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Abstract

Questa tesi si pone l’obiettivo di presentare la teoria dei giochi, in partico-

lare di quelli cooperativi, insieme alla teoria delle decisioni, inquadrandole

formalmente in termini di matematica discreta. Si tratta di due campi dove

l’indagine si origina idealmente da questioni applicative, e dove tuttavia sono

sorti e sorgono problemi più tipicamente teorici che hanno interessato e inte-

ressano gli ambienti matematico e informatico. Anche se i contributi iniziali

sono stati spesso formulati in ambito continuo e utilizzando strumenti tipici

di teoria della misura, tuttavia oggi la scelta di modelli e metodi discreti

appare la più idonea.

L’idea generale è quindi quella di guardare fin da subito al complesso dei

modelli e dei risultati che si intendono presentare attraverso la lente della

teoria dei reticoli. Ciò consente di avere una visione globale più nitida e di

riuscire agilmente ad intrecciare il discorso considerando congiuntamente la

teoria dei giochi e quella delle decisioni. Quindi, dopo avere introdotto gli

strumenti necessari, si considerano modelli e problemi con il fine preciso di

analizzare dapprima risultati storici e solidi, proseguendo poi verso situazioni

più recenti, più complesse e nelle quali i risultati raggiunti possono suscitare

perplessità. Da ultimo, vengono presentate alcune questioni aperte ed asso-

ciati spunti per la ricerca.
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Introduzione

La teoria dei giochi nasce a metà degli anni ’40 con il libro “Theory of

Games e Economic Behaviour” [59] di von Neumann e Morgenstern. Anche

se con il termine “giochi” di solito ci si riferisce a quelli non cooperativi,

ovvero quelli in cui i giocatori scelgono tra varie strategie, fin da subito von

Neumann e Morgenstern considerarono giochi cooperativi non appena il nu-

mero di giocatori eccede 2. In questi giochi i giocatori devono scegliere se

cooperare (in qualche modo) o meno. Più precisamente, i giochi cooperativi

sono funzioni che assumono valori reali su strutture ordinate che hanno come

base un insieme di giocatori. In particolare, anche se si possono contemplare

modelli di restrizione alla cooperazione tali che il gioco cooperativo che ne

risulta è un funzione su un poset (partially ordered set), tuttavia in questo

lavoro consideriamo solo funzioni sui reticoli, escludendo quindi qualsiasi re-

strizione alla cooperazione. Più precisamente, ci concentreremo sulle funzioni

a valori reali definite sul reticolo dei sottoinsiemi o su quello delle partizioni.

Infine affronteremo anche il caso delle funzioni reali sul reticolo dei sottoin-

siemi embedded, incluso nel prodotto tra il reticolo dei sottoinsiemi e quello

delle partizioni.

Da un punto di vista matematico, i giochi, in particolar modo quelli

cooperativi, condividono molti strumenti e concetti con la teoria delle deci-

sioni. Infatti, al momento di scegliere una strategia in un gioco non coope-

rativo un giocatore è a tutti gli effetti un decisore in condizione di incertezza.

Tale problema decisionale ha infatti guidato molte ricerche nel campo della

decisione in condizioni di incertezza. In questo lavoro, per probabilità si
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iv INTRODUZIONE

intenderà una valuation di un reticolo di sottoinsiemi, e ci concentreremo

sulle probabilità generalizzate o fuzzy measures che non sono valuations ma

semplicemente monotone e normalizzate. Inoltre, in teoria delle decisioni il

concetto fondamentale di informazione è formalizzato in termini di partizioni

di un insieme di stati di natura. Di conseguenza, ci concentreremo sulle fun-

zioni su partizioni (partition functions) che quantificano il valore di tali

informazioni per un decisore. In particolare, quest’ultimo sceglie un’azione

massimizzando la propria utilità attesa, la quale assume valori reali su coppie

formate da uno stato di natura e un’azione. Partizioni più fini hanno quindi

un valore maggiore rispetto a quelle meno fini poichè consento di sceglire

azioni più specifiche: una diversa per ciascun blocco della partizione.

Questo lavoro è diviso in quattro capitoli:

Nel Capitolo 1 si introduce il necessario background combinatorio. In

primo luogo, si definisce la relazione d’ordine parziale e il concetto associato

di insieme parzialmente ordinato (poset), includendo alcuni importanti risul-

tati utili in seguito. Successivamente, consideriamo le relazioni binarie di

“meet” e “join” che caratterizzano i reticoli. Questi ultimi costituiranno la

base di tutta la successiva analisi. I reticoli vengono poi classificati come

distributivi, modulari, semimodulari e geometrici, consentendo in tal modo

di introdurre due esempi principali, vale a dire il reticolo dei sottoinsiemi e il

reticolo delle partizioni, molto importanti sia per la teoria dei giochi che per

la teoria delle decisioni. Infine, descriviamo nel dettaglio alcune proprietà

delle funzioni sui reticoli (e più in generale sui poset), con particolare atten-

zione al rango e all’inversione di Möbius (di poset functions).

Nel Capitolo 2 si mostrerà come gli strumenti e i risultati forniti nel Capi-

tolo 1 siano utili sia nella teoria dei giochi che nella teoria delle decisioni. Per

quanto riguarda la prima, consideriamo in dettaglio lo sviluppo della teoria

dei giochi cooperativi fin dalla sua nascita, avvenuta con la pubblicazione

del già citato libro “Theory of Games and Economic Behavoiur” di von Neu-

mann e Morgenstern. Illustriamo poi vari giochi cooperativi, come i simple
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games, gli unanimity games e i voting quota games, e consideriamo le princi-

pali soluzioni puntuali (point-valued solutions), ovvero lo Shapley value e il

Banzhaf value. Per quanto riguarda la teoria delle decisioni, consideriamo le

probabilità non additive, cioè le fuzzy measures, e il valore atteso (di variabili

aleatorie) rispetto ad esse calcolato secondo l’integrale discreto di Choquet.

Infine, si mostrerà che l’integrale di Choquet definisce una relazione binaria

di preferenza razionale (cioè completa e transitiva) su un tipo particolare di

fuzzy measure note come necessity measures.

Nel Capitolo 3 considereremo modelli più complessi. Per quanto riguarda

la teoria dei giochi, l’attenzione è posta sui global games, che mappano coali-

tion structures o partizioni dell’insieme di giocatori in numeri reali. Per questi

giochi, insieme alle soluzioni puntuali già menzionate (cioè lo Shapley value

e il Banzhaf value), si considera anche la principale soluzione (set-valued),

vale a dire il core (o nucleo). Per quanto riguarda la teoria delle decisioni,

esamineremo le rappresentazioni additive dell’integrale discreto di Choquet,

con particolare attenzione alle fuzzy measures supermodulari. Successiva-

mente, ci concentreremo sulle information functions che assegnano ad ogni

partizione degli stati di natura il valore reale dell’informazione che essa incor-

pora, come detto sopra. In particolare, queste funzioni sono caratterizzate

dall’esistenza di una set function tale che il valore di ogni partizione è dato

dalla somma dei valori dei suoi blocchi come quantificato dalla set function.

Infine, nel Capitolo 4, descriviamo un ulteriore tipo di gioco cooperativo,

definito in partition function form, e discutiamo il concetto di soluzione

da un punto di vista generale, cioè interpretando i giochi come funzioni su

reticoli. Consideriamo successivamente un problema con una storia piuttosto

importante in teoria delle decisioni, ossia come definire il valore atteso con-

dizionato rispetto ad una probabilità non additiva. Infine, quest’ultimo pro-

blema (ovvero come condizionare nel caso non additivo) è ulteriormente stu-

diato in relazione ad un problema più complesso, cioè come definire l’equilibrio
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di Nash (di un gioco non cooperativo) quando i giocatori randomizzano e cal-

colano la loro utilità attesa rispetto a distribuzioni non additive su insiemi

di strategie.



Introduction

Game theory was born in the mid-40s with the book “Theory of Games

and Economic Behaviour” [59] by von Neumann and Morgenstern. Although

“games” usually refers to non-cooperative ones, where players choose strate-

gies, still since the very beginning von Neumann and Morgenstern already

considered cooperative games as soon as the number of players exceeded 2.

In these latter games, players basically choose whether to cooperate (in some

form) or not. More precisely, cooperative games essentially are functions

taking real values on ordered structures grounded on a player set. In partic-

ular, although one may want to consider cooperation restrictions modelled

in a way such that the resulting cooperative game is a poset function, in this

work we only deal with lattice functions, without any cooperation restric-

tions. Specifically, we shall focus on real-valued functions defined on subset

or partition lattices. We shall finally also deal with real-valued functions on

the lattice of embedded subsets, where this latter is included in the product

of the subset and partition lattices.

Mathematically speaking, games and especially cooperative ones share

many settings and tools with decision theory. In fact, when choosing a strat-

egy in a non-cooperative game a player is typically a decision maker facing

uncertainty. Such a decision problem has indeed driven much investigation in

the field of decision under uncertainty. In this work a probability is treated as

a valuation of a subset lattice, and the focus is on generalized probabilities or

fuzzy measures which are not valuations but only monotone and normalized.

Also, in decision theory the fundamental concept of information is formalized
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in terms of partitions of a set of states of nature. Accordingly, we shall focus

on partition functions quantifying the worth of such information for a deci-

sion maker. In particular, this latter chooses an action maximizing expected

utility, where this latter takes real values on pairs of a state (of nature) and

an action. Finer partitions are thus more valuable than coarser ones.

This work is divided into four Chapters:

In Chapter 1 we introduce the needed combinatorial background. Firstly,

we define the partial order relation and the associated concept of partially

ordered set, together with some important results useful in the sequel. Sec-

ondly, we consider the “meet” and “join” binary relations that characterize

lattices, where these latter constitute the basis for all subsequent analysis.

Lattices are then classified as distributive, modular, semimodular and geo-

metric, thereby allowing for two main examples, namely the subset lattice and

the partition lattice, both very important for game theory and decision the-

ory. Lastly, we detail certain properties of lattice (and more generally poset)

functions, with special attention on the rank (function) and the Möbius in-

version of poset functions.

In Chapter 2 we consider how tools and results provided in Chapter 1

are useful both in game theory and decision theory. As for the former, we

consider in detail the development of cooperative game theory since its foun-

dation, i.e. von Neumann and Morgestern’s already mentioned book “Theory

of Games and Economic Behaviour”. We illustrate various coalitional games

such as simple games, unanimity games and voting quota games, and con-

sider the principal point-valued solutions: the Shapley and Banzhaf values.

Concerning decision theory, we discuss non-additive probabilities, i.e. fuzzy

measures, and the expectation (of random variables) with respect to them

computed according to discrete Choquet integral. Finally, Choquet integra-

tion is shown to provide a ranking criterion over necessity measures.
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In Chapter 3 the focus turns on more complex settings. As for game

theory, attention is placed on global games, mapping coalition structures

or partitions of players into real numbers. For these games, together with

the point-valued solutions mentioned above (i.e. the Shapley and Banzhaf

values), we also consider the main set-valued solution, namely the core. Con-

cerning decisions, we examine alternative (i.e. additive) representations of

the discrete Choquet integral, with special attention on supermodular fuzzy

measures. Next, the focus is placed on information functions, assigning to

every partition of states the real-valued worth of the information it encodes,

as mentioned above. In particular, these functions shall be characterized by

the existence of a set function such the worth of every partition is given by

the sum over its blocks of these latter’s worth as quantified by the given set

function.

Finally, in Chapter 4, we begin by describing a further type of cooperative

games, termed in partition function form, and discuss the solution concept

from a general perspective, that is while looking at games as lattice functions.

We next consider an issue with a quite long history in decision theory, namely

how to define the conditional expectation with respect to a non-additive

probability. Finally, this latter issue (i.e. how to condition in the non-additive

case) is further studied in conjunction with a more complex problem: how

to define the Nash equilibrium (of a non-cooperative game) when players

randomize and compute their expected utilities with respect to non-additive

distributions over strategy sets.
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Chapter 1

Combinatorial background on

ordered structures

This first Chapter aims to briefly present ordered structures (i.e. poset

and lattices) within the standard combinatorial theory framework.

Developing from this, the following Chapters shall detail how these structures

are fundamental in cooperative games and decision making.

Definitions, notations and results appearing hereafter are presented following

mainly [1], as well as [57].

1.1 Partially ordered sets

The basic ordered structure to start with is a partially ordered set or

poset.

Definition 1.1. A partially ordered set (S,6) is a set S endowed with a

binary relation 6 satisfying the following properties for all a, b and c in S

� a 6 a reflexivity,

� if a 6 b and b 6 a, then a = b antisymmetry,

� if a 6 b and b 6 c, then a 6 c transitivity.

1



2 1. Combinatorial background on ordered structures

Order relation 6 is termed “partial” in that, in general, it does not allow

to compare any two elements x, y ∈ S; that is to say, it may well be that

neither x 6 y nor y 6 x hold. Historically, a fundamental example of partial

order is divisibility among natural numbers a, b ∈ N, i.e. a 6 b if b
a
∈ N.

Of course, given any two strictly positive integers, it is not necessarily true

that one is divisible by the other1. On the other hand, if any two elements

x, y ∈ S are comparable through order relation 6, then (S,6) is a totally

ordered set or a chain. The antisymmetric component of order relation 6,

i.e. <, is defined as

x < y ⇔ x 6 y and x 6= y.

Definition 1.2. Let P be an ordered set. Then

K = {a = x0 < x1 < . . . xn−1 < xn = b},

is a chain if, for all xi, xj ∈ K , either xi 6 xj or xj 6 xi.

The set R of real numbers ordered by the standard less-than-or-equal

relation i.e. ≤, is perhaps the simplest example of a totally ordered set.

Definition 1.3. Let P be an ordered set, with x, y ∈ P . The covering

relation l is defined as follows: xly (which reads “y covers x” or equivalently

“x is covered by y”) if x < y and there is no z ∈ P such that x < z < y.

In the first example of a poset we gave, namely N ordered by divisibility, a

number x covers the number y if and only if x divided by y is a prime number.

Conversely, in the poset of real numbers ordered by the standard less-than-

or-equal relation no element covers another. Note that N is countably infinite

while R is a continuum. More simply, in this thesis we deal only with finite

ordered structures (i.e. posets and lattices, see below).

Definition 1.4. A chain K = {a = x0 < x1 < . . . xn−1 < xn = b} between

two elements a and b is maximal (or unrefinable) if each element is covered

1In fact, this framework yields the divisor lattice, where a main tool used in this work,

namely the Möbius function, was firstly conceived (see Rota (1964) [49]).
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by its successor, i.e. xi l xi+1 for 0 6 i 6 n− 1. The length of a chain K is

defined as l(K)=|K|-1, where |K| is the cardinality of K.

The definitions provided thus far lead to introduce the Jordan-Dedekind

JD-condition, which is fundamental in that it yields the rank function. In

fact, as discussed in the sequel (see last section of this first Chapter), the rank

constitutes the first and perhaps simplest example of poset function (as well

as of lattice function), and functions mapping poset (and lattice) elements

into the set of real numbers constitute the main concern of the present work.

