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Abstract

In questa tesi il Gruppo di Rinormalizzazione non-perturbativo (FRG) viene
applicato ad una particolare classe di modelli rilevanti in Gravità quantistica,
conosciuti come Tensorial Group Field Theories (TGFT). Questa classe di mod-
elli generalizza i più noti modelli matriciali che hanno dato prova di essere un
formalismo di successo nella descrizione di una transizione dal discreto al con-
tinuo per gravità in due dimensioni. Inoltre, se arricchiti con ulteriori condizioni,
le TGFT riescono ad implementare le stesse ampiezze di transizione che si riscon-
trano in Loop Quantum Gravity secondo il formalismo di Spin Foam Models. Le
TGFT sono teorie di campo quantistiche definite sulla varietà di un gruppo G×d.
In ogni dimensione esse possono essere espanse in grafici di Feynman duali a com-
plessi simpliciali casuali e sono caratterizzate da interazioni che implementano una
non-località combinatoriale. Le TGFT aspirano a generare uno spaziotempo in un
contesto background independent e precisamente ad ottenere una descrizione con-
tinua della sua geometria attraverso meccanismi fisici come le transizioni di fase.
Tra i metodi che meglio affrontano il problema di estrarre le transizioni di fase e un
associato limite del continuo, uno dei più efficaci è il Gruppo di Rinormalizzazione
non-perturbativo.

In questo elaborato ci concentriamo su TGFT definite sulla varietà di un
gruppo non-compatto (G = R) e studiamo il loro flusso di Rinormalizzazione
attraverso l’equazione funzionale di Wetterich nella formulazione di Benedetti et
al. [JHEP 03 (2015) 084]. La non-compattezza della varietà del gruppo su cui
sono definiti i campi risulta cruciale per identificare i punti fissi del flusso di FRG
come punti fissi Ultravioletti (UV) e Infrarossi (IR). Identifichiamo con successo
punti fissi del flusso di tipo IR, e una superficie critica che suggerisce fortemente
la presenza di transizioni di fase in regime Infrarosso. Ciò spinge ad uno stu-
dio per approfondire la comprensione di queste transizioni di fase e della fisica
continua che vi è associata. Apportiamo inoltre una miglioria al precedente elab-
orato di Benedetti et al. nel senso che il nostro modello, che è definito su uno
spazio non-compatto, fornisce direttamente un sistema autonomo di β-functions.
Affrontiamo inoltre il problema delle divergenze Infrarosse, tramite un processo di
regolarizzazione che definisce il limite termodinamico appropriato per le TGFT.

Infine, applichiamo i metodi precedentementi sviluppati ad un modello dotato
di proiezione sull’insieme dei campi gauge invarianti. L’analisi, simile a quella
applicata al modello precedente, conduce nuovamente all’identificazione di punti
fissi (sia IR che UV) e di una superficie critica. La presenza di transizioni di fasi
è, dunque, evidente ancora una volta ed è possibile confrontare il risultato col
modello senza proiezione sulla dinamica gauge invariante.
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Abstract

This master thesis deals with the study of the Functional Renormalization
Group (FRG) approach for a particular class of models relevant for Quantum
Gravity, called Tensorial Group Field Theories (TGFT’s). This class of models
generalizes the famous matrix models which prove to be a successful framework
for addressing a discrete-to-continuum transition for Gravity in two dimensions.
Furthermore, having implemented extra conditions, TGFT’s are able to repro-
duce the same amplitudes of Spin Foams Models. TGFT’s are quantum field
theories defined on a group manifold G×d. They expand in Feynman graphs dual
to random simplicial complexes in any dimensions and feature combinatorially
non-local interactions. TGFT’s aim at generating a space-time in a background
independent context and precisely to recover a continuous description of its ge-
ometry through physical mechanisms such as a phase transition. In addressing
the problem of extracting phase transitions and associated continuum limit, one
of the most prominent methods is the Functional Renormalization Group.

In this work, we focus on TGFT’s on a non-compact group manifold (G = R)
and study their RG flow through the Wetterich functional equation in the for-
mulation of Benedetti et al. [JHEP 03 (2015) 084]. The non-compactness of the
group manifold where the fields are defined is crucial to identify the fixed points of
the FRG flow as Ultraviolet (UV) and Infrared (IR) fixed points. We successfully
identify IR fixed points in the flow which strongly suggest the presence of phase
transition(s) in the IR. This is encouraging for the next stage which is the un-
derstanding of these phases and their associated continuum physics. We improve
the previous work of Benedetti in the sense that our model which is defined on
a non-compact space yields directly an autonomous system of β-functions. We
also tackle the issue of IR divergences by a regularization scheme defined through
a proper thermodynamic limit for TGFT’s. Finally, we apply the method devel-
oped to a different model endowed with a projection on the set of gauge invariant
fields. The analysis, similar to the one made for the previous model, allows again
to identify fixed points (IR and UV) and a critical surface. The presence of phase
transition is, thus, pointed out and it is possible to compare the results with the
one obtained from the model without gauge projection.
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Chapter 1

Introduction

After Quantum Mechanics and Quantum Field Theory were developed and
quite very well understood, many issues concerning the formulation of a quantum
theory for General Relativity had been pointed out. In particular, the standard
method used to quantize Standard Model interactions fail in providing a well de-
fined and renormalizable model for gravity. Addressing this problematic, several
alternative frameworks had been elaborated since then. We quote among these
approaches, Asymptotic Safety Scenario, String Theory and the like considering
higher dimensions (Super-Strings, Super-Gravity, etc...), Loop Quantum Gravity
& Spin Foams, Analog Gravity, (Causal) Dynamical Triangulations, Causal Sets,
etc. Let us emphasize at least two noteworthy aspects of these. Unlike String
Theory, which provides a quantum gravity description in terms of a perturbative
expansion around a flat background geometry, there exist other theories which
rather address the same problem in a background independent context. This is
the case of Loop Quantum Gravity (LQG) [1, 2], which finds its roots in the
canonical analysis of General Relativity made in the ADM formalism [3]. A co-
variant definition of LQG is made by spin foams models [5, 6, 7], which, in terms
of state sum models, create a link between LQG and simplicial gravity, recover-
ing, in some limit, the Ponzano Regge calculus for discrete gravity [8, 9]. Among
the attempts of providing a background independent theory of quantum gravity,
one of the most promising, though young, framework appears in the Group Field
Theories (GFT’s) context [13, 14, 19, 20].

Developed in order to generalize frameworks coming from String Theory, such
as matrix models [16] and tensor models [17, 18], GFT’s also reproduce results
coming from the spin foam formulation of LQG [9, 15] and offer a neat comparison
between their description of the spacetime dynamics and the one provided by non-
commutative geometry methods [12].

Group Field Theories are field theories endowed with a combinatorial non-
local interaction where fields are defined over a group manifold. The Feynman
rules, in the most simple situation, are given by an interaction that can be repre-
sented as a simplex, and a propagator providing a rule for gluing these simplices
together. Then, Feynman graphs generated by these theories are dual to a cel-
lular/simplicial decomposition of the spacetime manifold. Hence, because the
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combinatorics of their interaction terms reproduce (simplicial) building blocks,
GFT’s give a field theoretical setting and background independent formulation of
simplicial gravity.

Mentioning discrete structures, one of the most fundamental problems arising
in Quantum Gravity is to make sense of the transition from a discrete setup
to a continuous one. In LQG and spin foams, as well as in tensor models and
causal dynamical triangulations, the attempts to find an answer in this direction
are based on a refinement of the lattice discretization leading to a semiclassical
approximation where General Relativity is recovered. One the main tools that
we possess to identify a regime where geometrical quantities emerge from a pre-
geometric structure is the Renormalization Group (RG) [48]. Already applied in
the spin foam context with a lattice gauge theory perspective [10, 21], the RG in
its perturbative formulation [67] has been also applied to a special class of GFT
called Tensorial GFT’s [38][25]. These TGFTs have a recent history. Indeed, they
emanates from the statistical study of colored tensor models [26, 27], a specific
class of tensor models, which support a large N expansion [28, 29]. Consequently,
many new results are today available in the study of critical behavior of colored
tensor models [30, 31, 32, 33, 34, 35, 36, 37]. From the large N study, it appears
possible to identify a class of interactions which are the dominant one in partition
function of colored tensor models. These dominant terms, called melons [30]
turned out to be the one interesting for performing a perturbative analysis of
GFT’s.

The advantage of GFT’s is that, being a field theory, the RG can be applied in
its full formalism. In [39], it was argued that, after the results obtained in tensor
models and the perturbative RG applied to TGFT’s, this subclass of GFT is
enough general to provide interesting results. In particular, we are able to combine
methods and results inherited from tensors with a non-perturbative formulation of
the RG known as the Functional Renormalization Group. In short, representing
a powerful tool to study the physics of a theory in a neighborhood of critical
phenomena, the FRG formalism describes the flow of a theory as the energy scale
changes, providing eventual regimes at which phase transitions occur. From this
point of view, the emergence of a continuous geometry could be phrased in terms of
a phase transition towards a condensate state of (T)GFT’s [46] and we refer to this
procedure as “geometrogenesis” or the “birth of geometry from basic structures”
[47].

The FRG approach has been recently formulated in the context of matrix
models with goal to probe their continuum limit [60, 61, 62, 63] and then, tested
on TGFT’s in the work by Benedetti et al. [66]. In the latter contribution,
formulated on an underlying compact group manifold, i.e. U(1)d, the β-functions
obtained forms a non-autonomous system in the cut-off over tensor modes. This
feature prevents from recognizing fixed points as IR and UV fixed points with
respect to the cut-off in its small and large limits, respectively. It becomes a
difficult matter, both at the technical and conceptual level, to understand the
resulting phase diagrams within a full theory, in a unique consistent description.
The present work mainly aims at improving this rather peculiar feature for GFT’s.
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In this thesis, the Functional Renormalization Group is addressed for partic-
ular models of Group Field Theories defined over a non-compact group manifold.
The goal of this study is to obtain a picture describing the full flow of the two
models, distinguished from the presence or not of a projection on the gauge invari-
ant dynamics. Both models have similarities and differences that we emphasize
along the text. In this end, for both cases, we identify a proper critical surface
on the phase diagram which strongly suggest the existence of phase transitions.
Both theories have several non-Gaussian IR fixed points and one Gaussian, UV
fixed point. The neighborhood of each IR fixed point is similar to the one found
in local scalar field theory in dimension 3, i.e. the vicinity of the Wilson-Fisher
fixed point [58]. Thus, we have hints that phase transitions happen indeed. A
tentative suggestion is that these phases refer again to the symmetric and broken
phases, and the latter that we would like to associate with the condensed phase.
Nevertheless, a rigorous proof of that statement about phase transition can be
only achieved through a reparametrization of the system, just like in the ordinary
scalar field theory. This change of dynamical variables depends on a resolution
of the equation of motion of the GFT models which, in the case chosen to study,
involve an integro-differential equation difficult to solve. This opens avenues of
forthcoming investigations.

The plan of this thesis is as follows. Chapter 2 reviews the literature, putting
at its center, the link between GFT’s and other quantum gravity frameworks and
following the historical path which led to their formulation. We start by explaining
the crux ideas behind matrix models and tensor models, paying particular atten-
tion on applications to quantum gravity and quantum geometry, showing, in this
way, the mathematical background of Group Field Theories. Then, we proceed
further and explain the formulation of General Relativity on which Loop Quan-
tum Gravity relies and the formal procedure leading to the spin foam formulation
of LQG, pointing out the equivalence between the quantum amplitudes of spin
foams and those obtained from particular models of GFT’s. Finally, we discuss
the peculiarities and the construction of a particular subclass of GFT’s, known as
Tensorial Group Field Theories (TGFT), on which this thesis particularly focuses.

Chapter 3 slightly reviews the Functional Renormalization Group. First, we
illustrate the Wilsonian idea that gave birth to this formalism [48]. We point out
the reasons leading to the necessity of a new formulation of the RG which constrats
with the perturbative approach. Then, we motivate the equations describing the
flow of a theory in this context, namely the Polchinski equation [51] and the
Wetterich equation [52]. In the last section of chapter 3, we expand the formalism
of the FRG to the case of TGFT’s following the work by Benedetti et al. [66].

In chapter 4, start our investigations. We apply the constructions illustrated
so far, to a specific rank 3 model of TGFT’s defined over a non-compact group
manifold, R. This is the first attempt to address a renormalization procedure
to the non-compact case of TGFT’s. We introduce the model as well as the
framework and single out problems arising from the infinite volume of the domain
of fields. Then, we make an ansatz concerning the structure of the coupling
constants which allows us to recover a well defined, autonomous, system of β-
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functions in the non-compact limit. The key point of our regularization scheme is
the introduction of a new parameter representing the dependence of couplings on
the volume of the direct space. To implement this procedure, we compactify the
volume in the x space obtaining a lattice regularization of the momentum space.
Consequently, we use the system of β-functions found through this regularization
to extract the flow equations of the model and its phase diagram and compare
the result with usual models of local quantum field theories.

In chapter 5, we modify the model studied in chapter 4 introducing a pro-
jection on the gauge invariant dynamics, in order to recover the formulation of
known quantum gravity models. We analyze the ambiguities arising from the
construction of such a model and we discover that, willing to properly set up a
non-trivial FRG formalism, we have no choice but to project both the kinetic
and interaction terms of the action. Thus the resulting action becomes a new one
never addressed before. Then, we apply the Wetterich equation to this second field
theory using a similar regularization scheme adopted in chapter 4. This, again,
allows us to obtain a proper non-compact limit and an autonomous system of
β-functions. The flow of the gauge projected model turns out to have similarities
but also differences compared with the one studied before.

Chapter 6 is our conclusion: we give a summary of our results and list impor-
tant open problems for this approach that will be addressed in the future. Two
appendices, namely appendix A and B, close the manuscript and provide details
of our calculations, underlining their main features and leading to the system of
β-functions for each model investigated.



Chapter 2

Group Field Theories

2.1 From matrix models to GFT’s

A first attempt in describing quantum gravity through a dicretization of a
manifold was implemented in the context of two dimensional gravity [16, 17].
In this framework, an integral over the intrinsic geometries of a 2d surface is
regularized as a sum over randomly triangulated surfaces. This procedure allows to
write the partition function of quantum gravity as the free energy of an associated
hermitian matrix model [16]. In this subsection, in a streamline analysis, we give
an overview of 2d quantum gravity and its link to matrix models.

In quantum gravity, the aim is to compute an integral over all 2-geometries
and a sum over all 2-topologies of the type

Z '
∑

topologies

∫
DgDX e−S[g,X] , (2.1)

where X is a set of scalar fields defined over the 2d manifold with geometry
determined by a metric g and S encodes their classical dynamics.

To get a better understanding of the correspondence with matrix models, let
us consider a pure theory of two dimensional surfaces and the following partition
function:

Z =
∑
h

∫
Dg e−βA+γχ , (2.2)

where h is the number of handles of the surface, A =
∫ √

g its area, χ =
1

4π

∫ √
gR = 2 − 2h its Euler character, R is the corresponding the scalar cur-

vature and β and γ are coupling constants. Already at this level, we can see that
the structure of the action in (2.2) reflects the Einstein-Hilbert action for pure
gravity with cosmological constant:

SEH(g) =

∫
dDx
√
g(KR + Λ) . (2.3)

While in two dimensions the fact that
∫ √

gR is a topological term prevents it from
influencing the equations of motion and makes classical General Relativity trivial,

10
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at the quantum level, strong fluctuations of the geometry may induce changes in
the topology and the theory is no more trivial.

Let us consider now a triangulation of the surface. Without loss of general-
ity, we can consider all triangles to be equilateral so that, if Ni is the number of
incident triangles at the vertex i, then the curvature is positive (respectively neg-
ative) if Ni > 6 (resp. < 6) and null if Ni = 6. Call E, F and V the total number
of edges, faces and vertices of the triangulation, respectively, then 2E =

∑
iNi

and 3F = 2E. These relations are purely topological and allow to rewrite all
quantities in terms of Ni in such a way that, in this discrete setting, the scalar
curvature at the vertex i becomes Ri = 2π(6−Ni)/Ni and the square root of the
determinant of metric tensor becomes

√
g
i

= Ni/3 (the factor 1
3

is due to the fact
that every triangle, assumed to have unit area, has 3 vertices and thus is counted
3 times). The previous relations lead directly to the following correspondence:

1

4π

∫
√
gR −→ 4π

4π

V∑
i=1

(1− Ni

6
) = V − 1

2
F = V − E + F = χ , (2.4)

where, in the last equality, we recognize the simplicial definition of the Euler
character χ. This is of course Descartes’ version of the Gauss-Bonnet theorem
where curvature is seen as a discrete measure, i.e., is defined by counting the
numbers of triangles converging toward a vertex.

As a result, the sum over all random triangulations becomes the discrete
counterpart of the sum over all topologies and all geometries:∑

h

∫
Dg −→

∑
random triangulations

. (2.5)

Up to this point, one formalism provides a discrete version of the other. We
now define the sum over all possible triangulations using a matrix path integral
as generating functional. Once expanded in perturbation theory, this integral will
generate Feynman diagrams represented as ribbons graphs glued together, that we
interpret as dual to the simplicial decomposition of the surface. We thus consider
the following integral:

Z(a) =

∫
dM e

− 1
2

TrM2+ a√
N

TrM3

, (2.6)

where M is a N × N hermitian matrix, the measure is the invariant one dM =∏
i dM

i
i

∏
i<j dReM i

j dImM i
j and is normalized as

∫
M
e−

1
2

TrM2
= 1 and where a

is a coupling constant. Perturbatively, the an-term of the diagrammatic expansion
of (2.6) generates graphs with n trivalent vertices which are dual to triangulations
of a closed surface with area n, where each vertex, edge and face in a graph is
associated, respectively, to a triangle, edge and vertex in the triangulation.

The diagrammatic representation of the expansion is built through the gluing
of double stranded lines, rerouted by the vertices in order to reflect the convolution
pattern of each graph (see Fig.2.1).
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Figure 2.1: Diagrammatic representations of the propagator and vertex of the
model (2.6).

We can extract important information from the size of the matrix: if we
perform the following rescaling

M −→ M√
N
, (2.7)

the action becomes

S[M ] = −N
2

TrM2 + aNTrM3 = N

(
−1

2
TrM2 + aTrM3

)
. (2.8)

We notice that each vertex contributes to the amplitude of the graph with a factor
N , each propagator or covariance (inverse of the kinetic term) with a factor N−1

and every face (loop of strands in the graph) generates a trace over a convolution
of Kronecker δ’s giving again a factor N . Thus, using a graph expansion, we write:

Z(a) =
∑

Γ

aVΓNVΓ−EΓ+FΓ =
∑

Γ

aVΓNχΓ , (2.9)

where Γ is a Feynman graph. Assuming analytic continuation, we can choose
N = eγ and, identifying log a as a cosmological constant, we find the form of the
action used in (2.2). From (2.9), the partition function finds the expansion in
powers of N as:

Z(a) =
∑
h

N2−2hZh(a) . (2.10)

In the large N limit, only the term proportional to Z0(a) survives and we can
expand it in powers of the coupling a to perform a continuum limit. One has:

Z0(a) =
∑
V

V σ−3

(
a

ac

)V
' (a− ac)2−σ , (2.11)

where σ is a critical exponent that describes the behavior of the theory when a
approaches the critical value ac. The previous expression diverges for the coupling
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constant going to ac and computing the expectation value of the total area of the
surface, it is possible to show that it diverges as well for a → ac, at least until
each vertex, and thus, each triangle in the dual description, contributes with a
finite non-zero value. Introducing a new parameter s representing the area of the
triangles, the total area of the surface can be tuned to be finite in the critical
regime if s→ 0, which means that we can perform a continuum limit.

