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Sommario

Il crescente utilizzo di sistemi di analisi high-throughput per lo studio dello stato
�siologico e metabolico del corpo, ha evidenziato che una corretta alimentazione e
una buona forma �sica siano fattori chiave per la salute. Inoltre l'aumento dell'età
media della popolazione evidenzia l'importanza delle strategie di contrasto e pre-
venzione delle patologie legate all'invecchiamento. Una dieta sana è il primo mezzo
di prevenzione per molte patologie, pertanto capire come il cibo in�uisce sul corpo
umano è di fondamentale importanza.

In questo lavoro di tesi abbiamo a�rontato la caratterizzazione dei sistemi di
imaging radiogra�co Dual energy X-ray Absorptiometry (DXA). I sistemi DXA
sono principalmente utilizzati per ricavare la massa di un materiale, in presenza
di un altro, attraverso la conoscenza dei rispettivi coe�cienti di attenuazione dei
raggi X a diverse energie.

Dopo aver stabilito una metodologia adatta per l'elaborazione di dati DXA su
un gruppo di soggetti sani non obesi, la Principal Components Analysis (PCA)
ha evidenziato alcune proprietà emergenti dall'interpretazione delle componenti
principali in termini delle variabili di composizione corporea restituite dalla DXA.
Le prime componenti sono chiaramente associabili a degli indici macroscopici di
descrizione corporea (come BMI e WHR). Inoltre, queste componenti sono sorpren-
dentemente stabili al variare dello status dei soggetti in età, sesso e nazionalità.

Dati di analisi metabolica, ottenuti tramite Nuclear Magnetic Resonance Spec-
troscopy (MRS) su campioni di urina, sono disponibili per circa mille persone
anziane (provenienti da cinque paesi europei) di età compresa tra i 65 ed i 79 anni,
non a�etti da patologie gravi. I dati di composizione corporea sono altresì presenti
per questi soggetti.

L'algoritmo di Non-negative Matrix Factorization (NMF) è stato utilizzato per
esprimere gli spettri (ottenuti tramite MRS) come una combinazione di fattori di
base, ognuno dei quali interpretabile come espressione di un singolo metabolita.
Anche in questo caso (come per le componenti della PCA) i fattori sono stabili, il
che signi�ca che gli spettri metabolici dei soggetti provenienti da diversi paesi sono
composti dallo stesso pattern di metaboliti.

Attraverso un'analisi a singolo cieco sono stati trovati alti valori di correlazione
tra le variabili di composizione corporea e lo stato metabolico dei soggetti. Questi
risultati suggeriscono la possibilità di derivare la composizione corporea dei soggetti
a partire dal loro stato metabolico.





Abstract

The increasing use of high-throughput analyses for the study of body physiologi-
cal and metabolical status, has highlighted that proper nutrition and good physical
�tness are of key factors for the human health. Moreover the increase in the aver-
age age of the population raises a critical importance to identify strategies able to
contrast the age-related diseases. A good diet is the �rst step for the prevention
of several pathologies.

In this thesis work we have addressed the characterization of a Dual energy
X-ray Absorptiometry (DXA) system. DXA is an X-ray imaging technique pri-
marily used to derive the mass of one material in the presence of another through
knowledge of their unique X-ray attenuation at di�erent energies.

After establish the proper method and preprocessing operation over a group
of healthy and normal-weight subjects, Principal Components Analysis (PCA) has
shown emergent properties of body composition variables from DXA.

The interpretation of �rst few components is really clear and can be view as
good descriptive indexes of the body composition. Moreover these components are
surprisingly stable across di�erent subject status, age, gender and nationality.

Cohort includes about thousand elderly people, ranging from 65 to 79 years, free
of major overt diseases and came from �ve di�erent European countries. Metabolic
analyses obtained trough Nuclear Magnetic Resonance Spectroscopy (MRS) on
urine samples are considered.

A Non-negative Matrix Factorization (NMF) algorithm is used to express the
original spectra (from MRS) as a combination of basis factors that can be under-
stood as single metabolite.

We have found �stable� factors by NMF and this suggest us that metabolic
spectra of subjects coming from di�erent countries are compound by the same pat-
tern of metabolites.

A blind analysis design is chosen for the correlation analysis between body
composition variables and metabolic state of subjects. The high values obtained
suggest the possibility to derive the �body shape� from the metabolic state.
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Chapter 1

Introduction

The population is projected to become older in European Region. Thus the

median age of the total population is likely to increase in all countries without

exception due to the combined e�ect of the existing structure of the population,

persistently low fertility and continuously increasing number of survivors to higher

ages [1].

This demographic change emphasizes the critical importance of identifying

strategies able to counteract or slow down ageing and the onset of age-related

diseases and disabilities, and so contribute to increase the number of elderly Euro-

pean citizens in good health, and reducing age-related medical and social costs.

Within this scenario, the European consortium NU-AGE: New dietary strategies

addressing the speci�c needs of elderly population for an healthy ageing in Europe

(nu-age.eu) targets nutrition as a major modulator of in�aming and other age-

related functional outcomes.

This thesis investigate how composition of body soft tissues is correlated with

the metabolic state of ageing subjects and the di�erence of these correlations vary-

ing on living countries of the subjects.

Dual-energy X-ray Absorptiometry (DXA) is an X-ray imaging technique to

derive the mass of one material in the presence of another through knowledge of

their unique X-ray attenuation at di�erent energies.

Body composition measurements with DXA can look beyond weight and tra-

ditional body mass index (BMI) to determine distribution of body fat, lean and

bone mass. DXA exams provide regional and total body information of body

composition.

The DXA scanner uses small X-ray dose beam composed of two energy levels

and is based on a model that forces all tissue types into three classes (based on

1

http://www.nu-age.eu/
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their X-ray attenuation properties): bone minerals, fat and lean (fat-free). These

di�erences in absorption are used to determine bone mineral density (BMD) and

body composition values, and can be used to predict total body fat, fat-free mass,

and total body bone mineral.

Second chapter presents DXA technique for bone and soft tissue determination.

We will clarify how the integrated dual-energy measurements from a single projec-

tion can quantitatively determine the mass of intervening materials, the advantages

and the limitations of this technique.

In the later chapter we explain the statistical tools needed for the next chap-

ter. Particular attention will be placed in the explanation of the methods for the

simpli�cation of the data, such as the Principal Component Analysis and the Non

Negative Matrix Factorization, used to processing the body composition variables

from DXA and the metabolic data respectively.

The fourth chapter can be seen as compound of two part: in the �rst part

we analyse the body composition variables of healthy subjects to de�ne method,

preprocessing operations and factors to be taken into account for analysis of data

from DXA and establish reference values for body composition on healthy people.

Moreover we investigate how soft tissues distribution in the body are related to

blood lipid concentrations.

In the second part we will apply results obtained from the healthy database on

another database, composed by elderly people, to study the correlation between

DXA variables and the metabolites.



Chapter 2

Dual-energy X-ray absorptiometry

Dual energy X-ray absorptiometry (DXA) is an X-ray imaging technique pri-

marily used to derive the mass of one material in the presence of another through

knowledge of their unique X-ray attenuation at di�erent energies. Two images are

made from the attenuation of low and high average X-ray energy. DXA is a special

imaging modality that is not typically available with general use X-ray systems be-

cause of the need for special beam �ltering and near perfect spatial registration of

the two attenuations. Dedicated commercial DXA systems �rst became available

in the late 1980s [2].

DXA is an extension of an earlier imaging technique called dual-energy photon

absorptiometry (DPA). DPA has been used for about 15 years to measure bone and

soft-tissue composition. In DPA a radionuclide source (usually gadolinium 153Gd))

is used to generate the gamma rays. In DXA, the radionuclide source has been

replaced by a low current X-ray tube, which allows a much higher photon �ux to

be generated. This results in higher resolution images and, hence, precision, and a

much faster scan time. Due to these improvements, DPA has been superseded by

DXA [3].

This chapter focuses on Dual-energy X-ray absorptiometry (DXA) theoretical

background, the �rst section provides background, fundamentals interactions oc-

curring between photon and matter at energy range used in DXA will be reported.

In the later sections, DXA technique for bone and soft tissue determination will

be described.

3
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2.1 Interactions of X-ray with Matter

When traversing an absorbing medium, photons may experience various inter-

actions with the atoms of the medium. These interactions involve either the nuclei

of the absorbing medium or the orbital electrons of the absorbing medium:

1. The interactions with nuclei may be direct photon-nucleus interactions (photo-

disintegration) or interactions between the photon and the electrostatic �eld

of the nucleus (pair production).

2. The photon-orbital electron interactions are characterized as interactions be-

tween the photon and either (1) a loosely bound electron (Thomson scat-

tering, Compton e�ect, triplet production) or (2) a tightly bound electron

(photoelectric e�ect, Rayleigh scattering).

A loosely bound electron is an electron whose binding energy (EB) is small in

comparison with photon energy (hν): EB � hν, thus the electron is considered

as a �free� electron. A tightly bound electron is an electron whose binding energy

EB ∼ hν. For a photon interaction to occur with a tightly bound electron EB . hν.

An interaction between a photon and a tightly bound electron is considered an

interaction between a photon and the atom as a whole.

Pair, and triplet, production can only occurs when the photon energy exceed

1.02 MeV. Since such high energies never occurs during DXA scanning, these

interactions will not be discussed in this section.

The most important parameter used for characterization of X-ray penetration

into absorbing media is the linear attenuation coe�cient µ. This coe�cient de-

pends on energy hν of the photon and atomic number Z of the absorber, and may

be described as the probability per unit path length that a photon will have an

interaction with the absorber.

The functional relationship between the thickness of an absorber and intensity

of a photon beam attenuated by the absorber can be derived using di�erential

calculus. Supposing narrow beam geometry tecnique that implies a narrowly col-

limated source and detector. The absorber decreases the intensity I(0) measured

without the absorber in place to I(x) measured with absorber thickness x in the

beam.

A layer of thickness dx′ of the absorber reduces the beam intensity by dI and

the fractional reduction in intensity dI/I, is proportional to the linear attenuation

coe�cient µ, measured in [cm−1], and to the layer thickness dx′:
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− dI

I
= µdx′, (2.1)

where the negative sign indicates that the signal decreases as the absorber thickness

increases, and µ represents the probability that a photon interact in a unit thickness

of absorber layer dx′.

After integration over absorber thickness from 0 to x and over intensity from

the initial intensity I(0) to intensity I(x) at absorber thickness x, we get

I(x)∫
I(0)

dI

I
= −

x∫
0

µ dx′ or I(x) = I(0)e−
∫ x
0 µ dx′ (2.2)

For a homogeneous medium the attenuation coe�cient µ is constant and Equa-

tion 2.2 reduces to the standard exponential relationship valid for monoenergetic

photon beams:

I(x) = I(0)e−
∫ x
0 µ dx′ = I(0)e−µx (2.3)

In addition to linear attenuation coe�cient µ, mass attenuation coe�cient is

de�ned as the linear attenuation coe�cient divided by the mass per unit volume

ρ of the absorber: µm = µ/ρ , measured in [cm2/g]. When µm is used in Equation

2.2, the thickness is expressed in [g/cm2].

X-rays in the energy range used for DXA interact with tissue using three pro-

cesses (that will be discussed below): photoelectric absorption, Compton (inelastic)

scattering and Rayleigh (coherent) scattering [2]. To determine the total attenua-

tion from all three attenuation interactions, one simply sums the mass attenuation

coe�cients from each e�ect:

µ

ρ
=
τ

ρ
+
σ

C

ρ
+
σ

R

ρ
(2.4)

where τ/ρ, σ
C
/ρ and σ

R
/ρ are the photoelectric, Compton and Rayleigh mass

attenuation coe�cients respectively.

2.1.1 Thomson Scattering

The scattering of low energy photon (hν0 � mec
2) by essential free electrons of

an absorber, is described adequately by non relativistic classical theory of Joseph

J. Thomson [4]. Thomson assumed that the incident photon beam set each quasi-
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free electron of the absorbed atom into a forced resonant oscillation and then used

classical theory to calculate the cross section for re-emission of the electromagnetic

radiation as a result of the induced dipole oscillation of the electron (see Figure 2.1).

 

ν0

 
ν  

θ Θ 
ψ

Figure 2.1: Schematic diagram of Thomson scattering, where the incident photon(hν)
is scattered and emitted with a scattering angle θ. Note that angles θ and
Θ are not coplanar.

The di�erential electronic cross section per unit solid angle for Thomson scat-

tering is:

dσe
Th

dΩ
=
r2e
2

(1 + cos2 θ) in
[
cm2/(electron · steradian)

]
. (2.5)

Figure 2.2 show the di�erential electronic cross section against the angle θ in polar

coordinate system. The graph show that dσe
Th
/dθrange from 39.7mb/electron ·

steradian at θ = π/2 to 79.4mb/electron · steradian for θ = 0 and θ = π.

Figure 2.2: Di�erential electronic cross section dσe
Th
/dΩ per unit solid angle against

the scattering angle θ for Thomson scattering.
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2.1.2 Compton Scattering

An inelastic collision of a photon of energy hν0 with a loosely bound orbital

electron of an absorber is called Compton e�ect (Compton scattering). The e�ect

is also known as incoherent scattering.

In theoretical studies of the Compton e�ect an assumption is made that the

photon interacts with a free and stationary electron. A photon, referred to as a

scattered photon with energy hν that is smaller than the incident photon energy

hν0, is produced in Compton e�ect and an electron, referred to as a Compton

(recoil) electron, is ejected from the atom with kinetic energy Ee− .

Compton scatter is the predominant interaction of X-ray in diagnostic energy

range with soft tissue. This interaction is most likely to occur between photon and

valence shell electron, see Figure 2.3.

 

 

ν0

 ν  

λ 2 

λ 1 

θ

φ

Figure 2.3: Compton scattering, the �gure show the incident photon with energy hν0,
interacting with a valence electron that results in the ejection of the Comp-
ton electron Ee− and the simultaneous emission of a Compton scattered
photon of energy hν emerging at an angle θ relative to the incident photon.
K, L and M are electron shells.

Supposing the electron as free (hν0 � of binding energy) and applying the

conservation of energy and momentum get:

∆λ = λ− λ0 =
h

mc
(1− cos θ) (2.6)

where λ0 = 2π~c/hν0 is the wavelength of the incident photon and λ = 2π~c/hν of
the scattered photon. ∆λ depends only on the scattering angle θ and is independent

of the energy of the incident photon hν0.

The relationship for the energy of the scattered photon hν as a function of the

incident photon energy, hν0, and the scattering angle, θ, is:
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hν = hν0
1

1 + ε(1− cos θ)
. (2.7)

where ε = hν0/mc
2 is de�ned as the incident photon energy normalized to electron

rest mass energy (mc2 = 511 keV ).

The Equation 2.7 is plotted in Figure 2.4 for various values oh θ. From this

equation some conclusions can be made:

10−2 10−1 100 101 102

Incident photon energy hν0 (MeV)
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θ = 0

θ = π/4
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θ = π
mc2

1
2mc

2

Figure 2.4: Scattered photon energy hν against the incident photon energy hν0 for
θ = 0, π/4, π/2 and π.

1. For θ = 0 then hν = hν0, no energy is transferred to the recoil electron, we

are dealing with Thomson scattering.

2. For θ > 0, the energy of the scattered photon saturates at high values of hν;

the larger is θ, the lower is the saturation value of hν for hν −→∞.

3. For θ = π/2, hν = hν0/(1 + ε), and the saturation energy of the scattered

photon is equal to the rest mass energy of the electron: mc2 = 511 keV .

4. For θ = π, hν = hν0/(1 + 2ε) with saturation energy equal to : mc2/2 =

255 keV .

The results reported above show that photon scattered with angles θ larger

than π
2
cannot exceed 511 keV in kinetic energy no matter how high is the incident

photon energy hν0. And for a given hν0, hν will be in the range between hν0/(1 +

2ε), for θ = π, and hν0 for θ = 0.

Kinetic energy of the Compton (recoil) electron Ee− depends on photon energy

hν0 and photon scattering angle θ. The relationship is determined using conserva-

tion of energy hν0 = hν + Ee− :
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Ee− = hν0 − hν = hν0 − hν0
1

1 + ε(1− cos θ)
(2.8)

For a given photon energy hν0 the recoil electron kinetic energy ranges from a

minimum value of (Ee−)min = 0 for θ = 0 (forward scattering), to a maximum

value of

(Ee−)max = hν0
2ε

1 + 2ε

for θ = π (backscattering).

The ratio of the kinetic energy of the recoil electron Ee−(hν0, θ) to the energy

of the incident photon hν represents the fraction of the incident photon energy

that is transferred to the electron in a Compton e�ect and is called the Compton

energy transfer fraction fc(hν0, θ), expressed as follows:

fc(hν0, θ) =
Ee−

hν
=

ε(1− cos θ)

1 + ε(1− cos θ)
. (2.9)

Figure 2.5 shows a plot of fc(hν0, θ) against θ for various incident photon en-

ergies in the range from 10 keV to 100 MeV.
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Figure 2.5: Compton energy transfer fraction fc(hν0, θ) against the scattering angle
θ for various incident photon energies hν0 in the range from 10 keV to
100 MeV.

The following features are notable:

1. For all hν0 the Compton energy transfer fraction fc is null: (fc(hν0, θ)|θ=0 =

0).

2. For a given hν0, fc(hν0, θ) increase with angle and saturate at 2ε/1 + 2ε.

3. For a given θ, the larger is hν0, the larger is fc(hν0, θ).
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4. For �xed parameters (hν0 and θ) the sum hν + Ee− = hν0.

