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Introduction

This thesis is mainly dedicated to the study of the representations of

semisimple Lie algebras over an algebraically closed field F of characteristic

zero.

A semisimple Lie algebra is a finite-dimensional Lie algebra L whose

maximal solvable ideal (the radical of L) is zero. It follows that the quotient of

every finite-dimensional Lie algebra with respect to its radical is semisimple.

Any simple Lie algebra is, for example, semisimple.

A semisimple Lie algebra L contains a commutative subalgebra H, called

the Cartan subalgebra of L, such that

L = H ⊕
⊕
α∈Φ

Lα

where Φ ⊂ H∗ and Lα is the set of common eigenvectors of all the elements

adh for h ∈ H, with eigenfunction α. The set Φ, known as the set of roots

of the Lie algebra L, is a set of roots in the abstract sense [1, pag. 42]. In

particular it is possible to write it as a disjoint union of two subsets: Φ+ and

Φ−, called, respectively, the set of positive and negative roots of L.

It turns out that a semisimple Lie algebra decomposes as a direct sum of

simple ideals and that simple finite-dimensional Lie algebras are determined,

up to isomorphisms, by their root systems.

A representation of a Lie algebra L on a vector space V is a Lie algebra

homomorphism of Lie algebras ϕ : L→ gl(V ). Equivalently, one can say that

V is an L-module. An L-module is called irreducible if it does not contain any

proper submodule and it is called completely reducible if it can be written

i
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as a direct sum of irreducible submodules. The first fundamental result on

the finite-dimensional representations of a semisimple Lie algebra L is due to

Weyl [1, pag. 28] and states the complete reducibility of a finite-dimensional

L-module. Weyl’s Theorem thus reduces the study of finite-dimensional L-

modules to the study of the irreducible ones.

In order to study the representations of a Lie algebra L, one can consider

the so-called universal enveloping algebra U(L) of L. This is the associative

algebra with unity generated by the elements of L. For example, the universal

enveloping algebra of the Lie algebra sl2(F) can be defined by generators and

relations as follows: it is generated by elements x, y, h with defining relations

hx− xh = 2x, hy − yh = −2y, xy − yx = h.

Every (irreducible) representation of L is an (irreducible) representation of

U(L) and viceversa. Hence the representation theory of associative algebras

comes into play when dealing with the representations of Lie algebras.

A standard cyclic module is a U(L)-module generated by a maximal vec-

tor, i.e., a vector v such that xα.v = 0 for every xα ∈ Lα, α ∈ Φ+ and

h.v = λ(h)v for every h ∈ H, λ ∈ H∗. The element λ is called the weight

of v. In fact, it turns out that a standard cyclic module V decomposes as a

direct sum of common eigenspaces with respect to the action of H - weight

spaces - and λ is the highest among all weights of V , with respect to a partial

order. If V is irreducible then its highest weight determines the isomorphism

class of V completely. Moreover, the following fundamental result holds:

Theorem 0.0.1. Let L be a semisimple Lie algebra and let V be an ir-

reducible L-module of finite dimension. Then V is isomorphic to an irre-

ducible standard cyclic module of highest weight λ for some dominant weight

λ. Viceversa, every irreducible standard cyclic module with dominant highest

weight λ is finite-dimensional.

Here by a dominant weight we mean an integral function λ ∈ H∗ such

that λ(hi) ∈ Z+ for every hi in a basis of H. One can show that this definition

does not depend on the choice of the basis.
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In the case of sl2(F), this theorem takes a particularly elementary but

striking form:

Theorem 0.0.2. The Lie algebra sl2(F) has exactly one irreducible repre-

sentation ρ of each dimension d, up to isomorphism; this representation is

realized in the space of homogeneous polynomials of two symbols X, Y of de-

gree d− 1, and defined by the formulas

ρ(h) = X
∂

∂X
− Y ∂

∂Y
, ρ(x) = X

∂

∂Y
, ρ(y) = Y

∂

∂X
.

The thesis is organized as follows: all the preliminary material is col-

lected and explained in Chapter 1, where almost no proof is given. On the

contrary, all the results contained in the rest of the thesis are proved in all de-

tails. Chapter 2 is dedicated to Weyl’s Theorem and its proof. In Chapter 3

we describe the irreducible sl2(F)-modules, whose construction is completely

carried out by elementary methods. Chapter 4 contains the definition of the

universal enveloping algebra of a Lie algebra and the description of its struc-

ture. In particular we give a proof of the Poincaré-Birkhoff-Witt Theorem.

Chapter 5 contains the construction of the standard cyclic modules and their

detailed study, together with the proof of Theorem (0.0.1).

In Chapter 6 we show how the representation theory of Lie algebras nat-

urally applies to the study of Lie superalgebras. A Lie superalgebra g is

indeed the datum of a Lie algebra g0̄ (even part) and a g0̄-module g1̄ (odd

part). The properties of g1̄ as a g0̄-module reflect on the structure of g, for

example on its simplicity, as shown in Proposition (6.7.1). Besides, we define

a Z-grading on g and show how this grading can be used, via representation

theory, as a tool to study the structure of the Lie superalgebra g. The idea of

describing Lie (super)algebras as Z-graded (super)algebras has proved to be

extremely powerful in the study of both infinite-dimensional Lie algebras and

Lie superalgebras. For example one can prove the simplicity of the infinite

dimensional Lie algebras of vector fields known as Cartan algebras, using

their natural Z-grading (see Section (7.5)). Besides, Kac-Moody algebras,
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i.e., the class of infinite-dimensional Lie algebras closer to the semisimple Lie

algebras, were naturally constructed as Z-graded Lie algebras [5].

In Chapter 7 we discuss some interesting examples and explain some

important constructions of Lie algebra modules. In particular we prove the

simplicity of the Lie algebra of derivations of the algebra of polynomials in

m commuting indeterminates and of the Lie superalgebra of derivations of

the Grassmann algebra.



Introduzione

Questa tesi è dedicata principalmente allo studio delle rappresentazioni

di algebre di lie semisemplici su un campo F algebricamente chiuso di carat-

teristica zero.

Una algebra di Lie semisemplice è una algebra di Lie L di dimensione

finita il cui ideale risolubile massimale (il radicale di L) è zero. Ne segue che

il quoziente di ogni algebra di Lie finito dimensionale rispetto al suo radicale

è semisemplice. Ogni algebra di Lie semplice è, ad esempio, semisemplice.

Una algebra di Lie semisemplice L include una sottoalgebra commutativa

H, chiamata sottoalgebra di Cartan di L, tale che

L = H ⊕
⊕
α∈Φ

Lα

dove Φ ⊂ H∗ e Lα è l’insieme degli autovettori comuni di tutti gli elementi

adh per h ∈ H, con autofunzione α. L’insieme Φ, noto come l’insieme delle

radici dell’algebra di Lie L, è un insieme di radici in senso astratto [1, pag.

42]. In particolare è possibile scriverlo come unione disgiunta di due insiemi:

Φ+ e Φ−, chiamati, rispettivamente, l’insieme delle radici positive e negative

di L.

Si ha che una algebra di Lie semisemplice si decompone in somma diretta

di ideali semplici e che le algebre di Lie semplici di dimensione finita sono

determinate, a meno di isomorfismo, dai loro sistemi di radici.

Una rappresentazione di una algebra di Lie L su uno spazio vettoriale V

è un omomorfismo di algebre di Lie ϕ : L → gl(V ). Equivalentemente si

dice che V è un L-modulo. Un L-modulo è detto irriducibile se non ammette

v
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sottomoduli propri ed è chiamato completamente riducibile se può essere

scritto come somma diretta di sottomoduli irriducibili. Il primo risultato

fondamentale sulle rappresentazioni finito dimensionali di una algebra di Lie

L si deve a Weyl [1, pag. 28] e afferma la completa riducibilità di ogni L-

modulo finito dimensionale. Il teorema di Weyl riduce, cos̀ı, lo studio degli

L-moduli di dimensione finita allo studio degli L-moduli di dimensione finita

irriducibili.

Al fine di studiare le rappresentazioni di una algebra di Lie L, è necessario

considerare la cosiddetta algebra universale inviluppante U(L) di L. Questa

è l’algebra associativa con unità generata dagli elementi di L. Per esempio,

l’algebra universale inviluppante dell’algebra di Lie sl2(F) può essere definita

mediante generatori e relazioni nel modo seguente: è generata dagli elementi

x, y, h con le relazioni

hx− xh = 2x, hy − yh = −2y, xy − yx = h.

Ogni rappresentazione (irriducibile) di L è una rappresentazione irriducibile

di U(L) e viceversa. Quindi, quando si ha a che fare con le rappresentazioni

di algebre di Lie, entra in gioco la teoria delle rappresentazioni delle algebre

associative.

Un modulo ciclico standard è un U(L)-modulo generato da un vettore

massimale, vale a dire un vettore v tale che xα.v = 0 per ogni xα ∈ Lα,

α ∈ Φ+ e h.v = λ(h)v per ogni h ∈ H, λ ∈ H∗. L’elemento λ è chiamato il

peso di v.

Di fatto risulta che un modulo ciclico standard V si decompone in somma

diretta di autospazi comuni rispetto all’azione di H - spazi peso - e λ è il più

alto tra i pesi di V , rispetto a un ordinamento parziale. Se V è irriducibile

allora il suo peso più alto determina completamente una classe di isomorfismo

di V . Inoltre, vale il seguente risultato:

Theorem 0.0.3. Sia L una algebra di Lie semisemplice e V un L-modulo

irriducibile di dimensione finita. Allora V è isomorfo a un modulo ciclico

standard irriducibile di peso più alto λ dove λ è un opportuno peso dominante.
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Viceversa, ogni modulo ciclico standard irriducibile di peso più alto λ, con λ

peso dominante, ha dimensione finita.

Qui con peso dominante si intende una funzione a valori interi λ ∈ H∗

tale che λ(hi) ∈ Z+ per ogni hi in una base di H. Si può inoltre dimostrare

che tale definizione non dipende dalla scelta della base.

Nel caso di sl2(F), tale teorema prende una forma particolarmente ele-

mentare e potente:

Theorem 0.0.4. L’ algebra di Lie sl2(F) ha esattamente una rappresen-

tazione irriducibile ρ per ogni dimensione d, a meno di isomorfismo; la rap-

presentazione è data nello spazio dei polinomi omogenei in due simboli X, Y

di grado d− 1, ed è definita dalle formule

ρ(h) = X
∂

∂X
− Y ∂

∂Y
, ρ(x) = X

∂

∂Y
, ρ(y) = Y

∂

∂X
.

La tesi è organizzata come segue: tutto il materiale preliminare è rag-

gruppato e spiegato nel Capitolo 1, dove non è data pressoché alcuna di-

mostrazione. Al contrario, tutti i risultati contenuti nel resto della tesi sono

dimostrati in ogni dettaglio. Il Capitolo 2 è dedicato al teorema di Weyl e alla

sua dimostrazione. Nel Capitolo 3 vengono descritti gli sl2(F)-moduli, la cui

costruzione è ottenuta interamente mediante l’utilizzo di metodi elementari.

Nel Capitolo 4 viene data la definizione di algebra universale inviluppante di

una algebra di Lie e la descrizione della sua struttura. In particolare è data

la dimostrazione del teorema di Poincaré-Birkhoff-Witt. Il Capitolo 5 tratta

la costruzione dei moduli ciclici standard e il loro studio dettagliato con la

dimostrazione del Teorema (0.0.3).

Nel Capitolo 6 viene mostrato come la teoria delle rappresentazioni si

applica naturalmente allo studio delle superalgebre di Lie. Una superalgebra

di Lie g è, infatti, il dato di una algebra di Lie g0̄ (parte pari) e di un g0̄-

modulo g1̄ (parte dispari). Le proprietà di g1̄ come g0̄-modulo si riflettono

sulla struttura di g, per esempio sulla sua semplicità, come mostrato nella

Proposizione (6.7.1). Contemporaneamente, viene definita la Z-graduazione
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su g e viene mostrato come questa graduazione può essere usata, tramite la

teoria delle rappresentazioni, come strumento per studiare la struttura della

superalgebra di Lie g. L’idea di descrivere le (super)algebre di Lie come

(super)algebre Z-graduate si è rivelata estremamente potente nello studio sia

delle algebre di Lie infinito dimensionali che nello studio delle superalgebre

di Lie. Per esempio si può dimostrare la semplicità delle algebre infinito

dimensionali di campi vettoriali note come algebre di Cartan, usando la loro

naturale Z-graduazione (guarda la Sezione (7.5)). Ancora, le algebre di Kac-

Moody, cioé, quella classe di algebre di Lie infinto dimensionali più vicine

alle algebre di Lie semisemplici, che sono costruite in modo naturale come

algebre di Lie Z-graduate [5].

Nel Capitolo 7 vengono discussi alcuni interessanti esempi e vengono spie-

gati alcune importanti costruzioni di moduli di algebre di Lie. In particolare

viene provata la semplicità dell’algebra di Lie delle derivazioni dell’algebra

dei polinomi in m indeterminate che commutano e della superalgebra di Lie

delle derivazioni dell’algebra di Grassmann.
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Chapter 1

Preliminaries

1.1 Preliminary notions and results

In this first section some basic notions and fundamental results on Lie

algebras are collected. Differently from the rest of the thesis here almost no

proof will be given. For more details and all the proofs see [1]. Our main

aim is to set the notation and fix the main concepts.

Definition 1.1. An algebra (A, ·) over a field F is a vector space over F with

a product · : A× A→ A. By product we mean a bilinear map.

Definition 1.2. An algebra (A, ·) is called associative if · is an associative

product, i.e.

(a · b) · c = a · (b · c).

Example 1.1. The field F with its product is an associative algebra.

Example 1.2. The ring of polynomials F[x] with the usual product of poly-

nomials is an associative algebra.

Example 1.3. The set of matrices Mn,n(F) with the product row per column

is an associative algebra.

1
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Example 1.4. Given a vector space V the linear space End(V ) of endomor-

phisms of V with the usual composition ◦ of endomorphisms is an associative

algebra.

Definition 1.3. A Lie algebra is an algebra L whose product [ , ] : L×L→ L

satisfies the following properties:

[x, x] = 0 (1.1)

[x, [y, z]] = [[x, y], z] + [y, [x, z]]. (1.2)

Remark 1. Properties (1.1) and (1.2) applied to [x + y, x + y] imply the

anticommutativity of the product:

[x, y] = −[y, x]. (1.3)

Conversely, if F has not characteristic 2, property (1.3) implies property (1.1).

Example 1.5. Given an associative algebra (A, ·), we can define on A a Lie

algebra structure by setting:

[a, b] = a · b− b · a. (1.4)

We will call (A, [ , ]), the Lie algebra associated to (A, ·) and we will denote

it simply by AL.

Example 1.6. FL is a Lie algebra.

Example 1.7. We will denote by gln(F) the Lie algebra associated to (Mn,n(F), ·).
Similarly we will denote by gl(V ) the Lie algebra associated to (End(V ), ◦).

Example 1.8. The subalgebra of gln(F) of matrices with 0-trace is a Lie

algebra which we will denote by sln(F).

Definition 1.4. Given an algebra A, a linear map D : A → A is called a

derivation of A if it satisfies the so-called Leibniz rule, i.e.

D(a · b) = D(a) · b+ a ·D(b). (1.5)
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Remark 2. Let D be a derivation of A. Then D(1) = 0.

Proof. D(1) = D(1·1) = D(1)·1+1·D(1) = 2D(1). Therefore D(1) = 0.

Remark 3. We denote by der(A) the subset of End(A) consisting of the

derivations of A. Then der(A) is a Lie subalgebra of End(A)L.

Proof. Let D,D′ be two derivations of A.

[D,D′](a · b) = (D ◦D′ −D′ ◦D)(a · b) =

D(D′(a · b))−D′(D(a · b)) =

D(D′(a) · b+ a ·D′(b))−D′(D(a) · b+ a ·D(b)) =

D(D′(a)) · b+D′(a) ·D(b) +D(a) ·D′(b) + a ·D(D′(b))−

D′(D(a)) · b−D(a) ·D′(b)−D′(a) ·D(b)− a ·D′(D(b)) =

D(D′(a)) · b+ a ·D(D′(b))−D′(D(a)) · b− a ·D′(D(b)) =

D ◦D′(a) · b+ a ·D ◦D′(b)−D′ ◦D(a) · b− a ·D′ ◦D(b) =

[D,D′](a) · b+ a · [D,D′](b).

Therefore [D,D′] is a derivation.

Example 1.9. We set W (m, 0) = der(F[x1, . . . , xm]).

From now on, when dealing with associative algebras, we will omit the

symbol of the product.

Let L be a Lie algebra over a field F.

Definition 1.5. A subspace K of L is called a Lie subalgebra of L if [x, y] ∈
K whenever x, y ∈ K.

Definition 1.6. A subspace I of L is called an ideal of L if for all x ∈ I and

for all y ∈ L, [x, y] lies in I.

Example 1.10. 0 is an ideal of L.

Example 1.11. Z(L) = {x ∈ L| [x, y] = 0 for all y ∈ L} is an ideal of L.
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Example 1.12. [L,L] = 〈[x, y] : x, y ∈ L〉 is an ideal of L.

Definition 1.7. A Lie algebra L is said to be simple if L has no ideals except

itself and 0 and if moreover [L,L] 6= 0.

Definition 1.8. A linear map φ : L → L′, where L,L′ are Lie algebras,

is called a homomorphism of Lie algebras if φ([x, y]) = [φ(x), φ(y)] for all

x, y ∈ L. φ is called an isomorphism of Lie algebras if φ is an isomorphism

of vector spaces and a homomorphism of Lie algebras.

Example 1.13. Given an element x ∈ L, the linear map adx : L → L

such that adx(y) = [x, y] is a derivation of L. Moreover the linear map

ad : L→ gl(L), ad(x) = adx is a homomorphism of Lie algebras.

Definition 1.9. A Lie algebra L is said to be nilpotent if there exists some

i ∈ Z+ such that Li = 0 where L0 = L and Li = [Li−1, L] for i > 0.

Remark 4. If L is nilpotent, then, for every x ∈ L, adx is nilpotent and we

say that x is ad-nilpotent.

The following theorem holds:

Theorem 1.1.1 (Engel’s Theorem). If all elements of L are ad-nilpotent,

then L is nilpotent.

For a proof see [1, pagg. 12-13].

Definition 1.10. A Lie algebra L is said to be solvable if there exists some

i such that L(i) = 0 where L(0) = L and L(i) = [L(i−1), L(i−1)] for i > 0.

Remark 5. If L is nilpotent then it is solvable.

Remark 6. L is solvable if and only if [L,L] is nilpotent.

Remark 7. Every finite dimensional Lie algebra has a maximal solvable ideal.

It is called the radical of L and it is denoted by Rad(L).

Definition 1.11. A Lie algebra L is said to be semisimple if Rad(L) = 0.
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Remark 8. L/Rad(L) is semisimple.

The following theorem holds:

Theorem 1.1.2 (Lie’s Theorem). Let L be a solvable subalgebra of gl(V ), V

finite dimensional. If V 6= 0, then V contains a common eigenvector for all

the endomorphisms in L.

For a proof see [1, pagg 15-16].

Definition 1.12. A representation of a Lie algebra L on a vector space V is

a homomorphism φ : L→ gl(V ).

Example 1.14. Let L be a Lie algebra. Then the map φ : L → gl(F)

defined by φ(x) = 0 for all x ∈ L is a representation of L called the trivial

representation of L.

Example 1.15. The map φ : gln(F) → gl(Fn) defined by φ(x) = x, is a

representation of gln(F) on Fn called the standard representation of gln(F).

Similarly the map φ : sln(F)→ sl(Fn) defined by φ(x) = x, is a representation

of sln(F) on Fn called the standard representation of sln(F)

Example 1.16. For every Lie algebra L the map ad : L → gl(L) is a

representation of L on itself called the adjoint representation.

Definition 1.13. A representation is said to be faithful if it is an injective

map.

The following theorems hold:

Theorem 1.1.3 (Cartan’s Criterion). Let L be a subalgebra of gl(V ) where

V is a finite dimensional vector space. If tr(xy) = 0 for all x ∈ [L,L] and

y ∈ L. Then L is solvable.

Corollary 1.1.4. Let L be a Lie algebra such that tr(adxady) = 0 for all

x ∈ [L,L] and y ∈ L. Then L is solvable.
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For proofs see [1, pag. 20].

Definition 1.14. A vector space V endowed with an operation

. : L× V → V

(x, y) 7→ x.y,

is said to be an L-module if the following conditions are satisfied:

1. (ax+ by).v = a(x.v) + b(y.v),

2. x.(av + bw) = a(x.v) + b(x.w),

3. [x, y].v = x.y.v − y.x.v

for all x, y ∈ L, v, w ∈ V , a, b ∈ F.

Remark 9. Having an L-module V is equivalent to having a representation

of L on V . If φ : L → gl(V ) is a representation of L on V we can define a

structure of L-module on V as follows:

x.v = φ(x)(v). (1.6)

On the other hand, if V is an L-module, then we can define a representation

of L on V as follows:

φ(x)(v) = x.v. (1.7)

Example 1.17. If V is an L-module, then we can define an action of L on

V ∗, that turns V ∗ into an L-module, as follows:

(x.ϕ)(v) = −ϕ(x.v) (1.8)

where x ∈ L, ϕ ∈ V ∗ and v ∈ V .

Example 1.18. If V,W are two L-modules, then we can define the following

action of L on V ⊗W , that turns V ⊗W into an L-module:

x.(v ⊗ w) = (x.v)⊗ w + v ⊗ (x.w)

where x ∈ L, v ∈ V and w ∈ W .
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Example 1.19. If V,W are two L-modules, then we can define an action of

L on the space Hom(V,W ) of linear applications from V into W , that turns

Hom(V,W ) into an L-module, as follows:

(x.ϕ)(v) = −ϕ(x.v) + x.(ϕ(v)) (1.9)

where x ∈ L, ϕ ∈ Hom(V,W ) and v ∈ V .

Definition 1.15. A linear map φ : V → V ′, where V, V ′ are L-modules, is

called a homomorphism of L-modules if φ(x.v) = x.φ(v) for all x ∈ L and

v ∈ V .

Remark 10. The kernel of a homomorphism φ : V → W of L-modules is an

L-submodule of V .

Definition 1.16. An L-module V is called irreducible if it has only two

L-submodules: itself and 0.

Example 1.20. The trivial representation of L is irreducible.

Example 1.21. The standard representation of gln(F) and the standard

representation of sln(F) are irreducible because gln(F) and sln(F) act in a

transitive way on Fn.

Example 1.22. The adjoint representation of L is irreducible if and only if

L is simple.

Example 1.23. Let V be a gln(F)-module. Then V is an irreducible gln(F)-

module if and only if V is an irreducible sln(F)-module because gln(F) =

sln(F)⊕ 〈1n〉.

