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Abstract 
 

During the thesis period a new class of atropisomeric xanthine derivatives has been studied. 

We decided to focus our attention on these purine bases because of their various biological 

activities, that could play an important role in the discovery of new bioactive atropisomers. 

The synthesized compounds bear an Aryl-N chiral axis in position 1 of the xanthine scaffold, 

around which the rotation is prevented by the presence of bulky ortho substituents. Through a 

retro synthetic analysis we synthesized three atropisomeric structures bearing in position 1 of 

the purine scaffold respectively an o-tolyl, o-nitrophenyl and a 1-naphthyl group. The 

conformational studies by DFT simulations showed that the interconversion energy barrier 

between the two available skewed conformations is higher enough to obtain thermally stable 

atropisomers. After the separation of the atropisomers, the experimental energy of 

interconversion was investigated by means of kinetic studies following the thermal 

racemization process using an enantioselective HPLC column. The absolute configuration of 

each atropisomer was assigned by experimental ECD analysis and TD-DFT simulations of the 

ECD spectra. 

Durante il periodo di tesi, è stata studiata una nuova classe di derivati xantinici atropisomerici. 

Abbiamo deciso di rivolgere la nostra attenzione verso queste basi puriniche, a causa delle 

loro note attività biologiche, tali da poter svolgere un ruolo importante nella produzione di 

nuovi composti atropisomerici farmacologicamente attivi. Le strutture sintetizzate non 

appartengono alla classe dei sistemi biarilici, bensì sono caratterizzate da un asse chirale arile-

N in posizione 1 dello scheletro xantinico. La rotazione attorno a tale asse è impedita dalla 

presenza di gruppi arilici orto sostituiti. A seguito di un’analisi retro sintetica, sono state 

sintetizzate tre strutture atropisomeriche recanti rispettivamente un o-tolile, un o-nitro-fenile e 

un gruppo naftile. Gli studi conformazionali effettuati con simulazioni DFT hanno dimostrato 

che la barriera energetica di interconversione tra le due conformazioni enantiomeriche è 

abbastanza alta da poter ottenere atropisomeri stabili a temperatura ambiente. Separati gli 

atropisomeri è stata studiata l' energia sperimentale di interconversione mediante analisi 

cinetiche, monitorando il processo di racemizzazione termica con l’ausilio di una colonna 

HPLC enantioselettiva. La configurazione assoluta di ogni atropisomero è stata assegnata  

tramite simulazioni TD-DFT degli spettri ECD, comparati con gli sperimentali. 
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1. Introduction 

1.1 Axial chirality and atropisomerism 

 

“The universe is asymmetric and I am persuaded that life, as it is known to us, is a direct 

result of the asymmetry of the universe or of its indirect consequences.” (Louis Pasteur, 

L’univers est dissymetrique). 

In 1848, Louis Pasteur recognized the omnipresence and significance of chirality. He realized 

that chiral objects exist as a pair of enantiomorphous mirror images that are non-

superimposable and related to each other, as stated also by Lord Kelvin in 1884, when he 

affirmed “I call any geometrical figure, or group of points, chiral, and say that it has 

chirality, if its image in a plane mirror,  ideally realized, cannot be brought to coincide with 

itself”. 

Today, we know that chirality can be encountered at all levels in nature; it is a key feature of 

natural compounds and plays an essential role in amino acids, peptides and proteins, sugars 

and numerous bioactive substances, including most of the drugs that are used in medicine.  

At the molecular level, chirality gives rise to enantiomers that can exhibit different chemical, 

physical and biological properties in a chiral environment.   

Stereochemistry embraces a broad variety of closely intertwined static and dynamic aspects 

that are all related to the three-dimensional structure of molecules. While static 

stereochemistry deals with the spatial arrangement of atoms in molecules, dynamic 

stereochemistry emphasizes structural change and comprises asymmetric reactions as well as 

interconversion of configurational and conformational isomers. The stereodynamic chemistry 

plays a fundamental role in modern chemistry, from asymmetric synthesis and drug discovery 

to material sciences.1 

Axial chirality is referred to molecules that do not possess a classic stereogenic center, but 

one or more stereogenic axes about which a set of substituents is held in a spatial arrangement 

that is not superimposable on its mirror image. So the presence of axial chirality generates 

different conformers that may be stable at ambient temperature, depending on the rotational 

energy barrier required for racemization of the chiral axis.    
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Bringmann further affirmed the preconditions for axial chirality in his review2, adding that 

three major factors governing the minimum free energy barrier to rotation: (1) the combined 

steric demands of substituents close to the axis; (2) the length and rigidity of bridges (if 

present); and (3) the mechanisms involved in isomerization. 

This source of chirality is called “atropisomerism” (from the Greek,  meaning not and 

 meaning turn), a term proposed by Kuhn in 19333 to describe molecules with a chiral 

axis maintained by hindered rotation about a single bond. This restricted rotation sees the 

origin of compounds with conformational chirality that have enantiomers that can 

interconvert without breaking any covalent bonds, called atropisomers.4 

So, atropisomers are a subclass of conformers that result from slow rotation around a single 

bond due to steric hindrance and/or electronic factors. 

Before the rationalization by Kuhn, atropisomerism was first detected in 6,6’-dinitro-2,2’-

diphenic acid, the enantiomers of which were successfully resolved by Christie and Kenner5 

in 1922.  

In 1983, Oki proposed a boundary between atropisomers and conformers (and therefore 

between configuration and conformation) with his arbitrary definition that atropisomers are 

conformers which interconvert with a half-life t1/2 of at least 1000 s (16.7 min) at +25 °C, 

corresponding to a racemization barrier of 21.8 kcal/mol.6  

Given the absence of a standard stereogenic centre, the absolute configuration of these 

molecules has to be related to the dihedral angle generated by the chiral axis. 

 

Figure 1 Schematic representation of a dihedral angle and its nomenclature. 

In a chain of atoms a-b-c-d (Figure 1), the torsion angle is the dihedral between the plane 

containing the atoms a, b, c and that containing b, c, d (from -180° to +180°) This system has 

two extreme conformations called anti and eclipsed (180 and 0°, respectively). The torsion 
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angle between groups a and d is then considered to be positive (absolute configuration is P or 

∆) if the bond a-b is rotated in a clockwise direction in order to eclipse the bond c-d by 

moving away from the observator. A negative torsion angle requires rotation in the opposite 

sense (absolute configuration is M or Λ).7 

The Cahn-Ingold-Prelog priority rules are applied to the substituents bonded to atoms b and c 

to find atoms a and d and allow the sign of the dihedral angle to be assigned. It is important to 

note that the sign of a dihedral angle remains the same regardless of the side from which it is 

observed, provided that the observation starts from the nearest atom and follows the chain 

toward the farthest. 

The concept of axial chirality as a stereogenic source in a rotationally hindered compound 

was for many years relegated to the academic field. However this situation changed with the 

discovery of many bioactive natural compounds containing stereogenic chiral axes8 and with 

the discovery of many catalysts useful for asymmetric synthesis.2 

The most popular atropisomeric systems used for asymmetric synthesis contain the binaphthyl 

scaffold, where BINAP9 is undoubtedly the most famous example (Figure 2). As pioneered by 

Noyori and his co-workers, Rh complexes of BINAP are useful for the chemoselective 

hydrogenation of C=C and C=O bonds. For the studies in chirally catalysed hydrogenations 

Noyori was awarded the Nobel Prize in Chemistry in 2001.  

 

Figure 2 The two enantiomers of BINAP 

The search for new atropisomeric systems and the related conformational analysis can be 

considered nowadays as an open research field. 

  

PPh2

PPh2

Ph2P

Ph2P

1 (P)-BINAP 1 (M)-BINAP
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1.2 Atropisomerism in drug discovery 

 

The goal for drug discovery is to develop safe and stable substances that specifically target 

essential elements that cause disease. The presence of a source of chirality is an additional 

contribute to the specificity and complexity of a biologically active compound. The inherent 

chirality of biological systems often results in vastly different biological effects of 

enantiomers on the target of interest: classical chiral centre enantiomers have been shown to 

differ significantly in biological activity, pharmacodynamics, pharmacokinetics and toxicity.8b 

The well-known cases of thalidomide10 and perhexiline,11 whose enantiomers led to 

unexpected effects in humans regarding toxicity and metabolic properties, emphasized the 

importance of addressing stereochemistry in drug development. Therefore, it is required by 

regulatory agencies such as the U.S. Food and Drug Administration (FDA) that chiral drugs 

are developed as single enantiomers in cases when this gives improved safety and/or 

efficacy.12 However, there are some drugs for which mixtures of enantiomers have acceptable 

toxicological profiles; if the mixture is not reasonably separable or if racemization is rapid in 

vitro and/or in vivo, it would be futile to administer a single enantiomer (for example 

ibuprofen is sold as a racemic mixture).13 Overall for racemic drug candidates there must be 

an acceptable toxicology and pharmacokinetic profile. In pharmaceutical industry 

stereoisomers are most frequently observed as a result of chiral centers, but atropisomerism 

can be another, yet overlooked, source of drug chirality.   

Anyway the FDA’s statements are referred to classical chiral centered molecules, whereas 

there are no direct guidelines from regulatory agencies on how to deal with atropisomers. 

Atropisomerism may give rise to geometrical isomers, diastereoisomers, or enantiomers, all 

with the feature that they can be thermally equilibrated, involving an intramolecular dynamic 

process that is bond rotation. Moreover, bond rotation is time-dependent and half-life for 

atropisomers can vary between minutes to years, depending on the steric hindrance, electronic 

interactions, temperature and solvent. Because of this time-dependent feature, drug discovery 

campaigns can become more complex. Recently LaPlante, Edwards and co-workers8b gave 

some guidelines to manage this time-dependent feature in the development of atropisomeric 

drugs. The authors suggest to compute the torsion rotational energy barriers to predict the 

existence of atropisomerism along the drug discovery pathway. They have devised a 

classification scheme that helps to understand the features of the drug-like compounds, 
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dividing them in three classes depending on the calculated barrier and rotation rates, as shown 

in Scheme 1: 

 

Scheme 1. Qualitative, cross-discipline guide to help correlate axial (torsion) rotation energy barriers, t1/2, 

and compound classes for predicting development strategies. 

Class 1 compounds possess fast axial rotation rates, in the order of seconds or lower, with 

∆Erot< 20 kcal/mol. They display no axial chirality and are developed as single compounds, 

without any analytical strategy implemented. On the other hand, compounds with ∆Erot> 20 

kcal/mol can generate atropisomers. 

Class 3 compounds have ∆Erot>> 30 kcal/mol, so they have very slow rotation rates, in the 

order of years. These compounds are stable over time and can be isolated as optically pure 

and have an acceptable shelf life. Development can proceed similarly to conventional 

stereoisomers that results from chiral centers. 

Class 2 compounds show axial interconversion with values in the range of minutes, days or 

months. Their development can be challenging, because stereochemical integrity can be 

compromised over the time course of drug production, administration to patients and half-

lives in vivo. In some cases it may be possible to modify the structure to obtain a more 

suitable analogue for development, designing related compounds that have slower or faster 

axial rotation rates. When this is not practical, information on the activity of the separate 

atropisomers in an appropriate in vitro or in vivo model may help support the proposed 

developmental pathway. Information on the rate of equilibration and the equilibrium ratio (for 

atropisomeric diastereoisomers) is valuable for guiding the scientific and regulatory 

discussions in preparation for first-in-human studies. 
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The decision to develop a drug candidate as a purified enantiomer, or a racemate, should be 

made as early as possible during the optimization stage. If possible, options for dealing with 

the atropisomeric phenomenon should be developed and implemented at this early drug 

design stage. 

For example, if the barrier to atropisomerization is high (class 3), one should aim to develop 

the drug as a single, pure and stereochemically stable. This is the case of Telenzepine, a 

selective muscarinic antagonist, that has found use in the treatement of peptic ulcers.14  

 

Figure 3. Slow interconversion between the atropisomers of Telenzepine 2A and 2B 

If the barrier to atropisomerization of a compound is low (class 2), then one should consider 

developing the drug as a consistent and reproducible interconverting mixture.15 This is the 

case for Sch40120 (Figure 4), which is an inhibitor of 5-lipoxygenase. This compound has 

found use in treating acute inflammatory diseases such as psoriasis.16 

 

Figure 4. Compound 3 Sch40120 has a fast racemization, of 1.6 min at +37 °C. The rotation axis is colored 

in red. 

