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Abstract

String theory is one of the most active branches of theoretical physics and consti-

tutes the most promising candidate for a consistent fundamental theory describing our

Universe. Its structure provides a uni�ed description of all known particles and forces of

Nature, including gravity, in a single quantum mechanical framework.

Its low-energy limit, determined by compacti�cations of extra dimensions on Calabi-Yau

orientifolds, yields an e�ective theory which represents the key tool in order to make

contact with experiments and observable physics.

This theory is Supergravity, with the natural presence of a moduli hidden sector, which

consists in a collection of gravitationally coupled scalar �elds inherited from Kaluza-

Klein dimensional reduction.

In order to avoid non-observed long range �fth-forces mediated by massless moduli, these

�elds have to develop a large mass via the process of moduli stabilisation. The stabilisa-

tion of the moduli provides also a dynamical supersymmetry-breaking mechanism which

can be mediated from the hidden to the visible sector by gravitational interactions.

Moduli physics inherited from strings turns out to explain and motivate TeV-scale

supersymmetry-breaking, giving rise to important predictions for the masses of super-

partners.

In this thesis, we shall work in the framework of type IIB Calabi-Yau �ux compacti-

�cations and present a detailed review of moduli stabilisation studying in particular the

phenomenological implications of the LARGE-volume scenario (LVS). All the physical

relevant quantities such as moduli masses and soft-terms, are computed and compared

to the phenomenological constraints that today guide the research.
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The structure of this thesis is the following.

The �rst chapter introduces the reader to the fundamental concepts that are es-

sentially supersymmetry-breaking, supergravity and string moduli, which represent the

basic framework of our discussion.

In the second chapter we focus our attention on the subject of moduli stabilisation.

Starting from the structure of the supergravity scalar potential, we point out the main

features of moduli dynamics, we analyse the KKLT and LARGE-volume scenario and

we compute moduli masses and couplings to photons which play an important role in

the early-universe evolution since they are strictly related to the decay rate of moduli

particles.

The third chapter is then dedicated to the calculation of soft-terms, which arise dynami-

cally from gravitational interactions when moduli acquire a non-zero vacuum expectation

value (VeV).

In the last chapter, �nally, we summarize and discuss our results, underling their phe-

nomenological aspects. Moreover, in the last section we analyse the implications of the

outcomes for standard cosmology, with particular interest in the cosmological moduli

problem.
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Chapter 1

Introduction

Before going into details of string moduli dynamics and its physical consequences,

it is necessary to focus on the main concepts that allow and guide such a profound

construction.

We start from the review of the Standard Model and the many questions it cannot

answer, then we present a brief review of the key aspects of string compacti�cations

(expecially through the simple case of Kaluza-Klein theory) and introduce the reader to

origin of the moduli sector and the moduli stabilisation problem.

Finally, in the last section we examine the main issues about supersymmetry and its

local extension, supergravity, in order to build a solid framework to refer to later.

1.1 Physics beyond the Standard Model

The Standard Model (SM) is an impressive success of twentieth century physics and

constitutes one of the cornerstones of all science.

The SM is a particular solution of Quantum Field Theory based on the gauge group

GSM = SU(3)c × SU(2)L × U(1)Y (1.1)

where SU(3)c describes strong interactions through Quantum Chromodynamics (QCD),

7



1.1 Physics beyond the Standard Model 1. Introduction

and SU(2)L × U(1)Y describes electroweak interactions.

Matter �elds are organized into three generations (or families) of quarks and leptons, rep-

resented by left-handed Weyl fermions which transform under the SM group as showed

in Fig.1.

Fig.1 Gauge quantum numbers of SM quarks and leptons. [1]

A crucial and deep feature of fermioni spectrum is chirality (parity-violation), whose

implication is that explicit Dirac mass terms mf̄RfL + h.c. are forbidden by gauge in-

variance.

In order to give masses to fermions and weak gauge bosons, the electroweak symmetry

must be spontaneously broken down to U(1)EM . This is achieved through the interac-

tion with a complex scalar Higgs �eld φ which gets a non-zero vacuum expectation value

(VeV) thanks to a potential of the form:

V (φ) = −m2φ∗φ+ λ(φ∗φ)2 (1.2)

whose plot (in Fig.2) shows the degeneracy of the ground state under phase transforma-

tion.

Fig.2 Typical mexican-hat form of the potential [2].
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This mechanism generates W± and Z0 massive bosons, which mediate the weak force,

and gives mass to quarks and leptons through Yukawa couplings:

LY uk = Y ij
U Q̄

i
LU

j
RH

∗ + Y ij
D Q̄

i
LD

j
RH + Y ij

L L̄
iEj

RH + h.c. (1.3)

Hence the scale of fermion masses is related to the electro-weak symmetry breaking scale,

which is of the order

MEW ' 〈φ〉 '
m

λ1/2
' 102GeV (1.4)

Within this framework, the Standard Model describes elementary particles and their

electormagnetic, weak and strong interactions in a remarkable wide range of energies,

and with unprecedented precision.

However, there are a number of theoretical and phenomenological issues that the Stan-

dard Model still fails to answer properly:

• Quantum Gravity .

Gravity is not included in the Standard Model picture, which embraces only three of

the four fundamental forces in Nature.

Gravitational interactions are described by the classical theory of General Relativity and

are encoded in the Einstein-Hilbert action, given by (in obvious notation)

SEH =
MP

2

∫
d4x
√
−gR (1.5)

which is invariant under general coordinates reparametrisations.

This theory cannot be quantised in the usual fashion and is not well de�ned in the ultra-

violet, being perturbatively non-renormalizable.

Quantum gravity should be regarded as an e�ective �eld theory, which constitutes a

good approximation at energies below MP (or some other cuto� scale at which four di-

mensional classical Einstein theory ceases to be valid).



1.1 Physics beyond the Standard Model 1. Introduction

• Hierarchy problem.

This is divided in two parts. The �rst is related to the prediction about the Higgs

mass. From the theoretical point of view, it is quadratically divergent because of loop

quantum corrections, and it turns out to be of the order MP , such as the 'cuto�' scale

of the model.

The second is associated to the di�culty of explaining the huge di�erence between the

elctroweak and the Planck scale:

MEW ∼ 102GeV , MP =

√
h̄c

8πG
∼ 1018GeV (1.6)

• Fundamental questions

What is the origin of SM gauge group GSM = SU(3)c × SU(2)L × U(1)Y ? Why

are there four interactions and exactly three families of fermions? Why 3 + 1 spacetime

dimensions Why are there 20 free parameters, such as masses and gauge couplings be-

tween particles, that are introduced by hand without theoretical understanding of their

experimental values?

• Electro-weak symmetry breaking .

We need an explanation for the dynamics which causes electro-weak symmetry breaking.

The Higgs �eld potential is just introduced by hand.

• Cosmological challenges

First of all, taking into account quantum corrections to the vacuum energy, it is not

possible to reproduce the observed value of the cosmological constant.
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Moreover, there is no explanation for the baryon asymmetry of the Universe and there

is no candidate particle, within the SM, for cold dark matter and for in�aton (ignoring

non-minimal couplings of the Higgs �eld to gravity).

We understand the puzzle is far to be completed.

The Standard Model is not the fundamental theory of the Universe but only an e�ective

theory describing the fundamental one at low energy.

Along the avenue beyond the SM, researches have been made about symmetry enhance-

ment. More general spacetime symmetries produce interesting extension of the Standard

Model and provide possible solutions to the above listed problems:

- Supersymmetry is a symmetry under the exchange of bosons and fermions. It gives

an elegant explanation of the Higgs mass divergence due to cancellations between boson

and fermion radiative corrections. Also it provides the best examples of dark matter

candidates (the so called superpartners) and suggests the possibility to have a Grand

Uni�ed Theory (GUT) of all the SM forces at high energy.

- Extra dimensions introduce new spacetime 'directions' with consequent Lorentz sym-

metries enhancement. They are a fascinating possibility which could give a di�erent

perspective of the hierarchy problem and force uni�cation.

Presently the best hope for a fundamental theory of quantum gravity which gives also

an explanation to the open questions above, is String Theory.

Its basic assumption is that the fundamental objects which compose the profound archi-

tecture of Nature are not pointlike, like particles, but have at least one dimension.

Surprisingly, this simple feature, gives rise to a deep quantum mechanical structure (see

[3] and [4]) able to describe all particles and forces requiring nothing else that one single

'tiny' paramater: string lenght ls.

But the road to the �nal theory is still complicated since, from experimental point of

view, the string energy scale Ms ∼ 1/ls seems to be out of reach.
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However the hope is to be able to make some important and testable predictions from

string theory about low-energy particle physics.

1.2 String Compacti�cations

String theory, for internal consistency, requires the existence of six extra spatial di-

mensions. Studying compacti�cation techniques is then extremely important in order to

make contact with our observable world.

The physical space in which the fundamental theory lives, is the productM4×Y6 of the

usual four dimensional space-time with some compact six dimensional manifold.

In order to connect this structure with the experiments, we need an N = 1 supersymme-

try theory in four space-time dimensions. This requirement forces the internal manifold

Y6 to be a very complicated `Calabi-Yau' space (see [1] for details) .

The landscape of all the choices for compacti�cation manifold, is very extended. More-

over, the topology of the extra dimensions a�ect the physical features of the e�ective

model. Each of the Calabi-Yau choices leads to a di�erent four dimensional physics.

The great challenge, which is called model building, is to �nd a string compacti�cation

able to reproduce the Standard Model and its phenomenology [5].

In this paper we refer to type IIB string compacti�cations. This kind of models, from

recent years studies, seems to be the most promising framework to �nd the correct

low-energy e�ective theory. Their phenomenological potentiality relies on the concept

of D-branes (discovered by Polchinski in 1995) which extends the notion of string, be-

ing D-dimensional surfaces on which open strings end points are constrained to move

[6]. These non-perturbative objects provide non-Abelian gauge symmetries and chirality

constructions, allow background �uxes, which are an essential ingredient for moduli sta-

bilisation, and yields the possibility to have interesting large extra dimensions models in

the context of the so called 'brane world scenario'.

The latter gives a fascinating picture of the geometry of the Universe, based on the idea

that the Standard Model, and the real world with it, is placed and constrained to live on

a particular D-brane, while only gravity (associated with closed strings) is able to travel

across the other dimensions.
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Basics of Kaluza-Klein Theory

The idea that extra dimensions could provide an elegant framework describing fun-

damental physics comes from T.Kaluza and O.Klein, who independently proposed the

brilliant idea to unify gravity and electromagnetism through the addition of a tiny rolled

�fth dimension.

From the mathematical point of view, they imagined to build a physical theory on a

M4 × S1 space-time, endowed with a 5-dimensional metric gMN .

The geometrical picture is that the extra dimension is compacti�ed on a circle (S1) of

radius R at each point of Minkowski space-time.

Fig.3 Geometrical interpretation of Kaluza-Klein (KK) compacti�cation on the circle S1. [7]

Let us discover the physical implications of this fascinating model.

We consider the gravitational �eld in 5D described by the Kaluza-Klein ansatz metric

gMN = φ−1/3

(
(gµν − k2φAµAν) −kφAµ

−kφAν φ

)
(1.7)

where M,N = 0, 1, 2, 3, 4.

Thanks to the periodicity in the extra dimension, the e�ective �elds can be written

through a discrete Fourier expansion

gMN =
∞∑

n=−∞

gnMN(xµ)exp

(
iny

R

)
(1.8)

where we indicate with y the �fth compacti�ed dimension.
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Taking into account (1.7), the Fourier expansion then gives [2]

gMN = φ(0)−1/3

(
(g

(0)
µν − k2φ(0)A

(0)
µ A

(0)
ν ) −kφ(0)A

(0)
µ

−kφA(0)
ν φ(0)

)
+∞ tower of massive modes

(1.9)

Now, at energies much lower than the compacti�cation scale MKK = 1/R, it is possible

to integrate out all the massive terms remaining only with the zero-modes.

This goes under the name of dimensional reduction.

By doing this we are left with the following decomposition for the gravitational �eld in

5D:

gMN = gµν ⊕ gµ4 ⊕ g44 (1.10)

that is, the zero-modes contains a 4D gravitational �eld (graviton), a massless vector

and a real scalar.

The uni�ed theory of gravity, electromagnetism and scalar �elds takes an explicit form

when substituting (1.9) into the Einstein-Hilbert 5D action

S =

∫
d5x

√
|gMN |

(5)
R (1.11)

where (5)RMN = 0.

The remarkable result is:

S4D =

∫
d4x

√
|g|
[
M2

P R− 1

4
φ(0)F (0)

µν F
(0)µν +

1

6(φ(0))2
∂µφ(0)∂µφ

(0)

]
(1.12)

Unfortunately this theory had no phenomenological success, nevertheless, with the ad-

vent of string theory, the technique to treat extra dimensions devoleped in that context,

has turned out to play a crucial role.

String compacti�cations, in fact, are a generalisation of the Kaluza-Klein dimensional

reduction.
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Moduli Stabilisation

In String Theory, the compacti�ed manifold is not simply a sphere SN , but as we

pointed out before, is a complicated Calabi-Yau manifold.

Performing a Kaluza-Klein reduction of the low-energy limit of the ten-dimensional type

IIB superstring theory, one obtains a huge number of massless scalars (gravitationally

coupled to ordinary �elds) that compose the so called hidden sector of the e�ective the-

ory.