In all above formulas, we deal with what, in the language of particle physics,
are called vacuum diagrams, i.e., graphs without external data. The closed dia-
grams that are generated are dual to surfaces without boundaries. Nevertheless,
the formalism holds in the case of open surfaces as well. The n-point Green’s
functions obtained from the quantum theory (2.6) admit an expansion in power
series of the coupling a, where each term corresponds to a graph with n external
links and number of vertices given by the exponent of a. In the dual triangulation,
the set of external links becomes related with the boundary of the surface.

A last remark should be made on the framework of matrices. By choosing an
interaction term proportional to TrM3, we construct triangulations of surfaces.
The choice of using triangles is standard because they are the smallest possible
unit of cellular complexes and because the use of tools from simplicial geometry is
then allowed. Nevertheless, nothing prevents from choosing other shapes, rather
than triangles, for the building blocks for the discretized manifold and is possible
to show that all the possible shapes belong to the same universality class.

The formalism of matrix models must be extended to higher dimensional man-
ifolds [17, 18]. Already in the case of three dimensions, one encounters a lot of
issues. A part the lack of a classification of topologies [17], the main problems
which arose in the first formulation of tensor models were that:

• a procedure to identify the dominant triangulations was missing,

• there was not the possibility to identify the discretizations corresponding to
pseudo-manifold and to check if they were suppressed or not,

• the non-trivial effects of a 3-dimensional theory of gravity were not repro-
duced.

The first two points were solved adding new degrees of freedom to these models,
defining what we call “colored” tensor models [18, 25, 26, 27, 28, 29, 30]. The link
with gravity is made by replacing labels of tensors with group theoretic data, i.e.,
through specific models of Group Field Theories [19, 20, 9].

Before getting in the details of the framework of tensor models, we must first
introduce the concept of pseudo-manifold and simplicial-manifold following the
conventions of [17, 26].

Definition 2.1.1. A n-dimensional pseudo-manifold is a collection of n-simplices
whose boundary (n− 1)-simplices are pairwise identified.
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Definition 2.1.2. A n-dimensional simplicial-manifold M is a pseudo-manifold
where every point in M has a neighbourhood homeomorphic to the unit ball Bn

in Rn.

For a three dimensional pseudo-manifold M , we define the Euler character in
terms of the numbers ld of d-simplices as:

χ(M) = l3(M)− l2(M) + l1(M)− l0(M) (2.12)

and we have χ(M) ≤ 0 with χ(M) = 0 iff M is a simplicial-manifold.
Consider a three dimensional simplicial-manifold T and denote E(T ) its set

of edges e, we can write the Einstein-Hilbert action as [8]

SEH(T ) =
∑

e∈E(T )

(τ(e)− c) = 6l3 − cl1 , (2.13)

where τ(e) is the number of tetrahedra sharing e 1 and c an adjustable constant.
We remember that, already in 3d, there is no equilateral tessellation of the flat
space as in 2d. Adding a coupling constant to the model, we can absorb the
contribution of c inside of it and write an action of the same form of the action
for simplicial 3d gravity with cosmological constant (see [8]):

S(T ) = λl3(T ) + κl1(T ). (2.14)

Hence, we define a model of simplicial quantum gravity through the following
partition function:

Zλ,κ(S1, . . . , Sn) =
∑

T ∈M(S1,...,Sn)

e−S(T ) , (2.15)

whereM(S1, . . . , Sn) is the set of simplicial-manifolds with boundary components
S1, . . . , Sn. If we now look for a tool that allows us to use (2.15) for practical
computations, we can generalize matrix models to (rank 3) tensor models using
the following action:

ST (t) =
∑

α,β,γ,δ,ε,ρ

tαβγtγδεtεραtβρδ , (2.16)

where tαβγ is a tensor with indices running over a discrete set. Introducing the
normalized Gaussian measure

dµa(t) = C Dt exp

{
−a

6

∑
αβγ

|tαβγ|2
}
, (2.17)

where Dt =
∏

α≤β≤γ dRe tαβγ
∏

α<β<γ dIm tαβγ, a is a coupling constant and C is
a normalization factor, we construct a sum over histories of all possible random
three dimensional pseudo-manifolds by writing the partition function

Z(a, b) =

∫
dµa(t)e

−bST (t) . (2.18)
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ρ

β

α

δ

ε

γ

Figure 2.2: Labels of the edges of a tetrahedron

Again Feynman graphs coming from perturbative expansion of (2.18) are
viewed as dual to a simplicial discretization of manifolds. This time, the tensor
tαβγ is equivalent to a triangle and the contractions of four tensors in the interac-
tion term, see Fig.2.2, reflect the combinatorics of triangles combined to build up
a tetrahedron, while the Gaussian measure describes the gluing of two tetrahedra
by the identification of one of their boundary triangles.

As we will show in section 2.3, GFT’s are the natural generalization of tensor
models in which tensors become fields and the labels are defined over a group
manifold. In this sense, they inherit from tensor models non-local interactions
that describes a simplicial discretization of geometries.

2.2 GFT’s and Loop Quantum Gravity

Loop Quantum Gravity [1] (LQG) is a theory of quantum gravity that takes
origin from the tetrad formulation of General Relativity [1, 2]. We define a tetrad
as a quadrupole of 1-forms eIµ(x), I = 0, 1, 2, 3, such that:

gµν(x) = eIµ(x)eJν (x)ηIJ , (2.19)

where ηIJ is the flat Minkowski metric. By definition, the tetrads provide an
isomorphism between a general reference frame and an inertial one. The capital
Latin indices thus carry representations of the Lorentz group and transform under
the action of Lorentz matrices. Contracting vectors and tensors with tetrads, we
obtain objects that again transform under the Lorentz group, i.e., we perform a
mapping from a tangent bundle of the spacetime to a Lorentz principal bundle
with connection ωIJµ . We can use this connection to define a covariant derivative
of the fibres as:

Dµv
I(x) = ∂µv

I(x) + ωIµJ(x)vJ(x) , (2.20)

and one for objects with both kinds of indices:

DµeIν(x) = ∂µe
I
ν(x) + ωIµJ(x)eJν (x)− Γρµν(x)eIρ(x) , (2.21)

1In d-dimensions, the curvature is concentrated around (d− 2)-simplices called links.
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where Γρµν(x) is the Levi-Civita connection. Considering that Γρµν(x) is metric
compatible, we need to require that DµeIν ≡ 0. In this case, we call ω a spin
connection and it becomes a 1-form with values in the Lie algebra of the Spin
group. We define the curvature associated to this connection as:

F IJ = dωIJ + ωIK ∧ ωKJ , (2.22)

with components

F IJ
µν = ∂µω

IJ
ν − ∂νωIJµ + ωIµKω

KJ
ν − ωJµKω

KI
ν . (2.23)

Now, we are able to rewrite the Einstein-Hilbert action in its tetrad formulation
[2] (or Palatini formulation) as:

SEH(eIµ, ω
IJ
µ ) =

1

2
εIJKL

∫
M
eI ∧ eJ ∧ FKL(ω) . (2.24)

where M is the spacetime manifold. This action gives the same equation of
motion of its conventional form but, apart from the usual invariance under dif-
feomorphism, presents a gauge symmetry under local Lorentz transformations. A
remarkable feature is that the connection is raised to be an independent field,
nevertheless, if the terad is non-degenerate, the equation of motion coming from
varying the action with respect to ω just imposes the structure of spin connection
and does not add any new element to the physics of spacetime. In a four dimen-
sional spacetime, we can rewrite the action (2.24) in terms of a constrained BF
theory (Plebanski formulation of GR) [5]:

S1(ω,B) =

∫
M

[
BIJ ∧ FIJ(ω)− 1

2
µIJKLB

KL ∧BIJ

]
. (2.25)

The B field is a 2-form valued in the Lie algebra of the Lorentz group, while the
Lagrange multipliers appearing in the second term of (2.25) satisfy µ[IJ ][KL] =
µ[KL][IJ ]. Their equation of motion have four sector of solutions and, choosing one
of the two sectors BIJ = ±1

2
εIJKLe

K ∧ eL, we recover the formulation (2.24).
Equation (2.25) can be generalized to include another term in the action

encoding the dynamics of spacetime as follows:

S2(ω,B) =

∫
M

[
BIJ ∧ FIJ(ω) +

1

γ
(∗B)IJ ∧ FIJ(ω)− 1

2
µIJKLB

KL ∧BIJ

]
. (2.26)

The action (2.26) is called the Plebanski-Holst action [4] and, at the classical level,
it is equivalent to (2.24) because the additional terms vanish on shell. Neverthe-
less, the parameter γ, known as Immirzi parameter, turns out to be fundamental
in the quantum theory.

The advantage of the formulation (2.26) comes from the fact that we know
how to provide, a discretization and a covariant quantization procedure for a BF
theory. Thus, from (2.26), we can construct a model of quantum gravity. Given
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a simplicial complex ∆, we should be able to reconstruct an associated discrete
tetrad related to the bivectors Bf corresponding to the triangles of the complex.
In order to do this, it is necessary to impose some constraints on the bivectors
requiring the closure of tetrahedra and identifying the bivectors as orthogonal to
them. The resulting constraints, known as simplicial constraints, that have to be
imposed on the B fields read:

∀ tetrahedra t ∈ ∆, ∃nt ∈ S3 | (Bf − γ ∗Bf )
IJntJ = 0 , ∀Bf , f ⊂ t . (2.27)

On the other hand, General Relativity can be given a gauge formulation within
the ADM formalism [3], which provides a formulation suitable for a canonical
analysis of gravity. In this framework, one induces a splitting into a spatial 3d
manifold Σ and a time coordinate which plays the role of gauge parameter. Now,
one rewrites the Einstein-Hilbert action in terms of the following spatial quantities
(a gauge fixing of the tetrad is implied):

AIa =
1

2
ωJKa εIJK + γω0I

a , (2.28)

Ea
I = det(e)eaI , (2.29)

where AIa is called Ashtekar-Barbero-Immirzi connection and Ea
I is the densitized

triad. Aiming at quantizing the theory, a useful change of coordinates is given by
the holonomy-flux set, defined as

hC(A) = P exp

{∫
C

A

}
∈ SU(2) (2.30)

E(S) =

∫
S

(∗EJ)nJ ∈ su(2) , (2.31)

where P is the path ordering operator, C is a generic path and nJ is the or-
thonormal vector to the surface S. Rising the parallel transports of the Ashtekar-
Barbero-Immirzi connection and the fluxes of densitized triad to operator quan-
tities, is the basic quantization procedure of LQG.

The holonomy-flux algebra still describes a continuous theory because one has
to consider all possible paths in the manifold. A basis for the space of path is
realizable by considering all possible graphs (without any restriction concerning
the valence of vertices) embedded into the manifold. This is the main point of
spin foam models [7], which is a proposal of a covariant form of LQG as state
sum models. From the point of view of canonical LQG, the aim of spin foam
models is to construct a physical inner product for quantum gravity states. Given
a 4-manifold M with boundaries Σ1 and Σ2 and given a diffeomorphism class of
3-metrics [ĝ1] and [ĝ2] on these boundaries, we want to compute [14, 6, 7]:

〈[ĝ1]|P|[ĝ2]〉 =

∫
M
D[g]eiS2(ω,B) . (2.32)

In this sum,M is the space of all 4-metrics modulo 4-diffeomorphism that have [ĝ1]
and [ĝ2] as boundaries, while P is the projector on the kernel of the Hamiltonian
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constraint arising from a canonical analysis of General Relativity [3]. Equation
(2.32) is purely formal at the non-perturbative level, but thanks to the mathe-
matical structures of LQG, we can represent it as a sum over histories. In this
framework, states are identified with spin networks Γj, where Γ represents a graph
embedded in Σ and j the coloring of edges of the graph by representations of a
Lorentz group G and the coloring of vertices of Γ by intertwiners of G. Thanks
to the simplicity constraints, it is possible to rephrase the spin foams analysis in
terms of representations of SU(2). The type of states that we define are eigen-
states of geometrical operators. Representations, labelling edges in Γ, give quanta
of area ∝

√
j(j + 1) to the surfaces in the dual cellular decomposition intersecting

the graph. Thus, we can represent a spacetime as a history between spin network
states. The evolution process transforms edges of Γ in faces of the resulting spin
foam F (thus colored by representations j of G), vertices becomes edges in F
(thus colored by intertwiners i of G) and changes of topology occur at vertices
of the foam. Basically, a spin foam is the set of faces of the ∗-dual of a cellular
decomposition of spacetime. By suitable restrictions on F , we can impose that
this discretization is indeed a pseudo-manifold as defined in the previous section.

To characterize a spin foam model, we need to specify the local amplitudes
Af (jf ), Ae(jfe , ie), Av(jfv , iev) assigned to faces, edges and vertices, respectively.
Once this is done, we can define the transition amplitude associated to the spin
foam F with boundaries Γ1 and Γ2 as [14, 7]

A(F) = 〈Γ1|Γ2〉F =
∑
jf ,ie

∏
f

Af (jf )
∏
e

Ae(jfe , ie)
∏
v

Av(jfv , iev) . (2.33)

We recover again the contact with simplicial gravity in terms of the graph dual
to the discretization.

The previous structure can be given in field theoretic sense by defining GFT
models [13, 9] (see also the seminal works [22, 23]). Choosing particular GFT
models we can match the quantum gravity framework of LQG and the respective
spin foams formulation. In 3d, the GFT action providing this link is known as the
Boulatov model [19] while, in 4d, it is known as the Ooguri model [20] and both
models, originally were formulated to give a field theoretic quantization formalism
for BF theory.

To be more explicit, let us discuss the 4d case. We define the fields to be real
functions over four copies of the group G = SU(2). Using a Peter-Weyl transform,
the fields decompose as:

φ(g1, g2, g3, g4) =
∑

ji,mi,ni

φm1n1...m4n4
j1...j4

Dj1
m1n1

(g1) . . . Dj4
m4n4

(g4) , (2.34)

with gi ∈ SU(2) and Dj
mn(g) are the Wigner matrices for the j representation of

the element g. We then require the fields to be invariant under the right action
of the group:

φ(g1h, g2h, g3h, g4h) = φ(g1, g2, g3, g4) , ∀h ∈ SU(2) . (2.35)
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A way to implement (2.35) is to write

φ(g1, g2, g3, g4) =

∫
G

dh φ(g1h, g2h, g3h, g4h) , (2.36)

where dh is the normalized invariant Haar measure on SU(2).
We consider the following action [20]

S =
1

2

∫ 4∏
i=1

dgi φ
2(g1, g2, g3, g4) +

λ

5!

∫ 10∏
i=1

φ(g1, g2, g3, g4)×

φ(g4, g5, g6, g7)φ(g7, g3, g8, g9)φ(g9, g6, g2, g10)φ(g10, g8, g5, g1) . (2.37)

At the quantum level, Feynman rules associated with the model (2.37) can be
interpreted as follows: fields are associated with tetrahedra, each argument of the
field is viewed as a boundary triangle of the tetrahedron. In this interpretation,

φ

φ

φ

φ

φ

g3g8

g5

g2

g7

g6

g4

g9

g10

g1

φφ

Figure 2.3: Feynman rules for the Ooguri model.

the interaction term follows the combinatoric structure of a 4-simplex, while the
kinetic part describes the gluing of two 4-simplices by identifying one of their
boundary tetrahedron (see Fig.2.3). This is a model of GFT whose Feynman
graphs are dual to a simplicial decomposition of a manifold and where geometric
variables are quantized according to the representations of SU(2). Furthermore,
the amplitudes of the Ooguri model have a precise form which can be shown
equivalent to amplitudes of a simplicial path integral for BF theory.

2.3 Tensorial Group Field Theories

We introduce, at this point, the formalism of a special class of GFT’s of
particular interest for our work, known as Tensorial Group Field Theories (TGFT)
[38]-[45][31, 34, 36, 37].

Consider a field φ defined over d-copies of a group manifold G, φ : G×d −→
C. For the moment, we focus just on the case of compact Lie group manifold.
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Without assuming any symmetry under permutations of field labels and using
Peter-Weyl theorem, the fields decompose as follows:

φ(g1, . . . , gd) =
∑
P

φP

d∏
i=1

Dpi(gi) , (2.38)

with P = (p1, . . . , pd), gi ∈ G and where the functions Dpi(gi) form a complete
orthonormal basis of functions on the group characterized by the labels pi. In a
TGFT model, we require fields to have tensorial properties under basis changes.
We define a rank d covariant complex tensor φP to transform through the action
of the tensor product of unitary representations of the group

⊗d
i=1 U

(i), each of
them acting independently over the indices of labels of the fields, i.e.:

φp′1,...,p′d =
∑
P

U
(1)
p′1,p1

. . . U
(d)
p′d,pd

φp1,...,pd . (2.39)

The complex conjugate field will then be the contravariant tensor transforming
as:

φp′1,...,p′d =
∑
P

(U †)
(d)
p′d,pd

. . . (U †)
(1)
p′1,p1

φp1,...,pd
. (2.40)

Among the invariants built out of φ and φ, the “trace invariants” turn out to
be an important class of invariants. They allow us to have a strong control on the
combinatorial structure of convolutions, thus, trace invariants are relevant for the
construction of TGFT’s renormalizable actions. The name trace is reminiscent of
traces over matrices which indeed are classical unitary invariants. Hence the tensor
trace invariants generalize traces over matrices. They are obtained contracting
pairwise the indices with the same position of covariant and contravariant tensors
and saturating all of them. In this way, they always show the same number of φ
and φ. A simple example is the following:

Tr(φφ) =
∑
P,Q

φPφQ

d∏
i=1

δpi,qi . (2.41)

Considering that φP (resp. φP) transforms as a complex vector (resp. 1-form)
under the action of the unitary representations of G on one single index, the
fundamental theorem on classical invariants for U on each index entails that all
invariant polynomials in field entries can be written as a linear combination of
trace invariants [11]. This formulation of tensor models can be adapted to the
real field case, where the unitary group is replaced by the orthogonal one.

As an interesting feature which, in turn, becomes an important computational
tool in several contexts, tensor invariants can be given a graphical representation
as bipartite colored graphs. A tensor φ is represented by a (white) node with
exiting d-half lines with labels; its complex conjugate is a node with a different
color (black). Feynman graphs obtained from a TGFT in rank d are obtained
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(a) (b) (c)

Figure 2.4: Three examples of Feynman graphs for a rank 3 TGFT’s. The trace
invariants used to build the interactions are: figure (a) Tr(φφ), figure (b) an
example of Tr(φφφφ), figure (c) an example of Tr(φφφφφφ).

by attaching to trace invariants representations one propagator (dashed line) for
each field obtaining a d + 1 edge colored graph (some examples are depicted in
Fig.2.4).

Trace invariants can be generalized as convolutions where the contractions are
made by operators different from the delta distribution. In this case, the resulting
object is not guaranteed to be an invariant. Hence, a generic convolution by non
trivial kernels of tensors breaks the unitary invariance. We write a generic action
for a TGFT model symbolically as:

S[φ, φ] = Tr(φ · K · φ) + Sint[φ, φ] (2.42)

Tr(φ · K · φ) =
∑
P,Q

φPK(P; Q)φQ , Sint[φ, φ] =
∑
{nb}

λnb
Tr(Vnb

· φn · φn) .

Here K and Vn are kernels implementing the convolutions in the kinetic and in-
teraction terms, respectively, where n indicates the numbers of covariant and
contravariant fields appearing in the vertices, b labels the combinatorics of con-
volutions and λnb

is a coupling constant for the interaction nb. The formalism
presented so far can be easily generalized to the a non-compact group manifold G
using the Plancherel formula to decompose fields and replacing the trace definition
or sums over discrete indices by integrals over continuous variables.