Example 1.24. If V is an L-module of dimension 1, then V is an irreducible

L-module.

Proposition 1.1.5. Let V a be a finite dimensional L-module. V is irre-

ducible if and only if the L-module V ∗ is irreducible.
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Proof. Let us prove that if V ∗ is an irreducible L-module, then V is an

irreducible L-module. Let us suppose, by contradiction, that V is not ir-

reducible, hence there exists a proper L-submodule V1 of V . Let us define

V 1 = {ϕ ∈ V ∗ | ϕ(v) = 0 for all v ∈ V1}. Let {v1, . . . , vk} be a basis of

V1 and let us complete {v1, . . . , vk} to a basis {v1, . . . , vk, vk+1, . . . , vn} of V .

Let, then, {ϕ1, . . . , ϕn} be the dual basis of V ∗. Note that V 1 6= 0 because

ϕj(vi) = 0 for all j > k and i ≤ k, and V 1 6= V ∗ because ϕ1(v1) = 1 6= 0.

Moreover V 1 is an L-submodule of V ∗ because (x.ϕ)(v) = −ϕ(x.v) = 0 for

all ϕ ∈ V 1, x ∈ L and v ∈ V1, hence V 1 is a proper L-submodule of V ∗,

but this is a contradiction because V ∗ is irreducible. Let us now prove that

if V is an irreducible L-module, then V ∗ is an irreducible L-module. Let

us consider the canonical isomorphism β : V → V ∗∗ defined as follows, for

v ∈ V :

β(v) : V ∗ → F, β(v)(ϕ) = ϕ(v). (1.10)

β is a homomorphism of L-modules indeed β(x.v)(ϕ) = ϕ(x.v) = −(x.ϕ)(v) =

−β(v)(x.ϕ) = (x.β(v))(ϕ) hence β(x.v) = x.β(v) and β is an isomorphism

of L-modules. Since β is an isomorphism of L-modules, V ∗∗ is an irreducible

L-module, therefore, thanks to what we proved above, V ∗ is an irreducible

L-module.

Definition 1.17. An L-module V is said to be completely reducible if it is a

direct sum of irreducible L-submodules or, equivalently, if each L-submodule

W of V has a complement W ′, i.e. there exists an L-submodule W ′ such

that V = W ⊕W ′.

Let now L be a semisimple Lie algebra over an algebraically closed field

with characteristic 0. An element x ∈ L is said to be semisimple if adx is

semisimple.

Definition 1.18. A subalgebra of semisimple elements is called a toral sub-

algebra of L.

Every finite-dimensional semisimple Lie algebra L has a toral subalgebra.

And every toral subalgebra is abelian.
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Definition 1.19. A subalgebra of a Lie algebra L is called a maximal toral

subalgebra of L if it is a toral subalgebra not properly included in any other

toral subalgebra.

Remark 11. Since H is abelian adLH consists of commuting semisimple en-

domorphisms of L hence the elements in adLH are simultaneously diagonal-

izable. As a consequence

L = ⊕Lα (1.11)

where Lα = {x ∈ L | [h, x] = α(h)x for all h ∈ H} with α ∈ H∗.

The set of nonzero α ∈ H∗ such that Lα 6= 0 is denoted by Φ and its

elements are called the roots of L relative to H. L0 = CL(H). Moreover the

following proposition holds:

Proposition 1.1.6. Let H a maximal toral subalgebra of L. Then H =

CL(H).

For a proof see [1, pagg. 36-37].

Due to Proposition (1.1.6) the following decomposition, known as the Cartan

decomposition of L, holds:

L = H ⊕
⊕
α∈Φ

Lα. (1.12)

Example 1.25. Let us consider a basis of sl2(F) given by {x, y, h} where

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)

then [x, y] = h, [h, x] = 2x, [h, y] = −2y. It follows:

sl2(F) = 〈h〉 ⊕ sl2(F)α ⊕ sl2(F)−α

where α ∈ 〈h〉∗ such that α(h) = 2, sl2(F)α = 〈x〉 and sl2(F)−α = 〈y〉.

Example 1.26. Let eij, with i, j ∈ {1, . . . , n}, be the matrix of Mn,n(F) such

that (eij)rs = δirδjs. A maximal toral subalgebra of sln(F) is H = {diagonal
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matrices of Mn,n(F) with 0-trace} = 〈eii− ei+1i+1 : 1 ≤ i ≤ n− 1〉. Since, for

h =
∑n

k=1 hkekk and i 6= j,

[h, eij] =[
n∑
k=1

hkekk, eij

]
=

n∑
k=1

hk[ekk, eij] =
n∑
k=1

hk(δkiekj − δjkeik) =

(hi − hj)eij,

the root system of sln(F) with respect to H is

Φ =

{
αij ∈ H∗

∣∣∣∣ αij
(

n∑
k=1

hkekk

)
= hi − hj, i 6= j

}
(1.13)

and sln(F)αij = 〈eij〉. Therefore

sln(F) = H ⊕
⊕
α∈Φ

sln(F)α (1.14)

with sln(F)αij = 〈eij〉.

Proposition 1.1.7. Let xα ∈ Lα, xα 6= 0. Then there exists yα ∈ L−α such

that

〈xα, yα, [xα, yα] = hα〉 ∼= sl2(F) (1.15)

and we denote 〈xα, yα, [xα, yα] = hα〉 by sl2(α).

1.2 Roots and weights

Definition 1.20. Given a euclidean space E, i.e. a finite dimensional vector

space over R, endowed with a positive definite symmetric bilinear form ( , ),

we can define 〈α, β〉 = 2 (α,β)
(β,β)

.

Remark 12. Note that 〈 , 〉 is linear only in the first variable.

Given a nonzero vector α ∈ E we can define a reflection σα, with reflecting

hyperplane Pα = {β ∈ E | (β, α) = 0}, as follows: σα(β) = β − 〈β, α〉α.
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Definition 1.21. A subset Φ̃ of a euclidean space E is called a root system

in E if the following properties are satisfied:

1. Φ̃ is finite, spans E and does not contain 0.

2. If α ∈ Φ̃ the only multiple scalars of α in Φ̃ are α and −α.

3. If α, β ∈ Φ̃ then σα(β) lies in Φ̃.

4. If α, β ∈ Φ̃, then 〈β, α〉 ∈ Z.

Remark 13. The set Φ of the roots of a semisimple Lie algebra L with respect

to a maximal toral subalgebra H of L is a root system, i.e. it satisfies

Definition (1.21)

Definition 1.22. We call the subgroup of O(E) generated by the reflections

σα with α ∈ Φ the Weyl group and we denote it by W .

Definition 1.23. A subset ∆ of Φ is called a base of Φ if the following

properties hold:

1. ∆ is a basis of E.

2. Each root β can be written as β =
∑
kαα with α ∈ ∆ and kα ∈ Z all

nonnegative or nonpositive.

We denote by Φ+ the set of all roots in Φ which can be written as a sum

of elements in ∆ with nonnegative integral coefficients (positive roots) and

we denote by Φ− the set of all roots in Φ which can be written as a sum of

elements in ∆ with nonpositive integral coefficients (negative roots).

Example 1.27. Let us consider the Lie algebra sln(F). As we have already

seen, Φ =
{
αij ∈ H∗

∣∣∣∣ αij(∑n
k=1 hkekk

)
= hi − hj, i 6= j

}
, then ∆ = {αi =

αii+1 |1 ≤ i ≤ n−1} is a base of Φ, indeed, if i < j, αij = αi+αi+1+. . .+αj−1

and, if i > j, αij = −αji = −(αj + αj+1 + . . .+ αi−1). It follows:

• Φ+ = {αij : i < j}
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• Φ− = {αij : i > j}.

The following theorem holds:

Theorem 1.2.1. Every root system Φ has a base.

For a proof see [1, pagg. 48-49].

Definition 1.24. Let λ be in E. λ is called a weight if 〈λ, α〉 ∈ Z for every

α ∈ Φ. The set of all weights is denoted by Λ.

Remark 14. Let λ be in E. λ is a weight if and only if 〈λ, α〉 ∈ Z for every

α ∈ ∆.

Before giving a proof of the Remark (14) we recall that:

ΦV =

{
2α

(α, α),
, α ∈ Φ

}

is still a root system and ∆V = {αV , α ∈ ∆} is a base for ΦV .

Proof. λ is a weight if and only if, by definition, 〈λ, α〉 ∈ Z for all α ∈ Φ, that

is if and only if (λ, αV ) ∈ Z for all αV ∈ ΦV so, if and only if (λ, αV ) ∈ Z for all

αV ∈ ∆V because ( , ) is bilinear and ∆V a base for ΦV . But (λ, αV ) = 〈λ, α〉.
So we have proved that λ is a weight if and only if 〈λ, α〉 ∈ Z for all α ∈ ∆.

Definition 1.25. We say that λ is dominant if 〈λ, α〉 ≥ 0 for all α ∈ Φ+

and we denote the set of dominant weights by Λ+. We say that λ is strongly

dominant if 〈λ, α〉 > 0 for all α ∈ Φ+.

Let ∆ be {α1, . . . , αl} and let {λ1, . . . , λl} be its dual basis with respect

to 〈 , 〉, i.e. 〈λi, αj〉 = δij.

Proposition 1.2.2. Λ is a lattice with basis {λ1, . . . , λl}.

Proof. Let λ be a weight. Then 〈λ, αi〉 = mi ∈ Z. Let us consider λ′ =∑l
i=1miλi. Then 〈λ′, αi〉 =

∑l
j=1mj〈λj, αi〉 =

∑l
j=1 mjδij = mi. Thus

λ = λ′ because ( , ) is nondegenerate and (λ− λ′, αVi ) = 0 for all i.
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Remark 15. Note that Φ ⊆ Λ and αi =
∑l

j=1mi,jλi where mi,j = 〈αi, αj〉,
i.e. the Cartan matrix expresses the change of basis between {λ1, . . . , λl}
and {α1, . . . , αl}.

Remark 16. W acts on Λ, i.e. w(λ) ∈ Λ for all w ∈ W and λ ∈ Λ.

Proof. Let λ ∈ Λ. Then 〈w(λ), α〉 = 2(w(λ),α)
(α,α)

= 2(λ,w−1(α))
(w−1(α),w−1(α))

= 〈λ,w−1(α)〉 ∈
Z.

We can define an ordering on the set of weights:

Definition 1.26. Let µ, λ be two elements of Λ. Then we write µ ≺ λ if we

can write λ = µ+
∑
aiαi with ai ∈ Z+ and αi ∈ ∆.

Remark 17. Note that ≺ is not a total ordering on Λ. Indeed if ∆ =

{α1, . . . , αl} is a base of a root system Φ, by Remark (15), Φ ⊆ Λ and

neither α1 ≺ α2 nor α2 ≺ α1.

Proposition 1.2.3. Every weight is conjugated under W to one and only

one dominant weight. If λ is dominant, then w(λ) ≺ λ for all w ∈ W.

For a proof see [1, pag. 52, Lemma B].

Remark 18. A dominant weight is the maximal element with respect to ≺ in

the W-orbit where it lies.

Remark 19. The maximal weight in a W-orbit is a dominant weight, but

it can happen that there exists a weight λ which is not dominant and a

dominant weight µ such that µ ≺ λ. In this case Proposition (1.2.3) implies

that λ is not W-conjugated with µ.

Lemma 1.2.4. Let λ be in Λ+. Then {µ ∈ Λ+} ∩ {µ : µ ≺ λ} is finite.

Proof. Let µ be a dominant weight such that µ ≺ λ, i.e. λ − µ =
∑
aiαi

with ai ∈ Z+. Then λ + µ is dominant, because 〈λ + µ, α〉 = 〈λ, α〉 + 〈µ, α〉
and these two summands are nonnegative for all α ∈ Φ+. We have 0 ≤
(λ + µ, λ − µ) = (λ, λ) − (µ, µ) thus (µ, µ) ≤ (λ, λ) hence there is a finite

number of possibilities because the set of weights is a lattice.
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1.3 The exponential map

Definition 1.27. Let x be an ad-nilpotent element of a Lie algebra L. Then

exp(adx) =
∞∑
i=0

(adx)
i

i!
= 1 + adx +

1

2
(adx)

2 + . . . (1.16)

Remark 20. By the ad-nilpotence of x the sum is finite so exp(adx) is well

defined.

Remark 21. exp(adx) ∈ Aut(L).

Proof. exp(adx) = 1 + η, where η is a nilpotent summand, therefore it is

invertible because (1+η)(1−η+η2−η3 + . . .) = 1. Let us show that exp(adx)

is a homomorphism of Lie algebras. First we will prove by induction on n ≥ 0

that

(adx)
n[y, z] =

n∑
i=0

(
n

i

)
[(adx)

i(y), (adx)
n−i(z)]. (1.17)

If n = 0 there is nothing to prove. For n+ 1,

(adx)
n+1[y, z] =

(adx)
n(adx)[y, z] =

(adx)
n[adx(y), z] + (adx)

n[y, adx(z)] =
n∑
i=0

(
n

i

)
[(adx)

i+1(y), (adx)
n−i(z)] +

n∑
i=0

(
n

i

)
[(adx)

i(y), (adx)
n−i+1(z)] =

n+1∑
i=1

(
n

i− 1

)
[(adx)

i(y), (adx)
n−i+1(z)] +

n∑
i=0

(
n

i

)
[(adx)

i(y), (adx)
n−i+1(z)] =

n+1∑
i=0

(
n+ 1

i

)
[(adx)

i(y), (adx)
n+1−i(z)]

where we used that
(
n+1
i

)
=
(
n
i−1

)
+
(
n
i

)
. Rearranging formula (1.17) we have:

(adx)
n[y, z]

n!
=

n∑
i=0

[
(adx)

i(y)

i!
,
(adx)

n−i(z)

(n− i)!

]
. (1.18)
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Since adx is nilpotent, there exists some k such that (adx)
k = 0. Suppose

that m is the minimum of the set {k ∈ Z+| (adx)
k = 0}, then

[exp(adx)(y), exp(adx)(z)] =[m−1∑
i=0

(adx)
i(y)

i!
,

m−1∑
j=0

(adx)
j(z)

j!

]
=

m−1∑
i=0

m−1∑
j=0

[
(adx)

i(y)

i!
,
(adx)

j(z)

j!

]
rearranging in a way that i+ j = n for n = 0, . . . , 2m− 2 we have

2m−2∑
n=0

( n∑
i=0

[
(adx)

i(y)

i!
,
(adx)

n−i(z)

(n− i)!

])
,

and by formula (1.18),

2m−2∑
n=0

(adx)
n[y, z]

n!
=

m−1∑
n=0

(adx)
n[y, z]

n!
= exp(adx)([y, z])

because of the nilpotency of adx.

Remark 22. In the proof of Remark (21) we only used that adx is a nilpotent

derivation.

Remark 23. Let φ : L → L′ be a homomorphism of Lie algebras such that

x ∈ L is ad-nilpotent and φ(x) is ad-nilpotent. Then

exp(adφ(x))φ(y) = φ(exp(adx)(y)) (1.19)

Proof. Let us prove by induction on n that

(adφ(x))
n(φ(y)) = φ((adx)

n(y)). (1.20)

If n = 0 there is nothing to prove. Let us prove formula (1.20) for n + 1.

(adφ(x))
n+1(φ(y)) = (adφ(x))

nadφ(x)(φ(y)) = (adφ(x))
n([φ(x), φ(y)]) =

(adφ(x))
n(φ[x, y]) = (adφ(x))

n(φ(adx(y))) = φ((adx)
n(adx(y))) =

φ((adx)
n+1(y)) because φ is a homomorphism of Lie algebras and because of
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induction hypothesis. Since x is ad-nilpotent there exists some m ∈ Z+

such that (adx)
m = 0, therefore exp(adφ(x))φ(y) =

∑∞
i=0

(adφ(x))
i(φ(y))

i!
=∑m−1

i=0

(adφ(x))
i(φ(y))

i!
=
∑m−1

i=0
φ((adx)i(y))

i!
= φ(

∑m−1
i=0

(adx)i(y)
i!

) = φ(
∑∞

i=0
(adx)i(y)

i!
)

= φ(exp(adx)(y)) because φ is a homomorphism of Lie algebras hence φ is a

linear application.

Remark 24. In the definition of exp(adx) we requested the nilpotency of adx.

Anyway exp(adx) is well defined even when adx is not nilpotent but locally

nilpotent, i.e. it satisfies the following property: for all y ∈ L there exists

some my ∈ Z+ such that (adx)
myy = 0.

Let us consider sl2(F) = 〈x, y, h〉 where

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)
.

Since x, y are nilpotent, they are ad-nilpotent therefore the maps exp(adx)

and exp(ady) are well defined. We set

σ = exp(adx) exp(ad−y) exp(adx). (1.21)

Remark 25.

σ(h) = −h (1.22)

σ(x) = −y (1.23)

σ(y) = −x (1.24)

Proof. A brief calculation shows that, with respect to the basis {x, y, h} of

sl2(F):

exp(adx) =


1 −1 −2

0 1 0

0 1 1

 (1.25)

and

exp(ad−y) =


1 0 0

−1 1 −2

1 0 1

 , (1.26)
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hence

σ =


0 −1 0

−1 0 0

0 0 −1

 , (1.27)

i.e. σ(h) = −h, σ(x) = −y, σ(y) = −x.

Proposition 1.3.1. Let x ∈ L ⊆ gl(V ) be locally nilpotent, and let y ∈ L.

Then exp(x) y (exp(x))−1 = exp(adx)(y).

Proof. Notice that adx = λx+ρ−x where λx is the left multiplication by x and

ρx is the right multiplication by x. λx and ρ−x commute, then exp(adx)(y) =

exp(λx + ρ−x)(y) = exp(λx) exp(ρ−x)(y) = exp(λx)
∑∞

i=0
1
i!
(ρ−x)

i(y) =

exp(λx)
∑∞

i=0
1
i!
(−1)iyxi = exp(λx)(y exp(−x)) = exp(λx)(y (exp(x))−1) =

(
∑∞

i=0
1
i!
xiy (exp(x))−1) = exp(x) y (exp(x))−1.

Let us consider the map s = exp(φ(x)) exp(φ(−y)) exp(φ(x)) where φ :

sl2(F)→ gl(V ) is a representation. For z in sl2(F) we have

sφ(z)s−1 = exp(φ(x)) exp(φ(−y)) exp(φ(x))φ(z)(exp(φ(x)))−1

(exp(φ(−y)))−1 (exp(φ(x)))−1

by Proposition (1.3.1) we have:

(exp(φ(x)) φ(z) (exp(φ(x)))−1 = exp(adφ(x))(φ(z)) = φ(exp(adx)(z)).

exp(φ(−y)) φ(exp(adx)(z)) (exp(φ(−y)))−1 =

exp(adφ(−y))(φ(exp(adx)(z))) = φ(exp(ad−y) exp(adx)(z)).

exp(φ(x)) φ(exp(ad−y) exp(adx)(z)) (exp(φ(x)))−1 =

exp(adφ(x))(φ(exp(ad−y) exp(adx)(z))) =

φ(exp(adx) exp(ad−y) exp(adx)(z)).

Hence

sφ(z)s−1 = φ(exp(adx) exp(ad−y) exp(adx)(z)) = φ(σ(z)). (1.28)

Summarizing:
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Proposition 1.3.2. Let φ be a representation of sl2(F) on a vector space

V , let z be in sl2(F) and let s = exp(φ(x)) exp(φ(−y)) exp(φ(x)) and σ =

exp(adx) exp(ad−y) exp(adx). Then

sφ(z)s−1 = φ(σ(z)). (1.29)

Remark 26. sφ(h)s−1 = φ(σ(h)) = −φ(h).

Let, now, L be a semisimple Lie algebra, let α be a root in Φ+ and let

〈xα, yα, [xα, yα] = hα〉 = sl2(α) ∼= sl2(F) be a copy of sl2(F) into L. Let us

denote, for brevity xα = x, yα = y, hα = h. Then the following proposition

holds:

Proposition 1.3.3. Let k ∈ H. Then sφ(k)s−1 = φ(k − α(k)h)

Proof. We already know, by Proposition (1.3.2), that sφ(k)s−1 = φ(σ(k)). If

k = h, there is nothing new and we know that sφ(h)s−1 = φ(σ(h)) = −φ(h).

As for the right hand side, φ(h − α(h)h) = −φ(h) because α(h) = 2. The

same thing holds for k = λh, by linearity. So let us now suppose that k

and h are linearly independent and let N = 〈x, y, h, k〉. Let us compute

the matrices associated to exp(adx) and exp(ad−y) with respect to the basis

{x, y, h, k}.

adx =


0 0 −2 −α(k)

0 0 0 0

0 1 0 0

0 0 0 0

 , (adx)
2 =


0 −2 0 0

0 0 0 0

0 0 0 0

0 0 0 0


because adx(k) = [x, k] = −α(k)x. Similarly,

ad−y =


0 0 0 0

0 0 −2 −α(k)

1 0 0 0

0 0 0 0

 , (ad−y)
2 =


0 0 0 0

−2 0 0 0

0 0 0 0

0 0 0 0

 .
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Therefore

exp(adx) =


1 −1 −2 −α(k)

0 1 0 0

0 1 1 0

0 0 0 1

 , exp(ad−y) =


1 0 0 0

−1 1 −2 −α(k)

1 0 1 0

0 0 0 1


and

sφ(k)s−1 = φ(σ(k)) = φ




0 −1 −1− α(k) 0

−1 0 0 0

0 0 −1 −α(k)

0 0 0 1




0

0

0

1




= φ




0

0

−α(k)

1


 = φ(k − α(k)h)
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Chapter 2

Weyl’s Theorem

2.1 The Casimir element

Let L be a semisimple Lie algebra of finite dimension, let φ : L→ gl(V )

be a faithful representation of L and let β : L × L → F be the following

bilinear form on L:

β(x, y) = tr(φ(x)φ(y)).

Remark 27. β is associative, i.e. β([x, y], z) = β(x, [y, z])

Proof. β([x, y], z) = tr(φ([x, y])φ(z)) = tr([φ(x), φ(y)]φ(z)) =

tr(φ(x)φ(y)φ(z)− φ(y)φ(x)φ(z)) = tr(φ(x)φ(y)φ(z)− φ(z)φ(y)φ(x)) =

tr(φ(x)[φ(y), φ(z)]) = β(x, [y, z]) where we used the linearity of the trace and

its property tr(ab) = tr(ba).

Remark 28. The radical of the form, i.e. the set Rad β = {x ∈ L| β(x, y) =

0 for all y ∈ L}, is an ideal of L.

Proof. Let x be in Rad β. Then, given z, y ∈ L, β([x, z], y) = β(x, [z, y]) = 0

since [z, y] in L and β is associative.

Remark 29. Rad β is solvable.
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Proof. φ is a faithful representation of L so φ(Rad β) ∼= Rad β. For every

x, y ∈ Rad β, 0 = β(x, y) = tr(φ(x)φ(y)) therefore, as φ(Rad β) ≤ gl(V ), by

Cartan’s Criterion, φ(Rad β) is solvable hence Rad β is solvable.