This scalar �elds are called moduli and parametrise the shape and the size of the com-

pacti�ed extra dimensions. In the speci�c, we deal with:

1. Kahler moduli, which parametrise the deformations in size of the Calabi-Yau

2. Axio-dilaton, whose VeV sets the string coupling

3. Complex structure moduli, which parametrise the shape of the extra dimensions.

Since the massless moduli would mediate unobserved long-range �fth forces, it is of

primary importance to develop a potential for these particles, and give them a mass.

This problem is called 'moduli stabilisation'.

Moreover, from a physical point of view, the issue becomes more interesting since it

gives the possibility to do realistic phenomenology. The low-energy parameters, such as

coupling constants and mass scales, are �xed by moduli vacuum expectation values.

The key point that has to be underlined is that the presence of the moduli sector is

a model-independent feature of string compacti�cations and then must represents an

essential link to the observable physics.

1.3 Supersymmetry

Despite its incompleteness, the Standard Model and QFT in general, has pointed out

that the guide tool in studying and learning about elementary processes is the concept

of symmetry.

In 1967 Coleman and Mandula proved a theorem which a�rms that in a generic quantum

�eld theory, under some reasonable assumptions (such as locality, causality, positivity of



1.3 Supersymmetry 1. Introduction

energy, �niteness of number of particles, etc...), the only possible continous symmetries

of the S-matrix are those generated by Poincaré group generators, Pµ and Mµν , plus

some internal symmetry group G commuting with them.

[Pµ, G] = [Mµν , G] = 0 (1.13)

Nevertheless, the Coleman-Mandula theorem can be eluded by weakening one or more

of its assumptions. For example, one is that the symmetry algebra only involves commu-

tators, which implies that all generators are bosonic generators.

This assumption does not have any particular physical reason not to be relaxed.

If then we consider fermionic generators, which satisfy anti-commutation relations, we

�nd that the set of allowed symmetries can be enlarged. Indeed, in 1975 Haag, Lopuszan-

ski and Sohnius, following this idea, proved that supersymmetry is the only possible

option.

Supersymmetry Algebra

Supersymmetry (SUSY) is a space-time symmetry mapping �elds of integer spin

(bosons) into �elds of half integer spin (fermions), and viceversa. From the theoretical

view point, the generators Q act as

Q |fermion〉 = |boson〉 and Q |boson〉 = |ferion〉 (1.14)

The operator Q is a fermionic object which transforms as a Weyl spinor under Lorentz

transformations and satis�es the following commutation relations:

[Q,Pµ] = [Q,G] = 0 , [Q,Mµν ] 6= 0 (1.15)

Let us see a simple toy model in details.

The simplest 4D system invariant under supersymmetry transformation is a free theory

with a fermion ψα and a complex scalar φ, whose action is given by
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S =

∫
d4x(−∂µφ∗∂µφ− iψ̄ασ̄µ∂µψα) (1.16)

In this model, making use of the equation of motion, it is not di�cult to �nd the so

called conserved super-current:

Jµα = (∂nuφ
∗σν σ̄µψ)α , ∂µJ

µ
α = 0 (1.17)

which yields the conservation of super-charges

Qα =

∫
d3xJ0

α , Q̄α̇ =

∫
d3xJ̄0

α̇ (1.18)

The algebra of the generators is given by anticommutation relations; since both Q and

Q̄ are fermionic, their anticommutator is expected to be a bosonic conserved quantity.

The only possible choice is the spacetime 4-momentum Pµ contracted with σµ in order

to have the right spinorial structure.

Thus we have:

{Qα, Q̄α̇β} = 2σµαα̇Pµ (1.19)

The other (anti)commutator between these three operator vanish.

{Qα, Qβ} = {Q̄α̇, Q̄α̇β} = [Qα, Pµ] = {Q̄α̇β, Pµ} = 0 (1.20)

It is important to remark that, since they intertwine with Poincarè algebra, Q and Q̄ are

not generators of internal symmetries.

The physical implication of a supersymmetric theory is that each one-particle state has a

superpartner. More speci�cally, in a SUSY model, there is an equal number of fermionic

and bosonic degrees of freedom and, instead of single particle states, one has to deal with

(super)multiplets of particle states. Besides, since the generators commute with Pµ and

with internal symmetries, particles in the same multiplet are expected to have di�erent
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spin, but same mass and internal quantum numbers.

There are many reasons to believe that supersymmetry is a real symmetry of Nature.

From a purely theoretical point of view, supersymmetric theories actually aim, for con-

struction, at a uni�ed description of radiation and matter. In other words, SUSY looks

like the most natural framework where to formulate a theory able to describe all known

interactions in a uni�ed way. Given that, it is not a surprise that string theory requires

it as a necessary component of consistent ultraviolet physics.

For these reasons, and due to the fact that it provides natural solutions to problems

like dark matter, forces uni�cation, the hierarchy problem and radiative electroweak

symmetry breaking, supersymmetry is one of the most studied candidates for physics

beyond the Standard Model.

Super�elds formalism

In order to write down more general supersymmetric �eld theory actions, it is neces-

sary to introduce the concept of super�elds.

Super�elds are functions of the so called superspace, which is Minkowski space-time aug-

mented with additional fermionic coordinates θα and θ̄α̇:

Φ = Φ(xµ, θα, θ̄α̇) (1.21)

In this formalism, θ is a left-handed spinor with two anticommuting component (θ(1), θ(2))

which by de�nition satisfy:

θ(1)θ(2) = −θ(2)θ(1) , θ(1)θ(1) = θ(2)θ(2) = 0 (1.22)

from which we can de�ne

θ2 = θαθβεαβ = 2θ(1)θ(2) (1.23)

Thanks to the Grassmann anticommuting property, it is easy to notice that all the

expressions which contain more than two powers of either θ or θ̄ vanish. This allows us

to write a generic super�eld as a �nite power-expansion in the fermionic coordinates,

which leads to a �nite number of ordinary �elds, �lling out supermultiplets.
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The irreducible representation of SUSY transformations are extracted from the general

form of the scalar super�eld [8]. Introducing the SUSY covariant derivatives

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ (1.24)

we de�ne chiral and antichiral super�elds respectively by the condition :

D̄α̇Φ = 0 DαΦ̄ = 0 (1.25)

Concretely, looking at the chiral super�eld, the constraint is solved by the following

structure

Φ(x, θ, θ̄) = φ(y) +
√

2θψ(y) + θ2F (y) (1.26)

where we performed the reparametrisation y = x+ iθσµθ̄ .

In this expression φ is a scalar �eld, ψ is a Weyl spinor and F is called the scalar auxiliary

�eld, which eventually can be integrated out via its equation of motion.

Remarkably, under a supersymmetry transformation, the components of the supermul-

tiplets (φ, ψ, F ) transform into each other as expected from the physical point of view.

The other fundamental representation is the vector super�eld, which contains as compo-

nents the gauge boson �elds and the superpartners gauginos.

The vector multiplet is constructed without using SUSY covariant derivatives. The con-

straint we impose is simply V = V †, that means V must be a real super�eld.

In the so called Wess-Zumino gauge ( see [8] for further details) the vector super�eld

takes the simple form:

V (x, θ, θ̄) = −θσµθ̄Aµ(x) + iθ2θ̄λ̄(x)− iθ̄2λ(x) +
1

2
θ2θ̄2D(x) (1.27)

where Aµ is a gauge �eld, λ is its fermionic superpartner (the gaugino) and D is a real

auxiliary scalar �eld.

A remarkable fact is that under a supersymmetry transformation the F and D aux-

iliary �elds, transform as a total space-time derivative.

This important feature allows the construction of general supersymmetric Lagrangians

through the following argument.
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In order to have δS = 0 under SUSY transformation, δL must contain total derivatives

of super�elds. Thus, we can write for the chiral super�eld Φ

L = K(Φ,Φ†)|D + W (Φ)|F + h.c. ) (1.28)

where K, known as the Kähler potential, is a real function of the super�eld, while W

is called the superpotential and is an holomorphic function of Φ (and therefore a chiral

super�eld itself).

Moreover, thanks to the fact that for Grassmann variables one gets∫
dθ =

∂

∂θ
(1.29)

we �nd

L =

∫
d4θK(Φ,Φ†) +

∫
d2θ(W (Φ) + h.c.) (1.30)

The super�eld formalism is a useful tool which simpli�es calculation, while keeping su-

persymmetry manifest.

The Kähler potential K and the superpotential W determine entirely the chiral super-

multiplet free theory.

Let us see how to add interactions and realise a consistent supersymmetric extension of

the Standard Model.

Minimal Supersymmetric Standard Model

The super�elds formalism provides a simple and powerful procedure to build general

supersymmetric Lagrangians, through the knowledge of two functions of the supermul-

tiplets: the superpotential W and the Kähler potential K.

In order to construct the supersymmetric extension of the SM action, we have to intro-

duce a generalisation of gauge symmetry invariance, which describes interactions.

This is realised by a simple argument involving vector and chiral super�elds.

First of all, it is necessary to generalise the gauge invariant �eld strenght Fµν . This

is provided by a chiral super�eld Wα de�ned in the abelian case as

Wα = −1

4
D̄D̄DαV (1.31)
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where D is the auxiliary �eld, while Dα is the SUSY-covariant derivative.

The kinetic term for gauge bosons and gauginos then arises from:

L =
1

4
Tr

∫
d2θWαWα + h.c. = Tr

(
−1

4
FµνF

µν − iλσµDµλ̄+
1

2
D2

)
(1.32)

Now, the interactions between a gauge multiplet V with a chiral super�eld Φ are de-

scribed by the following Kähler potential∫
d2θd2θ̄ Φ†eV Φ (1.33)

The terms (1.32) and (1.33) are invariant under the following generalised gauge trans-

formation

Φ→ e−i ΛΦ , V → V + i(Λ− Λ†) (1.34)

which includes the ordinary gauge transformation.

The total Lagrangian of the so called Minimal Supersymmetric Model (MSSM) then is

given by:

L =

∫
d2θd2θ̄ Φ†eV Φ +

∫
d2θ(W (Φ) + h.c.) +

(
Tr

∫
d2 θf(Φ)WαWα + h.c.

)
(1.35)

where f(Φ) is an holomorphic function of the chiral super�eld and is called the 'kinetic

gauge function'.

This construction represents the simplest supersymmetric model, where the matter con-

sists of three generations of quark and lepton supermultiplets plus two Higgs doublets

super�elds (supersymmetry requires two higgs doublets in order to avoid anomalies), and

the gauge sector is given by SU(3)c × SU(2)L × U(1)Y vector super�elds.

The associated superpotential, in an obvious notation, takes the form:

W =
∑

generations

[YuQLH2ū
c
L + YdQLH1d̄

c
L + YeQLH1ē

c
L] + µH1H2 (1.36)

where the �rst three terms correspond to standard Yukawa couplings giving masses to

up quarks, down quarks and leptons, while the fourth term is a mass for the two Higgs

�elds.
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Further terms are forbidden by the so called R-parity (see [2],[8]) for more details) which

ensures baryon and lepton number conservation.

MSSM considers the (minimum) number of new particles and new interactions con-

sistent with phenomenology and provides important physical consequences:

• Naturalness and Hierarchy Problem: the Higgs mass divergence can be solved

by scalar superpartners radiative corrections (see [2] for more details on miraculous can-

cellation).

Fig.4 Cancellation of the Higgs boson quadratic mass renormalization between fermionic top quark

loop and scalar top squark Feynman diagrams in the MSSM. [2]

• Dark Matter: one of the s-particles of the MSSM (the lightest netralino in partic-

ular) falls into the category of a Weakly Interacting Massive Particle (WIMP), which

constitutes a promising candidates for dark matter.

• Grand Uni�cation: if the superpartners of the Standard Model were near the TeV

scale, then the gauge couplings of the three gauge groups are expected to unify at ener-

gies of order 1016 GeV.

Nevertheless, from experimental ground, supersymmetry is not an exact symmetry of

Nature.
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SUSY-Breaking and Soft-Terms

As pointed out before, supersymmetry implies that all �elds in the same multiplets

have the same mass.

Nevertheless, this cannot correspond to our real world, because super-partners of ordinary

particles have not been detected. Thus, supersymmetry must be broken at an energy

higher than the electroweak scale.

In analogy with other symmetries in particle physics, we expect SUSY to be broken

spontaneously. This means that the complete Lagrangian of the theory would be invariant

under supersymmetry transformations, but the vacuum state would not.

In mathematical language, this means

Qα | vacuum 〉 6= 0 (1.37)

In more details, let us consider the in�nitesimal transformation laws under SUSY for

components of a chiral super�eld Φ

δφ =
√

2 εψ (1.38)

δψ =
√

2 εF + i
√

2 σµε̄ ∂µφ (1.39)

δF = i
√

2 ε̄ σ̄µ∂µψ (1.40)

If, in the ground state of the theory, one of these expressions is non-zero, then SUSY is

broken.

Now, to preserve Lorentz invariance, it is easy to conclude that the only possibility is [2]

〈F 〉 6= 0 → δψ 6= 0 (1.41)

If we call ψ a Goldstone fermion (or goldstino), we �nd an analogous of the Goldstone

theorem for non-supersymmetric model whith the VeV of the auxiliary �eld playing the

role of the order parameter of the transition.

Moreover, from the supersymmetric Lagrangian (1.28), we can extract the scalar po-

tential VF of the theory given by the F-term of the superpotential W (Φ). From explicit

calculation [2], it takes the form

VF = K−1
ij̄

∂W

∂φi

∂W ∗

∂φ∗
j̄

(1.42)
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where φ is the super�eld scalar component, while K−1
ij̄

is the inverse matrix of the Kähler

metric given by ∂K
∂φi∂φ∗j̄

.