Given an action S[φ, φ], the partition function is defined as usual:

Z[J, J ] = eW [J ] =

∫
dφdφ e−S[φ,φ]+Tr(J ·φ)+Tr(J ·φ) , (2.43)

where J is a rank d complex source term and Tr(J · φ) is defined in (2.41).



Chapter 3

The Functional Renormalization
Group

In Physics, one of the most relevant questions is whether a theory that ap-
plies in some context (in QFT, at some energy scale) is fundamental or not, that
is, if it holds also in other contexts or not. The framework which allows us to
address this problem is at the heart of Quantum Field Theory, giving sense of
its inconsistencies, like infinities, and yielding its power of prediction. This is the
renormalization group (RG), which pinpoints the relevant processes at some scale
and, thus, the number of measures that we need to perform in order to have pre-
dictions. Along the evolution of Physics, many ways to implement this procedure
have been developed. In this section, we present a non-perturbative formulation
of the RG known as the Functional Renormalization Group (FRG). Introduced
by Wilson in 1971 [48], the FRG has been developed by Wilson and Kogut [49]
and finds also strong motivations after the works by Kadanoff [50], Polchinski [51]
and Wetterich [52].

3.1 The Wilsonian idea of RG

The Renormalization Group is a group of transformations that describes the
scaling properties of a given theory when energy scales are tuned (strictly speaking,
it is a well-known fact that this is not a group, but a semi-group). In ordinary
Quantum Field Theory, one of the most common approaches is the perturbative
one. Perturbation theory rests on a regularization scheme for diverging Green’s
functions which consists in cutting-off the most “dangerous” sector of modes of
the propagator and in the introduction, in the Lagrangian of the theory, of a set
of counterterms which should cure pathological n-point functions.

The perturbative RG has led to a rich and deep understanding of QFT. Nev-
ertheless, that study is clearly not without limitations. In 1971, Wilson pointed
out two basic problems arising in the perturbative formulation of RG [48, 53, 54]:

• in general, we cannot compute exactly the contribution of quantum fluctu-
ations and an approximation scheme is needed;

22
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• in perturbation theory, fluctuations are summed in an inappropriate way
since, in Feynman diagrams, they all are treated on the same footing, inde-
pendently from their wavelengths.

Thus, Wilson’s idea is, basically, to re-organize the way that fluctuations are
summed over, in order to take into account which fluctuations are most relevant
at a given scale. To understand this process, let us first consider a lattice theory.
The short distance physics depends, of course, on the details of the lattice (spacing
and shape of elementary cells) and the correlation functions, computed on a given
site, are mainly affected by nearest neighbors. In other words, the most relevant
fluctuations have wave length of the order of the lattice spacing. On the contrary,
if we focus on the long-distance physics, we do not have any information on
the lattice details, and their contributions are averaged out. Starting from this
pedagogical example, we formalize a recipe to construct an effective theory for a
subset of degrees of freedom, by integrating out all the others.

Varying the set of degrees of freedom, we obtain a description of the scaling
of the theory that generates what we call the “renormalization flow”. This is a
dynamical system in the space of coupling constants. By definition, the critical
surface in the coupling space is the set of points where the correlation length
is diverging. For a second order phase transition, only one parameter has to
be tuned to make the correlation length blowing at infinity, hence, the critical
surface has co-dimension 1. It is important to point out that, while the physical
trajectories lead the theory across the critical surface, the RG trajectories are
totally non-physical, in fact they describe transformations that is not possible to
perform over a system in a laboratory. The critical surface turns out to be stable
under RG transformations, which means that RG trajectories lie on it. This is
a consequence of the fact that any phase transition is a signal of a non-analytic
discontinuity in the flow of a model, and the two subsets of the space of theories,
corresponding to the two phases, cannot be continuously mapped one onto the
other.

Studying the renormalization flow, it is possible to identify fixed points on
the critical surface (of course their existence depends on the model under exami-
nation). In this case, we have a set of trajectories corresponding to theories with
different short-distance physics, but leading to the same long-distance behavior.

We remark that all the formal quantities appearing in the FRG formalism,
define the path integral for a quantum theory only a posteriori. After a solution
for the flow, that is a fixed point, is found, we can make sense of the functional
used in the procedure and specify the physics behind the partition function.

Although relying on the same concepts developed by Wilson, there are two
different main implementations of the FRG, namely, the Wilson-Polchinski ap-
proach and the effective average action method. In this work, we mainly deal
with the second, but, in order to get a better understanding of the formal aspects
of FRG, we will present both of them.
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3.1.1 Splitting of modes

The Wilson-Polchinski approach implements the FRG in a statistical field
theory context and needs a clear ordering of momentum norms, thus it is usually
applied on Euclidean spaces. The microscopic physics is supposed to correspond
to a momentum scale Λ identified, up to a constant, with the inverse of the relevant
length (in the discrete set the lattice spacing). We consider the following partition
function (in loose notations, where integrals are over a given Euclidean space) [51]:

Z[J ] =

∫
dµCΛ

(φ) exp

{
−
∫
V(φ) +

∫
Jφ

}
, (3.1)

where J is a source field and dµCΛ
(φ) is a functional Gaussian measure over fields

with a covariance C, with cut-off at the scale Λ, namely,

dµCΛ
(φ) = Dφ(x) exp

{
−1

2

∫
X,Y

φ(x)C−1
Λ (x− y)φ(y)

}
. (3.2)

In momentum space, the cut-offed covariance is chosen of the form:

CΛ(p) = (1− θε(p,Λ))C(p) , (3.3)

C(p) being the covariance of the full theory and θε(p,Λ) is a cut-off function
obtained by smoothing the step function centered around Λ in a neighbourhood
of radius ε. Naturally, the sharp case in which ε = 0 is allowed, although less
physical. Now, we want to implement a splitting of modes with respect to a
ultraviolet cut-off k for the slow modes, in order to define an effective theory for
a long-distance scale. We define:

φp = φp,< + φp,> , (3.4)

where φp,< are the slow modes with |p| < k, while φp,> are the rapid ones with
|p| > k. We perform an association of the type:

φp −→ CΛ(p) , (3.5)

φp,< −→ Ck(p) , (3.6)

φp,> −→ CΛ(p)− Ck(p) . (3.7)

It is important to notice that (3.4) holds for every p and, in general, φ does not
coincide neither with φ< on [0, k], nor with φ> on [k,Λ].

The partition function in terms of the split quantities has the form:

Z[J ] =

∫
dµCk

(φ<)dµCΛ−Ck
(φ>) exp

{
−
∫
V(φ<+φ>)+

∫
Jφ<+

∫
Jφ>

}
(3.8)

and, at least formally, we perform the integration over the rapid modes:

e−
∫
Vk(φ<) =

∫
dµCΛ−Ck

(φ>) e−
∫
V(φ<+φ>)+

∫
Jφ> . (3.9)
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This is the formal framework that implements the Wilson-Polchinski approach
and allows to formally define an effective theory for the slow modes. Thanks to
this procedure, it is possible to derive a differential equation that describes the
behavior of Vk with respect to k and to extract the renormalization flow of the
theory.

3.1.2 Effective average action

The effective average action method presents conceptual and formal differ-
ences compared with the Wilson-Polchinski approach. While in the previous
framework, we obtain a Hamiltonian for slow modes that are not integrated out,
in the present approach, we obtain the Gibbs free energy Γk[ϕ] of the rapid modes
that are averaged [52], where we have ϕ = 〈φ〉. The idea is to build a one-
parameter family of models labeled by a scale k, that now plays the role of an
infrared cut-off for the rapid modes. This forces us to impose conditions on the
scale dependent Gibbs free energy, i.e.

• given a ultraviolet cut-off Λ for the rapid modes, the free energy at the scale
Λ has to coincide with the microscopical action:

Γk=Λ[ϕ] = S[φ = ϕ] ; (3.10)

• when k = 0, we require the free energy to describe the full theory in order
to recover the original model and, so

Γk=0[ϕ] = Γ[ϕ] . (3.11)

Building of a one-parameter class of theories is implemented by adding to the
action a regulator, mass-like, term that endows the slow modes with a large mass
in order to approximately freeze their propagation:

Zk[J ] =

∫
Dφ(x) exp

{
−S[φ]−∆Sk[φ] +

∫
Jφ

}
, (3.12)

with

∆Sk[φ] =
1

2

∫
dq φq Rk(q)φ−q . (3.13)

The regulator function Rk(q) needs, of course, to fit the condition that we impose
on the free energy. Hence, it must satisfy the following requirements:

• Rk=0(q) = 0 identically (∀q), so that the full theory is recovered when the
cut-off is removed, and the following relation holds:

Zk=0[J ] = Z[J ] ; (3.14)

• when k = Λ, all fluctuations are frozen and (3.10) holds. To achieve this
condition, we demand Rk(q) to diverge at the UV cut-off. In any case, a useful,
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though approximate, way to implement the freezing of the slow modes is to choose
Rk(q) of the order of Λ2 for all momenta q at the scale Λ;

• for k ∈ [0,Λ], the rapid modes are almost unaffected by the regulator, while
the slow ones must get a mass big enough to decouple them from the long distance
physics, i.e.:

Rk(q) ' 0 , for |q| > k . (3.15)

A last remark must be made. If we define the scale dependent generating
functional of connected Green’s functions, say Wk[J ] = logZk[J ], one shows that
it cannot be related with Γk[ϕ] by the usual Legendre transform without violating
(3.10). Hence, we define the following modified transform:

Γk[ϕ] = sup
J

[∫
Jϕ−Wk[J ]− 1

2

∫
dq Rk(q)ϕqϕ−q

]
. (3.16)

In this way, it becomes easy to verify that, if Rk(q) satisfies the above conditions,
then Γk=Λ[ϕ] = S[φ = ϕ].

3.2 Exact RG equations

In this section, we detail two practical ways to implement the above formu-
lation resulting in equations of the flow of the couplings known as Exact Renor-
malization Group Equations. We follow the developments of [53].

3.2.1 Polchinski equation

The Polchinski equation is a partial differential equation that describes the
scaling properties of the functional Wk[J ] = logZk[J ] with respect to the cut-off
scale k. Let us now focus on a theory with complex fields, which is of particular
interest for our following analysis in the next chapter.

The scale dependent partition function can be written as:

Zk[J, J ] =

∫
Dφ(x)Dφ(x) exp

{
−S[φ]−

∫
dq φqRk(q)φq +

∫
dq
(
Jqφq +Jqφq

)}
.

(3.17)
Acting with the derivative with respect to k on (3.17), we find:

∂ke
Wk = −

∫
dφdφ

(
∂k

∫
dq φqRk(q)φq

)
exp{−S −4Sk +

∫
Jφ+

∫
Jφ}

= −
(∫

dq ∂kRk(q)
δ

δJq

δ

δJq

)
eWk[J,J ]

=

(
−
∫
dq ∂kRk(q)

[
δ2Wk[J, J ]

δJqδJq
+
δWk[J, J ]

δJq

δWk[J, J ]

δJq

])
eWk .

(3.18)
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And, thus, we can write:

∂kWk = −
∫
dq ∂kRk(q)

[
δ2Wk

δJqδJq
+
δWk

δJq

δWk

δJq

]
(3.19)

which is the well-known Polchinski equation for this type of models.

3.2.2 Wetterich equation

In the previous section, we studied the scaling of the functional Wk, which is
a functional of the sources. Our aim now is to encode the corresponding physical
informations into an equation for the effective action, which is a functional of the
mean values of the fields [52]. For that purpose, we rewrite the derivative with
respect to k. Note that, in (3.19), the relation holds at fixed J and J , while now,
we need to express the same differential at fixed ϕ and ϕ. To perform this, we
use the following identity:

∂k|J,J = ∂k|ϕ,ϕ +

∫
dq ∂kϕq

∣∣∣∣
J,J

δ

δϕq
+

∫
dq ∂kϕq

∣∣∣∣
J,J

δ

δϕq
. (3.20)

The Legendre transform relating Wk[J ] and Γk[ϕ] is given by

Γk[ϕ, ϕ] = sup
J,J

[∫
dq
(
Jqφq + Jqφq

)
−Wk[J, J ]−

∫
dq ϕq Rk(q)ϕq

]
. (3.21)

Considering (3.21), one gets:

∂kΓk

∣∣∣∣
J,J

+ ∂kWk =

∫
dq Jq ∂kϕq +

∫
dq Jq ∂kϕq (3.22)

−
∫
dq ∂kϕq Rk(q)ϕq −

∫
dq ϕq ∂kRk(q)ϕq −

∫
dq ϕq Rk(q) ∂kϕq .

On the other hand, using (3.20) and (3.19), we infer:

∂kΓk|J,J + ∂kWk = ∂kΓk|ϕ,ϕ

+

∫
dq ∂kϕq|J,J

δΓk
δϕq

+

∫
dq ∂kϕq|J,J

δΓk
δϕq
−
∫
dq ∂kRk(q)

[
δ2Wk

δJqδJq
+
δWk

δJq

δWk

δJq

]
= ∂kΓk|ϕ,ϕ +

∫
dq ∂kϕq Jq −

∫
dq ∂kϕq Rk(q)ϕq

+

∫
dq ∂kϕq Jq −

∫
dq ∂kϕq Rk(q)ϕq −

∫
dq ∂kRk(q)

[
δ2Wk

δJqδJq
+ ϕqϕq

]
. (3.23)

Comparing the last two equations, the Wetterich equation follows [52]:

∂kΓk =

∫
dq∂kRk(q)

[
δ2Wk

δJqδJq

]
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=

∫
dq ∂kRk(q)

[
δ2Γk
δϕqδϕq

+Rk(q)δ(0)

]−1

. (3.24)

To prove the last equality, consider the following small calculation:

δ(p− q) =
δϕp
δϕq

=
δ2Wk

δϕqδJp

=

∫
dl

δ2Wk

δJpδJl

δJl
δϕq

=

∫
dl

δ2Wk

δJp)δJl

[
δ2Γk
δϕlδϕq

+Rk(l)δ(l − q)
]
, (3.25)

which re-expresses as:

G
(2)
k · [Γ

(2)
k +Rk] = δ , (3.26)

where G
(2)
k is the scale dependent 2-point Green’s function. Introducing the di-

mensionless time t = log k, we write

∂tΓk =
∫
dq ∂tRk(q)

[
Γ

(2)
k +Rk

]−1

q,q
. (3.27)

From (3.26), one realizes that the Wetterich equation has a 1-loop structure.
Considering that up to this point we did not perform any kind of approximation,
we say that (3.27) is an exact functional equation.

Although we have expressed the problem of extracting the flow of the theory
in terms of a partial differential equation in one parameter, we still have the
issue that, in contrast with perturbative renormalization, all possible compatible
couplings are allowed in Γk. If we want to perform practical computations, we
need an approximation scheme for the form of the free energy. Usually, this is
done by truncating Γk to a maximal power in the fields and in their derivative.

Already from (3.27), the Wetterich equation shows pathological IR diver-
gences due to the presence of δ(0) arising from the two point Green’s function

computed at a single point G
(2)
k (q, q)1. A particular approximation procedure

which allows to cure this problem is called the local potential approximation
(LPA). Let us quickly review it.

First, we use the following ansatz for the free energy expressed in direct space:

Γk[ϕ, ϕ] =

∫
dx

(
U(ϕ, ϕ) +

1

2
(∇ϕ∇ϕ)

)
, (3.28)

and then define the local potential Uk as

Uk(ϕunif, ϕunif) =
1

Ω
Γk[ϕunif, ϕunif] . (3.29)

1While in the local case these divergent delta functions are homogeneous and proportional to
the whole volume of the system, in non-local theories they arise, in general, in a non-homogeneous
combination strictly dependent on the combinatorics of the interaction.



3.3. FRG formulation for TGFT’s 29

where Ω is the volume of the system. Now, using the fact that δ(0) = Ω(2π)−d,
we can write the Wetterich equation for the potential as:

∂tUk(ρ) =

∫
dq

∂tRk(q)

q2 +Rk(q) + U ′k(ρ+ 2ρU ′′k(ρ))
, (3.30)

where ρ = |ϕ|2 and U ′ and U ′′ are derivatives with respect to ρ.
Unfortunately, as we will explain in the next section, this procedure cannot

be applied, at least, in the same straightforward way, to non-local theories as
TGFT’s. As we will show, this point and several other issues that we will list and
emphasize, classify TGFT’s as non-standard field theories of a new type.

3.3 FRG formulation for TGFT’s

Now the generalization of the FRG formalism to tensor models and TGFT’s
is straightforward [66]. Given a partition function of the type (2.43), we choose a
UV cut-off M and a IR cut-off N . Adding to the action a regulator term of the
form:

∆SN [φ, φ] = Tr(φ ·RN · φ) =
∑
P,P′

φPRN(P; P′)φP′ , (3.31)

we can perform the splitting in high and low modes. In particular, given an
action with a generic kernel depending on the derivative of the fields K(∇φ) and
a generalized Fourier transform F , if we choose RN to be of the specific form

RN(P; P′) = NδP,P′R

(
F(KP)

N

)
, (3.32)

we need to impose on the profile function R(z) the following conditions: positivity
R(z) ≥ 0, to indeed suppress and not emphasize modes; monotonicity d

dz
R(z) ≤ 0,

so that high modes will not be suppressed more that low modes; R(0) > 0 and
limz→+∞R(z) = 0 to exclude constant profile functions. The last requirement,
together with the form (3.32), guarantees that the regulator is removed for Z → 0.
Applying the same procedure shown in section 3.2, we define the scale dependent
partition function as:

ZN [J, J ] = eWN [J,J ] =

∫
dφdφ e−S[φ,φ]−∆SN [φ,φ]+Tr(J ·φ)+Tr(J ·φ) (3.33)

and the generating functional of 1PI correlation functions:

ΓN [ϕ, ϕ] = sup
J,J

{
Tr(J · ϕ) + Tr(J · ϕ)−WN [J, J ]−∆SN [ϕ, ϕ]

}
. (3.34)

Under such circumstances, the Wetterich equation takes the form:

∂tΓN [ϕ, ϕ] = Tr
(
∂tRN · [Γ(2)

N +RN ]−1
)
, (3.35)
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where t = logN , so that ∂t = N∂N , and the “super”-trace symbol Tr means that
we are summing over all momentum indices. Fully written, the trace reads:∑

P,P′

∂tRN(P; P′)[Γ
(2)
N +RN ]−1(P′; P) . (3.36)

The presence of the ∂tRN in the Wetterich equation for TGFT’s, enforces the
trace to be UV-finite if the profile function and its derivative go fast enough to 0,
as z → +∞. In this way, we can basically forget about the UV cut-off M . In any
case, as in any resolution of differential equation, we need an initial condition of
the type

ΓN=M [ϕ, ϕ] = S[ϕ, ϕ] , (3.37)

for some scale M . The problem of solving the full quantum theory is now phrased
in the one of pushing the initial condition to infinity, which usually requires the
existence of a UV fixed point.

One of the most striking feature arising in the application of FRG to TGFT’s,
is that Γ

(2)
N carries inside the Wetterich equation information about the non-

locality of the theory. This will back react at the level of the β-functions, in
the fact that, depending on the combinatorics of the interaction, the volume con-
tributions appearing in (3.35) will be not homogeneous and, in general, a natural
definition of effective local potential does not exist.



Chapter 4

A φ4 model

In this section, we arrive at the heart of this work. We successfully apply
the FRG method to a rank 3 TGFT defined over a non-compact group manifold,
namely G = R. Using a lattice regularization and then a thermodynamic limit,
we address the problem of IR divergences in the model, introduce a neat notion
of dimension of the coupling constants which yields a well-defined system of β-
functions. From this point, we study the renormalization flow of the theory, list
its fixed points and, finally, discuss how these fixed points suggest the existence of
different phases appearing in the model. We stress that all the variables appearing
in the following chapter are position and momenta only in the sense of the abstract
field theory and do not have any spacetime interpretation, which is actually related
to the fields.