Thanks to the Remarks (28) and (29) and to the fact that L is semisimple,

Rad β = 0, i.e. β is nondegenerate. If {x1, . . . , xn} is a basis of L, then there

is a unique determined basis {y1, . . . , yn} of L such that β(xi, yj) = δij (dual

basis).

Definition 2.1. The Casimir element is defined as the following endomor-

phism of End(V ):

Cφ =
n∑
i=1

φ(xi)φ(yi) (2.1)

where {x1, . . . , xn} and {y1, . . . , yn} are dual basis defined as above.

Remark 30. Cφ is a homomorphism of L-modules.

Proof. Let [x, xi] =
∑n

j=1 aijxj and let [x, yi] =
∑n

j=1 bijyj. β([x, xi], yk) =∑n
j=1 aijβ(xj, yk) =

∑n
j=1 aijδjk = aik. On the other hand β([x, xi], yk) =

−β([xi, x], yk) = −β(xi, [x, yk]) = −
∑n

j=1 bkjβ(xi, yj) =
∑n

j=1 bkjδij = −bki.
Therefore aik = −bki. Now let us consider [φ(x), Cφ]. [φ(x), Cφ] =

∑n
i=1[φ(x),

φ(xi)φ(yi)] =
∑n

i=1(φ(x)φ(xi)φ(yi)−φ(xi)φ(yi)φ(x)) =
∑n

i=1(φ(x)φ(xi)φ(yi)−
φ(xi)φ(x)φ(yi)+φ(xi)φ(x)φ(yi)−φ(xi)φ(yi)φ(x)) =

∑n
i=1([φ(x), φ(xi)]φ(yi)+

φ(xi)[φ(x), φ(yi)]) =
∑n

i=1(φ([x, xi])φ(yi)+φ(xi)φ([x, yi])) =
∑n

i,k=1(aikφ(xk)

φ(yi) + bikφ(xi)φ(yk)) = 0 because aik = −bki. Thus 0 = [φ(x), Cφ] =

φ(x)Cφ − Cφφ(x) that is Cφ is a homomorphism of L-modules.

Lemma 2.1.1 (Schur’s Lemma). Let F be an algebraically closed field and

let V be an irreducible L-module. If ϕ is an endomorphism of V which is

also a homomorphism of L-modules with L a Lie algebra, then ϕ is λid with

λ in F.

Proof. Let λ be an eigenvalue of ϕ and Vλ be an eigenspace. Then Vλ is a

L-submodule of V , indeed, if v in Vλ then ϕ(x.v) = x.ϕ(v) = λx.v, hence,

by the irreducibility of V , V = Vλ.
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Remark 31. By Schur’s Lemma, if F is an algebraically closed field and φ :

L→ gl(V ) is an irreducible faithful representation, then Cφ acts as a scalar.

Moreover tr(Cφ) = tr(
∑n

i=1 φ(xi)φ(yi)) =
∑n

i=1 β(xi, yi) =
∑n

i=1 1 = dim L.

2.2 Weyl’s Theorem

Lemma 2.2.1. Let L be a semisimple Lie algebra and let ϕ : L→ gl(V ) be

a representation of L in V with dim V = 1. Then ϕ = 0.

Proof. Since L is a semisimple Lie algebra, we have L = [L,L]. It follows that

every x ∈ L can be written in the form x =
∑

i[yi, zi], ϕ(x) = ϕ(
∑

i[yi, zi]) =∑
i[ϕ(yi), ϕ(zi)] =

∑
i(ϕ(yi)ϕ(zi) − ϕ(zi)ϕ(yi)) = 0 because, if 0 6= v ∈ V ,

then ϕ(zi)(λv) = λµziv for a proper µzi ∈ F because dim V = 1, therefore

ϕ(yi)ϕ(zi)(λv) = λµyiµziv = λµziµyiv = ϕ(zi)ϕ(yi)(λv), that is ϕ(yi)ϕ(zi) =

ϕ(zi)ϕ(yi).

Lemma 2.2.2. Let φ : L → gl(V ) be a finite dimensional representation

of a semisimple Lie algebra L and let W be an irreducible submodule of

codimension 1 in V . Then there exists an L-submodule U such that V =

W ⊕ U .

Proof. We can assume that φ is a faithful representation because if φ is not

so, since L = ⊕iLi with Li simple Lie algebras, L/Ker φ = ⊕iLi/Ker φ, i.e.

L/Ker φ is semisimple and the homomorphism φ̃ induced by φ on L/Ker φ

is injective. Let us consider a basis {w1, . . . , wn−1} of W and let us complete

{w1, . . . , wn−1} to a basis of V , {w1, . . . , wn−1, v}. Since V/W is an L-module

of dimension 1, by Lemma (2.2.1), φ acts in a trivially way on V/W , i.e. φ(x)v

is in W for every v in V . Therefore the restriction of Cφ to W is in End(W ).

Cφ is a homomorphism of L-modules, Cφ restricted to W is an endomorphism

of W , W is an irreducible L-module hence, by Schur’s Lemma, Cφ acts as a

scalar, λ, on W . Thus the matrix associated to Cφ, with respect to the basis
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{w1, . . . , wn−1, v}, is 
λ ∗

. . . ∗
λ ∗

0 0 0 0

 .

Rank Cφ = n − 1 = dim W because λ(n − 1) = tr(Cφ) = dim L which

means that λ is not 0. It follows that dim V = dim Ker Cφ + Rank Cφ =

dim Ker Cφ + dim W . Moreover Ker Cφ ∩W = 0 because Cφ acts on W

as the scalar λ 6= 0 and Ker Cφ is an L-submodule of V . For these reasons

V = W ⊕Ker Cφ.

Lemma 2.2.3. Let V be a finite dimensional L-module, with L a semisimple

Lie algebra, let W be an L-submodule of codimension 1 in V . Then there

exists an L-module, U , such that V = W ⊕ U .

Proof. Let us prove this lemma by induction on dim W . If dim W = 1, W is

irreducible then the lemma is proved for Lemma (2.2.2). So let dim W > 1.

If W is irreducible, then the lemma is proved, therefore let us suppose W

non irreducible. As W is not irreducible, there exists a proper L-submodule

of W , W ′, and W/W ′ is an L-module of codimension 1 in V/W ′ with

lesser dimension. Using induction there exists an L-submodule W̃ such that

V/W ′ = W/W ′ ⊕ W̃/W ′ and dim W̃/W ′ = 1, that is W ′ has codimension

1 in W̃ . Since dim W ′ < dim W , using for a second time induction there

exists an L-submodule, X, of W ′ such that W̃ = W ′ ⊕X. But X ∩W = 0,

because X ⊆ W̃ and W̃ ∩W = W ′. Hence X is an L-submodule of V such

that V = W ⊕X.

Theorem 2.2.4 (Weyl’s Theorem). Let V be a finite dimensional L-module.

Then V is completely reducible.

Proof. Let us prove that, for every L-submodule W of V , there exists another

L-submodule, W ′, such that V = W ⊕ W ′. Let us consider A = {ϕ ∈
Hom(V,W )| ϕ|W = 0} and B = {ϕ ∈ Hom(V,W )| ϕ|W = a id, a ∈ F}.
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Since V,W are L-modules, Hom(V,W ) is also an L-module with the action

of L on Hom(V,W ) defined as follows: (x.ϕ)(v) = −ϕ(x.v) + x.(ϕ(v)). If

ϕ is such that ϕ|W = a id, (x.ϕ)(w) = −a(x.w) + x.aw = 0 hence A,B are

L-modules. Moreover the action of L sends B to A. Let us now consider

the projection π of V to W . Notice that π lies in B, but not in A. An

element ϕ in B can be written as follows: ϕ = (ϕ − aπ) + aπ. The first

summand is an element of A and the second summand is an element of B,

so A has codimension 1 in B and, thanks to Lemma (2.2.3) there exists an

L-module C such that B = A ⊕ C. Let ϕ 6= 0 be in C. Then, by Lemma

(2.2.1), x.ϕ = 0 because L is a semisimple Lie algebra and dim C = 1.

Hence ϕ is a homomorphism of L-modules because, for every x in L and

v in V , x.(ϕ(v)) = ϕ(x.v). It follows that Ker ϕ is an L-module besides,

Ker ϕ ∩W = 0, because ϕ is in C and ϕ 6= 0, so its restriction to W is not

0, and dim W + dim Ker ϕ = dim Im ϕ + dim Ker ϕ = dim V . Thus

V = W ⊕Ker ϕ.
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Chapter 3

Finite dimensional

representations of sl2(F)

In this chapter F is an algebraically closed field with characteristic 0 and

V 6= 0 is a finite dimensional sl2(F)-module.

Let us consider a basis of sl2(F) given by {x, y, h} where

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, h =

(
1 0

0 −1

)

then [x, y] = h, [h, x] = 2x, [h, y] = −2y. Since h is semisimple and F is an

algebraically closed field, h acts diagonally on V and V admits a decompo-

sition as direct sum of eigenspaces Vλ = {v ∈ V | h.v = λv}. When Vλ 6= 0

we call it a weight space and λ a weight.

Lemma 3.0.5. Let v be in Vλ. Then x.v lies in Vλ+2 and y.v lies in Vλ−2.

Proof. h.(x.v) = [h, x].v + x.(h.v) = 2x.v + λx.v = (λ+ 2)x.v.

h.(y.v) = [h, y].v + y.(h.v) = −2y.v + λy.v = (λ− 2)y.v.

Since V is finite dimensional and eigenvectors corresponding to different

eigenvalues are linearly independent, there exists some λ such that Vλ 6= 0

and Vλ+2 = 0, i.e. for every v ∈ Vλ, x.v = 0. Any nonzero vector of Vλ, for λ

as taken above, is called a maximal vector of weight λ.
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3.1 Irreducible finite dimensional representa-

tions

Let us consider an irreducible finite dimensional sl2(F)-module, V , and a

maximal vector v0 in V . If we set vi = y.vi−1 for all i > 0, there exists some

m ∈ Z+ such that vm 6= 0 and vm+1 = 0, because V is finite dimensional.

Theorem 3.1.1. {v0, . . . , vm} is a basis of V .

Proof. v0, . . . , vm are linearly independent because they are eigenvectors with

different eigenvalues so if V ′ = 〈v0, . . . , vm〉 is a sl2(F)-module, then by the

irreducibility of V , 〈v0, . . . , vm〉 = V . The action of y and h stabilizes V ′ by

construction. Let us prove by induction on i that x.vi = i(λ − i + 1)vi−1.

x.v0 = 0 for the choice of v0, x.vi+1 = x.(y.vi) = [x, y].vi + y.(x.vi) = h.vi +

i(λ− i+ 1)y.vi−1 = (λ− 2i)vi + i(λ− i+ 1)vi = (i+ 1)(λ− i)vi. Hence the

action of x stabilizes V ′ too.

Remark 32. Every weight space Vµ has dimension 1 because v0, . . . , vm are

eigenvectors with distinct eigenvalues.

Remark 33. We can apply the calculus made above to the case i = m + 1.

In this case we obtain: 0 = x.vm+1 = (m + 1)(λ −m)vm. Since m + 1 6= 0

(it is the dimension of V 6= 0), vm 6= 0 by hypothesis and the field F has

characteristic 0, it follows that λ = m.

Summarizing:

Theorem 3.1.2. Let V be an irreducible finite dimensional sl2(F)-module

with F algebraically closed field with characteristic 0. Then

1. V is the direct sum of weight spaces Vµ relative to h with µ = m,m−
2, . . . ,−m+ 2,−m, where m = dim V − 1 and dim Vµ = 1 for each µ.

2. V has, up to nonzero scalar multiples, a unique maximal vector of

weight m.
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3. The above formulas describe completely the action of sl2(F) on V . In

particular there exists at most one irreducible sl2(F)-module of dimen-

sion m+ 1, for every m ∈ Z+.

Corollary 3.1.3. Let V be a finite dimensional sl2(F)-module. Then the

eigenvalues of h on V are all integers and each occurs along with its negative

an equal number of times. Moreover, in any decomposition of V into direct

sum of irreducible submodules, the number of summands is dim V0 +dim V1.

Proof. If V = 0 there is nothing to prove. If V 6= 0, thanks to Weyl’s

Theorem, it is possible to write V as a sum of irreducible submodules: V =⊕
Vi with Vi irreducible. For each Vi, by Theorem (3.1.2), all the eigenvalues

are integers and if l is an eigenvalue, −l is also an eigenvalue. Moreover if

dim Vi is even, 1 is an eigenvalue and dim (Vi)1 = 1, if dim Vi is odd, 0 is an

eigenvalue and dim (Vi)0 = 1, then the number of irreducible submodules Vi

is dim V0 + dim V1.

We have just seen that for every m ∈ Z+ there exists at most one irre-

ducible sl2-module of dimension m+ 1 which, from now on, we shall denote

by V (m). Is there an irreducible sl2(F)-module of dimension (m + 1) for

all m ∈ Z+? For m = 0 there is the trivial representation, for m = 1 the

standard representation, for m = 2 the adjoint representation and for the

other m it is possible to take a (m+ 1)-dimensional vector space with basis

{v0, . . . , vm} and define the action of sl2(F) on this vector space in this way:

y.vi = vi+1 (3.1)

x.vi = i(m− i+ 1)vi−1 (3.2)

h.vi = (m− 2i)vi (3.3)

with vm+1 = 0. This is clearly an irreducible module of dimension m+ 1 for

what we have proved in Theorem (3.1.1).

Equivalently, we can construct the irreducible sl2(F)-modules explicitly as

follows. For every m ∈ Z+ let Vm be the vector space of homogeneous
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monomials of degree m in two symbols X, Y with coefficients in F. Of course

dim Vm = m+ 1. The linear map

ϕ : sl2(F)→ 〈X ∂

∂Y
, Y

∂

∂X
,X

∂

∂X
− Y ∂

∂Y
〉

where

ϕ(x) = X
∂

∂Y

ϕ(y) = Y
∂

∂X

ϕ(h) = X
∂

∂X
− Y ∂

∂Y

is an isomorphism of Lie algebras. Indeed it is an isomorphism of vector

spaces and is a homomorphism of Lie algebras since [ϕ(x), ϕ(y)] = ϕ(x)ϕ(y)−
ϕ(y)ϕ(x) = (X ∂

∂Y
)(Y ∂

∂X
)− (Y ∂

∂X
)(X ∂

∂Y
) = X ∂

∂X
− Y ∂

∂Y
= ϕ(h) = ϕ([x, y]),

[ϕ(h), ϕ(x)] = 2X ∂
∂Y

= 2ϕ(x) = ϕ([h, x]) and [ϕ(h), ϕ(y)] = −2Y ∂
∂X

=

−2ϕ(y) = ϕ([h, y]).

We now define the following action of sl2(F ) on Vm:

x.(X iY m−i) = X
∂

∂Y
(X iY m−i) = (m− i)X i+1Y m−i−1

y.(X iY m−i) = Y
∂

∂X
(X iY m−i) = iX i−1Y m−i+1

h.(X iY m−i) =

(
X

∂

∂X
− Y ∂

∂Y

)
(X iY m−i) = iX iY m−i − (m− i)X iY m−i =

(2i−m)X iY m−i.

It follows that Xm is a maximal vector of weight m hence it generates an

irreducible submodule of dimension m+ 1, i.e. the whole Vm.



Chapter 4

Universal enveloping algebras

The aim of this chapter is to define the universal enveloping algebra U of

a Lie algebra L and to prove some of its basic properties. Our principal aim

will be to use the representation theory of the associative algebra U in order

to study the representations of L. In this chapter F may be an arbitrary field

and L a Lie algebra on F.

4.1 Definition and some basic properties

Definition 4.1. A universal enveloping algebra of a Lie algebra L is a pair

(U, i), where:

1. U is an associative algebra with 1 over a field F,

2. i : L→ U is a linear map satisfying

i([x, y]) = i(x)i(y)− i(y)i(x) (4.1)

where x, y ∈ L,

3. for any associative F-algebra A with 1 and any linear map j : L → A

satisfying j([x, y]) = j(x)j(y) − j(y)j(x), there exists a unique homo-

morphism of associative algebras φ : U→ A such that φ ◦ i = j.
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Remark 34. Denoting with UL the structure of Lie algebra on U, the map

i : L→ UL is a homomorphism of Lie algebras.

Theorem 4.1.1. 1. The universal enveloping algebra is unique up to iso-

morphism.

2. U is generated by the image i(L).

3. Let L1, L2 be Lie algebras with universal enveloping algebras (U1, i1), (U2, i2)

and let f : L1 → L2 be a homomorphism of Lie algebras. Then there

exists a homomorphism of algebras f ′ : U1 → U2 such that i2◦f = f ′◦i1.

Proof. 1) Let (U, i) and (B, j) be universal enveloping algebras for the Lie

algebra L. Then, by the defining property (3), there exist a unique homo-

morphism j′ : U → B such that j′ ◦ i = j and a unique homomorphism

i′ : B→ U such that i′ ◦ j = i therefore i′ ◦ j′ is a homomorphism of U into U

such that (i′ ◦ j′) ◦ i = i. Now note that 1U has the same properties and it is

obviously a homomorphism, hence, by the defining property (3), i′ ◦ j′ = 1U.

Similarly j′ ◦ i′ = 1B. It follows that j′ is an isomorphism.

2) Let B be the subalgebra of U generated by i(L). Then i can be consid-

ered as a homomorphism of L into BL so there exists an associative algebras

homomorphism i′ : U→ B such that i′ ◦ i = i. i′ can also be considered as a

mapping from U into U; 1U has the same properties and by the uniqueness in

the definition i′ = 1U. Hence U = 1U(U) = i′(U) ⊆ B, but B is a subalgebra

of U so U = B.

3) From the defining property (2), i2([x, y]) = i2(x)i2(y) − i2(y)i2(x), there-

fore the composition i2 ◦ f is such that (i2 ◦ f)([x, y]) = i2(f([x, y])) =

i2([f(x), f(y)]) = i2(f(x))i2(f(y))− i2(f(y))i2(f(x)) = (i2 ◦f)(x)(i2 ◦f)(y)−
(i2 ◦ f)(y)(i2 ◦ f)(x). Hence, by definition, there exists a unique homomor-

phism of associative algebras, which we can call f ′, of U1 into U1 such that

f ′ ◦ i1 = i2 ◦ f .

Let us now show the existence of the universal enveloping algebra for a

Lie algebra L.
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Let T(L) be the tensor algebra on L, i.e.

T(L) =
∞⊕
i=0

T i(L) (4.2)

where T 0(L) = F and T i(L) = L ⊗ . . . ⊗ L (i copies). The vector space

operations are the usual ones and the associative product is indicated by

“⊗” and is defined on homogeneous generators of T(L) by the rule (x1 ⊗
. . .⊗xm)⊗ (y1⊗ . . .⊗ yn) = x1⊗ . . .⊗xm⊗ y1⊗ . . .⊗ yn ∈ Tm+n(L). T(L) is

an associative graded algebra with 1 and has the following universal property:

if φ : L→ A is a F-linear map, where A is an associative algebra with 1, there

exists a unique homomorphism of algebras ψ : T(L)→ A such that ψ(1) = 1

and ψ extends the inclusion of L into T(L), i.e., calling i : L → T(L) the

inclusion of L into T(L), there exists a unique homomorphism of algebras

ψ : T(L)→ A such that ψ(1) = 1 and ψ ◦ i = φ. Let now J be the two sided

ideal in T(L) generated by all x ⊗ y − y ⊗ x − [x, y] with x, y ∈ L. Define

U(L) = T(L)/J , let π : T(L) → U(L) be the canonical homomorphism and

i = π|L. Then the following theorem holds:

Theorem 4.1.2. (U(L), i) is the universal enveloping algebra for L.

Proof. Let A be an associative algebra with 1 and j : L → AL a homo-

morphism of Lie algebras. We want to show that there exists a unique

homomorphism of algebras j′ : U(L) → A such that j′ ◦ i = j. By the

universal property of T(L) there exists a homomorphism of algebras j′′ :

T(L) → A. Let, now, x, y be in L. Then j′′(x ⊗ y − y ⊗ x − [x, y]) =

j′′(x)j′′(y) − j′′(y)j′′(x) − j′′([x, y]) because j′′ is a homomorphism of alge-

bras, but j′′(x) = j(x), j′′(y) = j(y), j′′([x, y]) = j([x, y]) since x, y, [x, y] ∈ L
and j([x, y]) = [j(x), j(y)] because j is a homomorphism of Lie algebras.

Hence x ⊗ y − y ⊗ x − [x, y] lies in Kerj′′ and j′′ induces a homomorphism

of algebras j′ : U(L) → A such that j′ ◦ i = j. We have now to prove the

uniqueness of such a homomorphism. The tensor algebra T(L) is generated

by 1 and L and this implies that U(L) is generated by 1 and i(L). Two ho-

momorphisms which are identical on a set of generators are necessarily the

same homomorphism. Hence uniqueness holds.
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From now on, given a Lie algebra L and thanks to point 1 of the Theorem

(4.1.1) and thanks to the Theorem (4.1.2), we will identify the universal

enveloping algebra of L with U(L).

Remark 35. Since the two sided ideal J is generated by all x⊗ y − y ⊗ x−
[x, y] where x, y ∈ L, J is included in

⊕
i>0 T

i(L) and π maps T 0(L) = F

isomorphically into U(L) so U(L) contains at least the scalars.

Remark 36. Let ϕ : L → gl(V ) be a representation of L on V . Then,

according to the defining property (3) of the universal enveloping algebra,

we can extend ϕ in a unique way to a homomorphism of algebras φ : U(L)→
End(V ). On the other hand given a homomorphism of algebras φ : U(L)→
End(V ), we trivially have a representation of L on V given by the map

φ ◦ i which is also a homomorphism of Lie algebras. Hence, studying L-

representations is the same as studying U(L)-representations with, in the

latter case, the advantage of working with an associative structure.

4.2 Poicaré-Birkhoff-Witt Theorem

We shall now prove the Poincaré-Birkhoff-Witt Theorem which gives us

the structure of the universal enveloping algebra of a Lie algebra. We denote

by xi1xi2 · · ·xin the image of xi1 ⊗ xi2 ⊗ · · · ⊗ xin in U(L) = T(L)/J .

Theorem 4.2.1. Let {xi, i ∈ I}, where I is an ordered set, be a basis of a

Lie algebra L. Then the monomials

xm1
i1
xm2
i2
· · ·xmnin , i1 < . . . < in,mi ∈ Z+

form a basis for the universal enveloping algebra U(L).