Definition 1.5. Let P be an ordered set. We say P has a bottom element,

denoted by 0, if 0 ∈ P and 0 6 x for all x ∈ P . Dually, P has a top element,

denoted by 1, if 1 ∈ P and x 6 1 for all x ∈ P .

Definition 1.6. A poset P satisfies the JD-condition if for any given x, y ∈ P
with x < y, all maximal chains between x and y have the same length. If all

maximal chains from the bottom element 0 to x have the same finite length,

this common length is called the rank of x and denoted by r(x).

Proposition 1.1.1. Let P be a poset with 0. If P satisfies the JD-condition,

then for the rank function it holds:

� r(0) = 0,

� al b implies r(b) = r(a) + 1 for all a, b ∈ P.

The rank basically measures the height of poset elements. This can be

visualized through the Hasse diagram, which is essentially a graph where

nodes (or vertices) are poset elements and any two nodes are linked whenever

one covers the other (in terms of the covering relation, see Definition 1.3

above). Nodes are grouped into levels so that the bottom element is the only

node in level 0, next all elements covering the bottom element are in level 1,

and in general all elements with rank k (k = 0, 1, 2, . . .) are in the k-th level.

Hence, within the Hasse diagram, the rank of poset elements is seen to be

the length of any shortest path connecting them with the bottom element.
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Definition 1.7. An ordered set (P,6) is an antichain if any two distinct

elements are incomparable, that is x 6 y implies x = y for all x, y ∈ P .

A segment [x, y], x, y ∈ P , is the set of all elements z between x and y,

that is [x, y] = {z ∈ P : x 6 z 6 y}. A partially ordered set is locally finite

if every segment is finite. As already clarified, this thesis only deals with

finite, and thus a fortiori locally finite, structures.

A fundamental poset we introduce in this Chapter is the power set P (X)

of X. Take X to be a finite set; the power set P (X) consists of all subsets of

X ordered by set inclusion, i.e. for A,B ∈ P (X), define A 6 B if and only

if A ⊆ B. The power set of a finite set N = {1, . . . , n} is usually denoted

by 2N . In fact, if |N | = n, then |P (N)| = 2n. In game theory N is a set of

players and its subsets are coalitions. In decision theory, N is either a set

states of nature, or else a set of criteria for evaluating different alternatives.

The former case corresponds to decision making under uncertainty, while the

latter is commonly referred to as multicriteria decision making.

Also note that 2n =
∑

06k6n

(
n
k

)
, where binomial coefficients

(
n
k

)
= n!

k!(n−k)!
=(

n
n−k

)
provides the cardinality of the k-th and n−k-th levels of poset (2N ,⊆).

The next fundamental ordered structure to be considered is the lattice

one, whose definition relies upon the notion of upper and lower bound (the

same often used in calculus), detailed hereafter following Stern [57]. Let

Q ⊆ P be an arbitrary subset of poset P ; then, an element u ∈ P is said to

be an upper bound (maximal element) of Q if x 6 u for all x ∈ Q. An upper

bound u of Q is said to be its least upper bound, or join, or supremum, if

u 6 x for all upper bounds x of Q. A generic poset needs not have a least

upper bound, but it cannot have more than one. Dually, l ∈ P is said to be

a lower bound of Q if l 6 x for all x ∈ Q. A lower bound l of Q is said to be

its greatest lower bound, or meet, or infimum, if x 6 l for all lower bounds

x of S.

Definition 1.8. A lattice L is a partially ordered set in which every two-

element set has a supremum and a infimum. In this case, for all x, y ∈ P

the supremum of x and y, sup{x, y}, will be denoted as x∨ y and named the
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Figure 1.1: Power set P (X) of X where X={x, y, z}.

join of x e y. Analogously the infimum inf{x, y} will be denoted by x ∧ y
and called the meet of x and y.

A lattice (L,∨,∧) is complete if supY and inf Y exist for all Y ⊆ L.

A simple example of lattice is provided by any subset L ⊆ P (X) which is

closed under intersection and union. In this case L is a lattice of subsets.

Here A ∨B = A ∪B and A ∧B = A ∩B.

A bounded lattice is a lattice that, in addition, has a greatest element 1

(the top element) and a least element 0 (the bottom element) satisfying

0 6 x 6 1 for all x ∈ L.

This thesis deals exclusively with bounded lattices.
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1.2 Join-irreducible elements and distributive

lattices

This and the following Sections contain definitions enabling to introduce

two specific lattices, namely the distributive and the geometric ones. The

aim is to outline some main differences and similarities between the two, in

order to best detail the key role played by the lattice of subsets (distributive)

and that of partitions (geometric) in games and decisions.

Definition 1.9. Let L be a lattice. An element x ∈ L is join-irreducible if

� x 6= 0 (in case L has a bottom element),

� x = a ∨ b implies x = a or x = b for all a, b ∈ L.

This means that a join-irreducible element x cannot be represented as a

join of two lattice elements unless one of them is x itself. A meet-irreducible

element y is defined dually: y 6= 1 (in case L has a top element) and y = a∧b
entails y = a or y = b for all a, b ∈ L.

Denote the set of join-irreducible elements of lattice L by J(L) and the

set of meet-irreducible elements by M(L). Both J(L) and M(L) inherit the

order relation 6 and thus are ordered set themselves.

In a finite lattice L, an element is join-irreducible if and only if it covers

just one element (see Davey-Priestley [9, p.53]). This makes J(L) extremely

easy to identify in the Hasse diagram. In subset lattice P (X), join-irreducible

elements are singletons, i.e. J(P (X)) = {{x} : x ∈ X}.

Definition 1.10. A lattice is distributive if the following identities hold for

all x, y, z ∈ L,
x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z).

Weakening this definition enables to define modular lattices.
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Definition 1.11. A lattice is modular if for all elements x, y, z ∈ L

z 6 x implies x ∧ (y ∨ z) = (x ∧ y) ∨ z.

Every distributive lattice is also modular, but the converse is not true.

Any power set lattice P (X) is distributive. More generally, any lattice of

sets is distributive. In Davey-Priesley [9] it is proved that every distributive

lattice is isomorphic to a lattice of subsets. In Markowski [38] the following

is proved:

Theorem 1.2.1. A finite lattice is distributive if and only if the number of

its join-irreducible elements is equal to the length of the lattice itself, where

the length of a lattice is the length of a longest maximal chain in the lattice.

For example, in the lattice 2N of subsets of N = {1, ..., n}, there are n

join-irreducible elements (i.e. the n sigletons) and n is indeed the length of

the lattice. In fact, singletons {x}, x ∈ N , are the atoms of the lattice.

Definition 1.12. Let L be a lattice with bottom element 0 and top element

1. An atom in L is an element that covers the bottom element 0. Dually, a

coatom is an element covered by the top element 1.

Definition 1.13. A lattice L with bottom element 0 is called atomic if for

every x ∈ L, x 6= 0, there exists an atom p ∈ L such that p 6 x.

Definition 1.14. A lattice with bottom element 0 is called atomistic if every

element (6= 0) is a join of atoms.

A simple example of atomic lattice which is not also atomistic is {1, 2, 4},
the set of divisors of 4, ordered by the “divisor of” relation (see above): it is

atomic, with {2} being the only atom, but it is not atomistic, since 4 cannot

be obtained as least common multiple of atoms. In fact, 4 is a join-irreducible

element which is not also an atom.

The difference between atoms and join-irreducible elements, as well as

between atomic and atomistic lattices is further detailed and studied in the
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sequel, when dealing with the so-called lattice of embedded subsets (see Gra-

bish 2010 [23]), which is relevant in cooperative game theory insofar as games

in partition function form are concerned (see Thrall and Lucas 1963 [58]).

1.3 Closure operator: semimodular and

geometric lattices

This Section introduces the partition lattice, used next in Chapter 2 when

dealing with global games and information functions [18]. It is a lattice which

is semimodular and geometric.

Definition 1.15. A lattice is called semimodular if for all a, b ∈ L

a ∧ bl a implies bl a ∨ b.

Any semimodular lattice always satisfies the JD-condition (see Aigner [1,

p. 47]). The following important theorem also holds:

Theorem 1.3.1. Let L be a lattice with 0. L is semimodular if and only if

L possesses a rank function such that for all x, y ∈ L

r(x ∨ y) + r(x ∧ y) ≤ r(x) + r(y).

L is modular if and only if for all x, y ∈ L

r(x ∨ y) + r(x ∧ y) = r(x) + r(y).

In our setting, the most important semimodular lattice is that of parti-

tions. A partition of a set S, denoted by π = {A1, . . . Ab(π)} with |π| = b(π), is

a family of non-empty disjoint subsets A1, . . . Ab(π) ⊆ S called blocks, whose

union is S. Hence Ak
⋂
Ak′ = ∅ for 1 ≤ k < k′ ≤ b(π),

⋃
1≤k≤b(π) Ak = S.

Denote by PN the set of all partitions of N , and consider the coarsening

orded relation defined as follows: given b(π) ≤ b(σ), π = {A1, . . . Ab(π)} is

coarser than σ = {B1, . . . Bb(σ)}, σ 6 π, if for each i ∈ {1, . . . , b(σ)} there is

j ∈ {1, . . . , b(π)} such that Bi ⊆ Aj.
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Here σ 6 π reads “π is coarser than σ” or, equivalently, “σ is finer than

π”. The rank function is defined by r(π) = n− b(π) for all π ∈ PN (n <∞).

Hence, the (n−k)-level of PN , denoted by PN(n−k), consists of all partitions

with exactly k blocks. For 0 < k ≤ n, numbers |PN(n − k)| =: Sn,k are the

Stirling numbers of the second kind, while numbers |PN | =: Bn the Bell

numbers [27, Chapter 6, p. 257]. Thus we have

Bn =
n∑
k=1

Sn,k for all k, n ∈ N.

The top element of PN is the coarsest partition, with a single block, i.e.

P> = {N}, while the bottom element has n blocks, each being a singleton:

P⊥ = {{1}, . . . , {n}}. The meet π ∧ σ is the coarsest partition finer than

both π, σ and, analogously, π ∨ σ is the finest partition coarser than both

π, σ. With these operations, (PN ,∧,∨) is a lattice.

In particular, it is semimodular but not modular (see [1, Chapter 2]).

Semimodular lattices also obtain, in general, by means of a closure operator,

together with the Steinitz exchange axiom.

Definition 1.16. Let P be a poset. A map cl : P → P is called a closure

operator (on P ) if for all x, y ∈ P the following properties are satisfied:

� x 6 cl(x) (extensive),

� x 6 y implies cl(x) 6 cl(y) (increasing),

� cl(cl(x)) = cl(x) (idempotent).

Definition 1.17. A map cl : x 7→ cl(x) satisfies the Steinitz exchange

axiom if for all A ⊆ S and p, q ∈ S,

p /∈ cl(A) and p ∈ cl(A ∨ q) implies q ∈ cl(A ∨ p).

The complete lattice of closed subsets (i.e. all subsets A ⊆ S such that

A=cl(A)) is semimodular and geometric.

The first and most important example (from which the term “Steinitz

exchange axiom” derives) is that of a vector space over a division ring. Let
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V be the set of vectors and A −→ A the linear closure, i.e., v ∈ A if and

only if v is linearly dependent on A. That is v can be expressed as linear

combination v = α1u1 + · · ·+ αkuk of elements u1, ..., uk ∈ A.

Definition 1.18. A lattice is geometric if it is finite, atomistic and semi-

modular.

The partition lattice is geometric because it is finite and all its elements

can be obtained as a join of atoms, where these latter are the
(
n
2

)
(distinct)

partitions consisting of n− 1 blocks, n− 2 of which are singletons while the

remaining one is a pair (i.e. a 2-cardinal subset of N ; see Definition 1.12

above).

Definition 1.19. A lattice is complemented if it has bottom and top ele-

ments 0 and 1, and if every element x ∈ L has a complement x′, that is to

say an element x′ ∈ L such that x ∨ x′ = 1 and x ∧ x′ = 0.

All geometric lattices are relatively complemented, meaning that every

segment is complemented. In 2N every subset has a unique complement,

while in PN a generic partition may well have several complements.

Another important difference between the subset and partition lattices con-

cerns modular elements (see Stern [57, p. 74]).

Definition 1.20. An ordered pair (a, b) of elements of a lattice L is a modular

pair and we write a M b, if for all c ∈ L

c 6 b implies c ∨ (a ∧ b) = (c ∨ a) ∧ b.

Definition 1.21. In a lattice L, an element b is called a modular element if

x M b holds for every x ∈ L.

In the subset lattice 2N every element is modular, while in the partition

lattice PN there are 2n − n modular elements, namely all partitions having

at most only one block whose cardinality is greater than 1.
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1.4 Lattice functions and Möbius inversion

As cooperative games are in fact lattice (or, more generally, poset) func-

tions, this section introduces lattice functions and their basic properties.

A lattice function is any map f : L→ R, where L is a lattice.

Accordingly, the rank is one of the simplest such functions. In addition, it is

also monotone and bottom-normalized.

Definition 1.22. A lattice function f : L → R is bottom-normalized if

f(0) = 0.

Definition 1.23. A lattice function is monotone if x 6 y implies f(x) 6 f(y)

for all x, y ∈ L.

Definition 1.24. A lattice function is

� supermodular if f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y) for all x, y ∈ L,

� submodular if f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y) for all x, y ∈ L,

� a valuation of L if it is both supermodular and submodular.

In cooperative game theory bottom normalization and monotonicity are

both standard assumptions (see below).

Let P be a locally finite poset with bottom element, and F a field of

characteristic 0, usually R. A function f : P × P → F is called incidence

function on P with values in F if x 
 y implies f(x, y) = 0.

The set A of all incidence functions of P over F , forms a vector space over

F that is to say, for f, g ∈ A, k ∈ F,

(f + g)(x, y) := f(x, y) + g(x, y),

(kf)(x, y) := kf(x, y).

The product f ∗ g of f, g ∈ A is defined by convolution:

(f ∗ g)(x, y) :=
∑
x6z6y

f(x, z)g(z, y).
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Since every segment in P is finite, the sum is finite, so that the above

expression is always well defined. With these operations (namely +, ·, ∗),
the space of all incidence functions forms the so-called incidence algebra of

P over F . Perhaps the most important incidence function (especially in this

thesis) is the so-called zeta function defined as follows:

ζ(x, y) :=

1 if x 6 y,

0 otherwise.

The elements in A which possess an inverse with respect to the convolu-

tion are called the units of A.

Theorem 1.4.1. A function f ∈ A is a unit if and only if f(x, x) 6=
0 for all x ∈ P. A unit f possesses a unique inverse f−1.

Therefore ζ is invertible in A and its inverse is the Möbius function

µ := ζ−1. In particular, the Möbius function µ ∈ A is obtained recursively

as follows (see Aigner [1, p. 139]):

µ(x, x) = 1 and µ(x, y) = −
∑
x6z<y

µ(z, y) for all x, y ∈ P, x 6 y.

Hence, in particular, if xl y then µ(x, y) = −1.