4.1 The model

In TGFT’s, there is a special class of interactions known in the literature as
“melonic” interactions (or simply “melons”) [30]. These terms can be built from
rank-d colored theory where interactions are dual to d simplices. In d = 3, 4, these
d-simplex interactions are also those considered by Ambjorn et al., Boulatov and
Ooguri [17, 19, 20] with the extra feature of being defined with colored fields or
tensors. Melons dually represent special triangulations of the d-sphere which can
be represented as the trace invariants already introduced in section 2.3.

We consider a model defined by the following action:

S[φ, φ] =
1

(2π)3

∫
R×3

[dxi]
3
i=1 φ(x1, x2, x3)

(
−

3∑
s=1

4s + µ

)
φ(x1, x2, x3)

+
λ

2(2π)6

∫
R×6

[dxi]
3
i=1[dx′j]

3
j=1

[
φ(x1, x2, x3)φ(x′1, x2, x3)φ(x′1, x

′
2, x
′
3)φ(x1, x

′
2, x
′
3)

+sym
{

1→ 2→ 3
}]

, (4.1)

where the symbol sym{·} represents the rest of the colored symmetric terms in the

31
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Figure 4.1: Colored symmetric interaction terms.

interaction (see Fig.4.1); µ and λ are coupling constants. As quickly realized, the
interaction fully depends on all the six coordinates and this makes it non-local.

After Fourier transform, we write the action in momentum space as:

S[φ, φ] =

∫
R×3

[dpi]
3
i=1 φ123

(∑
s

p2
s + µ

)
φ123 (4.2)

+
λ

2

∫
R×6

[dpi]
3
i=1[dp′j]

3
j=1

[
φ123φ1′23φ1′2′3′φ12′3′ + sym

{
1→ 2→ 3

}]
,

where we use the conventions

φ123 = φp1,p2,p3 = φ(p) =
1

(2π)3

∫
R×3

[dxi]
3
i=1 φ(x1, x2, x3) e−i

∑
i pixi , (4.3)

φ(x1, x2, x3) =

∫
R×3

[dpi]
3
i=1 φ123 e

i
∑

i pixi . (4.4)

We represent the Feynman rule for the propagator as in Fig.4.2, while the combi-
natorics of the interaction is conserved by the Fourier transform.

φφ =

(∑
s p

2
s + µ

)−1

Figure 4.2: Feynman rule for the propagator.

We can now proceed with the dimensional analysis to fix the dimensions of
the coupling constants. In order to make sense of the exponentiation of the action
in the partition function, we must set [S] = 0. Furthermore, we fix the dimensions
to be in unit of the momentum, i.e., [p] = [dp] = 1. Now, for consistency reasons
we have [µ] = 2. This leads us to the following equations:

3 + 2[φ] + 2 = 0 ⇒ [φ] = −5

2
, (4.5)
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[λ] + 6 + 4[φ] = 0 ⇒ [λ] = 4 . (4.6)

4.2 Effective action and Wetterich equation

In order to proceed with the Functional Renormalization Group analysis, we
introduce an IR cut-off k and a UV cut-off Λ. We need to perform a truncation
on the form of the effective action that we define. To satisfy the condition (3.10),
a natural choice is to write an effective action of the same form of the action itself,
that is:

Γk[ϕ, ϕ] =

∫
R×3

[dpi]
3
i=1 ϕ123(Zk

∑
s

p2
s + µk)ϕ123 (4.7)

+
λk
2

∫
R×6

[dpi]
3
i=1[dp′j]

3
j=1

[
ϕ123ϕ1′23ϕ1′2′3′ϕ12′3′ + sym

{
1→ 2→ 3

}]
,

where ϕ = 〈φ〉. The upshot of the following analysis is to be tested by extending
this truncation, including more invariants (Tr(φ4) of another type, higher order
terms Tr(φ2n), n ≥ 3, in general, even disconnected invariants as multi-traces,
Tr(φ2n)Tr(φ2m) . . . ) and observing the convergence of the results. Enlarging the
theory space is postponed for future investigations. However, as one will realize,
even in the truncation given by (4.7), the calculations and the outcome of the
present analysis remain highly non-trivial.

From the dimensional analysis of the previous section and from the fact that
[Γk] = 0 and [ϕ] = [φ], one infers [Zk] = 0, [µk] = [µ] = 2, [λk] = [λ] = 4.

We introduce a regulator kernel of the following form [56, 57]

Rk(p,p
′) = δ(p− p′)Zk(k

2 −
∑
s

p2
s)θ(k

2 −
∑
s

p2
s) , (4.8)

where θ stands for the Heaviside step function. This choice is standard because,
due to its functional properties, a regulator of this form allows analytic solution for
many spectral sums. It is easy to show that Rk satisfies the minimal requirements
for a regulator kernel:

• As a consequence of the fact that θ(−|x|) = 0,

Rk=0(p,p′) = δ(p− p′)Zk(−
∑
s

p2
s)θ(−

∑
s

p2
s) = 0 ; (4.9)

• at the scale k = Λ, the regulator appears as:

Rk=Λ(p,p′) = δ(p− p′)ZΛ(Λ2 −
∑
s

p2
s)θ(Λ

2 −
∑
s

p2
s) , (4.10)

which at the first order gives: Rk=Λ ' ZΛΛ2;
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• for k ∈ [0,Λ], we have, for the same computation of the previous points:

Rk(p,p
′) = 0 , ∀p,p′, such that |p|, |p′| > k , (4.11)

Rk(p,p
′) ' Zkk

2 , ∀p,p′, such that |p|, |p′| < k . (4.12)

The derivative of the regulator kernel with respect to the logarithmic scale t =
log k evaluates as:

∂tRk(p,p
′) = θ(k2 − Σsp

2
s)[∂tZk(k

2 − Σsp
2
s) + 2k2Zk]δ(p− p′) . (4.13)

One notes that Rk and ∂tRk are both symmetric kernels. This property matters
during the convolutions induced by the Wetterich equation.

Let us now compute the 1PI 2-point function. Differentiating Γk once with
respect to the field, we obtain:

δΓk[ϕ, ϕ]

δϕ(q)
=

∫
R×3

[dpi]
3
i=1ϕ(p)(Zk

∑
s

p2
s + µk)δ(p− q)

+
λk
2

∫
R×6

[dpi]
3
i=1[dp′j]

3
j=1

[
ϕp′1p2p3

ϕp′1p′2p′3ϕp1p′2p
′
3
δ(p− q)

+ ϕp1p2p3ϕp′1p2p3
ϕp1p′2p

′
3
δ(p’− q) + sym

{
1→ 2→ 3

}]
= ϕ(q)(Zk

∑
s

q2
s + µk)

+ λk

∫
R×3

[dpi]
3
i=1

[
ϕp1p2p3ϕq1p2p3

ϕp1q2q3 + sym
{

1→ 2→ 3
}]

.(4.14)

And differentiating with respect to the second field yields:

Γ
(2)
k (q,q′) =

δ2Γk
δϕ(q′)δϕ(q)

= (Zk
∑
s

q2
s + µk)δ(q− q′)

+ λk

[∫
R×3

[dpi]
3
i=1 ϕp1p2p3ϕp1q2q3δ(q1 − q′1)δ(p2 − q′2)δ(p3 − q′3)

+

∫
R×3

[dpi]
3
i=1 ϕp1p2p3

ϕq1p2p3δ(p1 − q′1)δ(q2 − q′2)δ(q3 − q′3)

+ sym
{

1→ 2→ 3
}]

= (Zk
∑
s

q2
s + µk)δ(q− q′) + λk

[∫
R
dp1 ϕp1q′2q

′
3
ϕp1q2q3δ(q1 − q′1)

+

∫
R×2

dp2dp3 ϕq′1p2p3
ϕq1p2p3

δ(q2 − q′2)δ(q3 − q′3) + sym
{

1→ 2→ 3
}]

= (Zk
∑
s

q2
s + µk)δ(q− q′) + Fk(q,q’) . (4.15)
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There is a simple graphical way to picture the terms of Fk. Each index summed can
be represented by a segment and each fixed index (not summed) by a dot. Then
Fig.4.3 displays two terms coming from the second variation of the interaction
labeled by color 1 (the ones which appear explicitly in (4.15)). The rest of the
terms appearing in sym{·} can be inferred by color permutation.

q′1q1
p2
p3

p2
p3

p1p1
q′2

q3

q2
q′3

Figure 4.3: Terms of the second variation of Γk.

Defining the operator Pk with kernel

Pk(p,p’) = Rk(p,p’) + (Zk
∑
s

p2
s + µk)δ(p− p’) , (4.16)

the Wetterich equation can be recast as:

∂tΓk = Tr[∂tRk · (Pk + Fk)
−1] . (4.17)

The r.h.s. of (4.17) generates an infinite series of terms with arbitrary number of
fields convoluted. In order to compare the two sides of (4.17), we must therefore
perform a truncation in this series to match with the l.h.s. of that equation. This
may be achieved expanding (4.17) in powers of Fk · (Pk)−1, that is, in powers of
ϕϕ, and considering only the terms up to the power 2:

∂tΓk = Tr[∂tRk · (Pk)−1 · (1 + Fk · (Pk)−1)−1] (4.18)

= Tr[∂tRk · (Pk)−1 · (1− Fk · (Pk)−1 + Fk · (Pk)−1 · Fk · (Pk)−1) + o((ϕϕ)3)] .

The vacuum term proportional to the 0-th order in the above expansion will be
discarded because it does not reflect any term in the l.h.s. of (4.17). As an
example, fully written, the trace at linear order appears as:

∂tΓ
kin
k =

∫
R×12

∂tRk(p,p
′)(Pk)

−1(p′,q)Fk(q,q
′)(Pk)

−1(q′,p) . (4.19)

Already, from the structure of the operators, ∂tRk, Pk and Fk, we expect the
presence of singular δ-functions which need to be regularized. The appearance of
δ(0)-terms reflects the fact that we have infinite volume effects which have to be
treated. It must be pointed out immediately that the presence of such infinities
is not a peculiar fact of TGFT, simply because this also arise in standard QFT.
What is rather peculiar is the fact that, due to the combinatorics of the vertex
operators, the way that these singular delta-functions occur cannot be addressed
by the so-called projection on the constant fields. Roughly speaking, projecting
on constant fields allows to factorize out the full volume of the space as a power
of δ(0) dependent on the order of the field. Such a procedure cannot be applied
in the present setting for the main reason that the TGFT interactions follows a
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precise convolution pattern which must be checked term-by-term in the expansion
of (4.17). In other words, not all φ4-terms generated from the r.h.s. are those
included in the l.h.s. of that equation. In order to solve our present issue, one
must resort in a proper lattice regularization and a thermodynamic limit in the
conjugate space. This is the goal of the next section.

4.3 IR divergences and thermodynamic limit

In order to regularize volume divergences, we perform a compactification of
the direct space and a lattice regularization in the conjugate space, following the
conventions of [68]. Defining the model (4.1) over a compact set D ⊂ R×3 with
volume L3 = (2πr)3, we must map the theory onto the p-space through a Fourier
series transform. The domain of integration, actually summation, of the effective
action becomes the lattice

D∗ =

(
2π

L
Z
)×3

=

(
1

r
Z
)×3

:=

(
lZ
)×3

, (4.20)

so that we have, for any function F (p),∫
D∗

[dpi]
3
i=1 F (p) = l3

∑
p1,p2,p3∈D∗

F (p) . (4.21)

We define the delta distribution in D∗ (identity in the space of operators) as:

δD∗(p,q) = l−3δp,q . (4.22)

with δp,q =
∏

s δps,qs , the Kronecker delta. Choosing an orthonormal base (ep)p∈D∗
for the space of fields such that ep(q) = δD∗(p,q), we have:

φ(p) = 〈ep, φ〉D∗ . (4.23)

For some observable A, it is direct to get

(Aφ)(p) =

∫
D∗

[dqi]
3
i=1 A(q,p)φ(p) =

∫
D∗

[dqi]
3
i=1 〈eq, Aep〉D∗φ(p) . (4.24)

In the case A is invertible, then the inverse operator satisfies∫
D∗

[dri]
3
i=1 A(p, r)A−1(r,q) = δD∗(p,q) . (4.25)

We also define the derivative with respect to the field as:

δ

δφ(p)
= l−3 ∂

∂φ(p)
, (4.26)

so that the following relations hold:

δ

δφ(p)
φ(q) = δD∗(p,q) ,

δ

δJ(p)
e〈J,φ〉D∗ = J(p) e〈J,φ〉D∗ . (4.27)
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This set of conventions is fully consistent with the continuous version of field the-
ory, where δD∗ becomes the Dirac δ-distribution and the derivative (4.26) becomes
the standard functional derivative.

Using this regularization prescription, the effective action of the model is of
the form:

Γk[ϕ, ϕ; l] = l3
∑
p∈D∗

ϕ123

(
Zk
∑
s

p2
s + µk

)
ϕ123

+ l6
λk
2

∑
p,p′∈D∗

[
ϕ123ϕ1′23ϕ1′2′3′ϕ12′3′ + sym

{
1→ 2→ 3

}]
, (4.28)

where, using the same notation ϕ for the field and its Fourier transformed, one
has:

ϕ(x1, x2, x3) = (2π)−3l3
∑
p∈D∗

ei
∑

i pixiϕ(p) ,

ϕ(p) =

∫
D

[dxi]
3
i=1 e

−i
∑

i pixiϕ(x1, x2, x3) . (4.29)

Now use the relations (4.29) to transform δD∗ and obtain

(2π)−3l3
∑
p∈D∗

δD∗(p,q)ei
∑

i pixi = (2π)−3ei
∑

i qixi . (4.30)

Thus, an integral representation of the delta distribution over D∗ makes sense if
defined as

δD∗(p,q) = (2π)−3

∫
D

[dxi]
3
i=1 e

−i
∑

i(pi−qi)xi . (4.31)

As a result, we finally have:

δD∗(p,p) =
(2πr)3

(2π)3
= r3 =

1

l3
. (4.32)

In the end, the continuous description will be recovered in the thermodynamic
limit l→ 0.

With this procedure, highlighting the dependence of the volume of the direct
space of the model, it is natural to incorporate in the coupling constants a depen-
dence on that volume. We will use and tune this dependence in such a way that
the non-compact limit of the theory becomes well defined and all divergences are
consistently removed.

4.4 β-functions and RG flows

We introduce a lattice regularization in the sense of section 4.3, and write the
corresponding effective action as:

Γk[ϕ, ϕ] =

∫
D∗

[dpi]
3
i=1 ϕ123(Zk

∑
s

p2
s + µk)ϕ123 (4.33)
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+
λk
2

∫
D∗×2

[dpi]
3
i=1[dp′j]

3
j=1

[
ϕ123ϕ1′23ϕ1′2′3′ϕ12′3′ + sym

{
1→ 2→ 3

}]
.

We can study the Wetterich equation of (4.33) and perform a thermodynamic
limit at the end of the computation to extract the coefficients valid in the non-
compact case. The pathological divergences arise as negative powers of the pa-
rameter l which, in the limit l → 0, reproduce divergent Dirac delta functions.
In this section, we illustrate how to cure these divergences and make sense of the
non-compact limit by incorporating a dependence on the volume in the coupling
constants.

The set of β-functions that we obtain from the discretized model is (important
steps of the calculation are detailed in appendix A):

β(Zk) =
λk

(Zkk2 + µk)2

{
∂tZk

[
π
k2

l2
+ 4

k

l

]
+ 2Zk

[
π
k2

l2
+ 2

k

l

]}
β(µk) =

−3λk
(Zkk2 + µk)2

{
∂tZk

[π
2

k4

l2
+

4

3

k3

l

]
+ 2Zk

[k4

l2
π + 2

k3

l

]}
β(λk) =

2λ2
k

(Zkk2 + µk)3

{
∂tZk

[π
2

k4

l2
+

20

3

k3

l
+ 2k2

]
+ 2Zk

[
π
k4

l2
+ 10

k3

l
+ 2k2

]}
(4.34)

It must be stressed that the coefficients appearing in (4.34) are computed with
integrals like in the continuous setup. This is however not an issue, once the
volume dependence totally factorized, the order of taking the limit and performing
the integral does not matter.

At least, two features of the system (4.34) must be stressed: at this inter-
mediate step (the limit liml→0 still has to be taken), this is a non-autonomous
system and it involves different exponents in the cut-off k (that we refer to “non-
homogeneity” in k). Non-autonomous systems are known to occur in other con-
texts, for example quantum field theory at finite temperature [55], or on a curved
[64] and non-commutative spacetime [65]. The non-homogeneity in k of the sys-
tem is an effect of the particular combinatorics of the vertices of the theory which,
after differentiated yields 1PI 2-point function with terms with different volume
contributions. If the l parameter is kept finite, we see two different system arising
in the UV and IR limits, coming from different leading terms. Such a feature has
been found in previous work [66] and the two limits and intermediate regime in-
vestigated. Fixed points were found, but difficult to interpret as UV and IR fixed
points in the ordinary sense. In our present situation, we can fix, and so improve,
this issue by taking advantage of the presence of the two parameters (k, l).

To make sense of the above system, consider the following ansatz:

Zk = Zkl
χk−χ, µk = µkZkl

χk2−χ, λk = λkZ
2

kl
ξkσ , (4.35)

where [Zk] = [µk] = [λk] = 0, [ϕ] = −5
2

and ξ + σ = 4. Considering that, at fixed
scale, we are interested in the modes with wave length relevant for the physics of
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the system, we look for the scaling of dimensionless coupling constants, i.e., we
look for dimensionless β-functions. From (4.35), one must find:

ηk =
1

Zk

β(Zk) =
1

Zk
β(Zk) + χ ,

β(µk) =
1

Zklχk2−χ
β(µk)− ηkµk − (2− χ)µk ,

β(λk) =
1

lξkσZ
2

k

β(λk)− 2ηkλk − σλk , (4.36)

and reach the following expressions:

ηk =
λkl

ξkσ

l2χk4−2χ(1 + µk)
2

[
(ηk − χ)

(
π
k2

l2
+ 4

k

l

)
+ 2
(
π
k2

l2
+ 2

k

l

)]
+ χ ;

β(µk) =− 3λkl
ξkσ

l3χk6−3χ(1 + µk)
2

[
(ηk − χ)

(π
2

k4

l2
+

4

3

k3

l

)
+ 2
(
π
k4

l2
+ 2

k3

l

)]
(4.37)

− ηkµk − (2− χ)µk ;

β(λk) =
2λ

2

kl
ξkσ

l3χk6−3χ(1 + µk)
3

[
(ηk − χ)

(π
2

k4

l2
+

20

3

k3

l
+ 2k2

)
+ 2
(
π
k4

l2
+ 10

k3

l
+ 2k2

)]
− 2ηkλk − σλk .

Aiming at obtaining a regularized non-compact limit, we must solve the system in
the variables ξ and χ by requiring that the highest degree of divergence (highest
negative power of l) is regularized and all the sub-leading infinities sent to zero.
This is achieved by solving{

ξ − 2χ− 2 = 0

ξ − 3χ− 2 = 0
⇒

{
χ = 0

ξ = 2
⇒ σ = 2 . (4.38)

The resulting system of equations for the theory is:

ηk =
πλk

(1 + µk)
2
(ηk + 2)

β(µk) =− 3πλk
(1 + µk)

2
(
ηk
2

+ 2)− ηkµk − 2µk

β(λk) =
πλ

2

k

(1 + µk)
3
(ηk + 4)− 2ηkλk − 2λk

(4.39)

which defines an autonomous system of coupled differential equations describing
the flow of dimensionless couplings constants.