Then integrating out the auxiliary �eld F using the equations of motion

δS

δF i
= 0 → F ∗i = −∂W

∂φi
,

δS

δF ∗i
= 0 → F i = −∂W

∗

∂φ∗i

the scalar potential becomes simply:

VF = K−1
ij̄
F iF ∗j (1.43)

so that SUSY breaking condition implies 〈VF 〉 > 0 .

Fig.5 Various symmetry breaking scenarios. [2]

Since no consistent model can be constructed in which SUSY is dynamically broken in

the observable �elds sector, the most promising possibility is to assume the existence of

a hidden sector inside the MSSM framework, in which the dynamics of some scalar �elds
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breaks SUSY. Then SUSY-breaking has to be communicated to the observable sector

through the action of some messenger interaction.

In all scenarios, in order to break SUSY, the e�ective Lagrangian of the MSSM must

receive a contribution from the hidden sector of the form

Lsoft =
1

2
(Ma λ̂

aλ̂a + h.c.) − m2
αφ
∗αφα −

−
(
AαβγŶαβγφ

αφβHγ + Bµ̂H1H2 + h.c.
)

(1.44)

where φα denotes the scalar components of the chiral multiplets; Ma, m
2
α, Aαβγ and Bµ̂

are called soft breaking terms.

These terms are crucial not only because they determine the supersymmetric spectrum

(gaugino, higgsino, squark and sleptons masses), but also because they contribute to the

Higgs potential generating the radiative break-down of the electroweak symmetry.

It has been calculated that, in order to reproduce the correct electroweak scale, the soft

terms should be of the order of TeV energy scale.

Although in principle supersymmetry breaking may look arbitrary, it can arise natu-

rally and dynamically in the context of local SUSY (i.e. supergravity).

Supergravity

The classical theory of gravity can be thought as the gauge theory of global space-

time transformations. In this section we want to point out that supergravity, as well, can

be viewed as the gauge theory of global supersymmetry.

From relation (1.19) it is visible the connection between SUSY transformations and

space-time translation generated by Pµ. It is intuitive that promoting supersymmetry to

a local symmetry, space-time translations which di�er from point to point are generated.

Therefore local SUSY implies general coordinate transformation, i.e. gravity.

From a technical point of view, if we consider for simplicity the action (1.16) we �nd

that is not invariant under local supersymmetry. In fact, when the supersimmetric in-
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�nitesimal parameter ε becomes a function of the coordinates of space, one gets

δL = ∂µε
αKµ

α + h.c. (1.45)

where

Kµ
α = −∂µφ∗ψα −

i

2
ψβ(σµσ̄

ν)αβ∂νφ
∗ (1.46)

Thus, in analogy with ordinary gauge theory, a gauge �eld has to be introduced in order

to keep the action invariant. In this case we have to include:

L3/2 = kKα
µΨµ

α (1.47)

where k is a constant introduced to give the correct dimension and Ψ is a Majorana

spinor �eld, with spin 3/2, called gravitino, which transforms as

Ψµ
α → Ψµ

α +
1

k
∂µεα (1.48)

Nonetheless, if we look now at the total Lagrangian behaviour, we get:

δ(L+ L3/2) = kΨµ
αγν εT

µν (1.49)

where T µν is the energy-momentum tensor.

One may be surprised by this result, but the physical intuition suggests that, since we

are working in the context of SUSY, we have not to introduce a stand alone �eld, but

a supermultiplet. In fact, the Lagrangian is invariant only if we add a new term of the

form:

Lg = −gµνT µν (1.50)

where, remarkably, the �eld gµν transforms under SUSY as:

δgµν = kΨµ
αγν ε (1.51)

Any local supersymmetric theory has to include gravity through the supermultiplet

(gµν ,Ψ
µ
α) with graviton and gravitino respectively.

Since here we have more symmetry than in pure quantum gravity, one could reasonably

think about an improvement in the high-energy behaviour. Although this is essentially
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true, supersymmetry is not su�cient to cancel all divergences of the theory, which again

has to be considered as a low-energy limit of a more profound structure.

Supergravity, in fact, thanks to the compacti�cation of the higher-dimensional theory, is

the connecting link between superstring theory and low-energy phenomenology.

Moreover, due to the Kaluza-Klein dimensional reduction, supergravity turns out to have

a natural hidden sector built-in which is given by the moduli �elds.

Within this framework, it is possible to study spontaneous supergravity breaking in the

moduli sector, which generates, thanks to gravity-mediation, the soft breaking terms in

(1.44).

In this regard, let us point out some technical essential details and focus on the en-

tire Lagrangian of the model.

The N = 1 4D Supergravity Lagrangian for interacting supermultiplets, can be obtained

following the same Noether approach we have used in the case of free chiral multiplet

model.

Starting from the MSSM Lagrangian given by (1.35), one can generalize to local-supersymmetry

and obtain the entire supergravity action in four space-time dimensions (see [9]).

Since we are interested in supersymmetry breaking, we concentrate on the form of the

scalar potential obtained by integrating out the F auxiliary �elds through their equation

of motion. Explicit calculations (in units of MP = 1) give:

VF = eK
[
(K−1)ij̄DiWDj̄W̄ − 3|W |2

]
(1.52)

where DiW = ∂iW + (∂iK) W , is called Kähler covariant derivative.

The structure of the scalar potential determines the vacuum state of the theory and then

the possibility to have spontaneous SUSY-breaking.

As in the case of global SUSY, it is possible to write the potential (1.52) in terms of the

F �elds:

VF = Kij̄F
iF j̄ − 3eK |W |2 (1.53)

with

F i = eK/2(K−1)ij̄Dj̄W̄ , F̄ j̄ = eK/2(K−1)j̄iDiW (1.54)
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We remark that, due to the presence of the last terms in (1.53) (coming directly from the

auxiliary �elds of the gravity multiplet), in a local supersymmetric theory both 〈VF 〉 = 0

and 〈VF 〉 6= 0 are possible after supergravity breaking. This is very important for the

cosmological constant problem, since it allows to break SUSY and at the same time to

keep the vacuum energy zero.

By studying the minima of this potential, it is possible to reveal which �elds break

supersymmetry and the magnitude of the relevant F-terms.

In this context the super-Higgs mechanism is the following: scalar �elds acquire a non-

zero VeV giving rise at spontaneous SUSY-breaking; then the goldstino is eaten up by

the massless gravitino to obtain a massive spin 3/2 particle.

From the analysis of the supergravity Lagrangian it's easy to �nd the gravitino mass

term

m3/2 = eK/2|W | (1.55)

which, as we will see, is strictly related to the soft terms expressions.

Soft terms are generated through the gravitational interaction between moduli and ob-

servable �elds.

The structure of the vacuum of (1.52) then provides a concrete connection between the

fundamental theory of our universe and the low-energy physics which might be tested

experimentally.
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Type IIB Moduli Stabilisation

In this section we investigate the structure of the e�ective scalar potential resulting

from type IIB �ux compacti�cations. The task here is to give a comprehensive description

of the fundamental scenarios of moduli stabilisation, focusing our interest on the ground

state of the theory as well as on the emergent possibility to break SUSY dynamically in

the hidden sector.

We start from a detailed analysis, in the context of Supergravity, of the tree-level struc-

ture of the scalar moduli potential obtained from turning on �uxes in the internal man-

ifold.

Then, in order to stabilise Kahler moduli, we study the e�ects of leading corrections

to the Kahler potential and the superpotential (perturbative for the former and non-

perturbative for the latter).

Finally we get through some considerations about the physical picture that emerges

from these models and the possibility to connect the elegant LARGE-volume model,

using string loop corrections, to the MSSM and chiral visible matter.

2.1 Tree-Level Moduli Potential

As previously pointed out, taking the low-energy limit of String Theory and com-

pactifying the extra dimensions through Kaluza-Klein reduction, we are left with a local

supersymmetric extension of the Standard Model.

29
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We are interested in the moduli sector dynamics and, for this reason, we analyse the

scalar potential (1.52) generated by the moduli chiral super�elds:

VF = eK
[

(K−1)ij̄DiWDj̄W̄ − 3|W |2
]

(2.1)

From this expression it is manifest that the Kahler potential and the superpotential play

a crucial role in the theory.

Let us inherit from String Theory the explicit form of K(φ, φ?) and W (φ).

We assume the following standard notation: call T, U, S respectively the Kahler, complex

structure and axio-dilaton moduli.

In agreement with the results in type IIB compacti�cations, the Kähler potential at the

leading order in α′ and gs takes the block diagonal form

Ktree = −2ln(V)− ln(S + S̄)− ln
(
−i
∫
M

Ω(U) ∧ Ω̄(Ū)

)
(2.2)

where V is the volume of M , which is the entire Calabi-Yau manifold, while Ω is the

Calabi-Yau holomorphic (3, 0)-form.

From turning on background �uxes, we have instead for the superpotential:

Wtree = λ(S, U) =

∫
M

G3 ∧ Ω (2.3)

Notice that G3 = F3 − SH3 with F3 and H3 being respectively RR and NS-NS 3-forms

�uxes ([10] , [11]).

It is to be underlined here that the superpotential does not depend on the Kähler mod-

uli. Since W is holomor�c, a dependence on T would violate the shift symmetry (see for

example [12]). The consequence of this fact will be clear in a moment.

Let us compute the explicit form of the scalar potential VF and see what happens.

VF = eK [ (K−1)ij̄DiWDj̄W̄ − 3|W |2] (2.4)

= eK [
∑
T

(K−1)ij̄DiWDj̄W̄ +
∑
U,S

(K−1)αβ̄DαWDβ̄W̄ − 3|W |2]



2. Type IIB Moduli Stabilisation 31

Applying the de�nition of Kähler covariant derivative, we have:

DTW = ∂TW +W∂TK

but, since W does not depend on the modulus T:

VF = eK [
∑
T

(K−1)ij̄KiKj̄|W |2 +
∑
U,S

(K−1)αβ̄DαWDβ̄W̄ − 3|W |2]] (2.5)

VF = eK [(
∑
T

(K−1)ij̄KiKj̄ − 3)|W |2 +
∑
U,S

(K−1)αβ̄DαWDβ̄W̄ ]

Now, recalling the so called no-scale property for a generic Calaby-Yau manifold

(K−1)T T̄KTKT̄ = 3

we obtain:

VF = eK [
∑
U,S

(K−1)αβ̄DαWDβ̄W̄ ] (2.6)

= eK [ (K−1)UŪ |DUW |2 + (K−1)SS̄|DSW |2 ]

This is the �nal generic form of the scalar moduli potential at tree-level.

Now it is easy to work out the minimum of the potential, because of:

VF = eK [ (K−1)UŪ |DUW |2 + (K−1)SS̄|DSW |2 ] ≥ 0 (2.7)

Hence we have a Minkowski ground state when U and S acquire a vacuum expectation

value (VeV) < U > and < S > such that respectively:

DUW = 0 , DSW = 0. (2.8)

Let us analyse how these results a�ect the supersymmetric properties of the theory and

in particular of the ground state.
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As seen in section 1.3, SUSY-breaking occurs when the F-term, in the vaccum state,

takes a non zero value < F > 6= 0 .

In this context, recalling the expression (1.54), we know the F-term takes the form:

F I = eK/2 (K−1)Ij̄Dj̄W (2.9)

Given the explicit form of the local supersymmetry transformations, indeed, this expres-

sion emerges easily due to the preservation of Lorentz invariance.

The F-terms referred to U and S moduli are zero, because of the relations (2.8), while

the F-term of Kahler moduli becomes, after calculation:

F T = −2τ eK/2|W | (2.10)

where the relation KT T̄KT̄ = −2τ , that holds for a generic Calabi-Yau space, has been

used with τ = Re(T ) = T+T̄
2

.

Notice that, since the gravitino mass term in supergravity models is given by

m3/2 = eK/2|W |

we deduce that the F-term (2.10) which breaks supersymmetry is proportional to the

gravitino mass. The latter, indeed, is strictly connected with spontaneous SUSY-breaking

thanks to the so called super-Higgs mechanism, in which the gravitino "eats" a Gold-

stone fermion mode and becomes massive. The relation (2.10) gives us a hint: this mass,

as we will see later in section 3, enters directly in the structure of soft terms and then

determines approximatively the energy scale at which supersymmetry is broken.

Returning to our discussion, we have learned that, while on one hand at tree-level su-

persymmetry can be broken dynamically in the hidden sector, on the other we are still

far from achieving a satisfying model: the T-moduli have no hope to be stabilised here.

Although the complex structure moduli and the axio-dilaton are just �xed thanks to

the superpotential induced by the background �uxes, for Kahler moduli the potential is
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clearly �at.

If we want a physical acceptable model we must �nd a technique which provides a stable

ground state for the T-moduli.

A simple model which addresses this issue is realised and discussed in the next paragraph.

2.2 KKLT scenario

In the previous paragraph we have learned that supersymmetry can be spontaneously

broken by Kahler moduli.

Nevertheless the T-moduli have no minimum and thus we have to introduce some cor-

rections for K and W in order to solve the problem.

First, let's focus on the superpotential, employing a dependence on T-moduli (we ac-

tually ignore the α′ correction to the Kahler potential, which instead will be added

next): we have to introduce non-perturbative corrections to W , due the the fact that W

is not renormalised at any order in perturbation theory.