Proof. We know that {xi1⊗xi2⊗· · ·⊗xin , i1, i2, . . . , in ∈ I} is a basis of T(L),

therefore the images of these elements in U(L) generate U(L), but what is new

is that the images of monomials with ordered indices generate U(L). Seeking

Jacobson notation, we refer to the monomials in T(L) with ordered indices
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as standard monomials. We want to see that xi1xi2 . . . xin with arbitrary

i1, i2, . . . , in in I can be rewritten as a sum of images of standard monomials.

Let xi1xi2 . . . xin be with indices not correctly ordered. Then there is at least

one index j such that ij > ij+1, but xijxij+1
−xij+1

xij − [xij , xij+1
] lies in J so

xi1xi2 . . . xin = xi1 · · ·xij−1
(xijxij+1

− xij+1
xij − [xij , xij+1

])xij+2
· · ·xin+

+xi1 · · ·xij−1
xij+1

xijxij+2
· · ·xin + xi1 · · ·xij−1

[xij , xij+1
]xij+2

· · ·xin .

Note that the first summand of the right-hand side is 0, the second summand

has a lower number of couples of indices out of order and the third is of lower

degree (it is the product of n−1 elements of L instead of n elements). Hence

by a double induction first on the degree, then, for each fixed degree, on the

pairs of indices not correctly ordered, we are able to see that the monomials

xi1 · · ·xin with i1 ≤ i2 ≤ . . . ≤ in in I generate U(L).

Now let us prove the linear independence of the images of standard mono-

mials. Given a tensor monomial xi1 ⊗ · · · ⊗ xin we say that its defect is the

number of pairs of indices j < j′ such that ij > ij′ . Of course the defect is

0 if and only if the monomial is standard. Let us prove that there exists a

linear map

f : T(L)→ T(L)

such that f is the identity map on standard monomials and

f(xi1 ⊗ · · · ⊗ xin) = f(xi1 ⊗ · · · ⊗ xij+1
⊗ xij ⊗ · · · ⊗ xin)

+f(xi1 ⊗ · · · ⊗ [xij , xij+1
]⊗ · · · ⊗ xin).

(4.3)

We define this mapping by induction first on n, the degree of tensors, and,

for each fixed degree, by induction on the defect. If n = 0, 1 the mapping is

well defined because all the monomials is these cases are standard. So f is

defined on T 0(L)+T 1(L). Fix n ≥ 2 and define f(xi1⊗· · ·⊗xin) using (4.3):

f(xi1 ⊗ · · · ⊗ xin) = f(xi1 ⊗ · · · ⊗ xij+1
⊗ xij ⊗ · · · ⊗ xin)

+f(xi1 ⊗ · · · ⊗ [xij , xij+1
]⊗ · · · ⊗ xin).

The second summand in the right-hand side has lower degree than xi1 ⊗
· · · ⊗ xin and the first one has smaller defect. We need to prove that the
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map is well defined because of the sequence of applications of (4.3): so we

have to prove that (4.3) is independent of the choice of the pair (jk, jk+1).

If the defect of the monomial is 0 then the monomial is standard and f is

well defined; if the defect is 1, f is well defined too by (4.3) because, if j

is such that ij > ij+1, xi1 ⊗ · · · ⊗ xij+1
⊗ xij ⊗ · · · ⊗ xin is standard and

xi1 ⊗ · · · ⊗ [xij , xij+1
] ⊗ · · · ⊗ xin has degree n − 1. Suppose that the defect

is 2 or greater. Let j, j′, with j < j′, be two indices such that ij > ij+1 and

ij′ > ij′+1, then there are essentially two cases: j′ > j + 1 and j′ = j + 1. If

we are in the first case, setting xij = a, xij+1
= b, xij′ = c and xij′+1

= d we

have

f(. . .⊗ a⊗ b⊗ . . .⊗ c⊗ d⊗ . . .) =

f(. . .⊗ b⊗ a⊗ . . .⊗ c⊗ d⊗ . . .) + f(. . .⊗ [a, b]⊗ . . .⊗ c⊗ d⊗ . . .)

where we applied (4.3) to a⊗ b. Then, appling (4.3) to c⊗ d we obtain

f(. . .⊗ b⊗ a⊗ . . .⊗ d⊗ c⊗ . . .) + f(. . .⊗ b⊗ a⊗ . . .⊗ [c, d]⊗ . . .)

+f(. . .⊗ [a, b]⊗ . . .⊗ d⊗ c⊗ . . .) + f(. . .⊗ [a, b]⊗ . . .⊗ [c, d]⊗ . . .).

If, instead, we apply (4.3) first to c⊗ d and then to a⊗ b, we have:

f(. . .⊗ a⊗ b⊗ . . .⊗ d⊗ c⊗ . . .) + f(. . .⊗ a⊗ b⊗ . . .⊗ [c, d]⊗ . . .)

= f(. . .⊗ b⊗ a⊗ . . .⊗ d⊗ c⊗ . . .) + f(. . .⊗ [a, b]⊗ . . .⊗ d⊗ c⊗ . . .)

+f(. . .⊗ b⊗ a⊗ . . .⊗ [c, d]⊗ . . .) + f(. . .⊗ [a, b]⊗ . . .⊗ [c, d]⊗ . . .)

which is the same expression obtained above.

If we are in the second case and we set xij = a, xij+1
= b = xij′ and xij′+1

= c,

we have

f(. . .⊗ a⊗ b⊗ c⊗ . . .) = f(. . .⊗ b⊗ a⊗ c⊗ . . .) + f(. . .⊗ [a, b]⊗ c⊗ . . .)

= f(. . .⊗ b⊗ c⊗ a⊗ . . .) + f(. . .⊗ b⊗ [a, c]⊗ . . .) + f(. . .⊗ [a, b]⊗ c⊗ . . .)

= f(. . .⊗ c⊗ b⊗ a⊗ . . .) + f(. . .⊗ [b, c]⊗ a⊗ . . .) + f(. . .⊗ b⊗ [a, c]⊗ . . .)

+f(. . .⊗ [a, b]⊗ c⊗ . . .)
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on the other hand, appling (4.3) first to b⊗ c we have

f(. . .⊗ a⊗ b⊗ c⊗ . . .) = f(. . .⊗ a⊗ c⊗ b⊗ . . .) + f(. . .⊗ a⊗ [b, c]⊗ . . .)

= f(. . .⊗ c⊗ a⊗ b⊗ . . .) + f(. . .⊗ [a, c]⊗ b⊗ . . .) + f(. . .⊗ a⊗ [b, c]⊗ . . .)

= f(. . .⊗ c⊗ b⊗ a⊗ . . .) + f(. . .⊗ c⊗ [a, b]⊗ . . .) + f(. . .⊗ [a, c]⊗ b⊗ . . .)

+f(. . .⊗ a⊗ [b, c]⊗ . . .).

Then appling (4.3) to the last three summand

f(. . .⊗ c⊗ b⊗ a⊗ . . .) + f(. . .⊗ [a, b]⊗ c⊗ . . .) + f(. . .⊗ b⊗ [a, c]⊗ . . .)

+f(. . .⊗ [b, c]⊗ a⊗ . . .) + f(. . .⊗ [c, [a, b]]⊗ . . .) + f(. . .⊗ [[a, c], b]⊗ . . .)

+f(. . .⊗ [a, [b, c]]⊗ . . .)

= f(. . .⊗ c⊗ b⊗ a⊗ . . .) + f(. . .⊗ [a, b]⊗ c⊗ . . .) + f(. . .⊗ b⊗ [a, c]⊗ . . .)

+f(. . .⊗ [b, c]⊗ a⊗ . . .) + f(. . .⊗ ([c, [a, b]] + [[a, c], b] + [a, [b, c]])⊗ . . .)

but [c, [a, b]] + [[a, c], b] + [a, [b, c]] = [c, [a, b]] + [b, [c, a]] + [a, [b, c]] = 0 due to

Jacobi identity, therefore the expressions

f(. . .⊗ c⊗ b⊗ a⊗ . . .) + f(. . .⊗ [b, c]⊗ a⊗ . . .) + f(. . .⊗ b⊗ [a, c]⊗ . . .)

+f(. . .⊗ [a, b]⊗ c⊗ . . .)

and

f(. . .⊗ c⊗ b⊗ a⊗ . . .) + f(. . .⊗ [a, b]⊗ c⊗ . . .) + f(. . .⊗ b⊗ [a, c]⊗ . . .)

+f(. . .⊗ [b, c]⊗ a⊗ . . .) + f(. . .⊗ ([c, [a, b]] + [[a, c], b] + [a, [b, c]])⊗ . . .)

are the same and f is well defined.

Due to (4.3), f(J) = 0 so f induces a linear map

φ : U(L) = T(L)/J → T(L)

such that, given i1 ≤ i2 ≤ . . . ≤ in in I,

φ(xi1xi2 · · ·xin) = φ([xi1 ⊗ xi2 ⊗ · · · ⊗ xin ])

= f(xi1 ⊗ xi2 ⊗ · · · ⊗ xin) = xi1 ⊗ xi2 ⊗ · · · ⊗ xin .
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The mapping is well defined because if we take another representative of the

class [xi1⊗xi2⊗· · ·⊗xin ] they differ for an element in J so they are mapped

to the same element. Moreover xi1 ⊗ xi2 ⊗ · · · ⊗ xin with i1 ≤ i2 ≤ . . . ≤ in

in I are linearly independent hence taken a trivial linear combination of

xi1xi2 · · ·xin with i1 ≤ i2 ≤ . . . ≤ in in I,∑
i1≤i2≤...≤inl∈I

ai1,i2,...,inlxi1xi2 · · ·xinl = 0

its image under φ is∑
i1≤i2≤...≤inl∈I

ai1,i2,...,inlxi1 ⊗ xi2 ⊗ · · · ⊗ xinl = 0

and ai1,i2,...,inl = 0 due to the linear independence of xi1 ⊗ xi2 ⊗ · · · ⊗ xinl ,
thus xi1xi2 · · ·xin are linearly independent.

As just seen, in the proof of Poincaré-Birkhoff-Witt Theorem we have

strongly used the Lie structure of L.

Corollary 4.2.2. The natural mapping i : L → T(L) → U(L) such that

i(xj) = xj is injective.

Remark 37. Due to the Corollary (4.2.2), we can consider L as a Lie subal-

gebra of U(L)L.



Chapter 5

Lie algebras representations

Throughout this chapter L is a semisimple Lie algebra over an alge-

braically closed field F of characteristic 0, H is a fixed Cartan subalgebra

of L (i.e. a maximal toral subalgebra of L), Φ is the corresponding root

system and ∆ is a base of Φ.

Lemma 5.0.3. 1. N(∆) =
⊕

α∈Φ+ Lα is a nilpotent subalgebra of L.

2. B(∆) = H ⊕
⊕

α∈Φ+ Lα is a solvable subalgebra of L.

Proof. Let xα ∈ Lα, xβ ∈ Lβ, h ∈ H. Then, by Jacobi identity, [h, [xα, xβ]] =

−[xα, [xβ, h]]− [xβ, [h, xα]] = −[xα,−β(h)xβ]− [xβ, α(h)xα] = β(h)[xα, xβ] +

α(h)[xα, xβ] = (α + β)(h)[xα, xβ], i.e. [xα, xβ] ∈ Lα+β. Therefore N(∆)

and B(∆) are Lie subalgebras of L because, if α, β ∈ Φ+ and α + β ∈ Φ,

α + β ∈ Φ+.

1)[N(∆), N(∆)] =
∑

α,β∈Φ+ [Lα, Lβ] =
∑

α,β∈Φ+ Lα+β, but Φ+ is finite so

there exists an i such that [N(∆)i, N(∆)] = 0 that is N(∆) is nilpotent.

2)[B(∆), B(∆)] = [H,H]+ [H,N(∆)]+ [N(∆), H)]+ [N(∆), N(∆)], the first

summand is 0 and the last three summands are in N(∆) which is nilpotent.

So [B(∆), B(∆)] is nilpotent and B(∆) is solvable.

Proposition 5.0.4. Let L be a semisimple Lie algebra and let φ : L→ gl(V )

be a representation of L on a vector space V . If x ∈ L is a semisimple element

39
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then φ(x) is a semisimple element of gl(V ). If x ∈ L is a nilpotent element

then φ(x) is a nilpotent element of gl(V ).

Proof. Since x is a semisimple element of L, adx is semisimple, therefore

there exists a basis of eigenvectors {x1, . . . , xn} of L with respect to adx.

adφ(x)(φ(xi)) = [φ(x), φ(xi)] = φ([x, xi]) = φ(adx(xi)) = φ(λixi) = λiφ(xi)

because φ is a homomorphism of Lie algebras. Therefore φ(x1), . . . , φ(xn)

are eigenvectors and they generate φ(L), i.e. adφ(x) is semisimple because

we can choose those φ(xi) which are linearly independent and we obtain a

basis of eigenvectors. Let us now consider a nilpotent element x ∈ L. Since

adφ(x)(φ(y)) = φ(adxy) by induction (adφ(x))
m(φ(y)) = φ((adx)

my). Hence

adφ(x) is nilpotent because by x-nilpotence there exists some i ∈ Z+ such

that (adx)
i = 0 then (adφ(x))

i(φ(y)) = φ((adx)
iy) = 0 for all y ∈ L.

Let V be a finite dimensional L-module and let φ : L → gl(V ) be the

representation associated to the L-module V . Thanks to Proposition (5.0.4),

the set φ(H) consists of semisimple elements, moreover φ(H) is abelian,

therefore the elements of φ(H) are commuting semisimple endomorphisms

hence they are simultaneously diagonalizable, i.e. H acts diagonally on V .

Then V =
∑
Vλ where λ ∈ H∗ and Vλ = {v ∈ V |h.v = λ(h)v for all h ∈ H}.

If Vλ 6= 0 we say that Vλ is a weight space and λ is a weight of V .

Remark 38. The sum of weight spaces is direct.

Proof. Let V ′ =
∑

i Vµi and let us suppose that the sum is not direct. There-

fore there exist v1, . . . , vs ∈ V ′, with vi ∈ Vµi and µi 6= µj if i 6= j, such that

v1 + . . . + vs = 0. Let us suppose moreover that s is the minimum number

of elements in V ′ such that v1 + . . . + vs = 0. Since µ1 6= µ2, there exists

some h ∈ H such that µ1(h) 6= µ2(h). 0 = h.(v1, . . . , vs)−µ1(h)(v1, . . . , vs) =

(µ1(h) − µ1(h))v1 + (µ2(h) − µ1(h))v2 + . . . + (µs(h) − µ1(h))vs = (µ2(h) −
µ1(h))v2 + . . .+ (µs(h)−µ1(h))vs and (µ2(h)−µ1(h))v2 6= 0 by the choice of

h. Since (µi(h)− µ1(h))vi is 0 or is an eigenvector (µ2(h)− µ1(h))v2 + . . .+

(µs(h) − µ1(h))vs is a sum of m eigenvectors, with 1 ≤ m ≤ s − 1, but this

is against the hypothesis of minimality of s. Hence the sum is direct.
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Remark 39. The sum of all the weight spaces of V is an L-submodule.

Proof. Let V ′ be the sum of all the weight spaces of V . If xα ∈ Lα, h ∈ H
and v ∈ Vλ, then h.xα.v = [h, xα].v + xα.h.v = α(h)xα.v + λ(h)xα.v =

(α(h) + λ(h))xα.v = (α + λ)(h)xα.v, i.e. xα.v ∈ Vλ+α ⊆ V ′.

If dim V = ∞ Weyl’s Theorem does not hold, nevertheless we can still

define weight spaces in the same way, the sum of weight spaces, V ′, is always

a direct sum and it is also a submodule of V. Hence we proved the following

result:

Lemma 5.0.5. Let V be an L-module. Then

1. Given α ∈ Φ, λ ∈ H∗, Lα maps Vλ into Vλ+α.

2. The sum V ′ =
∑

λ∈H∗ Vλ is direct and V ′ is an L-submodule of V.

3. If dim V <∞, then V = V ′.

5.1 Standard cyclic modules

Definition 5.1. Let V be an L-module, then v+ ∈ Vλ is called a maximal

vector of weight λ if it is a nonzero vector killed by all Lα for α ∈ Φ+, i.e.

xα.v
+ = 0 for every α ∈ Φ+.

Remark 40. It is clear that the notion of maximal vector depends strongly

on the choice of the base ∆.

Remark 41. If dim V <∞, V contains at least one maximal vector.

Proof. Let φ : L → gl(V ) be the representation of L on V associated to

the L-module V . By Lemma (5.0.3), B(∆) = H ⊕
⊕

α∈Φ+ Lα is a solvable

subalgebra of L, thus φ(B(∆)), which is isomorphic to B(∆)/Ker(φ), is a

solvable subalgebra of gl(V ). Moreover dim V <∞, therefore, by Lie’s The-

orem, V contains a common eigenvector of all endomorphisms in φ(B(∆)),

i.e. there exist λ ∈ (B(∆))∗ and a nonzero vector v such that x.v = λ(x)v
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for all x ∈ B(∆). On the other hand N(∆) =
⊕

α∈Φ+ Lα is nilpotent thus

every endomorphism of φ(N(∆)) is nilpotent and all its eigenvectors are 0.

Hence λ(x) = 0 for all x ∈ N(∆) and v is a maximal vector.

Remark 42. If dim V =∞ there is no need for a maximal vector to exist.

Example 5.1. If L is simple and γ is the highest root relative to ∆, then

any vector in Lγ is a maximal vector for the adjoint representation.

Proof. Let x be a vector in Lγ, then, for all α ∈ Φ+, xα.x = [xα, x] ∈ Lα+γ =

0 since γ is the highest root.

Definition 5.2. An L-module V = U(L).v+, where v+ is a maximal vector,

is called a standard cyclic module and the weight of v+ is called the highest

weight of V .

Theorem 5.1.1. Let V be a standard cyclic L-module with maximal vector

v+ ∈ Vλ and let Φ+ = {β1, . . . , βm}. Then:

1. V = 〈yr1β1y
r2
β2
· · · yrmβm .v

+| ri ∈ Z+〉, yβi ∈  L−βi.

2. V =
⊕

µ∈H∗ Vµ.

3. The weights of V are of the form µ = λ −
∑

αi∈∆ kiαi with ki ∈ Z+,

i.e. all weights satisfy µ ≺ λ, in particular dim Vµ <∞, dim Vλ = 1.

4. Every submodule W of V is direct sum of weight spaces.

5. V is an indecomposable L-module with a unique maximal submodule

and a unique irreducible quotient.

6. Every nonzero homomorphic image of V is also standard cyclic of

weight λ.

Proof. 1) Given a basis B = {yβ1 , . . . , yβm , h1, . . . , hl, xβ1 , . . . , xβm} of L,

where xβi ∈ Lβi , yβi ∈ L−βi and {h1, . . . , hl} is a basis of H, by Poincaré-

Birkhoff-Witt Theorem {yr1β1 · · · y
rm
βm
ht11 · · ·h

tl
l x

s1
β1
· · · xsmβm |tj, si, ri ∈ Z+} is a
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basis of U(L), so U(L).v+ = 〈yr1β1 · · · y
rm
βm
ht11 · · ·h

tl
l x

s1
β1
· · ·xsmβm .v

+|ti, si, ri ∈ Z+〉.
v+ is a maximal vector then hi.v

+ = civ
+ with ci in F and xβi .v

+ = 0 for all

βi thus U(L).v+ = 〈yr1β1 · · · y
rm
βm
.v+〉

2) Since h.yp1β1 · · · y
pm
βm
.v+ = (λ − p1β1 − . . . − pmβm)yp1β1 · · · y

pm
βm
.v+ because

h.yβ.v
+ = [h, yβ].v+ + yβ.h.v

+ = −β(h)yβ.v
+ + λ(h)yβ.v

+ = (λ− β)(h)yβ.v
+

for h ∈ H, V =
∑

µ∈H+ Vµ, that is V =
⊕

µ∈H+ Vµ because the sum of weight

spaces is direct.

3) We have just proven that weights are of the form µ = λ−
∑m

i=1 piβi where

βi ∈ Φ+. Any root of Φ+ is of the form βi =
∑

αj∈∆ ai,jαj with ai,j ∈ Z+,

hence µ = λ−
∑

αj∈∆(
∑

i ai,jpi)αj and ai,jpi ∈ Z+. Given yp1β1 · · · y
pm
βm
.v+ ∈ Vµ,

µ = λ if and only if ai,jpi = 0 for all j, that is ai,j = 0 or pi = 0 for all i.

If pi = 0, yβi doesn’t appear in yp1β1 · · · y
pm
βm
.v+; if pi 6= 0 then ai,j = 0 for all

i, i.e.
∑

αj
ai,jαj is not a root, but the βi’s are roots therefore pi = 0 for all

i. It follows that µ = λ if and only if yp1β1 · · · y
pm
βm
.v+ = v+. Vλ = 〈v+〉, i.e.

dim Vλ = 1. Now let fix a weight µ = λ−
∑

αj∈∆ sjαj. We want to find how

many generators of U(L).v+ have this weight, i.e. how many ki and ai,j in

Z+ there are such that sj =
∑

i kiai,j. Since 0 ≤ ki, ai,j ≤ sj, there is only a

finite number of ki and ai,j such that sj =
∑

i kiai,j hence dim Vµ <∞.

4) As V is the direct sum of weight spaces, for a given vector w in W there ex-

ist v1, . . . , vn, with vi in Vµi and µi 6= µj for i 6= j, such that w = v1 + . . .+vn.

Let’s see that vi ∈ W for all i. Let us suppose that there exists a vector

w ∈ W such that w = v1 + . . . + vn, vi ∈ Vµi and vj 6∈ W for some j and

let w such an element with the minimum number n of summands. All the

summands vi in the expression are not in W otherwise permutating indices

we can suppose w = v1 + . . .+ vk + vk+1 + . . .+ vn with the first k summands

such that vj ∈ W and the last n − k such that vj 6∈ W but in this case

w − v1 − . . .− vk is still in W and it is equal to vk + . . .+ vn so the number

of summands is less than that of w and this goes against the minimality of

the summands of w. As µ1 6= µ2 there exists a vector h ∈ H such that

µ1(h) 6= µ2(h). The element h.w = µ1(h)v1 + · · ·+µn(h)vn lies in W because

W is a L-submodule. On the other hand µ1(h)w ∈ W so h.w − µ(h)w ∈ W
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and h.w − µ(h)w = (µ2(h) − µ1(h))v2 + . . . + (µn(h) − µ1(h))vn. Therefore

there is an element in W which is sum of m ≤ n − 1 summands not in

W but this goes against the minimality of w. Hence all the vi’s lie in W .

We have just seen that W ⊆
⊕

µ∈H∗(W ∩ Vµ). The converse is trivial so

W =
⊕

µ∈H∗(W ∩ Vµ).

5) Let us suppose that W is a proper L-submodule. Since W is a proper

L-submodule, v+ 6∈ W (otherwise the action of L on v+ gives all V , but

W 6= V ), i.e. W ⊆
⊕

µ 6=λ Vµ because dim Vλ = 1. It follows that V is in-

decomposable because the same property holds for every proper submodule.