Before proceeding with the standard analysis, which consists in finding fixed
points of the flow and studying the linearized equations around them, we point out
that, because of the non-linear nature of the β-functions, we have a singularity
at µ = −1 and λ = (1 + µ)2/π. This is a common feature in dealing with a
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truncated Wetterich equation. In a neighborhood of those singularities, we do not
trust the linear approximation, and being interested to the part connected with
the Gaussian fixed point, we will not study the flow beyond the divergence of the
β-functions.

By numerical integration, we find a Gaussian fixed point and three non-
Gaussian fixed points in the plane (µ, λ) at:

P1 = (8.619,−47.049), P2 = 10−1(−6.518, 0.096), (4.40)

P3 = 10−1(−8.010, 0.212) . (4.41)

A quick inspection proves that P3 lies in the sector disconnected from the origin,
we will not perform any analysis around it.

We linearize the system of equations by evaluating the stability matrix around
fixed points: (

β(µk)

β(λk)

)
=

(
∂µkβ(µk) ∂λkβ(µk)

∂µkβ(λk) ∂λkβ(λk)

)
F.P.

(
µk

λk

)
. (4.42)

In a neighborhood of the Gaussian fixed point, we have an eigenvalue with al-
gebraic multiplicity 2, corresponding to the canonical scaling dimensions of the
couplings λk and µk: θ

G = −2. The geometric multiplicity of θG is 1, hence, the
matrix of the linearized system turns out to be not diagonalizable and has a single
eigenvector (1, 0).

In a neighbourhood of the non-Gaussian fixed points(NGFP) we have:

θ1
+ ∼ 0.351 for v1

+ ∼ 10−1(0.65,−9.98), (4.43)

θ1
− ∼ −2.548 for v1

− ∼ 10−1(−6.88, 7.26), (4.44)

θ2
+ ∼ 10.066 for v2

+ ∼ 10−1(9.996,−0.269), (4.45)

θ2
− ∼ −1.988 for v2

− ∼ 10−1(9.987, 0.506). (4.46)

Because of the difference in their magnitudes (distance at the origin), it becomes
difficult to plot the two NGFP’s with enough precision on their vicinity. We plot
two sectors of the RG flow in the plane (µk, λk) (see Fig.4.4).

At a vicinity of a fixed point, we define relevant directions those eigendirec-
tions that are UV attractive with respect to the cut-off, while we call irrelevant
the UV repulsive eigendirections. Marginal directions can be both attractive or
repulsive depending on the initial condition of the trajectory. The origin is a
“great” attractor and has one relevant direction connecting it to the other two
fixed points. The absence of a second eigenvector for the stability matrix around
the Gaussian fixed point requires an approximation beyond the linear order and
is a signal of the presence of a marginal perturbation. Even if we do not present
this analysis here, we know from the plots that this will be still UV attractive
which means that it corresponds to a marginally relevant direction. The fact that
the GFP is a sink for the flow, means that this model is asymptotically free with
respect to the cut-off. Both non-Gaussian fixed points have one relevant and one
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Figure 4.4: Flow of the theory. The red and blue lines represent respectively
the zeros of β(µk) and β(λk), the brown arrows are the eigenperturbations of the
non-Gaussian fixed points (represented in black), and the green ones those of the
Gaussian fixed point (in red). Arrows point in the UV direction. The thick black
line is the singularity of the flow.

irrelevant directions. The eigendirections connecting the three fixed points turn
out to be stable under RG transformations and they are characterized by an ef-
fect known as “large river effect”. This means that all the RG trajectories in a
neighborhood of these perturbations get closer and closer to them while pointing
in the UV. This effect shows a splitting of the space of coupling in two regions not
connected by any RG trajectory. Thus, the relevant directions for the Gaussian
fixed point reflect the properties of a critical surface and suggest the presence of
phase transitions in the model. In the λk > 0 plane, the flow is similar to the one
of standard local scalar field theory in a neighborhood of the Wilson-Fisher fixed
point, but the presence of a second non-Gaussian fixed point in the λk < 0 plane
makes the theory radically different. Nevertheless, the properties of this second
NGFP are basically the same as the former one. In this context, we do have strong
hint to a phase transition with two phases: a symmetric and a broken one. The
spontaneous symmetry breaking would happen while crossing the critical surface
and it assumes to generate a condensed state which, in a simplicial gravity context,
might be interpreted as a geometric phase [47]. To confirm this interpretation of
the broken phase, one should change parametrization for the effective potential
and study the theory around the new (degenerate) ground state solving the equa-
tion of motion in the saddle point approximation. Unfortunately, because of the
particular combinatorial character of the interaction, a proper analysis in this way
is complicated and, at the present days, totally missing. We can only see that, in
the constant modes approximation, which forgets about the non-locality features,
we recover the usual formulation of the Ginzburg-Landau phase transition for a
φ4 scalar complex theory.



Chapter 5

Gauging the model

In section 2.2, we discuss that GFT finds some its origins and motivations in
the Boulatov and Ooguri models [19, 20], which are models for simplicial gravity.
The way that one implements the mentioned link with simplicial gravity is defined
via a gauge projection on the tensor fields. It is therefore relevant to investigate
a model in GFT endowed with a gauge projection, under the lense of the FRG,
for discussing a possible phase transition towards a continuum geometry for this
class of GFT. Furthermore, it is also significant to make a comparison with the
previous study of TGFT models, in the same rank 3 and same class of interactions,
to understand, at the level of the FRG, what distinguishes these models. We
emphasize that this study is completely original because this is the first time that
one applies FRG methods to a GFT model with gauge projection and the first
time that one performs a Renormalization analysis as well this type of models
over a noncompact group.

5.1 The gauge projection

In GFT, a gauge invariant field defined over a group manifold G is a field
satisfying

φ(g1, g2, g3) = φ(g1h, g2h, g3h) , (5.1)

with gi, h ∈ G.
Some technical ambiguities arise when one tries to realize the condition (5.1).

A possible (formal) way to implement this feature would be to allow only the
propagation of modes satisfying (5.1) by inserting in the kinetic kernel a projector
on the space of these modes. Defining the projector P and a kinetic kernel K, one
encounters an ambiguity regarding the order in which they should be convoluted
in the action. The three main possibilities are:

K1 = K · P , (5.2)

K2 = P · K · P , (5.3)

K3 = P · K . (5.4)

42
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If K is a differential operator and P has the form of a delta-function (this is
precisely what will happen in the following), the differentiation of the δ, in the
weak sense, enforces the convolution K · P (φ) to be zero. For this reason, we
might discard both K1 and K2. As a consequence, this means that we do not
consider the dynamics of the constraint, we just constraint the dynamics of the
fields. Thus, we write an action of the form:

S[φ, φ] =

∫
G×3

[dgi]
3
i=1[dg′i]

3
i=1 φ(g1, g2, g3)(P · K)({gi}3

i=1; {g′i}3
i=1)φ(g′1, g

′
2, g
′
3)

+V [φ, φ] , (5.5)

where V is the interaction term. The main issue of this formulation is that a
projector is by definition not invertible, thus, a kinetic kernel built out of such
an operator cannot, in general, define a covariance of a field theory measure. We
partially avoid this problem by inverting the kinetic kernel in the operatorial sense,
so that the same constraint will define the covariance.

Now we restrict our description to the case of an Abelian additive group (R)
and consider V with same combinatorics used in chapter 4:

S1[φ, φ] =

∫
R×7

dxdydh φ(x)
3∏
i=1

δ(xi + h− yi)(−∆y + µ)φ(y)

+
λ

2

∫
R×6

dxdx′
[
φ(x1, x2, x3)φ(x′1, x2, x3)φ(x′1, x

′
2, x
′
3)φ(x1, x

′
2, x
′
3)

+ sym
{

1→ 2→ 3
}]

. (5.6)

We expect that the Wetterich equation will exhibit IR divergences of the same type
encountered in the non-projected model. Then, we must introduce a regularization
scheme. To this purpose, we consider a compact subset D of R homeomorphic to
a 1 dimensional ring and write a regularized action as:

S1[φ, φ] =

∫
D×7

dxdydh φ(x)
3∏
i=1

δ(xi + h− yi)(−∆y + µ)φ(y)

+
λ

2

∫
D×6

dxdx′φ(x1, x2, x3)φ(x′1, x2, x3)φ(x′1, x
′
2, x
′
3)φ(x1, x

′
2, x
′
3)

+ sym
{

1→ 2→ 3
}
, (5.7)

where we used the same notations introduced in section 4.3.
The computation will be performed in momentum space, hence, keeping the

same previous notation for the lattice as D∗ = D×3, the Fourier series of the
model (5.7) reads (in this chapter, we denote the constraint on a 1D lattice as
δD(X) := δD(X, 0) for simplicity):

S1[φ, φ] = l3
∑
p∈D∗

φ(p)
[
Σsp

2
s + µ

]
φ(p)δD(Σp) +

λ

2
l6
∑

p,p′∈D∗

[
φ123φ1′23φ1′2′3′φ12′3′
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+ sym
{

1→ 2→ 3
}]

. (5.8)

The FRG formalism introduced in section 3.3 is generic and applies to this model,
roughly, in the same way we did in the previous chapter. In particular, the reg-
ulator kernel will incorporate the same gauge constraint appearing in the kinetic
term. The overall Wetterich equation has the same structure and expands the
same of way as (4.18).

Testing the type of ansatz which might have interesting properties, we choose
an effective action of the form:

Γ1
k[ϕ, ϕ] = l3

∑
p∈D∗

ϕ(p)
[
ZkΣsp

2
s + µk

]
ϕ(p)δD(Σp)

+
λk
2
l6
∑

p,p′∈D∗

[
ϕ123ϕ1′23ϕ1′2′3′ϕ12′3′ + sym

{
1→ 2→ 3

}]
, (5.9)

Then, we introduce the kernels (using the same notation as (4.18)):

Rk(q,q’) = Θ(k2 − Σsq
2
s)Zk(k

2 − Σsq
2
s)δD(Σq)

∏
δD(q,q’) , (5.10)

F 1
k (q,q′) =

δ2

δϕq′δϕq

V1[ϕ, ϕ] , (5.11)

where V1
k refers to the interaction part of Γ1

k. This is a natural choice following
from the FRG application to (5.7). Performing the computation of the Wetterich
equation, one realizes that this proposal drastically fails: the delta’s enforcing the
gauge constraints do not convolute properly with fields. This feature comes from
the fact that, if one evaluates (4.18) using (5.10) and (5.11), the fields appearing
in the r.h.s. come from the F 1

k operator, while the constraints always from the
mass-like terms. This prevents the comparison of the two sides of the Wetterich
equation for this model and trivializes to 0 all β’s functions.

There is another way to choose the interaction term which will produce a
more sensible result. We simply insert gauge projections also in all fields in the
interaction. A interaction satisfying this requirement expresses as:

V [φ, φ] =
λk
2

1

(2π)6

∫
D×22

{dwi}4
i=1dxdx

′{dhj}4
j=1φ(w1)φ(w2)φ(w3)φ(w4)

× δ(x1 + h1 − w1
1)δ(x2 + h1 − w1

2)δ(x3 + h1 − w1
3)

× δ(x′1 + h2 − w2
1)δ(x2 + h2 − w2

2)δ(x3 + h2 − w2
3)

× δ(x′1 + h3 − w3
1)δ(x′2 + h3 − w3

2)δ(x′3 + h3 − w3
3)

× δ(x1 + h4 − w4
1)δ(x′2 + h4 − w4

2)δ(x′3 + h4 − w4
3)

+ sym
{

1→ 2→ 3
}

=
λk
2
l6
∑
pp′

φ123φ1′23φ1′2′3′φ12′3′δD(Σp)δD(Σp′)



5.2. Effective action and Wetterich equation 45

× δD(p′1 + p2 + p3)δD(p1 + p′2 + p′3) + sym
{

1→ 2→ 3
}
. (5.12)

Hence, re-starting the analysis from the beginning, we define a model with
gauge constraints on both the kinetic and interaction kernels via the action:

S[φ, φ] = l3
∑
p

φ(p)
[
Σsp

2
s + µ

]
φ(p)δD(Σp)

+
λk
2
l6
∑
pp′

φ123φ1′23φ1′2′3′φ12′3′δD(Σp)δD(Σp′)δD(p′1 + p2 + p3)δD(p1 + p′2 + p′3)

+sym
{

1→ 2→ 3
}
, (5.13)

with corresponding continuous model defined by

S[φ, φ] =

∫
dp φ(p)

[
Σsp

2
s + µ

]
φ(p)δ(Σp)

+
λk
2

∫
dpdp′ φ123φ1′23φ1′2′3′φ12′3′δ(Σp)δ(Σp

′)δ(p′1 + p2 + p3)δ(p1 + p′2 + p′3)

+sym
{

1→ 2→ 3
}
. (5.14)

In fact, the result obtained in this section could have been guessed from a more
general consideration. Even if the quantum amplitudes of the theory do not
depend on whether the gauge projection appears in the kinetic term, in the in-
teraction or in both, the non-perturbative analysis is of course radically different.
From this point of view, a model which presents this constraint in only one of
the two terms cannot be consistent. This directly reflects in the analysis, we just
presented.

We can now proceed further using model (5.14).

5.2 Effective action and Wetterich equation

Having defined the model ingredients, we are in position to evaluate and
analyse its FRG equation. We shall again restrict to a simple and non-trivial
ansatz for the effective action for the model (5.13) which reads:

Γk[ϕ, ϕ] = l3
∑
p

ϕ(p)
[
Σsp

2
s + µ

]
ϕ(p)δD(Σp)

+
λk
2
l6
∑
pp′

ϕ123ϕ1′23ϕ1′2′3′ϕ12′3′δD(Σp)δD(Σp′)

× δD(p′1 + p2 + p3)δD(p1 + p′2 + p′3) + sym
{

1→ 2→ 3
}
. (5.15)

Considering that [δD(p)] = −1, the dimensional analysis for the coupling constants
gives different results from the model of chapter 4. We have:

[Zk] = 0 ⇒ [µk] = 2
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2[ϕ] + 3 + 2− 1 = 0 ⇒ [ϕ] = −2
[λk] + 6 + 4[ϕ]− 4 = 0 ⇒ [λk] = 6 , (5.16)

where, again, we set the canonical dimensions by requiring [S] = [Γk] = 0.
In the same conventions introduced in the previous chapter, one introduces:

Rk(q,q’) = Θ(k2 − Σsq
2
s)Zk(k

2 − Σsq
2
s)δD(Σq)δD∗(q,q

′) , (5.17)

∂tRk(q,q’) = Θ(k2 − Σsq
2
s)[∂tZk(k

2 − Σsq
2
s) + 2k2Zk]δD(Σq)δD∗(q,q

′) ,
(5.18)

Fk(q,q
′) = λk

[
l2
∑
m2,m3

ϕq′1,m2m3
ϕq1,m2m3

δD(Σq)δD(q′1 +m2 +m3)

× δD(q′1 + q2 + q3)δD(q1 +m2 +m3)δD(q2 − q′2)δD(q3 − q′3)

+ l
∑
m1

ϕm1q′2q
′
3
ϕm1q2q3δD(Σq)δD(m1 + q′2 + q′3)

× δD(m1 + q2 + q3)δD(q1 + q′2 + q′3)δD(q1 − q′1)

sym
{

1→ 2→ 3
}]

, (5.19)

Pk(q,q
′) =

(
Zk
∑
s

q2
s + µk

)
δD(Σq)δD∗(q,q

′) , (5.20)

which enter in the Wetterich equation:

∂tΓk = Tr[∂tRk · (Pk + Fk)
−1]

= l6
∑
p,p′

∂tRk(p,p
′)
(
Pk + Fk

)−1

(p′,p) . (5.21)

On the left hand side, as in chapter 4, we have a truncation at the level of the
quartic interaction, thus the expansion on the r.h.s. of the Wetterich equation
will be the same shown in (4.18), where now the operators involved are given by
(5.18), (5.19) and (5.20).

We must pay attention to a subtlety occurring while extracting the β-functions
of this model: the δ’s implementing the convolutions which appear in the Pk
operators can be inverted using (4.25) and summing over their indices we do not
modify the dimensions of the whole expression. This is, however, not true for the
δ’s coming from the gauge constraints because they are not summed, so we need
to keep them in the denominator. In any case, these constraints, turn out to be
redundant with other delta functions coming from the Fk and ∂tRk operators, in
such a way that their contribution, because of the regularization, is equivalent to
some power of l, which is naturally well defined.

5.3 β-functions and RG flows

Expanding the FRG equation (5.21), we find the following system of dimen-
sionful β-functions (the main steps of the calculations have been given in appendix
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B): 

β(Zk) =
λk

(Zkk2 + µk)2

[ 3√
2

k

l3
(1 + ∂t)Zk +

4

l2
∂tZk

]
β(µk) = − 3λk

(Zkk2 + µk)2

[√
2
k3

l3

(
2 +

2

3
∂t

)
Zk +

k2

l2
(2 + ∂t)Zk

]
β(λk) =

2λ2
k

(Zkk2 + µk)3

[
2
√

2
k3

l3

(
1 +

1

3
∂t

)
Zk + 7

k2

l2
(2 + ∂t)Zk

] (5.22)

In order to obtain a well defined non-compact limit of the model, we use a modified
ansatz (different from in section 4.4):

Zk = Zkk
−χlχ , µk = µkZkk

2−χlχ , λk = λkZ
2

kk
6−ξlξ , (5.23)

from which we obtain the dimensionless β-functions according to the following
small calculation:

ηk =
1

Zk

β(Zk) =
kχl−χ

Zk

β(Zk) + χ ,

β(µk) =
kχ−2l−χ

Zk

β(µk)− ηkµk + (χ− 2)µk , (5.24)

β(λk) =
kξ−6l−ξ

Z
2

k

β(λk)− 2ηkλk + (ξ − 6)λk .

Inserting the above in (5.22), we deduce the dimensionless coupling constant equa-
tions:

ηk =
λkk

2+2χ−ξlξ−2χ

(1 + µk)
2

[
(ηk − χ)

( 3√
2

k

l3
+

4

l2

)
+

3√
2

k

l3

]
+ χ

β(µk) = −3λkk
2χ−ξlξ−2χ

(1 + µk)
2

[
(ηk − χ)

(2
√

2

3

k3

l3
+
k2

l2

)
+ 2
(√

2
k3

l3
+
k2

l2

)]
− ηkµk + (χ− 2)µk

β(λk) =
2λ

2

kk
2χ−ξlξ−2χ

(1 + µk)
3

[
(ηk − χ)

(2
√

2

3

k3

l3
+ 7

k2

l2

)
+ 2
(√

2
k3

l3
+ 7

k2

l2

)]
− 2ηkλk + (ξ − 6)λk

(5.25)

As in chapter 4, the system of β-functions is non-autonomous in the IR cut-off k, as
long as l is kept finite. This is again due to the non-local feature of the interaction
part, but we notice a different dependence on the parameters k and l with respect
to (4.37). The difference is of course a consequence of the presence of the delta
functions which, having non-trivial dimensions, change both the canonical and
scaling dimensions of couplings and fields and remove degrees of freedom of the
space of dynamical fields by imposing constraints.

Concerning this peculiarity, we must point out that, in the case we introduced
one delta for each field appearing in both the kinetic and interaction kernels, we
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could have absorbed, from the point of view of the dimensions, the contribution of
deltas inside a redefinition of fields. In that case we would expect the couplings to
have the same (canonical) dimensions of those appearing in the previous model.