The di�erential Klein-Nishina electronic cross section per unit solid angle for

Compton e�ect dσe
KN
/dΩ (in [(cm2/electron)/steradian]) is:

dσe
KN

dΩ
=
r2e
2

(
ν

ν0

)2{
ν

ν0
+
ν0
ν
− sin2 θ

}
=
r2e
2

(1 + cos2 θ)FKN =
dσe

KN

dΩ
FKN

(2.10)

where ν0 and ν are the frequencies of the incident and scattered photon respectively,

θ is the scattering angle, re, as already mentioned, is the classical radius of electron

(2.82 · 10−15m), dσe
Th
/dΩ is the di�erential electronic cross section per unit solid

angle for Thomson scattering, and FKN(hν0, θ) is the Klein-Nishina form factor,

dependent on incident photon energy and photon scattering angle, that, for a free

electron, is given as follows:

FKN(hν0, θ) =
1

[1 + ε(1− cos θ)]2

{
1 +

ε2(1− cos θ)2

[1 + ε(1− cos θ)] (1 + cos2 θ)

}
(2.11)

where, as said above, ε = hν0/mc
2.

The Figure 2.6 show the di�erential electronic cross section for Compton e�ect

dsigmae
KN
/dΩ against scattering angle θ for various values of ε.For ε = 0, the

di�erential electronic cross section for Compton e�ect dsigmae
KN
/dΩ is equal to

the di�erential electronic cross section for Thomson scattering (see Figure 2.2).

Figure 2.6: Di�erential electronic cross section dσe
KN
/dΩ per unit solid angle against

the scattering angle θ for Compton e�ect, for various values of ε.

After the photon-electron interaction, the ejected electron will lose its kinetics

energy via excitation and ionization of atom in the surrounding material. The
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photon may traverse the medium without interaction or may under go subsequent

interactions such as Compton, Rayleigh or photoelectric interactions.

The total electronic Klein-Nishina cross section for the Compton scattering on

a free electron σe
KN

[in cm2/electron] is calculated by integrating the di�erential

electronic cross section per unit solid angle dσe
KN
/dΩ over the whole solid angle,

and the atomic cross section σa
KN

is equal to:

σa
KN

= Z(σe
KN

) = Z

(∫
dσe

KN

dΩ
dΩ

)
. (2.12)

where Z is the atomic number of the absorber. The Klein-Nishina Compton elec-

tronic cross section σe
KN

is given for free electrons and is thus independent of Z. This

makes the atomic attenuation coe�cient (cross section) σa
KN

linearly dependent on

Z.

The Compton mass attenuation coe�cient σ
C
/ρ, expressed in [cm2/g], where ρ

is the mass density of the absorber, is calculated from the Compton atomic cross

section with the standard relationship:

σ
C

ρ
=
NA

A
σa

KN
=
ZNA

A
σe

KN
(2.13)

where NA is the Avogadro number (6.022 · 1023 atom/mol) and A is the atomic

mass number. Since Z/A ≈ 0.5 for all elements with the exception of hydrogen

for which Z/A = 1, σ
C
/ρ is essentially independent of Z. In reality, Z/A = 0.5

for low atomic number absorbers but with increasing Z the ratio Z/A gradually

falls to Z/A ≈ 0.4 for very high atomic number absorbers, implying a small yet

non-negligible Z dependence of σ
C
/ρ.

In diagnostic radiology, Compton scattering is the most problematic interaction

of photons with the body matter. First, the de�ections in scattering events cause

uncertainties in photon localization as it becomes di�cult to keep the desired radi-

ation transmission path, it reduces the contrasts in the image unless it is removed

by collimation before the detector, and also lead to a lower signal-to-noise ratio.

Second, it presents a radiation risk to the personnel using the equipment [5].

As we will see later, while the photoelectric e�ect dominates in materials with

high atomic numbers, Compton scattering is more signi�cant in materials with

lower atomic numbers. Also, Compton scattering dominates with high-energy

photons. Since the higher energy photons would cause a larger de�ection angle, a
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higher energy radiation is not desirable in radiological imaging.

2.1.3 Rayleigh Scattering

Rayleigh scattering is an interaction between a photon and absorber atom char-

acterized by photon scattering on bound atomic electrons. The atom is neither ex-

cited nor ionized as a result of the interaction and after the interaction the bound

electrons revert to their original state. The atom as a whole absorbs the transferred

momentum but its recoil energy is very small and the incident photon scattered

with scattering angle θ has essentially the same energy as the original photon.

The scattering angles are relatively small because the recoil imparted to the atom

produces no atomic excitation or ionization[4].

This interaction occurs mainly with very low energy diagnostic X-ray , as used in

mammography (15 to 30 keV). During the Rayleigh scattering events, the electric

�eld of the incident photon's electromagnetic wave expend energy, causing all of

the electrons in the scattering atom to oscillate in phase. The atom's electron

cloud immediately radiates this energy, emitting a photon of the same energy but

in slightly di�erent direction, see Figure 2.7.

 

  
 

λ 1 

Figure 2.7: Rayleigh scattering, the �gure show the incident photon(λ1)interact with
an atom and the scatter photon(λ2 = λ1) is being emitted with the same
energy. Rayleigh scattered photon are typically emitted in the forward
direction fairly close to trajectory of the incident photon. K, L and M are
electron shells.

The di�erential Rayleigh atomic cross section dσa
R
/dΩ per unit solid angle is

given as follows:

dσa
R

dΩ
=
r2e
2

(1 + cos2 θ) {F (x, Z)}2 =
dσe

Th

dΩ
{F (x, Z)}2 (2.14)

where dσe
Th
/dΩ is the di�erential Thomson cross section and F (x, Z) is the atomic
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form factor for Rayleigh scattering whit the momentum transfer variable x =

sin(θ/2)λ0 (λ0 is the wavelength of the incident photon and Z is the atomic number

of the absorber).

The di�erential Rayleigh atomic cross section dσa
R
/dθ per unit scattering angle

θ is

dσa
R

dθ
=

dσa
R

dΩ

dΩ

dθ
=
r2e
2

(1 + cos2 θ) {F (x, Z)}2 2π sin θ

= πr2e sin θ(1 + cos2 θ) {F (x, Z)}2 .
(2.15)

The Rayleigh atomic cross section σa
R
can be calculated by integrating Equation

2.15 over all possible scattering angle θ from 0 to π:

σa
R

=

π∫
0

dσa
R

dθ
dθ, (2.16)

and the Rayleigh mass attenuation coe�cient σ
R
/ρ [cm2/g] is determined through

the standard relationship:
σ

R

ρ
=
NA

A
σa

R
. (2.17)

In this interaction, electrons are not emitted end thus ionization does not occur.

In general, the scattering angle increase as the X-ray energy decreases. In medical

imaging, detection of the scattered X-ray will have a deleterious e�ect on image

quality. However, this type of interaction has a low probability of occurrence in the

diagnostic energy range. In soft tissue, Rayleigh scattering accounts for less than

5% of X-ray interactions above 70 keV and at most only 12% of interactions at

approximately 30 keV [6]. Rayleigh interactions are also referred as to �coherent�

scattering.

2.1.4 Photoelectric Absorption

An interaction between a photon and a tightly bound electron of an absorber

atom is called photoelectric e�ect. In the interaction the photon is absorbed com-

pletely and the orbital electron is ejected with kinetic energy Ee− . The ejected

orbital electron is called photoelectron. The photoelectric interaction between a

photon of energy hν0 and a K-shell atomic electron is shown schematically in Fig-

ure 2.8. In contrast to Compton e�ect which occurs between photon and a loosely
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bound electron (EB � hν0), the photoelectric e�ect occurs between a photon and

a tightly bound electron (EB . hν0). The requirement for electron tight binding

to the atom arise from consideration of total energy and momentum conservation

[4].

The extra energy and momentum carried by the photon are transferred to the

absorbing atom, however, because of the relatively large nuclear mass, the atomic

recoil energy is exceedingly small and may be neglected. The kinetic energy Ee−

of the ejected photoelectron is assumed to be equal to the incident photon energy

hν0 less the binding energy EB of the orbital electron:

Ee− = hν0 − EB. (2.18)

 

  

  

 

 
λ 1 

λ 3 

 λ 2 

ν0
φ

Figure 2.8: Photoelectric absorption, the �gure show the incident photon with energy
hν0, interacting with an atom. In this case K-shell electron is ejected whit
a kinetic energy Ee− = hν0−EB. The vacancy created in the k shell results
in the transition of an electron from L shell to k-shell. The di�erence in
their binding energies, results in a Kα characteristic X-ray. This electron
cascade will continue resulting in the production of other characteristic X-
rays of lower energies. Although not showed in this �gure, Auger electron of
various energies can be emitted in lieu of the characteristic X-ray emission.

The vacancy that results from the emission of the photoelectron from a given

shell will be �lled by a higher shell electron and the transition energy will be

emitted either as a characteristic (�uorescence) photon or as an Auger electron,

the probability for each governed by the �uorescence yield ω, as will be discussed

later.

The angular distribution of photoelectrons depends on the incident photon

energy hν0. The photoelectron emission angle φ is de�ned as the angle between the

incident photon direction and the direction of the emitted photoelectron, similarly

to the de�nition of the recoil electron angle φ in Compton scattering (see Fig 2.8).

At low hν0 of the order of 10 keV photoelectrons tend to be emitted at angles close
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to 90o to the incident photon direction, hence in the direction of the electric vector

of the incident photon. As hν0 increases, however, the photoelectron emission peak

moves progressively to more forward photoelectron emission angles. Figure 2.9

show the directional distribution of photoelectron emission for various incident

photon energies hν0 in the range from hν0 = 10 keV with maximum emission angle

φmax ≈ 70o to hν0 = 10 MeV with φmax ≈ 2o. The ordinate plots dn/dφ, the

relative number of photoelectrons ejected between two cones with half-angles of φ

and φ+ dφ for a given incident photon energy hν0.

Figure 2.9: Angular distribution of photoelectrons ejected between two cones with half
angles of φ and φ + dφ for given incident photon energy hν0range from
10 keV to 10 MeV. Angle φ is the photoelectron emision angle de�nited as
the angle between the incident photon direction and the direction of the
emitted photoelectron. All peaks in angular distribution are normalized to
1.

The atomic cross section (attenuation coe�cient) for the photoelectric e�ect τa

as a function of the incident photon energy hν0 exhibits a characteristic sawtooth

structure in which the sharp discontinuities, referred to as absorption edges, arise

whenever the photon energy coincides with the binding energy of a particular

electron shell. Since all shells except the K shell exhibit a �ne structure, the τa

curve plotted against the incident photon energy hν0 also exhibits a �ne structure

in the L, M , etc. absorption edges. Three distinct energy regions characterize the

atomic cross section τa:

1. Region in the immediate vicinity of absorption edges.

2. Region at some distance from the absorption edge.

3. Region in the relativistic region far from the K absorption edge.
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Theoretical predictions for τa in region (1) are di�cult and uncertain. For

region (2) the atomic attenuation coe�cient for K-shell electrons a τa
K
is given as

follows:

τa
K

= α4(σe
Th

)Zn

√
32

ε7
(2.19)

where ε = hν0/mc
2, σe

Th
and Z have the usual meaning, α is the �ne structrure

constant and n is the power for Z dependence of τa
K
ranging from n = 4 at relatively

low photon energies to n = 4.6 at high photon energies.

In region (3) (ε� 1), τa
K
is:

τa
K

=
1.5

ε
α4Z5(σe

Th
). (2.20)

The following conclusions may be reached with regard to energy and atomic

number dependence of τa
K
:

1. The energy dependence of a τa
K
is assumed to go as 1/(hν0)

3 at low photon

energies and gradually transforms into 1/(hν0) at high hν0.

2. The energy dependence for regions (2) and (3) can be identi�ed from Fig-

ure 2.10 that displays the atomic cross section for the photoelectric e�ect τa

against incident photon energy for various absorbers ranging from hydrogen

(Z = 1) to lead (Z=82).

3. Absorption edges are clearly shown in Figure 2.10, the K absorption edges

are identi�ed for aluminum (1.56 keV), copper (8.98 keV) and lead (88 keV).

The �ne structures of the L and M absorption edges are also displayed.

4. The atomic number Z dependence (τa ∝ Zn) of τa, where n ranges from 4

to ∼ 5, is also evident from Figure 2.10.

The mass attenuation coe�cient for the photoelectric e�ect τ/ρ is calculated

from the atomic cross section τa with the standard relationship

τ

ρ
=
NA

A
τa (2.21)

where A and ρ are the atomic number and density, respectively, of the absorber.

The bene�t of photoelectric absorption in X-ray transmission imaging is that

there are no additional non-primary photons to degrade the image. The pho-

toelectric process predominates when lower energy photons interact with high Z

materials. In fact, photoelectric absorption is the primary mode of interaction
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Figure 2.10: Photoelectric atomic cross section τa against photon energy hν0 for various
absorbers. Data are from the NIST.

of diagnostic X-rays with screen phosphors, radiographic contrast materials, and

bone. Conversely, Compton scattering will predominate at most diagnostic photon

energies in materials of lower atomic number such as tissue and air [6].

2.2 Physics of Absorptiometry

In this section we will clarify how the integrated dual-energy measurements from

a single projection can quantitatively determine the mass of intervening materials.

As we know from the �rst part of this chapter, the linear attenuation coe�cient

is density (ρ) dependent, a convenient practice when working with tissues that

di�er in density is to calculate the mass attenuation coe�cient µ/ρ. This removes

the physical density dependence of the linear attenuation coe�cient [7]. In the

diagnostic energy range, the two principal means for attenuation of X-ray are

photoelectric absorption and Compton scattering. In this energy range, the mass

attenuation coe�cient of a material can be approximated to:

µ

ρ
' τ

ρ
+
σ

C

ρ
(2.22)

where τ/ρ, σ
C
/ρ are the photoelectric and Compton mass attenuation coe�cients

respectively and the mass attenuation coe�cients due to Rayleigh scattering σ
R
/ρ

has been neglected [8].

Attenuation of monoenergetic photons (see Equation 2.3) using mass attenua-
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tion coe�cient can be rewrite as:

I = I0e
−µx = I0e

−µxρ
ρ = I0e

−µ
ρ
σ

(2.23)

or in term of log attenuation:

ln

(
I

I0

)
= −µ

ρ
σ (2.24)

were I and I0 were used instead I(x) and I(0) respectively, σ = xρ is the areal

density, expressed in [g/cm2], and µ/ρ is the total mass attenuation coe�cient

as given in Equation 2.4. Since in DXA, like many other radiographic methods,

pixel area is constant and known, σ represents total mass of the absorber system's

volume element (voxel).

At any given photon energy, the mass attenuation coe�cient (µ/ρ) of an element

is constant and known from experimental studies, when photons at two di�erent

energies (H and L) are passed through an absorber:

ln

(
I

I0

)
H

= −
[
µ

ρ

]
H

σ,

ln

(
I

I0

)
L

= −
[
µ

ρ

]
L

σ.

(2.25)

Attenuation at the lower energy can be expressed as a ratio (R) to attenuation

observed at the higher energy, for a homogeneous absorber, R is simply the ratio

of the component's mass attenuation coe�cient at the two energies:

R =
ln(I/I0)L

ln(I/I0)H

=
−
[
µ
ρ

]
L
σ

−
[
µ
ρ

]
H
σ

=

[
µ
ρ

]
L[

µ
ρ

]
H

, (2.26)

Given the high and low energy each element has a characteristic R value. In

Figure 2.11 are reported the values of R (40 keV and 70 keV were chosen as the

high and low energy respectively) for elements that compose the main components

presents in human body.

There is a strong dependence of R on the atomic number, as expected from

the expressions of the mass attenuation coe�cients obtained in previous sections.

Elements with lower atomic number have lowest R values.
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Figure 2.11: Relationship between R for 40 keV and 70 keV photons and the atomic
number of elements. Organic compounds consist mainly of elements with
low R values. Mineral elements (such as Na, K, P, Cl, and Ca) include
high R comnonents. Data are from the NIST.

For heterogeneous absorbers Equation 2.24 becomes:

ln

(
I

I0

)
=
∑
i

µi
ρi
σi. (2.27)

2.2.1 Biological Composition Standards

The biological standards of the body composition, since establish the exact

atomic composition of tissues, are relevant to DXA measurements. In the molecular

model, the body is represented as �ve compartments: water, protein, mineral,

glycogen and lipid, summarized in Table 2.1.

Water, makes up over 60% of human body composition. The density of water is

1.0 g/cm3 at 37 oC. Fat tissues (or lipids) are not water soluble and can be subdi-

vided into categories based on their complexity. However DXA cannot distinguish

between chemically extracted fat and the connective tissue and cellular membranes

since all lipids have similar X-ray attenuation properties. This must be taken into

account when using DXA in body composition models. For a reference man, ap-

proximately 90% of the body's lipid is fat. For the purposes of this thesis, protein

is de�ned as almost all compounds that contain nitrogen and range in complexity

from simple amino acid to nucleoproteins. The term mineral is used to describe

the inorganic molecules in the body that contain metal elements such as calcium,

sodium and potassium. Mineral is found in the body as either osseous or extra-
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Table 2.1: Summary of fractional presence and density widely used to model each com-
ponent. These are presented to be of assistance in understanding the mod-
elling of DXA. (*) A reference man is de�ned as �being between 20 − 30
years of age, weighing 70 kg, is 170 cm in height, and lives in a climate with
an average temperature of 10 to 20 oC. He is Caucasian and is a Western
European or North American in habitat and custom�. Data from[2]

Component Fraction in Density
reference man* g/cm2

Water 0.6 1.000
Fat 0.19 0.900

Protein 0.15 1.34
Mineral 0.053 2.982

Glycogen 0.006 1.52

osseous, with the osseous component being by far the largest. Carbohydrates are

principally stored as glycogen and are found in the cytoplasm of cells. The overall

body content of glycogen is very small, less than 1%, (higher concentrations are

found in muscle and liver tissue).

