
Alma Mater Studiorum
Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea in Matematica

LIMITING THEOREMS

IN STATISTICAL MECHANICS.

THE MEAN-FIELD CASE.

Relatore:
Chiar.mo Prof.
PIERLUIGI CONTUCCI

Presentata da:
RACHELE LUZI

Sessione I
Anno Accademico 2014/2015





"Ohana means family,
and family

means that nobody gets left behind or forgotten."

Ai miei genitori
e ai miei fratelli.





Introduzione

Lo studio della somma normalizzata di variabili aleatorie e il suo com-

portamento asintotico è argomento fondamentale per la scienza moderna.

Tale questione compare infatti nella teoria della probabilità classica con il

teorema del limite centrale ed è in relazione con i profondi risultati ottenuti

nella �sica statistica per sistemi di particelle interagenti. In questa tesi viene

esaminata una collezione di risultati a partire dal teorema del limite centrale

ed alcune sue generalizzazioni a variabili aleatorie debolmente dipendenti. La

tesi contiene inoltre un'analisi del teorema limite centrale e la sua violazione

nella meccanica statistica per modelli ferromagnetici di campo medio di spin

interagenti. La tesi è organizzata nei capitoli seguenti.

Nel primo capitolo studieremo alcune diverse versioni del teorema lim-

ite centrale e le loro dimostrazioni. Il teorema a�erma che sotto determinate

condizioni la media aritmetica di un numero abbastanza grande di variabili

aleatorie indipendenti, ciascuna con attesa e varianza ben de�nite, è approssi-

mativamente distribuito secondo una normale.

Il teorema limite centrale può essere formulato in vari modi: ogni ver-

sione suppone che le variabili siano indipendenti, mentre l'ipotesi che siano

identicamente distribuite può essere sostituita da altre condizioni.

Una prima idea sul teorema limite centrale è data dal teorema di De

Moivre-Laplace che dà un'approssimazione normale alla distribuzione bino-

miale. Si a�erma che la distribuzione binomiale del numero di successi di n
prove indipendenti di Bernoulli ciascuna con probabilità di successo p è ap-

prossimativamente distribuita secondo una normale di media np e varianza

np(1− p), per n→∞.

Si ha una generalizzazione del teorema di De Moivre-Laplace lavorando

con un campione di n variabili aleatorie indipendenti e identicamente dis-

tribuite X1, . . . , Xn con aspettazione �nita µ = E[Xi] e varianza �nita σ2 =
var[Xi]; indicando con Sn la loro somma, si ha che

Sn√
n
−
√
nµ

D−→ N (0, σ2) per n→∞.
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Per la legge dei grandi numeri, la media del campione converge in proba-

bilità quasi sicuramente al valore atteso µ per n → ∞. Il teorema limite

centrale classico descrive la forma distribuzionale delle �uttuazioni stocas-

tiche attorno al numero deterministico µ durante tale convergenza.

Un'altra versione del teorema limite centrale fu studiata dal matematico

russo Aleksandr Ljapunov. In questa versione le variabili Xi devono essere

indipendenti ma non necessariamente identicamente distribuite. Il teorema

richiede inoltre che le variabili Xi abbiano �niti i momenti di qualche ordine

2+ δ, δ > 0, e che la crescita di tali momenti sia limitata dalla condizione di

Ljapunov, data in dettaglio nel primo capitolo.

Un'ulteriore versione del teorema limite centrale fu studiata da Lindeberg

nel 1920: sotto le stesse ipotesi e notazioni date sopra, egli sostituì la con-

dizione di Ljapunov con una più debole, detta condizione di Lindeberg, la

quale, in accordo con la precedente, richiede δ = 0.

Nel secondo capitolo proveremo diverse versioni del teorema limite cen-

trale per variabili aleatorie interagenti.

Inizialmente de�niamo il concetto di processo stazionario e diamo una carat-

terizzazione per la funzione di autocovarianza e per la densità spettrale.

In seguito diamo la de�nizione di strongly mixing, proprietà che induce le

variabili aleatorie ad essere asintoticamente indipendenti: tale proprietà deve

essere necessariamente soddisfatta dal processo stazionario a�nché la somma

normalizzata delle variabili che lo de�niscono converga in distribuzione ad

una Gaussiana. Vedremo che in ogni versione del teorema le variabili aleato-

rie devono avere almeno la struttura di processo stazionario che veri�ca:

α(τ) = sup
A∈F0

−∞,B∈F∞τ
|P (AB)− P (A)P (B)| −→ 0, per τ →∞.

In�ne, dopo aver fornito alcuni risultati preliminari utili alle varie dimostrazioni,

vedremo alcune condizioni necessarie e su�cienti a�nché una sequenza di

variabili aleatorie debolmente dipendenti converga in distribuzione ad una

Gaussiana.

Nel terzo capitolo studieremo delle variabili aleatorie, dette spins, la cui

interazione è descritta da un'Hamiltoniana di campo medio HN(σ), dove
σ = (σ1, . . . , σN) è una con�gurazione di N spins, e vedremo le condizioni

che al limite termodinamico portano ad un comportamento gaussiano e quelle

che portano ad una distribuzione esponenziale di ordine maggiore. Emerge

che i punti in cui il teorema del limite centrale fallisce corrispondono ai valori

critici in cui si ha la transizione di fase.
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Una fase di un sistema termodinamico e lo stato di aggregazione della

materia hanno proprietà �siche uniformi; una transizione di fase è la trasfor-

mazione di un sistema termodinamico da una fase ad un'altra o da uno stato

di materia ad un altro: in questo caso , in seguito ad una minima variazione di

alcune condizioni esterne, tra cui le variabili termodinamiche, come temper-

atura, pressione e altre, si ha un brusco cambiamento di proprietà �siche che

avviene spesso in modo discontinuo. Ad esempio, un liquido può diventare

gas in seguito al raggiungimento del punto di ebollizione, producendo un br-

usco cambiamento di volume, mentre può diventare solido raggiungendo il

punto di congelamento. Un altro esempio è dato dai metalli magnetici, che

passano dallo stato ferromagnetico allo stato paramagnetico quando raggiun-

gono la temperatura di Curie.

Il modello più semplice in cui si può osservare una transizione di fase è

il modello di Curie-Weiss. Questo modello fu introdotto nel 1907 da Pierre

Weiss per descrivere le osservazioni sperimentali di Pierre Curie del comporta-

mento magnetico di alcuni metalli tra cui ferro e nickel a diverse temperature.

Questi materiali, dopo essere stati esposti ad un campo magnetico esterno,

sviluppano una magnetizzazione con lo stesso segno del campo. Curie notò

che quando il campo si annullava, i due materiali mostravano due comporta-

menti diversi a seconda della temperatura in cui la magnetizzazione veniva

indotta: se la temperatura era sotto il valore critico, i metalli continuavano a

tenere un grado di magnetizzazione, detto magnetizzazione spontanea, men-

tre non erano capaci di farlo quando la temperatura raggiungeva o superava

il punto critico, responsabile della transizione di fase. Non appena la tem-

peratura raggiungeva tale punto critico, infatti, la magnetizzazione svaniva

bruscamente.

Nella prima sezione del terzo capitolo de�niamo le principali osservabili

del modello, come la probabilità di Boltzmann-Gibbs PN,J,h{σ}, la magne-

tizzazione mN{σ} e la funzione pressione pN(σ). Mostriamo l'esistenza del

limite termodinamico della funzione pressione, associata all'Hamiltoniana,

per un gran numero di spins, calcolando un limite superiore e uno inferiore

di pN(σ). In�ne calcoliamo la soluzione esatta di tale limite termodinamico

usando particolari proprietà della funzione

f(x) = −J
2
x2 + ln

(∫
R
exp(s(Jx+ h))dρ(s)

)
.

Nella seconda sezione calcoliamo il limite della somma normalizzata di

un gran numero di spins. Costruiamo il risultato usando i punti di massimo

globale µ1, . . . , µP della funzione f ; ciascuno di essi è caratterizzato da un

intero positivo kp e dal numero reale negativo λp rispettivamente chiamati

type e strength.
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Inizialmente illustriamo il comportamento asintotico della magnetizzazione.

Mostriamo che dati µ1, . . . , µP , i punti di massimo globale della funzione

f(x) con maximal type k∗ and strengths λ1, . . . , λP , se N →∞, allora

mN(σ)
D−→

P∑
p=1

λ
− 1

2k∗
p δ(x− µp)

P∑
p=1

λ
− 1

2k∗
p

.

In seguito illustriamo il comportamento asintotico della somma degli spin,

Indicata con SN(σ) la somma dei primi N spins, mostriamo che se f ha un

unico punto di massimo µ con type k e strength λ, allora

SN(σ)−Nµ
N1− 1

2k

D−→


N
(
0,−

(
1

λ
+

1

J

))
se k = 1

exp

(
λ

(2k)!
x2k
)

se k > 1

Questo teorema verrà poi esteso nel caso in cui la funzione f abbia più punti

di massimo.

Da questi importanti risultati, possiamo vedere che la violazione del teo-

rema limite centrale dipende dal tipo omogeneo del punto di massimo della

funzione f e questi teoremi diventano strumenti importanti per ottenere in-

formazioni riguardo la criticità di una fase.

In�ne discutiamo in dettaglio il modello di Curie-Weiss. In particolare mo-

striamo che le fasi critiche, in probabilità, possono essere valutate analizzando

la distribuzione della somma degli spins nel limite termodinamico.

Nella terza sezione mostriamo che il teorema limite centrale fallisce sem-

pre quando il modello è de�nito dalla costante di imitazione J = 1 e dal

campo magnetico h = 0. Per fare questo applichiamo al modello di Curie-

Weiss alcuni dei risultati provati nella sezione precedente .

In conclusione, sotto particolari ipotesi, il comportamento asintotico della

somma degli spins, normalizzata con la radice quadrata, tende ad essere sim-

ile al comportamento di una variabile Gaussiana.

Nel quarto capitolo presentiamo un problema aperto. Ci piacerebbe

mostrare che nei risultati classici, la normalità di un processo limite può es-

sere ottenuta, ad esempio nel modello ferromagnetico, sull'intero spazio delle
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fasi fuori dal punto critico. Per fare questo abbiamo bisogno di identi�care

una nozione di processo probabilistico corrispondente al volume in�nito nelle

condizioni della meccanica statistica. In altre parole, per de�nire un processo

stocastico abbiamo bisogno di una misura di probabilità che sia indipendente

dalla lunghezza del vettore stocastico. Se lavoriamo con un modello in cui gli

spins interagiscono gli uni con gli altri in accordo con l'Hamiltoniana de�nita

sopra, la probabilità di una con�gurazione di spins è data dalla misura di

Boltzmann-Gibbs, che dipende dal numero degli spins: ci piacerebbe esten-

dere la misura di probabilità a volume in�nito.

I passaggi che siamo in grado di fare sono i seguenti.

Considerando una con�gurazione di N spins

σ = (σ1, . . . , σN)

e ponendo

SN(σ) = σ1 + . . .+ σN

la loro somma, proveremo due proprietà soddisfatte da tali con�gurazioni.

La prima proposizione fornisce un'idea sul comportamento della varianza

della somma fuori dal punto critico: quando una con�gurazione è composta

da un numero molto grande di spins, la varianza della loro somma cresce

proporzionalmente a N . In particolare la proposizione a�erma che, nel caso

in cui (J, h) 6= (1, 0):

var(SN(σ)) = Nh(N),

dove h(N) è una funzione slowly varying tale che c1 ≤ h(N) ≤ c2, con

c1, c2 ∈ R. Proveremo questa proprietà scrivendo la varianza della somma

come

var(SN(σ)) = N [var(σ1) + (N − 1)cov(σ1, σ2)] .

Studiando il comportamento della covarianza tra due spins, vedremo che

quando (J, h) 6= (1, 0), per N →∞, si ha che cov(σ1, σ2) = O

(
1

N

)
, quindi

riusciremo a scrivere la covarianza come richiesto.

La seconda proposizione dà un'alternativa alla condizione di Lindeberg per la

con�gurazione di spins del modello e mostra un comportamento di�erente nel

caso in cui stiamo lavorando al punto critico oppure no. Se il modello viene

considerato fuori dal punto critico, la suscettività decresce a zero quando N
diventa molto grande, mentre esplode se l'Hamiltoniana è de�nita nel punto

critico: infatti nel primo caso le �uttuazioni diventano nulle. Più precisa-

mente la proprietà a�erma che, quando si ha un'unica soluzione soluzione
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dell'equazione di campo medio:

lim
M→∞

lim sup
N→∞

∫
|z|>M

z2dFN(z) =

{
0 se (J, h) 6= (1, 0)

+∞ se (J, h) = (1, 0)

dove FN(z) è la funzione di distribuzione della variabile aleatoria
SN(σ)−Nµ√

N
e µ è la soluzione dell'equazione di campo medio.

Proveremo questa proprietà osservando che fuori dal punto critico, la somma

normalizzata con la radice quadrata del numero di spins converge in dis-

tribuzione ad una Gaussiana di media zero e varianza data dalla suscettività

del modello, mentre al punto critico la sua distribuzione degenera a

SN√
N
∼ 1

e la suscettività porta l'integrale ad esplodere.

In seguito presteremo attenzione ad una speci�ca versione del teorema limite

centrale per variabili aleatorie interagenti: vedremo che se è possibile iden-

ti�care la con�gurazione di spins con un processo stocastico, le proprietà

descritte sopra sono condizioni necessarie a�nché la somma normalizzata

con radice quadrata converga in distribuzione ad una Gaussiana.



Introduction

The study of the normalized sum of random variables and its asymptotic
behaviour is a central topic of modern science. It has in fact appeared with
the central limit theorem in classic probability theory and is related to the
profound results obtained in statistical physics of interacting particles sys-
tems. This thesis is a review of some results starting from the classical central
limit theorem and its extensions to weakly dependent random variables. It
contains moreover an analysis of the central limit theorem and its breakdown
in the statistical mechanics for the mean-�eld interacting ferromagnetic spin
models. The thesis is organised in the following chapters.

In the �rst chapter we will see some di�erent versions of the central limit
theorem and their proofs. As we have told above, the central limit theorem
states that, under certain conditions, the arithmetic mean of a su�ciently
large number of iterates of independent random variables, each with a well-
de�ned expected value and a well-de�ned variance, will be approximately
normally distributed.

The central limit theorem has a number of variants: every version sup-
poses that the variables are independent and identically distributed, even if
this last one can be replaced with some other conditions.

A �rst idea of the central limit theorem is given by the De Moivre-Laplace
theorem which gives a normal approximation to the binomial distribution.
It states that the binomial distribution of the number of successes in n in-
dependent Bernoulli trials with probability p of success on each trial is ap-
proximately a normal distribution with mean np and variance np(1− p), as
n→∞.

We have a generalization of the De Moivre-Laplace theorem working with
a sample of n independent and identically distributed random va-riables
X1, . . . , Xn with �nite expectation µ = E[Xi] and �nite variance σ2 =
var[Xi]; setting with Sn their sum, we have that:

Sn√
n
−
√
nµ

D−→ N (0, σ2) as n→∞.

i
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By the law of large numbers, the average of the sample converges in pro-
bability and almost surely to the expected value µ as n→∞. The classical
central limit theorem describes the size and the distributional form of the
stochastic �uctuations around the deterministic number µ during this con-
vergence.

An other version of the central limit theorem was studied by the Russian
mathematician Aleksandr Ljapunov. In this variant the random variables
Xi have to be independent, but not necessarily identically distributed. The
theorem also requires that random variables Xi have moments of some or-
der (2 + δ), and that the rate of growth of these moments is limited by the
Ljapunov's condition, given in detail in the �rst chapter. An other version
of the central limit theorem was given by Lindeberg in 1920: in the same
setting and with the same notation as above, he replaced the Ljapunov's
condition with a weaker one, called Lindeberg's condition, which, according
to the previous one, takes δ = 0.

In the second chapter we will prove some di�erent versions of the central
limit theorem for dependent random variables.
Firstly we de�ne stationary processes and we give a characterization for the
autocovariance function and for the spectral density.
Secondly we give the de�nition of strongly mixing, which leads the random
variables to be asympthotically independent: this property must be necessary
satis�ed by the stationary process in order that it converges in distribution
toward the Gaussian distribution. In each version of the theorem, we will
see that, at least, the random variables must have the structure of a strongly
mixing stationary process, i.e. it must hold:

α(τ) = sup
A∈F0

−∞,B∈F∞τ
|P (AB)− P (A)P (B)| −→ 0, as τ →∞.

Finally, after having given some preliminary results useful for the proofs of
the statements, we will see some necessary and su�cient conditions which
ensure that a sequence of weakly-dependent random variables converges in
distribution toward the Gaussian distribution.

In the third chapter we will study spin random variables whose inte-
raction is described by a multi-species mean-�eld Hamiltonian HN(σ), where
σ = (σ1, . . . , σN) is a con�guration of N spins, and we will see the conditions
that lead in the thermodynamic limit to a Gaussian behaviour and those who
lead to a higher order exponential distribution. It emerges that the points
where the central limit theorem breakes down correspond to the critical val-
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ues in which we have the phase transition.
A phase of a thermodynamic system and the states of matter have uniform

physical properties; a phase transition is the transformation of a thermody-
namic system from one phase or state of matter to another one: in this case
we have an abrupt change of physical properties, often discontinuously, as a
result the minimal variation of some external condition, such as the thermo-
dynamic variables, like the temperature, pressure, and others. For example,
a liquid may become gas upon heating to the boiling point, resulting in an
abrupt change in volume, instead it may become solid upon cooling down
to the freezing point. An other example is given by magnetic metals, which
have a phase transition between the ferromagnetic state and the paramag-
netic state when they reach the Curie temperature. The measurement of the
external conditions at which the transformation occurs is termed the phase
transition.

The simplest model where we can see a phase transition is the Curie Weiss
model. This model was introduces in 1907 by Pierre Weiss in the attempt to
describe Pierre Curie's experimental observations of the magnetic behaviour
of some metals such as iron and nickel at di�erent temperature. These ma-
terials, after having been exposed to an external magnetic �eld, develope a
magnetization with the same sign of the �eld. Curie noted that when the �eld
switched o�, the materials showed two di�erent behaviours depending on the
temperature at which the magnetization was induced: if the temperature
was below a critical value, the materials retained a degree of magnetization,
called spontaneous magnetization, whereas they were not capable of doing
this when the temperature was greater or equal to the critical value, respon-
sible of the phase transition. As the temperature approached the critical
value from below, the spontaneous magnetization vanished abruptley.

In the �rst section we de�ne the main observables of the model where
spins interact one with each other according to the Hamiltonian HN(σ): we
will talk about the probability of Boltzmann-Gibbs PN,J,h{σ}, the magnetiza-
tion mN{σ} and the pressure function pN(σ). Then we show the existence of
the thermodynamic limit for a large number of spins of the pressure function
associated to the Hamiltonian, computing an upper bound and a lower bound
of pN(σ). Finally we compute the exact solution of the thermodynamic limit
using particular properties of the function

f(x) = −J
2
x2 + ln

(∫
R

exp(s(Jx+ h))dρ(s)

)
.