From a physical point of view, in some circumstances in the context of string compacti�-

cation, which we do not investigate here, W acquires a non-perturbative dependence on

some or all of the Kahler moduli through D3-brane instantons or gaugino condensation

from wrapped D7-branes. W then takes the form:

W =

∫
G3 ∧ Ω +

∑
i

Aie
−aiTi (2.11)

where Ai only depends on the complex structure moduli, ai = 2π
n
(with n positive integer).

To sum up we want to calculate the new scalar potential when K and W take the

form:

K = −2 ln V (2.12)

W = W0 +
∑
i

Aie
−aiTi
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whereW0 is the value of the superpotential �xed by the minimization of S and U moduli

already seen from the tree-level analysis.

From the relation V ∼= τ 3/2 , considering for simplicity only one T-modulus, we can

easily simplify and rewrite the previous expression in terms of T , we obtain:

K = −3 ln

(
T + T̄

2

)
(2.13)

W = W0 + A e−a T

Taking into account the new W dependence on T we obtain:

VF = eK
[
KT T̄ (WT W̄T̄ +KTWW̄T̄ +KT W̄WT +KTKT̄ W̄W )− 3|W |2

]
(2.14)

Now, making use of the no-scale structure seen previously in the tree-level model, last

two terms cancel and we are left with:

VF = eK
[
KT T̄WT W̄T̄ +KT T̄KT (WW̄T̄ + W̄WT )

]
(2.15)

Substituting the explicit form of the superpotential and recovering the useful relations

KT T̄KT = −2τ and T = τ + iρ , we have:

KT T̄KT (WW̄T̄ + W̄WT ) = 2τ
[
2aA2e−2aτ − AW0e

−aτ (eiaρ + e−iaρ)
]

(2.16)

in which, we notice :

eiaρ + e−iaρ = 2cos(aρ)

At this point, since our �nal goal is to work out the vacuum structure, becomes convenient

to minimize now with respect to Im(T ) = ρ obtaining:

< ρ > = π/a → cos(aρ) = −1 (2.17)
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Carrying on with calculation:

VF = eK
[
KT T̄WT W̄T̄ + 4τaA2e−2aτ − 4τaAW0e

−aτ
]

= (2.18)

=
1

τ 3

[
4

3
τ 2A2a2e−2aτ + +4τaA2e−2aτ − 4τaAW0e

−aτ
]

which �nally becomes:

VF =
4

3
A2a2 e

−2aτ

τ
+ 4aA2 e

−2aτ

τ 2
− 4aAW0

e−aτ

τ 2
(2.19)

To discover the ground state value of the T-modulus, we have to study the minimum of

this potential.

Let us perform the derivative to �nd stationary points:

∂V

∂τ
= 0 (2.20)

From (2.19) we have:

−4

3
A2a2

(
e−2aτ

τ 2
+ 2a

e−2aτ

τ

)
− 8aA2

(
a
e−2aτ

τ 2
+
e−2aτ

τ 3

)
+

+ 4aAW0

(
a
e−aτ

τ 2
+ 2

e−aτ

τ 3

)
= 0

Multiplying then by τ 3, this becomes:

−4

3
A2a2

(
e−2aττ + 2ae−2aττ 2

)
− 8aA2

(
a e−2aττ + e−2aτ

)
+

+ 4aAW0

(
a e−aττ + 2e−aτ

)
= 0

Now, in general we have to consider higher instanton contributions toW , which represent

a non-perturbative correction of the form:

Wnp =
∑
n

Ane
−naT (2.21)
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Then, comparing with (2.13), in order to ignore terms as e−2aT , e−3aT and so on, we need

aτ � 1.

Assuming that limit, we can simplify the equation neglecting subleading terms. After

some simple calculations, we are left with

4a2AW0e
−aτ − 8

3
a3A2e−2aττ = 0

which becomes �nally:

e−aτ ∼ W0

τ
(2.22)

We conclude that T -moduli can be stabilised through non-perturbative corrections to

the superpotential, but as shown in (2.22), this occur only when W0 is exponentially

small (tipically < 10−4).

This model goes under the name of KKLT scenario (from Kachru, Kallosh, Linde,

Trivedi) and represent the prototype of convincing models of moduli stabilisation de-

rived from string theory [13].

Let us discuss some important aspects about KKLT solutions.

In the context of this class of minima, all the moduli are stabilised, but supersymmetry

holds in the ground state, where indeed we have:

DTW = ∂TW +W∂TK = 0

with as immediate consequence

F T = eK/2 (K−1)T T̄DT̄W = 0 (2.23)

In order to have supersymmetry breaking, one has to perform an uplift of the minimum.

In fact by looking at the scalar potential in (2.1) and taking into account that we have

DIW = 0, it is easy to recognize we are in an Anti-deSitter scenario.
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Fig. 6. Uplifting of ground state in KKLT scenario.

A well known problem of the KKLT scenario is exactly the uplift of the vacuum energy

to zero or positive values. This has relevant consequences not only for SUSY-breaking,

but also for cosmology.

The original proposal was to use antibranes which relies essentially on non-linearly re-

alised supersymmetry, whereas other attempts to uplift vacuum energy are made by

using D-term and lead generically to very heavy (close to the Planck mass) gravitino

mass.

The second main problem of a such scenario is that, in the �ux "landscape", values

of W0 of O(10) are more common than those of the order O(10−4) by a factor ∼ 1010

[10] !

It would be interesting to have example models of large volume minima of the potential

for large values of W0.

We now turn our attention to this.
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2.3 LARGE Volume Scenario

In KKLT scenario, τ parametrizes extra dimensions, and in particular Calabi-Yau

volume, according with the relation V = τ 3/2.

What we suppose now, is that exists another parameter, inherited from Kaluza-Klein

dimensional reduction, that controls the volume of a small blow-up cycle in the bulk

space.

For the calculation we specify that we refer to the expicit form of the orientifold of the

Calabi-Yau space given by the degree 18 hypersurface in P4
[1,1,1,6,9] which has been built

and studied deeply [1]. In order to grasp a geometrical meaning of such construction, we

can visualise it as a huge swiss-cheese with the small blow-up cycle being a "hole".

Let us introduce two T-moduli Tb for the large bulk and Ts for the small hole. As we're

going to show, with this construction we gain large-volume minima with natural values

of W0.

But a question may (should) arise now, where is the observable world in this strange

picture?

When the volume of the bulk is very large (as we will see ∼ 1015 in strings units),

N D-7 branes wrapped on the small cycles (in general one could have a stack of them)

support a non-Abelian SU(N) theory and the corrisponding gauge coupling is qualita-

tively similar to those of the Standard Model [14]. If the branes are magnetised, SM

chiral matter can arise from strings stretching between stacks of D7-branes.

We are ready to explore this fascinating scenario.

The Kahler geometry is speci�ed by:

V =
1

9
√

2

(
τ

3/2
b − τ 3/2

s

)
(2.24)
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Fig.7 The physical picture: Standard Model matter is supported on a small blow-up

cycle located within the bulk of a very large Calabi-Yau manifold [14].

The scalar potential VF is, as usually, determined by the form of K and W . In this

case we have:

K = −2 ln

(
V +

ξ̂

2

)
' −2ln(V)− ξ̂

V
+O(V−2) (2.25)

W = W0 + Abe
−abTb + Ase

−asTs

where this time we consider α′ perturbative corrections to the Kahler potential, which

instead were neglected in the previous case. These are higher derivative corrections to the

4D e�ective action which are proportional to ξ̂ = ξ/g
3/2
s where ξ is an O(1) constant that

depends on the topological features of the Calabi-Yau, whereas gs is the string coupling
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which is set by the VeV of Re(S).

As in the precedent model, we specify real and immaginary part of T-moduli; we have

Tb = τb + iρb , Ts = τs + iρs (2.26)

The computation of the potential is shown below.

Let us start from the usual expression:

VF = eK
[
KTiT̄jDTiWDT̄jW̄ − 3|W |2

]
(2.27)

If we substitute the form of K and W we obtain:

VF = Vnp + Vα′ (2.28)

with

Vnp = eK
[
Kij̄(WTiW̄T̄j +KTiWW̄Tj +KT̄jW̄WTi)

]
Vα′ = eK

[
3ξ̂

(ξ̂2 + 7ξ̂V + V2)

(V − ξ̂)(2V + ξ̂)2
|W |2

]

No-scale structure is lost, due to the presence of the ξ̂ correction.

To develop calculations, let us �rst work out the following relations:

KTs =
1

2

∂K

∂τs
=

3
√

2τs
2V

(2.29)

KTb =
1

2

∂K

∂τb
= −3

√
2τb

2V

together with the inverse 2x2 symmetric matrix elements:

KTiT̄j = −2

9
(2V + ξ̂)kijkt

k +
4V − ξ̂
V − ξ̂

τiτj (2.30)
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which in the large Volume limit becomes:

KTsT̄s '
√
τsV (2.31)

KTsT̄b = 4τsτb ' τsV2/3

KTbT̄b =
4

3
τ 2
b

Assuming W = W0 +O(1/V) from integration of U and S moduli, the non-perturbative

term of the potential takes the form:

Vnp = eK [KTiT̄jWTiW̄Tj + 2τsasAsW0e
−asτs(e−iasρs + eiasρs)+

+ 2τbabAbW0e
−abτb(e−iabρb + eiabρb)] (2.32)

using the explicit form of the inverse of Kähler metric, the �rst term into the brackets

lead to:

KTiT̄jWTiW̄Tj = KTsT̄sWTsW̄Ts +KTbT̄bWTbW̄Tb +KTsT̄b(WTsW̄Tb +WTbW̄Ts) =

= a2
sA

2
s

√
τsV e

−asTse−asT̄b + a2
bA

2
b

4

3
τ 2
b e
−abTbe−abT̄b +

+ abasAbAsτsV
2/3(e−asTse−abT̄b + e−asT̄se−abTb) =

= a2
sA

2
s

√
τsV e

−2asτs +
4

3
τ 2
b e
−2abτb + τsV

2/3e−abτb−asτs [2cos(asρs − abρb)]

Now, we perform the LARGE volume limit V >> 1 and we can neglect the terms which

are suppressed by ' e−abτb , obtaining:

KTiT̄jWTiW̄Tj = a2
sA

2
s

√
τsVe−2asτs (2.33)

and

Vnp = eK
[
a2
sA

2
s

√
τsVe−2asτs + 4τsasAsW0e

−asτscos(asρs)
]

(2.34)
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Now we note that eK ' 1
V2 and we approximate Vα′ in the LARGE volume limit [10].

Finally we obtain the total expression for the scalar potential:

VF '
a2
sA

2
s

√
τse
−2asτs

V
+
asAsW0τse

−asτscos(asρs)

V2
+

ξ̂

V3
|W0|2 (2.35)

From this expression we start evaluate minimum conditions in order to verify T-moduli

stabilisation.

First of all we minimize with respect to Im(T ) = ρ.

We immediately �nd:

ρs =
nπ

as
(2.36)

in order to have cos(asρs) = −1.

For the immaginary part of Tb holds a similar relation, but because of the approximation

we performed, it does not a�ect the minimum investigation.

From �xing ρs, we are left with:

VF '
a2
sA

2
s

√
τse
−2asτs

V
− asAsW0τse

−asτs

V2
+

ξ̂

V3
|W0|2 (2.37)

Since VF depends explicitly on τs and V , it is worthwhile evaluating the following equa-

tion:

∂VF
∂τs

= 0 ,
∂VF
∂V

= 0 (2.38)

Where VF is given by:

VF '
λ
√
τse
−2asτs

V
− µτse

−asτs

V2
+

ν

V3
(2.39)

with λ = a2
sA

2
s ; µ = asAsW0 ; ν = ξ̂W 2

0 .
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∂VF
∂V

= −
λ
√
τse
−2asτs

V2
+ 2

µτse
−asτs

V3
− 3

ν

V4
= 0 (2.40)

which can be easily rearranged into a quadratic:

−λ
√
τse
−2asτsV2 + 2µτse

−asτsV − 3ν = 0 (2.41)

and be solved for:

V =
µ

λ
τ 1/2
s easτs

(
1±

√
1− 3νλ

µ2τ
3/2
s

)
(2.42)

The equation for τs leads to:

∂VF
∂τs

=
λVe−asτs

τ
1/2
s

(
1

2
− 2asτs

)
− µ(1− asτs) = 0 (2.43)

We then use (2.42) to obtain an implicit equation for τs:(
1±

√
1− 3νλ

µ2τ
3/2
s

)(
1

2
− 2asτs

)
= (1− asτs) (2.44)

Now, by requiring asτs >> 1 to be able to ignore higher order corrections, we can sim-

plify and solve for τs.

We have, in conclusion:

〈
τ

3/2
b

〉
' 〈V〉 =

µ

2λ
〈τs〉1/2 eas〈τs〉 (2.45)

〈τs〉 =

(
4νλ

µ2

)2/3

Recalling the explicit form of λ, µ, ν :

〈τs〉 ' ξ̂2/3 ' ξ2/3

gs
' O(1/gs) ' 10
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〈V〉 ' W0e
asτs ' e1/gs >> 1

As emerges from the computation, this model allows T-moduli stabilisation with natural

values of W0 ' O(1) [10]. The vacuum of the potential can generally be at exponentially

large volume, as it is expressed in the relation above.

In this context we have a non-supersymmetric AdS vacuum state, with cosmological con-

stant of order 1/V3. An uplift to dS vacuum state is viable through di�erent techniques

and is necessary in order to reproduce the correct value of the cosmological constant.