Definition 1.25. The Möbius inversion of a poset function f : P → R is

µf (x) =
∑

y6x µ(y, x)f(y).

Möbius inversion was described as the combinatorial analogue of the Fun-

damental Theorem of calculus thinking of µf as the derivative of f , for one

in fact has f(x) =
∑

y6x µ
f (x) (see Rota [49]).

An important result concerns the Möbius inversion of valuations of dis-

tributive lattices [1, Theorem 4.63, p. 190 (Davis-Rota)].

Theorem 1.4.2. If L is a locally finite distributive lattice with bottom ele-

ment, then every valuation is uniquely determined by its values on the set of

join-irreducible elements.
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In particular, valuations of subset lattice 2N (which is distributive and

finite, and thus a fortiori locally finite), have Möbius inversions living only on

J(L) = N , i.e. on the atoms {i} of 2N . As we shall see, this has important

implications for the solution concept in cooperative game theory, as it will

be discussed in the next Chapter.
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Chapter 2

Games and decisions in discrete

settings

In this Chapter we use previous definitions and results of lattice theory

with the intent to provide the basics of cooperative game theory and decision

theory. More complex settings shall be treated in the following Chapters. In

the first part, after a short historical presentation allowing to better delimit

our framework, we introduce coalitional games, with special emphasis on

some special ones (unanimity, simple and supermodular or convex games

[54]) and on the solution concept. In the second part, attention turns on de-

cision theory, focusing on von Neumann-Morgenstern expected utility model,

discrete fuzzy measures and Choquet expectation with respect to these latter.

Game theory starts in the late twenties with John von Neumann’s analysis

of two-person zero-sum games, where one player’s gain equals the other’s loss

(as in poker, chess and, possibly, war). In collaboration with Oskar Morgen-

stern he extended his research, leading to games which have more players or

are not zero-sum (for example, in the well-known prisoners’ dilemma, where

both players attain maximum payoff when they both do not confess). In

their book “Theory of Games Economic Behavior” [59] von Neumann and

Morgenstern proposed methods for analysing games in more general settings,

15
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and their pioneering contribution is probably the most important milestone

in the history of game theory. Subsequent work can be classified into two

main categories. The first is non-cooperative game theory, concerned with

games in normal or extensive form, where players have each to choose a strat-

egy. The other approach is cooperative game theory, where strategic details

are ignored. Rather, the focus is on coalitions (= subsets) A ⊆ N of players

and what they can achieve when all members cooperate with each other, and

utilities are transferable across players. The transferable-utility assumption

entails that how to share the fruits of cooperation is the central issue.

A common interpretation is that cooperative game theory studies the

outcome of join (i.e. coordinated) actions in a situation with external com-

mitment. Von Neumann and Morgenstern’s approach is non-cooperative as

long as the concern is on two-player zero-sum games. But the approach is

also cooperative for other games. In particular, they provide the first analysis

in history for simple games that we will discuss later in this Chapter.

2.1 Coalitional games

Let N = {1, ..., n} be a finite player set. Ideally, in coalitional games,

players can make binding agreements about the distribution of payoff or the

choice of strategies even if these agreements are not specified by the rules

of the game. Usually, an agreement or a contract is binding if its violation

entails high monetary penalties which deter the players from breaking it.

There are several real-life situations (e.g. contract law) that allow for this

modelling. In such an applicative scenario, coalitional games may be divided

into two categories: games with transferable utilities (TU) and games with

non-transferable utilities (NTU). In this work we only deal with TU games.

Definition 2.1. A coalitional game (with transferable utility) on a set N

of players is a function v : 2N → R+ that associates a real number v(A) with

each subset A of N . We always assume that v(∅) = 0 (bottom-normalized)

and that for all A,B ∈ 2N , B ⊆ A =⇒ v(A) ≥ v(B) (monotone).
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Let v be a coalitional game and let A be a subcoalition of N . If A is

formed, then its members get the amount v(A), called worth of the coalition

A. In real-life situations, the worth of a coalition is typically represented by

a certain amount of money. In a coalitional game, players may be assumed

to choose what coalition to join, according to their estimate of the way the

payment will be divided among coalition members.

If a coalition A forms, then it can divide its worth, v(A), in any possible

way among its members. That is, A can achieve every payoff vector x ∈ R|A|+

which is feasible, that is, which satisfies∑
i∈A

xi ≤ v(A).

Real-life games, where rewards are in money, give examples of TU games.

Von Neumann and Morgenstern derive TU coalition functions from the strate-

gic form of games with transferable utilities (i.e. utilities which are linear in

money).

The simplest but perhaps most important coalitional game is the unanim-

ity game, first introduced by Shapley in its 1953 paper “Value of n-person

games” [55].

Definition 2.2. For all A,B ∈ 2N , A 6= ∅ the unanimity game UA associ-

ated with the coalition A is defined by:

UA(B) =

1 if B ⊇ A,

0 otherwise.

As the name suggests, in unanimity games UA a unit of (transferable)

utility is produced if all members i ∈ A cooperate with each other. Put it

differently, there must be unanimous agreement within coalition A. Una-

nimity games are important because the set {UA : ∅ 6= A ∈ 2N} is a linear

basis of the vectorial space of coalitional games (see Peleg and Sudhölter

[43, p. 153]). It is easily recognized that unanimity game UA(·) = ζ(A, ·) is

another name for the zeta function in the incidence algebra of subset lattice
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(2N ,∩,∪). Hence its inverse is Möbius function µ(A, ·). In particular, for

subset lattices the Möbius function takes form µ(A,B) = (−1)|B\A| for all

A ⊆ B ∈ 2N .

2.1.1 Probabilistic and random-order solutions

Let us now turn to the solution concept, i.e. how to share the fruits of

cooperation. The solution of a coalitional game v is an additive set function

φ(v) or, equivalently, a valuation of subset lattice (2N ,∩,∪).

That is, φ(v) = (φ1(v), φ2(v), ..., φn(v)) ∈ Rn and φ(v)(A) =
∑

i∈A φi(v).

Equivalently, φ(v) : 2N → R satisfies

φ(v)(A ∪B) + φ(v)(A ∩B) = φ(v)(A) + φ(v)(B),

for all A,B ∈ 2N . The most known solutions of coalitional games are the

Shapley and the Banzhaf values, detailed in the next Section. In order to

give a proper axiomatization of these values, we first introduce probabilistic

and random-order solutions. For definitions and results in this Section we

refer to Weber [60]. Fix a player i and let pi = {piA : A ⊆ N \ i} be

a probability distribution over the collection of coalitions not containing i,

hence
∑

A⊆N\i p
i
A = 1 for all i ∈ N and piA ≥ 0 for all A ⊆ N \ i.

Definition 2.3. A mapping v
φ→ φ(v) is a probabilistic value if for all i ∈ N

there is a probabilistic distribution pi as above such that

φi(v) =
∑
A⊆N\i

piA[v(A ∪ i)− v(A)]. (2.1)

Geometrically, φ : R2n → Rn. This is an expectation: any player i ∈ N
shall eventually cooperate by joining some coalition A ⊆ N \ i (that has

already formed). Then, i will receive marginal contribuition v(A∪i)−v(A).

Accordingly, piA is the subjective probability that i joins coalition A, and

φi(v) is thus the expected payoff from the game for this player. Note that,

for A ⊆ N \ i, marginal contribution can be expressed in terms of Möbius
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inversion as

v(A ∪ i)− v(A) =
∑
B∈2A

µv(B ∪ i).

We now introduce three important axioms:

� Linearity axiom: φ is a linear function, i.e. φ(v + w) = φ(v) + φ(w)

and φ(αv) = αφ(v), with v, w coalitional games and α > 0.

� Dummy axiom: if i is a dummy player in v, i.e. v(A∪ i) = v(A) + v(i)

for all A ⊆ N \ i, then φi(v) = v(i).

� Monotonicity axiom: if v is monotonic, i.e. v(A) ≥ v(B), for all A ⊇ B,

then φi(v) ≥ 0.

These axioms characterize the class of probabilistic values (see Weber [60]).

Theorem 2.1.1. A value φ is probabilistic if and only if satisfies the linear-

ity, dummy and monotonicity axioms.

Let π : N → N be a permutation or ordering of the players, with π(i)

denoting the position occupied by i ∈ N in ordering π. Also let Π(N) be the

set (or symmetric group) of all n! such permutations on N .

Definition 2.4. A mapping v
φ→ φ(v) is a random-order value if there is a

probability distribution p : Π(N)→ [0, 1] such that for all i ∈ N

φi(v) =
∑

π∈Π(N)

p(π)[v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)})],

with p(π) ≥ 0 for all π ∈ Π(N), and
∑

π∈Π(N) p(π) = 1.

To interpret this definition, note that monotonicity of v entails that the

players have as their goal the eventual formation of the grand coalition N .

Further assume that they see coalition formation as a sequential process:

given any ordering π of the players, each player i joins with his predecessors

in π gaining a marginal contribution in the game v. Then if the players

share a common perception p(π) of the likelihood of the various ordering π,
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the expected marginal contribution of a player is precisely his component

of the random-order value. In order to understand the last theorem of this

Section and the characterization of the Shapley value, we enunciate two more

important axioms:

� Efficiency axiom: solution (or value) φ is efficient if
∑

i∈N φi(v) = v(N)

for all games v.

� Symmetry axiom: if in any game v there are players i ∈ N, j ∈ N \ i
such that v(A∪ i) = v(A∪ j) for all A ⊆ N \{i, j}, then φi(v) = φj(v).

The following result is a main one contained in Weber (1988) [60].

Theorem 2.1.2. Any random-order value is a probabilistic value that also

satisfies the efficiency axiom.

2.1.2 Shapley and Banzhaf values

The Shapley value is definitely the key solution concept in cooperative

game theory, while the Banzhaf value is the main index quantifying power

of voters in voting games. It also has applications in collective coin flipping

for distributed randomized computation.

Theorem 2.1.3. The Shapley value φSh is the unique probabilistic solution

satisfying, in addition, symmetry and efficiency (see [55, 60]). In particular,

for all i ∈ N ,

φShi (v) =
∑
A⊆N\i

a!(n− a− 1)!

n!
[v(A ∪ i)− v(A)],

where a = |A|.

Note that for A ⊆ N \ i, the number of maximal chains which include

A and A ∪ i is a!(n − a − 1)!, as the number of chains from A ∪ i to N is

(n− a− 1)!, and there are further a! chains from ∅ to A. The denominator

n! is the total number of maximal chains in 2N .
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Let us observe that the intuitive interpretation of the formula, as provided

in [42], is the following: suppose the players agree to meet at a specific place.

Most likely, each will arrive at a different time and it is assumed that all

orders of arrival are equally likely, with probability 1
n!

. Finally suppose that

if a player i arrives and finds all members j ∈ A ⊆ N \ i (and no others)

already there, he receives the amount v(A ∪ i) − v(A), that is his marginal

contribution to that coalition A. The Shapley value is thus seen to be the

random-order value placing the uniform distribution over permutations.

φShi (v) =
∑

π∈Π(N)

v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)})
n!

.

It seems interesting to observe that, although termed differently, both the

Shapley value and Möbius inversion of coalitional games were found (some-

how indipendently) by Harsányi in 1963 [30].

The approach yielding the so-called Harsányi dividends is based on the

observation that the worth v(A) of (cooperation within) a coalition A con-

sists of 3 parts: (i) the intrinsic value of its members, as singletons, (ii) the

added value of cooperation among subsets of these members, and finally (iii)

the added value of forming A as an improvement over all existing forms of

cooperation. When put this way, we can see that only item (iii) is a merit

of forming A, while the rest of the value is generated in strict subsets of A.

This item (iii) is referred to as the Harsányi dividend of coalition A. Turning

the formula around, expressing the dividends from the payoffs and extending

it to the empty set, we obtain the following definition.

Definition 2.5. Let v be a coalitional game. For each coalition A, the

dividend ∆v(A) is defined, recursively, as follows:

∆v(∅) = 0,

∆v(B) = v(B)−
∑
A⊂B

∆v(A) if |B| ≥ 1.
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Moreover, the previous definition leads to the explicit formula

∆v(B) =
∑
A⊆B

(−1)|B|−|A|v(A) for all B ∈ 2N .

Actually, ∆v(B) measures the pure contribution of cooperation within B,

since one can interpret it as the contribution of cooperation within the coali-

tion B in addition to what cooperation brings about in all possible subcoali-

tions that could have formed before the coalition B is determined. This

representation or mapping B 7→ ∆v(B) is clearly the specification for the

current setting of the more general Möbius inversion of poset functions (see

Chapter 1). The mapping is bijective and the two forms are equivalent: given

Möbius inversion µv, it is possible to retrieve the underlying game v.

Indeed, we have, for any coalition B,

v(B) =
∑
A⊆B

µv(A) =
∑
A∈2N

µv(A)UA(B).

That is to say, as already observed, any coalitional game v is a linear com-

bination of unanimity games. The family of unanimity games thus forms a

basis of the vector space of coalitional games with dividends as coordinates.

Now, let
∑

A∈2N µ
v(A)UA be the (unique) representation of the game v as a

linear combination of unanimity games. Calculating the Shapley value us-

ing this decomposition is actually quite simple. In particular, in view of the

efficiency, dummy and symmetry axioms, for every i ∈ N we have:

φShi (UA) =

 1
|A| if i ∈ A,

0 otherwise,

for each element UA of the unanimity basis. Indeed, this is precisely how

uniqueness of the Shapley value is proved: since its behaviour is deter-

mined on each element of the basis, adding the linearity axiom character-

izes a unique solution. For generic game v, the Shapley value thus finds the

following neat expression:

φShi (v) =
∑

A⊆N :i∈A

µv(A)

|A|
for all i ∈ N.
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Although the Shapley value mostly applies to generic or real-valued coali-

tional games, its behaviour on the special class of {0, 1}-valued (or simple)

games is now detailed.

Definition 2.6. A simple game is a coalitional game where v : 2N → {0, 1}.

In particular we have here two sets: W = {A ∈ 2N : v(A) = 1} the set

of winning coalitions and WC = {A ∈ 2N : v(A) = 0} the set of losing

coalitions. These sets are complementary, hence |W | + |WC | = 2n. For the

monotonicity of v, each subset including a winning coalition is also winning

and, dually, each subset included in a losing coalition is also losing.

A classical example of simple games is provided by voting quota games,

the generic being denoted by vw hereafter. Players i ∈ N are voters, each

with an associated strictly positive weight wi > 0, and there is a threshold

w∗ > 0 such that any coalition A ∈ 2N is winning if
∑

i∈Awi > w∗. Hence,

vw(A) =

1 if
∑

i∈Awi > w∗,

0 otherwise.

In case wi = 1 for all i and w∗ = n
2

+ 1, then vw is the voting majority game

[56].

The Banzhaf value Ba is a further probabilistic solution satisfying, in

addition, symmetry but not efficiency. This power index of a player in a

monotone simple game counts the number of coalitions that are losing but

become winning when that player joins them. In voting quota games the

sum of all players’ power indexes does not necessarily equal the worth of the

grand coalition, which is 1, of course.