In some cases compounds with atropisomeric interconversion properties can be too 

challenging to be developed as drugs, then for this purpose some practical options can be used 

to simplify the structure. A related approach to simplification is to modulate the rate of axial 

bond rotation through engineering faster bond rotation such as atropisomers no longer exist. 

In this case compounds switch from class 2 to class 1.  
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Foreseeing the existence of atropisomerism in compounds of interest is critical at all stages of 

drug discovery and development. Recently, LaPlante and co-workers showed that a 

computational approach is suitable for this purpose. In this approach, a relaxed torsion scan 

simulates rotation along a sterically hindered bond and the energy is recorded at each 

increment of rotation. The method used is quantum mechanics (QM), for the calculation of 

energy values that consider steric and electronic properties. The computational tool becomes 

useful during the drug discovery pathway, especially when coupled with the classification 

scheme mentioned above in Scheme 1, determining whether to develop the drug as a racemic 

mixture or as an isolated single isomer.  

So, it is apparent that atropisomer chirality could have a significant impact on drug discovery 

and so must be managed appropriately. The first step in dealing with this phenomenon would 

be to recognize its existence for compounds of interest. The QM torsion profile calculations 

are a practical strategy for revealing axial energy barriers to rotation that can result in 

atropisomer properties. Once identified, there are multiple options for dealing with the 

phenomenon of atropisomerism that can be implemented at the early stage of drug design. For 

example, it may be possible to make related analogues with the following features: 1) 

symmetry about a hindered bond, eliminating a chiral axis (making the compound lack 

atropisomer properties); 2) faster rotation about a hindered bond, pushing the half-life for 

conformational interconversion down to the order of seconds; 3) further encumbrance about a 

hindered bond to produce separable atropisomers whose interconversion is negligibly slow 

(bringing the compound to Class 3); or introduction of a stable stereogenic center to perturb 

the population of interconverting atropisomers such that only one desirable conformation 

predominates.8b  
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1.3 Nonbiaryl atropisomers: C-N chiral axis 

 

As mentioned above, over the last two decades there has been a great deal of interest in not 

only the absolute configuration of stable atropisomeric natural products and drugs, due to 

hindered bond rotation, but also in their enantioselective, receptor binding properties. This 

function can be seen as a result of the “adaptability” or “responsiveness” of the 

stereochemistry of atropisomers. And while the vast majority of atropisomers that have been 

studied have been carbocyclic biaryls, these form only one of dozens of conceivable families 

of atropisomers and only during the last 15 years the chemistry of non-biaryl atropisomers has 

moved beyond simple structural observations.  

A number of these non-biaryl atropisomers - diaryl ethers 7, diaryl ureas, anilides 4, 

benzamides 6 and thioamides, styrenes 8 and aryl ketones,  N-aryl carbamates, aryl sulfides 

and sulfones,  N-arylpyrroles 5, indoles and carbazoles among many more – may offer at least 

as many benefits in the fields of biology or catalysis as the biaryls themselves.17 

 

Figure 5 Non-biaryl atropisomers 

Few studies regarding the rotation about the chiral sp2-carbon-nitrogen bond have been 

reported; in fact there are only few examples of anilides, imides, barbiturates and ureas 

derivatives. 

 

Mino, Tanaka and co-workers found that the introduction of two different nitrogen 

substituents to prochiral ortho-substituted anilines and 1-aminonaphtalenes provides aryl 

amines that are axially chiral by virtue of hindered rotation about the aryl-nitrogen bond.18  

In order to minimize steric repulsion between nitrogen substituents and the aryl ring, N,N-

dialkyl arylamines adopt twisted conformations in the ground state.  
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Figure 6 Example of axially chiral arylamines 

The interconvesion of the conformational enantiomers of a series of N,N dialkyl-1-

naphtylamines19 and N-aryl tetrahydropirimidines20 has been studied (figure 6). Notably, 

concurrent nitrogen inversion of these compounds has a very low energy barrier and is only 

observable under cryogenic conditions. This greatly facilitates determination of free energy of 

activation for the rotation about the chiral carbon-nitrogen axis.   

It has been also studied that in order to minimize steric repulsion acetanilides populate a 

conformation in which the aryl ring and the amide group are orthogonal to each other.21 As 

expected the rotation about the axially chiral aryl-nitrogen bond is governed by steric 

interactions between ortho aryl groups and substituents attached to nitrogen atom. In contrast 

to imides, rhodanines and barbiturates the conformational stability of axially chiral ureas is 

significantly lower than that of amides, which is attributed to enhanced ground state strain.22  

 

Figure 7 Example of axially chiral anilides 

The most studied class of biologically active compounds bearing a Caryl-N chiral axis is that of 

barbiturates. Oguz and Dogan studied N-O-aryl substituted barbituric and thiobarbituric acid 

derivatives that are axially chiral due to nonplanar ground states of the molecules.23 The chiral 

axis is the Caryl-Nsp2 bond and all compounds exist as a pair of thermally interconvertable M 

and P enantiomers. The research group determined the energy barriers of these compounds by 

either thermal racemization or temperature dependent NMR. They studied ten different 

structures of barbituric derivatives and they found that oxo-derivatives have a smaller energy 

barrier compared to that of the thioxo-ones. 
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Figure  8 The structure of N-o-aryl substitued barbituric 

The energy barrier for racemization of the o-methyl and o-chloro derivatives were found to be 

similar despite of what happens in different types of N-ortho-aryl substituted heterocyclic 

system, such as arylhydantoins, arylquinolones and aryl-rhodanines, where the chlorine atom 

exerts a greater energy barrier than a methyl group in restricted internal rotation.  

 These results were explained by dipolar repulsion between the exocyclic oxygen and the 

chlorine atom. This repulsion might increase the free energy of the transition state of the 

compound with a chlorine atom as the ortho substituent relative to that of the methyl group as 

the ortho substituent. It can be also argued that the difference in the steric effects of these two 

groups depends on the geometries of the transition states that the two rings assume in passing 

one another. The tetrahedral nature of the methyl substituent may allow, depending on the 

geometry, a lower barrier despite its larger reported van der Waals radius24 than the spherical 

chlorine atom. 

The o-fluoro derivative has the lowest energy barrier (G= 22.2 kcal/mol) cause the smallest 

van der Waals radius of the fluorine atom. On the other hand the naphthyl derivative shows 

the biggest energy barrier (G= 27.7 kcal/mol). 

Pfizer medicinal chemists synthesized one cytokine inhibitor, PH-797804 (13 P), that is of 

particular significance for its excellent kinase selectivity. The PH-797805 (13 M) was much 

less active (figure 9). This atropisomerism arises from restricted rotation caused by the steric 

bulk of the pyridinone carbonyl and 6,6’-methyl substituents on the pyridinone and N-phenyl 

rings. The activation energy of the isomeric interconversion between the P and M isomers 

was predicted to be 31.0 kcal mol–1. Based on the first-order rate equation, the corresponding 

half-life of the two atropisomers is calculated to be about 111 years at room temperature, 

making PH-797804 a clinical candidate with excellent in vitro and in vivo activity. Moreover 

molecular modeling studies indicate that the atropic (P)-isomer readily binds within the active 

site of the kinase. In contrast, the steric clash between the (M)-isomer’s methyl amide moiety 

and the protein’s Asp112 and Asn115 amino acids prevents access to the active site.25 
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Figure 9 The two atropisomers of cytokine inhibitor 
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1.4 Xanthines 

 

Xanthine (3,7-dihydro-purine-2,6-dione), is a purine base. Modified purine bases play an 

important role in biology, and they are interesting systems from biochemical, 

pharmacological, and chemical points of view. In particular, xanthine exists in both 

prokaryote and eukaryote cells and participates in a large variety of functions in most human 

body tissues and fluids.  

A number of central nervous system, muscles and cardiac stimulants26 are derived from 

xanthine, including caffeine27 and theobromine.28  

 

Figure 10  Xanthine derivatives 

Xanthine is an intermediate in nucleic acid degradation from the spontaneous or nitrosative 

deamination of guanine, where the amine group of guanine is substituted by an oxygen atom 

in xanthine. It is also created from hypoxanthine29 by Xanthine Oxidoreductase30 and 

from xanthosine by Purine Nucleoside Phosphorylase (PNP).31,32 Xanthine is subsequently 

converted to uric acid by the action of the Xanthine Oxidase34 enzyme. 

Furthermore, xanthine is a compound present in the ancient solar system. It has recently been 

demonstrated that this purine is one of the original exogenous nucleobases abundant in 

prebiotic age on Earth and may have been one of the precursors for nucleic acids.33  
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1.5 Xanthine derivatives 

 

Xanthine derivatives are a group of alkaloids; many of them are naturally occurring drugs that 

find use as central nervous system stimulants, caffeine being the most famous, one of the 

most widely consumed, biologically active substances.  

1,3-Substituted xanthines constitute an important class of pharmacologically active 

compounds with well-established activities as not only stimulants, but also phosphodiesterase 

inhibitors, which increases cellular cyclic AdenosineMonoPhosphate levels, chloride channel 

activators, and adenosine receptor antagonists. In recent years, the spectrum of clinical 

applications of these xanthines has continued to widen and presently includes their use as 

anticonvulsants  and therapeutics for the treatment of bronchial asthma and vascular 

diseases.34 N3-substituted xanthines, in particular, N3-methylxanthine, an intermediate in the 

metabolism of methylxanthine alkaloids (caffeine, theophylline, and theobromine), possess 

interesting properties such as bronchodilator effects, resulting in relaxation of smooth muscle 

and have been employed to study the dynamics of theophylline-binding RNA aptamers.35 

The most common used xanthine derivative bronchodilator, in fact, is theophylline, a drug 

widely used in the management of asthma. 

In contrast to other, more potent stimulants like sympathomimetic amine,36 xanthines mainly 

act to oppose the actions of the sleepiness-inducing adenosine,37 and increase alertness in 

the central nervous system.38  

All Adenosine Receptor (AR) antagonists are derivatives of the physiological receptor ligand, 

adenosine. The existence of two types of adenosine receptors has been proposed: an A1 

receptor, which mediates inhibition of adenylate cyclase, and an A2 receptor, which 

stimulates the cyclase. Antagonism of either the AI or A2 receptor would permit the selective 

control of the effects caused by the binding of adenosine to that particular receptor.39 The 

most important class of AR antagonists are the xanthines. Numerous xanthine derivatives, 

mainly 1,3-disubstituted (theophylline analogs), 1,3,7-trisubstituted (caffeine analogs), and 

1,3,8-trisubstituted (8-phenyltheophylline analogs), have been synthesized and investigated in 

terms of affinity for A1 and A2 receptors and selectivity.  

Furthermore, the 1-monosubstituted xanthines were more potent at both receptor subtypes 

compared to any other monosubstituted xanthines. So, substitution at the 1-position was 
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necessary for high affinity at adenosine receptors. The 3-monosubstituted xanthines had 

relatively low affinity for ARs. 

 The most potent disubstituted xanthines were the l,3-disubstituted analogs of theophylline, 

particularly at the A1 adenosine receptor. Affinity for AlARs was increased by replacing the 

methyl groups in theophylline by larger substituents from ethyl to propyl and to isobutyl.40 

 

Figure 11 Design of a multivalent dendrimer conjugated to a xanthine. 

Lyles, Cameron and Rawls found also that caffeine (CAF) may be able to reduce the 

cytostatic/cytotoxic activity of DNA intercalators agents that share three common properties: 

(i) they are planar polyaromatic molecules; (ii) they can interact with double-stranded DNA 

(dsDNA) via intercalation; and (iii) they can form non covalent complexes with planar 

polarizing compounds such as CAF. When added simultaneously with or immediately before 

the intercalating agent, CAF has been reported to diminish the cytotoxic effects of the 

hemotherapeutic drugs doxorubicin (DOX) and novantrone in a variety of cell lines. 