Regarding the parameters ξ and χ, one infers that there is a unique indepen-
dent equation which allows the regularization of the infinite volume contributions
in the non-compact limit, that is:

ξ = 3 + 2χ . (5.26)

Taking into account this relation, we obtain an autonomous system with an ex-
plicitly dependence on χ:

ηk =
3λk√

2(1 + µk)
2
(ηk − χ+ 1) + χ

β(µk) = − 6λk
√

2

(1 + µk)
2

(ηk − χ
3

+ 1
)
− (ηk − χ)µk − 2µk

β(λk) =
4λ

2

k

√
2

(1 + µk)
3

(ηk − χ
3

+ 1
)
− 2(ηk − χ)λk − 3λk

(5.27)

However, this dependence in χ can be merely re-absorbed by a redefinition of ηk
as η′k = ηk − χ. We therefore have finally a system of dimensionless β-functions
given by 

η′k =
3λk√

2(1 + µk)
2 − 3λk

β(µk) = − 6λk
√

2

(1 + µk)
2

(η′k
3

+ 1
)
− η′kµk − 2µk

β(λk) =
4λ

2

k

√
2

(1 + µk)
3

(η′k
3

+ 1
)
− 2η′kλk − 3λk

(5.28)

Like in the model without gauge projection, the system presents a divergence in
the flow due to the truncation scheme. Here the singularity occurs at µ = −1
and λ =

√
2

3
(1 + µ)2. In the plane (µ, λ), we find four fixed points, the Gaussian

(GFP) and three non-Gaussian fixed points (NGFP) at:

P1 = (10)−1(−7.083, 0.154), P2 = 10−1(−7.935, 0.273), (5.29)

P3 = (−12.809, 169.635) . (5.30)

Both P2 and P3 lie in the sector disconnected from the origin. We restrict the
analysis and linearize the system only around P1 and the Gaussian fixed point.
The following eigenvalues and eigenvectors can be found by simple calculation
from the stability matrix:

θG1 = −3 for vG1 = (6
√

2, 1), (5.31)

θG2 = −2 for vG2 = (1, 0), (5.32)

θNG+ ∼ 14.47 for vNG+ ∼ 10−1(9.986,−0.529), (5.33)
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Figure 5.1: Flow for the rank 3 model with gauge projection. Brown arrows
represent the eigendirections of the NGFP (in black), while green arrows are the
eigendirections of GFP (in red). The thick black line manifests the singularity of
the system.

θNG− ∼ −2.29 for vNG− ∼ 10−1(9.948, 1.022). (5.34)

Negative eigenvalues represents UV-attractive eigendirections, while positive eigen-
values correspond to UV-repulsive eigendirections. From the plot in Fig. 5.1, we
see that the Gaussian fixed point, where we have two negative eigenvalues cor-
responding to the scaling dimensions of the couplings, is a UV-attractor and has
two relevant directions. Thus, we infer that the model is asymptotically free in
the UV. Meanwhile the NGFP has a relevant direction and an irrelevant direc-
tion. In this model, there are no marginal directions in the flow and, qualitatively,
the structure of the plot is again reminiscent of the Wilson-Fisher fixed point in
standard scalar field theory in three dimensions. This is again a strong hint to
a phase transition between a symmetric and a broken phase. If this spontaneous
symmetry breaking is proved, then we could interpret the broken phase with a
condensed state identifiable with a geometric phase.

Comparing the model analyzed in the present chapter with the one studied
in chapter 4, we can list some similarities and differences.

From the computational point of view of the FRG, there are no fundamental
differences, the presence of the delta gauge constraints has an influence on the
end result like in the dependence on the parameters k and l of the equations. The
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type of ansatz that we use to make the RG equations autonomous is similar, even
though fixing the parameters of the ansatz differs from one model to the other.
Hence, as a first difference, the canonical dimension of the φ4-coupling changes
from one model to the other. We claim that these models are not in the same
universality class. From a qualitative point of view, we find in both models the
same number of non-Gaussian fixed points, but their distribution on the plain
(µ, λ) appears to be different. On one hand, the TGFT model without gauge
projection has two interesting NGFP’s in the region of the plane (µ, λ) connected
to the origin, whereas the gauge projected model has a unique NGFP. Finally, the
linearized theory around the Gaussian fixed point turns out to be slightly different.
While in the previous chapter, we have found a non-diagonalizable stability matrix
with only one strictly relevant directions, for the gauge projected case, we have
two relevant directions and the eigenperturbations form indeed a basis for the
linearized system. Both GFP’s are sink in these models and so, both models can
be called asymptotically free.



Chapter 6

Conclusion and outlook

In this thesis, we have undertaken the Functional Renormalization Group
analysis of two models in Tensorial Group Field Theories. Endowed with a melonic
combinatorial interaction and distinguished from the presence (or absence) of a
projection on the gauge invariant dynamics, both models are pertinent for probing
a continuum limit for geometry, as this is the main objective of these quantum
gravity theories. The particular aim of our study was to identify the presence of
phase transitions in GFT setup and to enlighten the peculiarities coming from
the non-compactness of the underlying group manifold to be able to consistently
identify fixed points in the flow in the IR and UV regimes. The existence of
these fixed points make phase transition very likely and could make consistent a
geometrogenesis scenario. We have successfully identified IR fixed points, hence
have improved the formulation of [66] however the full characterization of the
phases is still to be obtained. Let us be a little bit more precise on these points.

The FRG approach that we apply turns out to have several implications that
we have properly adjusted to our context. First of all, from the fact that the
group manifold over which we define the fields is non-compact, new properties of
IR divergences during the expansion of the Wetterich equation occur. These are
different compared with infinite volume factors in local field theories. We attribute
this feature to the particular combinatorics of TGFT’s interaction terms. The
lattice regularization of these pathologies and the thermodynamic limit become
fundamental ingredients to obtain an autonomous system of β-functions in both
models. The system of β-functions is analysed and, we recognize the fixed points
as IR and UV fixed points with respect to the cut-off. Thus one of our goal is
reached.

In both models studied, the flows of the theories show similarities of the
neighborhood of the non-Gaussian fixed points in comparison with the Wilson-
Fisher fixed point. This is a hint toward an interpretation of the phases in term of
spontaneous symmetry breaking which might lead to a condensate state. If this
claim is proved, then our results would suggest, in a simplicial gravity context,
the emergence of a continuous spacetime from discrete pre-geometric structures.

A clear understanding of the different phases in both models require a solu-
tion for the equations of motion and a change of parametrization for the effective
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potential. This point must be sorted. Because of the combinatorial non-local
structure of the interactions, a resolution of the equation of motion turns out to
highly non-trivial, to the best of our knowledge. In order to achieve the descrip-
tion of the phase transition for the present class of models, further investigations
on the solution of that equation is required, this might be addressed in forth-
coming investigations. Finally, one hopes that the FRG methods might prove to
be a consistent and powerful way to address a background independent quantum
gravity scenario.



Appendix A

Evaluation of the β-functions for
rank 3 tensorial GFT

In this appendix, we provide the detailed calculation of the β equations and
emphasize its peculiarities. Note that, this computation of the β-functions is
performed in the regularized framework and only, at the end, we take the thermo-
dynamic limit. The system of equations that we obtain is an autonomous system
in a continuous non-compact space.

Notations. Given the regularization prescription introduced in section 4.3, we
set the notation δD∗(p,q) = δ(p − q) not to be confused with the continuous
Dirac delta that we do not use in this appendix. We also define D to be the one
dimensional lattice, that is, the domain of a single component of objects in D∗.
We have D∗ = D×3 so that:

l
∑
pi

=

∫
D
dpi . (A.1)

Let us recall the second variation of the effective action

Γ
(2)
k = (Zk

∑
s

p2
s + µk)δ(p− p’)

+ λk

[∫
D×2

dq2dq3 ϕp′1q2q3ϕp1q2q3δ(p2 − p′2)δ(p3 − p′3)

+

∫
D
dq1 ϕq1p′2p′3ϕq1p2p3

δ(p1 − p′1) + sym
{

1→ 2→ 3
}]

= (Zk
∑
s

p2
s + µk)δ(p− p’) + Fk(p,p’) ,

and choose a regulator of the following form:

Rk(p,p’) = δ(p− p’)Zk(k
2 −

∑
s

p2
s)Θ(k2 −

∑
s

p2
s) ,
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where Θ(f(p)) is the discrete step function. This implies:

∂tRk = δ(p− p’)Θ(k2 −
∑
s

p2
s)[∂tZk(k

2 −
∑
s

p2
s) + Zk2k

2] .

Defining

Pk(p,p’) = Rk(p− p’) + (Zk
∑
s

p2
s + µk)δ(p− p’) ,

we expand and truncate the Wetterich equation as follows:

∂tΓk = Tr[∂tRk · (Pk + Fk)
−1] = Tr[(∂tRk · (Pk)−1) · (1 + Fk · (Pk)−1)−1]

= Tr[(∂tRk · (Pk)−1) · (1− Fk · (Pk)−1 + (Fk · (Pk)−1)2) + . . . ] . (A.2)

The zeroth order of the previous expansion is the vacuum term and does not
provide us any useful information. On the other hand, the first and the second
order, will provide us with the flow of the kinetic (ϕ2-) and interaction (ϕ4-) terms,
respectively, from which we can compute the β-functions for the couplings µk, Zk
and λk.

A.1 ϕ2-terms

To compute the flow of couplings in the quadratic term of Γk, namely, the β-
functions for µk and Zk, we focus on the first order of (A.2). A change of notation
helps during the calculation:

q = (q1, q2, q3) ⇒ q1 := q1 ; q
(2)
1 := (q2, q3) ; q

(2)
1 :=

√
q2

2 + q2
3 ,

for a generic 3-dimensional momentum q. When there is no possible confusion, we
will simply forget the subscript 1 of q

(2)
1 and q

(2)
1 , and use q(2) and q(2), respectively.

To have more compact notations, let us introduce the first convolution ap-
pearing in the expansion:

∂̃tRk(p,p
′′) =

∫
D∗
dp′ ∂tRk(p,p

′)(Pk)
−1(p′,p′′)

=

∫
D∗
dp′ δ(p− p′)δ(p′ − p′′)Θ(k2 −

∑
s

p2
s)

∂tZk(k2−
∑

s p
2
s)+2k2Zk

Zk(k2−
∑

s p
′2
s)Θ(k2−

∑
s p
′2
s)+Zk

∑
s p
′2
s+µk

= δ(p− p′′)Θ(k2 −
∑
s

p2
s)
∂tZk(k

2 −
∑

s p
2
s) + 2k2Zk

(Zkk2 + µk)
,

where we used the fact that, after integration over p′, the two Θ’s appearing in
the expression are redundant and, the one in the denominator can be set to 1.

Thus, calling (I)W the first order of the Wetterich equation, we write

−(I)W = Tr[∂̃tRk · Fk · (Pk)−1]
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=

∫
D∗×2

dpdp′ ∂̃tRk(p,p
′)

∫
D∗
dq Fk(p

′,q)(Pk)
−1(q,p)

=

∫
D∗
dp Θ(k2 −

∑
s

p2
s)
∂tZk(k

2 −
∑

s p
2
s) + 2k2Zk

(Zkk2 + µk)2
Fk(p,p) ,

where, once again, we used the redundancy of the Θ-functions to factorize their
contribution. We can now split the integral in two pieces, namely:

A =
∂tZk

(Zkk2 + µk)2

∫
D∗
dp Θ(k2 −

∑
s

p2
s)

(∑
s

p2
s

)
Fk(p,p) ,

B =
k2(2 + ∂t)Zk
(Zkk2 + µk)2

∫
D∗
dp Θ(k2 −

∑
s

p2
s)Fk(p,p) , (A.3)

and so, we have (I)W = A − B. Let us treat the first term and recall that
δD(0) = δ(0) = 1

l
:

A =
λk ∂tZk

(Zkk2 + µk)2

∫
D∗
dp Θ(k2 −

∑
s

p2
s)

(∑
s

p2
s

)
×
[

1

l2

∫
D×2

dq(2) |ϕp1q2q3 |2 +
1

l

∫
D
dq1 |ϕq1p2p3|2 + sym

{
1→ 2→ 3

}]
=

λk ∂tZk
(Zkk2 + µk)2

×{
1

l2

∫
D∗
dp1dq

(2) |ϕp1q2q3|2
∫
D×2

dp(2) Θ[(k2 − p2
1)− (p(2))2]

[
(p(2))2 + p2

1

]
+

1

l

∫
D∗
dq1dp

(2) |ϕq1p2p3 |2
∫
D
dp1 Θ[(k2 − (p(2))2)− p2

1]
[
(p(2))2 + p2

1

]}
+ sym

{
1→ 2→ 3

}
.

Now we perform the continuum limit l→∞ and this corresponds to:∫
D
−→

∫
R
, Θ −→ θ . (A.4)

The negative powers of l appearing in the expressions keep track of the former
IR divergences of the continuous model. Extracting an l dependence from the
couplings, we will address them at the end. In order to simplify the notation, we
drop the limit symbol liml→∞ and get

A =
λk ∂tZk

(Zkk2 + µk)2

×

{
1

l

∫
R3

dq1dp
(2) θ(k2 − (p(2))2)|ϕq1p2p3|2

∫ √k2−(p(2))2

−
√
k2−(p(2))2

dp1 [(p(2))2 + p2
1]
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+
1

l2

∫
R3

dp1dq
(2) θ(k2 − p2

1)|ϕp1q2q3 |2
∫ 2π

0

dϑ

∫ √k2−p2
1

0

dp(2) p(2)[(p(2))2 + p2
1]

}
+ sym

{
1→ 2→ 3

}
=

λk ∂tZk
(Zkk2 + µk)2

{
1

l

∫
R3

dq1dp
(2) |ϕq1p2p3|2 θ(k2 − (p(2))2)

×
[
2(p(2))2

√
k2 − (p(2))2 +

2

3
(k2 − (p(2))2)3/2

]
+ 2π

1

l2

∫
R3

dp1dq
(2) |ϕp1q2q3|2 θ(k2 − p2

1)

[
(k2 − p2

1)2

4
+
p2

1

2
(k2 − p2

1)

]}
+ sym

{
1→ 2→ 3

}
.

Expanding the term B, we find:

B = λk
k2(2 + ∂t)Zk
(Zkk2 + µk)2

×
∫
D∗
dp Θ(k2 −

∑
s

p2
s)

[
1

l2

∫
D×2

dq(2) |ϕp1q2q3|2 +
1

l

∫
D
dq1 |ϕq1p2p3|2

]
+sym

{
1→ 2→ 3

}
, (A.5)

which, in the limit, gives

B = λk
k2(2 + ∂t)Zk
(Zkk2 + µk)2

{
2π

l2

∫
R3

dp1dq
(2) θ(k2 − p2

1)|ϕp1q2q3|2
∫ √k2−p2

1

0

dp(2) p(2)

+
1

l

∫
R3

dq1dp
(2) θ(k2 − (p(2))2)|ϕq1p2p3 |2

∫ √k2−(p(2))2

−
√
k2−(p(2))2

dp1

}
+ sym

{
1→ 2→ 3

}
= λk

k2(2 + ∂t)Zk
(Zkk2 + µk)2

{
π

l2

∫
R3

dp1dq
(2) |ϕp1q2q3|2θ(k2 − p2

1)(k2 − p2
1)

+
2

l

∫
R3

dq1dp
(2) |ϕq1p2p3|2θ(k2 − (p(2))2)

√
k2 − (p(2))2

}
+ sym

{
1→ 2→ 3

}
.

β-functions. To find the β-functions of the coupling constants, we rely on the
fact that the l.h.s. of (A.2) is of the form:

∂tΓk =

∫
dp |ϕ(p)|2

(
β(Zk)

∑
s

p2
s + β(µk)

)
.
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We must expand the r.h.s. up to o(p3). The terms with momenta of order p2
i

convoluted with the fields ϕ...,pi,... will contribute to the flow of the wave function
renormalization, while the zeroth order will be proportional to the scaling of the
mass. All remaining terms, falling out of the truncation, must be discarded.
Hence, we have

A ' 2λk
∂tZk

(Zkk2 + µk)2

{
π

l2

∫
dq(2)dp1 |ϕp1q2q3|2 θ(k2 − p2

1)
k4

4

+
1

l

∫
dq1dp

(2) |ϕq1p2p3 |2 θ(k2 − (p(2))2)[k(p(2))2 +
1

3
(k3 − 3

2
k(p(2))2)]

}
+ sym

{
1→ 2→ 3

}
' λk

∂tZk
(Zkk2 + µk)2

{
2π

l2

∫
dq(2)dp1 |ϕp1q2q3|2

1

4
[θ(k2)k2 − δ(k2)k2p2

1]k2

+
2

l

∫
dq1dp

(2) |ϕq1p2p3 |2 θ(k2 − (p(2))2)[
1

3
k2 +

1

2
(p(2))2]k

}
+ sym

{
1→ 2→ 3

}
' λk

∂tZk
(Zkk2 + µk)2

{
π

2l2

∫
dq(2)dp1 |ϕp1q2q3|2k4

+
2

l

∫
dq1dp

(2) |ϕq1p2p3 |2
[1

3
k2 +

1

2
(p(2))2

]
k

}
+ sym

{
1→ 2→ 3

}
,

where the following relations have been used:

θ(0) = 1 ⇒ θ(k2) = 1 , ∀k ,

δ(k2)k2 = δ(
k2

k2
) = δ(1) = 0 .

For the B terms, one finds:

B ' λk
k2(2 + ∂t)Zk
(Zkk2 + µk)2

{
π

l2

∫
dq(2)dp1 |ϕp1q2q3|2(k2 − p2

1)

+
2

l

∫
dq1dp

(2) |ϕq1p2p3|2[k − 1

2k
(p(2))2]

}
+ sym

{
1→ 2→ 3

}
. (A.6)

Now, we concentrate on the colored symmetric terms. Note that the procedure
and result of the above integrals will not change for each colored term in sym{·},
up to a simple relabeling. Concerning the scaling of µk, involving “constant”
terms C(k), we collect a factor 3 in front of what we have already computed, but
for the Zk term, which involves pi-labeled terms, this is not trivial. For each term
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in sym, there is a C1(k) times only a simple p2
i momentum square, and another

term C2(k) multiplied by the sum of the other two momenta square, i.e. (p
(2)
i )2.

We have an expression of the form:

β(Zk) = C1(k)δ2(0)(p2
1 + p2

2 + p2
3) + C2(k)δ(0)[(p2

2 + p2
3) + (p2

1 + p2
3) + (p2

1 + p2
2)]

= C1(k)δ2(0)(p2
1 + p2

2 + p2
3) + 2C2(k)δ(0)(p2

1 + p2
2 + p2

3) .

Taking this combinatorial subtlety into account, putting all the pieces together
and recalling that (I)W = A − B, we write the dimensionful β-functions of the
mass and wave function as:

β(Zk) =
λk

(Zkk2 + µk)2

[
∂tZk

(
π
k2

l2
+ 4

k

l

)
+ 2Zk

(
π
k2

l2
+ 2

k

l

)]
,

β(µk) = 3
λk

(Zkk2 + µk)2

[
∂tZk

(
π

2

k4

l2
+

2

3

k3

l
− πk

4

l2
− 2

k3

l

)
− 2Zk

(
k4

l2
π + 2

k3

l

)]
= −3

λk
(Zkk2 + µk)2

[
∂tZk

(
π

2

k4

l2
+

4

3

k3

l

)
+ 2Zk

(
k4

l2
π + 2

k3

l

)]
.

Already at this level, one realizes that each β-function does not have homogeneous
scaling in k and dimensions in l. This feature clearly comes from the pattern of
the convolution of the interaction which is specific to TGFTs.