Given a compound, R can be calculated by Equation 2.26 knowing the mass

fraction values (component mass/compound mass). In Table2.2 are show R

values for some commonly body composition components. The theoretical R values

for fatty acids and triglycerides were calculated by averaging the R values of various

fatty acids and triglycerides respectively. Note that for soft tissue R value ranging

from 1.21 for lipids to 1.30 for lean compound, while is twofold higher (2.86) for

bone.

Table 2.2: Calculated µ/ρ values at 40 keV and 70 keV for commonly body composi-
tion components. (*)µ/ρ reported, are computed by averaging µm of various
elements of the same category. Data from NIST, chemical structure of com-
pound from [7].

Mass Fraction µ/ρ at [keV]

Component H C N O Na Mg P S Ca 40 70 R

Protein 0.070 0.532 0.161 0.227 - - - 0.010 - 0.236 0.183 1.291
Glycogen 0.062 0.444 - 0.494 - - - - - 0.238 0.183 1.301
Water 0.111 - - 0.889 - - - - - 0.264 0.194 1.357
Fatty acids* - - - - - - - - - 0.227 0.188 1.212
Triglycerides* - - - - - - - - - 0.228 0.187 1.218
Bone - 0.020 - 0.428 0.014 0.005 0.169 - 0.364 0.904 0.316 2.861

DXA was developed to determine the mass and composition of any two known

materials when physical measurements of the materials, such as overall thickness,

are either not available. The three component model used for DXA is a simpli�-
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cation of the molecular model as shown in Figure 2.12.

 

Bone 
Glycogen 

Protein 

Fat 

Water 
Lean 

soft 

tissue 

Soft 

tissue 

Lean 

Body 

weight 

Figure 2.12: The �ve component molecular model of body composition compared to
the three component model for DXA.

The components of the body are grouped into these three classes (based on

their X-ray attenuation properties): bone minerals, fat and lean (non-fat). The

model forces all tissue types into these three groups (the distinction between water,

protein and glycogen is lost). More, distributions of tissue is lost, for example the

distinction between subcutaneous adipose tissue (SAT) and visceral adipose tissue

(VAT) is lost for trunk measurements when both are projected in the same pixels.

This limitation is true for most of projective composition models.

The X-ray properties of these classes are dissimilar due to their di�ering pro-

portions of high atomic number elements (as shown in Table2.2) Bone mineral

contains a large percentage of calcium and phosphorus, whereas soft tissue is com-

posed nearly completely of hydrogen, carbon and oxygen. However, there is a slight

di�erence between the lean and fat components of soft tissue, since the lean com-

partment components contain traces of potassium, chlorine, sulphur and calcium,

primarily as electrolytes, while fat contains none.

To measure bone, fat and lean content of human body, DXA gets around the

limitation of two classes taking into account that bone mineral in the body is

concentrated in dense local regions (bones). Thus it is possible to sort the pixel

into those which contain bone and those which do not, ad to analyse the two types

di�erently:
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- The no-bone containing pixels are analysed for fat and lean as the two ma-

terials.

- The bone containing pixels are analysed for bone and soft tissue as the two

materials. The speci�c mix of fat and lean is treated as �soft tissue� in the

bone pixels and must be estimated, since it cannot be measured.

Since the fat/lean distribution vary signi�cantly from subject to subject , to es-

timate the soft tissue composition, hidden by bone, DXA must be based on local

measurements of fat and lean.

2.3 Principles of DXA

DXA was developed to solve the mass density of two unknown materials when

physical measurements of the materials, such as overall thickness, are either not

available or practical. Three fundamental assumptions are used to determine bone

density using two energies:

1. Transmission of X-rays through the body within two energy windows can be

accurately described by a monoexponential attenuation process (Equation

2.27).

2. Each image pixels of the human body can be described as a two component

system, i.e. soft tissue and bone mineral, or when bone is not present, fat

and lean mass.

3. The soft tissue overlaying the bone in the image has a composition and X-ray

properties that can be predicted by the composition and X-ray properties of

the tissue near but not overlaying the bone.

For simplicity, the equations will be derived for two monochromatic X-ray

beams (DPA equation) at high and low energy. The log attenuation equation

for each beam is:

JH = µHBσB + µHS σS,

JL = µLBσB + µLSσS
(2.28)

where µ is equal to µ/ρ in Equation 2.27, J is equal to ln (I/I0), σ is the areal

density expressed in [g/cm2] and the H and L superscripts represent the high
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and low energy X-ray beams respectively. B and S denote bone and soft tissue

respectively.

Elimination of σS gives:

σB =
JL −RSJ

H

µLB − µHBRS
(2.29)

where RS is the ratio value for the soft tissue:

RS =
µLS
µHS

. (2.30)

In the earlier technology of DPA the radionuclide source 153Gd was used because

its photon emissions at 44 and 103 keV were close to the ideal energies for in-vivo

measurement of the lumbar spine. At photon energies above 100 keV there is

little di�erence in the mass attenuation coe�cients of bone and soft tissue and

transmission measurements re�ect essentially the total mass of tissue in the beam.

Photon energies around 40 keV are ideal for the low energy beam because there is

good contrast between bone and soft tissue without excessive attenuation to limit

the signal reaching the detector.

When a DXA scan is analysed the basic data processed create a pixel-by-pixel

map of Bone Mineral Density (BMD) over the entire scan �eld calculated from

Equation 2.29. However, because of the e�ects of variable soft tissue composition

and beam hardening the numerator in Equation 2.29 may take non-zero values in

the soft tissue regions adjacent to bone [9]. Beam hardening e�ect is the tendency

of low energy X-rays to be preferentially absorbed to high energy X-rays (due to

dependency of absorption coe�cient by the energy), which shifts the average beam

energy to a higher value.

The soft tissue �hidden� is assumed to be the same composition as the nearby

soft tissue (in no-bone containing pixels). This is a reasonable assumption for

such a regional scan. This is called the weighted linear distribution model and is

appropriate for areas such as the femur and long bones[10]. In regions such as the

upper torso, more approximations are necessary that are usually proprietary and

have loose physical interpretation to solve for R.

Then these surrounding regions provide a reference area of comparable thickness

and soft tissue composition from which a line-by-line correction is applied to the

BMD values in the bone region.

An edge detection algorithm is �rst used to �nd the bone edges (Figure 2.13).
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Figure 2.13: A femur projection by Lunar iDXA ME scanner: (A) results automatic
bone point and (B) soft tissue point typing. From [11].

The total projected area of bone is then derived by summing the pixels within

the bone edges and the reported value of BMD calculated as the mean BMD over

all the pixels identi�ed as bone. Finally, Bone Mineral Content (BMC) is derived

by multiplying mean BMD by projected area:

BMC = BMD · Area (2.31)

Analogous of Equations 2.28 can be written for fat and lean tissue in pixels

that not containing bone, and also in this case the equation is complicated by the

beam hardening e�ect. Thus, it is common practice to describe the R as a function

of high energy attenuation (HE), a surrogate for total mass [12]. In �gure 2.14

step phantom calibration curves are shown, data are acquired on a Hologic system

but the same is true for any DXA system. The R-value, which is the ratio of the

low to high energy attenuation, is plotted on the vertical axis. Higher R-values

correspond to increasing fat-free (lean) content. High energy attenuation, which is

proportional to mass, is plotted on the horizontal axis.

In practice, DXA algorithms are more complex than those presented, and mod-

els used are proprietary and not available to the research community. Modern DXA

scanner provide measures of total body and regional mass of di�erent components.

By extending basic principles, triple photon absorptiometry might allow for

the measurement of three di�erent types of tissue. However, because there are

only two attenuation processes (Compton scattering and the photoelectric e�ect)

in the passage of diagnostic X-rays through tissue, the equations of triple photon

absorptiometry have built in redundancy. Then within the diagnostic energy range
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Figure 2.14: Step phantom calibration curves on a Hologic Delphi. This curve repre-
sented the R values as a composite of fat and lean tissue. Higher red lines
correspond to higher presence of lean tissue. The black dots are phantom
measurements at di�erent thickness and composition. The red lines are
the calibration function that was a best �t to the phantom data. Horizon-
tal lines show iso-composition and vertical lines show iso-volume. Source
[2].

with, measurements at more than two energies add no information, in practice it

is possible to discriminate only two types of tissue [8].

2.4 DXA System

DXA systems have much in common with other medical X-ray imaging systems,

with many of the same components, as you can see in Figure 2.15.

The scan speed and image quality are dictated by the X-ray beam geometry.

In commercially available DXA systems, the method by which low and high

energy images are acquired varies according to manufacturer. For example, the

exact X-ray tube voltage settings are unique to each manufacturer. The need for

excellent spatial registration between low and high energy images is critical, since

this a�ects the R values. Mis-registration can lead to substantial errors.

First generation bone densitometers use pencil beam geometry Figure 2.16 (A).

The photon beam is tightly collimated with one photon source and one detector.

The source and detector are rigidly coupled and moved together in a rectilinear

manner to build an image of the bone being examined line by line. The disad-
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Figure 2.15: Typical DXA system including the X-ray tube, �ltration, pre-patient aper-
ture, examination table or surface, pre-detector aperture and detector.
The components have a �xed geometry.

vantage of this technology is the relatively slow scan speed. However, the direct

relationship between source and detector means that calculated bone and tissue

masses are less likely to be artefactual.

The second generation of X-ray bone densitometer has a fan beam geometry,

with a source which fans out in the short axis plane of the patient and is measured

by an array of detectors in the same plane, Figure 2.16 (B). The bones are imaged

in one pass along the long axis of the body providing an immediate advantage in

scan speed (time for a whole body scan take 20 min for pencil beam, and less than

3 min for fan beam). The disadvantage of fan beam DXA is that the photon �ux at

the edges is lower than the middle of the image (due to the inverse square law). As

a result, mass calculations may have some systematic error, although bone mineral

density values have been shown to be una�ected.

It is important to note that fan and pencil beam systems project the three

dimensional human body onto the two dimensional image in di�erent ways, as is

illustrated in Figure 2.17.

The pencil beam image is projected perpendicular to the plane of the table, the

fan beam image may be projected under a certain angle in the direction parallel to

the fan width. Thus, even if identical ROIs are outlined on the resulting images,

these ROIs are projections of di�erent physical volumes of interest. This di�erence

between pencil and fan beam ROIs is one of de�nition. DXA ROI de�nitions are
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Figure 2.16: Illustration of the path of the X-ray beam (arrow) in the successive dual-
energy X-ray absorptiometry (DXA) systems: (A) pencil beam, (B) fan
beam, and (C) narrow fan beam (modi�ed from [13]).
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Figure 2.17: Pencil and fan beam geometries project the same ROI di�erently. The
pencil beam image is projected perpendicular to the plane of the table,
whereas the fan beam projection depends on the position of the object
within the beam (modi�ed from [2]).
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arbitrary; both projections and measurements are equally valid [14].

An additional di�erence between pencil beam versus fan beam systems is the

so called fan beam magni�cation. The size of the projected area of a volume of

interest depends on the position of the object between the X-ray tube and the

detector.

Thus, in fan beam systems, bone area appear to decrease the further the sub-

ject is from the source. Since the precise location of the bone along the X-ray

path is generally not known, magni�cation errors in bone area can be challeng-

ing to correct. In addition, magni�cation and its associated error only occur in

the dimension along the fan length. The image dimension in the direction of the

scanning motion does not have any magni�cation.

The most recent advance has been the introduction of the narrow fan beam.

Narrow fan beam is designed to overcome some of the limitations of the fan beam

geometry. A small fan beam (about 4cm wide at the detector) in the long axis is

measured by an array of detectors. The beam scans the bones in the short patient

axis on each individual sweep along the long axis of the patient with some beam

overlap (Figure 2.16 (C)). Although slightly slower than a fan beam scanner, the

mass results should be more accurate as the photon �ux has little variability in the

area being measured and the magni�cation is really low (due to the beam overlap).

2.4.1 DXA radiation source

The replacement of the radionuclide source used in DPA with a X-ray tube

improved the performance of dual photon absorptiometry by combining higher

photon �ux with a smaller diameter source.

The availability of an intense, narrow beam of radiation shortened scan times

(from 20 minutes to 2 minutes), enhanced image de�nition (image resolution from

2 mm to 1 mm), and improved precision (BMD measurements from 2% to 1%) [9].

In all DXA systems on the market, the X-ray tubes used are standard tungsten

anode tubes with focal spot sizes on the order of 0.5 to 1 mm.

The use of a X-ray tube requires the solution of several signi�cant technical

problems. A highly stable source is essential. Image noise must be limited by

photon statistics and not by instabilities in the X-ray generator. Because X-ray

tubes produce poly-energetic spectra rather than the discrete line emissions of a

radionuclide, the e�ects of beam hardening are a potential source of error.

In beam hardening, lower energy photons are preferentially removed from the
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radiation beam compared to higher energy photons, leading to a progressive shift

in spectral distribution to higher e�ective photon energies with increasing body

thickness. As a result the attenuation coe�cients for bone and soft tissue in Equa-

tion 2.29 change with body thickness, and so vary from patient to patient and from

site to site within the body.

However, there are di�erences in how the dual energy images are created. The

two methods in use are K-edge �ltering systems made by Norland (Norland, Cooper

Surgical, Madison, WI, United States of America) and GE Lunar (GE Healthcare,

Madison, WI, United States of America) and voltage switching systems made by

Hologic [2].

In a K edge �lter system, the X-ray tube is operated in a steady direct current

mode and a K absorption edge �lter splits a single X-ray spectrum into low and

high energy components that mimic the emissions from 153Gd. Because the two

components have inherently narrow spectral distributions the problems associated

with beam hardening are minimized (Figure 2.18). The Lunar DXA systems have a

cerium (Z = 58) �lter and use pulse height analysis at the detector to discriminate

between high- and low-energy photons. Norland systems use a samarium (Z = 62)

�lter and separate detectors for high and low energy X-rays. Dynamic range is ex-

tended by a system for switching �lters with di�erent thicknesses of samarium into

the beam. In these systems, since both high and low energy X-rays are intermixed,

the energy separation is done at the detector using pulse height measurements.
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Figure 2.18: Pirnciples of K-edge �ltration. (A) Un�ltered 80 kV spectrum (tungsten
anode), attuation coe�cent as function of photon energy of Cerium (Z =
58); (C) 80 kV spectrum �rltered by 400 mg/cm2 cerium. Spectrum have
been normalized to same peak intensities. (A) and (C) data generated us-
ing [15] through online tool for the simulation of X-ray spectra by Siemens
tool, (B) data from NIST.

In a voltage switching system, two X-ray tube voltage settings are used to create

low and high energy images. The X-ray tube power supply switches between a low

(70 kVp) and high (140 kVp) voltage setting during alternate half cycles of the

power supply. The resulting pulses are very short, 8.33 ms for 60 Hz and 10 ms for
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50 Hz systems. The spectral distribution (Figure 2.19) is wider than with the K-

edge �lter method and the consequent e�ects of beam hardening are corrected by a

rotating calibration wheel (Figure 2.20) containing bone and soft tissue equivalent

�lters that measure the attenuation coe�cients in the DPA equation and calibrate

the scan image pixel by pixel. The �lter, voltage switching and detectors are all

electronically and mechanically synchronized to sequentially collect low and high

energy information for each position of the X-ray gantry.
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Figure 2.19: Dual kV spectrum with 4-mm Al �ltration and 3.1 mm Cu �lter in 140 kV
beam. Data generated using [15] through online tool for the simulation of
X-ray spectra by Siemens tool

Figure 2.20: The calibration wheel used as the internal reference standard in Hologic
scanners. The segments in the wheel include bone and soft tissue equiva-
lent �lters together with an empty air sector. Each of these 3 segments has
separate high and low energy X-ray sectors with and without an additional
brass �lter. Image from [9]

2.4.2 Radiation dose

DXA systems generate ionizing radiation. Thus, subjects being scanned and

equipment operators, consequently, receive a (small) radiation dose as a result of
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any procedure. The absorbed dose to tissue is quanti�ed as the amount of energy

absorbed in a kilogram of tissue. The unit of measure is the Gray (Gy), where

1 Gy is equivalent to 1 J/kg. Another useful quantity of dose is e�ective dose,

measured in sievert (Sv) where 1 Sv = 1 J/kg.

In summary: 1 Gy (physical quantity) is the deposit of a joule of radiation

energy in a kg of matter or tissue. 1 Sv (biological e�ect) represents the equivalent

biological e�ect of the deposit of 1 J of radiation energy in 1 Kg of human tissue.

E�ective dose takes account not only of the amount of energy absorbed, but

also the type of radiation and the susceptibility of the tissue to radiation damage.

The e�ective dose is calculated as the sum of the absorbed doses to radio-sensitive

organs multiplied by their associated weighting factors, wT and wR. The tissue

weighting factors and radiation weighting factors are de�ned by National Council

on Radiation Protection (NCRP). In other words, the e�ective dose, E, is the

tissue weighted sum of the equivalent doses in all speci�c tissues and organs of the

body, given by the expression:

E =
∑
T

wT
∑
R

wRDR,T (2.32)

where DT,R is the absorbed dose, wR is the radiation weighting factor equal to one

for diagnostic X-rays, and wT is the tissue weighting factor for di�erent tissues

(Table 2.3).