In the second section we compute the limit for large number of spins of
their normalized sum. We construct the results using the global maximum
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points µ1, . . . , µP of the function f ; each of them is characterized by the po-
sitive integer kp and the negative real number λp respectively called type and
strength.
Firstly we illustrate the asymptotic behaviour of the magnetization. We show
that given µ1, . . . , µP the global maximum points of the function f(x) with
maximal type k∗ and strengths λ1, . . . , λP , as N →∞, then

mN(σ)
D−→

P∑
p=1

λ
− 1

2k∗
p δ(x− µp)

P∑
p=1

λ
− 1

2k∗
p

.

Secondly we illustrate the asymptotic behaviour of the normalized sum of
the spins. Indicated with SN(σ) the sum of the �rst N spins, we show that
if f has a unique maximum point µ of type k and strength λ, then

SN(σ)−Nµ
N1− 1

2k

D−→


N
(

0,−
(

1

λ
+

1

J

))
if k = 1

exp

(
λ

(2k)!
x2k

)
if k > 1

This theorem will be extendend in case that the function f has more maxi-
mum points.
By these important results, we can see that the breaking down of the central
limit theorem depends on the homogeneous type of the maximum point of
the function f and these theorems become potent tools to obtain information
about the critically of a phase.
Finally we discuss in detail the Curie-Weiss model. In particular we show
that the critically phases can be evaluated probabilistically analyzing the
distribution of the sum of spins in the thermodynamic limit.

In the third section we show that the central limit theorem always breaks
down in the case that the model is de�ned by the coupling constant J = 1
and the magnetic �eld h = 0. In order to do this we will use the results
proved in the previous section and after having given some preliminary re-
sults we will apply them to the particular case of the Curie-Weiss model.

In conclusion, under particular hypothesis, the asymptotyc behaviour of
their sum with square-root normalization tends to be similar to a Gaussian
variable's behaviour.
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In the fourth chapter we present an open problem problem. We would like
to show that the classical results on the normality of a limiting process can
be obtained, for instance in the mean-�eld ferromagnetic model, on the entire
phase space outside the critical point. In order to do so we need to identify a
notion of probability process correspondent to the in�nite volume limit of the
statistical mechanics setting. In other words, in order to de�ne a stochastic
process, we need a measure of probability which must be independent from
the length of the stochastic vector. If we work with a model where spins
interact one with each other according to the Hamiltonian de�ned above, the
probability of a con�guration of spins is given by the measure of Boltzmann-
Gibbs, which depends on the number of the spins: we would like to extend
the measure of probability to an in�nite volume.

The steps that we were able to cover toward such result are the following.
Considering a con�guration of N spins

σ = (σ1, . . . , σN)

and setting
SN(σ) = σ1 + . . .+ σN

the sum of the spins, we will prove two properties full�lled by such con�gu-
ration.
The �rst proposition gives an idea of the behaviour of the variance of the
sum outside of the critical point: when the con�guration is composed by a
very large number of spins, the variance of their sum grows proportionally
to N. In particular the property says that, in the case that (J, h) 6= (1, 0):

var(SN(σ)) = Nh(N),

where h(N) is a slowly varying function such that c1 ≤ h(N) ≤ c2, with
c1, c2 ∈ R.
We will prove this property writing the variance of the sum as

var(SN(σ)) = N [var(σ1) + (N − 1)cov(σ1, σ2)] .

Studying the behaviour of the covariance of two spins, we will see that when

(J, h) 6= (1, 0), as N → ∞, yelds cov(σ1, σ2) = O

(
1

N

)
, hence will be able

to write the variance as requested.
The second proposition gives an alternative of the Lindeberg's condition for
the con�guration of spins of the model and shows a di�erent behaviour in
the case that we are working at the critical point or not. If the model is
considered outside of the critical point, the susceptibility decreases to zero



vi

when N , assumes large values, while it explodes if the Hamiltonian is de�ned
at the critical point: infact in the �rst case the �uctuations become void.
More precisely the property states that:

lim
M→∞

lim sup
N→∞

∫
|z|>M

z2dFN(z) =

{
0 if (J, h) 6= (1, 0)

+∞ if (J, h) = (1, 0)

where FN(z) is the distribution function of the random variable
SN(σ)−Nµ√

N
and µ is the solution of the mean-�eld equation.
We will prove this property observing that outside of the critical point, the
sum with square-root normalization converges in distribution toward a Gaus-
sian with mean equal to zero and variance equal to the susceptibility of the
model, while at the critical point, its distribution degenerates to

SN√
N
∼ 1

and the susceptibility leads the integral to explode.
After that we will pay attention to a speci�c version of the central limit the-
orem for interacting variables: we will see that if it is possible to identify the
con�guration of spins with a stocastic process, the properties described above
are necessary conditions to have that the sum with square-root normalization
converges toward the Gaussian distribution.
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Chapter 1

Central limit theorems

The central limit theorem, which is the foundation for all the classic pro-
bability, works with random variables which are independent and identically
distributed and which have well de�ned expectation and variance: under
these hypothesis it ensures that their sum with square-root normalization
converges toward a Gaussian distribution. To understand how empirically
the central limit theorem works, we suppose to have a sample obtained doing
a large number of observations gene-rated in a way that does not depend
on the values of the other observations and we suppose that the arithmetic
mean of the observed values is computed. Performing this procedure many
times, the central limit theorem says that the computed values of the mean
will be distributed according to the normal distribution.

The central limit theorem has a number of variants: every version sup-
poses that the variables are independent but we can replace the hypothesis
of being identically distributed with other conditions; in this chapter we will
prove some di�erent versions and we will start with the De Moivre-Laplace
theorem, which gives a normal approximation to the Binomial distribution.

1.1 De Moivre-Laplace theorem

In this section we will prove the De Moivre-Laplace theorem which is a
special case of the central limit theorem and gives a normal approximation
to the Binomial distribution.

Theorem 1.1.1. Let (Xi)i∈N be a sequence of independent random variables
distributed according to the Bernoulli distribution of parameter 0 ≤ p ≤ 1,

i.e. Xi ∼ Be(p). Set Sn =
n∑
i=1

Xi.

1
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Then, ∀α > 0,

P

(
−α ≤ Sn − np√

np(1− p)
≤ α

)
n→∞−−−→ P (−α ≤ Z ≤ α),

where Z is a random variable distributed according to the normal distribution,
i.e. Z ∼ N (0, 1).
In other words

Sn − np√
np(1− p)

D−→ Z ∼ N (0, 1).

Remark 1.1. Observe that the variables Xi have expectation P (Xi) = p and
variance var(Xi) = p(1− p) ∀i ∈ N.
Moreover the variable Sn is distributed according to the binomial distribution
of parameters n, p, i.e. Sn ∼ Bin(n, p); it has expectation P (Sn) = np and
variance var(Sn) = np(1− p).

Proof. Set q = 1− p to simplify the notations. By Remark 1.2,

P (Sn = k) =
n!

k!(n− k)!
pkqn−k ∀k = 1, . . . , n.

Set

Wk =
n!

k!(n− k)!
pkqn−k

and

xk =
k − np
√
npq

.

Given α > 0, we will prove that

∑
k,|xk|≤α

Wk
k→∞−−−→

∫ α

−α

1√
2π
e−

x2

2 dx. (1.1)

Use the Stirling's formula

N ! = e−NNN
√

2πN

(
1 +O

(
1

N

))
, as N →∞

to approximate Wk.
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As |xk| ≤ α, as n→∞,

Wk =

=

e−nnn
√

2πn

(
1 +O

(
1

n

))
· pkqn−k

e−kkk
√

2πk

(
1 +O

(
1

k

))
e−n+k(n− k)n−k

√
2π(n− k)

(
1 +O

(
1

n− k

)) =

=
1√

2πn · k
n
· n− k

n

(
k

n

)−k (
n− k
n

)−n+k

pkqn−k·

·
(

1 +O

(
1

n

)
+O

(
1

k

)
+O

(
1

n− k

))
=

=
1√

2πnuk(1− uk)
· exp (−nH(uk))

(
1 +O

(
1

n

))
, (1.2)

where

uk :=
k

n

and

H(u) := u log

(
u

p

)
+ (1− u) log

(
1− u
p

)
∀u ∈ [0, 1].

Observe that

k − np
√
npq

≤ α⇒ k ≤ α
√
npq + np

−k ≥ −α√npq − np
n− k ≥ n(1− p)− α√npq n→∞−−−→∞.

Moreover

xk =
k − np
√
npq

=

k

n
− p√
pq

n

=⇒

uk = xk

√
pq

n
+ p, 1− uk = q − xk

√
pq

n
.
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Consider the �rst factor of (1.12).

uk(1− uk) =

(
xk

√
pq

n
+ p

)(
q − xk

√
pq

n

)
=

= pq + (q − p)xk
√
pq

n
− x2

k

pq

n
=

= pq

(
1 + (q − p)xk

√
1

npq
− x2

k

n

)
.

Thus

(2πnuk(1− uk))−
1
2 =

=(2πnpq)−
1
2

(
1 + (q − p)xk

√
1

npq
− x2

k

n

)− 1
2

.

Setting

t := (q − p)xk
√

1

npq
− x2

k

n

n→∞−−−→ 0

and developing by Taylor's expansions we obtain

(2πnpq)−
1
2

(
1− 1

2

(
(q − p)xk

√
1

npq
− x2

k

n

)
+O(t2)

)
=

=
1√

2πnpq

(
1− 1

2

(q − p)xk√
npq

+O

(
1

n

))
. (1.3)

Consider the second factor of (1.12) and use Taylor's expansions to expand
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H(u) at the point p.

H(u) := u log

(
u

p

)
+ (1− u) log

(
1− u
p

)
=⇒ H(p) = 0,

H ′(u) = log

(
u

p

)
+
u

p
· p
u

+ log

(
1− u
p

)
+ (1− u)

q

1− u

(
−1

q

)
=

= log

(
u

p

)
+ log

(
1− u
p

)
=⇒ H ′(p) = 0,

H ′′(u) =
p

u
· 1

p
− q

1− u

(
−1

q

)
=

1

u
+

1

1− u

=⇒ H ′′(p) =
1

p
+

1

q
=
q + p

pq
=

1

pq
,

H ′′′(u) = − 1

u2
+

1

(1− u)2

=⇒ H ′′′(p) = − 1

p2
+

1

q2
=
p2 − q2

p2q2
=

(p− q)(p+ q)

p2q2
=
p− q
p2q2

.

Thus

H(u) =
1

2pq
(u− p)2 +

1

3!

p− q
p2q2

(u− p)3 +O
(
(u− p)4

)
as u→ p

H(uk) = H

(
p+ xk

√
pq

n

)
=

=
1

2pq
x2 · pq

n
+

1

6

p− q
p2q2

x3
(pq
n

) 3
2

+O

(
1

n2

)
=

=
x2

2n
+

1

6

(p− q)x3
k

n
√
npq

+O

(
1

n2

)
−nH(uk) = −x

2

2
+

1

6

(q − p)x3

√
npq

+O

(
1

n

)
exp (−nH(uk)) = exp

(
−x

2

2

)
exp

(
1

6

(q − p)x3

√
npq

)
+O

(
1

n

)
.

Observe that
1

6

(q − p)x3

√
npq

n→∞−−−→ 0.

Develop using the Taylor's expansion for the exponential,

et = 1 + t+O(t2) as t→ 0,
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and obtain

exp

(
1

6

(q − p)x3

√
npq

)
+O

(
1

n

)
= 1 +

1

6

(q − p)x3

√
npq

+O

(
1

n

)
as n→∞.

Finally

exp (−nH(uk)) = exp

(
−x

2

2

)
·
(

1 +
1

6

(q − p)x3

√
npq

+O

(
1

n

))
. (1.4)

Putting (1.13) and (1.14) in (1.12)

Wk =

√
1

2πnpq

(
1− 3(q − p)xk

6
√
npq

+O

(
1

n

))
e−

x2

2

(
1 +

(q − p)x3

6
√
npq

+O

(
1

n

))
=

=
e−

x2

2

√
2πnpq

[
1 +

(q − p)(x2
k − 3xk)

6
√
npq

+O

(
1

n

)]
−→ Wk

n→∞−−−→ e−
x2

2

√
2πnpq

(
1 +O

(
1

n

))
. (1.5)

Putting (1.15) in (1.11) we obtain∑
k,|xk|≤α

Wk =

=
∑

k,|xk|≤α

e−
x2

2

√
2πnpq

(
1 +O

(
1

n

))
=

=
∑

k,|xk|≤α

e−
x2

2

√
2π

(xk+1 − xk)
(

1 +O

(
1

n

))
, (1.6)

where the latter passage is due to the equality

xk+1 − xk =
k + 1− np
√
npq

− k − np
√
npq

=
1
√
npq

.

The sum in (1.16) is a Riemann sum, thus

xk+1 − xk → 0, as k →∞.

Finally ∑
k,|xk|≤α

Wk
k→∞−−−→

∫ α

−α

1√
2π
e−

x2

2 dx.
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1.2 Lindeberg-Levy central limit theorem

The following version of the central limit theorem is probably the most
known version: the proof uses the bijective correspondence between the cha-
racteristic function of a random variable and its distribution. It will be
shown that the charatheristic function of the sum of the random variables
with square-root normalization converges toward the characteristic function
of the Gaussian distribution.

Theorem 1.2.1. Let X1, X2, . . . , be independent and identically distributed
random variables with expectation P (Xi) = 0 and variance P (X2

i ) = 1.
Set Sn = X1 + . . .+Xn.
Then, the distribution of the sum Sn with square-root normalization converges
toward the Gaussian distribution N (0, 1).

The proof of the theorem needs the following preliminary result.

Lemma 1.2.2. Let X be a real random variable such that P (|X|k) < ∞,
∀k ∈ N.
The characteristic function of X can be written as

ϕX(u) =
k∑
j=0

(iu)j

j!
P (Xj) +

(iu)k

k!
δ(u),

where {
|δ(u)| ≤ 3P (|X|k)
lim
u→∞

δ(u) = 0.

Proof. The characteristic function of a random variable X is de�ned as

ϕX(u) = P (eiuX);

expand the argument eiuX :

eiuX =
k−1∑
j=0

(iu)j

j!
Xj +

(
Re
(
ikXkeiξX

)
+ iIm

(
ikXkeiiηX

)) uk
k!

=

=
k∑
j=0

(iu)j

j!
Xj +

(
Re
(
ikXkeiξX

)
+ iIm

(
ikXkeiiηX

)) uk
k!
− (iu)k

k!
Xk.

Observe that when j ≤ k we have |X|j ≤ 1 + |X|k: then the hypothesis
P (|X|k) <∞ implies that P (|X|j) <∞.
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Hence, considering 0 ≤ ξ ≤ u and 0 ≤ η ≤ u, by the dominated convergence
theorem and by the latter observation:

ϕX(u) = P (eiuX) =
k∑
j=0

(iu)j

j!
P (Xj) + δ(u)

(iu)k

k!
,

with lim
u→∞

δ(u) = 0.

Now we proceede with the proof of the statement 1.1.1.

Proof. Let ϕX(u) be the characteristic function of the random variable X.
Consider the characteristic function of the random variable X1 and expand
it according to the result in 1.1.2 :

ϕX1(u) = 1− u2

2
− u2

2
δ(u),

where |δ(u)| ≤ 3 and lim
u→∞

δ(u) = 0.

The random variables X1, X2, . . . are independent, thus by the properties of
the characteristic function we have:

ϕSn(u) = (ϕX1(u))n.

Making a linear transformation:

ϕ Sn√
n
(u) = ϕX1

(
u√
n

)n
=

(
1− u2

2n
− u2

2n
δ

(
u√
n

))n
.

By the continuity of the logarithm we have

log
(
ϕ Sn√

n
(u)
)

= n log

(
ϕX1

(
u√
n

))
.

By Taylor's expansions, as n→∞, near the origin we have:

n

(
−u

2

2n
− u2

2n
δ

(
u√
n

)
+O

(
u4

n2

))
n→∞−−−→ −u

2

2
.

In conclusion:

ϕ Sn√
n
(u)

n→∞−−−→ e−
u2

2 .
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1.3 Central limit theorem (smooth functions)

The following version of the central limit theorem uses smooth functions
in order to show the convergence of the sum of random variables with square-
root normalization toward the Gaussian distribution.

Theorem 1.3.1. Let X1, X2, . . . , be independent and identically distributed
random variables with expectation P (Xi) = 0 and variance P (X2

i ) = 1. Set
Sn = X1 + . . .+Xn.
Then, the sum Sn with square-root normalization converges toward the Gaus-
sian distribution N (0, 1). In other words, taking a continuous function f(x)
with limited second and third derivatives, yelds:

P

(
f

(
Sn√
n

))
n→∞−−−→

∫
R
f(x)

e−
x2

2

√
2π
dx.

The proof of the theorem needs the following preliminary result.

Lemma 1.3.2. Let X, Y, T be independent random variables such that X
and Y have respectively expectation equal to zero P (X) = P (Y ) = 0 and
equal �nite variance P (X2) = P (Y 2) <∞.
Let q(x) be a function de�ned as q(x) = min{x2, |x|3}.
Let f(x) be a continuous function with limited and continuous second and
third derivatives.
Then

|P (f(T +X))− P (f(T + Y ))| ≤ CfP (q(X) + q(Y )),

where Cf = max{sup(|f ′′(x)|), sup(|f ′′′(x)|)} <∞.

Proof. Develop the di�erence f(T +X)−f(T +Y ) using Taylor's expansions
and stop at the second order terms:

f(T +X)− f(T + Y ) =

=f(0) + f ′(0)X +
f ′′(ξ)

2
X2 − f(0)− f ′(0)Y − f ′′(η)

2
Y 2 =

=f ′(0)(X − Y ) +
f ′′(0)

2
(X2 − Y 2) +

f ′′(ξ)− f ′′(0)

2
X2 +

f ′′(0)− f ′′(η)

2
Y 2.

(1.7)

In an analogous way, develop the di�erence f(T +X)−f(T +Y ) by Taylor's
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expansions, but now stop at the third order terms:

f(T +X)− f(T + Y ) =

=f(0) + f ′(0)X +
f ′′(0)

2
X2 +

f ′′′(ξ′)

6
X3 − f(0)− f ′(0)Y − f ′′(0)

2
Y 2 − f ′′′(η′)

6
Y 3 =

=f ′(0)(X − Y ) +
f ′′(0)

2
(X2 − Y 2) +

f ′′′(ξ′)X3 − f ′′′(η′)Y 3

6
. (1.8)

Consider the di�erence

f(T +X)− f(T + Y )−
(
f ′(0)(X − Y ) +

f ′′(0)

2
(X2 − Y 2)

)
.

By (1.1) we obtain the term

f ′′(ξ)− f ′′(0)

2
X2 +

f ′′(0)− f ′′(η)

2
Y 2, (1.9)

while by (1.2) we obtain the term

f ′′′(ξ′)X3 − f ′′′(η′)Y 3

6
. (1.10)

By hypothesis, the equation (1.3) has expectation equal to zero, hence∣∣∣∣P (f(T +X)− f(T + Y )−
(
f ′(0)(X − Y ) +

f ′′(0)

2
(X2 − Y 2)

))∣∣∣∣ =

=|P (f(T +X)− f(T + Y )) |.