Additionally, CAF reduced the cytotoxicity of the DNA intercalator, ethidium bromide, by 

reducing its ability to enter cells. The proposed mechanism responsible for the reduction in 

cytotoxicity by DNA intercalators is the formation of a noncovalent complex between the 

xanthine and the intercalator.41   

In conclusion xanthine and its derivatives had always interested the field of chemistry and 

biochemistry as molecules of study for creating potentially different kind of drugs, thanks to 

their singular biological activities. As a result, the attractive studies on these molecules are 

still in progress; in fact we choose to focus our attention on different atropisomeric xanthines 

derivatives to study in detail this kind of bioactive compounds.  

18 
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2. Results and discussion 

 

During these last decades there has been an increasing interest towards pharmacologically 

bioactive compounds showing atropisomeric features. In particular, the main research goal is 

to synthesize bioactive compounds with conformational chirality due to a rotational energy 

barrier higher than 30 kcal/mol, where the conformers are stable at room temperature with a 

half-life time in the order of years.42 This is a very important feature to reach because the 

pharmacological properties of axially chiral bioactive compounds are directly related to their 

stereodynamic processes.  

The aim of my experimental thesis is the preparation of stable atropisomers of xanthines and 

the resolution of the enantiomeric forms, which could be used in the field of drug discovery.  

To investigate the feasibility of atropisomeric xanthines, three different compounds were 

synthesized following the synthetic scheme reported below: (see Experimental procedure for 

further information) 

 

Figure 22 Synthetic scheme for xanthine derivatives: 24a) Ar = o-tolyl; 24b) Ar = o-nitro phenyl;  

24c) Ar = naphthyl 

Xanthines 25a-c were prepared following literature procedures43 that involve the nucleophilic 

attack of the primary amine to aryl isocyanate giving as intermediate a N-aryl-substituted urea 

that is consequently deprotonated by means of a strong base to achieve the six-membered ring 

closure, leading to the desired purine structure. The final step is the N-3 methylation using 

methyl iodide as methylating agent (figure 22).  
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Scheme 2 Synthetic mechanism to achieve compound 25a-c 

Xanthine scaffold is a planar framework and the ortho-substituted aryl in the 1-position is 

driven out of the xanthine plane because of the steric hindrance caused by the ortho 

substituent. This arrangement implies tilted conformations that generate conformational 

chirality. Depending on the hindrance of the ortho-substituents, the resulting conformational 

enantiomers can be either stereo labile or configurationally stable (atropisomers). Preliminary 

theoretical studies by DFT calculations support indeed the existence of a pair of M and P 

conformational enantiomers, due to the skewed dispositions adopted by the R1,2 substituents 

of aryl-group that can stay up or down the xanthine planar scaffold. 

In figure 13 the two available ground states are reported.   

 

 

 

Figure 13 The two possible enantiomeric  conformations 

GS-P GS-M 
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The interconversion pathway between the two conformational enantiomers can take place 

through two different transition states, depending on the side of the rotation of the R group 

around the Csp2–N chiral axis, through the two different carbonyl moieties (figure 14): 

 

 

Figure 14 Schematic rotation of aryl group about the chiral axis 

TS0 represents the transition of the aryl ortho substituent on the side of the carbonyl group in 

position 2 of xanthine scaffold, while the TS180 the crossing of the same substituent on the 

side of the other carbonyl group in 9 position. Depending on the hindrance of the ortho 

substituent on the aryl group, the transition states may be characterized by different values of 

interconversion energy barrier (∆G≠). A well known approach to analyse the presence of a 

pair of unstable and stable atropisomers is dynamic-NMR spectroscopy. In the present case 

the two conformations are enantiomeric, and their occurrence could be revealed by using a 

CSA (Chiral Solvating Agent), or by the presence of a chirality probe containing two 

germinal moieties that shows diastereotopic signals when conformational enantiomers are 

formed. To avoids the drawback that hampers the use of CSA, we decided to add a chirality 

probe to the xanthine scaffold. To avoid any steric interference with the 1-aryl group, a benzyl 

group was bonded to the nitrogen in position 7 of the xanthine scaffold. This group was 

chosen for the presence of an uncoupled CH2 group that acts as the chirality probe, thus 
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displaying diasterotopic signals (AB system) only when the motion is frozen in NMR 

timescale and a pair of conformational enantiomers has been developed. 

In figure 15 is shown a representation of the effect of the molecular motions on the CH2 NMR 

signal. When the rotation of the aryl group is fast, only a single averaged signal is visible (1H-

NMR spectrum on the top in figure 15). When the rotation of the aryl is slow in the NMR 

timescale (bottom 1H-NMR spectrum in figure 15), the benzyl CH2 act as a chirality sensor 

displaying a double doublet (AB system), due to the different magnetic environment of the 

two diastereotopic hydrogens. 

  

Figure 15 Representation of AB spin system relative to benzyl CH2 at fast and slow rotation. 
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2.1	Stereodynamic: rotational energy barrier 

In the figure below the six synthesized xanthine structures are shown. The 1-aryl-substituents 

are represented by increasingly ortho bulky groups, to achieve the freezing of rotation 

motions. 

 

Figure 16 Atropisomeric xanthine derivatives 

The stereodynamic pathways of each conformer was theoretically modelled by DFT 

optimization performed using Gaussian 09 and the B3LYP/6-31G(d) level of theory, that 

proved to be quite accurate in similar cases. Both ground and transition states were obtained 

(see Appendix for more theoretical details) by full optimization and validated by frequency 

calculation.  

DFT calculations can perform a reliable conformational analysis, useful to predict and 

confirm the relative energies of the ground and transition states, allowing us to choose the 

best experimental approach to study the stereodynamic processes. In addition to that, the 

determination of relative energies among the available transition states gives conformational 

information about the most favourable stereodynamic pathway. The lower value of transition 

state energy, in fact, represents the effective mechanism of interconversion between two 

fundamental states. It is important to stress that only the ground states, and not the transition 
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states, can be experimentally observed, so the effective transition state is deduced only via the 

theoretical simulation. 

Depending on the relative disposition of the benzyl group with respect to the ortho-substituent 

of the 1-aryl ring, two different conformations rise up: they are named syn and anti. The syn 

conformation puts the phenyl ring of the benzyl group on the same side of the ortho 

substituent with respect to the xanthine core, whereas the anti conformation puts the phenyl of 

the benzyl group on the opposite side. A total of four conformations (two pairs of 

diastereoisomer) have therefore to be considered.  

In addition to that, DFT calculations suggested that the N-1-aryl ring is not exactly 

perpendicular to the xanthine scaffold, so two additional conformations have to be considered 

for each syn and anti conformer. The four conformations relative to the M atropisomer are 

shown in figure 17. 

 

Figure 17 Compound 25b: GS-M-syn1, GS-M-syn2 (top), GS-M-anti1, GS-M-anti2 (bottom) 

In table 1 are reported the energy values for both ground and transition state, regarding the M 

enantiomer, derived from DFT calculations. The ground states taken into account are 

clustered into a very small energy range, the highest energy being about 1 kcal/mol above the 

GS-M-syn1 GS-M-syn2 

GS-M-anti1 GS-M-anti2 
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global minimum. The small energy range implies that all the conformations should be 

appreciably populated.  

Table 1 Optimized ground and transition states normalized energies of the atropisomer M, expressed in 

kcal/mol, calculated at B3LYP/6-31G(d) level; the enantiomer P has the same energy values. 

Entry 

GS-M-

syn1 

Da  

(%)b 

GS-M-

syn2 

Da  

(%)b 

GS-M-

anti1 

Da 

(%)b 

GS-M-

anti2 

Da  

(%)b 

TS0-Bn 

up 

TS180-

Bn up 

TS0-Bn 

down 

TS180-Bn 

down 

24a 

0.00 

-79.08° 

(49.8) 

- 

0.00 

-84.47° 

(50.2) 

- 27.58 27.90 2277..4455  27.94 

24b 

0.00 

-113.08° 

(34.6) 

0.30 

-69.77° 

(20.9) 

0.212 

-105.81° 

(24.2) 

0.317 

-70.25° 

(20.3) 

25.24 24.59 25.15 2233..5533  

24c 

0.00 

-92.805° 

(53.5) 

- 

0.08 

-91.19° 

(46,5) 

- 30.171 30.471 3300..111177  30.693 

25a 

0.00 

-79.42° 

(29.4) 

0.169 

-80.46° 

(22.1) 

0.02 

-82.26° 

(28.2) 

0.22 

-97.08° 

(20.3) 

28.08 28.19 2277..8877  28.27 

25b 

0.00 

-112.59° 

(32.3) 

0.22 

-68.82° 

(22.3) 

0.19 

-104.43° 

(23.5) 

0.23 

-68.75° 

(21.9) 

25.27 2233..7766  25.12 24.78 

25c 

0.00 

-89.59° 

(52.7) 

- 

0.06 

-91.16° 

(47.3) 

- 30.66 30.74 3300..5533  31.04 

a Dihedral angle values 
b Percentage of each populated state 
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Compounds 24c and 25c, bearing a naphthyl group, shows only two different ground states, 

because the higher hindrance drives the dihedral angle to 90° (figure 18). 

 

 

Figure 18 Compound 25c: GS-M-syn1, GS-M-anti1 

Conformation GS-syn-1 represents for compounds 25a, 25b, 25c the lowest energy state, 

indicating that the most energetic favourable states is that where the substituted aryl ring is on 

the same side of the phenyl of the benzyl moiety. The most energetically favourable ground 

state of compound 25a is that characterized by the smallest dihedral angle (compound 25a: 

GS-M-syn1= -79.42°); while GS-M-syn1 of compound 25b shows a dihedral angle                 

GS-M-syn1= -112.59°, that is bigger than 90°. 

Depending on the relative disposition of the benzyl moiety (i.e. up or down the planar 

xanthine scaffold) and on the side where the substituted aryl passes during the rotation around 

the chiral axis, four transition states are possible, as shown in figure 19. 

 

GS-M-syn1 GS-M-anti1 
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Figure 19 Transition states of compound 25a, TS0-Bn down is the most stable 

As from table 1, compound 24a, 24c, 25a and 25c prefer the passage on the side of the 

carbonyl in position 2 and with the benzyl group down the xanthine plane, but the energies 

are very close and a reliable conclusion cannot be extracted. On the other hand, the suggested 

energies are rather high, and they should allow for the formation of stable atropisomers. The 

transition states of compounds 24a, 24b, 24c with respect to 25a, 25b, 25c are very close in 

energy, suggesting that there is no influence in the energy barrier when the xanthine core 

bears a N-Methyl group instead of a N-H. While compound 25b, characterized by the o-nitro 

phenyl substituent, shows as energetically favourable the transition state TS180-Bn-up, that 

involves the crossing on the side of the carbonyl in position 9 and the benzyl group up the 

planar scaffold (figure 20). 

TS0-Bn down 
G≠ = 27.87 kcal/mol 

TS0-Bn up 
G≠ = 28.08 kcal/mol 

TS180-Bn up 
G≠ = 28.19 kcal/mol 

TS180-Bn down 
G≠ = 28.27 kcal/mol 
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Figure 20 Most stable transition states of compound 25b 

We found surprisingly a calculated energy barrier lower than the one relative to the compound 

25a for compound 25b, that has a nitro group isosteric with the methyl moiety,44 (23.76 

kcal/mol). The rotation rate of interconversion may be influenced not only by steric 

hindrance, but in this case by electronic factors too. As shown in figure 20 representing the 

TS180-Bn-up, an electronic interaction rises up between the electron-rich oxygen of the 

carbonyl moiety and the electron poor nitrogen of the nitro group. This interaction can 

stabilize the transition state thus lowering the rotational barrier. These theoretical results must 

be supported by the experimental approach, though. 