Table 2.3: Tissue weighting factors, source NCRP [2]. (*) Remainder tissues: adrenals,
extrathoracic region, gall bladder, heart, kidneys, lymphatic notes, mus-
cle, oral mucosa, pancreas, prostate, small intestine, spleen, thymus,
uterus/cervix.

Tissue wT
∑
wT

Bone marrow, colon, lung, stomach, breast, remainder tissues* 0.12 0.72
Gonads 0.08 0.08
Bladder, oesophagus, liver, thyroid 0.04 0.16
Bone surface, brain, salivary glands, skin 0.01 0.04
Total 1

Basic Safety Standards (BSS) [16] require that all medical radiation exposures

are appropriately justi�ed.

The diagnostic bene�t from DXA must outweigh the radiation detriment that

might ensue. The ICRP recommends that both generic justi�cation and individual

justi�cation are applied. For generic justi�cation, the national professional bod-

ies, in conjunction with national health authorities and the radiation protection
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regulatory body, will have decided which DXA procedures generally improve the

diagnosis or treatment, or provide necessary information about the exposed indi-

viduals. Individual justi�cation considers whether the application of the particular

DXA procedure to a particular individual is justi�ed or not.

DXA procedures may also be used as part of a biomedical research project,

such as in the role of a metric where the measurement of bone density or body

composition is part of assessing the e�cacy of the treatment under investigation.

In this situation, the bene�t from the use of radiation is expected to be ac-

crued by society, such as through improved health care options. The use of DXA

procedures in this role must normally also be justi�ed by an ethics committee. If

a given DXA procedure is justi�ed, then the BSS require that its performance is

optimized. For DXA, this means ensuring that the patient dose is the minimum

necessary (ALARA principles: As Low As Reasonably Achievable) to determine

bone density or body composition to an appropriate level of certainty.

Patient e�ective doses in DXA depend on the type of beam (pencil beam, fan

beam, narrow fan beam), the protocol or mode used for the scan (scan area, tube

current, scan speed) and the body region being scanned.

Many DXA units o�er di�erent acquisition modes, typically, the tube current

and/or scanning speed is changed. The patient dose may change widely based on

mode of examination [11] [17] [18]. Then the appropriate choices of parameters

must be made for the particular individual undergoing the procedure.

To put these DXA patient doses into perspective, it is helpful to consider expo-

sure from other sources. Human beings are constantly exposed to ionizing radiation

from natural sources, including cosmic rays and naturally occurring radioactive

material in foods, soil, water and air. This is collectively referred to as natural

background radiation. The average annual natural background radiation dose to

humans worldwide is about 2400 µSv (vary from 1000 to 10 000 µSv). Thus, in

comparison, e�ective patient doses from DXA are small and are similar to those

received on average from one or two days of exposure to natural background radia-

tion. Adult e�ective doses, represented in µSv, for various radiological procedures

and conditions are shown in Figure 2.21.

Operators that perform the DXA procedure may also receive a radiation dose

due to scattered radiation from the patient. This scattered dose is much less than

the dose in the primary beam. While the occupational dose limit prescribed in the

BSS is 20 000 µSv/a averaged over �ve consecutive years with a limit of 50 000

µSv in any single year, the application of the principle of optimization of protection
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Figure 2.21: Adult e�ective doses for various procedures and exposures. Source [2]

means that occupational doses must be as low as reasonably achievable.

With DXA, occupational doses are determined primarily by the workload of

the DXA unit (number of patients per day), the distance the technologist or other

personnel are from the patient during the scan, and the type of scanner and the

protocols/mode being used (Table 2.4).

Table 2.4: Radiation dose as function of distance from beam. The beam was attenuated
with a water target having dimensions of 25x25x15 cm. Each measurement
consisted of a static exposure at the maximum X-ray tube current and voltage
of 2.5mA and 100kV. Source [11]

Dose (µSv/h) Distance (cm)

44 37.5
13.2 75
5.3 112.5
2.6 150
1.3 200

In practical terms, the operator's desk should be positioned at more then 2 m

from the scanner and the use of protective screens or shields may be not necessary.

With these precautions, it is most likely that the operator dose will be in the lower

range of acceptable occupational exposures.
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2.4.3 DXA regions of interest

There are several regions of interest (ROIs) that can be de�ned, with each

having information to o�er. The optimal site depends on the intent of the scan.

Typical ROIs, de�ned by the proprietary software, include �ve main corporeal

districts: trunk, upper limbs, lower limbs, android region (a portion of the abdomen

included between the line joining the two superior iliac crests and extended toward

the head up to the 20% of the distance between this line and the chin) and gynoid

region (a portion of legs leaving from the femoral great trochanter, directed caudally

up to a distance double of the android region). For bone density, most ROIs

currently de�ned (spine, femur) are useful for the diagnosis and prevention of

diseases related to osteoporosis. Only the whole body scan mode can measure fat,

lean and bone total mass. Figure 2.22 shows an acquisition of a whole body scan,

highlighting the �ve main districts in which are calculate the amount of fat and

lean tissues.

Figure 2.22: DXA examination of body composition (yellow for high fat percentage
tissue, red for low fat percentage e lean tissue). ROIs are automatically
drawn by the software according to anatomical landmarks (A and G are
android and gynoid regions respectively).



2.4. DXA SYSTEM 35

2.4.4 DXA limitation

While the DXA technique is extremely accurate, with very low doses, it has

some limitations. DXA is still a projective technique, the measurements of bone

density is in units of grams per unit area since DXA does not have the ability to

measure tissue thickness. Thus, DXA systems cannot tell the di�erence between

thick low density bone and thin high density bone.

Degenerative changes, for example aortic calci�cations and fractured vertebrae,

are di�cult to visualize and can cause signi�cant bias to the BMD results. These

biases are systematic and typically found in older populations beyond the age of

65 years.

Moreover as we have already said DXA can only solve for two materials simul-

taneously. Thus, soft tissue composition can only be solved in areas exclusive of

bone, and bone mass can only be determined with an assumption of the soft tissue

composition overlaying the bone. Since bone is typically contained in 40% or more

of the body image pixels, the soft tissue composition has to be estimated from

surrounding tissue. In some cases, accurate estimates cannot be made, such as the

head, hands, feet and upper torso because there is not adequate soft tissue outside

the bone projection, and manufacturers turn to proprietary methods to reference

the soft tissue.

Generally, BMD values across manufacturers cannot be directly compared and

are not interchangeable for several reasons. The comparison of patient data among

di�erent dual X-ray absorptiometry (DXA) scanners is complicated because no

universally accepted cross-calibration procedure or standard currently exists.

Although operating on the same basic principles, the instruments show di�er-

ences in scanner design, bone mineral calibration, and analysis algorithms. Lunar

scanners rely on daily scanning of standards to provide a bone tissue equivalent

calibration. Hologic uses an internal calibration system, which corrects for short-

term instabilities. Also, the software used for analysis of the scans is manufacturer

speci�c and unique, particularly with regard to the edge detection algorithms used

for separating bone and soft tissue regions. This implementation results in di�er-

ences in the de�ned bone area and BMC evaluated by di�erent systems (then also

BMD measurements is di�erent because this is calculated as BMC divided by the

measured area). For example, the di�erences between Hologic and GE Lunar are

approximately 8% in BMD and 20% in BMC. There is also a lack of standardization
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on the placement of ROIs [19].

2.4.5 Quality Control

Longitudinal Scanner Quality Control (QC) procedures consist of procedures

used to monitor the performance of a single scanner over time. QC is carried out

daily, before the measurements on patients. This procedure calibrates and veri�es

functionality as well as the accuracy and precision of the densitometer.

The QC procedure is completely automatized and use a the calibration block

phantom (Figure 2.23) that consists of tissue-equivalent material with three bone-

simulating chambers of known bone mineral content.

Figure 2.23: Black box phantom of tissue-equivalent material with three bone-
simulating chambers. The red arrow represent the laser alignment system.
Source [11]

These scans are analysed automatically and added to the QC database.

If the measurements falls outside acceptable limits, the phantom should be re-

scanned. If the measurement from the second scan also falls outside the limits, the

service provider for the system should be called.

Daily QC report is show at the end of each procedure, in Figure 2.24 is show

the QC reports of last year.
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Figure 2.24: Report Print page: on the right the phantom scan is shoe, on the center
and on the left result of calibration, for the BMD and soft tissue compo-
sition respectively, are show. Data from �Lunar iDXA� enCORE software
v.16.





Chapter 3

Statistical Methods

In this chapter statistical tools, that we will use in the last part of this work,

are explained.

3.1 Kolmogorov�Smirnov test

The Kolmogorov�Smirnov test (KS test) is a non parametric test of the equal-

ity of continuous, one-dimensional probability distributions that can be used to

compare two samples (two-sample KS test). The two-sample KS test is one of the

most simple and useful non-parametric methods for comparing two samples, as it

is sensitive to di�erences in both location and shape of the empirical cumulative

distribution functions of the two samples.

The KS statistic quanti�es a distance between the empirical continuous distri-

bution functions of two samples, is de�ned as:

Dn,n′ = sup
x
|F1,n(x)− F2,n′(x)|, (3.1)

where F1,n and F2,n′ are the empirical distribution functions of the �rst and the

second sample respectively, and supx is the supreme function of the set of distances

(see Figure3.1).

The null distribution of this statistic is calculated under the null hypothesis

that the samples are drawn from the same distribution. The null hypothesis is

rejected if

Dn,n′ > c(α, n, n′). (3.2)

The value of c(α, n, n′) is given in tables that have been published.

39
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Figure 3.1: Illustration of the two-sample KS statistic. Red and blue lines each cor-
respond to an empirical distribution function, and the black arrow is the
two-sample KS statistic.

Note that the two-sample KS test checks whether the two data samples come

from the same distribution. This does not specify what that common distribution

is (e.g. whether it's normal or not normal).

We will use this test to asses if di�erent populations or subjects groups have

similar enough distribution of observables to be treated as a single population or

corrections need to be made. These corrections could range from dividing the two

datasets and analyzing them separately, to explicitly model the di�erence between

the groups.

3.2 Principal component analysis

The original purpose of principal component analysis (PCA) was to reduce a

large number (p) of variables to a much smaller number (m) of principal compo-

nents (PCs) whilst retaining as much as possible of the variation in the p original

variables.

Although there are many other ways of applying PCA, this original usage is

probably still the most prevalent single application [20].

In this work the application of PCA is performing not only to reduces the

dimensionality of the problem, but to obtain m PCs (m� p) which can be readily
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interpreted.

Since PCA projects original data onto directions which maximize the its vari-

ance, if some variables have a large variance and some small, PCA will load on the

large variances.

To have a PCA independent of features variance, �rst pre-processing data to

normalize its mean and variance as follow:

1. Let µ = 1
m

m∑
i=1

x(i) where i denotes the ith subjects

2. Replace each x(i) with x(i) − µ

3. Let σ2
j = 1

m

m∑
i=1

(
x
(i)
j

)2
where j denotes the j th measurement

4. Replace each x
(i)
j with x

(i)
j

/
σj

Steps (1-2) zero out the mean of data, steps (3-4) rescale each coordinates to

have unit variance, which ensures that di�erent attributes are all treated on the

same scale.

Suppose that x is a vector of p random variables. Consider the case where

the vector of random variables x has a known covariance matrix Σ. This is the

matrix whose (i, j)th element is the covariance between the ith and j th elements

of x when i 6= j, and the variance of the j th element of x when i = j.

It turns out that for k = 1, 2, · · · , p, the kth PC is given by zk = α>k x where

αk is an eigenvector of Σ corresponding to its kth largest eigenvalue λk.

Furthermore, if αk is chosen to have unit length (α
>
kαk = 1), then var(zk) = λk,

where var(zk) denotes the variance of zk.

To derive the form of the PCs, consider �rst α>1 x; the vector α1 maximizes

var
[
α>1 x

]
= α>1 Σα1. It is clear that, as it stands, the maximum will not be

achieved for �nite α1 so a normalization constraint (α>1 α1 = 1) must be imposed.

To maximize α>1 Σα1 subject to α
>
1 α1 = 1:

arg max
α>1 α1=1

{
α>1 Σα1

}
= arg max

{
α>1 Σα1

α>1 α1

}
(3.3)

the standard approach is to use the technique of Lagrange multipliers formulation

of the Rayleigh quotient.
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The quantity to be maximised can be recognised as a Rayleigh quotientR(Σ,α1),

de�ned as:

R(Σ,α1) =
α>1 Σα1

α>1 α1

(3.4)

with the constraint α>1 α1 = 1.

The problem is to �nd the critical points of R(Σ,α1) and this is equivalent to

�nd the critical points of

L(α1, λ) = α>1 Σα1 − λ
(
α>1 α1 − 1

)
, (3.5)

where λ is a Lagrange multiplier. The stationary points of L(α) occur at

dL(α1)

dα1

= 0 (3.6)

therefore

2α>1 Σ− 2λα>1 = 0⇒ Σα1 = λα1. (3.7)

Therefore, the eigenvector α1 of Σ is the critical points of the Rayleigh Quotient

and their corresponding eigenvalue λ1, is the stationary value of R.

To decide which of the p eigenvectors gives α>1 x with maximum variance, note

that the quantity to be maximized is:

R(Σα1) =
α>1 Σα1

α>1 α1

= λ
α>1 α1

α>1 α1

= λ (3.8)

so λ must be as large as possible. Thus, α1 is the eigenvector corresponding to the

largest eigenvalue of Σ, and var(α>1 x) = α>1 Σα1 = λ1, the largest eigenvalue.

In general, the kth PC of x is α>k x and var(α>k x) = λk, where λk is the kth

largest eigenvalue of Σ, and αk is the corresponding eigenvector. This will now

be proved for k = 2; the proof for k ≥ 3 is slightly more complicated, but very

similar. The second PC, α>2 x, maximizes α>2 Σα2 subject to being uncorrelated

with α>1 x, or equivalently subject to cov[α>1 x,α
>
2 x] = 0, where cov(x, y) denotes

the covariance between the random variables x and y.

Noting that:

cov[α>1 x,α
>
2 x] = α>2 α1, (3.9)
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the quantity to be maximized is

L(α1, λ, φ) = α>2 Σα2 − λ
(
α>2 α2 − 1

)
− φα>2 α1, (3.10)

where λ, φ are Lagrange multipliers.

Di�erentiation with respect to α2 and multiplication on the left by α>1 gives:

α>1 Σα2 − λα>1 α2 − φα>1 α1 = 0, (3.11)

which, since the �rst two terms are zero and α>1 α1 = 1, reduces to φ = 0.

Therefore,Σα2 − λα2 = 0, so λ is once more an eigenvalue of Σ, and α2 the

corresponding eigenvector.

Again,λ = α>2 Σα2 so λ is to be as large as possible. Assuming thatΣ does

not have repeated eigenvalues, λ cannot equal λ1. If it did, it follows thaα2 = α1,

violating the constraint α>1 α2 = 0. Hence λ is the second largest eigenvalue of Σ,

and α2 is the corresponding eigenvector.

It can be shown that for the kth PC, the vector of coe�cients αk is the eigen-

vector of Σ corresponding to λk, the kth largest eigenvalue.

It should be noted that the sign of any PC is completely arbitrary. If every

coe�cient in a PC,zk = α>k x, has its sign reversed, the variance of zk is unchanged,

and so is the orthogonality of αk with all other eigenvectors.

3.3 Non-Negative Matrix Factorization

A fundamental problem in this data-analysis is to �nd a suitable representa-

tion of the data. A useful representation typically makes latent structure in the

data explicit, and often reduces the dimensionality of the data to facilitate the

application of statistics and computational methods.

Non-Negative Matrix Factorization (NMF) is a useful decomposition for mul-

tivariate data, oriented to �nd a positive part-based linear representation of non

negative data [21].

We formally consider algorithms for solving the following problem, given a non-

negative matrix V , �nd non-negative matrix factors W and H such that:

V ≈WH . (3.12)
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NMF can be applied to the statistical analysis of multivariate data in the fol-

lowing manner. Given a set of of multivariate n-dimensional data vectors, the

vectors are placed in the columns of an n ×m matrix V where m is the number

of examples in the data set. This matrix is then approximately factorized into an

n× r matrix W and an r ×m matrix H .

Usually r is chosen to be smaller than nor m, so that W and H are smaller

than the original matrix V (see Figure3.2). This results in a compressed version

of the original data matrix.

Figure 3.2: Illustration of approximate non-negative matrix factorization: the matrix
V is represented by the two smaller matrices W and H , which, when
multiplied, approximately reconstruct V .

It can be rewritten column by column as v ≈ Wh, where v and h are the

corresponding columns of V andH . In other words, each data vector v is approx-

imated by a linear combination of the columns ofW , weighted by the components

of h. ThereforeW can be regarded as containing a basis that is optimized for the

linear approximation of the data in V . Since relatively few basis vectors are used

to represent many data vectors, good approximation can only be achieved if the

basis vectors discover structure that is latent in the data [22].

To �nd an approximate factorization V ≈ WH , we �rst need to de�ne cost

functions that quantify the quality of the approximation. Such a cost function can

be constructed using some measure of distance between two non-negative matrices

A and B . One useful measure is simply the square of the Euclidean distance

between A and B:

‖A−B‖2 =
∑
i,j

(Ai,j −Bi,j)
2 (3.13)

This is lower bounded by zero, and clearly vanishes if and only if A = B.

As shown in [23] both PCA and NMF represent a signal as a linear combination

of basis, but with qualitatively di�erent results.