A.2 ϕ4-terms

The second order (II)W of (A.2) will provide the β-function for λk, which
completes the set of β-functions of the model. Defining:

R′k s.t. Rk(p,p’) = R′k(p)Θ(k2 −
∑
s

p2
s)δ(p− p′) ,

P ′k s.t. Pk(p,p’) = P ′k(p)δ(p− p′) , (A.7)

the terms of interest take the form:

(II)W = Tr[∂tRk · (Pk)−1 · Fk · (Pk)−1 · Fk · (Pk)−1]

=

∫
D∗×6

dpdp′dp′′dqdq′dq′′ ∂tR
′
k(p)Θ(k2 −

∑
s

p2
s)δ(p− p′)

(P ′k)
−1(p′)δ(p′ − p′′)Fk(p

′′,q)(P ′k)
−1(q)δ(q− q′)Fk(q

′,q′′)(P ′k)
−1(q′′)δ(q′′ − p)

=

∫
D∗×5

dpdp′dp′′dqdq′ ∂tR
′
k(p)Θ(k2 −

∑
s

p2
s)δ(p− p′)(P ′k)

−1(p′)δ(p′ − p′′)

Fk(p
′′,q)(P ′k)

−1(q)δ(q− q′)Fk(q
′,p)(P ′k)

−1(p)

=

∫
D∗×4

dpdp′′dqdq′ ∂tR
′
k(p)Θ(k2 −

∑
s

p2
s)(P

′
k)
−1(p)δ(p− p′′)

Fk(p
′′,q)(P ′k)

−1(q)δ(q− q′)Fk(q
′,p)(P ′k)

−1(p)
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=

∫
D∗
dp ∂tR

′
k(p)Θ(k2 −

∑
s

p2
s)(P

′
k)
−1(p)

×
∫
D∗
dq Fk(p,q)(P ′k)

−1(q)Fk(q,p)(P ′k)
−1(p) . (A.8)

We focus on the intermediate convolution Fk · P−1
k · Fk which expands as:

(Fk · P−1
k · Fk)(p,p) = λ2

k

∫
D∗
dqF (p,q)(P ′k)

−1(q)Fk(q,p)

= λ2
k

∫
D∗
dq1dq

(2)

[∫
D
dm1 ϕm1p2p3ϕm1q2q3δ(p1 − q1)

+

∫
D×2

dm(2) ϕp1m2m3ϕq1m2m3
δ(p(2) − q(2)) + sym

{
1→ 2→ 3

}]
(P ′k)

−1(q)

[∫
D
dm′1 ϕm′1q2q3ϕm′1p2p3

δ(p1 − q1)

+

∫
D×2

dm′(2) ϕq1m′2m′3ϕp1m′2m
′
3
δ(p(2) − q(2)) + sym

{
1→ 2→ 3

}]
.

At this level, the product of colored symmetric terms generate a list of terms
(among which cross terms) that we must all carefully analyse. First, we deal the
case when the product involves two terms of the same color, then we will treat
the crossed-colored case. Below, we further specialize the study to the product of
terms of color 1 and, then on the cross term 1-2 in the above expansion. We refer
to the first type of term as (Fk · P−1

k · Fk)(p,p)|1,1 and to the overal contribution
after tracing over remaining indices as (II)W |1,1 (respectively, the symbol |1,2 will
stand for the cross term product of the colors 1 and 2). This evaluation is, of
course, without loss of generality because one can quickly infer the result coming
from the other product with different colors. All these contributions, at the end,
must be summed.

We have

(Fk · P−1
k · Fk)(p,p)|1,1 =

λ2
k

∫
D∗
dq1dq

(2)

∫
D
dm1ϕm1p2p3ϕm1q2q3δ(p1 − q1)(P ′k)

−1(q)

×
∫
D×2

dm′(2)ϕq1m′2m′3ϕp1m′2m
′
3
δ(p(2) − q(2))

+ λ2
k

∫
D∗
dq1dq

(2)

∫
D×2

dm(2)ϕp1m2m3ϕq1m2m3
δ(p(2) − q(2))(P ′k)

−1(q)

×
∫
D
dm′1ϕm′1q2q3ϕm′1p2p3

δ(p1 − q1)

+ λ2
k

∫
D∗
dq1dq

(2)

∫
D
dm1ϕm1p2p3ϕm1q2q3δ(p1 − q1)(P ′k)

−1(q)

×
∫
D
dm′1ϕm′1q2q3ϕm′1p2p3

δ(p1 − q1)
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+ λ2
k

∫
D∗
dq1dq

(2)

∫
D×2

dm(2)ϕp1m2m3ϕq1m2m3
δ(p(2) − q(2))(P ′k)

−1(q)

×
∫
D×2

dm′(2)ϕq1m′2m′3ϕp1m′2m
′
3
δ(p(2) − q(2)) .

The first two terms, once that the δ’s in q are integrated out, become proportional
to the product of two square modulus of the fields, thus they represent discon-
nected interactions. They can be discarded for the same reasons invoked above.
As a remainder, we get:

(Fk · P−1
k · Fk)(p,p)|1,1 ' (A.9)

λ2
k

l

∫
D×2

dq(2)

∫
D×2

dm1dm
′
1ϕm1p2p3ϕm1q2q3ϕm′1q2q3ϕm′1p2p3

(P ′k)
−1(p1,q

(2))

+
λ2
k

l2

∫
D
dq1

∫
D×4

dm(2)dm′(2)ϕp1m2m3ϕq1m2m3
ϕq1m′2m′3ϕp1m′2m

′
3
(P ′k)

−1(q1,p
(2)) .

Then plugging back (A.9) in (II)W , and concentrating on the contribution of this
term, one finds:

(II)W |1,1 = λ2
k

∫
D∗
dp Θ(k2 −

∑
s

p2
s)

[∂tZk(k2−
∑

s p
2
s)+2k2Zk]

(Zkk2+µk)2{
1

l

∫
D×2

dq(2)

∫
D×2

dm1dm
′
1ϕm1p2p3ϕm1q2q3ϕm′1q2q3ϕm′1p2p3[

Zk(k
2 − p2

1 − (q(2))2)Θ(k2 − p2
1 − (q(2))2) + Zk(p

2
1 + (q(2))2) + µk

]−1

+
1

l2

∫
D
dq1

∫
D×4

dm(2)dm′(2) ϕp1m2m3ϕq1m2m3
ϕq1m′2m′3ϕp1m′2m

′
3[

Zk(k
2 − q2

1 − (p(2))2)Θ(k2 − q2
1 − (p(2))2) + Zk(q

2
1 + (p(2))2) + µk

]−1}
.

With the same principle used for evaluation of the β-functions of Zk and µk,
any explicit dependence on the six momenta involved in the four fields in the
spectral sums of (A.8) must be discarded. In other words, any term of the form
pαi ϕ...pi...ϕ̄...pi... · (ϕϕ̄ϕϕ̄) falls out of the truncation. After taking the limit (again
we drop the symbol liml→0), we expand the expression at zeroth order and get:

(II)W |1,1 '
λ2
k

l

∫
R6

dm1dm
′
1dp

(2)dq(2) ϕm1p2p3ϕm1q2q3ϕm′1q2q3ϕm′1p2p3

×
∫
R
dp1

[∂tZk(k2−p2
1)+2k2Zk]

(Zkk2+µk)2

θ(k2−p2
1)

Zk(k2−p2
1)θ(k2−p2

1)+Zkp
2
1+µk

+
λ2
k

l2

∫
R6

dp1dq1dm
(2)dm′(2) ϕp1m2m3ϕq1m2m3

ϕq1m′2m′3ϕp1m′2m
′
3

×
∫
R2

dp(2) [∂tZk(k2−(p(2))2)+2k2Zk]
(Zkk2+µk)2

θ(k2−(p(2))2)

Zk(k2−(p(2))2)θ(k2−(p(2))2)+Zk(p(2))2+µk
.



A.2. ϕ4-terms 61

The θ’s turn out to be redundant in both the terms and we can simplify their
contributions. Call Vi the vertex of color i of the effective interaction. Rather
than using the explicit form of that vertex, we will simply use Vi in the following,
when no confusion might arise.

We split the previous terms in two pieces:

(II)′W |1,1 =

1
l

λ2
kk

2(2+∂t)Zk

(Zkk2+µk)3

∫
dq(2)dp(2)dm1dm

′
1 ϕm1p2p3ϕm1q2q3ϕm′1q2q3ϕm′1p2p3

×
∫
dp1 θ(k

2 − p2
1)

− 1
l

λ2
k∂tZk

(Zkk2+µk)3

∫
dq(2)dp(2)dm1dm

′
1 ϕm1p2p3ϕm1q2q3ϕm′1q2q3ϕm′1p2p3

×
∫
dp1 p

2
1θ(k

2 − p2
1)

= 2
λ2
kk

3

l

[
(2 + ∂t)Zk

(Zkk2 + µk)3
− 1

3

∂tZk
(Zkk2 + µk)3

]
V1

=
2λ2

kk
3

l (Zkk2 + µk)3

[
2Zk +

2

3
∂tZk

]
V1 .

The second piece now can be computed as:

(II)′′W |1,1 =

1
l2
λ2
kk

2(2+∂t)Zk

(Zkk2+µk)3

∫
dp1dq1dm

(2)dm′(2) ϕp1m2m3ϕq1m2m3
ϕq1m′2m′3ϕp1m′2m

′
3

×
∫
dp(2)θ(k2 − p(2))

− 1
l2

λ2
k∂tZk

(Zkk2+µk)3

∫
dp1dq1dm

(2)dm′(2) ϕp1m2m3ϕq1m2m3
ϕq1m′2m′3ϕp1m′2m

′
3

×
∫
dp(2) (p(2))2θ(k2 − p(2))

=
πλ2

kk
4

l2(Zkk2 + µk)3

[
(2 + ∂t)Zk −

1

2
∂tZk

]
V1

=
πλ2

kk
4

l2(Zkk2 + µk)3

[
2Zk +

1

2
∂tZk

]
V1 .

A simple check of the dimensions of these terms and the dimension of the inter-
action term of the effective action can be given as

[(II)′W ] = [(II)′′W ] = 2[λ] + 2 + 4[ϕ] ,

which fixes [λ] = 4 as expected.
Let us now concentrate on the cross term given by the product of the contri-

bution of color 1 and 2, this is:

(II)W |1,2 = λ2
k

∫
D∗×2

dpdj
Θ(k2−

∑
s p

2
s)

(Zkk2+µk)2

∂tZk(k2−
∑

s p
2
s)+2k2Zk

Θ(k2−
∑

s j
2
s )Zk(k2−

∑
s j

2
s )+Zk

∑
s j

2
s+µk
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[∫
D×2

dm1dn2 ϕm1j2j3ϕm1p2p3
ϕp1n2p3ϕj1n2j3δ(p1 − j1)δ(p2 − j2)

+

∫
D4

dm2dm3dn1dn3 ϕj1m2m3ϕp1m2m3
ϕn1p2n3ϕn1j2n3

δ(p2 − j2)δ2(p3 − j3)δ(p1 − j1)

+

∫
D∗
dm1dn1dn3 ϕm1j2j3ϕm1p2p3

ϕn1p2n3ϕn1j2n3
δ(p1 − j1)δ(p1 − j1)δ(p3 − j3)

+

∫
D∗
dm2dm3dn3 ϕj1m2m3ϕp1m2m3

ϕp1n2p3ϕj1n2j3δ(p2 − j2)δ(p2 − j2)δ(p3 − j3)

]
.

If we integrate the deltas over the j variables, the second term is again a dis-
connected 4-point function that we neglect. Meanwhile, for the other terms, we
find:

(II)W |1,2 =
λ2
k

(Zkk2 + µk)2

∫
D∗
dp1dp2dp3dm1dn2dj3 ϕm1p2j3ϕm1p2p3

ϕp1n2p3ϕp1n2j3

Θ(k2 −
∑

s p
2
s)[∂tZk(k

2 −
∑

s p
2
s) + 2k2Zk]

Θ(k2 − p2
1 − p2

2 − j2
3)Zk(k2 − p2

1 − p2
2 − j2

3) + Zk(p2
1 + p2

2 + j2
3) + µk

+
λ2
k

(Zkk2 + µk)2

1

l

∫
D∗×D

dp1dp2dp3dj2dm1dn1dn3 ϕm1j2p3ϕm1p2p3
ϕn1p2n3ϕn1j2n3

Θ(k2 −
∑

s p
2
s)[∂tZk(k

2 −
∑

s p
2
s) + 2k2Zk]

Θ(k2 − p2
1 − j2

2 − p2
3)Zk(k2 − p2

1 − j2
2 − p2

3) + Zk(p2
1 + j2

2 + p2
3) + µk

+
λ2
k

(Zkk2 + µk)2

1

l

∫
D∗×D

dp1dp2dp3dj1dm2dm3dn2 ϕj1m2m3ϕp1m2m3
ϕp1n2p3ϕj1n2p3

Θ(k2 −
∑

s p
2
s)[∂tZk(k

2 −
∑

s p
2
s) + 2k2Zk]

Θ(k2 − j2
1 − p2

2 − p2
3)Zk(k2 − j2

1 − p2
2 − p2

3) + Zk(j2
1 + p2

2 + p2
3) + µk

.

In the continuum limit, the previous integrals can be evaluated at 0-momentum
truncation and the Θ in the denominator, put to 1. One realizes that the first
term is proportional V3, the second term to V2 and the third term to V1. By
casting away the p2

iϕ
4
pi

-terms, t can be inferred,

(II)W |1,2 '
λ2
kk

2(2 + ∂t)Zk
(Zkk2 + µk)3

V3

+
λ2
k

(Zkk2 + µk)3

1

l
V2

∫
dp1θ(k

2 − p2
1)[∂tZk(k

2 − p2
1) + 2k2Zk]

+
λ2
k

(Zkk2 + µk)3

1

l
V1

∫
dp2 θ(k

2 − p2
2)[∂tZk(k

2 − p2
2) + 2k2Zk]

Now we can perform the integrals over the external momenta and find:

(II)W |1,2 =
λ2
kk

2(2 + ∂t)Zk
(Zkk2 + µk)3

V3

+
λ2
kk

3

l(Zkk2 + µk)3

[
−2

3
∂tZk + 2(2 + ∂t)Zk

](
V2 + V1

)
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Dimensionful β-functions. Adding all contributions, in each sector, taking
care about the symmetric terms, the calculation can be easily performed. We
write the full set of dimensionful β-functions for the model as:

β(Zk) =
λk

(Zkk2 + µk)2

{
∂tZk

[
π
k2

l2
+ 4

k

l

]
+ 2Zk

[
π
k2

l2
+ 2

k

l

]}
β(µk) =

−3λk
(Zkk2 + µk)2

{
∂tZk

[
π

2

k4

l2
+

4

3

k3

l

]
+ 2Zk

[
k4

l2
π + 2

k3

l

]}
β(λk) =

2λ2
k

(Zkk2 + µk)3

{
∂tZk

[
π

2

k4

l2
+

20

3

k3

l
+ 2k2

]
+ 2Zk

[
π
k4

l2
+ 10

k3

l
+ 2k2

]}
(A.10)

which is reported in section 4.4, (4.34).



Appendix B

Evaluation of the β-functions for
TGFT with gauge projection

The computation of the dimensionful β-functions for the gauge projected
model follows roughly the same steps of the calculations of the model without
constraints. However, due to the presence of the extra delta’s of the gauge projec-
tion, the analysis requires, at some point, a different technique. In this appendix,
we provide details of the procedure for obtaining the system of the dimensionful
RG equations, namely (5.22) of section 5.3, and underline the differences with the
previous calculus.

We start by expanding equation (5.21) of section 5.2 and focus, first on the
ϕ2-terms and then calculate higher order terms.

B.1 ϕ2-term

Referring to the conventions introduced at the begining of section 5.2, say
(5.17)–(5.20), for the scaling of the kinetic term, we have:

(Ig)W = −Tr[∂tRk · (Pk)−1 · Fk · (Pk)−1]

= −λk
∫
D∗×4

dpdp′dqdq′ Θ(k2 − Σsp
2
s)[∂tZk(k

2 − Σsp
2
s) + 2k2Zk]δ(Σp)δ(p− p′)

× δ(p′ − q)

[ZkΣsp′
2
s + µk + Θ(k2 − Σsp′

2
s)Zk(k

2 − Σsp′
2
s)]δ(Σp

′)

×
[∫
D×2

dm2dm3 ϕq′1m2m3
ϕq1m2m3

δ(Σq)δ(q′1 +m2 +m3)δ(q′1 + q2 + q3)

× δ(q1 +m2 +m3)δ(q2 − q′2)δ(q3 − q′3)

+

∫
D
dm1 ϕm1q′2q

′
3
ϕm1q2q3δ(Σq)δ(m1 + q′2 + q′3)δ(m1 + q2 + q3)

× δ(q1 + q′2 + q′3)δ(q1 − q′1) + sym
{

1→ 2→ 3
}]

δ(q′ − p)

[ZkΣsq′
2
s + µk + Θ(k2 − Σsq′

2
s)Zk(k

2 − Σsq′
2
s)]δ(Σq

′)

64
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= −λk
∫
D∗
dp Θ(k2 − Σsp

2
s)

[∂tZk(k
2 − Σsp

2
s) + 2k2Zk]

(Zkk2 + µk)2

δ(Σp)

δ2(Σp)

×
[

1

l2

∫
D×2

dm2dm3 |ϕp1m2m3|2δ2(Σp)δ2(p1 +m2 +m3)

+
1

l

∫
D
dm1 |ϕm1p2p3 |2δ2(Σp)δ2(m1 + p2 + p3) + sym

{
1→ 2→ 3

}]
, (B.1)

where, in the last passage, after integration, we set to 1 the redundant Θ. In the
same perspective, the square delta’s can be reduced as δ2(p) = δ(p)δ(0) = 1

l
δ(p).

Computing the integrals over some variables which are not involved in the field
convolutions, we can further simplify the expression as

(Ig)W = −λk
1

l2

∫
D∗
dm1dp2dp3

|ϕm1p2p3|2δ(m1 + p2 + p3)

(Zkk2 + µk)2

Θ[k2 − 2(p2
2 + p2

3 + p2p3)]{∂tZk[k2 − 2(p2
2 + p2

3 + p2p3)] + 2k2Zk}

− λk
1

l3

∫
D∗
dp1dm2dm3

|ϕp1m2m3|2δ(p1 +m2 +m3)

(Zkk2 + µk)2∫
D
dp2 Θ[k2 − 2(p2

2 + p2
1 + p2p1)]{∂tZk[k2 − 2(p2

2 + p2
1 + p2p1)] + 2k2Zk}

+ sym
{

1→ 2→ 3
}
. (B.2)

At this stage, the continuum limit is well defined: we assign integrals over the
lattice to integrals over Rd, and the discrete step function to the Heaviside θ-
function.