As from the calculations, all the compounds should feature a G≠ value higher than 25 

kcal/mol, so they should be conformationally stable at ambient temperature. A first test on 

compound 24a was done by using an enantioselective HPLC column (ChiralPak AD-H). The 

chromatogram showed the elution of broadened and closed peaks relative to the two 

enantiomeric conformers. The presence of a secondary free amine group lead often to 

broadened chromatographic peaks, because of its interaction with the stationary phase. 

Although this confirmed the presence of atropisomeric compounds, the peak broadening did 

not allow us a good separation and consequently a good kinetic studies to determine the 

energy barrier.  

To solve this problem we decided to protect the free amine with a methyl group that doesn’t 

interfere with the rotation around the chiral axis, but that allowed us to purify each 

atropisomer without committing any mistakes due to a difficult elution step.  

TS 180- Bn up 

G≠=23.76 kcal/mol 

2 9 
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Compounds 25a and 25c were purified, using an enantioselective HPLC, by means of 

ChiralPak AD-H column, while the atropisomeric 25b was purified with Lux Cellulose 2 

column (see Experimental section for further details) using different ratio of Hex : iPrOH as 

elution mixtures (table 2). 

Table 2 Elution conditions: compounds 25a and 25c were purified using an enantioselective HPLC by 

means of AD-H column, while 25b was eluted using Cellulose2 column 

Entry 
Elution mixture 

(Hex : iPrOH) (v/v) 

25a 80:20 

25b 50:50 

25c 76:24 

 

Once purified each atropisomer, all the compounds were subjected to kinetic studies at 

different temperatures to obtain the experimental value of the energy barrier of 

interconversion.  

The racemization process, i.e. the thermal equilibration of the two atropisomers was followed 

by means of chiral HPLC (i.e. ChiralPak AD-H column and Lux Cellulose 2 column), with 

the same elution conditions used in the purification step (table 2). 

The kinetic analysis of all the atropisomeric molecules were performed using the same 

experimental approach. An aliquot of a pure enantiomer was dissolved in 1 mL of C2D2Cl4 

using a test tube with screw cap. After that the phial was kept into a bath of DMSO 

surrounded by an oil bath, placed on a hotplate magnetic stirring. The oil bath is necessary to 

keep the temperature controlled by means of a thermocouple put in DMSO solution. The 

choice of C2D2Cl4 was made because its high boiling point that is +146.5 °C, still with a good 

vapor pressure that allows to easily evaporate it. Small samples were taken at different times, 

evaporated the solvent and analyzed by enantioselective HPLC that allowed the determination 

of the enantiomeric ratio.  

Once complete racemization was reached, the experimental values were collected and 

interpolated by a first order reversible kinetic equation and the rate constant (k) values 

referred to each experimental temperature were obtained.  
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Where x is the molar fraction of the enantiomer that is interconverting; xeq is the molar 

fraction of the same enantiomer reached at the equilibrium state (0.5); x0 is the initial molar 

fraction of the chosen enantiomer at t0; k is the rate constant (s-1); t is the time steps (s). This 

equation represent a straight line in the form y=mx + q, where the slope is (-2k); the y-

intercept is ln (x0-xeq) and t is the independent variable of the function.(see Appendix for 

complete demonstration)  

The resulting k values, not dependent upon concentration, were then used to derive the free 

energy of activation (∆G≠ in kcal/mol) at each temperature by means of the Eyring equation,45 

where T is the absolute temperature and k is the rate constant in s-1: 

݇ ൌ ݇
݇ ∙ ܶ
݄

	݁ି
∆ீಯ
ோ்  

  h = Planck’s constant (1.584·10-34cal·s) 

kB = Boltzmann constant (3.2998·10-24cal/K) 

R = universal gas constant (1.9872 cal/K·mol) 

κ = transmission coefficient (can be considered equal to 1) 

Solving for ∆G≠ in kcal/mol: 

ஷܩ∆ ൌ 4.574	 ∙ 10ିଷ ∙ ܶ ∙ ሺlog
ܶ
݇
 10.318ሻ 

Table 3 shows the racemization trend at the temperatures chosen for the kinetic studies of the 

compound 25a (Figure 22).(see Experimental section for the other compounds). 

 

ln (x-xeq) = ln (x0-xeq) -2 k t 
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Figure 21 Example of racemization followed by enantioselective HPLC AD-H of compound 25a at +115°C 

 

Table 3 Compound 25a: Racemization process at each temperature of first eluted atropisomer 

 

 

Figure 22 Compound 25a: Kinetic data fitted with linear regression relative to thermal racemization of 
first eluted atropisomer 
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t (s) ln(xena1-xena1_eq) t (s) ln(xena1-xena1_eq) t (s) ln(xena1-xena1_eq) t (s) ln(xena1-xena1_eq) 

0 -0,69315 0 -0,69315 0 -0,69315 0 -0,69315 

2520 -0,75184 3420 -0,81058 4620 -0,98967 1800 -0,79186 

4380 -0,82098 6840 -0,92659 8160 -1,212 3600 -0,97657 

9240 -0,96601 10140 -1,05872 11580 -1,42753 6660 -1,32727 

12720 -1,03818 13440 -1,19106 15480 -1,68201 10980 -1,80728 

t=1800 s t=10980 s t=0 s t=3600 s t=6660 s 
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As we can notice from the graphic and table, the experimental values follow a good linear 

trend typical of the kinetic of first order, so they can be reliably interpolated with a linear 

regression to calculate the constant rate values (k).  

Once obtained the k values, the G≠ were calculated through the Eyring equation and the 

results are collected in table 4.  

Table 4 Compound 25a, 25b, 25c: Rate constants and activation energies of interconversion 

COMPOUND 
25a 

T +100 °C T +105 °C T +110 °C T +115 °C 

k (s-1) (x10-5) 1,40 1,87 2,95 5,23 

G≠ (kcal/mol) 30,29 30,49 30,56 30,53 

COMPOUND 
25b 

T +30 °C T +50 °C T +56 °C T +58 °C 

k (s-1) (x10-5) 0,47 4,50 9,67 9,19 

G≠ (kcal/mol) 25,15 25,39 25,38 25,57 

COMPOUND 
25c 

T +100 °C T +110 °C T +120 °C T +130 °C 

k (s-1) (x10-6) 0,79 2,47 6,85 17,74 

G≠ (kcal/mol) 32,42 32,45 32,52 32,60 

Taking into account the errors in the determination of the sample temperature (±1°C), the free 

energies can be considered invariant with the temperature, thus implying a negligible 

activation entropy. This is usual in conformational processes.46 Therefore, the average G≠ is 

carried out to eliminate all the possible experimental errors and these values were compared 

with the calculated. (table 5) 
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Table 5 Experimental and computed energy barriers of rotation around the chiral axis; the calculated 

energies are those of the lowest transition state. 

Entry G≠ exp (kcal/mol) G≠ calc (kcal/mol) t ½ (+25 °C) t ½ (+37 °C)a 

25a 30.5 28.08 77 years 74 years 

25b 25,4 23.76 5 days 5 days 

25c 32,5 30.53 2353 years 2262 years 
a Normal human body temperature 

We can also observe that the experimental energy value is always in agreement with the 

calculated one, with a difference less than 2 kcal/mol, typical for this kind of DFT calculation.  

So it can lead us to conclude that, as supposed before analyzing DFT optimized conformers, 

the increasingly bulky substituents of the aryl group (methyl and naphthyl moieties) increases 

the rotation about the chiral axis, giving as a result a larger G≠ of interconversion, essential 

for bioactive atropisomeric compounds. Moreover the experimental values of o-nitro phenyl 

substituent does confirm a lower activation energy with respect to the isosteric o-methyl 

phenyl moiety. As speculated above regarding the calculated energy barriers, the activation 

energy of the o-nitro derivative is lowered by the presence of electronic interactions in 

transition state between this group and the two carbonyls of the xanthine planar scaffold.  

From a pharmacological point of view it is very important to take into account the half-life 

time of each atropisomeric compound, that is an essential parameter to consider when a 

bioactive atropisomeric molecule is developed in the field of drug discovery. Therefore we 

have reported the half-life time at room temperature and at +37 °C that is the normal human 

body temperature. 

Applying the reversible first order kinetic equation the half-life time of each compound is: 

t½ = (ln2) / k 

Looking at the energy rotational barrier and half-life time values at room temperature we can 

affirm that compound 25a and 25b belong to the Class 2 of LaPlante classification scheme 

(scheme 1), while 25c is more stable and so is relative to LaPlante’s Class 3 (see Introduction 

for further details).  
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2.2 Absolute configuration 

Once the stereodynamic behavior and thus the conformational stability of each atropisomeric 

structure has been analyzed, the absolute configuration was assigned. The “reference” method 

to assign the absolute configuration relies on the X-ray anomalous scattering (the “Bijvoet 

method”). However, this approach requires the preparation of enantiopure single crystals, and 

the presence of an heavy atom in the molecule  (usually Z>Si when Mo-Kα radiation is used). 

In this case the molecules do not contain any heavy atom, and the assignment by X-ray 

crystallography is unfeasible. 

In the last years the determination of the absolute configuration of chiral molecules using 

chirooptical techniques like optical rotation (OR), electronic circular dichroism (ECD), and 

vibrational circular dichroism (VCD) gained feasibility and reliability because of the 

development of theoretical methods for the prediction of these properties based on DFT and 

on the time-dependent density functional theory approach (TD-DFT).46,47 

In the present case the theoretical calculation of ECD spectra was selected for the absolute 

configuration assignment of all the compounds. The conformational search performed on all 

the atropisomeric structures, showed that 25c has two populated conformations (syn and anti), 

depending on the position of the benzyl compared to that of the naphthyl with respect to the 

xanthine core, whereas compounds 25a and 25b have four ground states conformations for 

each atropisomer (see table 1). 

To compare the calculated ECD spectra to the experimental one, all the populated 

conformations must be considered and their spectra weighted by means of the Boltzmann 

equation, so that the final spectrum takes into account all the contributions. 

The theoretical ECD spectrum of all optimized ground state conformations was obtained with 

the TD-DFT method at CAM-B3LYP48/6-311+G(2d,p) level (see Appendix for further 

details) because this level of theory has been successfully applied to similar cases.49 

The experimental ECD spectra were recorded at +25 °C in acetonitrile solution, using a 

JASCO J-810 spectropolarimeter. The figure below shows both the experimental UV/Vis and 

the ECD spectra of compound 25c.  
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Figure 23 Experimental UV/Vis and ECD spectra of compound 25c 

The ECD spectra calculated for 25c are showed in figure 24, we can notice that the curve is 

characterized by three Cotton effects: one positive that leads to a maximum related to the 

absorption band at 221 nm and two negative which cause the formation of two minima 

respectively at 270 nm and 203 nm. 

The bisignate CD arises because the transition moments of chromophores of the atropisomeric 

compound generate an exciton-coupling. The signs of this curve reflect the chirality between 

the electric transition moments of the interacting chromophores and are ascribable to a 

different absorption of the left and right handed polarized light.  
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Figure 24 Compound 25c: up GS-M-syn and GS-M-anti conformations at the left; ECD calculated spectra 

of GS-M-syn and GS-M-anti at the right. Down ECD calculated spectrum, it is the result of the weighted 

sum of GS-M-syn and GS-M-anti 

An investigation of the molecular orbitals (MO) involved in the UV transitions that generate 

these ECD bands confirmed that the small band centered at 270 nm is mainly generated by 

MOs that involve both the carbonyls of the xanthine scaffold and smaller contributions come 

from MOs involving the naphthyl ring and the benzyl group. The band at higher excitation 

energies centered at 221 nm is due to the electronic transitions that implicate mainly the MOs 

of the naphthyl moiety, but also of the purine scaffold, in particular considering the MOs of 

the five-membered aromatic ring and the CO in position 2 and 9; there is also a smaller 

contribute deriving from the MOs of the phenyl ring. The same happens in the high energy 

band at 203 nm mainly imputable to MOs regarding naphthalene and six-membered ring of 
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xanthine. Also in this case there is a smaller contribution that comes from MOs of the entire 

xanthine moiety and the phenyl ring. 