Finally

|P (f(T +X)− f(T + Y )) | ≤ min{CfX2 + CfY
2, Cf |X|3 + Cf |Y |3} =

= CfP (q(X) + q(Y )).

Now we proceede with the proof of the statement 1.2.1.

Proof. Consider a sequence of auxiliar independent random Gaussian varia-
bles Y1, Y2, . . . , such that P (Yi) = 0 and P (Y 2

i ) = 1 ∀i = 1, . . . , n.
Consider a continuous function f(x) with limited and continuous second and
third derivatives.

Let µn(x) be the distribution of
Sn√
n
.

We want to prove that
lim
n→∞

µn(f) = ν(f),
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where ν is the gaussian distribution.

We start observing that the sum
Y1 + . . .+ Yn√

n
is distributed according to ν,

since the sum of Gaussian random variables is a Gaussian random variable.
Use the lemma 1.2.2 to estimate the di�erence

|µn(f)− ν(f)| =
∣∣∣∣P (f (X1 + . . .+Xn√

n

)
− f

(
Y1 + . . .+ Yn√

n

))∣∣∣∣ .
De�ne a random variable

Tk =
k−1∑
j=1

Xj√
n

+
n∑

j=k+1

Yj√
n

and observe that

f

(
X1 + . . .+Xn√

n

)
−f
(
Y1 + . . .+ Yn√

n

)
=

n∑
k=1

(
f

(
Tk +

Xk√
n

)
− f

(
Tk +

Yk√
n

))
.

Moreover Tk,
Xk√
n
,
Yk√
n

are three independent variables: Xk and Yk are in-

dependent by hypothesis and they are independent by Tk since they don't
compare in the de�nition of Tk. Since X1, X2, . . . and Y1, Y2, . . . are respec-
tively identically distributed and independent and using the lemma 1.1.2, we
�nd:

|µn(f)− ν(f)| =

=

∣∣∣∣P (f (X1 + . . .+Xn√
n

)
− f

(
Y1 + . . .+ Yn√

n

))∣∣∣∣ =

=

∣∣∣∣∣P
(

n∑
k=1

(
f

(
Tk +

Xk√
n

)
− f

(
Tk +

Yk√
n

)))∣∣∣∣∣ ≤
≤Cf

[
P

(
q

(
X1√
n

)
+ q

(
Y1√
n

))]
· n =

=Cf

[
P

(
X2

1

n
∧ |X1|3

n
3
2

)
+ P

(
Y 2

1

n
∧ |Y1|3

n
3
2

)]
· n =

=Cf

[
P

(
X2

1 ∧
|X1|3√
n

)
+ P

(
Y 2

1 ∧
|Y1|3√
n

)]
n→∞−−−→ 0

by the dominated convergence theorem.
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1.4 Central limit theorem with Lindeberg's con-

dition

The following version of the central limit theorem supposes that the ran-
dom variables are independent but not identically distributed: removing this
hypothesis the central limit doesn't work, as we will see in the further e-
xamples, and it's necessary to suppose that the Lindeberg's condition, given
below, is satis�ed.

Example 1.1. Let X0, X1, . . . , be independent random variables such that:

P (Xn = −2n) = P (Xn = 2n) =
1

2
.

Set Sn = X0 + . . .+Xn−1.
Obviously P (Xn) = 0 and P (X2

n) = 22n ∀n ∈ N ∪ {0}. Thus

P (Sn) = 0

and

var(Sn) = P (S2
n) =

n−1∑
k=0

22k =
22n − 1

3
.

Obtain the standardized variable dividing Sn by the variance:

Sn
var(Sn)

=
3Sn

22n − 1
.

The distribution of this variable doesn't converge toward the Gaussian di-
stribution since the variance of the variable Xn weigh on more for larger value
of n than for smaller ones.

Example 1.2. Let X1, . . . , Xn , be independent random variables such that:

P (Xk = 0) = P (Xk = 2k) =
1

2
, ∀k = 1, . . . , n.

Thus
n∑
k=1

Xk = 2n

(
n∑
k=1

Yk
2k

)
,

where

P (Yk = 0) = P (Yk = 1) =
1

2
, ∀k = 1, . . . , n.

The variable
Yk
2k

can be developed in binary form as a number chosen casually

in the interval [0, 1]; hence Yk has uniform distribution in [0, 1], which doesn't
converge toward the Gaussian distribution.



1.4 Central limit theorem with Lindeberg's condition 13

Theorem 1.4.1. Let X1, X2, . . . , be independent random variables with ex-
pectation P (Xi) = 0 and variance P (X2

i ) = σ2
i <∞.

Set Sn = X1 + . . .+Xn and s2
n =

n∑
k=1

= P (S2
n) = var(Sn).

Let µi(x) be the distribution of the variable Xi.
If the Lindeberg's condition is veri�ed, i.e. if ∀ε > 0

1

s2
n

n∑
k=1

∫
|x|>εsn

x2dµk(x)
n→∞−−−→ 0,

then the distribution of
Sn
sn

converges toward the Gaussian distribution N (0, 1).

The proof of the theorem needs the following preliminary results.

Remark 1.2. The Lindeberg's condition implies that

max
1≤k≤n

σ2
k

s2
n

n→∞−−−→ 0.

Proof. By contradiction suppose it doesn't happen. Thus it would exist

δ > 0, a sequence kj and a sequence nj such that
σ2
kj

s2
nj

> δ. Hence:

∫
|x|>

√
δ

2
s2nj

x2dµkj(x) > δ − δ

4
=

3δ

4
>
δ

2
,

but this contradicts the Lindeberg's condition since ∀ε > 0 we would have
had

n∑
k=1

∫
|x|>εs2n

x2dµk(x)
n→∞−−−→ 0.

Lemma 1.4.2. It holds:∣∣∣∣∣eit −
k∑
j=0

(it)j

j!

∣∣∣∣∣ ≤ |t|k+1

(k + 1)!
. (1.11)

Proof. Proceede by induction on k + 1.
If k = 0:

|t| ≥
∣∣∣∣∫ t

0

eiudu

∣∣∣∣ =

∣∣∣∣eit − 1

i

∣∣∣∣ =
∣∣eit − 1

∣∣ .
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Suppose ∣∣∣∣∣eit −
k−1∑
j=0

(it)j

j!

∣∣∣∣∣ ≤ |t|kk!
.

Consider t > 0:

tk+1

(k + 1)!
=

∫ t

0

|u|k

k!
du ≥

∣∣∣∣∣
∫ t

0

(
eiu −

k−1∑
j=0

(iu)j

j!

)
du

∣∣∣∣∣ =

=

∣∣∣∣∣∣
[
eiu

i
−

k−1∑
j=0

(iu)j+1

(j + 1)!

]t
0

∣∣∣∣∣∣ =

∣∣∣∣∣eiti −
k∑
j=0

(it)j

j!

∣∣∣∣∣ =

=

∣∣∣∣∣eit −
k∑
j=0

(it)j

j!

∣∣∣∣∣

Lemma 1.4.3. Let z1, . . . , zn ∈ C and z′1, . . . , z
′
n ∈ C be such that |zi| ≤ 1

and |z′i| ≤ 1 ∀i = 1, . . . , n.
Then ∣∣∣∣∣

n∏
j=1

zj

n∏
j=1

z′j

∣∣∣∣∣ ≤
n∑
j=1

|zj − z′j|. (1.12)

Proof. ∣∣∣∣∣
n∏
j=1

zj

n∏
j=1

z′j

∣∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

(
j−1∏
l=1

zl

n∏
m=j+1

z′m(zj − z′j)

)∣∣∣∣∣ ≤
≤

n∑
j=1

|zj − z′j|.

Now we proceede with the proof of the statement 1.3.1.

Proof. We want to estimate the di�erence∣∣∣ϕSn
sn

(u)− e−
u2

2

∣∣∣ .
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Since the variables X1, . . . , Xn are independent, we can write:
ϕSn
sn

(u) = ϕSn

(
u

sn

)
=

n∏
j=1

ϕXj

(
u

sn

)
e−

u2

2 =
n∏
j=1

exp

(
−
u2σ2

j

2s2
n

)
Thus: ∣∣∣ϕSn

sn

(u)− e−
u2

2

∣∣∣ =

=

∣∣∣∣∣
n∏
j=1

ϕXj

(
u

sn

)
−

n∏
j=1

exp

(
−
u2σ2

j

2s2
n

)∣∣∣∣∣ =

=
n∑
j=1

∣∣∣∣ϕXj ( u

sn

)
− exp

(
−
u2σ2

j

2s2
n

)∣∣∣∣ =

=
n∑
j=1

∣∣∣∣ϕXj ( u

sn

)
− 1 +

u2σ2
j

2s2
n

−
(

exp

(
−
u2σ2

j

2s2
n

)
− 1 +

u2σ2
j

2s2
n

)∣∣∣∣ ≤
≤

n∑
j=1

∣∣∣∣ϕXj ( u

sn

)
− 1 +

u2σ2
j

2s2
n

∣∣∣∣+ (1.13)

+
n∑
j=1

∣∣∣∣exp

(
−
u2σ2

j

2s2
n

)
− 1 +

u2σ2
j

2s2
n

∣∣∣∣ . (1.14)

Consider the term (1.7).

∣∣∣∣ϕXj ( u

sn

)
− 1 +

u2σ2
j

2s2
n

∣∣∣∣ ≤
≤
∫ ∣∣∣∣exp

(
iux

sn

)
− 1− iux

sn
+
u2x2

2s2
n

∣∣∣∣ dµj(x)

The term
iux

sn
can be added since it has expectation equal to zero.

Split the integral into∫
|x|≤εsn

∣∣∣∣exp

(
iux

sn

)
− 1− iux

sn
+
u2x2

2s2
n

∣∣∣∣ dµj(x)+ (1.15)

+

∫
|x|>εsn

∣∣∣∣exp

(
iux

sn

)
− 1− iux

sn
+
u2x2

2s2
n

∣∣∣∣ dµj(x) (1.16)
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Use the inequalities ∣∣∣∣eix − 1− ix+
x2

2

∣∣∣∣ ≤ x3

6

and ∣∣eix − 1− ix
∣∣ ≤ x2

2

given by lemma 1.1.2 in order to estimate respectively (1.9) and (1.10):∫ ∣∣∣∣exp

(
iux

sn

)
− 1− iux

sn
+
u2x2

2s2
n

∣∣∣∣ dµj(x) ≤

≤ε
|u|3σ2

j

s2
n

+
u2

s2
n

∫
|x|>εsn

x2dµj(x).

Finally, ∀ε > 0 and for a �xed u:

n∑
j=1

∣∣∣∣ϕXj ( u

sn

)
− 1 +

u2σ2
j

2s2
n

∣∣∣∣ ≤
≤ε|u|3

n∑
j=1

σ2
j

s2
n

+
u2

s2
n

n∑
j=1

∫
|x|>εsn

x2dµj(x)
n→∞−−−→ 0

because of the Lindeberg's condition.

Consider the term (1.8).
By lemma 1.1.2, for k = 1, ∣∣e−x − 1 + x

∣∣ ≤ x2

2
,

hence:

n∑
j=1

∣∣∣∣exp

(
−
u2σ2

j

2s2
n

)
− 1 +

u2σ2
j

2s2
n

∣∣∣∣ ≤ n∑
j=1

u4σ4
j

4s4
n

≤

≤
(

max
1≤k≤n

σ2
j

s2
n

)
u4

4
·

n∑
j=1

σ2
j

s2
n

=

(
max

1≤k≤n

σ2
j

s2
n

)
u4

4

n→∞−−−→ 0.

In conclusion ∣∣∣ϕSn
sn

(u)− e−
u2

2

∣∣∣ n→∞−−−→ 0,

hence the distribution of
Sn
sn

converges toward the Gaussian distribution

N (0, 1).
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1.5 Central limit theorem with Ljapunov's con-

dition

As in the previous section, the following version of the central limit theo-
rem supposes that the random variables are independent but not identically
distributed: now this hypothesis is replaced by the Ljapunov's condition,
given below. In order to prove the theorem, we will simply show that the
Ljapunov's condition implies the Lindeberg's condition.

Theorem 1.5.1. Let X1, X2, . . . , be independent random variables with ex-
pectation P (Xi) = 0 and variance P (X2

i ) = σ2
i <∞.

Suppose that P (X2+δ
i ) <∞ for some δ ∈ R+.

Set Sn = X1 + . . .+Xn and s2
n =

n∑
k=1

P (S2
n) = var(Sn).

Let µi(x) be the distribution of the variable Xi.
If the Ljapunov's condition is veri�ed, i.e. if ∀ε > 0

1

s2+δ
n

n∑
k=1

∫
x2+δdµk(x)

n→∞−−−→ 0,

then the distribution of
Sn
sn

converges toward the gaussian distribution N (0, 1).

Proof. According to the theorem 1.3.1, it's su�cient to show that the Ljapunov's
condition implies the Lindeberg's condition.

1

s2+δ
n

n∑
k=1

∫
x2+δdµk(x) ≥ 1

s2+δ
n

n∑
k=1

∫
|x|>εsn

x2+δdµk(x) ≥

≥ (εsn)δ

s2+δ
n

n∑
k=1

∫
|x|>εsn

x2dµk(x) =

= εδ
1

s2
n

n∑
k=1

∫
|x|>εsn

x2dµk(x).

Thus:

1

s2+δ
n

n∑
k=1

∫
x2+δdµk(x)

n→∞−−−→ 0 =⇒ 1

s2
n

n∑
k=1

∫
|x|>εsn

x2dµk(x)
n→∞−−−→ 0.





Chapter 2

Central limit theorem for

interacting random variables

In this chapter we will prove some di�erent versions of the central limit
theorem for weakly-dependent random variables.

In general probability theory, a central limit theorem is a weakly-convergence
theorem: a useful generalization of a sequence of independent, identically dis-
tributed random variables is a mixing random process in discrete time.
Mixing means that random variables temporally far apart from one another
are nearly independent. Several kinds of mixing are used in probability the-
ory: we will expecially use strong mixing (also called α-mixing) de�ned by

α(n) −→ 0, as n→∞

where α(n) is so-called strong mixing coe�cient.

2.1 Stationary processes

Let (Ω,F , P ) be a probability space de�ned by a sample place Ω, a
σ-algebra F and a probability measure P .

A random process (Xt)t∈T , T ⊂ R, is a collection of random variables
and represents the evolution of some system of random values over the time.

A random process is called stationary (in the strict sense) if the distribu-
tion of the random vector

(Xt1+h, Xt2+h, . . . , Xts+h)

does not depend on h, so long as the values ti + h belongs to T . In the wide
sense, the random process is called stationary if

E(X2
t ) <∞, ∀t ∈ T

19



20 2. Central limit theorem for interacting random variables

and if E(Xs) and E(XsXs+t) do not depend on s.
With each random process Xt, where t is a �nite real number, we can

associate a σ-algebra

F ba, −∞ ≤ a ≤ b ≤ ∞,

which is the σ-algebra generated by the events of the form

A = {Xt1 , Xt2 , . . . , Xts}, a ≤ t1 ≤ . . . ≤ ts ≤ b.

The past of the process (Xt)t∈T is described by the σ-algebras F t−s−∞ and
its future by the σ-algebras F∞t+s, with s > 0. It may be that these σ-algebras
are independent, in the sense that,

∀A ∈ F t−s−∞, ∀B ∈ F∞t+s

it holds

P (AB) = P (A)P (B).

Now consider the stationary process Xt. Observe that, by de�nition, the
expectation

E(XtXs)

depends only on the interval t− s. Indicated by Rt−s, the expectation

Rt−s = E(XtXs)

is called autocovariance function of the process Xt and has three properties:

1. Rt = R−t,

2. Rt is continuous,

3. Rt is positive de�nite.

Obviously the �rst two properties are satis�ed. In order to show the third
property consider the following estimation:

|Rt −Rs| = |E(XtX0)− E(XsX0)| ≤

≤
(
E|X0|2E|Xt −Xs|2

) 1
2 → 0, as s→ t.



2.2 The strongly mixing condition 21

If z1, . . . , zn are arbitrary complex numbers and if t1, . . . , tn are points of the
parameters set T , it follows that

n∑
i,j=1

Rtj−tizjzi =
n∑

i,j=1

zjziE(XtjX ti) =

= E

∣∣∣∣∣
n∑
i=1

ziXti

∣∣∣∣∣
2

≥ 0,

hence the third property is veri�ed.
These three properties imply that

Rt

R0

is the characteristic function of some probability distribution. In the conti-
nuous time case, by Bochner-Kinchin theorem1,

Rt =

∫ ∞
−∞

eitλdς(λ),

while in the discrete case, by Herglotz's theorem2,

Rt =

∫ π

−π
eitλdς(λ),

where in either cases the function ς(λ), which is called spectral function of the
process Xt, is non-decreasing and bounded. It is absolutely continuous and
its derivative ζ(λ) = ς ′(λ) is called spectral density of the stationary process.
The relation between the autocovariance and spectral function is the same
as that between characteristc and distribution function; in particular they
determine one with another uniquely.

2.2 The strongly mixing condition

The stationary process (Xt)t∈T is said to be strongly mixing (or completely
regular) if

α(τ) = sup
A∈F0

−∞,B∈F∞τ
|P (AB)− P (A)P (B)| −→ 0, as τ →∞ (2.1)

1See Appendix A for the proof of the Bochner-Kinchin theorem.
2See Appendix B for the proof of the Herglotz's theorem.
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through positive values. The non increasing function α(τ) is called mixing
coe�cient. It is clear that a sequence of independent random variables is
strongly mixing.

The stationary process (Xt)t∈T is said to be uniformly mixing if

φ(τ) = sup
A∈F0

−∞,B∈F∞τ

|P (AB)− P (A)P (B)|
P (A)

−→ 0, as τ →∞. (2.2)

It is clear that φ(τ), which is called uniformly mixing coe�cient, is non-
increasing and that a uniformly mixing process is strongly mixing (the con-
verse is false).

The following results about the strong mixing condition will be used to
show some di�erent versions of the central limit theorem for dependent ran-
dom variables.

Theorem 2.2.1. Let (Ω,F , P ) be a probability space.
Let the stationary process Xt satisfy the strong mixing condition.
Suppose that ξ is measurable with respect to F t−∞ and that η is measurable
with respect to F∞t+τ , for τ > 0.
If |ξ| ≤ C1 and |η| ≤ C2, then

|E(ξη)− E(ξ)E(η)| ≤ 4C1C2α(τ), (2.3)

where α(τ) is de�ned by (2.1).

Proof. We may assume that t = 0. Using the properties of conditional ex-
pectations, we have:

|E(ξη)− E(ξ)E(η)| = |E{ξ[E(η|F0
−∞)− E(η)]}| ≤

≤ C1E|E(η|F0
−∞)− E(η)| =

= C1E{ξ1[E(η|F0
−∞)− E(η)]},

where
ξ1 = sgn{E(η|F0

−∞)− E(η)}.

