We need to show that i is
a monomorphism. Consider the pullback in the following diagram
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Diagram 4.4.

S
e //

c

��
d
��

P ′

a

��
b
��

X q
// // Q

where (c, d) is the kernel pair of i. Since q is a coequalizer and finite
colimit are universal in a topos, e is a coequalizer and then it is an epimor-
phism. The equalities f◦g = i◦q◦g = i◦c◦e = i◦d◦e = i◦q◦h = f◦h implies
the existence of a unique factorization k of (g, h) through (a, b). Thus we
get c ◦ e = q ◦ g = q ◦ a ◦ k = q ◦ b ◦ k = q ◦ h = d ◦ e and then c = d. The
result follows directly by 1.1.2.

Proposition 4.0.8. In a topos, every epimorphism is a coequalizer.

Proof. Suppose f = i ◦ q is an epimorphism, then so is i, and hence it is an
isomorphism by 4.0.3.

Corollary 4.0.9. A topos is a regular category.

Proof. Via 2.3.2, it follows directly by 4.0.8, 4.0.7 and 4.0.6.

Proposition 4.0.10. In a topos, equivalence relations are effective.

Proof. Let R
b
//

a //
X be an equivalence relation. Since a, b is a monomor-

phic pair, R //
(a,b)// X ×X is a monomorphism: let X ×X Φ // Ω be its

classifying map and X
Φ // ΩX the exponential transpose of Φ. We will

show that R
b
//

a //
X is a kernel pair of Φ.

Let U
f //
g
// X be a pair of arrows such that Φ◦f = Φ◦g. Then applying

the exponential adjuction, we have Φ(f × 1X) = Φ(g × 1X) :U ×X // Ω ;

and composing with (1U , g) :U // U ×X , we obtain Φ(f, g) = Φ(g, g).

But U
(g,g)// X ×X factors through R since R is reflexive, and so Φ(g, g)

classifies the maximal subobject U //
1 // U . Hence Φ(f, g) also classifies

this subobject; so (f, g) factors through R.

Conversely, we must show that Φ ◦ a = Φ ◦ b, or equivalently that the
subobjects of R×X classified by Φ(a×1X) and Φ(b×1X) (resp. Y and Y’)
are isomorphic.
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Diagram 4.5.

Y
h // ((

��

f
��

(I)

R //

(a,b)
��

(II)

1

t
��

R×X
a×1X

// X ×X
Φ

// Ω

As in diagram 4.5, since (a, b) is classified by Φ, we get that (R, (a, b), cR)
is a pullback, where cR is the (unique) arrow to the terminal object 1.
Then there exists a unique map h :Y // R such that cR ◦ h = cY and
(a, b)◦h = f ◦(a×1X). Φ(a×1X) classifies f , thus (Y, cR◦h, f) is a pullback;
since (II) is also a pullback, by 1.1.1, we get that (I) is a pullback.

Diagram 4.6.

P
ρ1

++

��

ρ2

��

Y
h //

y

ee

��

f
��

R //

(a,b)
��

1

t
��

R×X��
(a,b)×1X

��

a×1X
// X ×X

Φ
// Ω

X ×X ×X
(π1,π3)

77

If we compose the subobject f with the monomorphism (a, b)× 1X :R×X // X ×X ×X
we obtain the situation in diagram 4.6, where P is the pullback of ((π1, π3), (a, b)).
Since (a, b) ◦ h = (a × 1X) ◦ f = (π1, π3) ◦ ((a, b) × 1X) ◦ f , there exists
a unique arrow y :Y // P . Furthermore, y is a monomorphism since

((a, b)× 1X) ◦ f = ρ2 ◦ y is. In the same way we get y′ :Y ′ // // P .

Diagram 4.7.
Y ′   

x

  ))

��

y′

��

Y //
��

y

��

1

t
��

P
φ

// Ω

Finally, y is classified by a morphism φ, then as in diagram 4.7, since
such a square is a pullback, there exist a map x :Y ′ // Y such that
cY ◦ x = cY ′ and y ◦ x = y′. In the same way there exists a unique x′ such
that cY ′ ◦x′ = cY and y′◦x′ = y. y◦x◦x′ = y′◦x′ = y, thus x◦x′ = 1Y , since
y is a monomorphism. Then x is both a monomorphism, since y′ = y ◦ x
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is a monomorphism, and an epimorphism, as a retraction of x′. A topos is
balanced, thus x is the required isomorphism, see 4.0.3.

Since a topos is a regular category, every kernel pair has a coequalizer
and then is the kernel pair of that coequalizer. Thus every equivalence
relation in a topos is effective.

With the proposition above we have finally proved the exactness of an
elementary topos.

Corollary 4.0.11. A topos is an exact category.

Proof. It follows directly by 4.0.9 and 4.0.10.
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