Table 6 Calculated MOs of compound 25c 

GSM-
syn 

Exc. 
State 

Wavelength 
Oscillator 
strength 

Rotation rate (10-

40 esu2 cm2) 
MO % 

 16 199.52 nm 0.4127 -441.98 

98108 

99106 

98107 

17.65

12.55

11.95

 11 208.74 nm 0.9284 396.38 

98101 

100108 

100107 

39.28

23.06

16.84

 3 259.38 nm 0.1508 -69.05 99102 80.18

GSM-
anti 

Exc. 
State 

Wavelength 
Oscillator 
strength 

Rotation rate (10-

40 esu2 cm2) 
MO % 

 27 191.60 nm 0.0797 62.216 
99107 

99103 

29.29

6.38 

 16 199.64 nm 0.3158 -57.085 

98108 

99105 

97102 

24,50

15,54

5,46 

 15 202.74 nm 0.0830 148.935 
100117 

100118 

37,31

27,69

 11 208.83 nm 1.0852 137.246 
100108 

98101 

45,20

43,62

 3 259.4 nm 0.1450 -21.854 99102 81,89

 



 
34 

 



 
35 

 

Figure 25 Calculated MOs of Compound 25c 
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The most populated MOs involved in the excitation state 3 at 259.4 nm show that the electron 

density is mainly present in the xanthine and naphthyl moieties, as shown in figure 25 for the 

syn and anti conformation. 

The negative 270 nm band is due to the 1La transitions50 polarized along the short axis of the 

naphthalene chromophore.  

Also in the case of wavelength of 208.74 nm and 208.83 nm, respectively for the syn and anti 

conformers, the most populated MOs involved in the excitation state 11 reveal that the 

electron density is mainly present in the xanthine and naphthyl moieties, as shown in figure 

25 for the syn and anti conformation. 

The positive 221 nm band is due to the 1Bb transitions6 polarized along the long axis of the 

naphthalene chromophore and the transitions polarized along the long axis of xanthine. 

The dipoles coupling shown in figure below gives the positive dihedral angle P for both the 

anti and syn conformers.  

   

Figure 26 Band at 221 nm is given by the 1Bb transitions along the long axis of naphthalene and the 

transitions on the long axis of xanthine 

The band at 200 nm is the result of the three dipoles of naphthyl, xanthine and benzyl moiety 

and it is more complicated to report schematically.  

Moreover, we have computed the ECD spectra with four different functionals (CAM-B3LYP, 

BH&HLYP, M06-2X, B97XD)49 and all of them give the same bisignate final ECD curve 

P P 
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for the atropisomer M; therefore, comparing the calculated for the M atropisomer and the 

experimental of the second eluted peak, we can affirm that they are completely 

superimposable, leading us to conclude that the second eluted atropisomer has the M absolute 

configuration, while the first eluted peak is characterized by a clockwise dihedral angle about 

the chiral axis and it has P absolute configuration.   

 

Figure 27 Compound 25c up: separation HPLC AD-H column; down: calculated final ECD spectrum of 

the M atropisomer compared to the experimental ECD spectrum of the second eluted enantiomer 

As done for the configurational study for the naphthyl substituted xanthine, we have 

computed the ECD calculated spectra of enantiomer M of compound 25a and 25b. For these 

compounds we have to consider all of the four populated conformers as given by DFT ground 

state calculation (table 1). 
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The figure below shows both the experimental UV/Vis and ECD spectra of compound 25a. 

 

Figure 28 UV/Vis and ECD experimental spectra of compound 25a 

Looking at the simulated ECD spectra for the anti and syn conformations of the M 

atropisomer we found that they exhibit nearly opposite spectra (figure 29 of compound 25a, 

see Experimental procedure for 25b’s ECD spectra). 
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Figure 29 Compound 25a: computed ECD spectra for each populated GS conformations at the top; ECD 

calculated final spectrum at the bottom. 
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Since that the two conformations with different dihedral angle give the same spectra, the 

reasons for the inversion of the spectrum must be searched in the opposite disposition of the 

benzyl group with respect to the ortho substituent of the aryl ring in the two conformations. 

The combination of the two relative dispositions of the dipoles of benzyl produces opposite 

exciton coupling that leads to an inversion of the sign of the spectra depending on the side of 

the benzyl moiety.  

For this reason the final calculated ECD spectrum of each atropisomeric compound is lowered 

because it is obtained by the weighted sum of the opposite contributions of all the possible 

conformations (figure 29). 

To verify the robustness of the final computed ECD spectrum, that must be compared to the 

experimental spectrum to attribute the absolute configuration, we have obtained the simulated 

spectrum by modifying the conformational ratio from 90:10 to 10:90. As demonstrated by 

figure 30 the computed ECD spectrum is effectively robust, in particular we can notice that 

even at 90:10 and 10:90 the inversion of phase of the spectrum doesn’t happen.  
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Figure 30 Calculated ECD spectra of compound 25a with different ratio syn:anti compared to the 

experimentally obtained. 
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The best matching of calculated and experimental data is given by a population ratio of about 

50:50, as suggested by the relative energies calculated by DFT optimization. The 

experimental ECD spectra of 25a and 25b are showed in figure 31. 

 

Figure 31 Experimental ECD spectra of first eluted atropisomer of compound 25a (left) and second eluted 

enantiomer of 25b (right). 

The ECD bisignate curve of compound 25b has a much weaker intensity respect to that of the 

naphthyl substituted xanthine. Also in this case three Cotton effects are present: the first at 

lower energies is positive and leads to a weak  maximum, while the other positive Cotton 

effect characterizes the higher energy band that is a more intense maximum. The only 

negative Cotton effect is attributable to the minimum at 217 nm. Compound 25a, bearing the 

o-tolyl moiety, shows less intense absorption bands, because of the lack of a strong 

cromophore.  

In conclusion, the comparison between the calculated and the experimental spectra leads us to 

attribute the absolute configuration to each atropisomeric structure of compounds 25a and 

25b: the first eluted atropisomer bearing the o-tolyl substituent is the M atropisomer, while 

for compound 25b we can affirm that the ECD calculated spectra for atropisomer M matches 

perfectly with that recorded experimentally for the second eluted peak. It should be noted that 

racemic 25b was resolved on a cellulose-based HPLC column, while 25a was resolved on an 

amilose-based column. The experimental outcomes suggests that the two columns have 

opposite selectivity for these compounds. 

So keeping in mind that the two atropisomers of each xanthine derivative show opposite 

spectrum the table below shows all the absolute configuration attributed: 
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Table 7 Absolute configuration of the three xanthine derivatives 

Entry First eluted enantiomer Second eluted enantiomer Column 

25a M P AD-H 

25b P M Cellulose2 

25c P M AD-H 

 

 



 
44 

2.3 Future goals : diastereoisomeric xanthine derivatives 

 

Since now we have investigated the newly created chiral axis C(sp2)-N in position 1 of 

xanthine scaffold. Given that we have discovered that the naphthyl substituted purine base has 

the highest energy barrier of racemization, showing atropisomers stable at ambient 

temperature for 2353 years, we have decided to start from it to create a new chiral axis C(sp2)-

N in position 3 of the xanthine scaffold. The presence of another chiral axis will allow the 

formation of two diastereomeric pairs of xanthine derivative. 

At first we have tried to investigate some coupling reactions linking to the N-3 a metha 

substituted aryl. Therefore, we focused our attention on the reactions that are shown below : 

 

Figure 32 General synthetic scheme followed for the achieving of xanthine diastereoisomers 
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Table 8 Various reaction conditions for the achieving of xanthine diastereoisomers 

Entry R1 R2 R3 Catalyst Base Solvent Atmosphere Temperature Time Yield 

I B(OH)2 H CH3 Cu(OAc)2
a NEt3 CH2Cl2 O2, 4 Å m.s. r.t.  +40 °C 20 h 80% 

II B(OH)2 H CH3 Cu(OAc)2
 a 

(-) 
Sparteine 

CH2Cl2 O2, 4 Å m.s. r.t. 18 h < 5% 

III B(OH)2 H CH2CH3 Cu(OAc)2
 a NEt3 CH2Cl2 O2, 4 Å m.s. r.t.  +40 °C 20 h 70% 

IV Br H CH3 

Pd(OAc)2
b 

Xantphos 
(Pd/L=1/1.5) 

Cs2CO3 DMF N2 +100 °C 1 h < 5% 

V Br CH3 H 

Pd2(dba)3
c 

Xantphos 
(Pd/L=1/3) 

Cs2CO3 
1,4-

dioxane 
N2 +100 °C. 12 h 0% 

           

VI B(OH)2 NO2 H Cu(Cl)2
d Net3 DMSO O2, 4 Å m.s. +100 °C 14 h 0% 

a The coupling reactions involving Copper as catalyst were conducted with: 1 eq. of 24c, 3 eq. of Boronic acid, 3 eq. of 
Cu(OAc)2, 3 eq. of base. 
bThe coupling reaction involving Palladium as catalyst was conducted with:1.2 eq. of 24c, 1 eq. of Bromide, 10mol% of 
Pd(OAc)2, 1.4 eq. of base.  
cThe coupling reaction involving Palladium as catalyst was conducted with:1 eq. of 24c, 1 eq. of Bromide, 0.005 eq. of 
Pd2(dba)3, 1.4 eq. of base.  
dThe coupling reaction involving Copper as catalyst was conducted with: 1 eq. of 24c, 1 eq. of Boronic acid, 1 eq. of 
CuCl2, 1 eq. of base. 

 

As we can see in the table above, only the first and third reactions gave good results. Both of 

them are characterized by the same synthetic scheme of Chan-Lam coupling. For this reason, 

we decided to follow this reaction scheme coupling an ortho-methyl phenyl moiety to the N 

in position 3, to obtain stable atropisomers, rising the rotational energy barrier values. The 

only change made is the time of reaction that we increase from 20 h to 72 h.   

Unfortunately we haven’t obtained the ortho substituted product with the Chan Lam coupling, 

maybe because of the hindrance of the ortho-aryl boronic acid that during the catalytic cycle 

doesn’t undergoes the reductive elimination step.  

Recently, a new approach regarding the N-arylation of secondary amides has been 

published.51 It allows the introduction of sterically hindered aryl groups under mild 

conditions. The new approach is based on metal-free N-arylation with diaryliodonium salts. 

Few attempts were done with purine 24c and a first good result was obtained. 
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Figure 33 Synthetic scheme followed for the achieving of compound 26a 

Table 9 Different reaction conditions for the synthesis of compound 26a 

Entry Solvent Temperature Yield (%) 

1 Toluene r.t. 0 

2 THF r.t. 0 

3 THF +66 °C 0 

4 DMF +100 °C 
Product 26a: 9 

Product 26b: 12 

 

As shown in table only with DMF the reaction proceeded, giving the desired product 26a.      

The calculated energy barrier for this product is 23.5 kcal/mol, high enough to allow the 

separation of two diastereoisomers. A first separation test using the enantioselective AD-H 

column is shown by the chromatogram in figure 34. It displays the separation of stable 

atropisomers in ratio 22:28, referred to the first and third eluted respectively. The second 

eluted peak is the sum of the two other diastereoisomers. 
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Figure 34 Enantiomeric separation of compound 26a by means of AD-H column 

This could be a good starting point but there is still some way to go to study the 

stereodynamic of these new chiral compounds; first of all there is the necessity of improving 

the synthetic scheme, in order to get a variety of diasteromeric xanthine derivatives in good 

yields. 
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3. Conclusions 

 

A new class of atropisomeric xanthine derivatives has been studied. We decided to focus our 

attention on these purine bases because of their various biological activities, that could play 

an important role in the discovery of new bioactive atropisomers.  

The synthesized compounds  25a, 25b, 25c are uncommon biaryl systems, but the newly 

created chiral axis in position 1 of the xanthine scaffold is a C(sp2)-N  axis, around which the 

rotation is prevented by the presence of bulky ortho substituents. 

The conformational stability has been predicted by means of DFT simulations yielding a 

rotational energy barrier higher than 25 kcal/mol. 

Through a retro synthetic analysis, we proceeded to the synthesis and characterization of the 

three structures.  