Definition 2.7. The Banhaf value v
Ba→ Ba(v) is a probabilistic value also

satisfying symmetry where all players have the uniform probability distribu-

tion over the 2n−1 coaltitions they may join:

Bavi =
∑
A⊆N\i

v(A ∪ i)− v(A)

2n−1
for all i ∈ N.
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In [56] it is shown that its l1 norm, ||Bav||1 =
∑

iBa
v
i , takes its maximum

on the voting majority game (see above), where it is about
√

2n
π

.

Over the years, interest arose in computer science in finding methods for

collective coin flipping by n processors which take part in a distributed nor-

malized computation. It is the goal to generate coin flips which are unbiased

as possible despite malfunctioning of some of the participating processors.

This problem turns out to be equivalent to the quest of simple games with

small l∞ norm for ||Bav||∞ = maxBavi . Examples were given of games where

exactly half of the coalitions win and ||Bav||∞ = O( logn
n

) (see [4]).

2.2 Decision Theory

Generally speaking, decision theory deals with formalizing how a decision

maker should optimally chose within a set of available alternatives. If such

alternatives are in fact strategies available to a player in a non-cooperative

game (see above), then the decision is characterized by uncertainty about

what other players will do. Although this is a somehow special case, still it

has greatly contributed to the main literature on the subject. Alternatively,

in this Chapter we consider a decision maker who has to choose an action

while nature chooses a state. This is the standard setting for decision under

uncertainty [50]. Note that decision theory has more ancient origins than

game theory, in that the problem of decision under uncertainty was already

studied in the 17th century by Blaise Pascal.

A main model of decision under uncertainty is in terms of choice among

lotteries. These latter are probability distributions for a random variable

taking finitely many real values. Formally, let X = {X1, X2, ..., Xn} be a

vector, with Xi seen as a quantity of money. Consider the natural ascending

order, i.e. X1 < X2 < X3 < .. < Xn, and two probability distributions p =

(p1, p2, ..., pn) and q = (q1, q2, ..., qn). Fixed X, the decision problem is how

to choose between p and q. More generally, the issue is how to characterize

a rational [39, Chapters 1 and 6] preference (binary) relation & between any
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two probability distributions p, q ∈ ∆n over X, where ∆n is the simplex

containing all such distributions.

Definitely, the main and perhaps most natural ranking of lotteries obtains

through expectation:

p & q ⇐⇒ Ep[x] ≥ Eq[x],

where Ep[x] =
∑n

k=1 pkXk is the expected (money) value of the lottery. This

is indeed the von Neumann-Morgenstern expected utility model. It relies on

the following two axioms:

� Continuity:

For all probability distributions p, q, r ∈ ∆n,

{α ∈ [0, 1], αp + (1− α)q & r} and {α ∈ [0, 1], r & αp + (1− α)q} are

closed intervals of [0,1].

� Indipendence:

For all probability distributions p, q, r ∈ ∆n

p & q ⇐⇒ αp+ (1− α)r & αq + (1− α)r.

Theorem 2.2.1. (von Neumann-Morgenstern 1944 [59]) If preference rela-

tion & satisfies the independence and continuity axioms, then there exists a

utility function (over money values) u : X → R such that

p & q ⇐⇒ Ep[u(X)] ≥ Eq[u(X)].

The independence axiom is however violated in many real-world decision

problems. Main examples are the Allais and Ellsberg paradoxes. In partic-

ular, in order to introduce the Choquet expected utility model presented in

the next Section, the Ellsberg paradox is detailed hereafter in a simplified

version.

An urn contains three balls: one is blue, while the others two can be each

either yellow or red. One ball is drawn with uniform distribution. Define

four lotteries as follows:

� lottery g1: 100 dollars if the ball is blue, 0 if yellow or red.
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� lottery g2: 100 dollars if the ball is red, 0 if yellow or blue.

� lottery g3: 100 dollars if the ball is either blue or yellow, 0 if red.

� lottery g4: 100 dollars if the ball is either red or yellow, 0 if blue.

The decision maker DM has to choose between lotteries g1 and g2. Next,

the same DM chooses between g3 and g4. When proposed as real-life deci-

sions, the DM commonly prefers g1 over g2 and g4 over g3. This contradicts

the von Neumann-Morgenstern expected utility model.

Denote by pi, i ∈ {0, 1, 2} the subjective probability that (precisely) i

red balls are in the urn. Now compare the expected utility of the first two

lotteries. Given that g1 is preferred over g2, i.e g1 > g2, it must be:

Ep(g1) =
1

3
u(100) > Ep(g2) = u(100)

(
1

3
p1 +

2

3
p2

)
,

1

3
u(100) > u(100)

(
1

3
p1 +

2

3
p2

)
,

1 > p1 + 2p2,

where, of course, p0 + p1 + p2 = 1. Comparing now g3 and g4 with the latter

preferred over the former, we obtain

Ep(g4) =
2

3
u(100) > Ep(g3) = u(100)

(
1

3
p0 +

2

3
p1 + p2

)
,

2

3
u(100) > u(100)

(
1 + p0 + 2p2

3

)
,

1 > p1 + 2p0 ⇔ −1 > −p1 − 2p2,

1 < p1 + 2p2.

This contradiction (or impossibility result), together with Allais paradox

(which is perhaps even more known) led to search for alternative models of
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decision under uncertainty. Among these latter, the Choquet expected util-

ity model, where expectation is taken with respect to fuzzy or non-additive

probabilities, is a main one. It is detailed in the next Section. In view of this,

recall that probability distributions over finite sets are, in fact, set (and thus

lattice) functions, precisely the same as coalitional games, but with states of

nature instead of players.

As already mentioned, the general setting applying decision under uncer-

tainty is one where the DM has to choose an optimal action, given a bijective

probability over states, with a utility function taking real values on pairs of

an action and a state [50, 52]. Formally, let Ω = {ω1, ..., ωn} be the finite set

of states of nature. Also let p : 2Ω → [0, 1] be a probability distribution. For

any event (or subset of states) A ∈ 2Ω, probability p(A) = Prob[ω ∈ A] is

interpreted as the subjective belief (of the DM) that the true state of nature,

i.e. the one that will actually realize, shall be some ω ∈ A. Clearly, this is

a lattice function; in particular, it is a valuation of subset lattice (2Ω,∩,∪).

That is to say,

p(A ∩B) + p(A ∪B) = p(A) + p(B) for all A,B ∈ 2Ω.

As already observed from a different perspective, such valuations have Möbius

inversion living only on atoms {ω} ∈ 2Ω, i.e. p(A) =
∑

ω∈A p(ω).

2.2.1 Discrete Choquet expected utility

Although the Choquet integral was originally conceived in terms of mea-

sure theory, an extensive literature now deals with the discrete case. In

particular, in addition to the finite set Ω of states of nature and probability

p as above, consider a set A = {a1, ..., am} of actions available to the DM,

and a utility function u : A × Ω → R+ taking positive real values on pairs

(a, ω) of an action and a state. The utility is supposed to take positive values

because when the integrand also takes negative values (discrete) Choquet in-

tegration may be symmetric or asymmetric (see [25]). For reasons of space,

this double possibility is not addressed here.
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Definition 2.8. A non-additive probability (or fuzzy measure) γ is a func-

tion γ : 2Ω → [0, 1] such that γ(∅) = 0, γ(Ω) = 1 and A ⊇ B ⇒ γ(A) ≥ γ(B).

Here the decision problem amounts to choose an action a ∈ A. This is

achieved through the Choquet integral by associating with every action a

an expectation of random variable ua(ω), ω ∈ Ω. In particular, expectation

is taken with respect to a fuzzy measure γ. Therefore, such a Choquet

expected utility of actions provides a criterion for ranking them: the higher

their expected value, the better.

Adopting a standard notation in this field, consider a permutation (·)
of the indexes i = 1, . . . , n in Ω, i.e. (·) : {1, ..., n} → {1, ..., n}, such that

ua(ω(1)) ≤ ua(ω(2)) ≤· · ·≤ ua(ω(n)), and fix u(ω(0)) := 0. Then, the discrete

Choquet integral of ua : Ω→ R+ with respect to γ is

Eγ(ua) :=
n∑
k=0

[ua(ω(k))− ua(ω(k−1))]· γ({ω(k), ω(k+1), ..., ω(n)}).

This integral now has a variety of important applications not only in decision

under uncertainty, but also in multicriteria decision making, where actions

are alternative options in real-life problems, while states are criteria assigning

each a score to every alternative. In this case, the fuzzy measure quantifies

how these criteria interact with each other, and Choquet integration enables

to determine what options get an higher overall (i.e. expected) score [24, 8].

The following calculations are intended to determine a fuzzy measure en-

abling to overcome the Ellsberg paradox for the simplified version presented

in the previous section. Here Ω = {ω1, ω2, ω3} and ωi is the state of nature

where the number of red balls in the urn is exactly i − 1 (for i = 1, 2, 3).

For g1, all 3! permutations are equivalent, because the payoff is indipendent

from which state is the “true” one:

Eγ(g1) =
1

3
u(100).

For g2, the only permutation is the identity (i) = i for i = 1, 2, 3:

Eγ(g2) = u(100)

[
(0− 0)γ(Ω) +

(
1

3
− 0

)
γ({ω(2), ω(3)}) +

(
2

3
− 1

3

)
γ({ω(3)})

]
.
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For g3, the only permutation is ω(1) = ω3, ω(2) = ω2, ω(3) = ω1:

Eγ(g3) = u(100)

[
1

3
+ (0− 0)γ(Ω) + (

1

3
− 0)γ({ω(1), ω(2)}) + (

2

3
− 1

3
)γ({ω(1)})

]
.

For g4, as for g1, any of the 3! permutations is fine because the probability

of receiving 100 is 2
3

independently from states:

Eγ(g4) =
2

3
u(100).

Now, observed choices g1 over g2 and (by the same DM) g4 over g3 entail:

Eγ(g1) =
1

3
u(100) > Eγ(g2) = u(100)

1

3
[γ({ω(2), ω(3)}) + γ({ω(3))}],

Hence,

1 > γ({ω(2), ω(3)}) + γ({ω(3)}).

On the other hand,

Eγ(g4) > Eγ(g3)⇔ 2

3
>

1

3
+

1

3
γ({ω(1), ω(2)}) +

1

3
γ({ω(1)}),

Hence,

1 > γ({ω(1), ω(2)}) + γ({ω(1)}).

These two inequalities no longer constitute a contradiction, in that even the

simple fuzzy measure below is one example where they both hold:

γ(∅) = 0, γ(Ω) = 1, γ(A) =
1

3
for all A ∈ 2Ω such that ∅ ⊂ A ⊂ Ω.

We now consider the discrete Choquet integral as a criterion for ranking

a special type of non-additive probabilities, namely necessity measures.

2.2.2 Ranking necessity measures via Choquet

integration

The same problem considered by von Neumann and Morgenstern, namely

how to rank probability distributions over a fixed set of (positive) values (of

money), has been more recently addressed for the case where probability
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distributions are replaced with necessity measures [45]. These latter are

peculiar fuzzy measures introduced below.

A lottery has form
∑

ω∈Ω p({ω})δω with p({ω}) ≥ 0,
∑

ω∈Ω p({ω}) = 1,

where δω : 2Ω → {0, 1} is the Dirac measure at ω. That is,

δω(A) =

1 if ω ∈ A,

0 if ω ∈ Ac = Ω \ A.

It may be recognized that in terms of coalitional games (looking at Ω as con-

taining players) δω is the unanimity game U{ω} defined on 1-cardinal coalition

{ω} ∈ 2Ω. Conversely, in the present setting, δω is the elementary lottery

giving a unitary amount of money whenever state ω occurs.

Let Prob(Ω) denote the set of lotteries on Ω. If the DM follows the

already cited von Neumann-Morgenstern axioms, then there exists a utility

function u : Ω→ [0, 1] such that for all probabilities p, q ∈ Prob(Ω)

p < q ⇔
∫
u dp ≥

∫
u dq.

where
∫
u dp :=

∑
ω∈Ω p({ω})u(ω) denotes discrete integration (i.e. sum-

mation) for notational convenience. Moreover there are ω1, ω0 ∈ Ω with

u(ω1) = 1, u(ω0) = 0 such that for all p ∈ Prob(Ω) the following equivalence

∼ holds:

p ∼
(∫

u dp

)
δω1 +

(
1−

∫
u dp

)
δω0 .

The interpretation is that for the DM any lottery p can be reduced to a bet

on head versus tail, that is to a lottery having for support the best and the

worst states, where expected utility
∫
u dp is interpreted as the probability

that he wins the bet [35].

Following [45], in this Section the generic fuzzy measure is denoted by v,

the same as for coalitional games (rather than γ as in the previous Section).

As we shall see, this choice is also useful for representing the Choquet integral

in the terms of the core C(v) of a supermodular fuzzy measure v [21].
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Definition 2.9. A fuzzy measure v on Ω is a necessity measure if for all

A,B ⊂ Ω, v(A ∩B) = min{v(A), v(B)}.

An important class of non-additive probabilities which contains necessity

measures is that of belief functions. These latter received some attention

for modelling the DM’s knowledge [41]. They can also be considered as

objects that a DM would have to rank. The aim of Rébillé’s paper [45] is

to rank different necessity measures without any recourse to von Neumann-

Morgenstern’s techniques. It turns out that the Choquet expectation will be

the criterion for ranking necessity measures.

For short we will denote the set of necessity measures on Ω by Nec(Ω).

Now we state some axioms that the binary relation % may fulfil.

� (WO) % is a weak order (i.e. complete and transitive).

� (MON) Monotonicity: for all v, w ∈ Nec(Ω), [v ≥ w]⇒ [v % w], where

[v ≥ w]⇔ for all A ⊂ Ω, [v(A), vd(A)] ⊂ [w(A), wd(A)],

while vd is the dual of v, i.e. vd(A) = 1− v(Ac) and the same for wd.

� (AGR) Agreement: for all u, v, w ∈ Nec(Ω), for all α ∈ (0, 1) if u,w

agree and v, w agree then [u ∼ v]⇒ [αu+ (1− α)w ∼ αv + (1− αw)].

Any two v, w ∈ Nec(Ω) are defined to agree if for all A,B ∈ 2Ω,

(v(A)− v(B))(w(A)− w(B)) ≥ 0.

� (ARCH) % is Archimedean: for all v, w ∈ Nec(Ω),

[v ≺ w]⇒ [∃α ∈ (0, 1) such that v ≺ αw + (1− α)uΩ]

and [∃α ∈ (0, 1) such that αw + (1− α)uΩ ≺ v - w]⇒
⇒ [∃α′ ∈ (α, 1) such that α′w + (1− α′)uΩ - v].

The (ARCH) axiom can be understood in the following manner in

conjunction with (MON). Let v ≺ w and α ∈ (0, 1). Since UΩ ≤ w,

we have that UΩ ≤ αw + (1 − α)UΩ ≤ w, under (MON) we get UΩ �
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αw + (1 − α)UΩ � w, the (ARCH) axiom tells us that if α is close

enough to 1, then one should obtain also v ≺ αw+ (1−α)UΩ. The last

axiom ensures that the preference relation is not trivial.