In NMF approach only additive combinations are allowed, because the non-zero

elements of W and H are all positive. In contrast to PCA, no subtractions can

occur. For these reasons, the non-negativity constraints are compatible with the
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intuitive notion of combining parts to form a whole, which is how NMF learns a

factor-based representation of the signal.

3.4 Linear Regression Model

A statistical model is a simplistic and necessary representation of the reality

derived from experimental observations and logical deductions.

A general linear model that is used to determine Y from a knowledge of x is

usually written in the form:

Y = µ(X) + ε (3.14)

where Y , the response variable, and ε are random variables, µ(X) is a function

of variables X de�ned in domain D and named predictor variable. The function

µ is de�nite to be the deterministic portion of Y and ε the random (stochastic)

portion. If µ is of �rst order we talk about linear model.

Linear regression is an approach for modelling the relationship between Y , the

response variable, and X, the predictors variables. The case of one explanatory

variable is called simple linear regression.

More formally, linear regression represent a method to estimate the expected

value with condition to an dependent variable Y , given the values of independent

variables X1, . . . Xk:

E[Y |X1, . . . , Xk]. (3.15)

Linear regression has two main practical uses:

• If the goal is the prediction, linear regression can be used to �t a predictive

model to an observed data set of y and X values. After developing such a

model, if an additional value of X is then given without its accompanying

value of y, the �tted model can be used to make a prediction of the value of

y.

• Given a variable y and a number of variables X1, . . . , Xp that may be related

to y, linear regression analysis can be applied to quantify the strength of

the relationship between y and the Xj, to assess which Xj may have no

relationship with y at all, and to identify which subsets of the Xj contain

redundant information about y.
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Given a data set {yi, xi1, . . . , xip}ni=1 of n samples, a linear regression model

assumes that the relationship between the dependent variable yi and the p-vector

of predictors variables xi is linear. This relationship is modelled through an unob-

served random variable (error variable) εi that adds noise to the linear relationship.

Thus the model takes the form:

Y = Xβ + ε, (3.16)

where Y = [y1, . . . , yn]> is an n× 1 observable random vector, X is a n× p matrix

where the rows xi = [xi,1, . . . , xi,p] is the observable, β = [β1, . . . , βp]
> is a p × 1

vector of unknown parameters and ε = [ε1, . . . , εn]> is a n× 1 random vector such

that the expected value E(ε = 0.

Ordinary Least Squares

Ordinary least squares (OLS) method is used for estimating the unknown pa-

rameters in the regression models.

The goal of OLS is to minimizing the di�erences between the observed responses

and the responses predicted by the linear approximation of the data (this is the

sum of the squared vertical distances between each data point in the set and the

corresponding point on the regression line).

The OLS estimator provides minimum-variance mean-unbiased estimation in

absence of multicollinearity, the errors have the same �nite variance and are uncor-

related. Under the additional assumption that the errors be normally distributed,

OLS is the maximum likelihood estimator.

The quantity yi−x>i β, called the residual for the ith observation, measures the

vertical distance between the data point (xi, yi) and the hyperplane y = x>β, and

thus assesses the degree of �t between the actual data and the model. The sum of

squared residuals is a measure of the overall model �t:

S(β) =
n∑
i=1

(yi − x>i β)2 = (y −Xβ)>(y −Xβ). (3.17)

The value of β which minimizes this sum is called the OLS estimator for the

parameter. The function S(β) is quadratic in β with positive-de�nite Hessian, and
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therefore this function possesses a unique global minimum at β = β̂:

β̂ = arg min
β∈Rp

S(β) =

(
1

n

n∑
i=1

xix
>
i

)−1
· 1

n

n∑
i=1

xiyi (3.18)

or equivalently in matrix form,

β̂ = (X>X)−1X>Y. (3.19)

After we have estimated β, the �tted values (or predicted values) from the regres-

sion will be:

ŷ = Xβ̂. (3.20)

It is common to assess the goodness-of-�t of the OLS regression by comparing

how much the initial variation in the sample can be reduced by regressing onto X.

The coe�cient of determination R2 is de�ned as a ratio of explained variance to

the total variance of the dependent variable y:

R2 =

∑
(ŷi − y)2∑
(yi − y)2

. (3.21)

where y is the mean value of y.

In order for R2 to be meaningful, the matrix X of data on regressors must

contain a column vector of ones to represent the constant whose coe�cient is the

regression intercept.

Often is reported an adjustment of the coe�cient R2 to take account of the

increasing of the R2 when extra explanatory variables are added to the model.

R2
adj include the information about the number of explanatory terms in a model

relative and the sample size.

The R2
adj can be negative, and its value will always be less than or equal to that

of R2. Unlike R2, the R2
adj increases when a new explanator is included only if the

new explanator improves the R2 more than would be expected by chance.

If a set of explanatory variables with a predetermined hierarchy of importance

are introduced into a regression one at a time, with the R2
adj computed each time,

the level at which R2
adj reaches a maximum, and decreases afterward, would be

the regression with the ideal combination of having the best �t without excess or

unnecessary terms.
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The R2
adj is often de�ned as

R2
adj = 1− (1−R2)

n− 1

n− p− 1
(3.22)

where p is the total number of regressors in the model (not counting the constant

term), and n is the sample size.

Despite the meaning of the parameter is still the same, many equivalent de�-

nitions have been made depending on the �eld of application.

In our analysis the used de�nition is

R2
adj = 1− (1−R2)

(n− 1)

p
. (3.23)

3.5 Support Vector Machine and Regression

In machine learning, support vector machine (SVM) is a supervised learning

model, with associated learning algorithms, that analyses data and recognizes pat-

terns, used for classi�cation and regression analysis.

In practice SVM constructs a hyperplane in a high-dimensional space, which

can be used for classi�cation, regression, or other tasks. Intuitively, a good sepa-

ration is achieved by the hyperplane that has the largest distance to the nearest

training-data point of any class, since in general the larger the margin the lower

the generalization error of the classi�er.

Whereas the original problem may be stated in a �nite dimensional space,

it often happens that the sets to discriminate are not linearly separable in that

space. For this reason, it was proposed that the original �nite-dimensional space be

mapped into a much higher-dimensional space, presumably making the separation

easier in that space.

Given some training data D, a set of n points of the form

D = {(xi, yi) | xi ∈ Rp, yi ∈ R}ni=1 . (3.24)

In SVM regression, our goal is to �nd a function f(x) that has at most ε

deviation from the actually obtained targets yi for all the training data, and at the

same time is as �at as possible [24]. In other words, we do not care about errors

as long as they are less than ε, but will not accept any deviation larger than this.

We begin by describing the case of linear functions f , taking the form
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f(x) = 〈w,x〉+ b (3.25)

where x ∈ Rp, b ∈ R and 〈·, ·〉 denotes the dot product in Rp.

Flatness in this case means that one seeks a small w, then imposing to solve

the problem as a convex optimization problem:

minimize
1

2
‖w‖2

subject to

yi − 〈w,xi〉 − b ≤ ε

〈w,xi〉+ b− yi ≤ ε

(3.26)

where ‖w‖2 = 〈w,w〉.

How ever an additional slack variable is add to to cope with otherwise infeasible

constraints of the optimization problem:

minimize
1

2
‖w‖2 + C

∑̀
i=1

(ξi + ξ∗i )

subject to

yi − 〈w,xi〉 − b ≤ ε+ ξi

〈w,xi〉+ b− yi ≤ ε+ ξ∗i

(3.27)

where ξi and ξ
∗
i are slack variables that specify the upper and the lower training

errors subject to an error tolerance ε, and C is a positive constant that determines

the degree of penalized loss when a training error occurs.

Figure 3.3 show the situation graphically. Only the points outside the shaded

region contribute to the cost with linear penalization.

The next step is to make the SV algorithm non-linear. This could be achieved

by simply preprocessing the training patterns xi by a map Φ : Rp → F into some

feature space F :
f(x) = 〈w,Φ(x)〉+ b (3.28)

and replacing this new expression of f in 3.27.



50 CHAPTER 3. STATISTICAL METHODS

Figure 3.3: Illustration of the two-sample KS statistic. Red and blue lines each cor-
respond to an empirical distribution function, and the black arrow is the
two-sample KS statistic.

3.6 Nearest Neighbours Classi�cation and Regres-

sion

K-Nearest Neighbours algorithm (k-NN) is a non-parametric method used for

classi�cation and regression[25], where the input consists of the k closest (the

nearest neighbours) training data point in the feature space. In k-NN classi�cation,

usually, an object is classi�ed by a majority vote of its neighbours. In k-NN

regression, the output is the property value for the object. This value is the

average of the values of its k nearest neighbours.

Neighbours-based regression can be used in cases where the data labels are

continuous rather than discrete variables. The label assigned to a query point is

computed based the mean of the labels of its nearest neighbours, see Fiure 3.4.

Figure 3.4: An example of k-NNR with k = 5 and uniform weight. Source [26].

The basic nearest neighbours regression uses uniform weights: that is, each

point in the local neighbourhood contributes uniformly to the classi�cation of a

query point. Alternatively it can be advantageous to weight points such that
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nearby points contribute more or with another function of the distance.

3.7 Cross validation method

In machine learning process �nding out the parameters of a prediction function

and testing it on the same data is a methodological mistake: a model that would

just repeat the labels of the samples that it has just seen would have a perfect

score but would fail to predict anything useful on yet-unseen data. This situation

is called over-�tting.

Cross Validation (CV) is a model validation technique for assessing how the

results of a statistical analysis will generalize to an independent data set. It is

mainly used in settings where the goal is prediction, and one wants to estimate

how accurately a predictive model will perform in practice. In a prediction problem,

a model is usually given a dataset of known data on which training is run (training

dataset), and a dataset of unknown data (or �rst seen data) against which the

model is tested (testing dataset).

The goal of CV is to de�ne a dataset to �test� the model in the training phase

(i.e., the validation dataset), in order to limit problems like over-�tting, give an

insight on how the model will generalize to an independent dataset.

Two types of CV can be distinguished, exhaustive and non-exhaustive. In ex-

haustive CV methods all possible ways to divide the original sample into a training

and a validation set are evaluated (e.g. leave one-out CV or leave p-out CV). Non-

exhaustive CV methods do not compute all ways of splitting the original sample

(e.g. k-fold CV).





Chapter 4

Data analysis

In the �rst part of this chapter we will analyse the body composition variables

of healthy and normal weight subjects, recruited to achieve a wide age range, to

investigate how fat tissue, and its distribution in the body, are related to blood lipid

concentrations and to understand how a careful examination of body composition,

such as DXA, a�ects these correlations.

The purpose of this analysis is to de�ne method, preprocessing operations and

factors to be taken into account for analysis of data from DXA and establish

reference values for body composition on healthy people.

In the second part we will apply results obtained from the healthy database

on another database, composed by elderly people. Metabonomic data of the pa-

tients will also be used to study the correlation between DXA variables and the

metabolites.

4.1 BC assessment of healthy people

Cohort include 177 subject, 92 men and 85 women, from northern Italy. For

each subject requirements of normal weight and good health are satis�ed. Table 4.1

show mean and standard deviation of body mass index (BMI) de�ned as the body

mass in kilograms divided by the square of the body height in meters, separately

for males and females, in age range on ten years.

BMI values between 18.5 and 24.9 are commonly recognized as indicators of

normal weight in both males and females.

For each subject DXA measurements of the whole body are acquired, more than

30 variables are available to assets the fat and lean content, Bone Mineral Content

(BMC) and Density (BMD) in several standard Regions Of Interest (ROIs).

53
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Table 4.1: Mean value of BMI in
[
Kg
/
m2
]
. n denote the number of subjects in the

correspondent age range. Standard deviation is reported as uncertain.

Male Female

Age n BMI n BMI

20-30 19 23± 2 20 22± 3
30-40 17 25± 2 16 24± 4
40-50 20 25± 3 21 24± 3
50-60 16 25± 3 20 24± 3
60-70 20 25± 3 8 23± 1

In Table 4.2 mean values of fat mass, lean (non bone) tissues mass, BMC and

BMD of main ROIs are show.

Table 4.2: Fat mass, lean (non bone) tissues mass, BMC and BMD for main ROIs.
Standard deviation is reported as uncertain.

Region Fat [Kg] Lean [Kg] BMC [Kg] BMD [g
/
cm2]

Whole body 20 ± 6 47 ± 9 2.7 ± 0.5 1.1 ± 0.1
Upper Limbs 2.3± 0.8 5.8± 1.8 0.4 ± 0.1 0.75± 0.10
Lower Limbs 7 ± 2 16 ± 4 1.0 ± 0.2 1.2 ± 0.2
Trunk 10 ± 4 22 ± 5 0.8 ± 0.2 0.96± 0.13
Android 1.7± 0.9 3.4± 0.7 0.04± 0.01 /
Gynoid 4 ± 1 6.7± 1.8 0.3 ± 0.1 /

In our analysis we want to describe fat and lean tissues distribution of subject,

then we focus only on the soft tissues composition, and discard information about

bone mineral content and density.

4.1.1 Preprocessing

Individuals can di�er remarkably in body fat distribution, in particular these

di�erences are consistent between men and women, both lean and obese. Women,

compared to men, have higher percent body fat and deposit it in a di�erent pattern,

with relatively more adipose tissue in the hips and thighs, independently of total

body fat [27].

In our analysis, features from each subject are normalized on his weight, in this

way all measurements are intra- and inter-patients comparable.

For the same body mass index (BMI), women typically present with ∼ 10%

higher body fat compared to men. Aging increases adiposity in both sexes, but

again, women are characterized by higher percent body fat throughout the entire

life span [27].



4.1. BC ASSESSMENT OF HEALTHY PEOPLE 55

In our database these di�erence are visible, in Table 4.3 are show the mean

(µ) and variance (σ2) of the fractional fat and lean content of upper (trunk, upper

limbs and android regions) and lower (lower limbs and gynoid regions) part of

body.

Table 4.3: Di�erence between males and females composition of upper and lower part
of body. Upper region fat (lean) fraction is computed by sum of trunk, upper
limbs and android fat (lean) mass (each term normalized on total weight of
subject). Lower by sum of lower limbs and gynoid term. Standard deviation
is reported as uncertain.

Male Female

µ σ µ σ

Upper Body
Fat 0.2 0.2 0.2 0.2
Lean 0.5 0.2 0.4 0.2

Lower Body
Fat 0.1 0.2 0.2 0.2
Lean 0.4 0.2 0.3 0.1

As we expect, gender is a strong discrimination factor, in fact males and females

have important di�erence in distribution of fat and lean mass. Lean soft-tissue mass

is greater in males than in females irrespective of all segments, on the other hand

fat tissue mass is greater in females.

Age-dependent changes in body composition, namely a decrease in lean mass

and an increase in fat mass, are often observed in normal populations, we expect

that a subject will lose muscular tone getting older, and this e�ect corresponds to

an increase of the fat to lean mass ratio.

The Pearson's r, as measure of linear correlation between fat, lean and their

ratio respect to age, are reported in Table 4.4. Pearson's r varies between -1 and

+1 with 0 implying no correlation. Positive correlations imply that as one variable

increases, so does the other variable. Negative correlations, in contrast, imply that

as one variable increases, the other decreases.

Interestingly, whole body lean tissue mass decreasing and the ratio of fat to

lean mass (see Figure 4.1) increasing with age in males whereas in females these

phenomenons are weaker.

Despite these correlations between variables DXA and age be very interest-

ing to determine how the body composition changes with ageing, if you want to

analyse correlation with other age or gender dependent factors, the collinearity of

this factors and body composition variables with age and gender, can a�ect the
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Table 4.4: Correlation coe�cients between fat, lean and fat-lean ratio and age for males
and females. The p-value indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation as the one observed.

Male Female

r p r p

Fat Tissue 0.40 � 0.01 0.22 0.04
Lean Tissue −0.40 � 0.01 −0.20 0.06

Fat Lean Ratio 0.40 � 0.01 0.20 0.06
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Figure 4.1: Age and ratio of fat to lean soft-tissue mass in males and females. Fat to
lean soft-tissue mass increases with age more in males than in females. The
shaded indicates the 95% of con�dence interval for the regression line.
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results. Moreover, due to the strong link between age/gender and BC variables,

the behaviour of the data respect to other variables can be di�cult to see.

Age and gender of the subject are confounding factors which must be taken into

account in order to get correct results. To correct the e�ect of these confounding

factors we need to stratify the database accordingly. Strati�cation, often used

to control background characteristics, is the process of dividing members of the

population into homogeneous, mutually exclusive and exhaustive subgroups.

Another method to overcome this problem is to perform linear simple regression

between variables and to take the residues. This method allows us to not split the

database, keeping a larger sample size.

For each variables the mean for males and females is subtracted and Kol-

mogorov�Smirnov test is performed to test whether this two samples are drawn

from the same distribution. The equivalence of the distributions after the correc-

tion is a requirement for this procedure.

Table 4.5 show the K-S statistic and the p-value. The high values of p-value

suggest that the distributions of variables for males and females are the same,

less than a constant factor. This feature can be clearly seen also in FigureA.1 in

Appendix A.

Table 4.5: Kolmogorov�Smirnov staisctics (K-S stat) and p-values for the two-sided
K-S test for H0 that the variables for males and females are drawn from
distributions similar enough for this dataset size.

Fat mass Lean mass

KS-stat p-value KS-stat p-value

Whole body 0.104 0.700 0.104 0.700
Upper limbs 0.069 0.980 0.179 0.103
Lower limbs 0.073 0.967 0.066 0.987

Trunk 0.085 0.891 0.093 0.817
Android 0.084 0.902 0.118 0.543
Gynoid 0.152 0.236 0.179 0.106

We performed a linear regression between DXA variables with age and gender,

without interactions between this two regressors. For the following discussion we

will use the resulting residuals of this regression.