Moreover, if W,W ′ are proper L-submodules of V , then W,W ′ ⊆ ⊕µ6=λVµ,

hence W + W ′ is a proper L-submodule, because W + W ′ ⊆ ⊕µ6=λVµ. It

follows that V has a unique maximal L-submodule. Indeed if there were two

distinct maximal submodules their sum would properly includes both sub-

modules against maximality. Finally if W is a maximal L-submodule then

V/W is the unique irreducible quotient of V .

6) Let φ : U(L).v+ → M be a homomorphism of L-modules. By defi-

nition φ(yr1β1 · · · y
rm
βm
.v+) = yr1β1 · · · y

rm
βm
φ(v+) and φ(v+) is a maximal vector

with highest weight λ because given an element xα ∈ Lα with α ∈ Φ+,

xα.φ(v+) = φ(xα.v
+) = 0 and h.φ(v+) = φ(h.v+) = φ(λ(h)v+) = λ(h)φ(v+)

for every h in H.

Corollary 5.1.2. Let V be as in Theorem (5.1.1). Suppose further that V

is an irreducible L-module. Then v+ is the unique maximal vector in V , up

to nonzero scalar multiples.

Proof. Let v+, w+ be maximal vectors with highest weights λ, σ. Since V is

irreducible, V = U(L).v+, so σ = λ −
∑

αi∈∆ kiαi with ki ∈ Z+, and V =

U(L).w+, so λ = σ −
∑

αj∈∆ hjαj with hj ∈ Z+. It follows that ki = hj = 0,

that is λ = σ, and w+ = cv+ with c ∈ F since dim Vλ = 1.
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5.2 Existence and uniqueness of the irreducible

standard cyclic module

Our next aim is to show that there exists an irreducible standard cyclic

L-module with highest λ ∈ H∗ which is unique up to isomorphism.

Theorem 5.2.1. Let V,W be standard cyclic L-modules of highest weight λ.

If V and W are irreducible, then they are isomorphic.

Proof. Let us consider the L-module X = V ⊕ W and the vector x+ =

(v+, w+) where v+ and w+ are maximal vectors of highest weight λ in V,W

respectively. x+ is a maximal vector in X because xα.x
+ = (xα.v

+, xα.w
+) =

0 for all xα ∈ Lα where α ∈ Φ+ and x+ has highest weight λ because

h.x+ = (h.v+, h.w+) = (λ(h)v+, λ(h)w+) = λ(h)(v+, w+) for all h ∈ H. Let

Y be the L-submodule of X generated by x+. Then Y is also a U(L)-module

and it is generated by x+ so it is standard cyclic. Let us now consider the

natural projections p : Y → V and p′ : Y → W which are the restrictions

to Y of the projections onto the first and second factors. The maps p, p′ are

homomorphisms of L-modules and they are surjective because p(x+) = v+

and p′(x+) = w+. Ker p and Ker p′ are L-submodules of Y and Y/Ker p ∼=
V and Y/Ker p′ ∼= W hence Y/Ker p and Y/Ker p′ are irreducible and

by the uniqueness of the irreducible quotient of a standard cyclic module

Y/Ker p = Y/Ker p′ that is V ∼= W .

Thanks to the Theorem (5.2.1), we only need to prove the existence of

the irreducible standard cyclic module of weight λ ∈ H∗.

Remark 43. A standard cyclic module contains a one dimensional B(∆)-

submodule spanned by its maximal vector.

Let us fix λ ∈ H∗ and let Dλ be a one-dimensional vector space spanned

by a vector v+. We define the following action of B(∆) on Dλ:

h.v+ = λ(h)v+ ∀h ∈ H

xα.v
+ = 0 ∀α ∈ Φ+.



46 5. Lie algebras representations

Dλ is a B(∆)-module because xα.xβ.v
+ − xβ.xα.v

+ = 0 = cxα+β.v
+ =

[xα, xβ].v+ and h.xα.v
+ − xα.h.v

+ = −λ(h)xα.v
+ = 0 = α(h)xα.v

+ =

[h, xα].v+. On the other hand D(λ) is also a U(B(∆))-module and it makes

sense to consider the tensor product Z(λ) = U(L)
⊗

U(B(∆)) Dλ which is a

U(L)-module under the left action of U(L). Moreover 1⊗ v+ generates Z(λ)

as a U(L)-module, it is nonzero because U(L) is a free U(B(∆))-module, it

is annihilated by all the xα ∈ Lα with α ∈ Φ+ and the action of h ∈ H gives

λ(h)1⊗ v+. Hence 1⊗ v+ is a maximal vector with highest weight λ, that is

Z(λ) is a standard cyclic module.

Theorem 5.2.2. Let λ ∈ H∗. Then there exists an irreducible standard

cyclic module V (λ) of weight λ.

Proof. Given λ ∈ H∗ we can construct a standard cyclic module Z(λ) of

highest weight λ as above. Since any standard cyclic module has a unique

irreducible quotient V/W , because of Theorem (5.1.1), 5, and V/W is stan-

dard cyclic of highest weight λ, because of Theorem (5.1.1), 6, indeed V/W is

a nonzero homomorphic image of V , V/W is the irreducible standard cyclic

module we are looking for. We will denote by V (λ) the unique irreducible

quotient V/W of Z(λ).

Let us see another result which was unthinkable before having treated the

previous arguments. If V is a finite dimensional irreducible L-module then,

by Remark (41), there exists at least one maximal vector v+, of weight λ in

H∗, which necessarily generates V as an L-module because of the irreducibil-

ity of V . V is also a U(L)-module and v+ generates V as a U(L)-module.

Hence V = U(L).v+, i.e. V is a standard cyclic module. Moreover V is

an irreducible standard cyclic module therefore, by Theorem (5.2.1) V is

isomorphic to V (λ). Summarizing this argument we have:

Theorem 5.2.3. Let V be a finite dimensional irreducible L-module. Then

V is isomorphic to V (λ) for some λ in H∗.

Notice that, thanks to Weyl’s Theorem and Theorem (5.2.3), any finite
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dimensional L-module V is a direct sum of irreducible standard cyclic mod-

ules V (λi) for some λi ∈ H∗.

Example 5.2. Let L be a simple Lie algebra of finite dimension. Then the

adjoint representation of L is irreducible, moreover L ∼= L(α) where α ∈ Φ

is the highest root, i.e. α ∈ Φ and α + αi 6∈ Φ for all αi ∈ ∆.

Example 5.3. Since the standard representation of sln(F) is finite dimen-

sional and irreducible, Fn ∼= V (λ) for some weight λ. Let us recall that:

sln(F) = H ⊕
⊕
α∈Φ

sln(F)α

with

• H = 〈eii − ei+1i+1 : 1 ≤ i ≤ n− 1〉,

• Φ = {±(αi + . . .+ αj−1) : 1 ≤ i < j ≤ n} = {αij : 1 ≤ i, j ≤ n, i 6= j},

• sln(F)αij = 〈eij〉.

Moreover choosing ∆ = {αi = αii+1} as a base of Φ we have that:

• Φ+ = {αi + . . .+ αj−1 : 1 ≤ i < j ≤ n} = {αij : 1 ≤ i < j ≤ n},

• Φ− = {−αi − . . .− αj−1) : 1 ≤ i < j ≤ n} = {αij : 1 ≤ j < i ≤ n}.

Therefore v+ is a maximal vector of Fn if it is an eigenvector for every h ∈ H∗

and eijv
+ = 0 for 1 ≤ i < j ≤ n− 1. It follows that

v+ = e1 (5.1)

indeed eije1 = 0 if i < j. In addition (eii− ei+1i+1)e1 = δi1 hence the highest

weight λ is such that λ(eii − ei+1i+1) = δi1.

5.3 Necessary and sufficient condition for fi-

nite dimension

In Section (5.2) we identified every finite dimensional irreducible L-module

V with an irreducible standard cyclic module V (λ) for a proper λ in H∗. Our

next aim is to decide which among the V (λ)’s are finite dimensional.
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5.3.1 Necessary condition for finite dimension

Let us now suppose that V (λ) is finite dimensional. Choosen a simple

root αi in Φ, i.e. a root lying in the base ∆ of Φ, we can find in V (λ) a copy

of sl2(F), sl2(αi) = 〈xαi , yαi , [xαi , yαi ] = hαi〉, therefore we can consider V (λ)

as a sl2(αi)-module. A maximal vector for the action of L is also a maximal

vector for the action of sl2(αi) and its weight is completely determined by

the evaluation of the weight on hαi , which is the base of a maximal toral

subalgebra of sl2(αi). In particular λ(hαi) is a nonnegative integer due to the

structure of the finite dimensional sl2(F)-modules.

Theorem 5.3.1. Let V be a finite dimensional irreducible L-module of high-

est weight λ. Then λ(hαi) is a nonnegative integer.

More precisely, thanks to the structrure of the finite dimensional sl2(F)-

modules, it is true that given any finite dimensional L-module V , and one

of its weight µ (not necessarily a highest weight), µ(hαi) = 〈µ, αi〉 ∈ Z when

αi ∈ ∆. Therefore, recalling the definitions (1.24) and (1.25), we can say that

the weights occurring in a finite dimensional representation are also weights

in an abstract sense and that the highest weight λ of V (λ) is dominant.

Theorem 5.3.2. If dim V (λ) <∞, then λ is a dominant weight.

We have, thus, seen that a necessary condition for V (λ) to be finite

dimensional is that λ is dominant. Given V (λ) with λ dominant, what can

we say about its dimension?

5.3.2 Sufficient condition for finite dimension

Lemma 5.3.3. Let α be a root in Φ+, let 〈xα, yα, [xα, yα] = hα〉 = sl2(α) ∼=
sl2(F) be a copy of sl2(F) into L, let φ : L → gl(V ) be a representa-

tion of L on V such that φ(xα), φ(yα) are locally nilpotent and let sα =

exp(φ(xα))exp(φ(−yα))exp(φ(xα)). Then, if v is in Vµ, s−1
α v is in Vσαµ. In

particular dim Vµ = dim Vσαµ.
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Proof. By Proposition (1.3.3), for every k in H, sαφ(k)s−1
α = φ(k − α(k)h)

then, given v in Vµ, φ(k)s−1
α v = s−1

α φ(k−α(k)h)v = s−1
α (µ(k)v−α(k)µ(h)v) =

s−1
α ((µ − µ(h)α)(k)v) = (µ − µ(h)α)(k)s−1

α v = σαµ(k) s−1
α v because µ(h) =

〈µ, α〉. Therefore s−1
α Vµ ⊆ Vσαµ and dim Vµ ≤ dim Vσαµ because s−1

α is an

automorphism, thus dim Vµ = dim s−1
α Vµ. On the other hand s−1

α Vσαµ ⊆
Vσασαµ = Vµ, i.e. dim Vσαµ ≤ dim Vµ, hence dim Vµ = dim Vσαµ.

Lemma 5.3.4. Let 〈xi, yi, [xi, yi] = hi〉 = sl2(αi) ∼= sl2(F) be a copy of sl2(F)

into L. Then the following identities hold in U(L) for k > 0, 1 ≤ i, j ≤ l:

1. [xj, y
k+1
i ] = 0 for all i 6= j

2. [hj, y
k+1
i ] = −(k + 1)αi(hj)y

k+1
i

3. [xi, y
k+1
i ] = −(k + 1)yki (k − hi).

Proof. For any a ∈ U(L) we have:

[a, yk+1
i ] = ayk+1

i −yk+1a = (ayki −yki a)yi+y
k
i ayi−yk+1a = [a, yki ]yi+y

k
i [a, yi].

(5.2)

1) Let us prove identity (1) by induction. If k = 0, [xj, yi] ∈ Lαj−αi = 0 for

all i 6= j because ∆ is a base for Φ hence αi−αj is not a root. Let us suppose

that [xj, y
k
i ] = 0. Then, by equation (5.2), [xj, y

k+1
i ] = yki [xj, yi] = 0.

2) Let us prove identity (2) by induction. If k = 0, [hj, yi] = −αi(hj)yi. Let

us suppose that [hj, y
k
i ] = −kαi(hj)yki . Then, by equation (5.2), [hj, y

k+1
i ] =

[hj, y
k
i ]yi + yki [hj, yi] = −kαi(hj)yki yi − yki αi(hj)yi = −(k + 1)αi(hj)y

k+1
i .

3) Let us prove identity (3) by induction. If k = 0, [xi, yi] = hi. Let

us suppose that [xi, y
k
i ] = −kyk−1

i (k − 1 − hi). Then, by equation (5.2),

[xi, y
k+1
i ] = [xi, y

k
i ]yi + yki [xi, yi] = −kyk−1

i (k− 1− hi)yi + yki hi = −kyk−1
i (k−

1)yi+kyk−1
i hiyi+yki hi = −k(k−1)yki +kyki hi+kyk−1

i [hi, yi]+yki hi = −k(k−
1)yki + (k + 1)yki hi − kyk−1

i αi(hi)yi = −k(k + 1)yki + (k + 1)yki hi = −(k +

1)yki (k − hi) where we used that αi(hi) = 2.

Theorem 5.3.5. If λ ∈ H∗ is a dominant weight, then V (λ) is finite dimen-

sional.
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Proof. Let v+ be a maximal vector of weight λ in V (λ) and set mi = λ(hi)

for all i such that αi ∈ ∆. We want first to see that ymi+1
i = 0. xj.y

mi+1
i .v+ =

[xj, y
mi+1
i ].v+ + ymi+1

i .xj.v
+ = [xj, y

mi+1
i ].v+ because v+ is a maximal vector.

By Lemma (5.3.4), xj.y
mi+1
i .v+ = 0 if j 6= i and xi.y

mi+1
i .v+ = −(mi +

1)ymii (mi − hi).v
+ = 0 because miv

+ = λ(hi)v
+ = hi.v

+. In other words

xj.y
mi+1
i .v+ = 0 for all j, i.e. either ymi+1

i .v+ = 0 or ymi+1
i .v+ is a maximal

vector. For any h ∈ H, h.ymi+1
i .v+ = [h, ymi+1

i ].v+ + ymi+1
i .h.v+ = −(mi +

1)αi(h)ymi+1
i .v+ +λ(h)ymi+1

i .v+ = (λ− (mi+1)αi)(h)ymi+1
i .v+, i.e. ymi+1

i .v+

lies in Vλ−(mi+1)αi . Since mi = λ(hi) = 〈λ, αi〉 ∈ Z+, λ − (mi + 1)αi 6= λ,

therefore ymi+1
i .v+ = 0 because V (λ) is irreducible and, by corollary (5.1.2),

a maximal vector of any irreducible standard cyclic module is unique up to

scalar multiples.

Since ymi+1
i .v+ = 0, the subspace 〈v+, yi.v

+, . . . , ymii .v+〉 is a sl2(αi)-module

because it is closed under the action of yi, it is closed under the action

of hi by Lemma (5.3.4(2)) and xi.y
k
i .v

+ = 0, if k = 0, and, if k > 0

xi.y
k
i .v

+ = [xi, y
k
i ].v+ + yki .xi.v

+ = [xi, y
k
i ].v+ = −kyk−1

i (k − 1 − hi).v
+ =

−k(k − 1)yk−1
i .v+ + λ(hi)ky

k−1
i .v+ = cyk−1

i .v+ where c is a scalar. Hence

V (λ) admits a non trivial sl2(αi)-module for every i such that αi ∈ ∆.

Let now V ′ be the sum of all finite dimensional sl2(αi)-submodule of V (λ).

V ′ 6= 0 because we have proved above that there is a non trivial finite

dimensional sl2(αi)-submodule. We want now to prove that V ′ is an L-

submodule of V (λ). Let W be a sl2(αi)-submodule and let us consider

W ′ =
∑

β∈Φ xβ.W . Then W ′ is an sl2(αi)-submodule, indeed, given a vector

w ∈ W , xi.xβ.w = [xi, xβ].w + xβ.xi.w = c1xαi+β.w + xβ.w1 where w1 ∈ W
and c1 ∈ F, yi.xβ.w = [yi, xβ].w+xβ.yi.w = c2xβ−αi .w+xβ.w2 where w2 ∈ W
and c2 ∈ F, and hi.xβ.w = [hi, xβ].w + xβ.hi.w = β(hi)xβ.w + xβ.w3 where

w3 ∈ W . Hence xi.xβ.w, yi.xβ.w, hi.xβ.w ∈
∑

β∈Φ xβ.W . In this way we

have proved that a vector of any sl2(αi)-submodule is sent, through the ac-

tion of L, to a sl2(αi)-submodule, hence it still lies in V ′, that is V ′ is an

L-submodule of V (λ). It follows by the irreducibility of V that V ′ = V (λ).

Note that the maps φ(xi) and φ(yi) are locally nilpotent therefore, by corol-



5.3 Necessary and sufficient condition for finite dimension 51

lary (5.3.3), if µ is a weight, σαµ is also a weight and dim Vµ = dim Vσαµ.

By Proposition (1.2.3), every weight is W-conjugated to a dominant weight,

but the dominant weights µ such that µ ≺ λ are, by Lemma (1.2.4), in a

finite number. Since W is a finite group, the number of weights of V (λ) is

finite and, as dim Vµ < ∞ for every weight µ, we deduce that dim V (λ) is

finite because V (λ) is a direct sum of weight spaces.
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Chapter 6

Lie superalgebras

6.1 Superalgebras

Definition 6.1. Let A be an algebra andM an abelian group. AnM -grading

of A is a decomposition of A into a direct sum of subspaces A = ⊕α∈MAα
such that AαAβ ⊆ Aα+β. An algebra equipped with an M -grading is called

M -graded. If a ∈ Aα, then we say that a is homogeneous of degree α and we

write deg a = α.

Definition 6.2. A subspace B of an M -graded algebra A is called M -graded

if B = ⊕α∈M(B ∩ Aα).

Remark 44. A subalgebra or an ideal of an M -graded algebra is an M -graded

subalgebra or ideal.

Definition 6.3. A homomorphism φ : A → A′ of M -graded algebras is a

homomorphism of algebras which preserves the M -grading in the sense that

φ(Aα) ⊆ A′ϕ(α) where ϕ is an automorphism of M .

Let Z2 = Z/2Z be the residue class ring mod 2 with elements 0̄ and 1̄.

Definition 6.4. A superalgebra is a Z2-graded algebra A = A0̄ ⊕ A1̄. The

elements of A0̄ are called even and the elements of A1̄ are called odd. Given

an element a ∈ A we denote deg a by p(a) and we refer to p(a) as the parity

of a.

53
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Remark 45. The only automorphism of groups ϕ : Z2 → Z2 is the identity,

hence every homomorphism of superalgebras φ : A→ A′ is such that φ(Aα) ⊆
A′α.

Definition 6.5. A superalgebra is called

• commutative if ab = (−1)p(a)p(b)ba

• associative if (ab)c = a(bc)

• anticommutative if ab = −(−1)p(a)p(b)ba.

Example 6.1. Let M be an abelian group and V = ⊕α∈MVα an M -graded

vector space. Then the associative algebra End(V ) is naturally equipped

with the induced M -grading End(V ) = ⊕α∈MEndα(V ) where

Endα(V ) = {x ∈ End(V ) | x(Vβ) ⊆ Vα+β}.

In particular, forM = Z2, the associative superalgebra End(V ) = End0̄(V )⊕
End1̄(V ).

Example 6.2. Let Λ(n) be the Grassmann algebra in n variables ξ1, . . . , ξn.

Then, setting p(ξi) = 1̄ for all i = 1, . . . , n, we obtain an associative superal-

gebra called the Grassmann superalgebra.

6.2 Lie superalgebras

Definition 6.6. A Lie superalgebra is a superalgebra g = g0̄ ⊕ g1̄ with a

product [ , ] : g× g→ g satisfying the following properties:

[a, b] = −(−1)p(a)p(b)[b, a] (6.1)

[a, [b, c]] = [[a, b], c] + (−1)p(a)p(b)[b, [a, c]]. (6.2)

The first property is the anticommutativity of the bracket and the second

property is the analogue of the Jacobi identity for Lie superalgebras.
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Example 6.3. If A is an associative superalgebra, then the bracket defined

as follows

[a, b] = ab− (−1)p(a)p(b)ba (6.3)

gives to A a structure of a Lie superalgebra.

Proof. [a, b] = ab− (−1)p(a)p(b)ba = −(−1)p(a)p(b)(ba− (−1)p(a)p(b)ab) =

− (−1)p(a)p(b)[b, a], therefore property (6.1) holds. Moreover

[a, [b, c]] = [a, bc− (−1)p(b)p(c)cb] =

a(bc)− (−1)p(b)p(c)a(cb)− (−1)(p(b)+p(c))p(a)(bc)a+

(−1)(p(b)+p(c))p(a)(−1)p(b)p(c)(cb)a =

a(bc)− (−1)p(b)p(c)a(cb)− (−1)(p(b)+p(c))p(a)(bc)a+

(−1)p(b)p(a)+p(c)(p(a)+p(b))(cb)a

and

[[a, b], c] + (−1)p(a)p(b)[b, [a, c]] =

[ab− (−1)p(a)p(b)ba, c] + (−1)p(a)p(b)[b, ac− (−1)p(a)p(c)ca] =

(ab)c− (−1)p(a)p(b)(ba)c−

(−1)p(c)(p(a)+p(b))c(ab) + (−1)p(a)p(b)(−1)p(c)(p(a)+p(b))c(ba)+

(−1)p(a)p(b)b(ac)− (−1)p(a)p(b)(−1)p(a)p(c)b(ca)−

(−1)p(a)p(b)(−1)p(b)(p(a)+p(c))(ac)b+

(−1)p(a)p(b)(−1)p(a)p(c)(−1)p(b)(p(a)+p(c))(ca)b =

a(bc)− (−1)p(b)p(c)a(cb)+

(−1)p(a)p(b)+p(c)(p(a)+p(b))(cb)a− (−1)p(a)(p(b)+p(c))(bc)a

where we use the associativity of the product in A and the definition (6.3).

Thus property (6.2) holds.

Remark 46. For a, b ∈ g0̄, properties (6.1) and (6.2) become

[a, b] = −[b, a] (6.4)

[a, [b, c]] = [[a, b], c] + [b, [a, c]] (6.5)
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thus g0̄ is an ordinary Lie algebra.

Remark 47. For a, b ∈ g0̄, c ∈ g1̄, property (6.2) becomes [[a, b], c] = [a, [b, c]]−
[b, [a, c]]. Hence the operation [ , ] restricted to g0̄ × g1̄ gives g1̄ a g0̄-module

structure.