� (NDEG) % is not degenerate: ∃v, w ∈ Nec(Ω) such that v � w. This

axiom can be further specified, under (WO) and (MON), (NDEG) is

equivalent to: ∃v ∈ Nec(Ω) such that v � UΩ.

Consider F (Ω) := {Au : A 6= ∅, A ⊂ Ω}, where Au = {B : A ⊂ B ⊂ Ω}
(Au stands for the upset generated by A). These sets of subsets of Ω are

known as principal filters, and F (Ω) contains all of them. Also let v be a

necessity measure on 2Ω.

There is a unique decomposition of v as a linear combination of unanimity

games defined on elements of a maximal chain K = {∅ = A0, A1, . . . , An = Ω}
of subsets, by means of Möbius inversion:

v =
n∑
i=1

µv(Ai)UAi

where µv(A1), ..., µv(An) > 0 and
∑n

i=1 µ
v(Ai) = 1, while UA is the usual

unanimity game. Note that K is a poset, and indeed µv is the Möbius inver-

sion of the restriction of v on poset (K,⊇). Such a (unique) decomposition,

in turn, provides a fundamental tool used in [45], namely the Choquet in-

tegral
∫
v dβ of necessity measure v with respect to monotone set function

β : F (Ω)→ [0, 1]. In particular,∫
v dβ :=

n∑
i=1

µv(Ai)β(Aui ).

We are now able to state the main non-additive preference representation

theorem:

Theorem 2.2.2. Let % be a binary relation on Nec(Ω); if % satisfies (WO),

(MON), (AGR), (ARCH), (NDEG), then there exists a monotone set func-

tion β : F (Ω)→ [0, 1] such that for all v, w ∈ Nec(Ω)
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v < w ⇔
∫
v dβ ≥

∫
w dβ.

Moreover, there is a ω1 ∈ Ω such that for all v in Nec(Ω)

v ∼
(∫

v dβ

)
δω1 +

(
1−

∫
v dβ

)
UΩ,

and β({ω1}u) = 1 as well as β({Ω}) = 0. Conversely, if the binary

relation is represented by a Choquet integral with respect to a monotone set

function β : F (Ω)→ [0, 1] such that β({ω1}u) = 1 as well as β({Ω}) = 0 for

some ω1 ∈ Ω, then % satisfies (WO), (MON), (AGR), (ARCH), (NDEG).

An interpretation of the last equivalence is that for the DM any necessity

measure can be reduced to a bet on being perfectly informed of the state

which occurs or being totally ignorant. The Choquet expectation value of a

necessity measure is interpreted as the degree of information it encodes.

With the following Chapter, attention turns on more complex modelling

of cooperative games and decisions. In particular, we now consider settings

where the lattice of partitions also enters the picture.
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Chapter 3

More complex settings:

partitions

Developing from the standard setting introduced in the previous Chap-

ter, the aim now turns at presenting more complex situations both for games

and decisions. Concerning the former, this Chapter deals with global games,

mapping partitions of players (or coalition structures) into real numbers.

Concerning decisions, the focus is mainly placed on information functions,

assigning to every partition of states (of nature) a real-valued worth, when

partitions encode information. In this respect, note that the entropy of par-

titions is typically a measure of how informative these latter are.

3.1 Game Theory

Let N = {1, . . . , n} be a finite set and denote by (2N ,∩,∪) and (PN ,∧,∨)

the associated subset and partition lattices, respectively [1, 57]. As already

observed, in cooperative game theory, N contains players, and set functions

v : 2N → R are coalitional games [55], while partition functions h : PN → R
are global games [17].

For a coalition A ∈ 2N , worth v(A) attains when all and only members

i ∈ A cooperate. In a partition P = {A1, . . . , A|P |} ∈ PN , where Ak ∩Al = ∅

35
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for 1 ≤ k < l ≤ |P | and A1 ∪ · · · ∪ A|P | = N , there are all players i ∈ N ,

although distributed over different blocks Ai ∈ P . Hence, worth h(P ) may

be interpreted as that achieved when all players i ∈ N cooperate, and do

so in a way yielding P as the prevailing coalition structure. Furthermore,

h(P ) is a global utility level, common to all players, attained when P is the

outcome of cooperation. Accordingly, h is conceived to model interaction

on global issues, possibly among nations or other organizations, where any

P -cooperation provides an amount of a public good. Examples of such global

issues provided in [17] are environmental clean-up and preservation, medical

research, water scarcity and pollution, etc.

We now introduce the following notation, enabling to deal simultaneously

with both coalitional and global games in a seemingly comprehensive manner.

Let (L,∧,∨) denote a lattice with order relation > such that L ∈ {2N ,PN}.
In particular, if L = 2N , then > is set inclusion ⊇, while ∧ is intersection ∩
as well as ∨ is union ∪. On the other hand, if L = PN , then > is coarsening,

while ∧ and ∨ denote respectively the ‘coarsest-finer-than’ or meet and the

‘finest-coarser-than’ or join between (any two) partitions.

Cooperative games are lattice functions f : L → R. Their Möbius in-

version [49, p. 344] is µf : L → R given by µf (x) =
∑

x⊥6y6x
µL(y, x)f(y),

where x⊥ is the bottom element and µL is the Möbius function, defined re-

cursively on ordered pairs (y, x) ∈ L × L by µL(y, x) = −
∑

y6z<x µL(z, x)

if y < x (i.e. y 6 x and y 6= x) as well as µL(y, x) = 1 if y = x, while

µL(y, x) = 0 if y 66 x (see Chapter 1). Bottom elements are x⊥ = ∅ for

L = 2N and x⊥ = P⊥ = {{1}, . . . , {n}} for L = PN . Concerning partitions

P,Q ∈ PN , if Q < P = {A1, . . . , A|P |}, then for every block A ∈ P there are

blocks B1, . . . , BkA ∈ Q such that A = B1 ∪ · · · ∪ BkA , with kA > 1 for at

least one A ∈ P . Segment [Q,P ] = {P ′ : Q 6 P ′ 6 P} is thus isomorphic to

product ×A∈PP(kA), where P(k) denotes the lattice of partitions of a k-set.

Accordingly, let lk = |{A : kA = k}| for k = 1, . . . , n. Then [49, pp. 359-360],

µPN (Q,P ) = (−1)−n+
∑

1≤k≤n lk
∏

1<k<n

(k!)lk+1 .
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In cooperative game theory, Möbius inversion is important primarily be-

cause it provides a very useful basis for the vector space R|L| of real-valued

functions on L. In fact, in the incidence algebra of L, Möbius function µL

is an inverse of zeta function ζL : L × L → {0, 1} defined by ζL(y, x) = 1 if

y 6 x and 0 otherwise. Hence f(·) =
∑

x∈L µ
f (x)ζL(x, ·) for all f(·) ∈ R|L|.

When L = 2N zeta function ζ(A, ·) corresponds to traditional [55] unanimity

game UA(·).

3.1.1 Global and coalitional games

Definition 3.1. A global game is a partition function h : PN → R. We

assume h(P⊥) = 0, where P⊥ is the finest partition in PN i.e. the bottom

element of the partition lattice.

Let PA be a partition of A, PB be a partition of B and A ∩B = ∅, then

PA ∪ PB is a well-defined partition of A ∪ B. Let PA
⊥ and PA

> denote the

finest and coarsest partition of A, respectively, i.e., PA
⊥ = {{i} : i ∈ A} and

PA
> = {A}. Let F0(L) the subspace of 0-normalized lattice functions, namely

those f : L→ R such that f(x⊥) = 0.

Definition 3.2. Let h ∈ F0(PN) be a global game. Gilboa e Lehrer [17]

define the induced coalitional game vh ∈ F0(2N) by

vh(A) = h({A} ∪ PAc

⊥ ),

for ∅ 6= A ∈ 2N and vh(∅) = 0.

That is, the worth of a coalition A is the worth of the partition where A

is the only non-singleton block. Note that this definition entails

vh({i}) = h(P⊥) =
∑
j∈N

v({j}) = 0

for all i ∈ N .
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Definition 3.3. Let v ∈ F0(2N). Gilboa and Lehrer [17] define the induced

(additively separable or partially additive) global game hv ∈ F0(PN) by

hv(P ) =
∑
A∈P

v(A).

In fact, Gilboa and Lehrer state that hv ∈ F0(PN), but this is the case

only if v ∈ F0(2N) satisfies
∑

i∈N v({i}) = 0.

In Gilboa-Lehrer [17] is proposed a Shapley value for global games. Their

axiomatization is presented below.

Definition 3.4. An operator ψ : F0(PN) −→ RN is a Shapley value for

global games if satisfies these four axioms:

� Linearity: for all h, h′ ∈ F0(PN), ψ(h+h′) = ψ(h)+ψ(h′) and ψ(βh) =

β(ψh), for all β > 0.

� Dummy player: if i is a dummy in h, then ψi(h) = 0, where i ∈ N is a

dummy player in h if for all P ∈ PN

h(P ) = h(P ∧ {{i}, N \ i}).

� Interchangeable players: for all h ∈ F0(PN) and i, j ∈ N , if i and

j are interchangeable in h, then ψi(h) = ψj(h), where i and j are

interchangeable in h if for all P ∈ PN

h(P ∧ {{i}, N \ i}) = h(P ∧ {{j}, N \ j}).

� Efficiency:
∑

i∈N ψi(h)(i) = h({N}).

Let us comment briefly on the interpretation of these axioms. Linearity

has its usual meaning: suppose that the players in the global game h (say,

environmental clean-up) are also involved in a different global game g (e.g.,

art treasures preservation). It is desirable that one will be able to solve

each game separately and obtain the same outcome that would result from

considering the two global issues together (h + g). Similarly, homogeneity

(that is, ψ(βh) = βψ(h) simply means scale invariance.
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Next consider the dummy axiom. A player i is a “dummy” in a global

game h if the payoff is independent of i’s cooperative behaviour. As formu-

lated, it is only required that for every partition P , h(P ) will equal the payoff

of the partition obtained from P by player i’s desertion. Obviously, this also

means that player i may decide to join another set in P but will still not

affect the payoff. It seems reasonable that such a player will have no share

in the surplus of cooperation h({N}). As for the third axiom, two players i

and j are “interchangeable” if for every partition P the desertion of i from

his/her current coalition to form a separate coalition {i} has the same impact

on h(P ) as j would have (notice that in the formulation given above the term

h(P ) was cancelled on both sides of the equality). The requirement that i

and j will get the same payoff according to ψ(h) has a flavour of “symmetry”

or “fairness”. Finally, the efficiency axiom simply requires that the overall

surplus of cooperation, h({N}), will be shared among the players.

The following theorem is central in [17].

Theorem 3.1.1. There is a unique Shapley value ψ for the space of global

games and it is equal to the Shapley value of the induced game, i.e.

ψ(h) = φSh(vh) for all h ∈ F0(PN).

Evidently, this is because global games h are in fact dealt with in terms

of the associated coalitional game vh. The kind of issues arising from such an

approach are perhaps best introduced by quoting directly Gilboa and Lehrer

[17, Remark 5.1.2, p. 144]:

“It may seem surprising that the Shapley value of h does not depend

on all of the numbers {h(P )}P∈P . As a matter of fact, the (small) subset

{h({A} ∪ PAc

⊥ )}A⊆N , i.e. the value of h on “all-or-none” partitions alone

determines φ(h), while the value of h on partitions which are not of this

form is immaterial. An attempt to understand this phenomenon may be the

following. The axiom which should be held responsible for it is the inter-

changeability axiom: it focuses on the damage that a player may cause by de-

serting his/her coalition, and should two such players have the same “threat”
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power, they are given the same payoff. In a way, this axiom simply distin-

guishes between those players who do cooperate in some way (i.e. in some

non-trivial coalition) and those who do not (singletons). The former have a

viable threat, the latter do not. The precise way in which the “cooperative”

players cooperate (i.e. via which coalition) does not matter; it only matters

that they do. Hence, the payoff depends only on the best that the “coopera-

tive” players may obtain h({A} ∪ PAc

⊥ ) where A is the set of “cooperative”

ones. Whether this property is desirable or not is debatable. We believe that

in some situations it will be quite intuitive and will capture the essence of the

cooperative global game, while in others it may well be inappropriate. Since

the interchangeability axiom seems innocent, yet guarantees uniqueness, we

chose it to define “the Shapley value.” However, one may certainly wish to

consider other solution concepts”.

The Shapley value in Gilboa and Lehrer’s axiomatization [17] rises doubts

from distinct points of view. Firstly, because Möbius inversion µhv(P ), in

their notation αP (hv), is not properly defined on the bottom element P⊥. In

particular, their finding is:

αP (hv) =

αA(v) = µv(A) if P = ({A} ∪ PAc

⊥ ),

0 otherwise.

This means that if a global game is additively separable, then its Möbius

inversion lives only on the 2n − n modular elements of PN , i.e. on those

partitions of the form {A} ∪ PAc

⊥ for 1 < |A| < n, in addition to P⊥ and P>

[1, Ex. 13, p. 71]. However, for |A| = 1 coefficient αP⊥(hv) is not defined

because there shall be, in general, n distinct coefficients αA(v) such that

|A| = 1. In [17], coalitional games v ∈ F0(2N) only satisfy v(∅) = 0; therefore,

the general case is of course 0 < α{i} 6= α{j} > 0 for i ∈ N , j ∈ N \ i. Then,

any further coalitional game w 6= v satisfying
∑

i∈N v({i}) =
∑

i∈N w({i}) as

well as µv(A) = µw(A) for all A such that |A| > 1 also additively separates

h, i.e. hv = hw or equivalently∑
A∈P

v(A) =
∑
A∈P

w(A).
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Hence, unless v({i}) = 0 for all i, there is a continuum of such w 6= v.

It is evident that the Shapley value φSh(vh) = ψ(h) also crucially suffers

this non-uniqueness issue. In fact, if w 6= v and hw = hv (as above), then

φSh(w) 6= φSh(v) and still ψ(hw) = ψ(hv).

3.1.2 The core

In Chapter 2 we defined the Shapley and Banzhaf values. These are point-

valued solutions, while the core, detailed below, is a set-valued solution,

that is a possibly empty convex subset of Rn. Historically, the core was

conceived in n-player strategic or non-cooperative games (briefly mentioned

in the previous Chapter 2), as the set of outcomes (or n-vector of payoffs)

such that no coalition can make all its members better off by deviating in a

coordinated (i.e. correlated [31]) manner.

In cooperative game theory, the core C(v) of a coalitional game v is a

(possibly empty) set of valuations φ of 2N , i.e. φ(A) =
∑

i∈A φ({i}).

Definition 3.5. The core C(v) of v is the set

C(v) = {φ valuation of 2N : φ(A) ≥ v(A) for all A ∈ 2N , φ(N) = v(N)}.