Residual distribution are rather normally distributed (see Figure A.1 in Ap-

pendix A.), this allows us to ignore the di�erences in age and gender in the

database.

In Table 4.6 are show the the third central moment, called skewness (that
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represent the lopsidedness of the distribution) and the fourth central moment,

called Kurtosis (that is a measure of whether the distribution is tall and skinny or

short and squat, compared to the normal distribution).

Table 4.6: Skewness and Kurtosis of resides of considered variables.

Fat mass Lean mass

Skewness Kurtosis Skewness Kurtosis

Whole body 0.11 −0.48 −0.10 −0.53
Upper limbs −0.01 0.25 −0.05 0.50
Lower limbs 0.02 −0.19 0.01 −0.20

Trunk 0.23 −0.48 −0.02 −0.46
Android 0.48 −0.14 0.22 1.04
Gynoid 0.10 0.22 0.19 0.00

Negative values of skewness indicate that the �mass of the distribution� is con-

centrated on lower values, the distribution is said to be left-tailed, positives values

indicate a right-tailed distribution.

The exact interpretation of kurtosis is is not so clear. For distributions with

skewness close to zero, the classical interpretation is that kurtosis measures both

the �peakedness� of the distribution and the heaviness of its tail. Positive kurtosis

denotes a distribution with more acute peak around the mean and fatter tails than

Normal distribution (e.g. Student's t-distribution, logistic distribution, etc). A

distribution with negative kurtosis has a lower, wider peak around the mean and

thinner tails. As reference the kurtosis value for logistic distribution (with unit

variance) is 1.2, and for uniform distribution is -1.2.

Values in Table 4.6 suggest us that the resulting distributions, for considered

variables, after preprocessing operations are rather normally distributed.

4.1.2 Principal Components Analysis

Figure 4.3 show the coe�cients of �rst three PCs, that explain more than 80%

(see Figure 4.2) of the total variance of data. The coe�cients were ordered for

easier viewing and interpretation.

It can be seen that the �rst PC take in account masses of lean versus fat

soft tissues, the second seem to consider the upper (trunk and android regions)

in contrast to lower (gynoid and lower limbs regions) fat content and the third

component is related to composition of the appendicular regions(upper and lower

limbs) versus composition of the central body regions (trunk, android and gynoid).
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Figure 4.2: The plot shows that most of the variance (64.5% of the variance) can be
explained by the �rst principal component. The second and the third prin-
cipal components still bears some information (9.9% and 6.4% respectively).
Together, the �rst three principal components contain 80.8% of the infor-
mation.
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Figure 4.3: First three PCs of healthy people body composition database.
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Interpretation of other PCs are not clear, and are not reported here. It should

be emphasized that the interpretation of the PC is an approximation of the real

meaning, which is often more subtle than is realized. These components will be

included in the following analysis, even if their interpretation is not as direct as for

the other ones.

4.1.3 Body composition and cholesterol

We will now study the relationship between the body composition described

with the DXA PCs and the blood lipid concentration. The value of total cholesterol,

triglycerides (TG), and HDL cholesterol (high-density lipoprotein cholesterol, also

called �good� cholesterol) are available in most subject, see Table 4.7.

Table 4.7: Aviable data for lipid concentrations.

Total Males Females

Tot CH 172 89 83
TG CH 170 87 83
HDL CH 98 46 52

In �gure4.4 are show the distributions of these variable.
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Figure 4.4: Distribution of of total cholesterol (Tot CH), triglycerides (TG CH), and
HDL cholesterol (HDL CH)for healthy database. As you can see

Multiple linear regression models are �tted to investigate the relationship be-

tween body composition and blood lipid concentration variables. The predictors

variables are the PC, computed by PCA. Also, more sophisticate methods are

performed: support vector regression to evaluate the correlation using non linear

transformation of data and K-nearest neighbours to evaluate the local behaviour of

data, in particular KNN strongly depends on the number of neighbours considered,
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then we have applied this method twice, one considering 5 nearest neighbours, the

other considering 10. Table 4.8 report the results.

Table 4.8: Coe�cient of determination R2 of linear regression model (LRM), Sup-
port Vector Regression (SVR), and K-Nearest Neighbours Regression with
5 (5NNR) and 10 (10NNR) neighbours between the principals components
and the blood lipid concentrations.

Variables LRM SVR 5NNR 10NNR

Tot CH 0.121 0.092 0.253 0.127
TG CH 0.151 0.091 0.288 0.100
HDL CH 0.196 0.118 0.251 0.189

As you can see linear model gives the best results, despite their coe�cients of

determination does not exceed 0.2. Nonlinear methods (SVM) returns worse results

than linear method and this suggests us that there aren't other kind of relationship

between the body composition variables and lipids blood concentration. Moreover

increasing the parameter k of the NNR method the performance declines, then the

high coe�cients of determination obtained considering 5 nearest neighbours are

due only to the local scale of this method.

Tables 4.9 and 4.10 reports the results of two type of cross validation. Cross

validation technique tell us the predictive power of �tted models. The negative

values show in Table 4.9 are due only to the software algorithms and not have a

physical meaning. These results suggest as that lipids blood concentration are not

correlated with the body composition variables (as reported by some articles in the

literature [28]).

Table 4.9: Result of k-fold (k=10) cross validation of linear regression model (LRM),
Support Vector Regression (SVR), and K-Nearest Neighbours Regression
with 5 (5NNR) and 10 (10NNR) neighbours between the principals compo-
nents and the blood lipid concentrations.

Variables LRM SVR 5NNR 10NNR

Tot CH −0.38 −0.03 −0.24 −0.16
TG CH −0.17 −0.04 −0.15 −0.14
HDL CH −0.84 −0.17 −0.19 −0.04

4.2 NUAGE database

To study the e�ects of the diet on health and ageing factors, seniors across

Europe has been recruited, body composition and metabonomics data has been
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Table 4.10: Result of �leave-one-out� cross validation of linear regression model (LRM),
Support Vector Regression (SVR), and K-Nearest Neighbours Regression
with 5 (5NNR) and 10 (10NNR) neighbours between the principals compo-
nents and the blood lipid concentrations.

Variables LRM SVR 5NNR 10NNR

Tot CH 0.00 0.00 0.01 0.00
TG CH 0.00 0.00 0.01 0.01
HDL CH 0.00 0.00 0.00 0.00

collected.

Metabonomics, means the quantitative measurement of the dynamic metabolic

response of living systems to stimuli, has become an increasingly shared practices

in research. The two most common used techniques are mass spectrometry and Nu-

clear Magnetic Resonance Spectroscopy (MRS) either in isolation or in conjunction

[29].

The body composition of subjects is assessed by whole body DXA scan, fat and

lean tissues distribution of main corporeal districts are available.

Cohort includes 1115 elderly people, ranging from 65 to 79 years (including an

appropriate number of men and women, see Table 4.11), free of major overt dis-

eases, will be recruited by 5 European centres with a great experience in conducting

dietary intervention studies and research on the elderly, located in UK (Norwich),

the Netherlands (Wageningen), Poland (Warsaw), France (Clermont-Ferrand) and

Italy (Bologna). These centres have been strategically selected to represent di�er-

ent geographical areas covering as a whole a NEWS approach (Northern, Eastern,

Western and Southern Europe).

Table 4.11: Database composition.

Centres Males Females

Italy 127 133
United Kingdom 68 118

Netherlands 103 131
Poland 103 140
France 95 97

4.2.1 Body composition variables

As we already saw in Section 4.1, before using body composition variables

some operations are necessary to take into account age and gender of subjects,
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that can introduce errors when correlations models are performed. Therefore the

variables are normalized on subject's total weight, detrendized respect to age and

standardized.

All operations are made separately for each centre. Age range of NU-AGE

database is rather small (less then 15 years), and consequently the estimated coef-

�cients can be unstable.

In general data from di�erent scanners are not directly comparable and cross-

calibration operations are necessary to compare data among di�erent DXA scan-

ners (as we said in �rst chapters). Then we compare the coe�cients of linear

regression between DXA data and age of subjects, performed on the Italian subset

of NU-AGE database with with coe�cients obtained in previous sections, because

these data are made by the same scanner. The values of coe�cients are reported

in Table A.1 and plotted in Figure A.2 in Appendix A.

As you can see all values lie within a band around the mean with a width of

two standard deviations.

Then we suppose that the bias error, due to use of di�erent scanner and

to the lack of cross-calibration procedure, is systematic and constant and apply

the de-trending coe�cients computed on Healthy database to the entire NU-AGE

database, conscious that this is a rough approximation.

After these operations the PCA was done on the covariance matrix and �rst

three PC resulting from each centre are compared.

The �rst three PC of PCA computed on healthy database (see Section 4.1) are

reported as reference values.

Before we attempt to interpret the PCs, some explanation is necessary. When

we interpret PCs it is usually only the general pattern of the coe�cients that is

really of interest, not values of coe�cients, which may give a false impression of

precision.

As you can see in Table 4.12, the PCs are rather interpretable. Comparing

coe�cients of �rst PC it is seen that the coe�cients do not vary signi�cantly, and

represent fat versus lean soft tissues mass.

Second PC seem to consider the lower (gynoid and lower limbs regions) in

contrast to upper (trunk and android regions) fat content.

The third component is more variable depending on the considered subset but

still to be related to composition of the appendicular regions (upper and lower

limbs) versus composition of the central body regions (trunk, android and gynoid).

The other components, although they are not so easily interpretable, are still
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Table 4.12: Simpli�ed version of the coe�cients of �rst three PCs, + and − indicate the
sign of most relevant coe�cients of PC. H indicates values of coe�cients
found for healthy database, reported as reference values.

First PC H IT NL PL FR Second PC H IT NL PL FR Third PC H IT NL PL FR

T. body fat − − − − − Legs fat − − − − − Arms lean − − − − −
Trunk fat − − − − − Gynoid fat − − − − − Legs fat − 0 0 0 +
Arms fat − − − − − Gynoid lean − 0 0 0 + Arms fat − − − − −

Android fat − − − − − Legs lean 0 − − − − Legs lean 0 0 0 0 0
Gynoid fat − − − − − T. body lean 0 0 0 0 0 T. body lean 0 0 0 0 0

Legs fat − − − − − Android lean 0 − 0 0 0 T. body fat 0 0 0 0 0
Gynoid lean + + + + + T. body fat 0 0 0 0 0 Android lean 0 + + + +
Arms lean + + + + + Trunk lean 0 0 0 0 + Trunk lean 0 + + 0 +

Android lean + + + + + Arms fat 0 0 0 0 − Trunk fat + + + + 0
Legs lean + + + + + Arms lean + + 0 + − Gynoid fat + 0 0 + +

Trunk lean + + + + + Trunk fat + + + + + Android fat + + + + 0
T. body lean + + + + + Android fat + + + + + Gynoid lean + 0 + 0 +

quite similar between centres. We can say that if we consider all patients as coming

from a single center, we make a negligible error, but on the other hand allows us to

obtain not split the database, keeping a larger sample size, thus increasing power

and robustness of our analysis.

Since android and gynoid ROIs are missing for data of patients came from UK

centre, their PC are not reported in Table 4.12. In later discussion data from UK

centre will be consider, and information of android and gynoid ROIS of all other

centre will be ignored. This approach is chosen because, as can be see in Figure ,

gynoid and android region overlap the lower limbs and trunk region respectively,

then the information derived from these regions are rather redundant and can

be safety ignored, moreover the interpretation of new PC, obtained from PCA

performed, is not a�ected by this operation.

4.2.2 Metabolites

A blind analysis design is chosen for the metabolites analysis. A blind analysis

is an analysis in which the �nal result, and the individual data on which it is based,

are kept hidden from the analyst until the analysis is essentially complete. The

principal motivation is to avoid experimenter's (concious or subconscious) bias such

as looking for bugs, additional sources of uncertainty or to drop an event when a

result does not conform to expectation [30].

Un-targeted metabolic pro�les of patients, performed by Nestlé Institute of

Health Sciences, are obtained by MRS on urine samples, using NOESY pulse se-

quence to get measurements of metabolites relative concentration, Figure 4.5.

In un-targeted analyses, the chemical identi�cation of metabolites, that usually

follows data acquisition and requires libraries for labels annotation [31], is not
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Figure 4.5: Spectrum obtained by MRS. To each peak (pattern of peaks), correspond
a metabolite (small ensemble of metabolites).

available.

The NOESY is the most utilized NMR (Nuclear Magnietic Resonance) pulse

sequence for the collection of metabolomics MRS data from biological samples,

such as blood plasma, serum, urine or homogenized tissue extracts, due to the

capacity to suppresses solvent signals [32].

We can consider that, in a simplistic way, to each peak, or at least a pattern of

peaks, correspond a metabolite or a small ensemble of metabolites. Ideally peak

have delta shape, but this condition is never satis�ed and the width of peaks can

be estimated through autocorrelation. Autocorrelation is the cross-correlation of

a signal with itself at di�erent points in time. More generally, it is the similarity

between observations as a function of the position lag between them. If the peaks

are delta function the autocorrelation is zero.

Visualizing the autocorrelation of a spectrum (Figure 4.6) and taking the full

width at half maximum (FWHM) of the central peak of autocorrelation plot we

have an approximatively measure of the mean width of peaks.

Autocorrelation is computed for all spectrum and mean value of FWHM ,

named FWHM , is taken as approximate width of peaks.

Smoothing each spectra with a Gaussian �lter with σ = FWHM = 10 we en-

sure that: high frequencies noise is reduced and peaks are mostly preserved. These

spectra will be analyzed using the NMF decomposition, and this smoothing will

also improve the quality of the resulting components as it increase the correlation

between neighbours values. NMF would otherwise use each one of the values in the

spectra as a separate variable, without considering the spatial correlation between

them.

Before performinf the �nal NMF an adequate number of factors must be found.
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Figure 4.6: Autocorrelation plot of one spectrum. The FWHM of indicates mean
width of peaks. Autocorrelations should be near-zero for delta peaked spec-
trum.
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Figure 4.7: Comparison of original and �ltered spectrum. As you can see apply a Gaus-
sian �lter involves in a reduction of high frequencies noise.
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We have run the NMF algorithm several times varying the number of factors and

measuring the reconstruction error as goodness criterion.

The reconstruction error is computed as the Frobenius norm of the matrix dif-

ference between the training data and the reconstructed data from the �t produced

by the model. In Figure4.8 we show the the reconstruction error, normalized on

total value of training data, as function of number of components, for each country.
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Figure 4.8: Normalized reconstruction error as function of number of factors, for each
subset of database.

A number of components is set to 100, as a good compromise between recon-

struction error and computational time.

NMF is performed separately for each centre, in Figure 4.9 are show the three

�rst factors for each centre. As we can see the �rst factors is substantially the

same for all centre, while the second factor of french people is the third for the

polish people, and vice-versa. Then although we do not know the correspondence

between the pattern of peaks and metabolites, we can assume that the second

factor found for french patients, has the same meaning of the third factor for the

polish patients.

Cross correlation between �rst few factor computed for di�erent centre is per-

formed (Table A.2) in Appendix A. As we can see, due to the high value of corre-

lation, we can say that the �rst few factors are the same for all centres, with just

a change in ranking.

Only the few �rst factors are clearly interpretable as linear combinations of

patterns of peaks, then despite the behaviour show in TableA.2 in Appendix A is

kept from later factors, the values of correlation are lower.

Then we can assume that considering all patients as coming from a single

country, as we have do for body composition variables, we make a negligible error.
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Figure 4.9: Comparison of �rst three factors for di�erent countries. First factor is very
similar for all subset of patient. second and third factors of french and
polish subset seem the same but with inverted position.
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A new NMF is performed neglecting the patients provenance, in this way the

the factors have the same meaning for all centres, and the later result are easier

interpretable.

4.2.3 Body composition and metabonomics

Multiple linear regression models are �tted to identify the relationship between

metabonomic data and body composition variables. The predictors variables are

the PC, computed by PCA, and the response variables are the factors founded by

NMF.

When one considers a set of statistical inferences simultaneously, (we �t one

hundred models for each centre), multiple testing problem may can occurs, also

known as the look-elsewhere e�ect.

The p-value of a statistical test indicate the probability that a given result could

be obtained, assuming random coincidence. If this p-value is less than some prede-

termined statistical signi�cance threshold α, one considers the result �signi�cant�.

However, if one performs multiple tests (�looking elsewhere� if the �rst test

fails) then obviously a p-value of 1/n is likely to occur after n tests [33].

For example, an event with p < 0.05 will probably be seen after 20 tests, even

if there is no e�ect. In order to compensate for this, several correction methods of

p-values exist. In our analysis the Benjamini-Hochberg adjustments is used.

Suppose that we have H1 . . . Hm null hypotheses tested and their corresponding

p-values P1 . . . Pm. We order these p-values in increasing order and denote them

by P(1) . . . P(m) (called a step-up procedure). Then for a given α, the Benjamini-

Hochberg procedure returns
k

m
α.

Table 4.13 show the classical and the adjusted coe�cient of determination( R2

and R2
adj respectively) and the adjusted p-value q for the most common signi�cant

model of all countries.

In these regressions the principal components with individual p− value greater
than 0.05 are sequentially removed and only the signi�cant PC are kept [34].

Individuals p−value of a predictor is the probability of obtaining a result equal
to or more extreme than that observed under the supposed true null hypothesis is

H0 : β = 0, where β is the coe�cient of the predictor.