Clearly ξ1 is measurable with respect to F0
−∞ and therefore

|E[ξη]− E[ξ]E[η]| ≤ C1|E[ξ1η]− E[ξ1]E[η]|.

Similarly, we may compare η with

η1 = sgn{E(ξ1|F∞t )− E(ξ1)},
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to give

|E(ξη)− E(ξ)E(η)| ≤ C1C2|E(ξ1η1)− E(ξ1)E(η1)|.

Introducing the events

A = {ξ1 = 1} ∈ F0
−∞

and

B = {η1 = 1} ∈ F∞τ ,

the strong mixing condition in (2.1) gives

|E(ξ1η1)− E(ξ1)E(η1)| ≤
≤ |P (AB)+P (AB)− P (AB)− P (AB)− P (A)P (B)+

−P (A)P (B) + P (A)P (B) + P (A)P (B)| ≤ 4α(τ),

hence (2.3) follows.

Theorem 2.2.2. Let (Ω,F , P ) be a probability space.
Suppose that ξ is measurable with respect to F t−∞ and that η is measurable
with respect to F∞t+τ , (τ > 0).
Suppose that for some δ > 0,

E|ξ|2+δ < c1 <∞, (2.4)

E|η|2+δ < c2 <∞. (2.5)

Then

|E(ξη)− E(ξ)E(η)| ≤
[
4 + 3

(
cβ1c

1−β
2 + c1−β

1 cβ2

)]
α(τ)1−2β, (2.6)

where

β =
1

2 + δ
.

Proof. We can take t = 0 without loss of generality.
Introduce the variables ξN , ξN de�ned by

ξN =

{
ξ, if |ξ| ≤ N

0, if |ξ| > N,

and

ξN = ξ − ξN
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and the variables ηN , ηN similarly de�ned by

ηN =

{
η, if |η| ≤ N

0, if |η| > N,

and
ηN = η − ηN .

Then

|E(ξη)− E(ξ)E(η)| ≤|E(ξNηN)− E(ξN)E(ηN)|+
+ |E(ξNηN)|+ |E(ξN)E(ηN)|+ |E(ξN)E(ηN)|+
+ |E(ξNηN)|+ |E(ξN)E(ηN)|, (2.7)

and by theorem (2.2.1),

|E(ξη)− E(ξ)E(η)| ≤ 4N2α(τ). (2.8)

Because of the inequalities (2.4) and (2.5),

E|ξN | ≤
E|ξ|1+δ

N δ
≤ c1−β

1

N δ
,

E|ηN | ≤
c1−β

2

N δ
,

so that

|E(ξNηN)| ≤
[
E|ξ|(2+δ)/(1+δ)

]1−β [E|ηN |2+δ
]β ≤ c1−β

1 cβ2
N δ

,

|E(ξNηN)| ≤ cβ1c
1−β
2

N δ
,

|E(ξNηN)| ≤ c1−β
1 c1−β

2

N δ
,

|E(ξNηN)| ≤ cβ1c
β
2

N δ
.

Combining the latter four inequalities, we have

|E(ξη)− E(ξ)E(η)| ≤ 4N2α(τ) + 3N−δ
(
cβ1c

1−β
2 + c1−β

1 cβ2

)
.

Setting N = α(τ)−β, (2.6) follows.
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Theorem 2.2.3. Let (Ω,F , P ) be a probability space.
Let the stationary process Xt satisfy the uniform mixing condition.
Suppose that ξ, η are respectively measurable with respect to the σ-algebras
F t−∞ and F∞t+τ . If

E|ξ|p <∞
and

E|η|q <∞,

where p, q > 1 and
1

p
+

1

q
= 1, then

|E(ξη)− E(ξ)E(η)| ≤ 2φ(τ) (E|ξ|p)1/p (E|η|q)1/q . (2.9)

Proof. Suppose that ξ and η are represented by �nite sums

ξ =
∑
j

λjχ(Aj) (2.10)

and
η =

∑
i

µiχ(Bi), (2.11)

where the Aj are disjoint events in F t−∞ and Bi are disjoint events in F∞t+τ .
Then, using the Holder's inequality:

|E(ξη)− E(ξ)E(η)| =

=

∣∣∣∣∣∑
i,j

λjµiP (AjBi)−
∑
i,j

λjµiP (Aj)P (Bi)

∣∣∣∣∣ =

=

∣∣∣∣∣∑
j

λjP (Aj)
1/p
∑
i

[P (Bi|Aj)− P (Bi)]µiP (Aj)
1/q

∣∣∣∣∣ ≤
≤

{∑
j

|λj|pP (Aj)

}1/p{∑
j

P (Aj)

∣∣∣∣∣∑
i

µi [P (Bi|Aj)− P (Bi)]

∣∣∣∣∣
q}1/q

≤

≤ [E|ξ|p]1/p
∑
j

P (Aj)·

·

∑
i

|µi|q |P (Bi|Aj)− P (Bi)|

[∑
i

|P (Bi|Aj)− P (Bi)|

]p/q
1/q

≤

≤21/p [E|ξ|p]1/p [E|η|q]1/q max
j

{∑
i

|P (Bi|Aj)− P (Bi)|

}1/q

. (2.12)
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Denoting the summations over positive terms by
+∑

and over negative terms

by
−∑
, we have:∑

i

|P (Bi|Aj)− P (Bi)| =

=
+∑
i

{P (Bi|Aj)− P (Bi)} −
−∑
i

{P (Bi|Aj)− P (Bi)} =

=

{
P

(
+⋃
i

(Bi|Aj)

)
− P

(
+⋃
i

Bi

)}
+

{
P

(
−⋃
i

(Bi|Aj)

)
− P

(
−⋃
i

Bi

)}
≤

≤2φ(τ). (2.13)

Substituing (2.13) into (2.12) proves the theorem for variables of the form
(2.10) and (2.11).
For the general case it su�ces to remark that

E|ξ − ξN |p
N→∞−−−→ 0

and
E|η − ηN |q

N→∞−−−→ 0,

where ξN and ηN are random variables which are similarly respectively de-
�ned by

ξN =


k

N
as

k

N
< ξ ≤ k + 1

N
,−N2 ≤ k < N2,

0 as |ξ| > N,

and

ηN =


k

N
as

k

N
< η ≤ k + 1

N
,−N2 ≤ k < N2,

0 as |η| > N.

2.3 Preliminary results

In this section we will give some preliminary results useful to prove the
di�erent versions of the central limit for dependent variables given in the
next section.
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Theorem 2.3.1. Let (Ω,F , P ) be a probability space.
Let An ∈ F0

−∞ and Bn ∈ F∞t , such that

lim
n→∞

Bn =∞. (2.14)

Let Fn(x) be the distribution function of

B−1
n

n∑
i=1

Xi − An, (2.15)

where Xi is a strongly mixing stationary sequence with mixing coe�cient
α(n).
If Fn(x) converges weakly to a non-degenerate distribution function F (x),
then F (x) is necessary stable, i.e. for any a1, a2 > 0 and for any b1, b2 there
exists constants a > 0 and b such that

F (a1x+ b1) ∗ F (a2x+ b2) = F (ax+ b).

If the latter distribution has exponent α, then

Bn = n
1
αh(n),

where h(n) is slowly varying as n→∞, i.e. for all a ∈ R+,

lim
x→∞

h(ax)

h(x)
= 1.

Remark 2.1. Before proving the theorem (2.3.1), we make a general remark
about the method of proof of this and other limit theorems for dependent
variables. We represent the sum

Sn = X1 + . . .+Xn

in the form

Sn =
k∑
j=0

ξj +
k∑
j=0

ηj,

where

ξj =

(j+1)p+jq∑
s=jp+jq+1

Xs

and

ηj =

(j+1)p+(j+1)q∑
s=(j+1)p+jq+1

Xs.
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Any two random variables ξi and ξj, for i 6= j, are separated by at least one
variable ηj containing q terms. If q is su�ciently large, the mixing condition
will ensure that the ξj are almost independent and the study of the sum

∑
ξj

may be related to the well understood case of sums of indepedent random
variables. If, however, q is small compared with p, the sum

∑
ηj will be small

compared with Sn. Thus this method, called Bernstein's method, permits to
reduce the dependent case to the independent case.

The proof of the theorem (2.3.1) needs the lemma (C.0.9)3.

Proof. Firstly we prove that

lim
n→∞

Bn+1

Bn

= 1. (2.16)

Suppose by contradiction that the hypothesys

lim
n→∞

Bn =∞

does not hold, hence there is a subsequence (Bnk) with limit B 6=∞. Then∣∣∣∣ψ( t

Bnk

)∣∣∣∣nk = |ν(t)|(1 + o(1)),

where ψ is the characteristic function of the variable (2.15) and ν is a Borel
measurable function fron Rn to R, so that, for all t,

|ψ(t)| = |ν(tBnk)|
1
nk (1 + o(1)).

This is possible if and only if ψ(t) = 1 for all t, which will imply that F (t) is
degenerate.
Thus we can state that necessarily

lim
n→∞

∣∣∣∣ψ( t

Bn+1

)∣∣∣∣ = 1.

Thus

lim
n→∞

∣∣∣∣ψ( t

Bn+1

)∣∣∣∣n+1

= |ν(t)|(1 + o(1))

and

lim
n→∞

∣∣∣∣ψ( t

Bn

)∣∣∣∣n = |ν(t)|(1 + o(1)).

3See Appendix C.
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Substituing
Bn

Bn+1

t in the former and
Bn

Bn+1

t in the latter, we deduce that

lim
n→∞

∣∣∣∣∣∣∣∣
ν

(
Bn+1

Bn

t

)
ν(t)

∣∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣
ν

(
Bn

Bn+1

t

)
ν(t)

∣∣∣∣∣∣∣∣ = 1. (2.17)

If

lim
n→∞

Bn+1

Bn

6= 1,

we can take a subsequence
Bn+1

Bn

or
Bn

Bn+1

converging to some B < 1. Going

to the limit in (C.20), we arrive at the equation that

ν(t) = ν(Bt),

from which,
ν(t) = ν(Bnt)

n→∞−−−→ |ν(0)| = 1,

which is again impossible since the function F (t) is non degenerate. Finally
we can state that

lim
n→∞

Bn+1

Bn

= 1.

Therefore, for any positive numbers a1, a2, there exists a sequencem(n)→∞
such that

lim
n→∞

Bm

Bn

=
a1

a2

.

We can also choose a sequence r(n) increasing so slowly that, in probability,

B−1
n

r∑
i=1

Xi
n→∞−−−→ 0.

Consider the sum

a−1
1

(
B−1
n

n∑
i=1

Xi − An − b1

)
+

(
Bm

a1Bn

)(
B−1
m

n+r+m∑
i=n+r+1

Xi − Am − b2

)
=

=

(
(a1Bn)−1

n+r+m∑
i=1

Xi − Cn

)
− (a1Bn)−1

n+r∑
i=n+1

Xi. (2.18)

By virtue of the strong mixing condition (2.1), the distribution function of
the l.h.s. of (2.18) di�ers from

Fn(a1x+ b1) ∗ Fm
(
a1
Bn

Bm

x+ b2

)
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by at most o(1) as r → ∞. Because of the choice of r, the r.h.s. has the
limiting distribution F (ax+ b), where a > 0 and b are constants.
Consequently,

F (a1x+ b1) ∗ F (a2x+ b2) = F (ax+ b),

and F (x) is stable.

In order to prove the second part of the theorem it is su�cient to show
that for all positive integers k,

lim
n→∞

Bnk

Bn

= k
1
α .

We denote by ψn(θ) the characteristic function of (2.15), so that by lemma
(C.0.9)

lim
n→∞

|ψn(θ)| = e−c|θ|
α

. (2.19)

Let r(n) be an unbounded increasing sequence, which will be chosen later,
and write

ξj =

jn+(j−1)r∑
s=(j−1)n+(j−1)r+1

Xs, j = 1, 2, . . . k.

The variables ξj are identically distributed, so that∏
j

E(eitξj) = {E(eitξ1)}k.

Let r(n)
n→∞−−−→∞ so slowly that the limiting distribution of the sum

B−1
nk

k∑
j=1

ξj − Ank

coincides with that of the sum

B−1
nk

nk∑
j=1

ξj − Ank. (2.20)

Since r → ∞, the random variables ξj are weakly dependent; precisely, by
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the theorem (2.2.1),∣∣∣∣∣E exp

(
iθ

Bnk

k∑
j=1

ξj

)
−

k∏
j=1

E exp

(
iθ

Bnk

ξj

)∣∣∣∣∣ ≤
≤

k∑
s=2

∣∣∣∣∣E exp

(
iθ

Bnk

s∑
j=1

ξj

)
− E exp

(
iθ

Bnk

s−1∑
j=1

ξj

)
E exp

(
iθ

Bnk

ξs

)∣∣∣∣∣ ≤
≤16(k − 1)α(n)

n→∞−−−→ 0.

Thus ∣∣∣∣∣|ψnk(t)| −
∣∣∣∣ψn(t Bn

Bnk

)∣∣∣∣k
∣∣∣∣∣ n→∞−−−→ 0.

Hence it follows from (2.18) that

lim
n→∞

(
Bn

Bnk

)α
k = 1. (2.21)

Theorem 2.3.2. Let (Xn) be a stationary sequence with autocovariance func-
tion R(n) and spectral function ς(λ). Suppose that E(Xi) = 0, ∀i ∈ N.
Set Sn = X1 + . . .+Xn.

Then the variance of Sn is given, in terms of R(n) and ς(λ) by the equa-
tions

var(Sn) =
∑
|j|<n

(n− |j|)R(j) =

=

∫ π

−π

sin2
(

1
2
nλ
)

sin2
(

1
2
λ
) dς(λ).

If the spectral density exists and is continuous at λ = 0,
then as n→∞,

var(Sn) = 2πς(0)n+ o(n). (2.22)

Proof. In order to prove (2.22) consider

var(Sn) =
n∑

k,i=1

P (XkXi) =
n∑

k,i=1

R(k − i) =

=
∑
|j|

∑
i−k=j

R(k − i) =
∑
|j|<n

(n− |j|)R(j).
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Since

R(j) =

∫ π

−π
eijλdς(λ),

by the latter equation we have:

var(Sn) =

∫ π

−π

∑
|j|<n

(n− |j|)eijλdς(λ)

Then consider∑
|j|<n

(n− |j|)eijλ =

=n+ 2Re

(
n
n−1∑
j=1

(n− |j|)eijλ
)
− 2Re

(
n−1∑
j=1

(n− |j|)eijλ
)

=

=
sin2

(
1
2
nλ
)

sin2
(

1
2
λ
) . (2.23)

Finally, suppose that ς(λ) exists and is continuous at λ = 0.
Integrating (2.23) we have∫ π

−π

sin2
(

1
2
nλ
)

sin2
(

1
2
λ
) dλ = 2πn, (2.24)

and hence

|var(Sn)− 2πς(0)n| =

=

∣∣∣∣∣
∫ π

−π

sin2
(

1
2
nλ
)

sin2
(

1
2
λ
) [ς(λ)− ς(0)]dλ

∣∣∣∣∣ ≤
≤ max
|λ|≤n−1/4

|ς(λ)− ς(0)|
∫ n−1/4

−n−1/4

sin2
(

1
2
nλ
)

sin2
(

1
2
λ
) dλ+

+
1

sin2
(

1
2
n−1/2

) ∫
n−1/4≤|λ|≤π

sin2

(
1

2
nλ

)
|ς(λ)− ς(0)|dλ ≤

≤2πn max
|λ|≤n−1/4

|ς(λ)− ς(0)|+O(n−1/2) = o(n).

Thus the theorem is proved.

Theorem 2.3.3. Let (Xn) be a stationary sequence uniformly mixing.
Set Sn = X1 + . . .+Xn. If

lim
n→∞

var(Sn) =∞,
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then

var(Sn) = nh(n), (2.25)

where h(n) is a slowly varying function of the integral variable n. Moreover,
h(n) has an extension to the whole real line which is slowly varying.

Remark 2.2. The theorem therefore asserts that var(Sn) is either bounded
or almost linear.

Proof. We divide the proof of the theorem into several parts.
(I)
Set Ψ(n) = var(Sn).
We �rst have to prove that, for any integer k,

lim
n→∞

Ψ(kn)

Ψ(n)
= k. (2.26)

We write

ξj =
n∑
s=1

X(j−1)n+(j−1)r+s, j = 1, 2, . . . , k

ηj =
r∑
s=1

Xjn+(j−1)r+s, j = 1, 2, . . . , k − 1

ηk =

(k−1)r∑
s=1

Xnk+s, j = 1, 2, . . . , k

where

r = log (Ψ(n)) .

Since by theorem (2.3.2),

Ψ(n) =

∫ π

−π

sin2
(

1
2
nλ
)

sin2
(

1
2
λ
) dς(λ) ≤ n2

∫ π

−π
ς(λ)dλ, (2.27)

we have r = O(log n).
Clearly

Snk =
k∑
j=1

ξj +
k∑
j=1

ηj,
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and

Ψ(nk) = var(Snk) =

=
k∑
j=1

Eξ2
j + 2

∑
i 6=j

Eξiξj +
k∑

i,j=1

Eξjηi +
k∑

i,j=1

Eηiηj. (2.28)

Now we proceede bounding every term of the sums in (2.27).
Since Xn is stationary, the �rst term can be estimated with

Eξ2
j = var(Sn) = Ψ(n). (2.29)

Using theorem (2.2.3) with p = q = 2, we have, for i 6= j, the second term
can be bounded by

|Eξiξj| ≤ 2φ(|i− j|)
1
2 (Eξ2

i )
1
2 (Eξ2

j )
1
2 ≤ 2φ(r)

1
2 Ψ(n), (2.30)

where φ(τ) is the uniform mixing coe�cient.
Finally, by (2.29), the third term is estimated with

|Eξjηi| ≤(Eξ2
j )

1
2 (Eη2

i )
1
2 ≤

≤Ψ(n)
1
2 Ψ(r)

1
2 =

=O{Ψ(n)
1
2 log(Ψ(n))}, (2.31)

and similarly the fourth term is estimated with

|Eηiηj| ≤ Ψ(r) = O{log(Ψ(n))}2. (2.32)

Since r increases with n, as n→∞, φ(r) = o(1).
The relations from (2.29) to (2.32) therefore show that

Ψ(nk) = kΨ(n) + o(Ψ(n)),

so that Ψ(n) is of the form (2.25) where h(n) is slowly varying.

(II)
We now use the properties of h(n) which admit its extension to a slowly
varying function of a continuous variable.
We need to prove some following lemmas.

Lemma 2.3.4. For �xed k,

lim
n→∞

h(n+ k)

h(n)
= 1. (2.33)
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Proof. Since Ψ(n)→∞ as n→∞, the stationarity gives

Ψ(n+ k) = var(Sn+k) =

= E

(
n∑
j=1

Xj

)2

+ E

(
n+k∑
j=n+1

Xj

)2

+ 2E

(
n∑
i=1

Xi

n+k∑
j=n+1

Xj

)
=

= Ψ(n) + Ψ(k) +O(Ψ(n)Ψ(k))
1
2 ,

so that

h(n+ k)

h(n)
=

n

n+ k

Ψ(n+ k)

Ψ(n)
=

n

n+ k
(1 + o(1)) = 1 + o(1).