The computed activation energy values were compared to the experimental data that have 

been obtained by means of kinetic studies, following the thermal racemization process with an 

enantioselective HPLC. As expected the increasing of bulkiness of the ortho position of the 

aryl moiety caused a rising of the rotational energy barrier; while, surprisingly, compound 

25b, bearing a o-nitro phenyl group in position 1, showed a lower activation energy respect to 

that characterizing compound 25a that has a o-tolyl substituent. A possible explanation is that 

even if the methyl and nitro group are isosteric, the second develops electronic interactions 

with the carbonyl groups of the xanthine scaffold, thus stabilizing the transition state and 

lowering the energy barrier.  

Once determined the interconversion energy barrier values of all the derivatives, we have 

calculated the half- life time both at ambient temperature and at +37 °C (the normal human 

body temperature), which is an important parameter to consider when a bioactive 

atropisomeric molecule is developed in the field of drug discovery. From these results we can 

affirm that compound 25a and 25b belong to the Class 2 of LaPlante classification scheme, 

while 25c is more stable and can be described as a  LaPlante’s Class 3 compound (compound 

25a: G≠= 30.47 kcal/mol; compound 25b:G≠= 25.37 kcal/mol; compound 25c: G≠= 32.50 

kcal/mol). 
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The absolute configuration was finally assigned using the ECD technique. Compound 25c 

showed an experimental ECD spectrum characterized by intense bands due to the presence of 

exciton coupling between the transition moments of chromophores of the atropisomeric 

molecule. The electronic transitions that generated the CD bisignate curve have been also 

studied by analyzing the  the MOs involved. 

Looking at the simulated ECD spectra of compounds 25a and 25b for the anti and syn 

conformations of the M atropisomer we found that they exhibit nearly opposite spectra. Since 

that the two conformations with different dihedral angle give the same spectra, the 

combination of the two relative dispositions of the dipoles of benzyl produces opposite 

exciton coupling that leads to an inversion of the sign of the spectra depending on the side of 

the benzyl moiety. After verifying the robustness of the final computed ECD spectrum tuning 

the population ratio of syn/anti conformations, we compared the calculated ECD spectrum to 

the experimentally obtained of a pure enantiomeric form.  

From the matching of the two spectra we were able to assign the absolute configuration of 

each atropisomeric structure. 

Table 10 Absolute configuration of the three xanthine derivatives 

Entry First eluted enantiomer Second eluted enantiomer Column 

25a M P AD-H 

25b P M Cellulose2 

25c P M AD-H 

 

Given that we have discovered that the naphthyl substituted purine base has the highest 

energy barrier of racemization, the future goals would be to create diasteromeric xanthine 

derivatives starting from it and making a new C(sp2)-N chiral axis in position 3 of the 

xanthine molecule. We screened some coupling reactions and we found that a metal-free 

coupling, involving iodonium salts can yield the desired compounds.  

It would be also interesting to explore the biological activity of the atropisomeric xanthines 

synthesized because of their potential pharmacological interest. 
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4. Experimental section 

 

4.1 Materials 

Cyanamide, triethyl orthoformate, ethyl 2-bromoacetate and phenylmethanamine were 

commercially available. Cyanamide was purified washing with acetonitrile to eliminate the 

water and then dried. Triethyl orthoformate was distilled before use. THF has been dried 

before use by distillation from Na/benzophenone. The deuterated solvents for NMR spectra 

were commercially available.  

4.2 Instrumentations 

The following stationary phases were employed for the chromatography: Silica gel 60 F254 

(Merck) for the TLC and silica gel 60 Å (230-400 mesh, Sigma Aldrich) for atmospheric 

pressure chromatography.  

Reactions which needed anhydrous conditions were performed under dried nitrogen flow 

(inert atmosphere). The glassware used in these reactions was placed in an oven at +70 °C for 

at least 3 hours immediately before use.  

To purify the products, a HPLC WatersTM 600 instrument with detection fixed at 254 nm was 

used. Phenomenex Luna C18 (5 m 250x21.2 mm, 20 mL/min) semipreparative column was 

used to purify the compounds using mixtures of acetonitrile and water as eluents.  

Enantioselective HPLC columns (DAICEL Chiralcel AD-H 5m 250 × 21.2 mm, 20 mL/min; 

Phenomenex Lux Cellulose-2 5m, 250 x 10 mm, 5mL/min ) have been used to separate the 

stable atropisomers, using different mixtures of hexane and isopropanol as eluent. 

1H-NMR, and 13C-NMR spectra were registered with a Varian Inova 600 MHz and a Varian 

Mercury 400 MHz spectrometer. Chemical shifts are given in ppm relative to the internal 

standards tetramethylsilane (1H and 13C) or relative to the residual peak of the solvents. 

Assignment of the carbons multiplicity were obtained by means of the DEPT sequences. 

ECD spectra were recorded with a JASCO J-810 spectropolarimeter at +25 °C in acetonitrile 

solutions. The concentrations of the samples were tuned to obtain a maximum absorbance of 

about 0.9-1.0 in the UV spectrum, using a quartz cell with 0.2 cm path length.  
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4.3 Calculations 

A conformational search was preliminarily carried out by means of the molecular mechanics 

force field (MMFF), using the package ComputeVOA 0.1.52 The most stable conformers thus 

identified were subsequently energy minimized by DFT computations, which were performed 

by the Gaussian 09, rev. D.01, series of programs using standard optimization parameters.53 

The calculations for ground states and transition states employed the B3LYP hybrid HF-DFT 

method and the 6-31G(d) basis sets. The analysis of the vibrational frequencies for every 

optimized structure has shown the absence of imaginary harmonic frequencies for the ground 

states, and the presence of a single imaginary frequency for the transition states. Visual 

inspection of the corresponding normal mode54 validated the identification of the transition 

states. 

The ECD spectra were simulated by means of TD-DFT calculations. The electronic excitation 

energies and rotational strengths have been calculated in the gas phase using the geometries 

obtained at the B3LYP/6-31G(d) level with the CAM-B3LYP functional. All the calculations 

employed the 6-311++G(2d,p) basis set because this basis set has been widely used in this 

kind of calculation and proved to be sufficiently accurate at a reasonable computational cost. 

The simulated spectra were obtained using the first 60 calculated transitions (lowest 

wavelength about 180 nm) and applying a 0.25 eV line width. The simulated spectra resulting 

from the Boltzmann averaged sum of the conformations were red-shifted by 10 nm to get the 

best simulations with the experimental spectra. 
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4.4 Synthesis 

4.4.1 General  procedure 

Through a retrosynthetic analysis55 the three xanthines were prepared following the general 

synthetic scheme reported below: 
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Figure 34 General synthetic procedure 

The two starting reagents were produced from commercially available products using the 

synthetic scheme reported: 
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Figure 35 Synthesis of the two starting compounds 

 

4.4.2 Synthesis of the two starting compounds 

Ethyl 2-(benzylamino)acetate (19):  

 

 

Ethyl 2-bromoacetate (11.09 mL, 0.1 mol) was dissolved in dry THF (100 mL) and the 

solution was cooled in an ice-water bath. Phenylmethanamine (21.84 mL, 0.2 mol) was 

diluted in dry THF (100 mL) and the solution was added to ethyl 2-bromoacetate dropwise. 

After the addition the ice bath was removed, and the reaction mixture was stirred under reflux 

for 2 h under nitrogen atmosphere. This mixture was quenched with an aqueous solution of 

NaOH and extracted with CH2Cl2. The combined organic layer was dried with Na2SO4, 

filtered, concentrated under reduced pressure and purified by fractional distillation under 

vacuum conditions (ethyl 2-(benzylamino)acetate: b.p. +110 °C / 2 mbar. The product was 

obtained as a colorless liquid with a yield of 76% (14.69 g). 

 Spettroscopic data: 

1H-NMR (400 MHz, CDCl3, TMS, +25 °C): δ 1.27 (t, J=7.2 Hz, 3H); 1.87 (s, NH); 3.41 (s, 

2H); 3.81 (s, 2H); 4.20 (q, J=7.2, 2H); 7.26-7.33 (m, 5H). 

13C-NMR (100.6 MHz, CDCl3, 77.0 ppm, +25 °C): δ 14.2 (CH3); 50.1 (CH2); 53.3 (CH2); 

60.7 (CH2); 127.1 (CH); 128.2 (2CH); 128.4 (2CH); 139.5 (Cq); 172.4 (Cq). 
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Ethyl-N-cyanoformimidate (20) 

 

 

Cyanamide (12.73 g, 0.303 mol) was dissolved in triethyl orthoformate (d= 0.891g/mL, 40 

mL, 0.303 mol) and the solution was heated under reflux for 2 h under nitrogen atmosphere, 

then the EtOH was removed by distillation (b.p. +78 °C). Fractional distillation under vacuum 

conditions of the residue gave ethyl N-cyanoformimidate (yield 80%) with b.p. +80 °C / 5 

mbar. Before distilling the desired product we removed the remaining triethyl orthoformate 

and the side-product ethyl formate formed during the reaction by means of distillation (ethyl-

formate b.p. +54°C; triethyl orthoformate b.p. +56 °C/37 mbar). 

Spectroscopic data 

1H-NMR (400 MHz, CDCl3, TMS, +25 °C): δ 1.40 (t, J=7.2 Hz, 3H); 4.39 (q, J=7.2 Hz, 2H); 

8.41 (s, 1H). 

13C-NMR (100.6 MHz, CDCl3, 77 ppm, +25 °C): δ 13.5 (CH3); 65.8 (CH2); 113.6 (Cq); 

171.2 (CH). 
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4.4.3 Synthesis of ethyl 4-amino-1-benzyl-1H-imidazole-5-carboxylate (22) 

 

Two steps synthesis 

First Step (21) 

Ethyl-2-(benzilamino)acetate (3.00 g, 15.52 mmol) in THF (75 mL) was cooled in an ice-

water bath, and ethyl N-cyanoformimidate (1.523 g, 15.52 mmol) in 38 mL of THF was 

added dropwise. The reaction mixture was stirred at room temperature for 4 h.  The mixture 

was concentrated under reduced pressure and was passed through a silica gel plug 

(EtOAc:Hexane = 30:70 with gradient to 100:0) to remove impurities. The intermediate 

appeared as a pale yellow liquid and was obtained with a yield of 97% (3.693 g). 

Second Step (22) 

 t-BuOK (1.742 g, 31.04 mmol) was added to intermediate 21 in 137 mL of THF and the 

reaction mixture was stirred over night at room temperature. The mixture was quenched with 

100 mL of an aqueous solution of NH4Cl and extracted with CH2Cl2. The combined organic 

layer was dried with Na2SO4, filtered, concentrated under reduced pressure and purified by 

column chromatography (EtOAc : Hexane = 2:1 with gradient to 1:0). After recrystallization 

from Et2O, the product was obtained with a 60% yield (2.215 g) as a colorless solid. 
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Spectroscopic data 

COMPOUND 21 

1H-NMR (400 MHz, CDCl3, TMS, +25 °C): E+Z stereoisomers δ 1.23-1.29 (m,6H); 3.92 (s, 

1H); 4.04 (s,1H); 4.17-4.23 (m,4H); 4.58 (s,2H); 4.69 (s,2H); 7.21-7.44 (m, 10H); 8.21 

(s,1H); 8.30 (s, 1H). 

13C-NMR (150.8 MHz, CDCl3, 77 ppm, +25 °C): δ 14.03 (CH3); 14.05 (CH3); 46.0 (CH2); 

49.7 (CH2); 51.4 (CH2); 56.5 (CH2); 61.9 (CH2); 62.2 (CH2); 117.5 (Cq); 117.87 (Cq); 128.2 

(CH); 128.6 (CH); 128.7 (CH); 128.9 (CH); 129.1 (CH); 129.3 (CH); 133.0 (Cq); 133.5 (Cq); 

164.2 (CH); 165.2 (CH); 166.8 (Cq); 167.5 (Cq). 