Detail of these models are show in Appendix A.

As you can see, despite R2
adj values are rather small (not exceed 0.25), the

results are very signi�cant (the adjusted p-value q are very small) and then not
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Table 4.13: Classical (R2) and adjusted coe�cient of determination (R2
adj) and the ad-

justed p-value q of multiple regression between factors of NMF of metabo-
nomics data and PC of PCA of body composition variables.

IT UK NE PL FR

Factors R2 R2
adj q R2 R2

adj q R2 R2
adj q R2 R2

adj q R2 R2
adj q

FAC9 0.13 0.11 < 0.01 0.16 0.13 < 0.01 0.16 0.14 < 0.01 0.23 0.22 < 0.01 0.23 0.20 < 0.01

FAC14 0.14 0.12 < 0.01 0.05 0.02 0.09 0.12 0.09 < 0.01 0.12 0.11 < 0.01 0.16 0.12 < 0.01

FAC16 0.08 0.06 < 0.01 0.08 0.06 0.01 0.09 0.06 < 0.01 0.17 0.15 < 0.01 0.13 0.10 < 0.01

FAC23 0.08 0.05 < 0.01 0.13 0.10 < 0.01 0.07 0.04 0.02 0.08 0.05 < 0.01 0.05 0.02 0.12
FAC27 0.13 0.10 < 0.01 0.18 0.15 < 0.01 0.12 0.10 < 0.01 0.06 0.04 < 0.01 0.06 0.03 0.10
FAC31 0.09 0.06 < 0.01 0.13 0.10 < 0.01 0.08 0.06 < 0.01 0.12 0.10 < 0.01 0.09 0.07 < 0.01

FAC50 0.11 0.09 < 0.01 0.14 0.11 < 0.01 0.15 0.13 < 0.01 0.24 0.21 < 0.01 0.12 0.08 < 0.01

FAC66 0.11 0.09 < 0.01 0.10 0.07 < 0.01 0.14 0.12 < 0.01 0.17 0.15 < 0.01 0.14 0.10 < 0.01

negligible. Moreover the �gure from A.3 to A.10 in Appendix A show that the

factors are easily interpretable as single metabolites or at least pattern of a small

ensemble of metabolites.

Then we have perform new multiple linear regression models, this time to iden-

tify the relationship between body composition and metabonomic data, where the

response variables are the PC from the PCA and the predictors variables are the

factors founded by NMF.

The purpose of this new analysis is to highlight the possibility to link the fat

distribution of a subject with his metabolic pattern. We evaluated the performance

of two di�erent approaches: in �rst approach only the factors that we have previ-

ously selected are considered, then all factors are considered. The result of these

approach are show in Table 4.14 and Table 4.15 respectively.

Table 4.14: Classical (R2), adjusted coe�cient of determination (R2
adj) and the p of

multiple regression betweenPC of PCA of body composition variables and
factors of NMF selected previously.

IT UK NE PL FR

R2 R2
adj p R2 R2

adj p R2 R2
adj p R2 R2

adj p R2 R2
adj p

PC0 0.08 0.05 0.01 0.10 0.06 0.02 0.10 0.06 0.00 0.12 0.09 0.00 0.06 0.02 0.17
PC1 0.05 0.02 0.11 0.12 0.08 0.00 0.10 0.07 0.00 0.03 0.00 0.47 0.12 0.08 0.00
PC2 0.08 0.05 0.01 0.05 0.01 0.25 0.03 0.00 0.53 0.04 0.00 0.37 0.04 0.00 0.44
PC3 0.13 0.11 0.00 0.06 0.02 0.20 0.05 0.02 0.17 0.10 0.07 0.00 0.06 0.02 0.19
PC4 0.06 0.03 0.04 0.05 0.00 0.38 0.10 0.07 0.00 0.15 0.12 0.00 0.05 0.01 0.27
PC5 0.11 0.08 0.00 0.08 0.04 0.07 0.06 0.03 0.08 0.12 0.09 0.00 0.07 0.02 0.12
PC6 0.13 0.11 0.00 0.09 0.05 0.03 0.03 0.00 0.44 0.20 0.17 0.00 0.07 0.03 0.08
PC7 0.01 −0.02 0.89 0.07 0.03 0.09 0.19 0.16 0.00 0.21 0.19 0.00 0.07 0.03 0.10

As you can see immediately from the comparison of Tables 4.14 and 4.15,

considering all factors we obtain values of coe�cient of determination R2 very high

and are still rather high even considering the corrected value R2
adj.

The result of linear regression between the PC, as response variables, and the

small sub-set of factors (as show in Tables 4.14) are very low due to raw cut of
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Table 4.15: Classical (R2), adjusted coe�cient of determination (R2
adj) and the p of

multiple regression betweenPC of PCA of body composition variables and
all factors of NMF.

IT UK NE PL FR

R2 R2
adj p R2 R2

adj p R2 R2
adj p R2 R2

adj p R2 R2
adj p

PC0 0.43 0.07 0.16 0.68 0.32 0.00 0.52 0.17 0.02 0.54 0.23 0.00 0.62 0.21 0.02
PC1 0.48 0.15 0.01 0.57 0.06 0.28 0.57 0.24 0.00 0.40 −0.02 0.61 0.64 0.26 0.01
PC2 0.39 0.01 0.42 0.55 0.03 0.41 0.45 0.04 0.30 0.48 0.11 0.08 0.51 −0.02 0.57
PC3 0.48 0.15 0.02 0.60 0.12 0.13 0.47 0.08 0.16 0.51 0.18 0.01 0.46 −0.13 0.88
PC4 0.46 0.12 0.05 0.60 0.14 0.11 0.58 0.27 0.00 0.47 0.11 0.08 0.56 0.09 0.20
PC5 0.53 0.24 0.00 0.57 0.07 0.27 0.46 0.05 0.25 0.49 0.13 0.05 0.54 0.03 0.39
PC6 0.52 0.22 0.00 0.56 0.04 0.36 0.40 −0.05 0.75 0.52 0.19 0.01 0.55 0.06 0.28
PC7 0.24 −0.23 1.00 0.71 0.36 0.00 0.62 0.34 0.00 0.53 0.21 0.00 0.58 0.13 0.11

information when only eight factors are considered instead of one hundred (in Fig-

ure 4.8 you can be see that).

As a further result the same operation do until now are repeated with unique

modi�cation that a logarithmic transformation is done on body composition vari-

able data. In this way the PC of PCA (that retain their interpretation) can be

view as multiplicative model of the primary body composition variables (instead

of additive representation of the �classical� PC).

Logarithmic transformation is common in treatment of problems related to

biology. Indeed many variables in biology have log-normal distributions, meaning

that after log-transformation, the values are normally distributed. This is because

if you take a bunch of independent factors and multiply them together, the resulting

product tends to a log-normal distribution.

Table 4.16: Classical (R2) and adjusted coe�cient of determination (R2
adj) and the ad-

justed p-value q of multiple regression between factors of NMF of metabo-
nomics data and PC of PCA of logarithmic transformed body composition
variables.

IT UK NE PL FR

Factors R2 R2
adj q R2 R2

adj q R2 R2
adj q R2 R2

adj q R2 R2
adj q

FAC9 0.17 0.14 < 0.01 0.15 0.11 0.01 0.18 0.15 < 0.01 0.23 0.21 < 0.01 0.22 0.19 < 0.01

FAC14 0.22 0.20 < 0.01 0.09 0.05 0.14 0.13 0.09 < 0.01 0.15 0.12 < 0.01 0.16 0.13 < 0.01

FAC16 0.10 0.07 0.01 0.13 0.09 0.03 0.10 0.07 0.02 0.18 0.16 < 0.01 0.16 0.12 < 0.01

FAC23 0.09 0.06 0.03 0.14 0.10 0.01 0.07 0.04 0.11 0.07 0.04 0.14 0.03 −0.02 0.89
FAC27 0.12 0.09 < 0.01 0.17 0.13 < 0.01 0.11 0.08 0.01 0.09 0.06 0.03 0.06 0.02 0.41
FAC31 0.10 0.07 0.01 0.14 0.10 0.01 0.09 0.06 0.03 0.10 0.07 0.02 0.08 0.04 0.20
FAC50 0.17 0.14 < 0.01 0.17 0.13 < 0.01 0.15 0.12 < 0.01 0.26 0.23 < 0.01 0.12 0.08 0.03
FAC66 0.13 0.10 < 0.01 0.10 0.06 0.08 0.17 0.14 < 0.01 0.15 0.12 < 0.01 0.17 0.13 < 0.01

As you can see by comparing the Tables 4.13 and 4.16, there are no particular

improvements considering the log transformation of body composition variables in

multiple regression between metabolic factors and PC, the results remain essen-
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Table 4.17: Classical (R2), adjusted coe�cient of determination (R2
adj) and the p of

multiple regression between PC of PCA on logarithmic transformation of
body composition variables and all factors of NMF.

IT UK NE PL FR

R2 R2
adj p R2 R2

adj p R2 R2
adj p R2 R2

adj p R2 R2
adj p

PC0 0.50 0.18 < 0.01 0.74 0.44 < 0.01 0.57 0.24 < 0.01 0.67 0.43 < 0.01 0.70 0.37 < 0.01

PC1 0.69 0.50 < 0.01 0.70 0.34 < 0.01 0.75 0.57 < 0.01 0.71 0.50 < 0.01 0.72 0.41 < 0.01

PC2 0.49 0.18 0.01 0.55 0.02 0.43 0.46 0.06 0.22 0.42 0.02 0.40 0.58 0.13 0.11
PC3 0.47 0.13 0.03 0.53 −0.01 0.52 0.49 0.11 0.08 0.48 0.12 0.05 0.55 0.07 0.27
PC4 0.39 < 0.01 0.48 0.57 0.07 0.27 0.51 0.14 0.04 0.48 0.12 0.06 0.53 0.02 0.42
PC5 0.41 0.04 0.29 0.56 0.06 0.31 0.47 0.08 0.17 0.45 0.07 0.19 0.55 0.06 0.29
PC6 0.48 0.15 0.02 0.61 0.16 0.08 0.58 0.26 < 0.01 0.49 0.14 0.03 0.63 0.24 0.01
PC7 0.38 −0.01 0.54 0.59 0.12 0.15 0.46 0.06 0.22 0.38 −0.06 0.79 0.55 0.05 0.31

tially the same.

On the contrary there is a substantial increase of the values of the coe�cients of

determination R2 (and R2
adj) of multiple regression between PC of log transforma-

tion of body composition variables and all factors, respect to the same correlation

without the log transformation.

We note that the �rst two PCs have correlations always high, reaching R2
adj =

0.44 for the �rst and R2
adj = 0.57 for the second.



Chapter 5

Conclusion

The increasing use of DXA for the study of body composition, especially in the

analysis of fat distribution, opens new horizons in medical and scienti�c research.

In lasts decades scienti�c research have highlighted that proper nutrition and

good physical �tness are key factors for health. Moreover the increase in the aver-

age age of the population raises a critical importance of identifying strategies able

contrast the age-related diseases. These problems require high reliable measure-

ments, both for the nutrient input, the metabolic and the physiological state of

subjects. Body fat distribution is a relevant measurement in this kind of studies,

especially since the fat is starting to be seen as a single functional organ instead

of just a storage system.

DXA is one of the most simple and cheap techniques to study the fat distri-

bution in a systematic and quantitative way. In this thesis work we have studied

the correlation of the body composition, in term of fat and lean content, with the

metabolic state, that is a direct consequence of diet, of elderly subjects living in

European region.

First we have establish the proper method and preprocessing operation over a

group of healthy and normal-weight subjects. Through the principal components

analysis we have show emergent properties of body composition variable from DXA.

The leading PC take in account masses of lean versus fat soft tissues, the

second seem to consider the upper in contrast to lower fat content and the third

component is related to composition of the appendicular regions versus composition

of the central body regions; together, these components contain more than 80% of

the information about the body composition of the subjects.

The interpretation of these three components is really clear, indeed the �rst
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PC can be interpreted as a version of BMI and the second as a more accurately

de�nition of theWaist to Hip Ratio (WHR). Also the third PC can be view as good

descriptive index of the body composition of a subject. Moreover these components

are surprisingly stable across di�erent subject status, age, gender and nationality.

In the last part of the analysis correlation between body composition vari-

ables and metabolic state of the subject are evaluated. The cohort is recruited

strategically to represent di�erent geographical areas covering as a whole a NEWS

approach (Northern, Eastern, Western and Southern Europe).

A blind analysis design is chosen for the metabolites analysis. Metabolic pro�les

of patients, performed by Nestlé Institute of Health Sciences, obtained by Nuclear

Magnetic Resonance Spectroscopy (MRS) on urine samples, are considered to get

measurements of metabolites concentration.

Also in this database a PCA approach is used to process data from DXA, and

the same interpretation of the component is found.

A factor analysis technique is used to processing metabolic data. Using the Non-

negative Matrix Factorization (NMF) algorithm we were able express the original

spectra (from MRS) as a combination of basis factors, that can be understood as

single metabolite.

The factors found using this technique are �stable�, meaning that although sub-

jects from di�erent countries are considered, their metabolic spectra are composed

by the same factors (i.e. the same pattern of metabolites).

Two experimental design are considered: one consider the single factors as a

function of PC, other consider the single PC as a function of an ensemble of factors.

In the �rst design multiple linear regression models are �tted to identify the

relationship between metabonomic data and body composition variables. The

predictors variables are the PC, computed by PCA on DXA data, and the response

variables are the factors founded by NMF on MRS data.

Signi�cant but low values of correlations are found when trying to describe the

metabolic state trough the body composition variables.

Then we have perform new multiple linear regression models, this time the

response variables are the PC from the PCA and the predictors variables are once

the factors, founded previously, that are more correlated with the PC (8 factors

are selected), the other time all factors (100) returned from NMF.

The result of linear regression between the PC, as response variables, and the
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small sub-set of factors are very low due to loss of information when only eight

factors are considered instead of one hundred.

On the other hand the high values obtained with the second design suggest us

that there is the concrete possibility to derive the �body shape� from the metabolic

state. In particular high value of correlation (R2
adj ' 0.50) are obtained between

�rst two PC and the metabolic state.





Appendix A

Graphs and Images

This appendix lists the graphs and �gures useful to understand previous chap-

ters but that for reasons of convenience of viewing and reading are reported out of

the text.
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Figure A.1: Distributions of resides of variables for Healthy database after detrending
operation.
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Figure A.2: Regression plot of DXA variables for Italian subjects of NU-AGE database
and Healthy database. The shaded indicates the 95% of con�dence interval
for the regression line.
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Table A.1: Coe�cients of linear regression between DXA variables and age of subjects
separately for males and females. In the NU-AGE database only the Italian
subjects are reported. Standard deviation is reported as error.

Male Female

Healthy IT NU-AGE Healthy IT NU-AGE

Whole body fat
Inter 0.17 ± 0.02 0.31 ± 0.09 0.30 ± 0.02 0.35 ± 0.09
Coe� 0.0017 ± 0.0004 0.0001 ± 0.0010 0.001 ± 0.001 0.001 ± 0.001

Whole body lean
Inter 0.79 ± 0.02 0.66 ± 0.09 0.66 ± 0.02 0.61 ± 0.09
Coe� −0.0016 ± 0.0004 −0.0002 ± 0.0012 −0.0010 ± 0.0005 −0.0006 ± 0.0012

Upper limbs fat
Inter 0.018 ± 0.002 0.027 ± 0.012 0.034 ± 0.003 0.040 ± 0.012
Coe� 0.000 18± 0.000 05 0.000 05± 0.000 16 0.000 17± 0.000 06 0.000 11± 0.000 16

Upper limbs lean
Inter 0.110 ± 0.004 0.089 ± 0.014 0.068 ± 0.004 0.080 ± 0.014
Coe� −0.000 29± 0.000 08 −0.000 12± 0.000 19 −0.000 02± 0.000 09 −0.000 27± 0.000 20

Lower limbs fat
Inter 0.075 ± 0.006 0.062 ± 0.033 0.135 ± 0.007 0.16 ± 0.03
Coe� −0.000 01± 0.000 13 0.000 24± 0.000 45 0.000 03± 0.000 15 −0.000 44± 0.000 47

Lower limbs lean
Inter 0.277 ± 0.007 0.25 ± 0.03 0.228 ± 0.007 0.20 ± 0.03
Coe� −0.000 78± 0.000 14 −0.000 46± 0.000 37 −0.000 43± 0.000 17 −0.000 23± 0.000 38

Trunk fat
Inter 0.064 ± 0.015 0.21 ± 0.07 0.12 ± 0.02 0.14 ± 0.07
Coe� 0.0016 ± 0.0003 −0.000 30± 0.000 96 0.000 74± 0.000 37 0.000 97± 0.000 99

Trunk lean
Inter 0.360 ± 0.013 0.29 ± 0.05 0.324 ± 0.013 0.28 ± 0.05
Coe� −0.000 58± 0.000 27 0.000 32± 0.000 71 −0.000 67± 0.000 31 −0.000 12± 0.000 73

Android fat
Inter 0.007 ± 0.003 0.040 ± 0.015 0.017 ± 0.004 0.023 ± 0.015
Coe� 0.000 34± 0.000 07 −0.000 08± 0.000 21 0.000 15± 0.000 08 0.000 16± 0.000 22

Android lean
Inter 0.053 ± 0.002 0.042 ± 0.008 0.044 ± 0.002 0.049 ± 0.008
Coe� −0.000 03± 0.000 04 0.000 10± 0.000 11 0.000 05± 0.000 05 −0.000 08± 0.000 12

Gynoid fat
Inter 0.045 ± 0.004 0.03 ± 0.01 0.078 ± 0.004 0.108 ± 0.015
Coe� −0.000 02± 0.000 09 0.000 18± 0.000 20 0.000 03± 0.000 10 −0.000 57± 0.000 21

Gynoid lean
Inter 0.118 ± 0.004 0.100 ± 0.013 0.084 ± 0.005 0.095 ± 0.014
Coe� −0.000 26± 0.000 09 −0.000 02± 0.000 19 −0.000 01± 0.000 10 −0.000 12± 0.000 19
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Table A.2: Table shows the most similar factors across the centres, in parentheses are
the values of the correlation. As you can see factors are substantially the
same, less than changes in position.