Lemma 2.3.5. For all ε > 0,

lim
n→∞

nεh(n) =∞ (2.34)

and
lim
n→∞

n−εh(n) = 0. (2.35)

Proof. Since

lim
n→∞

h(2n)

h(n)
= 1

and using the result given by (2.33), we have

log h(n) =
∑
j

log

[
h(2−jn)

h(2−j−1n)

]
= o(log n).

Thus (2.34) and (2.35) are obviously veri�ed.

Lemma 2.3.6. If n is su�ciently large, then

sup
n≤r≤2n

h(r)

h(n)
≤ 2. (2.36)

Proof. Fix m so large that φ(m) ≤ 1

16
.

We examine the case r >
3

2
n; the other case r ≤ 3

2
n can be treated similarly.

From the equation

r+m∑
j=1

Xj =
n∑
j=1

Xj +
n+m∑
j=n+1

Xj +
r+m∑

j=n+m+1

Xj,
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we �nd that
Ψ(r +m) = Ψ(n)−Ψ(r − n) + θ,

where

θ = 2{[Ψ(m)Ψ(n)Ψ(r − n)]
1
2 + [Ψ(m)Ψ(n)]

1
2

+ [Ψ(m)Ψ(r − n)]
1
2}+ Ψ(m).

Since

2[Ψ(n)Ψ(r − n)]
1
2 ≤ Ψ(n) + Ψ(r − n) =

= nh(n) + (r − n)h(r − n),

we have, for large n,

h(r +m) = θ1h(n) + θ2h(r − n) +O(n−
1
4 ),

where θ1 >
15

32
and θ2 > 0.

Consequently, for large n,

θ1
h(n)

h(r +m)
<

3

2
,

which implies that
h(n)

h(r)
< 2.

Lemma 2.3.7. For all su�ciently small c and all su�ciently large n, then

h(cn)

h(n)
≤ c

1
2 . (2.37)

(Observe that (2.37) only holds if cn is an integer.)

Proof. From what has been proved about h(n),

log

(
h(cn)

h(n)

)
=

[− log c
log 2 ]∑
k=0

{
log
[
h(2−k−1n)

]
− log

[
h(2−kn

)
]
}

+

+
{

log [h(cn)−]− log
[
h(2−[log c/ log 2]n)

]}
<

<
1

2
log

(
1

c

)
.
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We remark that (2.37) holds for all c < c0, where c0 does not depend on n.

(III)
Using theorem (2.3.2), we can now extend the functions Ψ(n) and h(n) to
the interval (0,∞) by the equations

Ψ(x) =

∫ π

−π

sin2
(

1
2
xλ
)

sin2
(

1
2
λ
) dς(λ)

and

h(x) =
Ψ(x)

x
.

We have to prove that for all real a > 0,

lim
x→∞

Ψ(ax)

Ψ(x)
= a. (2.38)

As x→∞,
Ψ(x) = Ψ([x])(1 + o(1)),

so that, when a = k is an integer, by theorem (2.3.2) obtain

Ψ(kx)

Ψ(x)
=

[kx]h([kx])

[x]h([x])
(1 + o(1)) = k(1 + o(1)). (2.39)

If a =
p

q
, where p, q are integers, then (2.39) gives

lim
x→∞

Ψ

(
p

q
x

)
Ψ(x)

= lim
x→∞

Ψ

(
p

q
x

)
Ψ

(
1

q
x

)Ψ

(
1

q
x

)
Ψ(x)

=
p

q
, (2.40)

so that (2.38) is proved for rational values of a.
For any positive a, de�ne

Ψ1(a) = lim inf
x→∞

Ψ(ax)

Ψ(x)

Ψ2(a) = lim sup
x→∞

Ψ(ax)

Ψ(x)
,
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so that Ψ1(a) = Ψ2(a) = a for rational a.
It su�ces to prove that Ψ1 and Ψ2 are continuous functions. But

|Ψ((a+ ε)x)−Ψ(ax)|
Ψ(x)

=

=
1

Ψ(x)

∣∣∣∣∣
∫ π

−π

sin2
(

1
2
εxλ
)

sin2
(

1
2
λ
) ς(λ)dλ+

1

2

∫ π

−π

sin (εxλ) sin (axλ)

sin2
(

1
2
λ
) ς(λ)dλ

∣∣∣∣∣ ≤
≤Ψ(εx)

Ψ(x)
+

(
Ψ(εx)

Ψ(x)

) 1
2

,

so that it su�ces to establish the continuity of Ψ1 and Ψ2 at zero.
Using (2.39) we have, if ε is su�ciently small, as x→∞,

Ψ(εx)

Ψ(x)
=

[εx]

[x]

h

(
[εx]

[x]
[x]

)
h([x])

(1 + o(1)) ≤ ε(1 + o(1)).

Consequently the functions Ψ1 and Ψ2 are continuous and the theorem is
proved.

Remark 2.3. Observe that in the proof of theorem (2.3.3) the full force of the
uniform mixing condition wasn't used. We only used the inequality

E

∣∣∣∣∣
n∑
i=1

Xi

n+m+p∑
j=n+p

Xj

∣∣∣∣∣ ≤ 2φ(p)
1
2

E

(
n∑
i=1

Xi

)2

E

(
m∑
j=1

Xj

)2
 1

2
.

Thus the conclusions of the theorem remains true if one only assumes that

1. var(Sn) = Ψ(n)
n→∞−−−→∞

2. For any ε > 0, there exists numbers p,N such that for n,m > N ,

E

∣∣∣∣∣
(

n∑
i=1

Xi

)(
n+m+p∑
j=n+p

Xj

)∣∣∣∣∣ ≤ εΨ(n)Ψ(m).

Finally we remember the Karamata's theorem, which allows us to give
the conclusion of the theorem in an other form.
Karamata's theorem states that a function f(x) is slowly varying if and
only if there exists α > 0 such that for all x ≥ α, f(x) can be written
in the form

f(x) = exp

(
c(x) +

∫ x

α

ε(t)

t
dt

)
,
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where c(x), which converges trough a �nite number, and ε(x), which
converges to zero as x goes to in�nity, are measurable and bounded
functions.

Thus:

Corollary 2.3.8. Under the conditions of the theorem (2.3.3)

var(Sn) = Cn(1 + o(1)) exp

(∫ n

1

ε(t)

t
dt

)
, (2.41)

where C > 0 and ε(t)
t→∞−−−→ 0.

Lemma 2.3.9. Let the sequence (Xi)i∈N satisfy the strong mixing condition
with mixing coe�cient α(n).
Let ξi and ηi be two random variables de�ned respectively by the following
equations:

ξi =

(i+1)p+iq∑
j=ip+iq+1

Xj, 0 ≤ i ≤ k − 1

and

ηi =



(i+1)p+(i+1)q∑
j=(i+1)p+iq+1

Xj, 0 ≤ i ≤ k − 1

n∑
j=kp+kq+1

Xj, i = k

Suppose that for any pair of sequences p = p(n), q = q(n) such that

(a) p→∞, q →∞, q = o(p), p = o(n) as n→∞,

(b) lim
n→∞

n1−βq1+β

p2
= 0, ∀β > 0,

(c) lim
n→∞

n

p
α(q) = 0.

and ∀ε > 0, the distribution function

F n(z) = P (X1 + . . .+Xn < z)

satis�es

lim
n→∞

n

pσ2
n

∫
|z|>εσn

z2dF p(z) = 0.
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Suppose �nally that k =

[
n

p+ q

]
.

If the distribution function Fn(x) of the random variable ξn converges weakly
as n → ∞ to the distribution function F (x), and if ηn converges to zero in
probability, i.e. for all ε > 0,

lim
n→∞

P (|ηn| > ε)→ 0,

then the distribution function of the random variable ζi = ξi + ηi converges
weakly to F (x).

Proof. Let ψ(t) be the characteristic function of F (x):

lim
n→∞

E
(
eitξn

)
= ψ(t).

Thus

lim sup
n→∞

∣∣E (eit(ξn+ηn)
)
− ψ(t)

∣∣ ≤
≤ lim

n→∞

∣∣E (eitξn)− ψ(t)
∣∣+ lim sup

n→∞
E
∣∣eitηn − 1

∣∣ ≤
≤ lim sup

n→∞

∫
|x|≤ε

∣∣eitx − 1
∣∣ dP (ηn < x) + 2 lim

n→∞
P (|ηn| > ε) ≤

≤tε,

for any positive ε.
We represent the sum Sn in the form

Sn =
k−1∑
i=0

ξi +
k∑
i=0

ηi = S ′n + S ′′n. (2.42)

Consider the decomposition

Zn =
Sn
σn

=
S ′n
σn

+
S ′′n
σn

= Z ′n + Z ′′n,

of the normalized sum Zn.
To continue the proof along the lines suggested, we have to show that

Z ′′n
n→∞−−−→ 0

in probability, hence we prove that

lim
n→∞

E|Z ′′n|2 = 0,
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since

P (|Z ′′n| > ε) ≤ E|Z ′′n|2

ε2
.

We have

E|Z ′′n|2 =
1

σ2
n

k−1∑
i,j=1

E(ηiηj) +
2

σ2
n

k−1∑
i

E(ηiηk) +
1

σ2
n

E(η2
k) ≤

≤ 1

σ2
n

k2E(η2
0) +

2

σ2
n

k
[
E(η2

0))E(η2
k))
] 1

2 +
1

σ2
n

E(η2
k) ≤

≤ k2qh(q)

nh(n)
+

2k [qh(q)q′h(q′)]
1
2

nh(n)
+
q′h(q′)

nh(n)
, (2.43)

where q′ = n− (p+ q)

[
n

p+ q

]
≤ p+ q is the number of terms in ηk.

From the properties of the function h(n) seen in lemma (2.3.7) and the
requirements imposed on k, p, q, we have that:

k2qh(q)

nh(n)
∼ nqh(q)

p2h(n)
=

[( q
n

)β nqh(nq/n)

h(n)

]
n1+βq1−β

p2

n→∞−−−→ 0 (2.44)

by hypothesis (b). Similarly

k [qh(q)q′h(q′)]
1
2

nh(n)
=

[
kqh(q)

nh(n)

] 1
2
[
kq′h(q′)

nh(n)

] 1
2

≤

≤
[
k
( q
n

) 1
2

] 1
2

[
k

(
q′

n

) 1
2

] 1
2

n→∞−−−→ 0 (2.45)

and

q′h(q′)

nh(n)
≤
(
q′

n

) 1
2

n→∞−−−→ 0. (2.46)

Combining the conditions from (2.43) to (2.46), we see that

lim
n→∞

E|Z ′′n|2 = 0,

as required.

Lemma 2.3.10. Let the uniformly mixing sequence Xj satisfy

E|Xj|2+δ <∞
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for some δ > 0. Suppose that

σ2
n = E(X1 +X2 + . . .+Xn)2 n→∞−−−→∞.

Then, if δ < 1, there exists a constant a such that

E

∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣
2+δ

≤ aσ2+δ
n .

Proof. We denote constants with c1, c2, . . . .
Set

Sn =
n∑
j=1

Xj, Ŝn =
2n+k∑

j=n+k+1

Xj, an = E|Sn|2+δ.

We show that for any ε1 > 0, we can �nd a constant c1 such that

E|Sn + Ŝn|2+δ ≤ (2 + ε1)an + c1σ
2+δ. (2.47)

Infact:

E
∣∣∣Sn + Ŝn

∣∣∣2+δ

≤

≤E(S2
n + Ŝ2

n)
(
|Sn|δ + |Ŝn|δ

)2+δ

≤

≤E|Sn|2+δ + E|Ŝn|2+δ + 2E|Sn|1+δ|Ŝn|+ 2E|Sn||Ŝn|1+δ. (2.48)

Because of the stationarity, Sn and Ŝn have the same distributions, and

E|Sn|2+δ = E|Ŝn|2+δ = an.

By the theorem (2.2.3), with p =
2 + δ

1 + δ
,

E|Sn|1+δ|Ŝn| ≤ 2φ(k)
1+δ
2+δ an + E|Sn|1+δ|Ŝn|. (2.49)

Using the theorem (2.2.3) again, but with p = 2 + δ,

E|Sn||Ŝn|1+δ ≤ 2φ(k)
1

2+δ an + E|Sn||Ŝn|1+δ. (2.50)

By Ljapunov's inequality, according to which, given a random variable X,
for any positive real numbers such that 0 < s < t,

(E(Xs))
1
s ≤

(
E(X t)

) 1
t ,
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we obtain:
E|Sn| ≤ σn, E|Sn|1+δ ≤ σ1+δ

n . (2.51)

Inserting the inequalities (2.49), (2.50) and (2.51) in (2.48), we have

E|Sn + Ŝn|1+δ ≤
[
2 + 8φ(k)

1
2+δ

]
an + 4σ2+δ

n .

In order to prove (2.47) it su�ces to take k so large that

8φ(k)
1

2+δ ≤ ε1.

We now show that, for any ε2 > 0, there is a costant c2 for which

a2n ≤ (2 + ε2)an + c1σ
2+δ
n . (2.52)

Infact, using the Minkowski's inequality, according to which(
n∑
k=1

|xk + yk|p
) 1

p

≤

(
n∑
k=1

|xk|p
) 1

p

+

(
n∑
k=1

|yk|p
) 1

p

for any real or complex numbers x1, . . . , xn and y1, . . . , yn, for any 1 < p <∞,
and using the inequality (2.47), we have that for large n,

a2n =

=E

∣∣∣∣∣Sn +
n+k∑
j=n+1

Xj + Ŝn −
2n+k∑
j=2n+1

Xj

∣∣∣∣∣
2+δ

≤

≤

{[
E|Sn + Ŝn|2+δ

]1/(2+δ)

+
n+k∑
j=n+1

[
E|Xj|2+δ

]1/(2+δ)
+

2n+k∑
j=2n+1

[
E|Xj|2+δ

]1/(2+δ)

}2+δ

≤

≤
{[

(2 + ε1)an + c1σ
2+δ
]1/(2+δ)

+ 2ka
1/(2+δ)
1

}2+δ

≤

≤(1 + ε′)
[
(2 + ε1)an + c1σ

2+δ
]

=

=(1 + ε′)
[
(2 + ε1)an + (1 + ε′)c1σ

2+δ
]
,

where, since σn
n→∞−−−→∞,

ε′ =

[
2ka1

(2 + ε1)an + c1σ2+δ

]1/(2+δ)
n→∞−−−→ 0.

If we choose N so large that , for n ≥ N, with c′2 = 2c1 in place of c2. But
we can choose c2 so that (2.52) holds also for n > N ; hence (2.52) is proved.
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Because of (2.52), for any integer r,

σ2r ≤ (2 + ε)ra1 + c2

r∑
j=1

(2 + ε)j−1(σ2r−j)
2+δ ≤

≤ (2 + ε)ra1 + c2(σ2r−1)2+δγr,

where

γr = 1 +
2 + ε

21+ 1
2
δ

[
h(2r−2)

h(2r−1)

]1+ 1
2
δ

+ . . .+

(
2 + ε

21+ 1
2
δ

)r−1 [
1

h(2r−1)

]1+ 1
2
δ

.

We show that, for su�ciently small ε, γr is bounded, i.e. γr < c3.
The function h(n) is slowly varying so that, for any ε3 > 0, there exists N
such that, for n ≥ N ,

h(n)

h(2n)
≤ 1 + ε3.

For any integer l such that 2 ≤ l ≤ r − 1,

h(2r−1)

h(2r−1)
=

(
h(2r−2)

h(2r−1)
. . .

h(2r−s)

h(2r−s+1)

)(
h(2r−s+1)

h(2r−s)
. . .

h(2r−1)

h(2r−l+1)

)
.

Here we choose s so that 2r−s+1 ≤ N ≤ 2r−s, so that

h(2r−l)

h(2r−1)
≤ (1 + ε3)s−1c4 ≤ c4(1 + ε3)l−1.

If ε3 and ε are chosen so small that

(1 + ε3)(2 + ε)

2−1− 1
2
δ

> ρ < 1,

we obtain
γr ≤

c5

1− ρ
= c3.

Thus, for any choice of ε,

a2r ≤ (2 + ε)ra1 + c6(σ2r−1)2+δ =

= (σ2r)
2+δ

(
c6
h(2r−1)

2h(2r)
+ a1

(
2 + t

21+ 1
2
δ

)r
1

h(2r)

)
≤ c7(σ2r)

2+δ. (2.53)

Now let 2r ≤ n ≤ 2r+1, and write n in binary form:

n = v02r + v12r−1 + . . .+ vr, v0 = 1, vj = 0 or 1.
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We write Sn in the form:

Sn = (X1 + . . .+Xi1) + (Xi1+1 + . . .+Xi2) + . . .+ (Xir+1 + . . .+Xn),

where in the j-th parenthesis there are vj2
r−j terms.

Using Minkowski's inequality and (2.52), remembering that Xj is stationary,
we have:

an ≤

∣∣∣∣∣
r∑
j=0

{
E|X1 + . . .+Xvj2r−j |

2+δ
}1+ 1

2
δ

∣∣∣∣∣
2+δ

≤

≤ c7

(
r∑
j=0

σ2r−j

)2+δ

=

= c7σ
2+δ

(
r∑
j=0

σ2r−j

σn

)2+δ

.

But
r∑
j=0

σ2r−j

σn
=

r∑
j=0

2
1
2

(r−j)
√
n

(
h(2r−j)

h(2r)

h(2r)

h(n)

) 1
2

.

By lemma (2.3.6), we have that

sup
r

sup
2r≤n<2r+1

h(2r)

h(n)
<∞,

thus we have only to prove that

r∑
j=0

2−
1
2
j

(
h(2r−j)

h(2r)

) 1
2

(2.54)

is bounded. This is true because the j-th term is bounded by c8(ρ1)j for
some ρ1 < 1.
Thus the lemma is proved.

Lemma 2.3.11. Let the stationary sequence Xj be strongly mixing, with

∞∑
n=1

α(n) <∞.

Let Xj be bounded, i.e. P (|Xj| < c0) = 1, for some c0 ∈ R.
Then

E

(
n∑
j=1

Xj

)4

= o(n3). (2.55)
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Proof. We have

E

(
n∑
j=1

Xj

)4

=nE(X4
0 ) +

∑
i 6=j

E(X2
iX

2
j ) +

∑
i 6=j

E(X3
iXj)+

+
∑
i 6=j 6=k

E(X2
iXjXk) +

∑
i 6=j 6=k 6=l

E(XiXjXkXl). (2.56)

The number of terms in the second and in the third sums is O(n2), thus it
su�ces to estimate the fourth and the �fth. By theorem (2.2.1),∑

i 6=j 6=k

E(X2
iXjXk) = O

(∑
i<j<k

|E(X2
iXjXk)|

)
=

= O

(∑
i<j<k

c4
0α(k − j)

)
=

= O(n2),

and ∑
i 6=j 6=k 6=l

E(XiXjXkXl) = O

( ∑
i<j<k<l

|E(XiXjXkXl)|

)
=

= O

( ∑
i<j<k<l

c4
0 min(α(j − i), α(l − k))

)
=

= O

(
n2

n∑
j=1

jα(j)

)
.