Hence, the core is in fact the collection of point-valued solutions that

assign to each coalition A a worth φ(A) which exceeds or equals the worth

v(A) achieved through cooperation within A only. The interpretation is

that if players are rewarded according to a value (if any) φ ∈ C(v), then

cooperation is promoted toward the formation of the grand coalition N . Note

that C(v) ⊆ Rn is a convex polyhedron in Rn. For example, if v(N) = 1 and

v(A) = 0 for all A ⊂ N , then the core of v is in fact the n − 1-dimensional

unit simplex. To see that the core is convex, let φ, φ′ ∈ C(v). Then, ψ :=

(αφ+ (1− α)φ′) also belongs to C(v) for all α ∈ [0, 1], in that

ψ(A) = αφ(A) + (1− α)φ′(A) ≥ αv(A) + (1− α)v(A) = v(A).

The main result concerning the core of coalitional games is due to Shapley

[54, Theorem 4, p. 21].
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Theorem 3.1.2. If v is a supermodular coalitional game , then C(v) 6= ∅.

The proof is a constructive one: if v is supermodular, then the set ex(C(v))

of core extreme points is easily determined in terms of maximal chains in sub-

set lattice (2N ,∩,∪) or, equivalently, permutations π : {1, ..., n} → {1, ..., n}.
Let v be a coalitional game, for all permutations π ∈ Π(N) and all i ∈ N ,

define

φπi (v) = v({j ∈ N : π(j) ≤ π(i)})− v({j ∈ N : π(j) < π(i)}).

This expression appears in the definition of random-order values, and is

the marginal contribution of player i along the maximal chain

Kπ = {Aπ0 , Aπ1 , ..., Aπn}

(of coalitions) identified by permutation π, where

Aπk = {j ∈ N : π(j) ≤ k}.

Now, for any A ∈ 2N , either A ∈ Kπ and thus
∑

i∈A φ
π
i (v) = v(A), or else

v(A) + v(B) ≤ v(A ∪B) + v(A ∩B) for all A,B ∈ 2N ,

entails

v(A ∪ i)− v(A) ≥ v(B ∪ i)− v(B) for all B ⊆ A ⊆ N \ i.

In turn, this guarantees that
∑

i∈A φ
π
i (v) ≥ v(A) for all A ∈ 2N \ Kπ.

In [54], the vertices of the core are shown to correspond to such vectors or

points φπ ∈ Rn, π ∈ Π(N). Hence, the core has at most n! (distinct) extreme

points. Since the Shapley value has been shown in Chapter 2 to be a convex

combination of extreme points φπ, π ∈ Π(N), as long as v is supermodular

such a value is in the core. That is to say, as long as v is supermodular,

C(v) 3 φShi (v) =
∑

π∈Π(N)

φπ(v)

n!
.
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Moreover, from a geometrical perspective, it can be seen as the center of

gravity of the extreme points of the core.

Among other things, in the reminder of this Chapter it is shown how the

core of a supermodular non-additive probability (or belief function) provides

useful results in terms of additive representations of the discrete Choquet

integral.

3.2 Decision Theory

We begin dealing with decisions by following Gilboa and Schmeidler [21]

with the aim to examine alternative representations of the discrete Choquet

integral. Next, attention is placed on information functions, assigning to

every partition of states the real-value worth of the information it encodes.

3.2.1 Additive representation of non-additive measure

The representation of beliefs by real-valued set functions which do not

necessarily satisfy additivity has a long history. “Belief functions” were

introduced by Dempster [10, 11] and Shafer [52]. Their theory is not di-

rectly related to decision making under uncertainty, nor is their concept of

“probability” derived from preferences. Rather, they assume that “weight of

evidence” for events is a primitive, and study the “belief functions” which

are generated by summation of such weights. Belief functions are a special

class of “non-additive measures” or “capacities”, characterized by a condition

called “total monotonicity”.

In Gilboa and Schmeidler [19] are characterized preferences which may

be represented by a utility function and a set of additive measures, in the

sense that preferences obey maximization of the minimal expected utility

over all measures in the given set. These preferences can also be represented

by the non-additive model (with maximization of the Choquet integral) in

case the set of measures is the core of a supermodular measure. In particular,

supermodular measures correspond to uncertainty aversion and that belief
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functions are supermodular.

We have already detailed in the previous Chapter a well-known theo-

rem in cooperative game theory, according to which the space of all non-

additive measures (“games”) is spanned by a natural linear basis (of “una-

nimity games”). This result may be viewed as suggesting an isomorphism

between non-additive set functions on the original space (of states of the

world) and additive ones on a larger space (of all events). Using this result,

Gilboa and Schmeidler [21] show that the Choquet integral with respect to

any non-additive set function v is simply some linear combination of the

minima of the integrand (over various events). Furthermore, if v is a belief

function, this linear combination reduces to a weighted average. Thus, for

such probabilities v, the integral is both mean of minima (over events) and,

since they are also convex, minimum of means (where the minimum is taken

over additive measures in the core).

Hereafter definitions and theorems are from [21]. Let Ω be a non-empty

set of states of nature and let Σ be a finite algebra of events defined on it.

We will assume without loss of generality that Σ = 2Ω. It will also be useful

to define Σ′ = Σ \ {∅}. A function v : Σ → R with v(∅) = 0, is called a

non-additive signed measure or a capacity. The space of all capacities will

be denoted by V and will be considered as a linear space (over R) with the

natural operations. We now recall some definitions, adding new ones. For

v ∈ V :

� v is monotone if A ⊆ B implies v(A) ≤ v(B) for all A,B ∈ Σ.

� v is normalized if v(Σ) = 1.

� v is additive if v(A∪B) = v(A)+v(B) for all A,B ∈ Σ with A∩B = ∅
(that is, a valuation).

� v is supermodular if for all A,B ∈ Σ

v(A ∪B) + v(A ∩B) ≥ v(A) + v(B).

� v is non-negative if v(A) ≥ 0 for all A ∈ Σ.
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� v is totally monotone if it is non-negative and, for all A1, ..., An ∈ Σ,

v(∪ni=1Ai) ≥
∑

I:∅6=I⊆{1,...,n}(−1)|I|+1v(∩i∈IAi).

� v is a measure or additive probability if it is non-negative and additive.

� v is a belief function if it is normalized and totally monotone.

We denote the space of real-valued functions on Ω (or random variables) by

F = {f such that f : Ω → R} = RΩ. For v ∈ V and f ∈ F , the Choquet

integral of f with respect to v is defined to be (see Chapter 2, section 2.2.1)∫
f dv :=

n∑
k=0

[f(ω(k))− f(ω(k−1))]· v({ω(k), ω(k+1), ..., ω(n)}).

such that f(ω(k)) ≤ f(ω(k+1)) for 0 < k ≤ n. Observe that the Choquet

integral is linear in the game v, that is for all v, w ∈ V , α, β ∈ R and f ∈ F ,∫
f d(αv + βw) = α

∫
f dv + β

∫
f dw.

Further important properties of the Choquet integral can be found in [22].

In view of Shapley [54] theorem (see above) stating that if v is supermodular,

than C(v) 6= ∅, consider the following result.

Theorem 3.2.1. (Rosenmuller [46, 47]) A monotone game v is supermod-

ular if and only if C(v) 6= ∅ and for every f ∈ F ,∫
f dv = min

p∈C(v)

∫
f dp.

In order to demonstrate the main theorem in this Section (i.e. that if v

is a belief function, then the Choquet integral with respect to v is both a

minimim of averages and an average of minima), we firstly need the following

results.

Lemma 3.2.2. For f ∈ F and A ∈ Σ′,∫
f dUA = min{f(ω) : ω ∈ A}.
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The proof of this lemma can be found in [46]. Recalling the (unique) rep-

resentation v =
∑

A∈Σ′ µ
v(A)UA of v, we are now able to state the following

theorem:

Theorem 3.2.3. For every v ∈ V and f ∈ F ,∫
f dv =

∑
A∈Σ′

µv(A)

[
min
ω∈A

f(ω)

]
.

Given the previous results, this theorem can be proved as follows:∫
f dv =

∫
f d

(∑
A∈Σ′

µv(A)UA

)
=

=
∑
A∈Σ′

µv(A)

(∫
f dUA

)
=

=
∑
A∈Σ′

µv(A)

[
min
ω∈A

f(ω)

]
.

Recall that if v is totally monotone, then µv(A) ≥ 0 for all A ∈ Σ′. If, in

addition, v is normalized, i.e. it is a belief function, then∑
A∈Σ′

µv(A) = v(Ω) = 1,

entailing that the Choquet integral of a function f with respect to v can be

expressed as a weighted average over all minima on all non-empty events. In

the extreme case where v is additive or a valuation, we find again a special-

ization of a main theorem presented in Chapter 1 applying to valuations of

locally finite distributive lattices, namely

µv(A) = 0 for all A such that |A| > 1.

In this case, indeed, the integral of f with respect to v is an average of

the values of f or, if you will, of the minima of f over singletons. Another

extreme case is where v = UΩ, and the integral of f with respect to v is

simply the minimum of f over the whole of Ω. While both these extremes

cases were known to be special cases of the Choquet integral, the last theorem
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shows that any Choquet integral (to be precise, the integral with respect to

any fuzzy measure v) is no more than some average over minima. On the

other hand, let us recall that a totally monotone v may be also represented

as the minimum of all integrals of f with respect to measures in a certain set

(the core of v). If v is also normalized, each of these measures p is simply

some weight vector and the integral of f with respect to p is a p-average over

f ’s values. To sum, if v is a belief function, then the Choquet integral with

respect to v is both a minimum of averages and an average of minima:

Theorem 3.2.4. Assume that v is a belief function. Then for every f ∈ F ,∫
f dv =

∑
A∈Σ′

µv(A)

[
min
ω∈A

f(ω)

]
= min

p∈C(v)

∑
ω∈Ω

p({ω})f(ω).

3.2.2 Information functions

Let (PΩ,∧,∨) be the lattice of partitions of finite set Ω = {ω1, ..., ωn}.
This lattice is described in Chapter 1, Section 1.3 and also already appears

in this Chapter in terms of global games (Section 3.1). Information functions

assign to every partition P ∈ PΩ a real value f(P ) quantifying the worth of

the information it provides. In this respect, perhaps a main example of such a

quantification is given by the entropy (of partitions), detailed in the sequel.

It seems best to clarify immediately, though, that while global games are

monotone partition functions with respect to the coarsening order relation,

as long as information is concerned finer partitions are more valuable that

coarser ones. In other terms, the Hasse diagram of the partition lattice is

turned upside-down, with the finest partition on top.

In information theory, originated by Claude Shannon’s 1948 seminal work

“A Mathematical Theory of Communication“ [53], partitions play indeed

a central role. According to Shannon’s source coding theorem, the number of

bits needed to represent the result of an uncertain event is, on average, given

by its entropy. Formally, let p = (p1, p2, ..., pn) be a probability distribution
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over Ω. The entropy of p is (log = log2)

Hp := −
n∑
i=1

pi log pi.

The maximum of this entropy attains on the uniform probability distribution

p̄ =

(
1

n
,

1

n
, ...,

1

n

)
⇒ Hp̄ = −

n∑
i=1

1

n
log

1

n
= − log

1

n
= log n.

Developing form this maximaizer p̄, the entropy of a partition P obtains

by summing over blocks the probability that the “true” state (i.e. the one

which will realize) shall be in that block.

Definition 3.6. The entropy of any partition P ∈ PΩ is

HP := −
∑
A∈P

|A|
n

log
|A|
n
.

Evidently, this entropy measure attains its maximum log n on the finest

partition (which is indeed the most informative, see below), and its minimum

0 on the coarsest one. Hence, the entropy H : PΩ → [0, log n] of partitions

thus provides first example of an information function.

As in the decisional model introduced in Chapter 2, Section 2.2.1, consider

a set of action A and a utility function u : A × Ω → R, with the DM

optimally choosing a strategy s : Ω → A. Let S contain all such strategies

(|S| = |A| × |Ω|). Now, if the DM is endowed with information P , than this

means that any two states ω, ω′ can only be distinguished if ω ∈ A, ω′ ∈ A′,
A,A′ ∈ P and A 6= A′. In other terms the DM cannot choose two distinct

actions a, a′ for distinct states ω, ω′ unless it is possible to distinguish between

these latter. Formally, one may say that the strategy has to be “measurable”

with respect to P , i.e. constant over each block.

For every P in PΩ, let SP denote the set of all P -measurable strategies:

SP = {s : s ∈ S, ω ∈ A 3 ω′ ⇒ s(ω) = s(ω′) for all A ∈ P}.

With this additional ingredients it may be recognized that the traditional

[50] decision problem detailed in Chapter 2, namely max
a∈A

∫
Ω
ua dp where p is
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a subjective probability, as usual, and ua(·) = u(a, ·) and , amounts in fact

to choose an optimal P>-measurable strategy (P> = {Ω}).
Since all our sets are finite (|A| = m), there surely exists maxa∈A

∫
B
ua dp

for every B ∈ 2Ω. For each block of A ∈ P , the DM may condition the choice

of a distinct optimal action for each block. Accordingly, the worth of (the

information provided by) P is

f(P ) =
∑
A∈P

max
a∈A

∫
A

ua dp.

In other terms, the worth of P is the DM’s expected utility associated with

an optimal P -admissible strategy:

E(A,u)(P ) = max
s∈SP

∫
Ω

us(·) dp = f(P ).

Generally speaking, any f : PΩ → R may be termed information function

as long as there are actions and a utility (A, u) satisfying f = E(A,u).

Definition 3.7. For a set function v and B ∈ 2Ω, the B-anticore of v,

denoted ACB(v), is the set of all valuations λ of subset lattice (2B,∩,∪)

satisfying λ(A) ≤ v(A) for A ∈ 2B and λ(B) = v(B).

The existence characterization of information functions relies on the no-

tion of additive separability introduced in Section 3.1.1 (see Definition 3.3

pag. 38).

Theorem 3.2.5. Given Ω and p as well as a partition function f (on PΩ),

the following are equivalent:

� there are (A, u) as above, with 0 ≤ u ≤M , such that f = E(A,u);

� f is additively separated by a set function v such that ACB(v) 6= ∅ and

v(B) ≤Mp(B) for all B ∈ 2Ω.

Information functions defined in this way (specifically with a traditional or

additive probability p as prior) are interesting in their own right. In addition,
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they are useful for reasoning about the Savage’s Sure-Thing Principle, which

is in itself quite debated within decision theory.

The Sure-Thing Principle, conceived by Savage in 1954 says that if a

decision maker would take a certain action if he knew that an event E ob-

tained, and also if he knew that its negation E obtained, then he should

take that action even if he knows nothing about E. Savage [50, p. 21] illus-

trates this as follows: A businessman contemplates buying a certain piece of

property. He considers the outcome of the next presidential election relevant.

So, to clarify the matter to himself, he asks whether he would buy if he knew

that the Democratic candidate were going to lose, and decides that he would.