Remark 48. The operation [ , ] restricted to g1̄×g1̄ is commutative because,

if a, b ∈ g1̄, [a, b] = [b, a] hence the linear map ϕ : S2g1̄ → g0̄, ϕ(ab) =

[a, b] is well defined and ϕ is a homomorphism of g0̄-modules. Indeed, given

a ∈ g0̄, b, c ∈ g1̄ and using the definition of the action on S2g1̄, ϕ(a.(bc)) =

ϕ((a.b)c + b(a.c)) = ϕ([a, b]c + b[a, c]) = [[a, b], c] + [b, [a, c]] = [a, [b, c]] =

[a, ϕ(bc)] = a.(ϕ(bc)) where we used the linearity of the map ϕ, the Jacobi

identity (6.2), the fact that p(a)p(b) = 0̄ and the fact that g1̄ is a g0̄-module

with the action given by [ , ].

Moreover the following proposition holds:

Proposition 6.2.1. Let us have:

1. a Lie algebra g0̄,

2. a g0̄-module g1̄,

3. a homomorphism of g0̄-modules ϕ : S2g1̄ → g0 with the condition

(ϕ(ab)).c+ (ϕ(bc)).a+ (ϕ(ca)).b = 0 for a, b, c ∈ g1̄ (6.6)

where “.” denotes the action of g0̄ on g1̄.

Then g = g0̄⊕g1̄ is a Lie superalgebra with the product [ , ] defined as follows:

• if a, b ∈ g0̄, [a, b] = [a, b] where the latter [ , ] is the one of the Lie

algebra g0̄,

• if a ∈ g0̄, b ∈ g1̄, [a, b] = a.b,

• if a ∈ g1̄, b ∈ g0̄, [a, b] = −[b, a] = −b.a,

• if a, b ∈ g1̄, [a, b] = ϕ(ab).
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The definitions of solvable, nilpotent, simple and semisimple Lie superal-

gebras are the same as for Lie algebras, i.e:

Definition 6.7. Let g be a Lie superalgebra and let g(0) = g, g(1) = [g, g],

g(i) = [g(i−1), g(i−1)] for i > 1. Then a Lie superalgebra g is called solvable if

there exists some i ∈ Z+ ∪ {0} such that g(i) = 0.

Definition 6.8. Let g be a Lie superalgebra and let g0 = g, gi = [gi−1, g]

for i ≥ 1. Then a Lie superalgebra g is called nilpotent if there exists some

i ∈ Z+ ∪ {0} such that gi = 0.

Definition 6.9. A Lie superalgebra g is called simple if g contains no non-

trivial ideals.

Definition 6.10. A Lie superalgebra g is called semisimple if g contains no

solvable ideals.

Definition 6.11. Let g = g0̄⊕ g1̄ and h = h0̄⊕ h1̄ be two Lie superalgebras.

Then a linear map φ : g → h is a homomorphism of Lie superalgebras if

φ([x, y]) = [φ(x), φ(y)].

6.3 The superalgebra l(V ) and the supertrace

Let V = V0̄ ⊕ V1̄ be a Z2-graded space. We have already seen in Ex-

ample (6.1) that the algebra End(V ) endowed with the induced Z2-grading

becomes an associative superalgebra. Hence End(V ) is a Lie superalgebra,

by Example (6.3) and we denote End(V ) with the Lie superalgebra structure

by l(V ) or l(m,n) where m = dim V0̄ and n = dim V1̄. Let us now consider a

homogeneous basis of V , i.e. a basis {e1, . . . , em, em+1, . . . , em+n} of V where

{e1, . . . , em} is a basis of V0̄ and {em+1, . . . , em+n} is a basis of V1̄. The matrix

of an element of l(V ) with respect to this basis is of the form(
A B

C D

)
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where A is a (m×m)-matrix, B is a (m×n)-matrix, C is a (n×m)-matrix,

D is a (n× n)-matrix.

Note that the even part l(V )0̄ of l(V ) consists of matrices of the form(
A 0

0 D

)
and the odd part l(V )1̄ of l(V ) consists of matrices of the form(

0 B

C 0

)
Indeed an element a of l(V )0̄ is such that a(V0̄) ⊆ V0̄ and a(V1̄) ⊆ V1̄ hence

its matrix with respect to an homogeneous basis has the form:(
A 0

0 D

)
.

On the other hand an element b of l(V )1̄ is such that b(V0̄) ⊆ V1̄ and b(V1̄) ⊆
V0̄ hence its matrix respect to an homogeneous basis has the form:(

0 B

C 0

)
.

Definition 6.12. Let a =

(
A B

C D

)
be in l(m,n). Then we call supertrace

of a the number

str(a) = tr(A)− tr(D). (6.7)

Remark 49. Since the trace is linear, the supertrace is linear.

Remark 50. The supertrace of the matrix of an operator a ∈ l(V ) does not

depend on the choice of a homogeneous basis. Indeed, let l ∈ l(V ) and let

a =

(
A B

C D

)
, a′ =

(
A′ B′

C ′ D′

)
be two matrices of l with respect to two different homogeneous base. Then

A is conjugated to A′ and D is conjugated to D′, hence tr(A) = tr(A′) and

tr(D) = tr(D′).
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We now want to prove that str([a, b]) = 0 for any a, b ∈ l(V ).

Definition 6.13. Let g = g0̄⊕g1̄ be a Z2-graded space and let f : g×g→ F
be a bilinear form on g. Then f is called consistent if f(a, b) = 0 for any

a ∈ g0̄ and b ∈ g1̄, f is called supersymmetric if f(a, b) = (−1)p(a)p(b)f(b, a)

and, if g is a Lie superalgebra, f is called invariant if f([a, b], c) = f(a, [b, c]).

Proposition 6.3.1. 1. The bilinear form (a, b) = str(ab) on l(V ) is con-

sistent, supersymmetric and invariant.

2. str([a, b]) = 0 for all a, b ∈ l(V ).

Proof. 1) (Consistency) If a and b are the matrices of an even and an odd

element with respect to an homogeneous basis, they have the following form

a =

(
A 0

0 D

)
, b =

(
0 B

C 0

)

hence

ab =

(
A 0

0 D

)(
0 B

C 0

)
=

(
0 AB

DC 0

)
and (a, b) = str(ab) = 0.

(Supersimmetry) If a ∈ l(V )0̄ and b ∈ l(V )1̄, (a, b) = 0 via the consistency.

Moreover, identifying the endomorphisms with the associated matrices re-

spect to an homogeneous basis, we have

a =

(
A 0

0 D

)
, b =

(
0 B

C 0

)

hence

ba =

(
0 B

C 0

)(
A 0

0 D

)
=

(
0 BD

CA 0

)
thus (b, a) = str(ba) = 0 = (a, b). If a, b ∈ l(V )0̄, via the usual identifications

we obtain

a =

(
A 0

0 D

)
, b =

(
A′ 0

0 D′

)
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therefore

ab =

(
AA′ 0

0 DD′

)
, ba =

(
A′A 0

0 D′D

)
but tr(AA′) = tr(A′A) and tr(DD′) = tr(D′D) so str(ab) = str(ba). If

a, b ∈ l(V )1̄, via the usual identifications we obtain

a =

(
0 B

C 0

)
, b =

(
0 B′

C ′ 0

)

hence

ab =

(
BC ′ 0

0 CB′

)
, ba =

(
B′C 0

0 C ′B

)
so (a, b) = str(ab) = tr(BC ′)−tr(CB′) = tr(C ′B)−tr(B′C) = −(str(ba)) =

(−1)p(b)p(a)(b, a).

Let us now prove 2), then we will prove the invariance of ( , ).

2) str([a, b]) = str(ab − (−1)p(a)p(b)ba) = str(ab) − (−1)p(a)p(b)str(ba) = 0

because of the supersymmetry of the bilinear form ( , ). Indeed str(ab) =

(a, b) = (−1)p(a)p(b)(b, a) = (−1)p(a)p(b)str(ba).

(Invariance) Since

[b, ac] = b(ac)− (−1)p(b)(p(a)+p(c))(ac)b =

b(ac)− (−1)p(a)p(b)(ab)c+

(−1)p(a)p(b)(ab)c− (−1)p(b)(p(a)+p(c))(ac)b =

[b, a]c+ (−1)p(a)p(b)a(bc− (−1)p(b)p(c)cb) =

[b, a]c+ (−1)p(a)p(b)a[b, c],

using 2) we have

0 = str([b, ac]) =

str([b, a]c+ (−1)p(b)p(a)a[b, c]) =

−(−1)p(b)p(a)str([a, b]c) + (−1)p(b)p(a)str(a[b, c]).

Therefore ([a, b], c) = str([a, b]c) = str(a[b, c]) = (a, [b, c]).



6.4 Derivations 61

6.4 Derivations

Definition 6.14. Let A be a superalgebra. A derivation of parity s ∈ Z2 is

an endomorphism D ∈ Ends(A) with the property

D(ab) = D(a)b+ (−1)p(a)saD(b). (6.8)

We denote by ders(A) ⊆ End(A) the space of all derivations of parity s and

we define der(A) = der(A)0̄ ⊕ der(A)1̄.

Remark 51. Let D a derivation of A. Then D(1) = 0.

Proof. D(1) = D(1 · 1) = D(1) · 1 + (−1)p(D)p(1)1 ·D(1) = 2D(1). Therefore

D(1) = 0.

Remark 52. The space der(A) ⊆ End(A) is a subalgebra of the Lie superal-

gebra l(A).

Proof. Let D, D̃ be to derivations of der(A). Then

[D, D̃](ab) = (DD̃ − (−1)p(D)p(D̃)D̃D)(ab) =

D(D̃(a)b+ (−1)p(D̃)p(a)aD̃(b))−

(−1)p(D)p(D̃)D̃(D(a)b+ (−1)p(D)p(a)aD(b)) =

DD̃(a)b+ (−1)(p(D̃)+p(a))p(D)D̃(a)D(b)+

(−1)p(D̃)p(a)D(a)D̃(b) + (−1)p(D̃)p(a)(−1)p(D)p(a)aDD̃(b)−

(−1)p(D)p(D̃)D̃D(a)b− (−1)p(D)p(D̃)(−1)p(D̃)(p(D)+p(a))D(a)D̃(b)−

(−1)p(D)p(D̃)(−1)p(D)p(a)D̃(a)D(b)−

(−1)p(D)p(D̃)(−1)p(D)p(a)(−1)p(a)p(D̃)aD̃D(b) =

DD̃(a)b+ (−1)p(D̃)p(a)(−1)p(D)p(a)aDD̃(b)−

(−1)p(D)p(D̃)D̃D(a)b− (−1)p(D)p(D̃)(−1)p(D)p(a)(−1)p(a)p(D̃)aD̃D(b) =

(DD̃(a)− (−1)p(D)p(D̃)D̃D(a))(b)+

(−1)p(a)(p(D)+p(D̃))a(DD̃(b)− (−1)p(D)p(D̃)D̃D(b)) =

[D, D̃](a)b+ (−1)p(a)p([D,D̃])a[D, D̃](b).
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Hence [D, D̃] is a derivation. Moreover, sinceD1, D2, D3 ∈ der(A) ⊆ End(A),

[D1, D2] = −(−1)p(D1)p(D2)[D2, D1]

and

[D1, [D2, D3]] = [[D1, D2], D3] + (−1)p(D1)p(D2)[D2, [D1, D3]].

Example 6.4. Let g be a Lie superalgebra. Then the map

ada : g→ g, b 7→ [a, b] (6.9)

where a ∈ g, is a derivation of g.

Proof. ada([b, c]) = [a, [b, c]] = [[a, b], c] + (−1)p(a)p(b)[b, [a, c]] = [ada(b), c] +

(−1)p(ada)p(b)[b, ada(c)].

The Jacobi identity hence means that, for a ∈ g, ada is a derivation of

the Lie superalgebra g.

Remark 53. The space of the derivations of g of the form ada is an ideal of

der(g).

Proof. Since [D, ada](b) = D([a, b])− (−1)p(D)p(a)[a,D(b)] = [D(a), b] +

(−1)p(a)p(D)[a,D(b)]− (−1)p(D)p(a)[a,D(b)] = [D(a), b], [D, ada] = adD(a), i.e.

the space of the derivations of g of the form ada is an ideal of der(g).

6.5 Linear representations of Lie superalge-

bras

Definition 6.15. Let V = V0̄ ⊕ V1̄ be a Z2-graded linear space. A linear

representation φ of a Lie superalgebra g = g0̄⊕ g1̄ is a homomorphism of Lie

superalgebras φ : G→ l(V ).
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In this case we often say that V is a g-module and we write x.v instead

of φ(x)(v) with x ∈ g and v ∈ V . By definition gi.Vj ⊆ Vi+j and [x, y].v =

φ([x, y])(v) = [φ(x), φ(y)](v) = φ(x)φ(y)(v) − (−1)(deg x)(deg y)φ(y)φ(x)(v) =

x.(y.v)− (−1)(deg x)(deg y)y.(x.v).

Remark 54. The map ad : g → l(g) with (ad(x))(y) = [x, y] is a linear

representation of g and it is called the adjoint representation.

Definition 6.16. A g-module V is called irreducible if it has no nontrivial

submodules.

6.6 Z-gradings

Definition 6.17. A Z-grading of a superalgebra A is a decomposition of A

into a direct sum of finite dimensional Z2-graded subspaces A = ⊕i∈ZAi for

which AiAj ⊆ Ai+j. A Z-grading is said to be consistent if A0̄ = ⊕i∈ZA2i

and A1̄ = ⊕i∈ZA2i+1.

Remark 55. If g is a Z-graded Lie superalgebra, then g0 is a Lie superalgebra,

because [g0, g0] ⊆ g0 and the anticommutativity and the Jacoby identity for

g0 follow from the anticommutativity and the Jacobi identity on g. Moreover,

since [g0, gi] ⊆ gi, the restriction of the adjoint representation to g0 induces

linear representations of g0 on the subspaces gi.

Remark 56. We point out that Definition (6.17) can be, of course, given also

for algebras, i.e. in the completely even case.

Definition 6.18. A Z-graded Lie superalgebra g = ⊕i∈Zgi is called irre-

ducible if the representation of g0 on g−1 is irreducible.

Definition 6.19. A Z-graded Lie superalgebra g = ⊕i∈Zgi is called transitive

if [a, g−1] = 0 for a ∈ gi, i ≥ 0, implies that a = 0.

Example 6.5. Let V = V0̄ ⊕ V1̄ be a Z2-graded space. Then l(V ) has

a consistent Z-grading l(V ) = l−1 ⊕ l(V )0̄ ⊕ l1 where, with respect to an
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homogeneous basis of V , l−1 consists of matrices of the form(
0 0

C 0

)

and l1 consists of matrices of the form(
0 B

0 0

)
.

6.7 Criteria of simplicity

Proposition 6.7.1. Let g = g0̄ ⊕ g1̄ be a Lie superalgebra. If the repre-

sentation of g0̄ on g1̄ is faithful and irreducible and [g1̄, g1̄] = g0̄, then g is

simple

Proof. Let I = I0̄ ⊕ I1̄ be a nonzero ideal of g. I1̄ is a submodule of g1̄

because for x ∈ g0̄ and y ∈ I1̄, [x, y] lies in I since I is an ideal, and it is odd

hence lies in I1̄. Since g1̄ is an irreducible g0̄-module, I1̄ is either 0 or g1̄. If

I1̄ = 0, for all x ∈ I0̄ and y ∈ g1̄ [x, y] = 0 and, since the representation of g0̄

on g1̄ is faithful, I0̄ = 0, i.e. I = I0̄ ⊕ I1̄ = 0 which is against our hypothesis.

Hence I1̄ = g1̄. On the other hand g0̄ = [g1̄, g1̄] = [I1̄, I1̄] ⊆ I0̄, i.e. I0̄ = g0̄

and, consequently, I = g.

Proposition 6.7.2. Let g = ⊕i≥−1gi be a Z-graded Lie superalgebra. If g is

transitive and irreducible, [g−1, g1] = g0, [g0, g1] = g1 and gi = gi1 for i > 0,

then g is simple.

Proof. Let I = ⊕i≥−1Ii be a nonzero ideal of g. I−1 is a g0-submodule of g−1

because for all x ∈ g0 and y ∈ I−1, [x, y] lies in I since I is an ideal y ∈ I and

lies in I−1. Since g is irreducible, the g0-module g−1 is irreducible, i.e. either

I−1 = 0 or I−1 = g−1. If I−1 = 0, for all x ∈ I0 and y ∈ g−1 [x, y] = 0 because

it lies in I−1, then x = 0 by transitivity, i.e. I0 = 0. Repeating by induction

on i the same argument for x ∈ Ii for all i > 0 we obtain Ii = 0 for all i,

i.e. I = 0. Hence I−1 = g−1. It follows that g0 = [g−1, g1] = [I−1, g1] ⊆ I0,
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i.e. I0 = g0, and g1 = [g0, g1] = [I0, g1] ⊆ I1, i.e. I1 = g1. Moreover

gi = gi1 ⊆ I i1 ⊆ Ii, i.e. Ii = gi for all i > 0 and I = g.

Remark 57. Proposition (6.7.2) can be given also for a Lie algebra g, i.e.

when g is a completely even Lie superalgebra, with the additional request of

[g, g] 6= 0.
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Chapter 7

Examples

7.1 Outer tensor product

In Example (1.18), we considered the tensor product of two representa-

tions of a Lie algebra L and we defined on it a structure of an L-module. This

construction does not preserve the irreducibility, namely, the tensor product

of two irreducible L-modules is, in general, not irreducible.

Example 7.1. Let us consider the standard representation of sl2(F) and

its adjoint representation. Then the sl2(F)-module V = F2 ⊗ sl2(F) is not

irreducible.

Proof. We already showed that F2 and sl2(F) are irreducible sl2(F)-modules

of dimension two and three respectively. Let {e1, e2} be the canonical basis

of F2 and let {x, y, h} be the standard basis of sl2(F). We showed that e1

and x are maximal vectors in F2 and sl2(F), respectively. By Example (1.18)

it thus follows that the vector

v+
1 = e1 ⊗ x (7.1)

is a maximal vector, indeed

x.(e1 ⊗ x) = (xe1)⊗ x+ e1 ⊗ [x, x] = 0

67
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besides,

h.(e1 ⊗ e) = (he1)⊗ x+ e1 ⊗ [h, x] = e1 ⊗ x+ 2e1 ⊗ x = 3e1 ⊗ x = 3v+
1 .

This means that v+
1 = e1 ⊗ x is a maxmal vector of weight 3 in V , hence it

generates an irreducible sl2(F)-submodule of dimension 4. This shows that V ,

which has dimension 6, is not irreducible. Now note that v+
2 = 2e2⊗x+e1⊗h

is also a maximal vector in V , indeed:

x.(2e2 ⊗ x+ e1 ⊗ h) = 2(xe2)⊗ x+ e1 ⊗ [x, h] = 0

and

h.(2e2 ⊗ x+ e1 ⊗ h) = −2e2 ⊗ x+ 4e2 ⊗ x+ e1 ⊗ h =

2e2 ⊗ x+ e1 ⊗ h = v+
2 .

It follows that v+
2 generates an irreducible sl2(F)-module of V of dimension

2. Therefore, by Corollary (5.1.2), V ∼= V (3)⊕ V (1).

We shall now introduce the concept of outer tensor product of two mod-

ules.

Definition 7.1. Let L,K be Lie algebras, let V be an L-module and let W

be a K-module. Then we can define a linear action of L ⊕K on V ⊗W as

follows:

(x+ y).(v ⊗ w) = (x.v)⊗ w + v ⊗ (y.w) (7.2)

where x ∈ L, y ∈ K, v ∈ V,w ∈ W , and we extend this definition on V ⊗W
by linearity.

Remark 58. The linear space V ⊗W with the action of L⊕K described in

Definition(7.1) is an (L⊕K)-module.

Proof. By construction we need to prove that:

([x+y, x̃+ ỹ]).(v⊗w) = (x+y).(x̃+ ỹ).(v⊗w)−(x̃+ ỹ).(x+y).(v⊗w). (7.3)
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We have ([x + y, x̃ + ỹ]).(v ⊗ w) = ([x, x̃] + [y, ỹ]).(v ⊗ w) = ([x, x̃].v) ⊗
w + v ⊗ ([y, ỹ].w) = (x.x̃.v − x̃.x.v) ⊗ w + v ⊗ (y.ỹ.w − ỹ.y.w) = x.x̃.v ⊗
w − x̃.x.v ⊗ w + v ⊗ y.ỹ.w − v ⊗ ỹ.y.w where we used the structure of L-

module and K-module on V and W , respectively, and the linearity of the

tensor product. On the other hand using the definition of the action and the

linearity of the tensor product, the right hand side term of (7.3) is equal to

x.x̃.v⊗w+ x̃.v⊗ y.w+x.v⊗ ỹ.w+ v⊗ y.ỹ.w− x̃.x.v⊗w−x.v⊗ ỹ.w− x̃.v⊗
y.w − v ⊗ ỹ.y.w = x.x̃.v ⊗ w − x̃.x.v ⊗ w + v ⊗ y.ỹ.w − v ⊗ ỹ.y.w.

Notation 1. Given an L-module V and a K-module W , we will denote by

V �W the tensor product V ⊗W with the L⊕K-module structure given in

Definition (7.1). We will call V �W the outer tensor product of V and W .

Proposition 7.1.1. Let V be an irreducible L-module of finite dimension

and let W be an irreducible K-module of finite dimension. Then V �W is

an irreducible L⊕K-module.

Proof. Let S be a nonzero L⊕K-submodule of V �W and let z =
∑l

i=1 vi⊗wi
with vi ∈ V and wi ∈ W , be a nonzero element of S. Let us consider the set

{vi1 , . . . , vim} of elements among the vi’s such that:

1. the vik ’s are linearly independent,

2. every element vi is a linear combination of the vik ’s.

Then we can write z =
∑m

k=1 vik⊗w̃ik for some w̃ik ∈ W . Since the projection

map pV : V � W → V is a homomorphism of L-modules, pV (S) is an L-

submodule of V and it is nonzero because pV (z) =
∑m

k=1 vik 6= 0. Therefore

pV (S) = V due to the irreducibility of V . On the other hand we can repeat

the same argument for W considering the set {wj1 , . . . , wjn} of the elements

among the wi’s with the same properties as above. Hence pW (S) = W . Let

now B = {v1, . . . vs} be a basis of V and B′ = {w1, . . . , wr} be a basis of W .

Since pV (S) = V , for every vk ∈ B, there exists some z̃ ∈ S such that vk =

pV (z̃). We can write z̃ =
∑s

i=1

∑r
j=1 aijvi ⊗ wj =

∑s
i=1 vi ⊗ (

∑r
j=1 aijwj) =∑s

i=1 vi ⊗ w̃i where we set w̃i =
∑r

j=1 aijwj, hence vk = pV (z̃) =
∑s

i=1 vi,
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i.e. we must have w̃i = 0 for i 6= k and w̃k 6= 0 because z̃ 6= 0. It follows

that z̃ = vk ⊗ w̃k. Moreover pW (U(K).z̃) = W because pW (z̃) 6= 0 and

W is an irreducible K-module, therefore, for wj ∈ B′, there exists some

element z̄ ∈ U(K).z̃ such that pW (z̄) = wj hence for every k ∈ {1, . . . , s} and

j ∈ {1, . . . , r} there exists an element of S of the form vk ⊗ wj. It follows

that S = V �W .