But
n∑
j=1

jα(j) ≤
√
n

n∑
j≤
√
n

α(j) + n
n∑

j>
√
n

α(j) = o(n).

2.4 Central limit theorem for strongly mixing

sequences

Let (Xi)i∈N a stationary sequence with E(Xi) = 0 and E(X2
i ) <∞∀i ∈ N.

Set

Smn =
n+m∑
i=m

Xi
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and
σ2
n = E((Smn )2) = var(Smn ).

We shall say that the sequence satis�es the central limit theorem if

lim
n→∞

P

{
Smn
σn

< z

}
=

1√
2π

∫ z

−∞
e−

1
2
u2du = n(z),

where n(z) is the Gaussian probability density function.

Theorem 2.4.1. Let the sequence (Xi)i∈N satisfy the strong mixing condi-
tion with mixing coe�cient α(n). In order that their sum with square-root
normalization satis�es the central limit theorem it is necessary that:

(i) σ2
n = nh(n), where h(x) is a slowly varying function of the continuous

variable x > 0,

(ii) for any pair of sequences p = p(n), q = q(n) such that

(a) p→∞, q →∞, q = o(p), p = o(n) as n→∞,

(b) lim
n→∞

n1−βq1+β

p2
= 0, ∀β > 0,

(c) lim
n→∞

n

p
α(q) = 0.

and ∀ε > 0, the distribution function

F n(z) = P (X1 + . . .+Xn < z)

satis�es

lim
n→∞

n

pσ2
n

∫
|z|>εσn

z2dF p(z) = 0. (2.57)

Conversely, if (i) holds and if (2.57) is satis�ed for some choice of the func-
tions p, q satisfying the given conditions, the central limit theorem is satis�ed.

Proof. We �rst establish the necessity of (i). From theorem (2.3.1), it follows
that h(n) is slowly varying in its integral argument. Let the distribution
function

Fn(z) = P

(
Sn
σn

< z

)
converge to n(z) as n → ∞, where n(z) is the Gaussian probability density
function.
Then, for �xed N , ∫

|z|≤N
z2dFn(z)→

∫
|z|≤N

z2dn(z)
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so that ∫
|z|>N

z2dFn(z) =

=1−
∫
|z|≤N

z2dFn(z)
n→∞−−−→ 1−

∫
|z|≤N

z2dn(z) =

=

∫
|z|>N

z2dn(z) (2.58)

and

lim
N→∞

lim
n→∞

∫
|z|>N

z2dFn(z) = 0.

De�ne the variables

ξ =
n−1∑
j=0

Xj

and

η =

2n+p∑
j=n+1+p

Xj,

and observe that
E(ξ2) = E(η2) = σ2

n.

From the theorem (2.3.3) and from remark (2.3), we have only to show that
for each ε > 0, there exists p = p(ε) such that

|E(ξη)| ≤ εE(ξ2). (2.59)

Using the arguments of the theorem (2.2.2), it is easy to show that for any
N1 ∈ N,

|E(ξη)| ≤ N2
1α(p) + 6σn

(∫
|z>N1|

z2dP (ξ < z)

)1/2

.

Choosing N1 =
σ√
α(p)

, we have:

|E(ξη)| ≤ σ2
n

√
α(p) + 6σ2

n

(∫
|z|>(α(p))−1/4

z2dFn(z)

)1/2

. (2.60)

The strong mixing condition shows that, by suitable choice of p, we can make
|E(ξη)| smaller than εσ2

n for su�ciently large n. Thus we have proved the
necessity of the condition (i), which will hencefort be assumed.
Proceede with the remaining parts of the proof.
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We represent the sum Sn in the form

Sn =
k−1∑
i=0

ξi +
k∑
i=0

ηi = S ′n + S ′′n, (2.61)

where the variables ξi and ηi are de�ned by the following respective equations:

ξi =

(i+1)p+iq∑
j=ip+iq+1

Xj, 0 ≤ i ≤ k − 1

and

ηi =



(i+1)p+(i+1)q∑
j=(i+1)p+iq+1

Xj, 0 ≤ i ≤ k − 1

n∑
j=kp+kq+1

Xj, i = k.

Suppose that p and q satisfy (ii) and that k =

[
n

p+ q

]
.

Consider the decompositions

Zn =
Sn
σn

=
S ′n
σn

+
S ′′n
σn

= Z ′n + Z ′′n,

of the normalized sum Zn. Under the conditions imposed on p and q, we
show that S ′′n is negligibile, and that the ξi are nearly independent.
Firstly, we verify that the conditions imposed on p and q can indeed be
satis�ed. In order to do this we set:

λ(n) = max

{
α[n1/4]1/3,

1

log n

}
,

p = max

{[
α[n1/4]

λ(n)

]
,

[
n3/4

λ(n)

]}
,

q =
[
n1/4

]
.

Then all the conditions (a),(b),(c) are satis�ed:

(a) p→∞, q →∞, p = o(n), q = o(p) as n→∞,

(b)
n1−βq1+β

p2
= O

(
n−(1+3β)/4

)
= o(1), if β > 0,
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(c)
nα(q)

p
≤ α[n1/4]

λ(n)

α[n1/4]
→ 0, as n→∞.

By lemma (2.3.9), we claim that the variable Z ′′n is neglegible.
Thus it follows that the limiting distribution of Zn is the same as that of Z ′n.

Denote with ψn(t) the characteristic function of
ξ0

σn
and prove that

∣∣E (eitZn)− ψn(t)k
∣∣ n→∞−−−→ 0. (2.62)

The variable

exp

(
it

σn
(ξ0 + . . .+ ξk−2)

)
is measurable with respect to the σ-algebra F (k−1)p+(k−2)q

−∞ and the variable

exp

(
it

σn
(ξk−1)

)
is measurable with respect to the σ-algebra F∞(k−1)p+(k−1)q+1. By theorem

(2.2.1),∣∣∣∣∣E exp

[
it

σn

k−1∑
j=0

ξj

]
− E exp

[
it

σn

k−2∑
j=0

ξj

]
E exp

[
it

σn
ξk−1

]∣∣∣∣∣ ≤ 16α(q),

and similarly, for l ≤ k − 2,∣∣∣∣∣E exp

[
it

σn

l∑
j=0

ξj

]
− E exp

[
it

σn

l−1∑
j=0

ξj

]
E exp

[
it

σn
ξl

]∣∣∣∣∣ ≤ 16α(q).

Hence ∣∣E (eitZn)− ψn(t)k
∣∣ ≤ 16α(q),

which tends to zero by hypothesis (ii), and proves (2.62).
Now consider a collection of independent random variables

ξ′nj, n = 1, 2, . . . , j = 1, 2, . . . , k = k(n),

where ξ′nj has the same distribution as
ξ0

σn
.

Then (2.62) asserts that the limiting distribution of Z ′n is the same as that
of

ξ′n1 + ξ′n2 + . . .+ ξ′nk,
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which has characteristic function ψn(t)k.
This limiting distribution is the Gaussian distribution if and only if

0 = lim
n→∞

k∑
j=1

∫
|z|>ε

z2dP (ξ′nj < z) =

= lim
n→∞

k

∫
|z|>ε

z2dP

(
ξ0

σn
< z

)
.

But

k

∫
|z|>ε

z2dP

(
ξ0

σn
< z

)
=
k

σ2
n

∫
|z|>ε

z2dP (ξ0 < z) ∼

∼ n

σ2
np

∫
|z|>εσn

z2dF p(z).

Thus the theorem is proved.

Remark 2.4. We remark that the only part of the proof in which the necessary
condition (b) was used, was in the proof that E|Z ′′n|2 = 0.

Theorem 2.4.2. Let Xi be a strongly mixing sequence of random variables
such that E(Xi) = 0 and E(X2

i ) = σ2 <∞. Suppose that

var(Sn) = nh(n) as n→∞,

where h(n) is a slowly varying function such that as n→∞, c1 ≤ h(n) ≤ c2,
where c1 and c2 are constants. Then the sequence Xi satis�es the central
limit theorem if and only if

lim
M→∞

lim sup
n→∞

∫
|x|>M

z2dFn(z) = 0, (2.63)

where Fn(z) is the distribution function of the normalized sum

Zn =
1

σn

n∑
i=1

Xi.

Proof. Suppose that Fn(x) converges weakly to the Gaussian probability den-
sity function n(x). Then for �xed M ,∫

|x|≤M
x2dFn(x)

n→∞−−−→
∫
|x|≤M

x2dn(x).
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By de�nition of Zn, the variance of Fn is equal to one; this implies that∫
|x|>M

x2dFn(x)
n→∞−−−→

∫
|x|>M

x2dn(x),

so that (2.63) is a necessary condition.
Conversely, if (2.63) is satis�ed and σ2

n = nh(n), we have

k

σ2
n

∫
|z|>εσn

z2dP (Sp < z) =

=
kσ2

p

σ2
n

∫
|z|>εσn/σp

z2dFp(z) =

=
h(p)

h(n)

∫
|z|>εk(1+o(1))

z2dFp(z)
n→∞−−−→ 0,

since k →∞ and p→∞.

2.5 Su�cient conditions for the central limit

theorem

Theorem 2.5.1. Let the uniformly mixing sequence Xj satisfy

E|Xj|2+δ <∞

for some δ > 0. If

σ2
n = E(X1 +X2 + . . .+Xn)2 n→∞−−−→∞,

then Xj satis�es the central limit theorem.

Proof. We show that all the conditions of theorem (2.2.1) are satis�ed.
By theorem (2.3.3), it holds

σ2
n = nh(n),

so that the condition (i) is ful�lled.
By lemma (2.3.10), it exists a coonstant a > 0 such that it is veri�ed the
inequality

E

∣∣∣∣∣
n∑
j=1

Xj

∣∣∣∣∣
2+δ

≤ aσ2+δ
n .
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In order to complete the proof of the theorem, we have to prove that

lim
n→∞

n

pσ2
n

∫
|z|>εσn

z2dFp(z) = 0.

Using lemma (2.3.10) again,

n

pσ2
n

∫
|z|>εσn

z2dFp(z) ≤ n

pσ2+δ
n εδ

∫ ∞
−∞
|z|2+δdFp(z) ≤

≤
anσ2+δ

p

pσ2+δ
n εδ

=
a

εδ

(p
n

)δ (h(p)

h(n)

)1+ 1
2
δ
n→∞−−−→ 0, (2.64)

The result of the limit (2.64) is due to the theorem (2.3.3) and to the necessary
condition (a) of the theorem (2.2.1).

Theorem 2.5.2. Let the stationary sequence Xj statisfy the uniformly mix-
ing condition.
Let the mixing coe�cient φ(n) satisfy∑

n

√
φ(n) <∞.

Then the sum

σ2 = E(X2
0 ) + 2

∞∑
j=1

E(X0Xj) (2.65)

converges. Moreover, if σ 6= 0, as n→∞,

P

(
1

σ
√
n

n∑
j=1

Xj < z

)
→ 1

2π

∫ z

−∞
e−

u2

2 du. (2.66)

Proof. By theorem (2.2.3),

|R(j)| = |E(X0Xj)| ≤ 2φ(n)
1
2{E(X2

0 )E(X2
j )}

1
2 ,

whence the convergence of (2.65) follows.
Moreover,

σ2
n = P

(
n∑
j=1

X2
j

)
=

= nR(0) + 2
n∑
j=1

(n− j)R(j) = σ2n(1 + o(1)),
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so that, if σ 6= 0, σn → ∞ as n → ∞. We deduce the validity of (2.66) by
the theorem (2.5.1).
Since the sequence Xj is uniformly mixing, so is the sequence fN(Xj), de�ned
by

fN(x) =

{
x, as |x| ≤ N

0, as |x| > N

and with mixing coe�cient less or equal to φ(n). Clearly

E|fN(Xj)|3 <∞,

so that we can apply the theorem (2.5.1). Observe that as

lim
N→∞

E{fN(Xj)} = 0

and
lim
N→∞

E{fN(X0)fN(Xj)} = E{X0Xj}.

Thus, since σ 6= 0, it follows that, for large N ,

σ2(N) =E{fN(X0)− E{fN(X0)}}2+

+ 2
∞∑
j=1

E{fN(X0)− E{fN(X0)}} [fN(Xj)− E{fN(Xj)}] >

>
1

2
σ2 > 0.

For such N , as n→∞,

σ2
n(N) = E

{
∞∑
j=1

f(Xj)− E
∞∑
j=1

f(Xj)

}2

=

= nσ2(N)(1 + o(1)) >

>
1

2
nσ2(N)(1 + o(1))→∞

Thus all the conditions of the theorem (2.5.1) are satis�ed and consequently

lim
n→∞

P

{
1

σn(N)

n∑
j=1

[fN(Xj)− E{fN(Xj)}] < z

}
=

= lim
n→∞

P

{
1

σ(N)
√
n

n∑
j=1

[fN(Xj)− E{fN(Xj)}] < z

}
=

=n(z),



2.5 Su�cient conditions for the central limit theorem 55

where n(z) is the Gaussian probability density function.
Consider now the normalized sum

Zn =
1

σ
√
n

n∑
j=1

Xj = Z ′n + Z ′′n,

where

Z ′n =

n∑
j=1

[fN(Xj)− E{fN(Xj)}]

σ(N)
√
n

σ(N)

σ

and

Z ′′n =

n∑
j=1

[fN(Xj)− E{fN(Xj)}]

σ(N)
√
n

,

with fN(x) = x− fN(x).
We �rst estimate E(Z ′′n)2:

E(Z ′′n)2 =
1

σ2n
nE[fN(X0)− E{fN(X0)}]2+

+ 2
1

σ2n

n−1∑
j=1

(n− j)E[fN(X0)− E{fN(X0)}][fN(Xj)− E{fN(Xj)}].

By theorem (2.3.3), for j ≥ 0,∣∣E[fN(X0)− E{fN(X0)}][fN(Xj)− E{fN(Xj)}]
∣∣ ≤

≤2φ(j)
1
2E[fN(X0)− E{fN(X0)}]2 ≤

≤rNφ(j)
1
2 ,

where φ(0) = 1 and rN = 2E[fN(X0)]2.

Thus, since rN
N→∞−−−→ 0,

E(Z ′′n)2 ≤ rN
σ2

{
1 + 2

∞∑
j=1

φ(j)
1
2

}
N→∞−−−→ 0.

For a given ε > 0, choose n so that

E|Z ′′n| ≤ ε

and ∣∣∣∣1− σ(n)

σ

∣∣∣∣ ≤ ε.



56 2. Central limit theorem for interacting random variables

Then the characteristic function ψn(t) of Zn satis�es

|ψn(t)− e−
1
2
t2 | ≤

≤
∣∣∣E(exp(itZ ′n))− e−

1
2
t2
∣∣∣+ |E (exp(itZ ′n)(exp(itZ ′′n)− 1))| ≤

≤
∣∣∣∣exp

[
−σ

2(N)

σ2
· t

2

2

]
− e−

1
2
t2
∣∣∣∣+ E |exp(itZ ′′n)− 1|+

+

∣∣∣∣E(exp(itZ ′′n)− exp

[
−σ

2(N)

σ2
· t

2

2

]∣∣∣∣ ≤
≤1

2
t2
∣∣∣∣1− σ2(N)

σ2

∣∣∣∣+ tE|Z ′′n|+ o(1) ≤

≤εt2 + εt+ o(1).

Thus the theorem is proved.

We now turn to sequences which are strongly mixing without necessar-
ily being uniformly mixing. Naturally, stronger conditions are necessary to
ensure normal convergence.

Theorem 2.5.3. Let the stationary sequence Xj satisfy the strong mixing
condition with mixing coe�cient α(n).
Let E(Xj)

2+δ <∞ for some δ > 0. If

∞∑
n=1

α(n)
δ

2+δ <∞, (2.67)

then

σ2 = E(X2
0 ) + 2

∞∑
j=1

E(X0Xj) <∞ (2.68)

and, if σ 6= 0, as n→∞,

P

(
1

σ
√
n

n∑
j=1

Xj < z

)
→ n(z), (2.69)

where n(z) is the gaussian probability density function.

Before proving this theorem, it is convenient to deal with the case of
bouned variables, to which the general theorem can be reduced.

Theorem 2.5.4. Let the stationary sequence Xj be strongly mixing, with

∞∑
n=1

α(n) <∞.
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Let Xj be bounded, i.e. P (|Xj| < c0) = 1, for some c0 ∈ R.
Then

σ2 = E(X2
0 ) + 2

∞∑
j=1

E(X0Xj) <∞ (2.70)

and, if σ 6= 0, as n→∞,

P

(
1

σ
√
n

n∑
j=1

Xj < z

)
→ n(z). (2.71)

Proof. The convergence of the series (2.70) follows from the inequality

|E(X0Xj)| ≤ 4c2
0α(j),

as we have seen in the theorem (2.2.2). From this, as in the proof of the
theorem (2.5.2), it follows that

σ2
n = E

(
n∑
j=1

Xj

)2

= σ2n(1 + o(1)),

and that consequently

lim
n→∞

P

(
X1 + . . .+Xn

σ
√
n

< z

)
= lim

n→∞
P

(
X1 + . . .+Xn

σn
< z

)
,

so long as either limit exists. By lemma (2.3.11) we can estimate the moment

E

(
n∑
j=1

Xj

)4

using the inequality

E

(
n∑
j=1

Xj

)4

= n3γ(n) ≤ n3γ̃(n),

where γ(n)→ 0 and γ̃(n) = sup
j≥n

γ(j).

De�ne the variables ξi and ηi by the following respective equations:

ξi =

(i+1)p+iq∑
j=ip+iq+1

Xj, 0 ≤ i ≤ k − 1

and

ηi =



(i+1)p+(i+1)q∑
j=(i+1)p+iq+1

Xj, 0 ≤ i ≤ k − 1

n∑
j=kp+kq+1

Xj, i = k
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where

p = p(n) = min{p, p ≥
√
n| log γ̃(p)|},

q =

[
n

p

]
,

k =

[
n

p+ q

]
.

We show that p and q satisfy the necessary conditions (a) and (b) given by
the theorem (2.2.1).

Consider the condition (a).
Clearly, as n→∞, p→∞. By Ljapunov's inequality:

E

(
n∑
j=1

Xj

)4

≥

E( n∑
j=1

Xj

)2
2

= σ4n2(1 + o(1)),

hence

lim
n→∞

n ˜γ(n) > 0.

Thus for large n, yelds p <
√
n(log n)2, so that

p = o(n), q →∞.

Since p→∞, then q = o(n). Consider the condition (b).
Since α(n) is monotone and

∑
α(n) <∞, then

α(n) ≤ 2

n

n∑
j= 1

2
n

α(j) = o

(
1

n

)
,

so that
nα(q)

p
= o

(
n

pq

)
= o(1).