IT

0 1 2 3 4 5 6 7 8 9

FR 0 (0.97) 1 (1.00) 2 (1.00) 19 (0.74) 5 (0.99) - 14 (0.90) 7 (0.98) 8 (0.97) -
PL 0 (0.99) 2 (1.00) 15 (0.61) 16 (0.94) 4 (0.99) 5 (0.63) - 8 (0.97) 10 (0.99) 13 (0.68)
NE 0 (0.94) 1 (1.00) 2 (1.00) 9 (0.98) 12 (0.68) 6 (0.66) 11 (0.96) 10 (0.95) 8 (0.97) -
UK 0 (0.98) 1 (0.99) 2 (0.75) 4 (0.98) 19 (0.58) 5 (0.62) 17 (0.93) 9 (0.90) 15 (0.95) -

UK

0 1 2 3 4 5 6 7 8 9

FR 0 (0.99) 1 (1.00) 2 (0.77) 5 (0.48) 19 (0.76) - - 9 (0.37) 8 (0.55) 10 (0.85)
PL 0 (0.99) 2 (1.00) 4 (0.66) 16 (0.84) 16 (0.94) 5 (0.99) 13 (0.98) 7 (0.99) 10 (0.61) 12 (0.86)
NE 0 (0.97) 1 (1.00) 2 (0.74) 3 (0.83) 9 (0.97) 6 (0.99) - - 8 (0.62) 10 (0.96)

NE

0 1 2 3 4 5 6 7 8 9

FR 0 (0.99) 1 (1.00) 2 (1.00) 5 (0.99) - 16 (0.87) - 15 (0.93) 8 (0.96) 19 (0.77)
PL 0 (0.96) 2 (1.00) 15 (0.61) 4 (0.99) 13 (0.97) - 17 (0.34) 19 (0.94) 10 (0.97) 16 (0.96)

PL

0 1 2 3 4 5 6 7 8 9

FR 0 (0.99) 2 (1.00) 18 (0.52) 16 (0.87) 5 (0.99) - - 9 (0.33) 10 (0.44) 12 (0.93)
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Figure A.3: Plot of the ninth factor. Each factor correspond to a linear combination of
the primary pecks, on the vertical axis the weight are indicates, on horizon-
tal axis the corresponding channel of the original spectrum are indicates.

Table A.3: Detail of linear model between the PC from PCA of DXA variables and the
ninth factor. σ is the standard deviation, p − value is the probability of
obtaining a result equal to or more extreme than that observed under the
supposed true null hypothesis is H0 : β = 0, where β is the coe�cient of the
predictor. Useless predictors are sequentially removed.

Country Regressor Coe�cent σ p− value

Italy

PC0 −0.201 0.067 0.003
PC2 −0.114 0.059 0.055
PC3 −0.172 0.060 0.005
PC4 −0.192 0.064 0.003
PC5 −0.189 0.063 0.003

United Kingdom

PC0 −0.491 0.116 0.000
PC2 −0.130 0.080 0.106
PC3 −0.117 0.075 0.119
PC4 −0.257 0.082 0.002
PC5 −0.201 0.082 0.015
PC7 −0.487 0.125 0.000

Netherlands

PC0 −0.143 0.071 0.044
PC1 −0.202 0.066 0.003
PC2 −0.093 0.061 0.128
PC6 −0.144 0.064 0.025
PC7 −0.215 0.075 0.005

Poland

PC0 −0.248 0.065 0.000
PC3 −0.116 0.058 0.047
PC4 −0.285 0.058 0.000
PC5 −0.140 0.069 0.042
PC6 −0.154 0.068 0.024

France

PC0 −0.442 0.107 0.000
PC1 −1.099 0.174 0.000
PC2 0.365 0.099 0.000
PC3 0.505 0.104 0.000
PC5 1.134 0.224 0.000
PC6 −0.761 0.144 0.000
PC7 0.245 0.111 0.028
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Figure A.4: Plot of the 14th factor..

Table A.4: Detail of linear model between the PC from PCA of DXA variables and the
14th factor.

Country Regressor Coe�cent σ p− value

Italy

PC1 −0.160 0.067 0.018
PC3 0.189 0.062 0.003
PC4 0.129 0.062 0.038
PC5 0.252 0.070 0.000
PC6 0.171 0.062 0.007

United Kingdom

PC0 0.253 0.124 0.043
PC4 0.146 0.078 0.064
PC6 0.174 0.082 0.035
PC7 0.183 0.120 0.130

Netherlands

PC0 −0.403 0.080 0.000
PC1 −0.176 0.075 0.020
PC3 0.132 0.068 0.054
PC4 0.122 0.065 0.061
PC5 0.126 0.072 0.081
PC7 0.285 0.083 0.001

Poland

PC2 −0.099 0.061 0.107
PC6 0.277 0.061 0.000
PC7 0.218 0.061 0.000

France

PC0 0.416 0.105 0.000
PC1 0.749 0.155 0.000
PC2 −0.368 0.083 0.000
PC3 −0.419 0.104 0.000
PC5 −0.998 0.203 0.000
PC6 0.655 0.139 0.000
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Figure A.5: Plot of the 16th factor.

Table A.5: Detail of linear model between the PC from PCA of DXA variables and the
16th factor.

Country Regressor Coe�cent σ p− value

Italy

PC1 −0.117 0.068 0.088
PC3 0.228 0.062 0.000
PC4 0.117 0.063 0.064
PC5 0.185 0.071 0.009

United Kingdom

PC0 0.291 0.117 0.014
PC1 0.201 0.072 0.006
PC6 0.123 0.080 0.125
PC7 0.277 0.109 0.012

Netherlands

PC0 −0.310 0.082 0.000
PC1 −0.209 0.077 0.007
PC3 0.156 0.069 0.024
PC4 0.107 0.066 0.105
PC5 0.170 0.073 0.021
PC7 0.242 0.084 0.005

Poland

PC0 0.095 0.071 0.181
PC2 −0.100 0.062 0.107
PC3 0.255 0.061 0.000
PC6 0.270 0.063 0.000
PC7 0.197 0.068 0.004

France

PC0 0.398 0.107 0.000
PC1 0.661 0.157 0.000
PC2 −0.145 0.085 0.088
PC3 −0.195 0.106 0.068
PC5 −0.776 0.207 0.000
PC6 0.564 0.141 0.000
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Figure A.6: Plot of the 23th factor.

Table A.6: Detail of linear model between the PC from PCA of DXA variables and the
23th factor.

Country Regressor Coe�cent σ p− value

Italy

PC0 0.156 0.065 0.018
PC2 −0.110 0.061 0.071
PC3 −0.150 0.062 0.017
PC5 −0.154 0.065 0.018

United Kingdom

PC0 −0.240 0.113 0.035
PC2 −0.269 0.076 0.001
PC4 −0.314 0.081 0.000
PC7 −0.433 0.119 0.000

Netherlands

PC0 0.127 0.076 0.096
PC1 0.143 0.072 0.048
PC3 0.089 0.068 0.193
PC4 −0.138 0.068 0.043
PC6 0.099 0.071 0.162
PC7 −0.152 0.084 0.070

Poland

PC1 0.109 0.063 0.086
PC6 −0.178 0.063 0.005
PC7 −0.126 0.062 0.045

France

PC0 −0.188 0.094 0.047
PC1 0.196 0.100 0.051
PC5 −0.109 0.099 0.273
PC7 −0.150 0.096 0.121
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Figure A.7: Plot of the 23th factor.

Table A.7: Detail of linear model between the PC from PCA of DXA variables and the
27th factor.

Country Regressor Coe�cent σ p− value

Italy

PC1 −0.231 0.066 0.001
PC4 0.183 0.063 0.004
PC5 0.289 0.068 0.000
PC6 0.126 0.061 0.039

United Kingdom

PC0 0.552 0.116 0.000
PC1 0.217 0.069 0.002
PC4 0.146 0.073 0.047
PC6 0.334 0.076 0.000
PC7 0.376 0.112 0.001

Netherlands

PC0 −0.200 0.078 0.011
PC5 −0.167 0.106 0.116
PC6 0.284 0.105 0.008
PC7 0.361 0.073 0.000

Poland

PC4 0.079 0.065 0.225
PC6 0.180 0.063 0.004
PC7 0.101 0.065 0.121

France

PC0 0.254 0.119 0.034
PC1 0.285 0.192 0.140
PC2 −0.188 0.110 0.089
PC3 −0.219 0.115 0.060
PC5 −0.498 0.248 0.046
PC6 0.402 0.160 0.013
PC7 −0.140 0.122 0.253
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Figure A.8: Plot of the 31th factor.

Table A.8: Detail of linear model between the PC from PCA of DXA variables and the
31th factor.

Country Regressor Coe�cent σ p− value

Italy

PC0 0.155 0.066 0.019
PC1 0.218 0.071 0.002
PC2 −0.194 0.062 0.002
PC5 −0.244 0.075 0.001
PC7 −0.108 0.063 0.088

United Kingdom

PC0 −0.410 0.122 0.001
PC1 −0.158 0.072 0.029
PC2 −0.218 0.077 0.005
PC4 −0.216 0.082 0.010
PC6 −0.254 0.079 0.002
PC7 −0.315 0.120 0.009

Netherlands

PC0 0.309 0.103 0.003
PC1 0.173 0.099 0.083
PC4 −0.109 0.069 0.114
PC5 −0.280 0.157 0.075
PC6 0.210 0.153 0.170
PC7 −0.297 0.081 0.000

Poland

PC3 −0.083 0.061 0.179
PC6 −0.295 0.061 0.000
PC7 −0.160 0.061 0.009

France

PC0 −0.358 0.104 0.001
PC1 −0.482 0.141 0.001
PC3 0.154 0.093 0.101
PC5 0.691 0.184 0.000



88 APPENDIX A. GRAPHS AND IMAGES

0 2000 4000 6000 8000 10000 12000

50th Factor

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

C
o
effi

ci
en

ts

Figure A.9: Plot of the 50th factor.

Table A.9: Detail of linear model between the PC from PCA of DXA variables and the
50th factor.

Country Regressor Coe�cent σ p− value

Italy

PC3 0.184 0.062 0.003
PC4 0.158 0.062 0.011
PC5 0.083 0.062 0.180
PC6 0.148 0.062 0.019

United Kingdom

PC0 0.253 0.126 0.046
PC3 0.200 0.076 0.009
PC4 0.239 0.075 0.002
PC5 0.146 0.085 0.087
PC6 0.191 0.084 0.024
PC7 0.338 0.118 0.005

Netherlands

PC0 −0.321 0.069 0.000
PC2 −0.110 0.064 0.089
PC4 0.118 0.066 0.077
PC7 0.347 0.070 0.000

Poland

PC6 0.283 0.057 0.000
PC7 0.370 0.057 0.000

France

PC0 0.305 0.107 0.005
PC1 0.545 0.159 0.001
PC2 −0.251 0.085 0.004
PC3 −0.350 0.107 0.001
PC5 −0.683 0.208 0.001
PC6 0.575 0.142 0.000
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Figure A.10: Plot of the 66th factor.

Table A.10: Detail of linear model between the PC from PCA of DXA variables and
the 66th factor.

Country Regressor Coe�cent σ p− value

Italy

PC1 −0.138 0.070 0.051
PC2 0.150 0.061 0.015
PC3 0.189 0.062 0.002
PC4 0.109 0.062 0.081
PC5 0.314 0.073 0.000
PC7 0.156 0.063 0.014

United Kingdom

PC0 0.417 0.121 0.001
PC1 0.089 0.072 0.216
PC4 0.096 0.077 0.210
PC6 0.284 0.080 0.000
PC7 0.266 0.117 0.024

Netherlands

PC0 −0.247 0.073 0.001
PC3 0.133 0.063 0.036
PC4 0.199 0.063 0.002
PC5 0.156 0.065 0.017
PC7 0.298 0.072 0.000

Poland

PC0 0.162 0.070 0.021
PC4 0.144 0.061 0.020
PC6 0.257 0.062 0.000
PC7 0.156 0.069 0.026

France

PC0 0.356 0.106 0.001
PC1 0.648 0.157 0.000
PC2 −0.219 0.084 0.010
PC3 −0.175 0.106 0.100
PC5 −0.820 0.206 0.000
PC6 0.610 0.140 0.000





Appendix B

Magnetic Resonance Spectroscopy

Magnetic Resonance Spectroscopy (MRS) is an advanced clinical and research

application, based on Nuclear Magnetic Resonance (NMR), which guarantees de-

tection and quanti�cation of metabolites for diagnosis and disease staging.

Basically, this technique is based on the chemical shift phenomenon: nuclei in

di�erent chemical environments experience shielding of the static magnetic �eld

by the electron clouds of the neighbouring atoms. Consequently, these nuclei will

exhibit di�erent resonance frequencies, which can be identi�ed by the peaks in the

spectrum after the Fourier transform of the time-domain signal.

Nuclear Magnetic Resonance (NMR) is a physical phenomenon in which a nu-

cleus with a non-zero spin placed in a magnetic �eld B0, submitted to a radio

frequency (RF) �eld B1 at the Larmor resonance frequency ν0:

ν0 =
γ

2π
B0 where γ is the magnetogyric ratio of the nucleus (B.1)

absorbs and emits electromagnetic radiation.

The resonance frequency is dependent on the chemical environment that sur-

rounding nucleus. The electronic cloud has a shielding e�ect on the nucleus, since

electrons generate a secondary induced magnetic �eld which opposes to B0. This is

because electrons rotate about B0 in the opposite sense to nucleus spin precession

and consequently their magnetic moment µe is aligned against B0.

This behaviour, called chemical shift, is expressed as Beff = B0(1 − σ) where

Beff is the e�ective �eld and σ is the shielding constant which is dependent on the

chemical environment of the nucleus and its relative position within the molecule

(typical values for σ are 10−5 for protons and 10−2 for heavier nuclei).

91
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Due to this shielding e�ect the energy di�erence ∆E of two adjacent Zeeman

levels is lower than in absence of chemical shift:

∆E = −}γBeff . (B.2)

Di�erent e�ective magnetic �eld will lead to di�erent energies required for the

nucleus to �ip between Zeeman levels.

A common phenomenon which is observed in spectroscopic analysis is the split-

ting of resonance peaks into several smaller peaks, called J coupling.

The interactions of magnetic moments of the nuclei can occur through space

(dipolar coupling) or indirectly through electron shared in chemical bonds (scalar

coupling).

Dipolar interactions between nuclei in liquids are average to zero due to the

rapid molecular tumbling. Meanwhile, scalar coupling interactions depend on the

intramolecular distance. Therefore, the nearest chemical groups strongly determine

the peak displacement observed in the spectrum.

This characteristic can be exploited to identify the molecular species and their

covalent structure.

Therefore in NMR spectroscopy the nuclei do not resonate at the same fre-

quency. The RF pulse frequency ωRF slightly di�ers from the Larmor frequency

of the nucleus ω0, implies that the perturbed magnetization in the rotating frame

preceeds both around B1 and an apparent magnetic �eld Bapp:

Bapp = B0 −
ωRF
γ

(B.3)

resulting from the imperfect resonance. The combination of these two precessions

implies that the nuclear spin rotates around an e�ective �eld Beff (see Figure B.1).

Figure B.1: Precession of magnetization around Beff when ωRF 6= ω0

If B1 is such that the magnetization vector �ips onto the transverse (xy) plane
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(called 90o RF pulse), the spin precession on the transverse plane induces an os-

cillatory electromotive force in the receiving coil by electromagnetic induction,

originating thus an induced current called Free Induction Decay (FID), which has

an oscillating and exponentially decaying trend, and it is originated by the photons

in the radio-wave range emitted by the nuclei returning to the equilibrium.

The signal coming from the returning to the equilibrium of nuclear magnetiza-

tion M :

Mxy(t) = Mxy(0)e
− t
T ∗2 (B.4)

where the decay is enhanced by T ∗2 which leads to a faster transverse relaxation

because of the inhomogeneities of the magnetic �eld and to a multi-exponential

decay.

Precisely the detected signal s(t) is proportional to M :

s(t) = s(0)eiωteiφe
− t
T ∗2 . (B.5)

The returning FID is a composite signal of many di�erent contributions from

metabolites in the volume of interest, which is resolved into individual resonance

frequencies and their relative amplitudes by the Fourier transform of the signal

s(t), Figure B.2.

Time [ms]

s(
t)

Free Induction Decay

Frequencies [ppm]

In
te

n
si

ty

Fourier Transform of FID

Figure B.2: FID signal and resolved resonance frequencies by the Fourier transform.

It is common practice not to express chemical shifts in Hertz units since this

choice would make chemical shifts dependent on the applied magnetic �eld strength.

Therefore, chemical shift δ are conventionally expressed in terms of ppm in function

of the displacement from the frequency of a reference compound νref measured by

the spectrometer:

δ =
ν − νref
νref

106. (B.6)
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