COMPOUND 22 

1H-NMR (400 MHz, CDCl3, TMS, +25 °C): δ 1.25 (t, J=7.2 Hz, 3H); 4.24 (q, J=7.2 Hz, 2H); 

4.87(NH2); 5.34 (s, 2H); 7.14 (d, J= 6.70 Hz, 2H); 7.23 (s,1H); 7.27-7.35 (m, 3H). 

13C-NMR (150.8 MHz, CDCl3, 77 ppm, +25 °C): δ 14.5 (CH3); 50.7 (CH2); 59.7 (CH2); 

102.0 (Cq); 126.9 (CH); 127.8 (CH); 128.8 (CH); 136.7 (Cq); 139.3 (CH); 161.02 (Cq).  
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4.4.4 Synthesis of 7-benzyl-3-methyl-1-(o-tolyl)-1H-purine-2,6(3H,7H)-dione (25a) 
 

	

 

Two steps synthesis 

First Step (24a) 

o-Tolyl isocyanate (0.05 mL, 0.4 mmol) was added to a solution of 22 (0.050 g, 0.2 mmol) in 

THF (4.7 mL) and the reaction mixture was stirred under reflux conditions for 7h. The 

resulting mixture was concentrated under reduced pressure conditions yielding product 23a. 

DMF and t-BuOK (0.067g, 0.6mmol) were added to 23a. The mixture was stirred under 

reflux overnight. Subsequently, the mixture was quenched with an aqueous solution of HCl 

and extracted with EtOAc. The combined organic layer was dried with Na2SO4, filtered, 

concentrated under reduced pressure and purified by column chromatography (EtOAc : 

Hexane = 2:1 with gradient to 1:0) to afford product 24a with a 80% yield (0.053 g).  

Second Step (25a) 

Product 24a was dissolved in THF and t-BuOK (0.036g, 0.32mmol) followed by MeI (d= 

2.28 g/mL, 0.02 mL, 0.32 mmol) were added. The mixture was stirred under reflux conditions 

for 2h and after that, it was extracted with EtOAc. The combined organic layer was dried with 

Na2SO4, filtered and concentrated under reduced pressure to give the compound 25a with 

98% yield (0.054 g). 
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Spectroscopic data 

COMPOUND 24A 

1HNMR (600 MHz, CD3CN, +25 °C): δ 2.07 (s, 3H); 5.46 (s, 2H); 7.15 (d, J=7.8 Hz, 1H); 

7.29-7.38 (m, 8H); 7.85 (s,1H);9.87 (NH).  

13CNMR (150.8 MHz, CD3CN, 1.79 ppm, +25 °C): δ 16.6 (CH3); 49.6 (CH2); 106.9 (Cq); 

126.8 (CH); 127.8 (CH); 128.2 (CH); 128.8 (CH); 128.9 (CH); 129.4 (CH); 130.7 (CH); 

135.3 (Cq); 136.8 (Cq); 136.9 (Cq); 142.5 (CH); 148.4 (Cq); 150.9 (Cq); 155.3(Cq). 

COMPOUND25A 

1HNMR (600 MHz, CD3CN, +25 °C): δ 2.06 (s, 3H); 3.51 (s, 3H); 5.48 (s, 2H); 7.13 (d, 

J=7.8 Hz, 1H); 7.30-7.37 (m, 8H); 7.89 (s,1H).  

13CNMR (150.8 MHz, CD3CN, 1.79 ppm, +25 °C): δ 17.4 (CH3); 30.1 (CH3); 50.6 (CH2); 

107.8 (Cq); 127.6 (CH); 128.7 (CH); 129.1 (CH); 129.5 (CH); 129.7 (CH); 130.2 (CH); 131.5 

(CH); 136.7 (Cq); 137.6 (Cq); 137.8 (Cq); 143.1 (CH); 150.9 (Cq); 152.1 (Cq); 155.6(Cq). 

 

4.4.5 Synthesis of 7-benzyl-3-methyl-1-(2-nitrophenyl)-1H-purine-2,6(3H,7H)-dione 
(25b) 
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Two steps synthesis 

First Step (24b) 

o-Nitro-phenylisocyanate (0.131g, 0.8 mmol) was added to a solution of 22 (0.050 g, 0.2 

mmol) in THF (4.7 mL) and the reaction mixture was stirred under reflux conditions for 7h. 

The resulting mixture was concentrated under reduced pressure conditions and compound 23b 

was obtained. DMF and t-BuOK (0.064g, 0.57mmol) were added to 23b. The mixture was 

stirred under reflux overnight. Subsequently, the mixture was quenched with an aqueous 

solution of HCl and extracted with EtOAc. The combined organic layer was dried with 

Na2SO4, filtered, concentrated under reduced pressure and purified by semipreparative HPLC 

on a Luna C18 column (10 μm, 250 x 21.2 mm, 25 mL/min, ACN:H2O = 63:37 v/v) to afford 

product 24b with a 65% yield (0.047 g). 

Second Step (25b) 

Product 24b was dissolved in THF and t-BuOK (0.028 g, 0.25 mmol) followed by MeI 

(d=2.28 g/mL, 0.016 mL, 0.25 mmol) were added. The mixture was stirred under reflux 

conditions for 2h and after that, it was extracted with EtOAc. The combined organic layer was 

dried with Na2SO4, filtered and concentrated under reduced pressure to give the compound 

25b with 97% yield(0.048 g) 

Spectroscopic data 

COMPOUND 24B 

1H-NMR (600 MHz, CD3CN, +25 °C): δ 5.42 (d, J= 15.2 Hz, 1H); 5.45 (d, J=15.2 Hz, 1H); 

7.32-7.38 (m, 5H); 7.52 (dd, J =7.9, 1.5 Hz, 1H); 7.69 (ddd, J=8.2, 7.6, 1.5 Hz, 1H); 7.84 

(ddd, J=7.9, 7.6, 1.5 Hz, 1H); 7.9 (s, 1H); 8.16 (dd, J=8.2, 1.5 Hz, 1H); 9.52 (NH). 

13C-NMR (150.8 MHz, CD3CN, 1.79 ppm, +25 °C) : δ 50.6 (CH2); 107.6 (Cq); 126.2 (CH); 

128.6 (CH); 129.2 (CH); 129.8 (CH); 130.4 (Cq); 130.9 (CH); 133.2 (CH); 135.4 (CH); 137.5 

(Cq); 144.0 (CH); 147.7 (Cq); 149.6 (Cq); 151.4 (Cq); 155.8 (Cq). 

COMPOUND 25B 

1HNMR (600 MHz, CD3CN,+25 °C): δ 3.52 (s, 3H); 5.45 (d, J= 15.4 Hz, 2H); 5.47 (d, J= 

15.4 Hz, 2H); 7.32-7.38 (m, 5H); 7.49 (dd, J=8.0, 1.4 Hz, 1H); 7.70 (td, J=8.1, 1.4 Hz, 1H); 

7.84(td, J=7.7, 1.5 Hz,1H); 7.93(s,1H); 8.16 (dd, J=8.2, 1.6 Hz, 1H). 
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13CNMR (150.8 MHz, CD3CN,1.79 ppm, +25 °C) : δ 29.2 (CH3); 49.8 (CH2); 106.7 (Cq); 

125.3 (CH); 127.7 (CH); 128.2 (CH); 128.8 (CH); 129.9 (Cq); 130.0 (CH); 132.2 (CH); 134.4 

(CH); 136.5 (Cq); 142.7 (CH); 146.7 (Cq); 150.2 (Cq); 150.9 (Cq); 154.3 (Cq). 
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4.4.6 Synthesis of 7-benzyl-3-methyl-1-(naphthalen-1-yl)-1H-purine-2,6(3H,7H)-dione 
(25c) 
 

 

 

Two steps synthesis 

First Step (24c) 

1-Naphtyl-isocyanate (d= 1.177 g/mL, 0.575 mL, 4 mmol) was added to a solution of 22 

(0.50g, 2mmol) in THF (47mL) and the reaction mixture was stirred under reflux conditions 

for 7h. The resulting mixture was concentrated under reduced pressure conditions and the 

product 23c was obtained. DMF and t-BuOK (0.67 g, 6 mmol) were added to 23c. The 

mixture was stirred under reflux overnight. Subsequently, the mixture was quenched with an 

aqueous solution of HCl and extracted with EtOAc. The combined organic layer was dried 

with Na2SO4, filtered, concentrated under reduced pressure and purified by semipreparative 

HPLC on a Luna C18 column (10 μm, 250 x 21.2 mm, 25 mL/min, ACN:H20 = 90:10 v/v) to 

afford product 24c as a white solid with a 80% yield (0.589 g). 

Second Step (25c) 

Product 24c was dissolved in THF and t-BuOK (0.036 g, 0.32 mmol) followed by MeI 

(d=2.28 g/mL, 0.02 mL, 0.32 mmol) were added. The mixture was stirred under reflux 

conditions for 2h and after that, it was extracted with EtOAc. The combined organic layer was 
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dried with Na2SO4, filtered and concentrated under reduced pressure to give the compound 

25c with 98% yield (0.600 g).  

Spectroscopic data 

COMPOUND 24C 

1H-NMR (600 MHz, CD3CN, +25 °C): δ 5.46 (s, CH2); 7.31-7.38 (m, 5H); 7.45 (d, J=7.4 Hz, 

1H); 7.49-7.51 (m, 1H); 7.55-7.58 (m, 1H); 7.61-7.63 (m, 1H); 7.66 (d, J=8.2 Hz, 1H); 8.01 

(dd, J=8.2, 2.4 Hz, 2H); 9.73 (NH). 

13C-NMR (150.8 MHz, CD3CN, 1.79 ppm, +25 °C) : δ 51.0 (CH2); 108.4 (Cq); 123.6 (CH); 

127.2 (CH); 127.8 (CH); 128.4 (CH); 128.8 (CH); 129.2 (CH); 129.6 (CH); 129.8 (CH); 

130.2 (CH); 130.3 (CH); 132.1 (Cq); 134.3 (Cq); 135.7 (Cq); 138.2 (Cq); 144.0 (CH); 150.0 

(Cq); 152.6 (Cq); 157.2 (Cq). 

 

COMPOUND 25C 

1H-NMR (600 MHz, CD3CN, +25 °C): δ 3.56 (s, CH3); 5.46 (s, CH2); 7.31-7.38 (m, 5H); 

7.45 (d, J=7.4 Hz, 1H); 7.49-7.51 (m, 1H); 7.55-7.58 (m, 1H); 7.61-7.63 (m, 1H); 7.66 (d, 

J=8.2 Hz, 1H); 8.01 (dd, J=8.2, 2.4 Hz, 2H). 

13C-NMR (150.8 MHz, CD3CN, 1.79 ppm, +25 °C) : δ 30.7 (CH3); 51.1 (CH2); 108.5 (Cq); 

123.7 (CH); 127.2 (CH); 127.8 (CH); 128.4 (CH); 128.7 (CH); 129.2 (CH); 129.6 (CH); 

129.8 (CH); 130.2 (CH); 130.3 (CH); 132.1 (Cq); 134.8 (Cq); 135.7 (Cq); 138.2 (Cq); 143.7 

(CH); 151.7 (Cq); 153.1 (Cq); 156.7 (Cq). 
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4.5 Kinetic studies  

 

The experimental values of thermal racemization interpolated with the first order reversible 

kinetic equation of compounds 25b and 25c are reported in table 11 and 12. 

 

Table 11 Compound 25b: Racemization process of first eluted enantiomer at T=+30°C, 

+50°C and +58°C and of second eluted enantiomer at T=+56°C. 

 

T +30 °C T +50 °C T +56°C T +58°C 

t (s) ln(xena1-xena1_eq) t (s) ln(xena1-xena1_eq) t (s) ln(xena2-xena2_eq) t (s) ln(xena1-xena1_eq) 

0 -0,90042 0 -0,73397 0 -0,81803 0 -0,90189 

74700 

 

-1,59554 2280 -0,95946 1680 -1,09602 3540 -1,48281 

97860 -1,81523 5880 -1,25702 5100 -1,77078 7920 -2,29066 

- - 9120 -1,5616 8760 -2,4986 10020 -2,752 

- - 12660 -1,86821 - - - - 

- - 14340 -2,04022 - - - - 
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Figure 35 Compound 25b: Kinetic data fitted with linear regression of first eluted enantiomer at 

T=+30°C,+50°C and +58°C and of second eluted enantiomer at T=+56°C. 