7.2 The action of gln(F) on (Fn)∗

Let us consider the canonical basis {e1, . . . , en} of Fn and its dual basis

{ϕe1 , . . . , ϕen} of (Fn)∗, i.e. ϕei(ej) = δij. We can identify every vector ϕei

with the row vector e∗i = (0, . . . , 0, 1, 0, . . . , 0) with 1 in the i-th position. The

vector space Fn is a gln(F)-module with the standard action given by matrix

multiplication, hence (Fn)∗ is a gln(F)-module with the following action:

(X.ϕ)(v) = −ϕ(Xv) (7.4)

where X ∈ gln(F), ϕ ∈ (Fn)∗ and v ∈ Fn. Note that (X.ϕei)(ej) =

− ϕei(Xej) = −ϕei(
∑

kXkjek) = −Xij, i.e.

X.ϕei = −
∑
j

Xijϕej . (7.5)

According to the identification of ϕej with e∗j , we identify X.ϕei with X.e∗i

and −
∑

j Xijϕej with −
∑

j Xije
∗
j thus, according to these notations, the

action is the following:

X.e∗i = −
∑
j

Xije
∗
j = −e∗iX. (7.6)

7.3 Example 1: the Lie superalgebra l(m,n)

Let V = V0̄ ⊕ V1̄ be a Z2-graded space with dim V0̄ = m and dim V1̄ = n

and let H = {v1, . . . , vm, vm+1, . . . , vm+n} be a homogeneous basis of V where

{v1, . . . , vm} is a basis of V0̄ and {vm+1, . . . , vm+n} is a basis of V1̄. We already
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noticed in Example (6.5) that the Lie superalgebra l(m,n) has a consistent

Z-grading l(m,n) = l−1⊕ l(m,n)0̄⊕ l1 where, with respect to H, l−1 consists

of the matrices of the form (
0 0

C 0

)
,

l(m,n)0̄ consists of the matrices of the form(
A 0

0 D

)
and l1 consists of the matrices of the form(

0 B

0 0

)
with A ∈ Mm,m(F), B ∈ Mm,n(F), C ∈ Mn,m(F) and D ∈ Mn,n(F). From

now on we will identify the endomorphisms in l−1, l(m,n)0̄ and l1 with their

matrices with respect to the homogeneous basis H. Then

• l(m,n)0̄
∼= glm(F)⊕ gln(F) as Lie algebras,

• l−1
∼= Fn � (Fm)∗ as l(m,n)0̄-modules,

• l1 ∼= Fm � (Fn)∗ as l(m,n)0̄-modules.

Notation 2. We denote by (A,D) the matrices in l(m,n)0̄, i.e. l(m,n)0̄ =

{(A,D) | A ∈ glm(F), D ∈ gln(F)}.

We recall that l−1 is a l(m,n)0̄-module with respect to the adjoint action[(
A 0

0 D

)
,

(
0 0

C 0

)]
=

(
0 0

DC − CA 0

)
. (7.7)

Lemma 7.3.1. The Lie algebra l(m,n)0̄ is isomorphic to the Lie algebra

gln(F)⊕ glm(F).

Proof. Let us consider the linear map:

φ : gln(F)⊕ glm(F)→ l(m,n)0̄

D + A 7→ (A,D).
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The linear map φ is an isomorphism of linear spaces, moreover φ([D+A, D̃+

Ã]) = φ([D, D̃] + [A, Ã]) = ([A, Ã], [D, D̃]) = (AÃ − ÃA,DD̃ − D̃D) =

(AÃ,DD̃)− (ÃA, D̃D) = [(A,D), (Ã, D̃)] = [φ(D+A), φ(D̃+ Ã)] hence φ is

an isomorphism of Lie algebras.

Lemma 7.3.2. The set of matrices Mn,m(F) is an l(m,n)0̄-module with the

following action:

(A,D).C = DC − CA. (7.8)

Proof. The action is linear on l(m,n)0̄ and on Mn,m(F) by the definition

of the action. Moreover [(A,D), (Ã, D̃)].C = (AÃ − ÃA,DD̃ − D̃D).C =

DD̃C − D̃DC − CAÃ + CÃA, and (A,D).(Ã, D̃).C − (Ã, D̃).(A,D).C =

(A,D).(D̃C −CÃ)− (Ã, D̃).(DC −CA) = DD̃C −DCÃ− D̃CA+CÃA−
D̃DC+D̃CA+DCÃ−CAÃ = DD̃C+CÃA−D̃DC−CAÃ, hence Mn,m(F)

is an l(m,n)0̄-module.

Remark 59. The l(m,n)0̄-modules l−1 and Mn,m(F) are isomorphic.

Proposition 7.3.3. The l(m,n)0̄-module l−1 is isomorphic to the outer ten-

sor product Fn � (Fm)∗.

Proof. Let us denote by eij the matrices with (eij)rs = δirδjs and let us

consider the map:

φ : Mn,m(F)→ Fn � (Fm)∗ (7.9)

eij 7→ ei ⊗ e∗j

extended on Mn,m(F) by linearity. The linear map φ is an isomorphism

of vector spaces. Note that φ(Deij) = φ(
∑

kDkiekj) =
∑

kDkiφ(ekj) =∑
kDki(ek⊗e∗j) = (

∑
kDkiek)⊗e∗j = Dei⊗e∗j and−φ(eijA) = −φ(

∑
k Ajkeik) =

−
∑

k Ajkφ(eik) = −
∑

k Ajk(ei ⊗ e∗k) = ei ⊗ (−
∑

k Ajke
∗
k) = ei ⊗ (−e∗jA). It

follows that φ((A,D).eij) = φ(Deij − eijA) = Dei ⊗ e∗j + ei ⊗ (−e∗jA) =

D.ei ⊗ e∗j + ei ⊗ A.e∗j = (D + A).(ei ⊗ e∗j) = (A,D).φ(eij), hence φ is an

isomorphism of l(m,n)0̄-modules.

By the same argument we can prove the following results:
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Lemma 7.3.4. The Lie algebra l(m,n)0̄ is isomorphic to the Lie algebra

glm(F)⊕ gln(F)

Lemma 7.3.5. The set of matrices Mm,n(F) is an l(m,n)0̄-module with the

following action:

(A,D).B = AB −BD. (7.10)

Remark 60. The l(m,n)0̄-modules l1 and Mm,n(F) are isomorphic.

Proposition 7.3.6. The l(m,n)0̄-module l1 is isomorphic to the outer tensor

product Fm � (Fn)∗.

7.4 Example 2: the classical Lie superalgebra

A(m,n)

Definition 7.2. We define

sl(m,n) = {a ∈ l(m,n) | str(a) = 0} (7.11)

where str(a) is the supertrace of a.

Remark 61. The subspace sl(m,n) is an ideal of l(m,n) of codimension 1.

Proof. Thanks to Proposition (6.3.1(2)), str([a, b]) = 0 for all a, b ∈ l(m,n).

In particular, if a ∈ sl(m,n) and b ∈ l(m,n), str([a, b]) = 0, i.e. [a, b] lies

in sl(m,n). Finally the condition on the supertrace forces sl(m,n) to have

codimension 1 in l(m,n).

Remark 62. The subspace sl(m,n) inherits the Z-grading l−1⊕ sl(m,n)0̄⊕ l1
from l(m,n) where l−1 consists of the matrices of the form(

0 0

C 0

)
,

sl(m,n)0̄ consists of the matrices of the form(
A 0

0 D

)
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with tr(A) = tr(D), because of the condition on the supertrace, and l1

consists of the matrices of the form(
0 B

0 0

)

with A ∈Mm,m(F), B ∈Mm,n(F), C ∈Mn,m(F) and D ∈Mn,n(F).

Remark 63. If m = n, sl(n, n) contains the one dimensional ideal consisting

on the scalar matrices λ12n. On the contrary, if m 6= n, the unique scalar

multiple of the identity in sl(m,n) is 0 (since char F = 0).

Definition 7.3. We define

A(m,n) = sl(m+ 1, n+ 1), for m 6= n,m ≥ 0, n ≥ 0 (7.12)

A(n, n) = sl(n+ 1, n+ 1)/〈12n+2〉, n ≥ 0 (7.13)

Remark 64. The Z-grading of sl(m+1, n+1) induces a Z-grading of A(m,n)

of the form A(m,n) = l−1 ⊕ A(m,n)0̄ ⊕ l1.

Lemma 7.4.1. For m 6= n, the Lie algebra A(m,n)0̄ is isomorphic to

slm+1(F)⊕sln+1(F)⊕FL and the Lie algebra A(n, n)0̄ is isomorphic to sln+1(F)⊕
sln+1(F).

Proof. According to notation 2 we denote the elements of sl(m + 1, n + 1)0̄

by (A,D) where A ∈ glm+1(F), D ∈ gln+1(F) and tr(A) = tr(D). We can

write (A,D) ∈ sl(m+ 1, n+ 1)0̄ as follows:

(A,D) =
(
A− tr(A)

m+ 1
1m+1, D −

tr(A)

n+ 1
1n+1

)
+
( tr(A)

m+ 1
1m+1,

tr(A)

n+ 1
1n+1

)
(7.14)

Since tr(A− tr(A)
m+1

1m+1) = 0 and tr(D− tr(A)
n+1

1n+1) = 0, A− tr(A)
m+1

1m+1 and D−
tr(A)
n+1

1n+1 lie in slm+1(F) and in sln+1(F) respectively. Moreover every matrix

of slm+1(F) (sln+1(F)) can be written as a difference between a matrix of

glm+1(F) (gln+1(F)) and a diagonal matrix. On the other hand the set of the

matrices of the form
(
tr(A)
m+1

1m+1,
tr(A)
n+1

1n+1

)
is a Lie algebra isomorphic to FL.

Therefore, as in Lemma (7.3.1), we can say that sl(m+1, n+1)0̄
∼= slm+1(F)⊕
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sln+1(F) ⊕
{(

λ
m+1

1m+1,
λ
n+1

1n+1

)
, λ ∈ F

}
L

∼= slm+1(F) ⊕ sln+1(F) ⊕ FL. It

follows that if m 6= n A(m,n)0̄
∼= slm+1(F) ⊕ sln+1(F) ⊕ FL and A(n, n)0̄ =

sl(m+ 1, n+ 1)0̄/〈12n+2〉 ∼=
(
sln+1(F)⊕ sln+1(F)⊕

{(
λ
n+1

1n+1,
λ
n+1

1n+1

)
, λ ∈

F
})
/〈12n+2〉 ∼= sln+1(F)⊕ sln+1(F).

Proposition 7.4.2. The sl(m+1, n+1)0̄-modules l−1 and Fn+1�(Fm+1)∗�F
are isomorphic. In particular, for A(m,n), l−1

∼= Fn+1 � (Fm+1)∗ � F, if

m 6= n, and l−1
∼= Fn+1 � (Fn+1)∗, if m = n.

Proof. Let us consider the case m 6= n. Given (A,D) ∈ sl(m+ 1, n+ 1)0̄ we

set Ã = A − tr(A)
m+1

1m+1 and D̃ = D − tr(A)
n+1

1n+1, thus we can write (A,D) as

follows:

(A,D) = (Ã, D̃) +

(
tr(A)

m+ 1
1m+1,

tr(A)

n+ 1
1n+1

)
. (7.15)

The action of sl(m+ 1, n+ 1)0̄ on l−1 is the following:[(
Ã 0

0 D̃

)
+

(
tr(A)
m+1

1m+1 0

0 tr(A)
n+1

1n+1

)
,

(
0 0

C 0

)]
=(

0 0

D̃C − CÃ 0

)
+

(
0 0

tr(A)
n+1

C − tr(A)
m+1

C 0

)
= 0 0

D̃C − CÃ+ tr(A)
(

m−n
(n+1)(m+1)

)
C 0

 .

The following action of sl(m+ 1, n+ 1)0̄ on Mn+1,m+1(F)

(A,D).C = D̃C − CÃ+ tr(A)

(
m− n

(n+ 1)(m+ 1)

)
C (7.16)

turns Mn+1,m+1(F) into a sl(m+1, n+1)0̄-module which is isomorphic to the

sl(m+ 1, n+ 1)0̄-modules l−1 (the proofs are identical to the ones of Lemma

(7.3.2) and Remark (59)). We now want to prove that the sl(m+ 1, n+ 1)0̄-

modules Mn+1,m+1(F) and Fn+1�(Fm+1)∗�F are isomorphic. Let us consider

the map:

ϕ : Mn+1,m+1(F)→ Fn+1 � (Fm+1)∗ � F (7.17)



76 7. Examples

eij 7→ ei ⊗ e∗j ⊗ 1

and extend ϕ on Mn+1,m+1(F) by linearity.

The map ϕ is an isomorphism of vector spaces and ϕ is a homomorphism of

sl(m+ 1, n+ 1)0̄-modules, indeed

(A,D).eij = D̃eij − eijÃ+ tr(A)

(
m− n

(n+ 1)(m+ 1)

)
eij 7→ D̃ei ⊗ e∗j ⊗ 1+

−ei ⊗ e∗jÃ⊗ 1 + tr(A)

(
m− n

(n+ 1)(m+ 1)

)
ei ⊗ e∗j ⊗ 1 =

D̃ei ⊗ e∗j ⊗ 1− ei ⊗ e∗jÃ⊗ 1 + ei ⊗ e∗j ⊗ tr(A)

(
m− n

(n+ 1)(m+ 1)

)
=(

D̃ + Ã+ tr(A)

(
m− n

(n+ 1)(m+ 1)

))
.(ei ⊗ e∗j ⊗ 1) =

(A,D).(ei ⊗ e∗j ⊗ 1) = (A,D).ϕ(eij)

where Deij 7→ D̃ei⊗e∗j⊗1 and −eijÃ 7→ −ei⊗e∗jÃ⊗1 by the same arguments

as those used in the proof of Proposition (7.3.3). Hence ϕ is an isomorphism

of sl(m+ 1, n+ 1)0̄-modules.

For the case m = n the proof is the same of the one of Proposition (7.3.3).

With an identical proof the following proposition holds:

Proposition 7.4.3. The sl(m+1, n+1)0̄-modules l1 and Fm+1�(Fn+1)∗�F
are isomorphic. In particular, for A(m,n), l1 ∼= Fm+1�(Fn+1)∗�F, if m 6= n,

and l1 ∼= Fn+1 � (Fn+1)∗, if m = n.

Remark 65. l1 is an irreducible A(m,n)0̄-module.

Proof. Since the Lie algebras slm+1(F) and sln+1(F) act transitively on Fm+1

and on Fn+1 respectively, Fm+1 is an irreducible slm+1(F)-module and Fn+1

is an irreducible sln+1(F)-module. Therefore (Fn+1)∗ is also an irreducible

sln+1(F)-module by Proposition (1.1.5). Hence, by Proposition (7.1.1), l1

is an irreducible A(n, n)0̄-module. Moreover F is an irreducible FL-module

hence, by Proposition (7.1.1), l1 is an irreducible A(m,n)0̄-module also for

m 6= n.
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Lemma 7.4.4. The superalgebra A(m,n) is transitive.

Proof. Let us consider a matrix a ∈ sl(m+ 1, n+ 1)0̄, a =

(
A 0

0 D

)
where

tr(A) = tr(D). We want to prove that [a, l−1] = 0 implies a = 0, i.e.[(
A 0

0 D

)
,

(
0 0

C 0

)]
= 0 for all C ∈Mn,m(F) implies A = D = 0.

0 =

[(
A 0

0 D

)
,

(
0 0

eij 0

)]
=

(
0 0

Deij − eijA 0

)
,

therefore 0 = Deij − eijA, i.e. Deij = eijA. Since Deij =
∑n

k=1 Dkiekj

and eijA =
∑m

k=1Ajkeik, Dii = Ajj and Dki = 0 for k 6= i, Ajk = 0 for

k 6= j. Moreover this holds for all i = 1, . . . , n and j = 1, . . . ,m. Hence

a =

(
A 0

0 D

)
is a scalar multiple of the identity, i.e. a is 0 because the

only scalar multiple of the identity in A(m,n) is 0.

Let us now consider a matrix b ∈ l1, b =

(
0 B

0 0

)
. We want to prove

that [b, l−1] = 0 implies b = 0, i.e.

[(
0 B

0 0

)
,

(
0 0

C 0

)]
= 0 for all

C ∈Mn,m(F) implies B = 0.

0 =

[(
0 B

0 0

)
,

(
0 0

eij 0

)]
=

(
Beij 0

0 eijB

)
,

therefore 0 = Beij =
∑m

k=1 Bkiekj, i.e. Bki = 0 for all k = 1, . . . ,m. On

the other hand we can choose eij with i = 1, . . . , n, hence Bki = 0 for all

k = 1, . . . ,m and for all i = 1, . . . , n, i.e. B = 0.

Lemma 7.4.5. [l−1, l1] = A(m,n)0̄

Proof. [l−1, l1] ⊆ A(m,n)0̄ because

[(
0 0

C 0

)
,

(
0 B

0 0

)]
=

(
BC 0

0 CB

)
and tr(BC) = tr(CB). So we want to prove A(m,n)0̄ ⊆ [l−1, l1]. Since[(

0 0

eij 0

)
,

(
0 elk

0 0

)]
=

(
δkielj 0

0 δjleik

)
, if i 6= k and j = l we get all
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the matrices of the form

(
0 0

0 eik

)
, if k = i and j 6= l we get

(
elj 0

0 0

)
, i.e.

[l−1, l1] contains all the elements out of the diagonal of matrices in A(m,n)0̄.

If k = i and j = l we have

(
ejj 0

0 eii

)
whose linear combinations give all

the diagonal elements of a matrix with 0-supertrace.

Definition 7.4. A finite dimensional Lie superalgebra g = g0̄ ⊕ g1̄ is called

classical if it is simple and the representation of g0̄ on g1̄ is completely re-

ducible.

Proposition 7.4.6. The Lie superalgebra A(m,n) is classical.

Proof. Since Fn+1 is an irreducible sln+1(F)-module, (Fm+1)∗ is an irreducible

slm+1(F)-module and F is an irreducible FL-module, by Proposition (7.1.1),

Fn+1 � (Fm+1)∗ � F ∼= l−1, if m 6= n, and Fn+1 � (Fn+1)∗ ∼= l−1, if m =

n, are irreducible sl(m + 1, n + 1)0̄-modules. Thus A(m,n) is irreducible

because l−1 is an irreducible A(m,n)0̄-module. By Lemma (7.4.4), A(m,n)

is transitive, by Lemma (7.4.5) [l−1, l1] = A(m,n)0̄ and by Remark (65)

[A(m,n)0̄, l1] = l1. Hence by Proposition (6.7.2) A(m,n) is simple. Moreover

A(m,n)1̄ = l−1 ⊕ l1 ∼= Fn+1 � (Fm+1)∗ � F ⊕ Fm+1 � (Fn+1)∗ � F, if m 6= n,

and A(n, n)1̄ = l−1 ⊕ l1 ∼= Fn+1 � (Fn+1)∗ ⊕ Fn+1 � (Fn+1)∗, if m = n, are

completely reducible A(m,n)0̄-modules. It follows that A(m,n) is a classical

Lie superalgebra.

7.5 Example 3: the Lie algebra W (m, 0)

Let us consider the Lie algebra F[x1, . . . , xm] of polynomials in m symbols

x1, . . . , xm.

Remark 66. By definition of derivation of an algebra, if D is a derivation of

A = F[x1, . . . , xm], then D(1) = 0. It follows that the images D(xi) define

a derivation of A completely, due to the linearity of D and the Leibniz rule
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(1.5). In particular, the maps

∂

∂xi
: A→ A (7.18)

∂

∂xi
(xj) = δij

for i, j = 1, . . . ,m extend uniquely to derivations of A.

Notation 3. We will denote the Lie algebra of derivations der(F[x1, . . . , xm])

by W (m, 0).

Proposition 7.5.1.

W (m, 0) =

{
X =

m∑
i=1

Pi
∂

∂xi

∣∣∣∣ Pi ∈ F[x1, . . . , xm]

}
(7.19)

Proof. The vector fields X =
∑m

i=1 Pi
∂
∂xi

are derivations because ∂
∂xi

is a

derivation for every i. Let now D ∈ W (m, 0). Then D(xi) = Pi for some

Pi ∈ F[x1, . . . , xm]. It follows that D =
∑m

i=1 Pi
∂
∂xi

.

Remark 67. If we set deg xi = 1 for i = 1, . . . ,m, we obtain a Z-grading of

F[x1, . . . , xm]

F[x1, . . . , xm] = ⊕k≥0F[x1, . . . , xm]k (7.20)

where, by an abuse of notation, we denote by F[x1, . . . , xm]k the vector space

〈xi1 · · ·xik ∂
∂xj
〉. This Z-grading induces a Z-grading of W (m, 0):

W (m, 0) = ⊕k≥−1W (m, 0)k

with

W (m, 0)k = {D ∈ W (m, 0) | D(F[x1, . . . , xm]i) ⊆ F[x1, . . . , xm]i+k} ={∑
i

Pi
∂

∂xi

∣∣∣∣ Pi ∈ F[x1, . . . , xm]k+1, i = 1, . . . , n

}
.

Note that W (m, 0)−1 = 〈 ∂
∂x1
, . . . , ∂

∂xm
〉 and that [ ∂

∂xi
, ∂
∂xj

] ∈ W (m, 0)−2 =

0 consistently with
∂

∂xi

∂

∂xj
=

∂

∂xj

∂

∂xi
. (7.21)
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Proposition 7.5.2. 1. W (m, 0) = ⊕k≥−1W (m, 0)k is transitive.

2. The Lie algebras W (m, 0)0 and glm(F) are isomorphic.

3. The W (m, 0)0-modules W (m, 0)−1 and (Fm)∗ are isomorphic.

4. W (m, 0)k = W (m, 0)k1 for k ≥ 1 and m ≥ 2.

5. W (m, 0) is simple for m ≥ 2.

Proof. 1) Let us consider a ∈ W (m, 0)≥0 such that [a,W (m, 0)−1] = 0.

We want to prove that a = 0. We can assume a ∈ W (m, 0)k, i.e. a =∑m
i=1 Pi

∂
∂xi

with Pi ∈ F[x1, . . . , xm]k+1, then 0 = [a,W (m, 0)−1] if and only

if 0 =
[
a, ∂

∂xj

]
=
∑

i

[
Pi

∂
∂xi
, ∂
∂xj

]
= −

∑
i

(
∂Pi
∂xj

)
∂
∂xi

for all j = 1, . . . ,m.

Therefore ∂Pi
∂xj

= 0 for all i = 1, . . . ,m. Since this relation holds for every

j = 1, . . . ,m, Pi is a scalar. On the other hand Pi ∈ F[x1, . . . , xm]k+1 with

k ≥ 0, hence Pi = 0 because the only scalar in F[x1, . . . , xm]k+1 with k ≥ 0

is 0.