The domain of integration of p2 in the second term of (B.2) can be sorted as
the θ distribution is non-zero when −2p2

2− 2p2p1 + (k2− 2p2
1) ≥ 0. The boundary

of this inequality in the variable p2 in given by the roots

p±2 =
1

2

(
− p1 ±

√
2k2 − 3p2

1

)
. (B.3)

The previous function is therefore positive when p2 ∈ [p−2 , p
+
2 ]. There is still a

residual constraint over p1 which has to be imposed in order to keep real the
square root appearing in (B.3), that is, 3p2

1 ≤ 2k2. Thus, (B.2) becomes

(Ig)W = − λk
l2(Zkk2 + µk)2

∫
dm1dp2dp3 |ϕm1p2p3 |2δ(m1 + p2 + p3)

× θ[k2 − 2(p2
2 + p2

3 + p2p3)]{∂tZk[k2 − 2(p2
2 + p2

3 + p2p3)] + 2k2Zk}

− λk
l3(Zkk2 + µk)2

∫
dp1dm2dm3 |ϕp1m2m3|2δ(p1 +m2 +m3)

× θ(2k2 − 3p2
1)

∫ 1
2

(−p1+
√

2k2−3p2
1)

1
2

(−p1−
√

2k2−3p2
1)

dp2 {∂tZk[k2 − 2(p2
2 + p2

1 + p2p1)] + 2k2Zk}
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+ sym
{

1→ 2→ 3
}

= − λk
l2(Zkk2 + µk)2

∫
dm1dp2dp3 |ϕm1p2p3|2δ(m1 + p2 + p3)

× θ[k2 − 2(p2
2 + p2

3 + p2p3)]{∂tZk[k2 − 2(p2
2 + p2

3 + p2p3)] + 2k2Zk}

− λk
l3(Zkk2 + µk)2

∫
dp1dm2dm3 |ϕp1m2m3|2δ(p1 +m2 +m3)θ(2k2 − 3p2

1)

×
{
k2
√

2k2 − 3p2
1(2 + ∂t)Zk −

3

2

√
2k2 − 3p2

1∂tZkp
2
1 −

1

6
(2k2 − 3p2

1)3/2∂tZk

}
+ sym

{
1→ 2→ 3

}
. (B.4)

Expanding the last result up to the third order in momenta, one obtains

(Ig)W ' − λk
(Zkk2 + µk)2

{
1

l2

∫
dm1dp2dp3 |ϕm1p2p3|2δ(m1 + p2 + p3)

× [k2(2 + ∂t)Zk − 2∂tZk(p
2
2 + p2

3)]

+
1

l3

∫
dp1dm2dm3 |ϕp1m2m3 |2δ(p1 +m2 +m3)

×
[
k3
(√

2−
√

8

6

)
∂tZk + 2

√
2k3Zk −

3√
2
k(1 + ∂t)Zkp

2
1

]}
+ sym

{
1→ 2→ 3

}
. (B.5)

Taking in account the color symmetry, we write the β-functions for the couplings
µk and Zk as:

β(Zk) =
λk

(Zkk2 + µk)2

[ 3√
2

k

l3
(1 + ∂t)Zk +

4

l2
∂tZk

]
;

β(µk) = − 3λk
(Zkk2 + µk)2

[√
2
k3

l3

(
2 +

2

3
∂t

)
Zk +

k2

l2
(2 + ∂t)Zk

]
. (B.6)

B.2 ϕ4-terms

The next order of the truncation made on the Wetterich equation, i.e. (IIg)W =
Tr[∂tRk · (Pk)−1 ·Fk · (Pk)−1 ·Fk · (Pk)−1], provides the β-function for the coupling
λk:

(IIg)W =

λ2
k

∫
D∗×6

dpdp′dqdq′drdr′Θ(k2 − Σsp
2
s)[∂tZk(k

2 − Σsp
2
s) + 2k2Zk]δ(Σp)δ(p− p′)
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× δ(p′ − q)

[ZkΣsp′
2
s + µk + Θ(k2 − Σsp′

2
s)Zk(k

2 − Σsp′
2
s)]δ(Σp

′)

×
[∫
D×2

dm2dm3 ϕq′1m2m3
ϕq1m2m3

δ(Σq)δ(q′1 +m2 +m3)δ(q′1 + q2 + q3)

× δ(q1 +m2 +m3)δ(q2 − q′2)δ(q3 − q′3)

+

∫
D
dm1 ϕm1q′2q

′
3
ϕm1q2q3δ(Σq)δ(m1 + q′2 + q′3)δ(m1 + q2 + q3)

× δ(q1 + q′2 + q′3)δ(q1 − q′1) + sym
{

1→ 2→ 3
}]

× δ(q′ − r)

[ZkΣsq′
2
s + µk + Θ(k2 − Σsq′

2
s)Zk(k

2 − Σsq′
2
s)]δ(Σq

′)

×
[∫
D×2

dn2dn3 ϕr′1n2n3
ϕr1n2n3

δ(Σr)δ(r′1 + n2 + n3)δ(r′1 + r2 + r3)

× δ(r1 + n2 + n3)δ(r2 − r′2)δ(r3 − r′3)

+

∫
D
dn1 ϕn1r′2r

′
3
ϕn1r2r3δ(Σr)δ(n1 + r′2 + r′3)δ(n1 + r2 + r3)

× δ(r1 + r′2 + r′3)δ(r1 − r′1) + sym
{

1→ 2→ 3
}]

× δ(r′ − p)

[ZkΣsr′
2
s + µk + Θ(k2 − Σsr′

2
s)Zk(k

2 − Σsr′
2
s)]δ(Σr

′)

= λ2
k

∫
D∗×2

dpdr Θ(k2−Σsp2
s)[∂tZk(k2−Σsp2

s)+2k2Zk]δ(Σp)
(Zkk2+µk)2[ZkΣsr2

s+µk+Θ(k2−Σsr2
s)Zk(k2−Σsr2

s)]δ(Σr)δ2(Σp)

×
[∫
D×2

dm2dm3 ϕr1m2m3ϕp1m2m3
δ(Σp)δ(r1 +m2 +m3)δ(r1 + p2 + p3)

× δ(p1 +m2 +m3)δ(p2 − r2)δ(p3 − r3)

+

∫
D
dm1 ϕm1r2r3ϕm1p2p3

δ(Σp)δ(m1 + r2 + r3)δ(m1 + p2 + p3)

× δ(p1 + r2 + r3)δ(p1 − r1) + sym
{

1→ 2→ 3
}]

×
[∫
D×2

dn2dn3 ϕp1n2n3ϕr1n2n3
δ(Σr)δ(p1 + n2 + n3)δ(p1 + r2 + r3)

× δ(r1 + n2 + n3)δ(r2 − p2)δ(r3 − p3)

+

∫
D
dn1 ϕn1p2p3ϕn1r2r3δ(Σr)δ(n1 + p2 + p3)δ(n1 + r2 + r3)

× δ(r1 + p2 + p3)δ(r1 − p1) + sym
{

1→ 2→ 3
}]

, (B.7)

where the redundant Θ-functions are set to 1. The combinatorics of the present
model is the same studied in the previous appendix, we therefore proceed in the
same way by collecting different types of colored contributions. We first discuss
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the contribution obtained by the product of color 1-1:

(IIg)W |1,1 = λ2
k

∫
D∗×2

dpdr Θ(k2−Σsp2
s)[∂tZk(k2−Σsp2

s)+2k2Zk](((((
δ2(Σp)δ(Σr)

(Zkk2+µk)2[ZkΣsr2
s+µk+Θ(k2−Σsr2

s)Zk(k2−Σsr2
s)](((((
δ(Σr)δ2(Σp)

×
[∫
D×2

dm2dm3 ϕr1m2m3ϕp1m2m3
δ(r1 +m2 +m3)δ(r1 + p2 + p3)

× δ(p1 +m2 +m3)δ(p2 − r2)δ(p3 − r3)

+

∫
D
dm1 ϕm1r2r3ϕm1p2p3

δ(m1 + r2 + r3)δ(m1 + p2 + p3)

× δ(p1 + r2 + r3)δ(p1 − r1)

]
×
[∫
D×2

dn2dn3 ϕp1n2n3ϕr1n2n3
δ(p1 + n2 + n3)δ(p1 + r2 + r3)

× δ(r1 + n2 + n3)δ(r2 − p2)δ(r3 − p3)

+

∫
D
dn1 ϕn1p2p3ϕn1r2r3δ(n1 + p2 + p3)δ(n1 + r2 + r3)

× δ(r1 + p2 + p3)δ(r1 − p1)

]

= λ2
k

∫
D∗×2

dpdr Θ(k2−Σsp2
s)[∂tZk(k2−Σsp2

s)+2k2Zk]
(Zkk2+µk)2[ZkΣsr2

s+µk+Θ(k2−Σsr2
s)Zk(k2−Σsr2

s)]

×
[∫
D×2

dm1dn1 ϕm1r2r3ϕm1p2p3
ϕn1p2p3ϕn1r2r3δ(m1 + r2 + r3)

× δ(m1 + p2 + p3)δ(p1 + r2 + r3)δ(n1 + p2 + p3)δ(n1 + r2 + r3)

× δ(r1 + p2 + p3)δ(r1 − p1)δ(p1 − r1)

+

∫
D×4

dm2dm3dn2dn3 ϕr1m2m3ϕp1m2m3
ϕp1n2n3ϕr1n2n3

× δ(r1 + p2 + p3)δ(p1 +m2 +m3)δ(p1 + n2 + n3)δ(p1 + r2 + r3)

× δ(r1 + n2 + n3)δ(r1 +m2 +m3)δ(r2 − p2)δ(r3 − p3)δ(p2 − r2)δ(p3 − r3)

+ disconnected

]
,

(B.8)

where the remaining terms “disconnected” describe disconnected interactions which
we discard. Integrating over ri, in the delta functions which are not convoluted
with the fields, and replacing the redundant δ by 1/l, one gets:

(IIg)W |1,1 ' λ2
k

∫
D∗×2

dm1dp2dp3dn1dr2dr3
ϕm1r2r3ϕm1p2p3

ϕn1p2p3ϕn1r2r3

(Zkk2+µk)2

× δ(m1 + r2 + r3)δ(m1 + p2 + p3)δ(n1 + p2 + p3)δ(n1 + r2 + r3)

× 1

l

∫
D
dp1

Θ(k2−Σsp2
s)[∂tZk(k2−Σsp2

s)+2k2Zk]

Zk(p2
1+r2

2+r2
3)+µk+Θ[k2−(p2

1+r2
2+r2

3)]Zk[k2−(p2
1+r2

2+r2
3)]
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× δ(Σp)δ(p1 + r2 + r3)

+ λ2
k

∫
D∗×2

dp1dm2dm3dr1dn2dn3
ϕr1m2m3ϕp1m2m3

ϕp1n2n3ϕr1n2n3

(Zkk2+µk)2

× δ(p1 +m2 +m3)δ(p1 + n2 + n3)δ(r1 + n2 + n3)δ(r1 +m2 +m3)

× 1

l2

∫
D×2

dp2dp3
Θ(k2−Σsp2

s)[∂tZk(k2−Σsp2
s)+2k2Zk]

Zk(r2
1+p2

2+p2
3)+µk+Θ[k2−(r2

1+p2
2+p2

3)]Zk[k2−(r2
1+p2

2+p2
3)]

× δ(Σp)δ(r1 + p2 + p3) . (B.9)

Integrating over p1, the first term, and over p3, the second term, we obtain (using
explicit powers of l in order to keep track of the former δ(0)):

(IIg)W |1,1 '
λ2
k

(Zkk2 + µk)2

{
1

l

∫
D∗×2

dm1dp2dp3dn1dr2dr3 ϕm1r2r3ϕm1p2p3
ϕn1p2p3ϕn1r2r3

× δ(m1 + r2 + r3)δ(m1 + p2 + p3)δ(n1 + p2 + p3)δ(n1 + r2 + r3)

× Θ[k2−2(p2
2+p2

3+p2p3)]{∂tZk[k2−2(p2
2+p2

3+p2p3)]+2k2Zk}
Zk((−p2−p3)2+r2

2+r2
3)+µk+Θ[k2−((−p2−p3)2+r2

2+r2
3)]Zk[k2−((−p2−p3)2+r2

2+r2
3)]

× δ(r2 + r3 − (p2 + p3))

+
1

l2

∫
D∗×2

dp1dm2dm3dr1dn2dn3 ϕr1m2m3ϕp1m2m3
ϕp1n2n3ϕr1n2n3

(B.10)

× δ(p1 +m2 +m3)δ(p1 + n2 + n3)δ(r1 + n2 + n3)δ(r1 +m2 +m3)

×
∫
D
dp3

Θ[k2−2(p2
2+p2

1+p2p1)]{∂tZk[k2−2(p2
2+p2

1+p2p1)]+2k2Zk}
Zk(r1+p2

2+(−p2−p1)2)+µk+Θ[k2−(r1+p2
2+(−p2−p1)2)]Zk[k2−(r1+p2

2+(−p2−p1)2)]

× δ(r1 − p1)

}
.

To perform the proper truncation scheme, we evaluate (B.10) at 0-momentum
and take the limit. As usual, we drop the symbol liml→0 and keep the dependence
on l explicit, hence, we basically compute the coefficients through “normal” inte-
grals. We use Vi to denote, once again, the type of colored vertex involved in the
convolution of fields. One arrives to the following expression:

(IIg)W |1,1 '
λ2
k

(Zkk2 + µk)3

{k2

l2
(2 + ∂t)Zk +

k3

l3
[
√

2(2 + ∂t)Zk −
√

2

3
∂tZk]

}
V1
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' λ2
k

(Zkk2 + µk)3

{[k2

l2
+

2
√

2

3

k3

l3

]
∂tZk +

[2k2

l2
+ 2
√

2
k3

l3

]
Zk

}
V1 . (B.11)

Inspecting the 2-color cross terms, we focus on the product of terms 1-2 and
have:

(IIg)W |1,2 = λ2
k

∫
D∗×2

dpdr Θ(k2−Σsp2
s)[∂tZk(k2−Σsp2

s)+2k2Zk](((((
δ2(Σp)δ(Σr)

(Zkk2+µk)2[ZkΣsr2
s+µk+Θ(k2−Σsr2

s)Zk(k2−Σsr2
s)](((((
δ(Σr)δ2(Σp)[∫

D×2

dm2dm3 ϕr1m2m3ϕp1m2m3
δ(r1 +m2 +m3)δ(r1 + p2 + p3)

× δ(p1 +m2 +m3)δ(p2 − r2)δ(p3 − r3)

+

∫
D
dm1 ϕm1r2r3ϕm1p2p3

δ(m1 + r2 + r3)δ(m1 + p2 + p3)

× δ(p1 + r2 + r3)δ(p1 − r1)

]
×
[∫
D×2

dn1dn3 ϕn1p2n3ϕn1r2n3
δ(n1 + p2 + n3)δ(r1 + p2 + r3)

× δ(n1 + r2 + n3)δ(r1 − p1)δ(r3 − p3)

+

∫
D
dn2 ϕp1n2p3ϕr1n2r3δ(p1 + n2 + p3)δ(r1 + n2 + r3)

× δ(p1 + r2 + p3)δ(r2 − p2)

]
.

(B.12)

Discarding the disconnected interactions, the expression simplifies as

(IIg)W |1,2 ' λ2
k

∫
D∗×2

dpdr Θ(k2−Σsp2
s)[∂tZk(k2−Σsp2

s)+2k2Zk]
(Zkk2+µk)2[ZkΣsr2

s+µk+Θ(k2−Σsr2
s)Zk(k2−Σsr2

s)]

×
[∫
D×2

dm1dn2 ϕm1r2r3ϕm1p2p3
ϕp1n2p3ϕr1n2r3

× δ(m1 + r2 + r3)δ(m1 + p2 + p3)

× δ(p1 + r2 + r3)δ(p1 + n2 + p3)δ(r1 + n2 + r3)

× δ(p1 + r2 + p3)δ(r2 − p2)δ(p1 − r1)

+

∫
D×3

dm1dn1dn3 ϕm1r2r3ϕm1p2p3
ϕn1p2n3ϕn1r2n3

× δ(m1 + r2 + r3)δ(m1 + p2 + p3)

× δ(p1 + r2 + r3)δ(n1 + p2 + n3)δ(r1 + p2 + r3)

× δ(n1 + r2 + n3)δ(r1 − p1)δ(r3 − p3)δ(p1 − r1)

+

∫
D×3

dm2dm3dn2 ϕr1m2m3ϕp1m2m3
ϕp1n2p3ϕr1n2r3

× δ(r1 +m2 +m3)δ(r1 + p2 + p3)

× δ(p1 +m2 +m3)δ(p1 + n2 + p3)δ(r1 + n2 + r3)
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× δ(p1 + r2 + p3)δ(p2 − r2)δ(r2 − p2)δ(p3 − r3)

]
' λ2

k

(Zkk2 + µk)2

{∫
D∗×2

dp dm1dn2dr3 ϕm1p2r3ϕm1p2p3
ϕp1n2p3ϕp1n2r3

× δ(m1 + p2 + r3)δ(m1 + p2 + p3)δ(p1 + n2 + p3)δ(p1 + n2 + r3)

× Θ(k2 − Σsp
2
s)[∂tZk(k

2 − Σsp
2
s) + 2k2Zk]

Zk(p2
1 + p2

2 + r2
3) + µk + Θ[k2 − (p2

1 + p2
2 + r2

3)]Zk[k2 − (p2
1 + p2

2 + r2
3)]

× δ(p1 + p2 + r3)δ(Σp)

+
1

l

∫
D∗×2

dm1dp2dp3dn1dr2dn3 ϕm1r2p3ϕm1p2p3
ϕn1p2n3ϕn1r2n3

× δ(m1 + r2 + p3)δ(m1 + p2 + p3)δ(p1 + r2 + p3)δ(n1 + r2 + n3)

×
∫
D
dp1 δ(p1 + r2 + p3)δ(Σp)

× Θ(k2 − Σsp
2
s)[∂tZk(k

2 − Σsp
2
s) + 2k2Zk]

Zk(p2
1 + r2

2 + p2
3) + µk + Θ[k2 − (p2

1 + r2
2 + p2

3)]Zk[k2 − (p2
1 + r2

2 + p2
3)]

+
1

l

∫
D∗×2

dr1dm2dm3dp1dn2dp3 ϕr1m2m3ϕp1m2m3
ϕp1n2p3ϕr1n2p3

× δ(r1 +m2 +m3)δ(p1 +m2 +m3)δ(p1 + n2 + p3)δ(r1 + n2 + p3)

×
∫
D
dp2 δ(r1 + p2 + p3)δ(Σp)

× Θ(k2 − Σsp
2
s)[∂tZk(k

2 − Σsp
2
s) + 2k2Zk]

Zk(r2
1 + p2

2 + p2
3) + µk + Θ[k2 − (r2

1 + p2
2 + p2

3)]Zk[k2 − (r2
1 + p2

2 + p2
3)]

}
.

(B.13)

Performing the integral over p1 and p2 in the last two terms, removing the corre-
sponding δ’s and evaluating at the 0-momentum we find:

(IIg)W |1,2 '
λ2
k

(Zkk2 + µk)3

k2

l2
(2 + ∂t)Zk

[
V3 + V2 + V1

]
(B.14)

Collecting all contributions, (IIg)W |i,i (B.11), i = 1, 2, 3, and (IIg)W |i,j (B.14),
i < j, i, j = 1, 2, 3, the β-function for λk expresses as

1

2
β(λk) =

λ2
k

(Zkk2 + µk)3

[
2
√

2
k3

l3

(
1 +

1

3
∂t

)
Zk + 7

k2

l2
(2 + ∂t)Zk

]
=

λ2
k

(Zkk2 + µk)3

{[2
√

2

3

k3

l3
+ 7

k2

l2

]
∂tZk +

[
2
√

2
k3

l3
+ 14

k2

l2

]
Zk

}
.

(B.15)

Dimensionful β-functions. We gather (B.6) and (B.15) for the complete system
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of β-functions for the gauge invariant rank 3 TGFT model which expresses as:

β(Zk) =
λk

(Zkk2 + µk)2

[ 3√
2

k

l3
(1 + ∂t)Zk +

4

l2
∂tZk

]
β(µk) = − 3λk

(Zkk2 + µk)2

[√
2
k3

l3

(
2 +

2

3
∂t

)
Zk +

k2

l2
(2 + ∂t)Zk

]
β(λk) =

2λ2
k

(Zkk2 + µk)3

[
2
√

2
k3

l3

(
1 +

1

3
∂t

)
Zk + 7

k2

l2
(2 + ∂t)Zk

] (B.16)

which is reported in (5.22) in section 5.3.
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