It is important to remark that the mechanism described results in internal spaces that

are exponentially large in string units; this implies a realization of the large extra dimen-

sions scenario in which the fundamental string scale is hierarchically smaller than the

Planck scale since dimensional reduction gives Ms ∼Mp/
√
V .

For the particular example discussed here one �nds an intermediate string scale Ms ∼
1012GeV , which, as we will see in the section on SUSY-breaking, leads to TeV-scale soft

terms.

2.4 Moduli Masses and Coupling to Photons

String moduli are naively massless particles. Since this would give rise to unobserved

�fth force, it is necessary that they receive mass from the �ux-induced moduli scalar

potential VF . Let us see in details how to canonically normalise the moduli and also

compute their masses and couplings to photons in the context of the large volume sce-

nario.

First of all, we assume that the vacuum of the potential has been located as shown

in the previous paragraph. By writing τi = 〈τi〉 + δτi, we are able to expand the La-

grangian about the minimum of the moduli potential.

In the neighbourhood of the minimum, we can write (with obvious notation):
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L = Kij̄∂µ(δτi)∂
µ(δτj)− V0 − (M2)ij(δτi)(δτj)−O(δτ 3)− k τs

MP

FµνF
µν . (2.46)

where we take Re(fU(1)) = kτs, the gauge kinetic function, from string compacti�cation.

In order to express the Lagrangian in terms of normalised �elds, we have to diagonalize

simultaneously Kij̄ = 1
4
∂2K
∂τi∂τj

|min and (M2)ij̄ = 1
4
∂2V
∂τi∂τj

|min.
For this scope, let us introduce two �elds Φ and χ in terms of which we write:(

δτb

δτs

)
=

(
(vΦ)b

(vΦ)s

)
Φ√
2

+

(
(vχ)b

(vχ)s

)
χ√
2

(2.47)

where we impose v =

(
vb

vs

)
to be normalised, satisfying the relation vTα ·K · vβ = δαβ.

Now, thanks to the commutation of (K−1) and (M2), we have to solve a generalized

eigenvalue problem: (
(K−1)(M2)

)
vi = m2

i vi (2.48)

where i = Φ, χ and so m2
i are respectively the eigenvalues m2

φ and m2
χ, with mΦ > mχ.

Calculations begin by inverting Kahler metric.

The explicit form of Kähler potential is

K = −2ln

(
1

9
√

2
(τ

3/2
b − τ 3/2

s ) +
ξ

2g
3/2
s

)
.

We recall ∂
∂τi

= 1
2
∂
∂Ti

and ignore α′ correction and terms that are suppressed in the large

volume limit, to obtain

Kij̄ =

(
Kbb̄ Kbs̄

Ksb̄ Kss̄

)
=

 3
4τ2
b

−9τ
1/2
s

8τ
5/2
b

−9τ
1/2
s

8τ
5/2
b

3

8τ
1/2
s τ

3/2
b

 (2.49)

The inverse matrix then turns out to be:

K−1
ij̄

=

(
4τ2
b

3
4τbτs

4τbτs
8τ

1/2
s τ

3/2
b

3

)
(2.50)
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To compute second derivatives of scalar potential (2.39), instead, it is useful to perform

an approximation at the second order in series of ε = 1/(4asτs).

On this line it is not hard to rearrange the equation (2.45) for τs e V obtaining that in

the zero point energy holds [15]

τ 3/2
s

(
µ2

4λ

)
= ν

(
1 +

1

2asτs
+

9

(4asτs)2

)
(2.51)

e−asτs =
µ

2λ

W0

τ
3/2
b

√
τs
as

(
1− 3

4asτs
− 3

(4asτs)2

)

Then for second derivatives of the potential, we have

∂2V

∂τ 2
b

=
15

4

λ
√
τse
−2asτs

τ
7/2
b

− 12µτse
−asτs

τ 5
b

+
99ν

4τ
13/2
b

∂2V

∂τ 2
s

=
4a2

sλ
√
τse
−2asτs

τ
3/2
b

− 2λτ
−1/2
s e−2asτs

τ
3/2
b

− λτ
−3/2
s e−2asτs

4τ
3/2
b

+
2asµe−asτs

τ 3
b

− a2
sµτse

−asτs

τ 3
b

∂2V

∂τb∂τs
=

3λ
√
τsase

−2asτs

τ
5/2
b

− 3λτ
−1/2
s e−2asτs

4τ
5/2
b

+
3µe−asτs

τ 4
b

− 3µasτse
−asτs

τ 4
b

and using (2.51)

∂2V

∂τ 2
b

=
9W 2

0 ν

2τ
13/2
b

(
1 +

1

2asτs

)
, (2.52)

∂2V

∂τ 2
s

=
2a2

sW
2
0 ν

τ
9/2
b

(
1− 3

4asτs
+

6

(4asτs)2

)
, (2.53)

∂2V

∂τb∂τs
= −3asW

2
0 ν

τ
11/2
b

(
1− 5

4asτs
+

4

(4asτs)2

)
(2.54)

Now we can easily build both the mass matrix, given by
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(M2)ij̄ =

 9W 2
0 ν

4τ
13/2
b

(
1 + 1

2asτs

)
3asW 2

0 ν

2τ
11/2
b

(
1− 5

4asτs
+ 4

(4asτs)2

)
3asW 2

0 ν

2τ
11/2
b

(
1− 5

4asτs
+ 4

(4asτs)2

)
a2
sW

2
0 ν

τ
9/2
b

(
1− 3

4asτs
+ 6

(4asτs)2

) (2.55)

and, by multiplying (2.50) and (2.55) :

K−1(M2) =
2as 〈τs〉W 2

0 ν

3 〈τb〉9/2

 −9(1− 7ε) 6as 〈τb〉 (1− 5ε+ 16ε2)

−6as〈τb〉1/2

〈τs〉1/2
(1− 5ε+ 4ε2) 4as〈τb〉3/2

〈τs〉1/2
(1− 3ε+ 6ε2)

 (2.56)

This matrix exhibit one large and one relatively small eigenvalue.

With an appropriate change of base (2.56) transforms into

K−1(M2) =

(
m2

Φ 0

0 m2
χ

)

The computation of m2
Φ and m2

χ is performed by taking advantage of trace and determi-

nant invariance under similarity transformations.

Calculations lead to [15]

m2
Φ ' Tr(K−1(M2)) ' 8νW 2

0 a
2
s 〈τs〉

1/2

3 〈τb〉3
= (2.57)

= 2m3/2ln(MP/m3/2)2 ∼
(
lnV
V

)2

m2
χ '

Det(K−1M2)

Tr(K−1M2)
' 27W 2

0 ν

4as 〈τs〉 〈τb〉9/2
∼ 1

V3lnV
(2.58)

where in the last steps we have made use of the relations (2.45).

The canonically normalised �elds Φ and χ are the ones which give rise to real observ-

able particles descending from T-moduli. These results show numerically the large mass

hierarchy among these two kind of particles, with Φ heavier than gravitino mass and χ

lighter by a factor of V1/2.
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Once the eigenvectors of (K−1(M2) have been found [15], we can write original �elds

in terms of Φ and χ. From (2.47):

δτb =
(√

6 〈τb〉1/4 〈τs〉3/4 (1− 2ε)
) Φ√

2
+

(√
4

3
〈τb〉

)
χ√
2

(2.59)

δτb ∼ O(V1/6)Φ + O(V2/3)χ

δτs =

(
2
√

6

3
〈τb〉3/4 〈τs〉1/4

)
Φ√
2

+

(√
3

as
(1− 2ε)

)
χ√
2

(2.60)

δτs ∼ O(V1/2)Φ + O(1)χ

This result shows an important mixing in which, as one can expected, τb is mostly χ

and τs is mostly Φ.

This fact, together with the mass hierarchy, allows us to roughly estimate moduli masses

by using m2
b ∼ K−1

bb ∂
2V/∂τ 2

b and m2
s ∼ K−1

ss ∂
2V/∂τ 2

s , which give

mτb ∼
MP

V3/2
, mτs ∼

MP ln(MP/m3/2)

V
(2.61)

in agreement with previous outcomes.

Another important fact that emerges from (2.59) and (2.60) is that, although τb ex-

hibits no coupling to photons (see Lagrangian (2.46)), the light �eld χ, due to the small

component in the τs direction, does have a measurable coupling to photons. The physical

intuition, in fact, impose that both of the particles have to interact gravitationally with

photons.

The couplings become manifest by writing down the full Lagrangian in terms of canoni-

cally normalised �elds we �nd:

L =
1

2
∂µΦ∂µΦ +

1

2
∂µχ∂

µχ− V0 −
1

2
m2

ΦΦ2 − 1

2
m2
χχ

2 − 1

4
FµνF

µν−

− ((vΦ)sΦ + (vχ)sχ)

4
√

2 〈τs〉MP

FµνF
µν
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where Planck mass dependence is included.

We can easily read from the last terms the couplings χγγ and Φγγ.

λΦγγ =
(vΦ)s√
2 〈τs〉

(2.62)

associated with the vertex:

χ

γ

γ

λχγγ

while

λχγγ =
(vχ)s√
2 〈τs〉

(2.63)

which corresponds to

χ

γ

γ

λχγγ

Making use of (2.59) and (2.60) we �nd [15]

λχγγ =

√
6

2MP ln(MP/m3/2)
∼ 1

MP ln(V)
(2.64)

and

λΦγγ ∼
2 〈τb〉3/4√

3 〈τs〉3/4MP

∼
√
V

MP

∼ 1/ms (2.65)

Notice that the coupling of χ to photons appear to be slightly weaker than standard

moduli coupling to matter. In fact, it is not only suppressed by the Planck scale, as

one naively might expected, but it also has a further suppression factor proportional to
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ln(V). On the other hand, expression (2.65) implies that interaction of Φ with photons

are only suppressed by the string scale ms << MP and therefore the decay rates of the

heavy �elds Φ (which is substantially τs) are much faster than is usually assumed for

moduli �elds.

From a physical point of view, this is in agreement with the fact that couplings between

moduli and photons are obtained through the overlap integral of the particles wave-

functions. Indeed, while the wavefunction associated to τb spreads all over the bulk, the

probability density for τs shares the maximum amplitude location with the ones associ-

ated to observable matter which lives on D7-branes wrapped on the τs-cycle.

As we will see later in Section 4, moduli masses and couplings are crucial features when

studying the evolution of the early Universe.

2.5 String Loop Corrections

In the earlier section we have described a theoretically robust and very promising

framework to make contact with experiments; now, the next step is to try to embed

local brane constructions in this scenario.

As said earlier, the plan is to take one intersecting brane realisation of the MSSM and

embed it in LARGE-volume model by wrapping these branes around some 4-cycles.

For example, we've seen that the cycle supporting the MSSM could be a small blow-up

cycle, τs, so that the corresponding gauge coupling, g2
s = 1/τs, would not be exponen-

tially small.

Nevertheless it has been pointed out in recent researches that the original plan of stabil-

ising the moduli without any concern about the local construction, and then embedding

an intersecting brane realisation of the MSSM, is unfortunately too naive.

In fact, it has been discovered another source of problems which is the tension between

moduli stabilisation and chirality.

More precisely, there is a problem with any stabilisation technique which relies on non-
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perturbative e�ects to �x the 4-cycle supporting visible chiral matter.

The generic presence of chiral intersections between the instantons and observable sector

divisors induces a prefactor for the non-perturbative superpotential which depends on

chiral matter VEVs.

W ∼
∏
i

〈φi〉 e−T (2.66)

In order not to break any visible sector gauge symmetry, the VEVs of these �elds have

to vanish, killing the instanton contribution to the superpotential (see [16] for further

details).

Fortunately a possible way-out exists and relies on loop corrections coming from strings.

The solution consists in the concrete possibility to stabilize the modulus that controls the

cycle on which we construct brane realisation of MSSM, through string loop corrections.

Following this line of thought, a picture of Calabi-Yau manifold could be a sort of mul-

tiple hole swiss-cheese. One (or even an intersection of more) of the small blow-up cycles

we consider, namely τSM supports MSSM and for the reason above has to be �xed using

loop corrections to the Kahler potential; the others moduli �elds instead can be stabi-

lized as usual by non-perturbative corrections in order to keep untouched the structure

of LARGE-volume scenario, whose results, as we will see in chapters 3 and 4, seem to

be very promising from phenomenological point of view.

Let us have a brief look at the mathematical treatment for one simple model describing

these ideas.

We consider one cycle, τs �xed by non-perturbative correction, and another, τSM , sup-

porting visible chiral matter, which receives loop corrections.

We examine the case in which the volume is simply given by:

V ' τ
3/2
b − τ 3/2

s − τ 3/2
SM (2.67)
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together with Kahler potential and superpotential which take the following form

W = W0 + Ase
−asTs (2.68)

K = − 2 ln(V + ξ̂) +Kloop

The scalar potential takes the same form as LARGE-volume scenario, except for a fur-

ther term coming from the presence of Kloop:

V = VLV S(τb, τs) + Vloop(τb, τSM) (2.69)

From calculations, similar to the previous one small cycle case, we �nd ([17],[18])

Vloop =

(
µ1

τ
1/2
SM

− µ2

τ
1/2
SM − µ3

)
W 2

0

V3
(2.70)

where µ1 and µ2 are positive constants dependent on the complex structure moduli, while

µ3 depends on the VEVs of τs.