Similarly, he considers whether he would buy if he knew that the Republican

candidate were going to lose, and again finds that he would. Seeing that he

would buy in either event, he decides that he should buy, even though he does

not know which event will obtain. It is all too seldom that a decision can

be arrived at on the basis of this principle, but I know of almost no other

extralogical principle governing decisions that finds such ready acceptance.

In [3], the authors use the concept of conditional probability to address

a conceptual puzzle related to Savage’s “Sure-Thing Principle”. As P rep-

resents the DM’s information, if the true state of nature is ω, then the DM

does not know that, but knows only that the true state is included in the

block A ∈ P to which ω belongs. Probability p is a DM’s prior (belief) about

the likelihood of states, before information P is available, and in particular

before knowing what block A ∈ P contains the true state. In this view,

conditioning appears as follows: as soon as the DM get informed that the

true state of nature is some ω ∈ A ∈ P , he updates his prior p by assign-

ing null probability to states j ∈ Ac and probability p({ω′})
p(A)

to states ω′ in

A. This means that the conditional probability of any event B, given that

event A is known to have occurred, is p(B|A) := p(B∩A)
p(A)

. This is the common

conditional probability of B, given A.

Gilboa and Lehrer’s approach [21] allows to investigate what mathemat-

ical conditions characterize those partition functions that satisfy the Sure-
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Thing Principle. To this end, they introduce the notion of non-intersecting

partitions. Any two partitions P,Q ∈ PΩ are said to be non-intersecting if for

every A ∈ P either (i) there is B ∈ Q such that A ⊆ B, or else (ii) there are

B1, . . . Bk ∈ Q such that A = B1 ∪ · · · ∪Bk. This may be equivalently stated

by means of the following notation: for all A ∈ 2Ω such that ∅ ⊂ A ⊂ Ω

and for all P = {B1, . . . B|P |}, denote by PA = {A ∩ B : B ∈ P,A ∩ B 6= ∅}
the partition of A induced by P . Then, any two partitions P and Q are non

intersecting if (and only if) there is an event A ∈ 2Ω such that P = PA∪PAc
,

Q = QA∪QAc
(where PA(Ac), QA(Ac) are partitions of A(Ac)), with PA 6 QA

and PAc
> QAc

(or the opposite). Note that if P and Q are comparable, say

P > Q, then they are trivially non-intersecting.

Definition 3.8. (See [18, pp. 447-8].) A partition function f is partially

commutative if f(P ) + f(Q) = f(P ∧Q) + f(P ∨Q) for all pairs P,Q ∈ PΩ

of non-intersecting partitions.

We note that a partition function f satisfing such a condition for all

pairs P,Q of partitions, whether intersecting or not, is in fact a valuation

of partition lattice (PΩ,∧,∨). Such valuations are constant functions, that

is f(P ) = f(Q) for all P,Q ∈ PΩ (see [1, Exercise 12.(ii), p. 195] and [17,

Proposition 4.6, p. 140]).

Information functions and the Sure-Thing Principle relate as follows.

Definition 3.9. (See [18, pp. 452-3].) A partition function f is said to

satisfy the Sure-Thing Principle if the following holds: for all ∅ 6= A ∈ 2Ω

and all P1, P2 ∈ PA and all Q1, Q2 ∈ PA
c

with P1 > P2,

f(P1 ∪Q1)− f(P2 ∪Q1) = f(P1 ∪Q2)− f(P2 ∪Q2).

Gilboa and Lehrer offer the following interpretation: “in all four parti-

tions the DM would know whether A has occurred or not. Hence, by the

Sure-Thing Principle, the DM should not care about what he/she will know

should A not occur in order to evaluate information given A. Thus, the left-

hand side, which is the marginal value of P1 to a DM having P2, (in case
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he/she has Q1 for Ac), should be the same as in the case Q2 is the DM’s in-

formation on Ac”. In this view, they conclude with the following observation

[18, Observation 3.4, p. 453].

Proposition 3.2.6. An information function f satisfies the Sure-Thing Prin-

ciple if and only if it is partially commutative (see above).



Chapter 4

Recent developments and issues

In this final Chapter we firstly describe a further type of cooperative

games and discuss the solution concept in general terms, that is while looking

at games as lattice functions. Next, we consider an issue with a quite long

history in decision theory, namely how to define the conditional expectation

with respect to a non-additive probability. Finally, this latter issue (i.e.

how to condition in the non-additive case) is further studied in conjunction

with a more complex problem: how to define the Nash equilibrium (of a

non-cooperative game) when players randomize and compute their expected

utilities with respect to non-additive distributions over strategy sets.

4.1 Games on embedded coalitions

This Section focuses on games in partition function form PFF, firstly

introduced by Thrall and Lucas in 1963 [58], and then further studied over the

years as poset functions [40, 2, 48, 32, 34, 5, 44, 37] More recently, the ordered

structure where these functions take their real values has been endowed with

the meet and join operators. Hence PFF games, like coalitional and global

games, are now lattice functions [26, 23].

While global games assign a worth to every partition of players (see Chap-

ter 3), PFF games assign a worth to every pair consisting of a coalition and a

53
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partition such that this latter embeds the former as one of its block. For this

reason, in cooperative game theory such pairs are sometimes called embedded

coalitions (or embedded subsets).

The product lattice ×N := 2N ×PN is ordered by relation v obtained by

applying pairwise the order relations of the subset and partition lattices:

(A,P ) v (B,Q)⇔ A ⊆ B and P 6 Q.

Furthermore, ×N is a lattice with the following meet and join:

(A,P ) ∧× (B,Q) = (A ∩B,P ∧Q),

(A,P ) ∨× (B,Q) = (A ∪B,P ∨Q),

for all (A,P ), (B,Q) ∈ ×N . Now consider the family EN of all embedded

coalitions EN := {(A,P ) ∈ ×N : A ∈ P} ⊂ ×N . Evidently, (EN ,v) is a poset

inheriting the order of ×N . There is no bottom element, while neither the

meet nor the join are easily defined in a way such that (A,P )∧(B,Q), (A,P )∨
(B,Q) ∈ EN for all pairs (A,P ), (B,Q) ∈ EN . In fact, PFF games have

been dealt with as poset functions until Grabish 2010 define the lattice of

embedded lattice [23]. The top element is, of course, (N,P>). Concerning

the bottom, all elements of the form ({i}, P⊥) are minimal , but they cover no

element. Accordingly, a bottom element denoted by ⊥ to EN in introduced,

and the resulting poset is

EN∗ := EN ∪ {⊥}.

For |N | > 2 (of course), the meet and join defined by Grabish are:

(A,P ) ∨E (A′, P ′) := (B ∪B′, Q),

(A,P ) ∧E (A′, P ′) :=

(A ∩ A′, P ∧ P ′) if A ∩ A′ 6= ∅,

⊥ otherwise.

where B,B′ are blocks of P ∨ P ′ containing respectively A and A′ , and

Q is the partition obtained by merging B,B′ in P ∨ P ′. Note that the meet
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is the same as for the product lattice ∧E = ∧×, while the join is such that

the lattice of embedded subsets (EN∗ ,∧E ,∨E) is atomic but not atomistic (see

Chapter 1). In particular, there are n atoms ({i}, P⊥) for i ∈ N , together

with join-irreducible elements of the form ({i}, P {jk}⊥ ), i, j, k ∈ N , i /∈ {j, k}.
These latter are the singleton subsets embedded in those partitions that are

atoms of the partition lattice, and whose unique 2-cardinal block does not

include the singleton subset. Hence, the total number of such non-atomic

join-irreducible element is n
(
n−1

2

)
, while the total number of join-irreducible

elements, whether atoms or not, is n
(
1 +

(
n−1

2

))
. The lattice of embed-

ded subsets is neither distributive nor geometric (precisely because it is not

atomistic).

Definition 4.1. A PFF game (on N) is any mapping h : EN∗ −→ R such

that h(⊥) = 0.

As for lattice functions in general, Möbius inversion enables to represent

any PFF game as a linear combination of unanimity PFF games. For nota-

tional convenience, embedded coalitions (A,P ) in the sequel are denoted by

denoted by AP := A{A,A2, ..., Ak}. Unanimity PFF games are defined as

usual, that is

UAP (A′, P ′) =

1 if A′P ′ w AP,

0 otherwise,

for all AP,A′P ′ ∈ EN∗ , and h =
∑

AP∈EN∗
µh(AP )UAP . Möbius inversion

µh is defined through Möbius function µE in the incidence algebra of the

lattice. Denote the modular partition consisting of block A, with |A| > 1,

and n− |A| singleton blocks by PA
⊥ . Given AP = A{A,A2, ..., Ak}, consider

A′P ′ := A′{A′, A12, ..., A1l1 , A21, ..., A2l2 , ..., Ak1, ..., Aklk} with A′P ′ @ AP ,

where blocks Aml1 , ...Amlm ∈ P ′ are those that merge into block Am ∈ P , for

m = 1, ..., k, with A = A1 = A′ ∪ A12 ∪ · · · ∪ A1l1 . Finally let ai := |Ai| and

k′ :=
∑k

i=1 li,
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Proposition 4.1.1. (see Proposition 8, p. 486 [23]) The Möbius function

of lattice (EN∗ ,∧E ,∨E) is

µ(⊥, AP ) =

(−1)|A| if P = PA
⊥ ,

0 otherwise.

µ(A′P ′, AP ) = (−1)k
′−k(l1 − 1)! · · · (lk − 1)! for A′P ′ v AP .

In particular µ(iP⊥, AP ) = (−1)n−k(a − 1)!(a2 − 1)! · · · (ak − 1)!. Once

the Möbius function is available, Möbius inversion of any game h on EN∗ is

given by

µh(AP ) =
∑

A′P ′vAP

µ(A′P ′, AP )h(A′, P ′), for all AP ∈ EN∗ .

Coming to the solution concept, there exists a variety of value functions map-

ping PFF games into n shares, one for each player, and such n shares are

indeed a valuation of subset lattice (2N ,∩,∪). Some of this value mappings

are proposed as the Shapley value of PFF games, and this name is justified

on the ground that the provided n shares obtain as a weighted average or

expectation of players’ marginal contributions to embedded coalitions. Yet,

it should be noted and perhaps emphasized that while the marginal con-

tributions of players are well defined in coalitional games, in more complex

games individual players have a limited capability to modify any existing co-

operation level. In global games, looking at players’ marginal contributions

leads to take to account only the worth of modular partitions, thereby disre-

garding the vast majority (and precisely Bn− (2n− n), where Bn is the n-th

Bell number (See Chapter 1)) of the values taken by global games (regarded

as lattice functions). In PFF games the same argument applies, in that

players’ marginal contributions to embedded coalitions may be conceived in

alternative ways. Specifically, in [26] the average or expectation is over play-

ers’ marginal contributions to maximal chains of embedded coalitions, rather

than to single embedded coalitions. In any case, it seems not immediate to

identify how the Shapley value there provided behaves on unanimity PFF

games UAP as above.
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Along another line of investigation, an interesting test for value mappings

seems to check whether they have fixed points. In this respect, the Shapley

value of an additive coalitional game or valuation is the valuation itself. That

is, valuations are precisely the fixed points of the Shapley value mapping for

coalitional games. Now, more complex games such as global and PFF ones

can be induced by a coalitional game, and this latter can be, in particular, a

valuation. Then, value mappings for global and PFF games may be tested by

checking their behaviour on global and PFF games induced by valuations (of

subset lattice 2N). In fact, this has already been partially considered when

describing additively separable global games. Since Gilboa and Leher [17]

only consider additively separating coalitional games v such that v({i}) = 0

for all i ∈ N , they factually ignore global games additively separated by (non-

trivial) valuations of 2N . Finally note, though, that a global game additively

separated by a valuation of 2N is in fact a valuation of partition lattice PN ,

i.e. a constant partition function. The equivalent of additive separability for

PFF games may be conceived in alternative ways. For example, one may say

that PFF game h is induced by a coalitional game v if for all AP ∈ EN ,

h(AP ) = v(A) +
∑
A′∈P

v(A′) = 2v(A) +
∑

B∈P\A

v(B).

Then, existing value mappings for PFF games might be tested on PFF games

induced by global games v in this way and, in particular, v could be a valua-

tion of 2N . That is h(AP ) = v(A) + v(N) for all AP ∈ EN . Therefore, such

a PFF game h is not a constant lattice function, i.e. it is not a valuation of

the lattice (EN ,∧E ,∨E) of embedded subsets [23, pp. 484-5].
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4.2 Conditional non-additive probabilities

and Choquet expectation

The issue of updating non-additive probabilities (Schmeidler (1989) [51])

has been given extensive attention. Several theories have been proposed for

the conditional probability in the non-additive case (see [10, 52, 16, 6, 14,

29, 20]). Most suggest that the probability of an event B conditioned on an

event A depends not only on the probabilities of A,B and A ∩ B, as in the

traditional Bayes formula, but also on the probabilities of other events, such

as Ac ∩B and (A∩B)∪Ac (see [19, Section 8, pp. 61-3] and [52, 10]). Once

the conditional probability given A is defined, say, p(·|A), one may define

the conditional expectation of a function X (e.g., X = ua a state-of-nature-

dependent payoff, derived from a certain action a ∈ A, as already defined

in Chapter 2), given the event A, by simply integrating the restriction of X

over A with respect to the conditional probability p(·|A).

This method of calculating the conditional expectation is conceptually

inconsistent for the following reason. While the conditional probability of B

with respect to A depends on the behaviour of B outside of A, the conditional

expectation of X, given A, depends only on the behaviour of X over A. Thus,

two functions may be significantly different on the complement of A, and yet,

as long as they coincide on A, their conditional expectations are equal. A

similar method of calculating the conditional expectation is to restrict the

probability and the function to the conditioned event and to consider only

the restricted items. More precisely, the conditional expectation is defined as

the Choquet integral (see Choquet (1953) [7]) of the restricted function with

respect to the normalized restricted probability. This method implies that

the derived conditional probability of an event B, given A, depends only on

the probability of A ∩B and of A.

It may also imply that the conditional expectation of a function X on A

is equal to its conditional expectation over Ac and yet, both differ from the

Choquet integral of X. In Lehrer [36], it is presented a geometric approach,
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inspired by the theory of additive probabilities, which suggests a theory of

conditional expectation that does not pass through the conditional probabil-

ities. Rather, the conditional probability is a by-product. The conditional

expectation of a function X, given a field of events, say, F , will be defined as

the closest (in some formal sense) function, which is F -measurable. This rep-

resents a conservative attitude: the conditional expectation of a function X

is another function that first, is compatible with the information (modelled

by a field of events) and second, is the closest to the original one.

Recall that a field F of sets is a non-empty subset of the power set 2Ω,

closed under the intersection and union of pairs of sets and under comple-

ments of individual sets. From the previous Chapter, also recall that infor-

mation is typically formalized by means of partitions (of state of nature). In

fact, any partition P of Ω identifies the field FP = 2P . This is the subset

lattice whose elements are all and only those subsets of Ω obtained as the

union of (zero or one or more) blocks of P . As usual, let us assume that

the underlying probability space Ω is finite. Let p be an additive probabil-

ity. We denote by D = 2N = 2P⊥ the field containing all subsets of Ω. A

generic subfield of D is denoted by F . The trivial field (containing ∅ and Ω

only), is denoted as T . On the other hand, the field that consists of ∅,Ω, A
and the complement of A, i.e. Ac, is denoted by FA. Assume that X is a

random variable and let F be a field. It turns out that X can be written as

X = Y + X⊥, where Y is F -measurable (i.e. Y is constant on the atoms of

F) and X⊥ satisfies∫
ZX⊥ dp = 0 for all F -measurable variables Z.