 

Table 12 Compound 25c: Racemization process at each temperature of second eluted 

enantiomer 

y = -0,000009x - 0,9
R² = 1y = -0,00009x - 0,7392

R² = 0,9995

y = -0,0002x - 0,7948
R² = 0,9992

y = -0,0002x - 0,8702
R² = 0,9974‐3
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T +100 °C T +110 °C T +120 °C T +130 °C 

t(s) ln(xena2-xena2-eq) t(s) ln(xena2-xena2-eq) t(s) ln(xena2-xena2-eq) t(s) ln(xena2-xena2-eq) 

0 -0,7529 0 -0,7529 0 -0,7546 0 -0,7546 

18720 -0,77653 13860 -0,80386 3900 -0,81622 4860 -0,89575 

79200 -0,85637 22980 -0,86917 8460 -0,93777 9960 -1,07646 

93180 -0,87156 - - 11940 -1,00731 13080 -1,19733 

- - - - 14340 -1,05354 16800 -1,3356 

- - - - 66960 -1,7043 21360 -1,50328 
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Figure 36 Compound 25c: Kinetic data of second eluted enantiomer fitted with linear regression 
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4.6 Absolute configuration 

 

As addressed in Result and discussion the calculated and experimental ECD spectra of 

compound 25b are reported below.  

 

Figure 37 Experimental UV/Vis and ECD spectra of compound 25b 
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Figure 38 Compound 25b: Calculated and experimental ECD spectra the second eluted enantiomer has 

absolute configuration M 
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5. Appendix 

5.1  Density Functional Theory (DFT) 

 

Up to the end of the 1990s, conformational calculations of organic molecules were mainly 

performed by molecular mechanics (e.g., MM3,56 MMX,57 MMFF,58 Amber59 etc.) and 

semiempirical methods (AM1,60 PM3,61 MINDO62 being the most popular). 

The results obtained were often quite accurate, at least for the calculation of the ground-state 

conformations. For the calculation of transition states, in contrast, these methods have 

intrinsic limitations. Usually the interconversion barriers were calculated by moving the 

relative parts of the molecule in fixed steps and optimizing the remaining parts. Otherwise, a 

“handmade” transition state was assumed, and the geometry was optimised within certain 

constraints. As a result of these approximations, the computed barriers were prone to 

relatively large errors, and there was no guarantee that a real transition state had been 

located.63 

When the application of ab initio methods (HF) became available for medium-sized 

molecules the situation was greatly improved, although the neglecting of electron correlation 

was a serious limitation, partially solvable only through the employment of higher methods 

such as MP2.64 Unfortunately, this approach was not manageable without a very large 

computational facility.  

On the contrary, Density Functional Theory (DFT) has the great advantage of taking account 

of electronic correlation at a reasonable computational cost.65 The basic idea of DFT is that 

for a collection of electrons and nuclei the ground state molecular energy, the wavefunction 

and all other molecular electronic properties are uniquely determined by the electron 

probability density ρ(x,y,z), a function of three variables. The ground state energy, E0, is a 

functional of ρ: E0 = F [ρ].66 

In recent years, the availability of inexpensive high-performance servers and manageable 

software (Gaussian 09,53 and Spartan being the most famous) has allowed high-level 

calculations to be performed in a reasonable amount of time for molecules containing up to 

50–60 atoms. 
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DFT calculations are very interesting because they can be applied both to obtain the 

conformations of ground states and also to find the correct geometries and energies of ground 

and transition states. Thanks to vibrational analysis, there is always confirmation that the 

correct transition state has been unambiguously identified.  

Ground states 

Some uncertainty is involved in determining the relative energies of possible ground states. In 

recent years many papers addressing the performance of various DFT functionals in 

determining relative energies in reactions have appeared,67 but for conformational analysis 

there have been very few. 

For accuracy consideration the smallest basis set used is generally 6-31G* or the equivalent. 

Interestingly, there is only a small increase in accuracy obtained by using very large basis 

sets. This is probably due to the fact that the density functional has limited accuracy  

compared to that of the basis set. The accuracy of results from DFT calculations can be poor 

to fairly good, depending on the choice of basis set and density functional.  

The geometries obtained by calculations can in many cases be checked by X-ray diffraction 

data, and the relative energies of conformations can be compared with the results of kinetic 

studies. Although such a calculation usually refers to an isolated molecule, whereas X-ray 

studies reflect the solid state and kinetic results are for solutions, DFT structures compare 

very well with experimental observations in almost all cases, and the relative energies of 

possible conformations are correctly calculated. 

 

Transition states 

The determination of transition state structures and energies is a crucial point for dynamic 

analysis, because the correct simulation of energy barriers could greatly help the 

understanding of dynamic processes. As addressed by D. Young,68 a transition state (or saddle 

point) structure is mathematically defined as “the geometry that has zero derivative of energy 

with respect to moving every one of the nuclei, and has positive second derivative energy for 

all but one geometric movement”. In other words, a transition state linking two energy minima 

represents a maximum of energy in the direction of the reaction path, but it is a minimum in 

all other directions. 
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Once a stationary point is found, the primary way to verify whether it corresponds to a 

transition state is to compute the vibrational frequencies. A transition state must have only 

one negative (i.e., imaginary) frequency, and the vibrational motion associated with this 

frequency corresponds to the motion going towards reagents in one direction, and towards the 

products in the other. 

Unfortunately, in contrast with the transition states for high-energy processes (such as those 

involved in a chemical reaction), in which the imaginary frequency usually has a large 

(negative) value, the transition states involved in internal dynamic processes usually display 

small negative vibrational frequencies and can therefore be difficult to locate, especially in the 

presence of other possible internal motions. On the other hand, the geometry of a transition 

state is much simpler to idealise, because many geometrical parameters are fixed by the 

molecular scaffold.  
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5.2 Electronic Circular Dichroism (ECD) 

 

The knowledge of absolute configuration is mandatory in many industrial applications. For 

pharmaceutical applications, it is required that the absolute configuration of chiral drugs is 

known and that the biological activity of the compounds is tested for both enantiomers. 

Production of new drugs also requires a verification of the enantiomeric purity of the 

compounds. This leads to the need for characterizing their chiral purity and absolute 

configuration. One widely used method to detect and analyse chirality is the determination of 

the optical activity by circular dichroism (CD).69 In biology, for example, electronic circular 

dichroism (ECD) spectra are frequently used to characterize the secondary structure of 

proteins. 70 

Circular dichroism (CD) is the difference in the absorption of left‐handed circularly polarized 

light (L‐CPL) and right‐handed circularly polarized light (R‐CPL) and occurs when a 

molecule contains one or more chiral chromophores (light‐absorbing groups). Measurements 

carried out in the visible and ultra‐violet region of the electro‐magnetic spectrum monitor 

electronic transitions, and, if the molecule under study contains chiral chromophores then one 

CPL state will be absorbed to a greater extent than the other and the CD signal over the 

corresponding wavelengths will be non‐zero. A circular dichroism signal can be positive or 

negative, depending on whether L‐CPL is absorbed to a greater extent than R‐ CPL (positive 

CD signal) or to a lesser extent (negative CD signal). 

Linearly polarized light is light whose oscillations are confined to a single plane. All 

polarized light states can be described as a sum of two linearly polarized states at right angles 

to each other, usually referenced to the viewer as vertically and horizontally polarized light. 

 

Figure 39 Vertically and horizontally Polarized Light 
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If for instance we take horizontally and vertically polarized light waves of equal amplitude 

that are in phase with each other, the resultant light wave (blue) is linearly polarized at 45 

degrees. 

 

Figure 40 45° Polarized Light 

 

If the two polarization states are out of phase, the resultant wave ceases to be linearly 

polarized. For example, if one of the polarized states is out of phase with the other by a 

quarter‐wave, the resultant will be a helix and is known as circularly polarized light (CPL). 

The helices can be either right‐handed (R‐CPL) or left‐handed (L‐CPL) and are 

non‐superimposable mirror images. 

 

Figure 41 Left Circularly Polarised (LCP) Light Right Circularly Polarised (RCP) Light 

 

The difference in absorbance of left‐hand and right‐hand circularly polarized light is the basis 

of circular dichroism. A molecule that absorbs LCP and RCP differently is optically active, or 

chiral. In fact, whenever a circularly polarized radiation flows through a medium with chiral 

properties, acquires elliptical polarization, whose plane undergoes a rotation. The elliptical 

polarization occurs because the dextrorotatory (ER) and levorotatory (EL) components of the 

electric field vector, constituting the electromagnetic wave, are differently absorbed by an 
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optically active substance: therefore it is necessary to introduce two absorptivity, εR and εL, 

one for each of the two vector components.69,71 

ߝ∆ ൌ 	 ߝ െ	ߝோ 

The rotation of plane is due to the different refractive indices, nR and nL, generated from the 

interaction between the component ER and EL respectively, and the chiral substance. The 

result is that the vector components don’t propagate with the same speed but one is more 

accelerated respect the other.  

It is possible to predict the ellipticity (  ) and the angle (  ) of rotation of the plane of a 

polarized radiation, after its interaction with an optically active medium, by means of the 

following equations: 

                                                        

                                                                                                                                   

where  is the wavelength of the monochromatic polarized radiation, and l is the path length 

through the medium chiral . The valuesof  and  are expressed in radians. 

 . 

 

Figure 42 Ellipticity and rotation of the plane of a polarized radiation 

CD may be regarded as one of the most powerful techniques for stereochemical analyses: it is 

sensitive to the absolute configuration as well as to conformational features, which are often 

completely obscured in the ordinary absorption spectrum. 72 

 = (nL-nR)  l


 = (nL-nR)  l


 = (L-R)  l


 = (L-R)  l
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The CD of pure enantiomers differs in sign, but not in magnitude. Unfortunately, there is no 

simple relationship between the absolute configuration of an enantiomer and the sign of its 

ECD spectrum: CD depends on details of the electronic and geometric molecular structure.73 

The experimental CD of the molecule under investigation is commonly displayed together 

with either another experimental spectrum, or with the result of a more or less sophisticated 

calculated theoretical curve; in both cases it is very important to correctly choose the 

reference data. An example of experimental and calculated comparison is reported in figure 

43. 

 

Figure 43 Calculated CAM-B3LYP (blue line) and experimental (black line) ECD spectrum of the (S)-2-

Amino-4-(4-chlorophenyl)-6-methyl-4H-chromene-3-carbonitrile 74 

The spectra of two enantiomers of a chiral molecule are conditioned by the chromophores in 

their environment. Every conformational difference, every major alteration in the nature of 

the chromophore or of the perturbing groups between the test and reference makes the 

comparison and determination of absolute configuration unreliable. The appearance of the CD 

spectrum, namely position, intensity and sign of the bands, reflects the environment of each 

chromophore. 

ECD and optical rotation depend sensitively on the presence and nature of solvent 

interactions.75 The change in chiroptical response due to solute–solvent interactions is 

sometimes drastic and non-intuitive. A well-known example is the sign inversion in the 

optical rotation of methyloxirane upon changing the solvent from water to benzene.76  

Classical force-field MD simulations constitute a possible route to explicitly account for 

interactions between molecule and solvent.77 Apart from the high computational cost it might 

appear most desirable to treat the solute embedded in a large number of solvent molecules 

within a first-principles quantum mechanical MD approach. This might only be possible with 

very efficient electronic structure methods such as DFT which on the other hand have 
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deficiencies for non-covalent long-range interactions.78 Time-dependent density functional 

theory (TD-DFT) is presently the most widely used electronic structure method for ECD 

calculations. It extends the basic ideas of ground-state density-functional theory (DFT) to the 

treatment of excitations or more general time-dependent phenomena.  

It turns out that, even with the simplest approximation to the Kohn-Sham potential, spectra 

calculated within this framework are in very good agreement with experimental results.79 
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