The stabilisation of TSM leads to a large volume vacuum state in which

〈τSM〉 =
µ1µ

2
3

(
√
µ1 +

√
µ2)2

∼ O(10) (2.71)

TSM , which cannot receive non-perturbative corrections (killed by zero VEVs of visible

matter), is �xed by loop correction.

In next section we turn our attention to supersymmetry breaking aspects and phe-

nomenological predictions of these scenarios.



Chapter 3

Soft Terms Computation

In this section we study supersymmetry breaking and its features in the context of

the LARGE-volume scenario studied before.

Gravity-mediated supersymmetry breaking leads to non-zero soft-terms which arise dy-

namically from moduli stabilisation.

Starting from general aspects, we develop and determine here the explicit expressions

for soft terms; �rst in the case of one small cycle supporting visible matter, and then, in

the case of multiple-cycles with one of which being stabilised through loop corrections

and wrapped by brane MSSM constructions as seen in section 2.5.

3.1 SUSY-Breaking from Moduli Dynamics

Our viewpoint, illustrated in the �rst chapter, is that �rst supersymmetry is sponta-

neously broken in the hidden sector of the MSSM, for example in a large-volume scenario,

and then the observable sector feels the breaking indirectly due to the appearance of soft

terms through gravitational interactions.

Let us see in details how to extract and compute soft terms.
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The starting point is the N=1 4D Supergravity Lagrangian obtained from dimensional

reduction as the low-energy limit of string compacti�cations.

Once we know the dynamics of the hidden sector, studied from the VF moduli potential,

by replacing moduli and auxiliary �elds with their VeVs, we can obtain from the entire

action of both observable and hidden �elds the e�ective MSSM Lagrangian given by the

sum

L = Lsusy + Lsoft (3.1)

where Lsusy is the usual supersymmetric extension of the SM Lagrangian, while Lsoft is
the soft supersymmetry-breaking Lagrangian which takes the form

Lsoft =
1

2
(Ma λ̂

aλ̂a + h.c.) − m2
αC

αC̄ ᾱ −

−
(

1

6
AαβγŶαβγC

αCβCγ + Bµ̂Ĥ1Ĥ2 + h.c.

)
(3.2)

where Cα denotes generic matter �elds and for convenience, we have separated Higgs

�elds from the rest of the observable �elds and specialised to the MSSM by assuming

two Higgs doublets.

The soft terms are the gaugino masses Ma, the soft-scalar masses m2
α, the trilinear

terms Aαβγ which are multiplied by the Yukawa couplings Ŷαβγ and �nally the B-term

Bµ related to the Higgs �elds.

These parameters are computed starting from the Kahler potential K, the superpoten-

tial W and gauge kinetic function fa, which all three together completely determine the

theory.

Gaugino masses are produced by the gauge kinetic function through the term

1

4

∫
d2θ f(Φi)Tr(W

αWα) + h.c. (3.3)

which appears into the vector-multiplet part of the supergravity Lagrangian.
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After performing the canonical normalization of the gauginos

λ̂a = (Refa)
1/2λa (3.4)

one can read from the explicit form of their mass term [9]:

Ma =
1

2

Fm∂mfa
Refa

(3.5)

Soft scalar masses and trilinear terms, instead, can be derived directly from the structure

of the scalar potential. In particular, in the expression (3.2) the last three terms can be

viewed as an e�ective potential

Vsoft = m2
αC

αC̄ ᾱ +
1

6
AαβγŶαβγC

αCβCγ + Bµ̂Ĥ1Ĥ2 + h.c. (3.6)

which arises from

V = eK
(
Kij̄DiWDj̄W̄ − 3|W |2

)
(3.7)

by making an expansion of K and W in powers of the matter �elds.

Let us analyse in details.

The series expansions we perform, are

W = Ŵ (Φm) + µ(Φm)H1H2 +
1

6
Ŷαβγ(Φm)CαmCβmCγm + ... (3.8)

K = K̂(Φm, Φ̄m) + K̃ᾱβ(Φm, Φ̄m)C ᾱCβ + [Z(Φm, Φ̄m)H1H2 + h.c.] + ... (3.9)

where Ŷαβγ(Φm) are the Yukawa couplings,K̃ᾱβ(Φm, Φ̄m) and Z(Φm, Φ̄m) are the Kähler

metrics with respect to matter �elds and, again, {Φm} is a set of arbitrary moduli �elds.

Note that in general the Kähler metric for the observable sector may be non-diagonal
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causing phenomenological problems with �avour changing neutral currents. Happily

strings compacti�cations often lead to diagonal metrics [14], such that

K̃ᾱβ(Φm, Φ̄m) = δᾱβK̃α(Φm, Φ̄m) (3.10)

Thanks to this simpli�cation we are allowed to rewrite the power expansion of K as

K = K̂(Φm, Φ̄m) + K̃α(Φm, Φ̄m)C ᾱCα + [Z(Φm, Φ̄m)H1H2 + h.c.] + ... (3.11)

Substituting (3.8) and (3.11) into (3.7), and replacing dynamical moduli �elds with their

VeVs, we obtain the expression (3.6) for Vsoft with [14],[19]

m2
α = (m2

3/2 + V0)− F m̄F n∂m̄∂nlogK̃α (3.12)

Aαβγ = Fm
[
K̂m + ∂mlogYαβγ − ∂mlog(K̃αK̃βK̃γ)

]
(3.13)

Bµ̂ = (K̃H1K̃H2)−1/2 { eK̂/2µ(Fm[K̂m + ∂mlogµ− ∂mlog(K̃H1K̃H2)]−m3/2) +

+ Z(2m2
3/2 + V0) −m3/2F̄

m̄∂m̄Z + m3/2F
m[∂mZ − Z∂mlog(K̃H1K̃H2)]−

−F̄ m̄F n[∂m∂nZ − (∂mZ)∂nlog(K̃H1K̃H2)]] } (3.14)

To perform soft-terms computation then we must know explicit form of F-terms, Yukawa

couplings and Kahler metrics K̃α for observable matter.

While the F-terms are perfectly known from the study of the ground state of the moduli

potential, K̃α(Φ, Φ̄) and Ŷαβγ(Φm) are not; fortunately, thanks to locality and scaling

arguments valid in the context of IIB compacti�cations, we are able to take control over

their modular dependence.

As we will see in the proceeding, this will be enough for computations.
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3.2 'Single-Hole' Model

From the study of the large-volume model we inherit the results described in sec-

tion 2.3 for two Kähler moduli stabilised by a combination of α′ corrections and non-

perturbative superpotential. Their interaction, we have seen, produces one exponentially

large cycle controlling the overall volume together with one small blow-up cycle which

could support MSSM realisation.

Moduli F-terms

First of all, soft terms computation requires knowledge of the F-terms, Kahler metric

and Yukawa couplings.

We start from the computation of the F-terms

Fm = eK/2Kmn̄
(
∂n̄

¯̂
W + (∂n̄K̂)

¯̂
W
)

(3.15)

They can be obtained directly from the results of large-volume scenario.

For the large modulus we have

F b = eK/2Kbn̄
(
∂n̄

¯̂
W + (∂n̄K̂)

¯̂
W
)

(3.16)

As already seen, it is a property of the Kahler potential K = −2lnV that

Kmn∂nK = −2τm (3.17)

which then implies

F b = eK/2
(
Kbb∂bW +Kbs∂sW − 2τbW

)
(3.18)

Accounting of the results of moduli stabilisation in the large-volume scenario, we have

∂sW ∼ e−Ts ∼ V−1 (3.19)

which together with K̃bs ∼ V2/3 , gives

K̃bs∂sW ∼ K̃bse−Ts ∼ V−1/3 (3.20)
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so that, neglecting terms proportional to the exponential e−Tb , we �nd

F b = −2τbm3/2(1 +O(V−1)) (3.21)

We read here that any soft breaking terms solely depending on F b would be of the order

of the gravitino mass m3/2.

As regards the F-terms of the small Kahler moduli, instead, we are going to show they

are hierarchically smaller.

From relation (3.15), in the simple case with solely one modulus associated with a small

cycle, we are left with

F s = eK̃/2
(
K̃ssasAse

−asτs − 2τsW
)

(3.22)

Let us recall now formula (2.51) obtained in section 2.4:

e−asτs =
µ

2λ

W0

τ
3/2
b

√
τs
as

(
1− 3

4asτs
− 3

(4asτs)2

)
(3.23)

which is valid in the large volume limit and turn out to be very useful here.

It is easy to see that, by substituting it in (3.22) and accounting K̃ss ∼ √τsV , terms of

(3.22) cancel with each other at leading order in the power of ε = 1
4asτs

[20].

By using (2.51) we dropped subleading terms suppressed by

4asτs ∼ lnV ∼ ln

(
MP

m3/2

)
(3.24)

being

m3/2 = eK/2W ∼ W0

V
∼ MP

V
(3.25)

and so we expect the cancellation to fail at this order, giving

F s ∼ 2τs
m3/2

MP log m3/2

(3.26)
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This is an important result; in facts, as will occur, if the dependence of the soft terms

on F b is cancelled, the soft parameters will naturally be smaller than the gravitino mass

by a factor of log
(
MP

m3/2

)
.

Moreover, it emerges here that supersymmetry is essentially broken by F b-term. Hence,

during the spontaneous SUSY-breaking mechanism, we understand that the role of the

Goldstino, which is eaten by the gravitino, is played by the the τb superpartner, called

τb modulino.

Matter Kähler metric and Yukawa couplings

Before going into details of soft parameters calculation, we are required to analyse

the matter Kähler metric and the Yukawa coupling, which appear in the soft terms.

First of all we want to understand modular dependence of K̃α. Since in the large-volume

compacti�cation one of the Kahler moduli controlling the 'bulk' size is much larger than

the other one, we can expand Kahler matter metrics in power series of τi = Re(Ti) and

concentrate on the leading order of the inverse volume, obtaining

K̃α = τ−pαb k(φ, τs) (3.27)

where φ are the complex structure moduli and pα is an integer we will determine later

on through scaling argument and locality properties of the model.

As regards Yukawa couplings, we �rst de�ne the canonically normalised matter �elds

as

Ĉα = K̃1/2
α (Φ, Φ̄)ϕα (3.28)

thanks to which we can simplify the second term in (83), being

K̃αβ̄(Φ, Φ̄)CαC β̄ = ϕαϕ̄β̄ (3.29)

Therefore, normalising the superpotential Ŵ = eK/2W , we can rewrite the third term of
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W expansion as

Ŵ ⊃ Ŷαβγϕ
αϕβϕγ (3.30)

in which Yukawa couplings take the form:

Ŷαβγ = eK̂/2
Yαβγ

(K̃αK̃βK̃γ)1/2
. (3.31)

As the relation shows, the Ŷαβγ couplings are strictly related to K̃α. The latter plays

a crucial role in the computation, because it determines both the normalisation of the

matter �elds and their mass basis.

Gaugino Masses

Let us approach soft terms computation and start from gaugino masses given by

equation (3.5).

In IIB compacti�cation, if Ti is the Kahler modulus corresponding to a particular 4-cycle,

DBI action reduction for an unmagnetised brane wrapped on that cycle, gives [14]:

fi =
Ti
2π

(3.32)

Since we are interested in magnetised branes wrapped on 4-cycles, we should include a

further term so that (3.33) becomes:

fi = hi(F )S +
Ti
2π

(3.33)

where hi depends on the �uxes F present on that stack.

In our model we have only one cycle with wrapping branes, paratrized by Ts. Thus we

obtain

fs = hs(F )S +
Ts
2π

(3.34)

Since the 'bulk modulus' does not appear in this expression, we solve (3.5) and �nd:

Mi =
1

2

F s∂sfs
Refs
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which, together with (3.34), gives

Mi =
F s

2

1

Re(Ts + 2πh(F )S)
(3.35)

In the limit of the large cycle volume the �ux becomes diluted and can be neglected.

This implies we get

Mi =
1

2

F s

τs
∼

m3/2

MP log m3/2

(3.36)

Note that if several small cycle are involved, the expression for gaugino masses may be-

come more complicated.

Scalar masses and A-terms

Soft scalar masses and trilinear terms, instead, are determined from equations (3.12)-

(3.14).

Now that we control the modular dependence of K̃αβ̄(Φ, Φ̄) through relation (3.27), we

can develop explicit calculations for soft parameters.

Using (3.21) and (3.27), the expression (3.12) for scalar masses easily becomes

m2
α = (1− pα)m3/2 − F̄ s̄F s∂s̄∂slog kα(τs, φ) (3.37)

Now consider the A-terms given by (3.13). It is well known that, at perturbative level,

shift symmetry and holomorphy together entail that superpotential does not depend on

the Kahler moduli Ti. We neglect any non-perturbative e−T dependence, since we are in

LVS and they are volume-suppressed.

Taking this into account it is possible to simplify the expression by evaluate

Fm∂mlogYαβγ = 0 (3.38)

due to the fact that only Kahler moduli have a non vanishing F-term.