The conditional expectation E(X|F) is equal to Y . In other words, X =

E(X|F)+X⊥. In the appropriate space, E(X|F) is the closest F -measurable

function to X. More precisely, denote byM(F) the set of all F -measurable

functions or random variables. Then,

E(X|F) = arg min
Y ∈M(F)

∫
(X − Y )2 dp. (4.1)
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In other words, Y is the closest, with respect to the l2 norm variable

in M(F), to X. Stated differently, E(X|F) is the projection of X to the

subspace (of variables)M(F). Let γ be a monotonic non-additive probability

(i.e. a fuzzy measure), that is, γ(∅) = 0, γ(Ω) = 1 and if A ⊆ B, then

γ(A) ≤ γ(B). Such a geometric approach presented above may be interpreted

in various ways. More precisely the right side of (4.1) can be written in any

of the following ways. Here is a sample:

� arg min
Y ∈M(F)

∫
X2 + Y 2 − 2XY dp.

� arg min
Y ∈M(F)

∫
X2 + Y 2 dp− 2

∫
XY dp.

� arg min
Y ∈M(F)

∫
Y 2 dp− 2

∫
XY dp.

� arg max
Y ∈M(F)

∫
2XY − Y 2 dp.

� arg max
Y ∈M(F)

∫
2XY − Y 2 −X2 dp.

In the case where p = γ is fuzzy and the integral is understood as the

Choquet integral, no two of these methods are equivalent. Whatever method

is adopted, it seems natural to require that the sought conditional expectation

minimally satisfies the following two main properties:

(A1) E(X|F) = X if X is F -measurable,

(A2) E(X|T ) =
∫
X dp.

Here (A1) states that if X is already measurable with respect to the field F ,

then the expectation of X conditional on F is X itself, while (A2) states that

with respect to the trivial field (that is, when no information is available)

the conditional expectation coincides with the Choquet integral of X (this

is in fact a real number, and therefore the conditional expectation of any

random variable with respect to the trivial field is to be interpreted as a

constant function). Any definition of the conditional expectation implies a
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definition of the conditional probability of an event given any field. Consider

two events B and A. The conditional probability p(B|A) is the updating

of the probability of the event A when the available information is given by

field FA. That is, if any ω ∈ A realizes, then what is known is (only) that

the whole event A has realized. Similarly, if any ω′ ∈ Ac realizes, then the

whole complement event Ac is observed. Formally, the conditional probability

p(B|A) is defined as the value of E(1B|FA) on A, where 1B : Ω → {0, 1} is

the characteristic function of B, i.e. 1B(ω) = 1 if ω ∈ B and 1B(ω) = 0 if

ω ∈ Bc for all ω ∈ Ω (see [36, Example 4, p. 49]).

The conditional expectation of the function or random variable X, given

a field F , is thus defined as a F -measurable function that satisfies, together

with (A1) and (A2) above, further properties listed in [36, Section 6, p. 52]

some properties. In particular, the conditional expectation of X, given a

field F , may be defined as

E(X|F) = arg min
Y ∈M(F)

∫
(X − Y )2 dp = arg min

Y ∈M(F)

∫
X2 + Y 2 − 2XY dp.

The problem with this definition is that (A2) is not always satisfied, but the

flaw is corrected as follows. Denote X(ω) = minω′∈F(ω) X(ω′) where F(ω) is

the atom of F containing ω. Similarly denote X(ω) = maxω′∈F(ω) X(ω′). Let

N (X,F) be the subset of those Y ∈ M(F) which satisfy
∫

(X − Y ) dp = 0

and X(ω) ≤ Y (ω) ≤ X(ω) for every ω. This set N (X,F) of F -measurable

functions (or random variables) is shown to be non-empty and compact (see

Leherer [36, Lemma 1, p. 50]). Accordingly, the definition of (geometric)

conditional expectation of a random variable with respect to a field is the

following.

Definition 4.2. The conditional expectation ofX with respect to F , denoted

E(X|F), is a random variable Y ∈ N (X,F) that minimizes
∫

(X − Y )2 dp.

Formally,

E(X|F) ∈ arg min
Y ∈N (X,F)

∫
(X − Y )2 dp.

In words, we say that Y is a conditional expectation of X given F if it

is an F -measurable function which minimizes the integral of the difference
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between X and Y squared, among the functions Y that have two properties:

(i) Y is bounded between the minimum and the maximum of X in each atom

of F ; and (ii) the integral of the difference between X and Y is equal to zero.

Note that typically there is no unique solution to the problem,

min
Y ∈N (X,F)

∫
(X − Y )2 dp subject to

∫
(X − Y ) dp = 0.

We say that Y is E(X|F) if Y solves this minimization problem, where

this latter always admits a solution [36, Theorem 1, p. 52].

4.3 Nash equilibrium with Choquet expected

utility

Under some existing updating schemes it may turn out that the condi-

tional probabilities of B, given A, and of B, given Ac, are both less than

some constant, and yet, the probability of B is greater than this constant.

Under the updating scheme proposed in [36] this cannot occur. This feature

extends to the conditional expectation. The fact that the conditional expec-

tation of a function is uniformly greater than a certain constant implies that

the integral of this function is greater than the same constant. In particular,

if, given any event in the informational partition, an act is valued, say, 7,

then this act is unconditionally valued 7. This approach may be used to

define Nash equilibrium (of non-cooperative games) when players randomize

their action or strategies according to non-additive probabilities.

The traditional definition of Nash equilibrium with randomized or mixed

strategies involves two conditions. First, the players play independently and

thus their play induces independent probabilities over the product of their

action spaces. Second, each player plays his or her best response, given his

or her choice and given other players’ actions. In case the mixed actions

of the players are non-additive, the first condition calls for a definition of

independence of non-additive probabilities defined on a product space. This

issue alone has recently been paid a big deal of attention [13, 12, 61, 28, 15].
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The geometric approach suggested in the previous Section leads to the

following notion of independence: the mixed actions of the players are in-

dependent if there is a measure over the set of all joint actions such that

(i) the marginal probability over every player’s actions coincides with the

players’ mixed action; and (ii) the players can induce nothing about other

players’ actions from their own. Only through conditional probability can

players learn about others’ actions from their own. Therefore, condition (ii)

of independence can be conveyed more formally as follows. There exists a

probability over the product space (typically, not the product probability)

such that the probability of player i playing an action in a set B coincides

with the conditional probability of B, given the partition induced by what

player i knows (i.e. his or her actions). The second condition of Nash equi-

librium refers to incentive compatibility. It states that each player plays his

or her best response to other players’ actions. However, the payoff given

to a player when he or she plays an action, is nothing but the conditional

payoff, with respect to the independent probability (over the product space),

given that action. Therefore, both conditions of Nash equilibrium require

the concept of conditional expectation provided in the previous Section.

In order to formalize these ideas, we need to briefly introduce the notation

applying to non-cooperative games. A non-cooperative or strategic game

with a finite player set N = {1, ..., n} is a triple Γ = (N,S, u) where S =

×
i∈N
Si is the product space of all players’ strategy sets Si = {s1

i , s
2
i , ..., s

ki
i }

with |Si| = ki ≥ 2, and u : S → Rn is a utility function which assigns

a n-dimensional payoff vector u(s) = (u1(s), u2(s), ..., un(s)) to all generic

strategy profile s = (s1, s2, ..., sn) ∈ S. Let S−i := ×
j∈N\i

Sj the product space

of all non-i players’ strategies, such that for all s ∈ S, s = (si, s−i) with

s−i = (s1, ..., si−1, si+1, ..., sn).

Definition 4.3. A pure (i.e. non-randomized) strategy Nash equilibrium is

a n-tuple s ∈ S such that

ui(s) = ui(si, s−i) ≥ ui(s
′
i, s−i) for all s′i ∈ Si and all i ∈ N.
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The set of pure strategy equilibria of game Γ can be empty or, conversely,

can contain multiple strategy profiles. If players may randomize then there

always exists al least one equilibrium, as detailed below.

Let ∆Si denote the ki − 1 dimensional simplex whose extreme points

correspond to non-random strategies si ∈ Si, that is

∆Si =

{
(σ1

i , ...., σ
ki
i ) ∈ [0, 1]ki :

∑
1≤k≤ki

σki = 1

}
.

For player i ∈ N , a mixed strategy σi ∈ ∆Si is a point in this simplex

or, equivalently, a probability over the set Si of pure strategies; in fact,

σki = σi(s
k
i ) is interpreted as the probability (or the frequency in repeated

games) according to which player i plays pure strategy ski ∈ Si, 1 ≤ k ≤ ki

when choosing mixed strategy σi.

Any profile σ = (σ1, ..., σn) ∈ ∆S1 × · · · ×∆Sn of mixed strategies chosen

by the n players induces the unique probability distribution pσ ∈ ∆S on the

product space S given by

pσ(s1, ..., sn) :=
∏

1≤i≤n

σi(si) for all s = (s1, ..., sn) ∈ S.

Evidently, pσ(s) ∈ [0, 1] since σi(si) ∈ [0, 1] for all i ∈ N , si ∈ Si, while∑
s∈S pσ(s) = 1 can be easily checked by induction on the number n ≥ 2 of

players. Let Eui(pσ) = Eui(σ) and σ = (σi, σ−i) for notational convenience,

where σ−i = (σ1, ..., σi−1, σi+1, ..., σn) ∈ ×k∈N\i∆Sk .

For i ∈ N , mixed strategy σi ∈ ∆Si is a best response to the n− 1-tuple

σ−i ∈ ×
k∈N\i

∆Sk of mixed strategies of other players if

Eui(σi, σ−i) ≥ Eui(σ
′
i, σ−i) for all σ′i ∈ ∆Si .

For every player i ∈ N , let BRi : ×
j∈N\i

∆Sj � ∆Si denote the associated

best correspondence by

BRi(σ−i) = {σi ∈ ∆Si : Eui(σi, σ−i) ≥ Eui(σ
′
i, σ−i) for all σ′i ∈ ∆Si}.
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It can be shown [39, Chapter 8, pp. 250-1], that for every σ−i, there

is a subset S′i ⊆ Si such that BRi(σ−i) = ∆S′i , where this latter contains

all mixed strategies σi placing non-zero probability only on those strategies

si ∈ S′i. That is,

∆S′i := {σi ∈ ∆Si : s′i /∈ S′i ⇒ σi(s
′
i) = 0}.

Then, the whole correspondence

(BR1, ..., BRn) = BR : ×i∈N∆Si � ×i∈N∆Si

is upper hemicontinuous [39, p. 950], and thus fulfils the conditions required

by Kakutani’s theorem.

Theorem 4.3.1. (Theorem 1, p. 457 [33]) Let F : C � C be a upper

hemicontinuos correspondence, then it exists x ∈ C such that x ∈ F (x).

Since a mixed strategy Nash equilibrium is a fixed point of correspondence

BR, that is, a n-tuple σ = (σ1, ..., σn) ∈ ×
i∈N

∆Si satisfying

σi ∈ BRi(σ1, ..., σi−1, σi+1, ..., σn) for all i ∈ N,

the set of equilibria is not empty. Nash equilibrium, whether in pure or

mixed strategies, does not seem to prevail as the outcome of real-life interac-

tions. The reason is that individuals commonly try to cooperate, while Nash

equilibrium assumes that players choose their actions independently. In addi-

tion, the issue of Nash equilibrium with non-additive randomized strategies,

outlined in the remaining of this section, is difficult to be interpreted. Specif-

ically, randomizing accordingly to an additive probability may be viewed in

terms of frequency of pure strategies played in repeated games. However, if

randomization occurs according to a non-additive probability, then it is not

immediate how this can apply to any real-life interaction. Apart from this

conceptual concern, it is clear that how to condition non-additive probabil-

ities as analysed in the previous Section is crucial for defining Nash equi-

librium with non-additive random strategies, with players maximizing their

Choquet expected utility.
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Formally, suppose that player i randomly chooses an action in Si with

respect to a non-additive probability γi. Concerning the interpretation, this

probability need not be the actual distribution according to which she ran-

domly selects her action. Indeed, γi might be the distribution that guides her

choice as perceived by other players or by an outside observer. But most im-

portantly, the notion of Nash equilibrium assumes that players choose their

action independently. This means that the knowledge of each player, beyond

the description of the game, consists solely of her action. Independence of γi

would therefore mean that the knowledge of her own action does not change

her belief regarding the probability over other players’ actions. In terms of

conditioning, it entails that the probability over other players actions, con-

ditional on any subset of player i’s actions, coincides with the unconditional

distribution. Let Fi be the partition of S whose atoms are {si}×S−i, si ∈ S−i.
The partition Fi represents the knowledge available to player i.

Definition 4.4. A non-additive probability γ over S realizes γi, i = 1, ..., n

as independent probabilities if

(a) for every i and every A ⊆ Si, γ(A× S−i) = γi(A) and

(b) for every B ⊆ S−i, γ(B × S|Fi) = γ(B × Si).

In order for γi, i = 1, ..., n to be realized as independent probabilities,

there must be a probability γ over the product space S satisfying these two

conditions. Condition (a) states that the marginal of γ over Si coincides with

γi. Condition (b) states that knowing Fi, player i does not change her belief

about others’ actions. In other words, the conditional probability knowing

Fi, γ(B × S|Fi), coincides with γ(B × Si).
Note that in the additive case, there is a unique probability that realizes

pi, i = 1, ..., n as independent probabilities. This is the product probability

shown above. Conversely, in the non-additive case the product probability

(however defined) shall not generically realize γi, i = 1, ...n as independent.

There is no proof thus far of the conjecture that for any probabilities γi, i =

1, ...n, there is γ over S that realizes them as independent. Moreover, there



is no guarantee that there is a unique probability that does it. The definition

of independence of non-additive probabilities paves the way to the definition

of Nash equilibrium.

Coming to the geometric approach to conditioning described in the pre-

vious section, Nash equilibrium requires, on top of incentive compatibility

conditions, that players would choose their actions independently of each

other. When playing the mixed action γi, player i’s payoff is E(ui|Fi), where

the expectation is taken with respect to a probability γ that realized the

(non-additive) mixed actions γi as independent. Note that in case there are

multiple probabilities that realize γi as independent, there may be multiple

expected payoffs with the same set of mixed actions. In equilibrium, E(ui|Fi)
should be greater than or equal to the expected payoff guaranteed by any

specific action si ∈ Si. However, given the action si ∈ Si, all other players

still select their actions independently of each other. Thus, the payoff asso-

ciated with action si ∈ Si is the expectation of player i’s payoff taken with

respect to a probability that realizes (γj)j 6=i as independent.
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