This condition is not in general satis�ed. However, as observed in remark
(2.3), this condition was only used to prove that

lim
n→∞

E

(
1

σn

k∑
i=0

ηi

)2

= 0, (2.72)
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and we can �nd some other way of proving this, the rest of the argument
will go trough unchanged. Hence, in order to prove (2.72), it su�ces to show
that

lim
n→∞

n

pσ2
n

∫
|z|>εσn

z2dP

{
n∑
j=1

Xj < z

}
= 0, ∀ε > 0. (2.73)

We have

E

(
1

σn

k∑
i=0

ηi

)2

=
1 + o(1)

σ2n

(
kE(η2

0) + 2
k−1∑
j=1

(k − j)E(η0η1)

)
+

+
1 + o(1)

σ2n

(
2
k−1∑
i=0

(k − j)E(ηiηk) + E(η2
k)

)
.

By theorem (2.2.1) yelds:

E(ηiηj) ≤ c2
0q

2α(p|i− j|), as i, j ≤ k − 1, (2.74)

E(ηiηk) ≤ c2
0q(p+ q)α(p(k − i)), as j = k. (2.75)

Moreover

E(η2
0) = σ2q(1 + o(1))

and

E(η2
k) = O(p+ q) = O(p),

so that
k

n
E(η2

0) = O

(
kq

n

)
= o(1) (2.76)

and
k

n
E(η2

k) = O
(p
n

)
= o(1). (2.77)

Since α(n) is monotone,

k−1∑
j=1

α(pj) ≤
k−1∑
j=1

1

p

jp−1∑
s=(j−1)p

α(s) ≤ 1

p

∞∑
j=0

α(j),
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so that it follows from the inequalities (2.74) and (2.75) that∣∣∣∣∣ 1n
k−1∑
j=1

(k − j)E(η0ηj)

∣∣∣∣∣ ≤
≤c2

0

kq2

n

k−1∑
j=1

α(pj) ≤

≤c2
0

kq2

np

∞∑
j=0

α(j) =

=O

(
n2

p4

)
= O

(
1

log4 γ̃(p)

)
n→∞−−−→ 0. (2.78)

Similarly ∣∣∣∣∣ 1n
k−1∑
i=0

E(ηiηk)

∣∣∣∣∣
=O

(
pq

n

k−1∑
j=1

α(pj)

)
= O

( q
n

)
o(1). (2.79)

Combining the results from (2.76) to (2.79), we obtain (2.72).
Finally, by lemma (2.3.11), as n→∞,

n

pσ2
n

∫
|z|>εσn

z2dP

(
p∑
j=1

Xj < z

)
≤

≤ n

εσ4
n

∫ ∞
−∞

z4dP

(
p∑
j=1

Xj < z

)
≤

≤np
3γ̃(p)

ε2σ4n2
(1 + o(1)) =

=O

(
γ̃(p) log3 1

γ̃(p)

)
= o(1).

Thus the theorem (2.5.4) is proved.

Now we extend the results to the theorem (2.5.3).

Proof. The convergence of the series (2.68) follows quickly from the theorem

(2.2.2) and the convergence of
∞∑
j=1

α(j)
δ

2+δ . Introduce the functions fN and
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fN as in the proof of the theorem (2.5.2) and consider the stationary sequence

fN(Xj). Since
∞∑
j=1

α(j) converges, this sequence satis�es all the conditions of

the theorem (2.2.1) and thus satis�es the central limit theorem.
Now set

Zn =
1

σ
√
n

n∑
j=1

Xj = Z ′n + Z ′′n,

where

Z ′n =

∑n
j=1[ψN(Xj)− E{ψN(Xj)}]

σ(N)
√
n

σ(N)

σ
,

Z ′′n =

∑n
j=1[fN(Xj)− E{fN(Xj)}]

σ(N)
√
n

.

Observe that

σ2(N) = E [ψN(X0)− E(ψN(X0))]2 +

+ 2
∞∑
j=1

E [ψN(X0)− E(ψN(X0))] [ψN(Xj)− E(ψN(Xj))] .

Using (2.6), we have

E|ZN |2 =
1

σ2

{
E
[
ψN(X0)− E(ψN(X0))

]} [
ψN(Xj)− E(ψN(Xj))

]
≤

≤A8E|ψN(X0)|2

σ2
+ C

∞∑
j=A+1

α(j)
δ

2+δ ,

where C is a constant and A ≤ n is a positive integer.
This implies that

lim
n→∞

E|ZN |2 = 0

uniformly in n.
The proof can be completed in the same way as that of theorem (2.5.2).





Chapter 3

The Mean-Field Model

In this chapter we are going to de�ne the more general case of the mean-
�eld model. After that we are going to compute the limit for large N of
the pressure function and of the distribution of the normalized sum of spins,
according to the results of Ellis, Newmann and Rosen. In the last section we
will prove that, in general, the distribution of the normalized sum of spins of
a model determined by the Hamiltonian de�ned by the coupling constant J
equal to one and the magnetic �eld h equal to zero doesn't converge toward
the Gaussian distribution.

3.1 The model

We consider a sistem composed by N particles that interact with each
other (this interaction is indipendent from their distance) and with an exter-
nal magnetic �eld. Such sistem is de�ned by the Hamiltonian

HN(σ) = − J

2N

N∑
i,j=1

σiσj − h
N∑
i=1

σi (3.1)

where:

• σi is the spin of the particle i,

• J > 0 is a parameter called coupling constant,

• h is the magnetic �eld.
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The distribution of a con�guration of spins σ = (σ1, . . . , σN) is given by the
measure of Boltmann-Gibbs :

PN,J,h{σ} =

e−HN (σ)

N∏
i=1

dρ(σi)

ZN(J, h)
(3.2)

where ZN(J, h) is the canonical partition function de�ned by:

ZN(J, h) =

∫
RN
e−HN (σ)

N∏
i=1

dρ(σi) (3.3)

and ρ is the distribution of a single spin in absence of interaction with other
spins.
We assume that ρ is a non degenerate Borel probability measure on R and
satis�es ∫

R
e
ax2

2
+bxdρ(x) <∞, ∀a, b ∈ R, a > 0. (3.4)

Remark 3.1. The measure

ρ(x) =
1

2
(δ(x− 1) + δ(x+ 1)) ,

where δ(x−x0) with x0 ∈ R denotes the unit point mass with support at x0,
veri�es the condition (3.4).

Proof. ∫
R
e
ax2

2
+bxdρ(x) = e

a
2

+b + e
a
2
−b = 2e

a
2 cosh(b) <∞

The model de�ned by the Hamiltonian (3.1) and the distribution (3.2)
with ρ = ρ̄ is called model of Curie Weiss.
Given a general observable ψ(σ) of interest, we can compute its expected
value respect to the distribution associated to the measure of Boltmann-
Gibbs:

〈ψ(σ)〉BG =

∫
RN
ψ(σ)e−HN (σ)

N∏
i=1

dρ(σi)∫
RN
e−HN (σ)

N∏
i=1

dρ(σi)



3.1 The model 65

which is called Gibbs state of the observable ψ(σ).
The main observable of the mean-�eld model is the magnetization mN(σ) of
a con�guration σ:

mN(σ) =
1

N

N∑
i=1

σi.

Remark 3.2. The Hamiltonian (3.1) can be written as function of the mag-
netization mN(σ):

HN(σ) = −N
[
J

2
m2
N(σ) + hmN(σ)

]
(3.5)

Proof. We start observing that

N∑
i,j=1

σiσj =
N∑
i=1

σi

N∑
j=1

σj =

(
N∑
i=1

σi

)2

Then the hamiltonian can be written as:

HN(σ) = − J

2N

N∑
i,j=1

σiσj − h
N∑
i=1

σi =

= − J

2N

(
N∑
i=1

σi

)2

− h
N∑
i=1

σi =

= − J

2N
N2

(
N∑
i=1

σi

)2

N2
− hN

N∑
i=1

σi

N
=

= −JN
2
mN(σ)2 − hNmN(σ) =

= −N
[
J

2
mN(σ)2 + hmN(σ)

]

Instead of computing directly the Gibbs state, it will be useful to consider
the pressure function associated to the model:

pN(J, h) =
1

N
ln(ZN(J, h)).
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Remark 3.3. This is possible because the Gibbs state of the magnetization
can be obtained di�erentiating pN(J, h) with respect to h:

∂pN
∂h

=
1

N

∫
RN

(
N∑
i=1

σi

)
e−HN (σ)

N∏
i=1

dρ(σi)

ZN(J, h)
=

=
1

N

∫
RN

(
N∑
i=1

σi

)
e−HN (σ)

N∏
i=1

dρ(σi)

ZN(J, h)
=

=
1

N

∫
RN
NmN(σ)e−HN (σ)

N∏
i=1

dρ(σi)∫
RN
e−HN (σ)

N∏
i=1

dρ(σi)

=

= 〈mN(σ)〉BG

3.2 Thermodynamic limit

3.2.1 Existence of the thermodynamic limit

After have de�ned the relevant obervable of the model, we have to check
that the model is well de�ned, i.e. the Hamiltonian must be an intensive
quantity of the number of spins: this property is veri�ed if the pressure func-
tion pN(J, h), associated to the model, admits limit as N →∞. We are now
going to show the existence of the thermodinamic limit of pN(J, h) associated
to the Hamiltonian (3.1).

Upper bound
To semplify the notations, we denote with m = mN(σ) the trivial extimate
of the magnetization, valid for all trial magnetizations M. Then the following
inequality holds:

m2 ≥ 2mM −M2.

We plug it in the de�nition of the partition function, so that we obtain:

ZN(J, h) =
∑
σ

e−HN (σ) =
∑
σ

e
JN
2
m2+hNm ≥

∑
σ

e−
JN
2
M2+JNmM+Nhm



3.2 Thermodynamic limit 67

The magnetization appears linearly and the sum factorizes in each spin; then,
applying the de�nition of the pressure, we obtain:

1

N
ln(ZN(J, h)) ≥ 1

N
ln

(∑
σ

e−
JN
2
M2+JNmM+Nhm

)
.

Calling

1

N
ln

(∑
σ

e−
JN
2
M2+NJmM+Nhm

)
= p(M,J, h)

we have the following inequality, which is true for every positive integers N
and M :

pN(J, h) =
1

N
ln(ZN(J, h)) ≥ p(M,J, h).

We observe that we can drive p to pN computing its superior extremum:

pN(J, h) ≥ sup
M

p(M,J, h).

Lower bound
Now we have to compute the opposite bound; we start observing that the
magnetization can only take N + 1 distinct values which belong to a set that
we called SN ; we can pick M ∈ SN .
Using the identity ∑

M

δm,M = 1,

we can split the partition function into sums over con�gurations with con-
stant magnetization in the following way:

ZN(J, h) =
∑
σ

δm,Me
−HN (σ).

When m = M , we exactly have (M −m)2 = 0, i.e. m2 = 2mM −M2.
Plugging the latter equality into ZN(J, h) and using the fact that

δm,M ≤ 1
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yelds

ZN(J, h) =
∑
M

∑
σ

δm,Me
−JN

2
M2+JNmM+Nhm ≤

≤
∑
M

∑
σ

e−
JN
2
M2+JNmM+Nhm ≤

≤
∑
M

e
N sup

M
p(M,J,h)

=

= e
N sup

M
p(M,J,h)∑

M

1 =

= e
N sup

M
p(M,J,h)

(N + 1)

The latter equality is due to the fact that |SN | = N + 1. Then we obtain:

1

N
ln(ZN(J, h)) ≤ sup

M
p(M,J, h) +

ln(N + 1)

N
.

In conclusion:

sup
M

p(M,J, h) ≤ pN(J, h) ≤ sup
M

p(M,J, h) +
ln(N + 1)

N
,

Then, observing that
ln(N + 1)

N

N→∞−−−→ 0,

we can say that the thermodynamic limit exists and it holds:

lim
N→∞

pN(J, h) = sup
M

p(M,J, h).

3.2.2 Exact solution of the thermodynamic limit

In this section we compute the exact solution of the thermodynamic limit.
Using the expression of the Hamiltonian (3.5), we can write the partition
function in the form

ZN(J, h) =

∫
R2

eN
J
2
m2+hmdνmN (m)

where dνmN (m) denotes the distribution of mN(σ) on

(
RN ,

N∏
i=1

ρ(σi)

)
.
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Remark 3.4. Since J > 0, the following identity holds:

exp

(
NJ

2
m2

)
=

(
NJ

2π

) 1
2
∫
R

exp

(
NJ

(
xm− 1

2
x2

))
dx (3.6)

Proof. We consider the r.h.s. of (3.6) and we apply a gaussian transform to
the integral: ∫

R
exp

(
NJ

(
xm− 1

2
x2

))
dx =

=

∫
R

exp

(
−NJ

2

(
x−m)2

))
exp

(
NJ

2
m2

)
dx =

= exp

(
NJ

2
m2

)∫
R

exp

(
−NJ

2

(
x−m)2

))
dx

Making the change of variable

y =

(
2

NJ

) 1
2

(x−m)

we can write: ∫
R

exp

(
NJ

(
xm− 1

2
x2

))
dx =

= exp

(
NJ

2
m2

)∫
R

(
2

NJ

) 1
2

exp(−y2)dy =

= exp

(
NJ

2
m2

)(
2

NJ

) 1
2

(π)
1
2

Then

exp

(
NJ

2
m2

)
=

(
NJ

2π

) 1
2
∫
R

exp

(
NJ

(
xm− 1

2
x2

))
dx

Using (3.6) we can write:

ZN(J, h) =

(
NJ

2π

) 1
2
∫ ∫

R2

exp

(
NJ

(
xm− 1

2
x2

)
+Nhm

)
dνmN (m)dx

=

(
NJ

2π

) 1
2
∫
R

exp

(
−NJ

2
x2

)∫
R

exp (Nm(Jx+ h) +Nhm) dνmN (m)dx
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where, thank to the de�nition of m:∫
R

exp (Nm(Jx+ h) +Nhm) dνmN (m) =

=

∫
RN

exp

(
N∑
i=1

σi(Jx+ h)

)
N∏
i=1

dρ(σi) =

=
N∏
i=1

∫
R

exp

(
N∑
i=1

σi(Jx+ h)

)
dρ(σi).

Thus, considering the function

f(x) = −J
2
x2 + ln

(∫
R

exp(s(Jx+ h))dρ(s)

)
(3.7)

and integrating over the spins, we obtain:

ZN(J, h) =

(
NJ

2π

) 1
2
∫
R

exp(Nf(x))dx.

Remark 3.5. The integral of the expression (3.7) is �nite ∀x ∈ R.

Proof. We show it using the condition (3.4) on the measure ρ.
In the integral ∫

R
exp

(
N∑
i=1

σi(Jx+ h)

)
dρ(σi)

we have the product of two exponentials with rispective arguments Jxs and
hs.

• If x > 0, we choose a = Jx and b = h, so that (3.4) becomes:∫
R
e
Jxs2

2
+hsdρ(s) <∞.

Now we can observe that

Jxs <
Jxs2

2
=⇒ s < 0 ∨ s > 2

and we can use it to obtain the inequality∫
R
eJxs+hsdρ(s) <

<

∫ 0

−∞
e
Jxs2

2
+hsdρ(s) +

∫ ∞
2

e
Jxs2

2
+hsdρ(s) +

∫ 2

0

eJxs+hsdρ(s) <

<2

∫
R
e
Jxs2

2
+hsdρ(s) +

∫ 2

0

eJxs+hsdρ(s) <∞.
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• If x < 0, we choose a = J and b = h, so that (3.4) becomes:∫
R
e
Js2

2
+hsdρ(s) <∞.

Now, in an analogous way, we can observe that

Jxs <
Js2

2
=⇒ s < 2x ∨ s > 0

and we can use it to obtain the inequality∫
R
eJxs+hsdρ(s) <

<

∫ 2x

−∞
e
Js2

2
+hsdρ(s) +

∫ ∞
0

e
Js2

2
+hsdρ(s) +

∫ 0

2x

eJxs+hsdρ(s) <

<2

∫
R
e
Js2

2
+hsdρ(s) +

∫ 0

2x

eJxs+hsdρ(s) <∞.

We can state the following:

Proposition 3.2.1. Let f(x) = −J
2
x2 + ln

(∫
R

exp(s(Jx+ h))dρ(s)

)
the

function de�ned in (3.7). Then:

1. f(x) is a real analytic function and lim
|x|→∞

f(x) = −∞;

2. f(x) admits a �nite number of global maximum points;

3. for any positive N ∈ N ∫
R

exp(Nf(x))dx <∞; (3.8)

4. if µ is a global maximum point of f(x),

lim
N→∞

1

N
ln

∫
R

exp(Nf(x))dx = f(µ). (3.9)
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Proof. 1. If we consider complex z and L > 0 we have:∣∣∣∣∫
R

exp(s(Jz + h))dρ(s)

∣∣∣∣ ≤
≤
∫
R
| exp(s(Jz + h))|dρ(s) =

=

∫
|s|≤L

exp(|s(Jz + h)|)dρ(s) +

∫
|s|>L

exp(|sJz|) exp(hs)dρ(s)

This expression has order o

(
exp

(
J |z|2

2

))
; infact, we can observe

that:

a. ∫
|s|≤L

exp(|s(Jz + h)|)dρ(s) ≤ ρ([−L,L]) exp(L|Jz + h|) (3.10)

because ρ([−L,L]) is the interval of integration and L is the maxi-
mum value taken by the variable s;

b. rembering that (|z| − |s|)2 = |z|2 − 2|sz|+ |s|2 ≥ 0, we have:∫
|s|>L

exp(|sJz|) exp(hs)dρ(s) ≤

≤
∫
|s|>L

exp

(
J

2
(s2 + |z|2)

)
exp(hs)dρ(s) =

= exp

(
J

2
(|z|2)

)∫
|s|>L

exp

(
J

2
s2

)
exp(hs)dρ(s) (3.11)

By the inequalities (3.10) and (3.11) and the condition (3.4) on the
measure ρ, we can say that the function f is real analytic and

lim
|x|→∞

f(x) = −∞.

2. To prove the second statement we take a sequence xl ∈ R such that

lim
l→∞

f(xl) = sup
x∈R

f(x) = L ≤ ∞.

Since lim
|x|→∞

f(x) = −∞, the sequence xl is bounded. Thus we can take

a subsequence xkl such that lim
l→∞

xkl = x0.

Hence, by continuity of f(x) we have

f(x0) = lim
l→∞

f(xkl) = sup
x∈R

f(x) = L.
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Morover, since lim
|x|→∞

f(x) = −∞, the point x0 and other possible global

maximum points must belong to a compact set. The analyticity of f(x)
ensures that, inside that set, the global maximum points are �nite in
number.

3. To prove the statement (3.8) we proceede by induction on N .
For N = 1 we have:∫
R2

exp(f(x))dx =

∫ ∫
R2

exp

(
−J

2
x2 + s(Jx+ h)

)
dρ(s)dx =

=

∫ ∫
R2

exp

(
−J

2
(x− s)2

)
exp

(
J

2
s2 + hs

)
dρ(s)dx =

=

(
2π

J

) 1
2
∫
R

exp

(
J

2
s2 + hs

)
dρ(s) (3.12)

The result (3.8) is proved for N = 1 because the condition (3.4) on the
measure ρ (with a = J and b = h) ensures that the integral on the
l.h.s. of (3.12) is �nite.
Now we suppose true the inductive hypotesis∫

R
exp((N − 1)f(x))dx <∞. (3.13)

De�ned F = max{f(x)|x ∈ R}, we have:∫
R

exp(Nf(x))dx = eF
∫
R

exp((N − 1)f(x))dx <∞

thank to the result of the second statement of this proposition and
(3.13).