Therefore we are left with

Aαβγ = Fm
[
K̂m − ∂mlog(K̃αK̃βK̃γ)

]
(3.39)
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in which we calculate

FmKm = eK̂/2K̂mn̄Dn̄
¯̂
WK̂m (3.40)

= eK̂/2

[∑
n

−2τn(∂n̄
¯̂
W + (∂n̄K̂)

¯̂
W )

]

where the index 'n' runs over b and s moduli. Since K = −2log V we have

∂n̄K̂ = −2
∂n̄V
V

(3.41)

Then, being V homogeneus of degree 3/2 in τn, implies

∑
n

τn∂n̄V =
3V
4

(3.42)

and substituting in (3.39) gives

FmK̃m = eK̂/2
[
−2τs∂s̄W̄ − 2τb∂b̄W̄ + 3

]
(3.43)

Neglecting, as usual, the second term and recalling that ∂s̄W̄ ∼ V−1 in the large volume

limit, we get

FmK̂m = 3m3/2(1 +O(V−1)) (3.44)

We evaluate then expression (3.38), which gives

Aαβγ = 3m3/2 − Fm∂mlog(K̃αK̃βK̃γ) (3.45)

= 3m3/2 − F b∂b(K̃αK̃βK̃γ)− F s∂sK̃αK̃βK̃γ)

Now,

log(K̃αK̃βK̃γ) = −(pα + pβ + pγ)logτb + log(kαkβkγ(τs, φ)) (3.46)

which becomes

∂blog(K̃αK̃βK̃γ) = −pα + pβ + pγ
2τb

(3.47)
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and �nally gives

Aαβγ = (3− (pα + pβ + pγ))m3/2 − F s∂slog(kαkβkγ(τs, φ)) (3.48)

B-term

Let us turn our attention on B-term connected with Higgs doublet and described by

equation (3.14).

First, we set µ = 0. This hail from Giudice-Masiero mechanism, which is proposed as a

solution to the µ-problem and is based on the hypothesis that µ could arise dynamically

through spontaneous susy-breaking without appearing explicitly in the Lagrangian .

Following this proposal, we have [21]

µ = 0 ; µ̂ = m3/2Z − F j∂jZ (3.49)

This considerably simpli�es the expression (3.14) since many terms vanish.

We get

Bµ̂ = (K̃H1K̃H2)−1/2[(2m2
3/2 + V0)Z

−m3/2ZF
m∂mlog(K̃H1K̃H2) +m3/2(Fm∂mZ − F n̄∂n̄Z)

−F̄ m̄F n(∂m̄∂nZ − ∂m̄Z∂nlog(K̃H1K̃H2)] (3.50)

which becomes, in our 'single-hole' LVS model,

Bµ̂ = (K̃H1K̃H2)−1/2[(2m2
3/2 + V0)Z

−m3/2Z(F b∂blog(K̃H1K̃H2) + F s∂slog(K̃H1K̃H2))

−F̄ b̄F b(∂b̄∂bZ − ∂b̄Z∂blog(K̃H1K̃H2))

−F̄ b̄F s(∂b̄∂sZ − ∂b̄Z∂slog(K̃H1K̃H2))
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−F̄ s̄F b(∂s̄∂bZ − ∂s̄Z∂blog(K̃H1K̃H2))

−F̄ s̄F s(∂s̄∂sZ − ∂s̄Z∂slog(K̃H1K̃H2)) ] (3.51)

and again, assume a vanishing cosmological constant and using (3.27) which is also valid

for Z, we get

Bµ̂ =
τ
p1+p2

2
b

(kH1kH2)1/2
[ m2

3/2zτ
−pz
b [2− 2(p1 + p2)− pz(pz + 1) + 2pz(p1 + p2)]

+2(1− pz)τ−pzb m3/2F
s∂sz + (pz − 1)τ−pzb m3/2zF

s∂slog(k̃1k̃2)]

− τ
p1+p2

2
−pz

b

(kH1kH2)1/2

[
F sF s(∂s∂sz − ∂sZ∂slog(k̃H1 k̃H2)

]
(3.52)

We notice that in the particular case in which pα = 1, in all the expression (3.36), (3.47),

(3.51) of the soft parameters would arise very interesting cancellations which would con-

siderably simplify the results.

Let us show that pα = 1 is truly the right case.

τb-dependence of matter Kähler metric

From relation (3.31) we see that informations about K̃α are encoded in the modular

dependence of Yukawa terms.

The physical origin of Yukawa couplings is through the interaction and overlap of the

quantum wavefunctions associated with the di�erent matter �elds.

Since matter �elds are localised on the branes, thus the wavefunctions for Standard

Model matter all have support in the local geometry on the small 4-cycle. As the in-

teractions are determined only locally, in the large-volume limit the physical Yukawa

couplings should be independent of the overall volume, that is it should be invariant

under rescalings τb → λτb.

Now, since Yukawa couplings are given by

Ŷαβγ = eK̂/2
Yαβγ

(K̃αK̃βK̃γ)1/2
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we obtain, being K̃α = τ−pαb kα(τs, φ),

Ŷαβγ = τ
−3/2
b

Yαβγ τ
pα+pβ+pγ

2
b(

k̃αk̃βk̃γ

)1/2
(3.53)

Invariance under τb rescaling then implies:

pα + pβ + pγ = 3 (3.54)

for all matter �elds present in the Yukawa couplings.

We therefore expect pα to be universal; giving [12]

pα = 1 ∀α (3.55)

Simpli�ed Expressions for the Soft-Terms

Turning back to the expressions of soft terms, we take advantage of the cancellations

and we get:

m2
α = −F sF s∂2

s log k̃α (3.56)

Aαβγ = −F s∂slog(kαkβkγ) (3.57)

Bµ = − 1

(kH1kH2)1/2

[
F sF s[∂2

sz − ∂sz∂slog(k̃H1 k̃H2)
]

(3.58)

Therefore, thanks to the Giudice-Masiero mechanism and formula (3.48), we write also

µ̂ = − F s∂sz

(kH1kH2)1/2
(3.59)

where the contribution of F b disappears due to

Fm∂mZ = F b∂b(zτ
−1
b ) + F s∂sz

= 2τ−1
b m3/2z + F s∂sz
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Notice the important cancellations of F b terms in all the calculations we made. They

do not contribute to soft parameters value.

Computations are not concluded yet.

We further simplify these expressions by expanding kα(τα, φ) and z(τα, φ) as a power

series in τs

kα(τα, φ) = τλs k
0
α(φ) +O(τλ−1

s )k1
α(φ) + ... (3.60)

zα(τα, φ) = τλs z
0
α(φ) +O(τλ−1

s )z1
α(φ) + ... (3.61)

The assumption here is that both kα and zα scale with same power λ.

Scalar masses, trilinears and B-term then become:

m2
α = λ

(
F s

2τs

)(
F s

2τs

)
(3.62)

Aαβγ = −3λ

(
F s

2τs

)
(3.63)

Bµ =

(
F s

2τs

)(
F s

2τs

)
λ(λ+ 1)

z0(φ)

(k0
H1
k0
H2

)1/2
(3.64)

together with the expression of µ̂ and Yukawa couplings that we rewrite for convenience:

µ̂ = −F
s

2τs

z0(φ)

(k0
H1
k0
H2

)1/2
(3.65)

Ŷ =
Yαβγ

τ
3λ
2
s (k0

αk
0
βk

0
γ)

1
2

(3.66)
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Computations now depends entirely on F s and λ.

We focus now on the latter.

τs-dependence of Yukawa couplings

Our key tool here is the viewpoint that physical Yukawa couplings arise from the

triple overlap of normalised wavefunctions. Because of the constraints of shift symme-

try and holomorphy, the Kahler moduli can only a�ect the physical Yukawa couplings

through the power λ, which corresponds purely to an overall scaling of these matter �eld

wavefunctions and not to a change in the shape.

If we knew scaling properties of the wavefunction, we could �nd the modular dependence

of Ŷ and in particular the value of λ from equation (3.31).

The idea is that the overlap integral has a simple dependence on the Kahler moduli

and its scaling can be computed without concerns about the explicit functional form of

the wavefunctions.

Let us brie�y describe how calculations arise.

We start directly from the dimensional reduction of low-energy limits of magnetised

brane constructions.

Accounting of DBI action reduction, we are left with super Yang-Mills Lagrangian from

which we extract the fermionic term:∫
M4×Σ

λ̄ Γi (∂i + Ai) λ (3.67)

withM4 representing the observable 4-dimensional space, while Σ is the 4-cycle wrapped

by the stack of D7-branes.

The higher dimensional gauge �elds (Ai) and gaugino (λi) can be decomposed a là

Kaluza-Klein in:

A =
∑
i

φ4,i ⊗ φ6,i λ =
∑
i

ψ4,i ⊗ ψ6,i (3.68)

We are interested here in the spectrum of massless chiral fermions living in four dimen-
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sions. A full calculation of the magnitude of Yukawa couplings requires the explicit scalar

and fermion wavefunctions. So, for completeness, suppose to solve the Dirac and Laplace

equation:

ΓiDiψ = 0 52 φ = 0 (3.69)

where Di and 52 are the appropriate di�erential operators on the �uxed 4-cycle.

Decomposition of (3.66) gives the kinetic term(∫
Σ

ψ†6,αψ6,α

) ∫
M4

ψ̄4,αΓµ∂µψ4,α (3.70)

whose normalisation requires ∫
Σ

ψ†6ψ6 =

∫
Σ

φ?6φ6 = 1 (3.71)

and the Yukawa couplings (∫
Σ

ψ̄αΓiφi,γψβ

) ∫
M4

φγψ̄αψβ (3.72)

from which it is clear that, de�ning

Ŷαβγ =

∫
Σ

ψ̄αΓiφi,γψβ (3.73)

the magnitude is given by the triple overlap integral of normalised wavefunctions on Σ.

Our interest is on the scaling of (3.72) with the τs cycle volume.

Under rescaling τs → βτs , from normalization condition (3.70), we have:

ψ → ψ√
β

(3.74)

Then we deduce that the physical Yukawas scale as

Ŷαβγ →
∫

Σ

β
ψα√
β

φγ√
β

ψβ√
β

=
Ŷαβγ√
β

(3.75)
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which means [12]:

Ŷαβγ ∼
Ŷαβγ√
τs

(3.76)

Finally, comparing to the form

Ŷαβγ =
Yαβγ

τ
3λ
2
s (k0

αk
0
βk

0
γ)

1
2

we conclude that

λ = 1/3 (3.77)

Final Expression for the Soft-Terms

Now, once we �nally substitute λ = 1
3
in the expressions of the soft terms we derive

[14]

mα =
Ms√

3
(3.78)

Aαβγ = −Ms (3.79)

B = −4

3
Ms (3.80)

where

Ms =
F s

2τs
'

m3/2

log (MP/m3/2)

All soft terms are proportional to
m3/2

log (MP /m3/2)
and thus reduced with respect to the

gravitino mass.

Phenomenological implication and discussions are postponed to chapter 4.
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3.3 'Multiple-Hole' Model

Due to arguments seen in the previous chapter, we know that we cannot stabilise Ts

by means of non-perturbative corrections if this one is the modulus which supports the

MSSM realisation.

Hence, the purpose of this section is to perform soft terms computation in the geometrical

picture described in section 2.5, where we consider two di�erent small cycles stabilised

through di�erent type of corrections.

The �rst, namely Ts, receive non-perturbative corrections to the superpotential

W = W0 + Ase
−asTs (3.81)

while the second, which we call TSM , is stabilised through strings loop corrections in

order to admit wrapped branes intersection and gives rise to observable matter �elds.

Let us resume the information we need from section 2.5.

First, we look at the volume which is given by

V ' τ
3/2
b − τ 3/2

s − τ 3/2
SM (3.82)

It enters directly in the computations through the form of Kahler potential:

K = − 2 ln(V + ξ̂) +Kloop (3.83)

where Kloop is responsible of TSM stabilisation.

All the ingredients we require for soft parameters calculation are the F-terms and the

modular dependence of K̃α and Ŷαβγ.

Moduli F-terms

Let us start from analysing the F-term expression.

First of all, we note that F -terms for τb and τs remain the same we calculated for the
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'single-hole' picture.

We study the expression for F SM .

F SM = eK/2KSM jDjW (3.84)

where we recall DjW = (∂jW +W∂j) and KSM j∂jK = −2τSM to obtain:

F SM = eK/2
(
KSM j∂jW − 2τSMW

)
= eK/2

(
−KSM sasAse

−asTs −KSM babAbe
−abTb − 2τSMW

)
(3.85)

thanks to relation (3.80).

Neglecting the second term which is subleading in the large volume limit, we are left with

F SM = eK/2
(
−KSM sasAse

−asTs − 2τSMW
)

(3.86)

All we need now is the explicit form of the 3x3 matrix Kij, which is the inverse of the

Kahler moduli metric Kij where index i and j can take the values b , s and SM , which

stands respectively for Tb , Ts and TSM .

Kahler metric is given by

Kij =


∂2
bK ∂b∂sK ∂b∂SMK

∂s∂bK ∂2
sK ∂s∂SMK

∂SM∂bK ∂SM∂sK ∂2
SMK

 (3.87)

that is, evaluating derivatives:

Kij =



3
4τ2
b

−9τ
1
2
s

8τ
5
2
b

−9τ
1
2
SM

8τ
5
2
b

−9τ
1
2
s

8τ
5
2
b

3

8τ
1
2
s τ

3
2
b

9τ
1
2
s τ

1
2
SM

8τ3
b

−9τ
1
2
SM

8τ
5
2
b

9τ
1
2
s τ

1
2
SM

8τ3
b

9τSM
8τ3
b

+
3τ
− 1

2
SM

8τ
3
2
b


(3.88)

The inverse can be obtained without much di�culty, however in our circumstance we
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notice we are interested only in one term appearing in equation (3.85), that is F SMs.