2) Since [W (m, 0)0,W (m, 0)0] ⊆ W (m, 0)0 and W (m, 0) is a Lie algebra,

W (m, 0)0 is a Lie algebra. W (m, 0)0 =
{∑

i Pi
∂
∂xi

∣∣∣ Pi ∈ F[x1, . . . , xm]1

}
=

〈xi ∂
∂xj
| i, j = 1, . . . ,m〉. Let us define the following linear map:

φ : glm(F)→ W (m, 0)0, eij 7→ xi
∂

∂xj
. (7.22)

Since the linear map φ is linear and surjective by construction and dim glm(F) =
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dim W (m, 0)0, φ is an isomorphism of vector spaces. Moreover

φ([A,B]) = φ

([
n∑

i,j=1

Aijeij,

n∑
k,l=1

Bklekl

])
=

n∑
i,j=1

n∑
k,l=1

AijBklφ([eij, ekl]) =

n∑
i,j=1

n∑
k,l=1

AijBklφ(δjkeil − δliekj) =

n∑
i,j=1

n∑
k,l=1

AijBklδjkφ(eil)−
n∑

i,j=1

n∑
k,l=1

AijBklδliφ(ekj) =

n∑
i,j=1

n∑
l=1

AijBjlxi
∂

∂xl
−

n∑
i,j=1

n∑
k=1

AijBkixk
∂

∂xj

and

[φ(A), φ(B)] =
n∑

i,j=1

n∑
k,l=1

AijBkl[φ(eij), φ(ekl)] =

n∑
i,j=1

n∑
k,l=1

AijBkl

[
xi

∂

∂xj
, xk

∂

∂xl

]
=

n∑
i,j=1

n∑
k,l=1

AijBkl

(
δjkxi

∂

∂xl
− δlixk

∂

∂xj

)
=

n∑
i,j=1

n∑
l=1

AijBjlxi
∂

∂xl
−

n∑
i,j=1

n∑
k=1

AijBkixk
∂

∂xj
.

Therefore φ is an isomorphism of Lie algebras.

3) W (m, 0)−1 is a W (m, 0)0-module with respect to the restriction of the

adjoint action,

W (m, 0)−1 = 〈 ∂
∂x1

, . . . ,
∂

∂xn
〉.

Let us define the following linear map:

ψ : (Fm)∗ → W (m, 0)−1, e
∗
i 7→

∂

∂xi
. (7.23)

Since the map ψ is linear, surjective and dim (Fm)∗ = dim W (m, 0)−1, ψ is

an isomorphism of vector spaces. Moreover, thank to the isomorphism of Lie
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algebras defined in (7.22),

ψ

((
n∑

i,j=1

Aijxi
∂

∂xj

)
.

(
n∑
k

bke
∗
k

))
= ψ

((
n∑

i,j=1

Aijeij

)
.

(
n∑
k

bke
∗
k

))
=

ψ

(
−
∑
i,j

∑
k

Aijbkδkie
∗
j

)
= −

∑
i,j

Aijbi
∂

∂xj

and (
n∑

i,j=1

Aijxi
∂

∂xj

)
.ψ(

n∑
k

bke
∗
k) =(

n∑
i,j=1

Aijxi
∂

∂xj

)
.

(
n∑
k

bk
∂

∂xk

)
=

n∑
i,j=1

n∑
k

Aijbk

[
xi

∂

∂xj
,
∂

∂xk

]
=

n∑
i,j=1

n∑
k

Aijbk

(
xi

∂

∂xj

∂

∂xk
− δik

∂

∂xj
− xi

∂

∂xk

∂

∂xi

)
=

−
n∑

i,j=1

Aijbi
∂

∂xj
.

Therefore ψ is a homomorphism of W (m, 0)0-modules and an isomorphism

of vector spaces. It follows that ψ is an isomorphism of W (m, 0)0-modules.

4) W (m, 0)1 = 〈xixj ∂
∂xk
〉. Let us prove that W (m, 0)k = W (m, 0)k1 by in-

duction on k. If k = 1 there is nothing to prove. Let us suppose that

W (m, 0)k = W (m, 0)k1 and let us prove that W (m, 0)k+1 = W (m, 0)k+1
1 .

W (m, 0)k+1
1 ⊆ W (m, 0)k+1 because of the Z-grading of W (m, 0), so we only

need to prove that W (m, 0)k+1 ⊆ W (m, 0)k+1
1 .[
Pj

∂

∂xj
, xi1xi2

∂

∂xi3

]
=

δji1Pjxi2
∂

∂xi3
+ δji2Pjxi1

∂

∂xi3
− xi1xi2

(
∂Pj
∂xi3

)
∂

∂xj

with j, i1, i2, i3 ∈ {1, . . . ,m}. Let us consider r ∈ {1, . . . ,m}, Pj = xj1 · · ·xjk+1

with j1, . . . , jk+1 ∈ {1, . . . ,m} with jl 6= r for all l = 1, . . . ,m. Let us con-
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sider, moreover, i1, i2 ∈ {1, . . . ,m}. Therefore, if i1 6= i2,[
xj1 · · ·xjk+1

∂

∂xi1
, xi1xi2

∂

∂xr

]
= xj1 · · ·xjk+1

xi2
∂

∂xr

and, if i1 = i2,[
xj1 · · ·xjk+1

∂

∂xi1
, xi1xi2

∂

∂xr

]
= 2xj1 · · · xjk+1

xi1
∂

∂xr
.

On the other hand, for j1, . . . , jk−s+1 ∈ {1, . . . ,m} with jl 6= r and s ≥ 1,[
xsrxj1 · · ·xjk−s+1

∂

∂xr
, x2

r

∂

∂xr

]
=

2xs+1
r xj1 · · ·xjk−s+1

∂

∂xr
− sxs+1

r xj1 · · ·xjk−s+1

∂

∂xr
=

(2− s)xs+1
r xj1 · · ·xjk−s+1

∂

∂xr
.

Moreover, for s = 2 and l 6= r, [
x2
rxj1 · · ·xjk−1

∂

∂xr
, xrxl

∂

∂xr

]
=

x3
rxj1 · · · xjk−1

∂

∂xr
− 2xlx

2
rxj1 · · ·xjk−1

∂

∂xr
=

x3
rxj1 · · ·xjk−1

∂

∂xr
− 2

[
xrxj1 · · ·xjk−1

xl
∂

∂xr
, x2

r

∂

∂xr

]
,

i.e. [
x2
rxj1 · · · xjk−1

∂

∂xr
, xrxl

∂

∂xr

]
+ 2

[
xrxj1 · · ·xjk−1

xl
∂

∂xr
, x2

r

∂

∂xr

]
=

x3
rxj1 · · ·xjk−1

∂

∂xr
.

Hence all the generators of W (m, 0)k+1 lie in [W (m, 0)k,W (m, 0)1] =

[W (m, 0)k1,W (m, 0)1] = W (m, 0)k+1
1 . It follows W (m, 0)k+1 = W (m, 0)k+1

1

for all k ≥ 1 and m ≥ 2.

5) Let us prove that [W (m, 0)−1,W (m, 0)1] = W (m, 0)0. As before we only
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need to prove that [W (m, 0)−1,W (m, 0)1] ⊇ W (m, 0)0. Since
[
∂
∂xi
, x2

i
∂
∂xj

]
=

2xi
∂
∂xj

, W (m, 0)0 ⊆ [W (m, 0)−1,W (m, 0)1], i.e.

W (m, 0)0 = [W (m, 0)−1,W (m, 0)1].

Let us prove that [W (m, 0)0,W (m, 0)1] = W (m, 0)1. We only need to prove

that [W (m, 0)0,W (m, 0)1] ⊇ W (m, 0)0. Notice that

•
[
xi

∂
∂xi
, x2

i
∂
∂xi

]
= x2

i
∂
∂xi

,

•
[
xi

∂
∂xi
, x2

i
∂
∂xj

]
= 2x2

i
∂
∂xj

for i 6= j,

•
[
xi

∂
∂xj
, x2

j
∂
∂xj

]
= 2xixj

∂
∂xj

for i 6= j

•
[
xi

∂
∂xj
, x2

j
∂
∂xk

]
= 2xixj

∂
∂xk

.

Since all the generators of W (m, 0)1 lie in [W (m, 0)0,W (m, 0)1], W (m, 0)1 ⊆
[W (m, 0)0,W (m, 0)1], i.e. [W (m, 0)0,W (m, 0)1] = W (m, 0)1. Summariz-

ing: [W (m, 0),W (m, 0)] is clearly nonzero, W (m, 0) is transitive, (Fm)∗ is

an irreducible glm(F)-module, hence W (m, 0)−1 is an irreducible W (m, 0)0-

module, i.e. W (m, 0) is irreducible, [W (m, 0)−1,W (m, 0)1] = W (m, 0)0,

[W (m, 0)0,W (m, 0)1] = W (m, 0)1 and, for k ≥ 1 and m ≥ 2, W (m, 0)k =

W (m, 0)k1. Therefore W (m, 0) is simple for m ≥ 2 by Proposition (6.7.2).

Remark 68. Note that, in the case of W (1, 0) = der(F[x]), x3 d
dx
∈ W (1, 0)2

but W (1, 0)2
1 = [W (1, 0)1,W (1, 0)1] = 0 because

[
ax2 d

dx
, bx2 d

dx

]
= 0. It

follows that W (1, 0)2
1 6= W (1, 0)2. Nevertheless we can show that W (1, 0) is

also simple.

Proof. Note that [W (1, 0),W (1, 0)] 6= 0. Let now I be a nonzero ideal of

W (1, 0) and let z be a nonzero element of I. Since W (1, 0) has a Z-grading,

I = ⊕j≥−1Ij and z =
∑k

i=−1 zi with zi ∈ W (1, 0)i. By transitivity 0 6=
[z,W (1, 0)−1] ⊆ I, therefore there exists an element D ∈ W (1, 0)−1 such

that 0 6= [z,D] =
∑k

i=−1[zi, D] =
∑k−1

i=−1[zi+1, D] =
∑k−1

i=−1 z̃i ∈ I. Iterating

this argument we prove that there exists a nonzero element of I∩W (m, 0)−1.
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On the other hand I ∩W (m, 0)−1 = W (m, 0)−1 because dim W (m, 0)−1 = 1.

Hence I ⊇ W (m, 0)−1. In particular, d
dx
∈ I. It follows that I ⊇ W (1, 0)k

for every k ≥ −1 because −(k + 2)xk+1 d
dx

=
[
xk+2 d

dx
, d
dx

]
∈ I. Thus I =

W (1, 0).

7.6 Example 4: the Lie superalgebra W (0, n)

Let us consider the Grassmann superalgebra Λ(n) in n symbols ξ1, . . . , ξn.

In this section we write ξiξj instead of ξi ∧ ξj, therefore ξiξj = −ξjξi.

Remark 69. By definition of derivation of a superalgebra, if D is a derivation

of A = Λ(n), then D(1) = 0. It follows that the images D(ξi) define a

derivation of A completely, due to the linearity of D and the Leibniz rule

(6.8). In particular, the maps

∂

∂ξi
: A→ A (7.24)

∂

∂ξi
(ξj) = δij

for i, j = 1, . . . , n extend uniquely to derivations of A.

Notation 4. We will denote the Lie superalgebra of derivations der(Λ(n)) by

W (0, n).

Proposition 7.6.1.

W (0, n) =

{
D =

n∑
i=1

Pi
∂

∂ξi

∣∣∣∣ Pi ∈ Λ(n)

}
(7.25)

Proof.
∑n

i=1 Pi
∂
∂ξi

are derivations because ∂
∂ξi

is a derivation for every i. Let

now D ∈ W (0, n). Then D(ξi) = Pi for some Pi ∈ Λ(n). It follows that

D =
∑n

i=1 Pi
∂
∂ξi

.

Remark 70. If we set deg ξi = 1 for i = 1, . . . , n, we obtain a consis-

tent Z-grading of Λ(n) which induces a Z-grading of W (0, n): W (0, n) =
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⊕k≥−1W (0, n)k with

W (0, n)k = {D ∈ W (0, n) | D(Λ(n)i) ⊆ Λ(n)i+k} ={∑
i

Pi
∂

∂ξi

∣∣∣∣ deg Pi = k + 1, i = 1, . . . , n

}
.

Note that W (0, n)−1 = 〈 ∂
∂ξ1
, . . . , ∂

∂ξn
〉 and that [ ∂

∂ξi
, ∂
∂ξj

] ∈ W (0, n)−2 = 0

consistently with
∂

∂ξi

∂

∂ξj
= − ∂

∂ξj

∂

∂ξi
. (7.26)

Proposition 7.6.2. 1. W (0, n) = ⊕n−1
k=−1W (0, n)k is transitive.

2. The Lie algebras W (0, n)0 and gln(F) are isomorphic.

3. The W (0, n)0-modules W (0, n)−1 and (Fn)∗ are isomorphic.

4. W (0, n)k = W (0, n)k1 for k ≥ 1.

5. W (0, n) is simple for n ≥ 2.

Proof. 1) Let us consider a ∈ W (0, n)≥0 such that [a,W (0, n)−1] = 0. We

want to prove that a = 0. We can assume a ∈ W (0, n)k, i.e. a =
∑n

i=1 Pi
∂
∂ξi

with Pi ∈ Λ(n)k+1. Then 0 = [a,W (0, n)−1] if and only if 0 =
[
a, ∂

∂ξj

]
=[∑

i Pi
∂
∂ξi
, ∂
∂ξj

]
= −(−1)k−1

∑
i

(
∂Pi
∂ξj

)
∂
∂ξi

for all j = 1, . . . , n. Therefore
∂Pi
∂ξj

= 0 for all i = 1, . . . , n. Since the relation holds for every j = 1, . . . , n,

Pi is a scalar. On the other hand Pi ∈ Λ(n)k+1 with k ≥ 0, hence Pi = 0

because the only scalar in Λ(n)k+1 with k ≥ 0 is 0.

2) Since W (0, n)0 ⊆ W (0, n)0̄ and [W (0, n)0,W (0, n)0] ⊆ W (0, n)0, W (0, n)0

is a Lie algebra. W (0, n)0 =
{∑

i Pi
∂
∂ξi
| deg Pi = 1

}
= 〈ξi ∂

∂ξj
| i, j =

1, . . . , n〉. Let us define the following linear map:

φ : gln(F)→ W (0, n)0, eij 7→ ξi
∂

∂ξj
. (7.27)
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Since the linear map φ is linear and surjective by construction and dim gln(F) =

dim W (0, n)0, φ is an isomorphism of vector spaces. Moreover

φ([A,B]) = φ

([
n∑

i,j=1

Aijeij,

n∑
k,l=1

Bklekl

])
=

n∑
i,j=1

n∑
k,l=1

AijBklφ([eij, ekl]) =

n∑
i,j=1

n∑
k,l=1

AijBklφ(δjkeil − δliekj) =

n∑
i,j=1

n∑
k,l=1

AijBklδjkφ(eil)−
n∑

i,j=1

n∑
k,l=1

AijBklδliφ(ekj) =

n∑
i,j=1

n∑
l=1

AijBjlξi
∂

∂ξl
−

n∑
i,j=1

n∑
k=1

AijBkiξk
∂

∂ξj

and

[φ(A), φ(B)] =
n∑

i,j=1

n∑
k,l=1

AijBkl[φ(eij), φ(ekl)] =

n∑
i,j=1

n∑
k,l=1

AijBkl

[
ξi
∂

∂ξj
, ξk

∂

∂ξl

]
=

n∑
i,j=1

n∑
k,l=1

AijBkl

(
δjkξi

∂

∂ξl
− δliξk

∂

∂ξj

)
=

n∑
i,j=1

n∑
l=1

AijBjlξi
∂

∂ξl
−

n∑
i,j=1

n∑
k=1

AijBkiξk
∂

∂ξj
.

Therefore φ is an isomorphism of Lie algebras.

3) W (0, n)−1 is a W (0, n)0-module with respect to the restriction of the

adjoint action, W (0, n)−1 = 〈 ∂
∂ξ1
, . . . , ∂

∂ξn
〉. Let us define the following linear

map:

ψ : (Fn)∗ → W (0, n)−1, e
∗
i 7→

∂

∂ξi
. (7.28)

Since the map ψ is linear, surjective and dim (Fn)∗ = dim W (0, n)−1, ψ is

an isomorphism of vector spaces. Moreover, thank to the isomorphism of Lie



88 7. Examples

algebras defined in (7.27),

ψ

((
n∑

i,j=1

Aijξi
∂

∂ξj

)
.

(
n∑
k

bke
∗
k

))
= ψ

((
n∑

i,j=1

Aijeij

)
.

(
n∑
k

bke
∗
k

))
=

ψ

(
−
∑
i,j

∑
k

Aijbkδkie
∗
j

)
= −

∑
i,j

Aijbi
∂

∂ξj

and

(
n∑

i,j=1

Aijξi
∂

∂ξj

)
.ψ(

n∑
k

bke
∗
k) =(

n∑
i,j=1

Aijξi
∂

∂ξj

)
.

(
n∑
k

bk
∂

∂ξk

)
=

n∑
i,j=1

n∑
k

Aijbk

[
ξi
∂

∂ξj
,
∂

∂ξk

]
=

n∑
i,j=1

n∑
k

Aijbk

(
ξi
∂

∂ξj

∂

∂ξk
− δik

∂

∂ξj
+ ξi

∂

∂ξk

∂

∂ξi

)
=

−
n∑

i,j=1

Aijbi
∂

∂ξj
.

Therefore ψ is a homomorphism of W (0, n)0-modules and an isomorphism of

vector spaces. It follows that ψ is an isomorphism of W (0, n)0-modules.

4) W (0, n)1 = 〈ξiξj ∂
∂ξk
〉. Let us prove that W (0, n)k = W (0, n)k1 by induction

on k. If k = 1 there is nothing to prove. Let us suppose that W (0, n)k =

W (0, n)k1 and let us prove that W (0, n)k+1 = W (0, n)k+1
1 . We only need to
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prove that W (0, n)k+1 ⊆ W (0, n)k+1
1 .

[
ξi1 · · · ξik+1

∂

∂ξm
, ξj1ξj2

∂

∂ξl

]
=

δmj1ξi1 · · · ξik+1
ξj2

∂

∂ξl
− δmj2ξi1 · · · ξik+1

ξj1
∂

∂ξl
+

ξi1 · · · ξik+1
ξj1ξj2

∂

∂ξm

∂

∂ξl
− (−1)kξj1ξj2

∂

∂ξl
(ξi1 · · · ξik+1

)
∂

∂ξm
−

(−1)2k+1ξj1ξj2ξi1 · · · ξik+1

∂

∂ξl

∂

∂ξm
=

δmj1ξi1 · · · ξik+1
ξj2

∂

∂ξl
− δmj2ξi1 · · · ξik+1

ξj1
∂

∂ξl
+

ξi1 · · · ξik+1
ξj1ξj2

∂

∂ξm

∂

∂ξl
− (−1)kξj1ξj2

∂

∂ξl
(ξi1 · · · ξik+1

)
∂

∂ξm
+

(−1)2k+1+2(k+1)ξi1 · · · ξik+1
ξj1ξj2

∂

∂ξm

∂

∂ξl
=

δmj1ξi1 · · · ξik+1
ξj2

∂

∂ξl
− δmj2ξi1 · · · ξik+1

ξj1
∂

∂ξl
−

(−1)kξj1ξj2
∂

∂ξl
(ξi1 · · · ξik+1

)
∂

∂ξm

with i1, . . . ik+1, j1, j2,m, l ∈ {1, . . . , n}, is 6= ir if s 6= r and j1 6= j2. Therefore

[
ξi1 · · · ξik+1

∂

∂ξi1
, ξi2ξik+2

∂

∂ξi2

]
=

−(−1)kξi2ξik+2

∂

∂ξi2
(ξi1 · · · ξik+1

)
∂

∂ξi1
=

(−1)kξi2ξik+2
ξi1ξi3 · · · ξik+1

∂

∂ξi1
=

−ξi1ξi2 · · · ξik+2

∂

∂ξi1
.
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Besides [
ξi1 · · · ξik+1

∂

∂ξik+3

, ξi1ξik+2

∂

∂ξi1

]
=

−(−1)kξi1ξik+2

∂

∂ξi1
(ξi1 · · · ξik+1

)
∂

∂ξik+3

=

(−1)k+1ξi1ξik+2
ξi2 · · · ξik+1

∂

∂ξik+3

=

−ξi1 · · · ξik+2

∂

∂ξik+3

.

Since the elements of the form ξi1 · · · ξik+2

∂
∂ξm

with ij 6= ij′ for j 6= j′

and ij,m ∈ {1, . . . , n} are generators of W (0, n)k+1 we have proven that

W (0, n)k+1 ⊆ [W (0, n)k,W (0, n)1] = [W (0, n)k1,W (0, n)1] = W (0, n)k+1
1 .

5) Let us prove that [W (0, n)−1,W (0, n)1] = W (0, n)0. As before, we only

need to prove that [W (0, n)−1,W (0, n)1] ⊇ W (0, n)0. We have
[
∂
∂ξi
, ξjξl

∂
∂ξk

]
=

δijξl
∂
∂ξk
− δilξj

∂
∂ξk

. Therefore
[
∂
∂ξi
, ξiξj

∂
∂ξk

]
= ξj

∂
∂ξk

which are generators of

W (0, n)0. Now let us prove that [W (0, n)0,W (0, n)1] = W (0, n)1. Note

that
[
ξi

∂
∂ξj
, ξlξk

∂
∂ξm

]
= δjlξiξk

∂
∂ξm
− δjkξiξl ∂

∂ξm
− δmiξlξk ∂

∂ξj
. Therefore, given

i, j, k,m ∈ {1, . . . , n} with k 6= j and i 6= m,
[
ξi

∂
∂ξj
, ξjξk

∂
∂ξm

]
= ξiξk

∂
∂ξm

, i.e.

W (0, n)1 ⊆ [W (0, n)0,W (0, n)1]. Summarizing: W (0, n) is transitive, since

(Fn)∗ is an irreducible gln(F)-module, W (0, n)−1 is an irreducible W (0, n)0-

module, hence W (0, n) is irreducible, W (0, n)0 = [W (0, n)−1,W (0, n)1],

W (0, n)1 = [W (0, n)0,W (0, n)1] and W (0, n)k = W (0, n)k1 for k ≥ 1. There-

fore W (0, n) is simple for n ≥ 2 by Proposition (6.7.2).

Remark 71. The Lie superalgebra of derivations W (0, 1) is not simple, indeed

W (0, 1) = W (0, 1)−1 ⊕ W (0, 1)0 and
[
d
dξ
, ξ d

dξ

]
= d

dξ
hence W (0, 1)−1 is a

nonzero ideal properly contained in W (0, 1).
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