Recalling a bit of matrix algebra, we �nd:

KSM s (Det Kij) =

∣∣∣∣∣∣∣∣
3

4τ2
b
−9τ

1
2
SM

8τ
5
2
b

−9τ
1
2
s

8τ
5
2
b

9τ
1
2
s τ

1
2
SM

8τ3
b

∣∣∣∣∣∣∣∣ = −27

64

τ
1/2
SMτ

1/2
s

τ 5
b

(3.89)

where the determinant of Kij is given by the usual formula for 3x3 matrices that we

recall in an obvious notation:

DetAij = (a11a22a33 + a12a23a31 + a13a21a32)

−(a31a22a13 + a32a23a11 + a21a12a33) (3.90)

At leading order in the inverse power of the volume V ∼ τ
3/2
b , we get

Det Kij '
27

64 · 4
1

τ
1/2
s τ

1/2
SMτ

5
b

(3.91)

Substituting (3.90) in (3.88), we immediately obtain:

KSM s ' −4τsτSM (3.92)

Now we can �nally turn on equation (3.85) and calculate the F-term for TSM .

Since asAse
−asτs ∼ V−1, from τs stabilisation, we obtain:

F SM = eK/2
(

4τsτSM
V

− 2τSMW

)
= 2τSMm3/2

(
1 +O(V−1)

)
(3.93)

The minus sign disappears due to the relation m3/2 = eK/2|W |, which involves the

modulus of W . The choice of positive sign is performed in order not to have negative

soft-masses.
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Soft-Terms

Let us proceed to soft parameters computation.

In doing so, we underline that considerations about the form of kinetic gauge func-

tion fa(φ) or the modular dependence of K̃α and Ŷαβγ we made in section 3.2, are still

valid in this context with the only change of Ts with TSM . This is because TSM has taken

here the role which was of Ts in the other model, of supporting MSSM observable �elds.

For this reason we assume:

fi =
TSM
2π

(3.94)

K̃ =
τλSM
τ pb

(3.95)

with p = 1 and λ = 1/3.

From this point, the development of soft term expressions follows exactly the same path

of section 3.2. The calculations lead to the same results because Ts has been substituted

with TSM and then both Kahler matter metrics and Yukawa couplings do not depend on

τs due to locality of branes intersection.

Therefore, the computation steps are the same and in particular the F-term of Tb lead

to the same previously encountered cancellations.

The only (very important) di�erence here resides in the fact that F s 6= F SM .

F s is reduced by a factor of log m3/2, while F
SM is not.

The consequences of this are that in the current scenario soft terms are directly pro-

portional to the gravitino mass.

In fact, after computation, we have:

mα =
MSM√

3
=

m3/2√
3

(3.96)

Aαβγ = −MSM = −m3/2 (3.97)

B =
4

3
MSM =

4

3
m3/2 (3.98)
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thanks to

MSM =
F SM

2τSM
' m3/2

From a phenomenological point of view this means that SUSY-breaking scale would be

about gravitino mass.

If we recall that gravitino mass is equal to

m3/2 ∼ MP/V (3.99)

we conclude that the only knowledge of the overall volume sets all the parameters of the

theory and quanti�es supersymmetry-breaking with important implications and predic-

tions about low-energy physics.



Chapter 4

Discussion

In this section we discuss the results obtained as well as their phenomenological im-

plications. As we have already pointed out, the theoretical scenarios we have studied,

lead to viable constructions of dynamical susy-breaking through gravity-mediation.

The soft parameters we have computed �x the energy scale of supersymmetry break-

ing and also determine the masses of squarks and sleptons. If these predictions were

con�rmed by the experiments at the LHC, it would be a huge success towards a deeper

knowledge about Nature. Moreover it would represent a great indication and support to

String Theory.

In the �rst part of this section, making use of previous calculations, we build and analyse

the low-energy mass spectrum that emerges from the two examined models. Then, in

the last part, we deal with the cosmological moduli problem focusing our attention on

its constraints for moduli masses.

4.1 Mass Hierarchies

From the results of section 3, we learn that the soft-terms are entirely determined by

the gravitino mass.
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Hence, being

m3/2 ∼
MP

V
, ms ∼

MP√
V

(4.1)

respectively gravitino and string scales, the exponentially large volume obtained through

moduli stabilisation allows both TeV-scale soft masses, with consequent generation of

hierarchies, and accessible string scale.

In fact, we can take V ∼ 1014 (corresponding to a dimensionful volume of order

V ol(CY ) = V l6s ) and get TeV-scale soft-terms as it is required from hierarchy problem.

Let us summarise our resulting mass spectrum with a table.

For the 'single-hole' model, in which we have Msoft =
m3/2

log m3/2
, by recalling also the

calculations made in section 2.4 about moduli masses, we get the following hiererchies:

6

E

mτb 1 / V3/2
√
ln V ∼ 1MeV

Msoft MP / (VlnV) ∼ 1 TeV

m3/2 MP / V ∼ 10 TeV

mτs MP lnV / V ∼ 100 TeV

Mkk MP / V2/3 ∼ 109 GeV

ms MP / V1/2 ∼ 1011 GeV

MP ∼ 1018 GeV

Fig.8 Mass Hierarchy for 'single-hole' model.
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where, from string compacti�cation, we have inherited the appropriate Kaluza-Klein

energy scale

Mkk =
ms

V1/6
∼ MP

V2/3
(4.2)

As regards the 'multiple-hole' scenario, since Msoft = m3/2 we take:

V ∼ 1015 (4.3)

in order to obtain low-energy supersymmetry.

6

E

mτb 1 / V3/2
√
ln V ∼ 1MeV

mτSM MP / (V lnV) ∼ 100 GeV

m3/2 ∼Msoft MP / V ∼ 1 TeV

mτs MP lnV / V ∼ 10 TeV

Mkk MP / V2/3 ∼ 108 GeV

ms MP / V1/2 ∼ 1011 GeV

MP ∼ 1018 GeV

Fig.9 Mass Hierarchy for 'multiple-hole' model.

Moduli masses are computed in the approximation

m2
τ ' K−1

ττ

∂2V

∂τ 2
(4.4)
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which follows from canonical normalization.

Taking into account that

Vloop =

(
µ1

τ
1/2
SM

− µ2

τ
1/2
SM − µ3

)
W 2

0

V3

for τSM we obtain:

m2
τSM

' K−1
SMSM

∂2V

∂τ 2
SM

' τ
1/2
SMτ

3/2
b · W 2

0

τ
9/2
b τ

5/2
SM

' W 2
0

V2τ 2
SM

(4.5)

which, using (2.71)

〈τSM〉 ∼ O(10) (4.6)

gives

mτSM '
W0

VτSM
' 1

V lnV
(4.7)

It is remarkable that the only parameter that has to be placed by hand is the string

coupling gs (or equivalently the VeV of the dilaton 〈Re(S)〉 = 1/gs).

This can be viewed from moduli stabilisation and in particular from section 3.3, where

equations

〈τs〉 ' ξ̂2/3 ' ξ2/3

gs
' O(1/gs) ' 10

in which string coupling determines the VeV of τs and hence the overall volume size

through

〈V〉 ' W0e
asτs ' e1/gs >> 1

Notice that we must have gs < 1 in order to rely on string perturbation theory and in

particular on the corrections to the Kähler potential.

In light of this, if supersymmetry were found at LHC, experimental data about soft-

masses combined with the theoretical construction we have developed here, could be

used to set the only parameter that is required in string theory to represent our real

world.
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4.2 Cosmological Moduli Problem

It is well-known that generic moduli with mass m ∼ O(1) TeV cause problems for

early-universe cosmology. Such moduli masses are unavoidable in the picture of gravity-

mediated supersymmetry breaking, where, as seen, moduli get masses of the order of

m ∼Msoft ∼ m3/2.

This is among the most pressing problems facing low-scale supersymmetry.

Let us brie�y analyse the origin of the problem.

The hot big bang model together with the in�ationary paradigm provides a highly at-

tractive framework for cosmology. Typically, it is assumed that after in�ation the visible

sector degrees of freedom reheat and evolve adiabatically, following the well known rela-

tions from FRW model:

ρrad ∼ T 4 , ρm ∼ T 3 (4.8)

where ρrad and ρm represent respectively the energy density of radiation and matter.

Fig.10 Energy density evolution for matter and radiation in standard cosmology. [22]
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But what happens to the hidden sector �elds?.

After in�ation, moduli are expected to be displaced far from the low energy minimum;

in particular we are left with φin ∼ MP which implies ρrad ∼ ρφ . When the Hubble

constant reaches values equal to the moduli masses, they begin to behave as harmonic

oscillators [23],[24],[25]. Energy stored in moduli oscillations then begins to redshift like

non-relativistic matter, hence at a rate signi�cantly slower than radiation.

This implies that moduli quickly come to dominate the energy density of the universe.

If moduli were completely stable, the associated density ρφ would give a huge contribu-

tion to the today's energy density and would overclose the universe. However, although

they are suppressed by a factor of MP , the gravitational couplings studied in section 2.4

can provide a moduli decay into photons and visible matter reheating the universe and

essentially �xing the �initial conditions� for cosmological evolution.

But another problem arises because of their weak couplings and consequent long lifetime.

The non thermal matter dominated universe, indeed, must end prior to Big Bang Nu-

cleosynthesis. This is because we know with great con�dence that at the time of the

primordial nucleosynthesis the universe was radiation dominated.

This produces an important constraint on the moduli masses, which are strictly related

to their decay rates.

Let us describe the situation in more details.

The evolution of the Universe is parametrized by the Hubble constant

H =
ȧ

a
(4.9)

where a is the scale factor.

From this expression we easily extract the estimate of the age of the Universe, which is

roughly

tU ∼ 1/H (4.10)
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Moduli decay when H, during the expansion, reaches the value of Γτ→γγ, which repre-

sents the decay rate of moduli �elds.

The latter can be easily obtained from the knowledge of the moduli couplings to photons.

In fact, [15]

Γτ→γγ ∼
c2

M2
P

m3
τ (4.11)

where c2

M2
P
is associated with the following Feynman vertex:

τ

γ

γ

c
MP

Now, recalling from cosmology the relation

H ∼ T 2

MP

(4.12)

we impose

Γ ∼ H → c2

M2
P

m3
τ =

T 2

MP

(4.13)

and we get

Tdecay = c mτ

√
mτ/MP (4.14)

which is the temperature at which moduli are expected to decay into photons and then

into observable matter.

Hence, the constraint associated with the cosmological moduli problem, can be written
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as:

c mτ

√
mτ/MP > TBBN = O(1) MeV (4.15)

in order not to spoil Big Bang Nucleosinthesis.

Let us analyse the implication of this argument for the mass spectrum we derived in

the previous section.

During the calculation we use the formulae (2.64) and (2.65) from section 2.4 thanks to

which we are able to estimate the coupling c appearing in (4.15).

We �rst consider the heavier moduli, which are expected to be less problematic, since

we know their masses to be larger than O(1)TeV .

In the �rst model we have studied, the 'single-hole swiss-cheese', one obtains

mτs ∼ 100 TeV

The coupling between τs and photon is not simply 1
MP

, but, from normalisation in

section 2.4, is given by

λφγγ ∼
√
V

MP

which, compared with (2.65), allows to extract c =
√
V ∼ 107 GeV .

Now, computing the reheating (decay) temperature for the small modulus, we are left

with:

Tτs ∼ 107105

√
105

1018
∼ 105GeV (4.16)

which abundantly exceeds the lower-bound limit of O(1) MeV .

As regards the second picture, we have to deal with two Kähler moduli τs and τSM .
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For the latter, which supports the MSSM, same arguments are valid and the coupling to

photon is much larger than 1/MP being multiplied again by c ∼
√
V . Then we have

TτSM ∼ 108102

√
102

1018
∼ 102 GeV (4.17)

which again saves Big Bang Nucleosinthesis.

In the computation of Tτs , instead, we have to accounting that by geometrical con-

struction of the model, the cycle associated to τs is nearly isolated from Standard Model

matter �elds. The wavefunctions of visible matter is indeed localised around τSM blow-up

cycle.

Taking this into account, the coupling between τs and photons results to be simply of

the order 1/MP , giving rise to:

Tτs ∼ 104

√
104

1018
∼ 10−3 GeV ∼ O(1) MeV (4.18)

which is a borderline outcome, quite satisfying.

Finally we deal with the light modulus τb, which we are going to see has no hope to

decay in su�cient time.

In both scenarios, being the modulus which controls the size of the overall volume, τb

is very weakly coupled to visible sector and therefore, from λχγγ in (2.64), we obtain

c ∼ 1/lnV in the expression (4.15). This implies:

Tτb ∼ 10−4

√
10−3

1018
∼ 10−14 GeV ∼ 10−5eV (4.19)

which is an interesting result, because of

10−5eV ∼ TCMB (4.20)
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where TCMB is the today temperature of the background cosmic radiation!

In light of this, τb may still be stable today and could represent a good candidate for

dark matter dominating the energy density of the Universe.

If this was the scenario, in order to avoid unobserved too large values of ρDM density, we

should conclude that the neutralinos (and in general other candidates from s-particles)

do not contribute to dark matter. If we want to preserve the R-parity conservation, this

could happen only if we assume that neutralinos are under-abundant; this condition

strictly depends on the annihilation cross-section values and need an explicit check.

By these considerations, we learn how deeply the supersymmetry breaking scale a�ects

the evolution and the structure of our Universe.

Moduli �elds dynamics really plays a key role in the understanding of the vacuum struc-

ture in which we live and may contribute to answer the fundamental questions about

low-energy physics and cosmology.
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