4. To prove the statement (3.9) we write

IN =

∫
R

exp(N(f(x)− f(µ)))dx.

This allows us to write∫
R

exp(N(f(x))dx = eNf(µ)

∫
R

exp(N(f(x)− f(µ)))dx = eNf(µ)IN .

It holds f(x)−f(µ) ≤ 0 because µ is a maximum point for the function
f, so the integral IN is a decreasing function of N and in particular

IN ≤ I1, i.e. ln(IN) ≤ ln(I1)
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thank to the increasing monotonicity of the logarithm.
We can observe that:

ln

(∫
eNf(x)dx

)
= ln

(
eNf(µ)IN

)
= ln

(∫
R

exp(N(f(x))dx

)
≤

≤ ln
(
eNf(µ)I1

)
= Nf(µ) + ln(I1).

Hence, as N →∞, we obtain that

1

N
ln

(∫
eNf(x)dx

)
≤ 1

N
(Nf(µ) + ln(I1)) =

= f(µ) +
1

N
ln(I1) −→ f(µ). (3.14)

The function f(x) is continuous, so, given any ε > 0, there exists δε > 0
such that as |x− µ| < δε we have that f(x)− f(µ) > −ε.
Thus, integrating the positive function

eN(f(x)−f(µ))

over [µ− δ, µ+ δ], we have:

IN ≥
∫ µ+δ

µ−δ
exp(N(f(x)− f(µ)) >

>

∫ µ+δ

µ−δ
e−Nεdx = 2δεe

−Nε.

We can observe that:

ln

(∫
eNf(x)dx

)
= ln

(
eNf(µ)IN

)
= ln

(∫
R

exp(N(f(x))dx

)
≥

≥ ln
(
eNf(µ)2δεe

−Nε) = Nf(µ) + ln(2δε)−Nε.
(3.15)

Hence, as N →∞, we obtain that

1

N
ln

(∫
eNf(x)dx

)
≥ 1

N
(Nf(µ) + ln(2δε)−Nε) =

=f(µ) +
1

N
ln(2δε)− ε −→ f(µ)− ε.

Since ε is arbitrary, the statement (3.9) follows from inequalities (3.14)
and (3.15):

lim
N→∞

1

N
ln

∫
R

exp(Nf(x))dx = f(µ),

where µ is a global maximum point for the function f(x).
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Remark 3.6. The proposition (3.2.1) implies that in the thermodinamic limit

lim
N→∞

pN(J, h) = lim
N→∞

1

N
ln(ZN(J, h)) =

= lim
N→∞

1

N
ln

[(
NJ

2π

) 1
2
∫
R

exp(Nf(x))dx

]
=

= lim
N→∞

1

N

[
1

2
ln

(
NJ

2π

)
+ ln

(∫
R

exp(Nf(x))dx

)]
=

= lim
N→∞

[
1

2N
ln

(
NJ

2π

)
+

1

N
ln

(∫
R

exp(Nf(x))dx

)]
=

= max
x∈R

f(x).

The derivative of f(x) with respect to x vanishes as

x =

∫
R
s exp (s(Jx+ h)) dρ(s)∫

R
exp (s(Jx+ h)) dρ(s)

, (3.16)

infact:

∂f(x)

∂x
= −Jx+

J

∫
R
s exp (s(Jx+ h)) dρ(s)∫

R
exp (s(Jx+ h)) dρ(s)

= 0 ⇐⇒

x is determined by (3.16), condition satis�ed by every maximum point of f .

Remark 3.7. Let µ be a global maximum point of f . If we di�erentiate the
thermodynamic limit of pN with respect to h, we obtain µ, the magnetization
of the sistem in the thermodynamic limit.

∂

∂h

(
lim
N→∞

pN(J, h)
)

= −Jµ∂µ
∂h

+

(
Jµ

∂µ

∂h
+ 1

) ∫
R
s exp (s(Jx+ h)) dρ(s)∫

R
exp (s(Jx+ h)) dρ(s)

=

= −Jµ∂µ
∂h

+−Jµ∂µ
∂h

+ µ =

= µ
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3.3 Asymptotic behaviour of the sum of spins

After having de�ned the more general case of the mean-�eld model in
the third chapter and after having showed that the sum of N spins with
square-root normalization doesn't satisfy the hypothesis of the central limit
theorem for interacting random variables when the model is de�ned by J = 1
and h = 0 in the previous section, we are going to compute exactly the limit
for large N of the distribution of the normalized sum of spins.

3.3.1 Ellis, Newmann and Rosen's results

The study of the normalized sum of random variables and its asymptotic
behaviour is a central chapter in probability and statistical mechanics. The
central limit theorem ensures that, if those variables are independent, the sum
with square-root normalization converges toward a Gaussian distribution.
Spins whose interaction is described by the hamiltonian (3.1) and which have
distribution (3.2) are not indipendent random variables, so that the central
limit theorem can't help us to understand the behaviour of their sum

SN(σ) =
N∑
i=1

σi.

Ellis, Newmann and Rosen performed the generalization of the central limit
theorem to this type of random variables. They found that the behaviour
in the thermodynamic limit of the probability distribution of SN(σ) depends
on the number and on the type of the maximum points of the functional f
given by (3.7).

We can start clarifying the meaning of type of a maximum point.
Let µ1, . . . , µP the global maximum points of the function f(x) de�ned in
(3.7). For each p there exists a positive integer kp and a negative real num-
ber λp such that around µp we can write:

f(x) = f(µp) + λp
(x− µp)2kp

(2kp)!
+ o((x− µp)2kp).

The numbers kp and λp are called, respectively, the type and the strength of
the maximum point µp; we de�ne maximal type the number k∗, which is the
largest of the kp.

Remark 3.8. If a point µp has homogeneous type equal to 1, around µ we
have:

f(x) = f(µp) +
1

2
f ′′(µp)(x− µp)2 + o((x− µp)2).
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Hence, in this case λp = f ′′(µ).

De�ne the function

B(x, y) = f(x+ y)− f(y).

For each p = 1, . . . , P there exists δp > 0 su�ciently small such that for

|x| < δpN
1
2k as N →∞ we have:

NB

(
x

N
1
2k

;µp

)
=

λ

(2k)!
x2k + o(1)P2k(x)

NB

(
x

N
1
2k

;µp

)
≤ 1

2

λ

(2k)!
x2k + P2k+1(x)

(3.17)

Infact:

a.

NB

(
x

N
1
2k

;µp

)
= N

[
f

(
x

N
1
2k

+ µp

)
− f(µp)

]
=

= N

f(µp) + λp

(
x

N
1
2k

+ µp − µp
)2kp

(2kp)!
− f(µp)

 =

= λp
x2kp

(2kp)!
−→ λ

(2k)!
x2k + o(1)P2k(x) as N →∞

b.

NB

(
x

N
1
2k

;µp

)
−→ λ

(2k)!
x2k + o(1)P2k(x) =

=
1

2

λ

(2k)!
x2k +

1

2

λ

(2k)!
x2k + o(1)P2k(x) ≤

≤ 1

2

λ

(2k)!
x2k + P2k+1(x) as N →∞

where P2k(x) and P2k+1(x) are polynomial respectively of degree 2k and
2k + 1.
Normalizing SN(σ) by the total number of spins we obtain the magnetization:

SN(σ)

N
=

N∑
i=1

σi

N
= mN(σ).

Its behaviour in the thermodynamic limit is speci�ed by the following
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Theorem 3.3.1. Let µ1, . . . , µP the global maximum points of the function
f(x) de�ned in (3.7). Let k∗ the maximal type of the points. Let λ1, . . . , λP
the strengths of the maximum points.
Then, as N →∞,

mN(σ)
D−→

P∑
p=1

bpδ(x− µp)

P∑
p=1

bp

,

where bp = λ
− 1

2k∗
p .

Remark 3.9. We are now going to do some observations about the distribution
respect to the number of maximum points; this results are proved in [ENR80].

a. If f(x) admits only one global maximum point µ of maximal type, the
limiting distribution is a delta picked in µ; in other words, the variance
of the magnetization vanishes for large N .

b. If f(x) admits more global maximum points of maximal type, this result
holds only locally around each maximum point.

Thus it is important to determinate a suitable normalization of SN(σ) such
that in the thermodymanic limit it converges to a well de�ne random variable.

If f(x) has a unique maximum point, the problem is solved by the fol-
lowing

Theorem 3.3.2. Suppose that the function f(x) given by (3.7) has a unique
maximum point µ of type k and strength λ. Then

Sk(σ) =
SN(σ)−Nµ

N1− 1
2k

D−→


N
(

0,−
(

1

λ
+

1

J

))
if k = 1

exp

(
λ

(2k)!
x2k

)
if k > 1

where −
(

1

λ
+

1

J

)
> 0 for k = 1.

If f(x) has more than one maximum point, the problem is solved by the
following
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Theorem 3.3.3. Suppose that the function f(x) given by (3.7) has more
maximum points; let µ a nonunique maximum point of type k and strength λ.
Then there exists A > 0 such that for all a ∈ (0, A), if mN(σ) ∈ [µ−a, µ+a]
then

Sk(σ) =
SN(σ)−Nµ

N1− 1
2k

D−→


N
(

0,−
(

1

λ
+

1

J

))
if k = 1

exp

(
λ

(2k)!
x2k

)
if k > 1

where −
(

1

λ
+

1

J

)
> 0 for k = 1.

The result of theorem (3.3.3) is valid also for local maximum of the func-
tion f(x).

We have to give some results before proving the theorems.
First of all it is useful to de�ne the function

Φρ(x) =
1

J
ln

(∫
R

exp(s(Jx+ h))dρ(s)

)
. (3.18)

Remark 3.10. Φ′′ρx(x) > 0 ∀x ∈ R.

Proof. We start observing that

Φρ(x) =
1

J

[
−J

2
x2 + ln

(∫
R

exp(s(Jx+ h))

)
dρ(s)+

]
+

1

2
x2 =

=
1

J
f(x) +

1

2
x2. (3.19)

The �rst statement of proposition (3.2.1) ensures that the function Φρ(x) is
real analytic because it is sum of real analytic functions. Now, we consider
the second derivative.
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Firstly we compute the �rst derivative:

Φ′ρ(x) =
1

J
f ′(x) + x =

=
1

J

−Jx+ J

∫
R
s exp (s(Jx+ h)) dρ(s)∫

R
exp (s(Jx+ h)) dρ(s)

+ x =

= J

∫
R
s exp (s(Jx+ h)) dρ(s)∫

R
exp (s(Jx+ h)) dρ(s)

Now we compute the second derivative:

Φ′′ρ(x) =

J

(∫
R
s2 exp (s(Jx+ h)) dρ(s)

)(∫
R

exp (s(Jx+ h)) dρ(s))

)
(∫

R
exp (s(Jx+ h)) dρ(s)

)2 +

−
J

(∫
R
s exp (s(Jx+ h)) dρ(s)

)(∫
R
s exp (s(Jx+ h)) dρ(s)

)
(∫

R
exp (s(Jx+ h)) dρ(s)

)2 =

= J


∫
R
s2 exp (s(Jx+ h)) dρ(s)∫
R

exp (s(Jx+ h)) dρ(s)
−


∫
R
s exp (s(Jx+ h)) dρ(s)∫

R
exp (s(Jx+ h)) dρ(s)


2

We de�ne a variable Y whose distribution is

ρx(s) =
exp (s(Jx+ h)) dρ(s)∫
R

exp (s(Jx+ h)) dρ(s)
(3.20)

so that we can write

Φ′′ρ(x) = J

(∫
R
s2dρx(s)−

(∫
R
sdρx(s)

)2
)

=

= JV arρx(Y ).

Since ρ is a nondegenerate measure, by de�nition of variance of a random
variable, Φ′′ρx(x) > 0 ∀x ∈ R.
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The proofs of the theorems (3.3.1) and (3.3.2) also need the following
preliminary results:

Lemma 3.3.4. Suppose that for each N ∈ N, XN and YN are independent

random variables such that XN
D−→ ν, where ∀a ∈ R∫
eiaxdν(x) 6= 0.

Then

YN
D−→ µ ⇐⇒ XN + YN

D−→ ν ∗ µ,

where ν ∗ µ indicates the convolution of two distribution, that is:

ν ∗ µ =

∫ ∞
−∞

ν(x− t)µ(t)dt.

Proof. Weak convergence of measures is equivalent to pointwise convergence
of characteristic functions.
The characteristic function of a random variable identi�es its density, so we
can prove the lemma using characteristic functions. We de�ne with ψX(t)
and ψY (t) respectively the characteristic function of X and the characteristic
function of Y . It holds

ψX+Y (t) = ψX(t)ψY (t),

infact:

ψX+Y (t) = E[ei(X+Y )t] = E[eiXt]E[eiY t] = ψX(t)ψY (t).

YN
D−→ µ

⇐⇒ ψY (t) =

(∫
eibydν(y)

)
⇐⇒ ψX(t)ψY (t) =

(∫
eiaxdµ(x)

)(∫
eibydν(y)

)
=

=ψX+Y (t) =

∫
eicxd(ν ∗ µ)(x)

⇐⇒ XN + YN
D−→ ν ∗ µ
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Lemma 3.3.5. Suppose that the random variable W ∼ N
(

0,
1

J

)
is inde-

pendent of SN(σ) N ≥ 1. Then given γ ∈ R and m ∈ R, the distribution
of

W

N
1
2
−γ

+
SN(σ)−Nm

N1−γ

is given by

exp
(
Nf

( s

Nγ
+m

))
ds∫

R
exp

(
Nf

( s

Nγ
+m

))
ds

(3.21)

where the function f is given by (3.7).

Proof. Given θ ∈ R,

P

{
W

N
1
2
−γ

+
SN(σ)−Nm

N1−γ ≤ θ

}
= P

{√
NW + SN(σ) ∈ E

}
where E = (−∞, θN1−γ +Nm]. The distribution of

√
NW +SN(σ) is given

by the convolution of the Gaussian N
(

0,
N

J

)
with the distribution of SN(σ)

1

ZN(J, h)
exp

(
J

2N
s2 + hs

)
dνS(s)

where dνS(s) denotes the distribution of SN(σ) on

(
RN ,

N∏
i=1

ρ(σi)

)
.

Thus we have

P
{√

NW + SN(σ) ∈ E
}

=

=
1

ZN(J, h)

(
J

2πN

) 1
2
∫
E

exp

(
− J

2N
t2
)∫

R
exp

(
s

(
J

N
t+ h

))
dνS(s)dt

where ∫
R

exp

(
s

(
J

N
t+ h

))
dνS(s) =

=

∫
RN

exp

(
N∑
i=1

σi

(
J

N
t+ h

)) N∏
i=1

dρ(σi) =

=
N∏
i=1

∫
R

exp

(
N∑
i=1

σi

(
J

N
t+ h

))
dρ(σi).
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If we make the following change of variable

x =
t−Nm
N1−γ

and we integrate over the spins, we obtain:

P
{√

NW + SN(σ) ∈ E
}

=

=
1

ZN(J, h)

(
J

2πN

) 1
2
∫
E

exp

(
− J

2N
t2
)( N∏

i=1

∫
R

exp

(
N∑
i=1

σi

(
J

N
t+ h

))
dρ(σi)

)
dt =

=
1

ZN(J, h)

(
J

2πN

) 1
2

N1−γ
∫ θ

−∞
exp

(
− J

2N

(
xN1−γ +Nm

)2
)
×

×
N∏
i=1

(∫
R

exp

(
σi

(
J

N

(
xN1−γ +Nm

)
+ h

)))
dρ(σi)dx =

=
1

ZN(J, h)

(
J

2πN

) 1
2

N1−γ
∫ θ

−∞
exp

(
−J

2

( x

Nγ
+m

)2
)
×

×
N∏
i=1

(∫
R

exp
(
σi

(
J
( x

Nγ
+m

)
+ h
)))

dρ(σi)dx.

Observe that∫
R

exp

(
s

(
J

N
t+ h

))
dνS(s) =

N∏
i=1

∫
R

exp

(
σi

(
J

N
t+ h

))
dρ(σi).

Hence we obtain

P
{√

NW + SN(σ) ∈ E
}

=

=
1

ZN(J, h)

(
J

2πN

) 1
2

N1−γ
∫ θ

−∞
exp

[
N

(
−J

2

( x

Nγ
+m

)2
)]
×

× exp

[
N ln

(∫
R
es(J(

x
Nγ

+m)+h)dνS(s)

)]
dx =

=
1

ZN(J, h)

(
J

2πN

) 1
2

N1−γ×

×
∫ θ

−∞
exp

[
N

(
−J

2

( x

Nγ
+m

)2
)

+ ln

(∫
R

exp
(
s
(
J
( x

Nγ
+m

)
+ h
))

dνS(s)

)]
dx =

=
1

ZN(J, h)

(
JN1−2γ

2π

) 1
2
∫ θ

−∞
exp

[
Nf

( x

Nγ
+m

)]
dx. (3.22)
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Taking θ −→ ∞, the (3.22) gives an equation for ZN(J, h) which when
substitued back yelds the distribution (3.21). The integral in (3.21) gives
an equation for ZN(J, h) �nite by (3.8).

Remark 3.11. We remark that for γ < 1
2
, the random variable W does not

contribute to the limit of the distribution (3.21) as N −→∞.

Lemma 3.3.6. De�ned F = max{f(x)|x ∈ R}, let V be any closed (possibly
unbounded) subset of R which contains no global maxima of f(x).
Then there exists ε > 0 so that

e−NF
∫
V

eNf(x)dx = O(e−Nε). (3.23)

Proof. For hypothesis V contains no global maxima of f(x), thus:

sup
x∈V

f(x) ≤ sup
x∈R

f(x)− ε = F − ε.

Hence:

e−NF
∫
V

eNf(x)dx ≤ e−NF e(N−1) supx∈V f(x)

∫
V

ef(x)dx ≤

≤ e−NF e(N−1)(F−ε)
∫
V

ef(x)dx ≤

≤ e−NF e(N+1)(F−ε)
∫
R
ef(x)dx =

= e−NF eN(F−ε)
(
eF−ε

∫
R
ef(x)dx

)
=

by de�nition of f(x) in (3.7),

= e−Nε
(
eF−ε

∫
R

exp

(
−J

2
x2 + ln

(∫
R

exp(s(Jx+ h))dρ(s)

))
dx

)
=

= e−Nε
(
eF−ε

∫
R

exp

(
−J

2
x2

)(∫
R

exp(s(Jx+ h))dρ(s)

))
dx =

= e−Nε

(
eF−ε

(
2π

J

) 1
2
∫
R

exp

(
J

2
x2 + hx

)
dx

)
(3.24)

The condition (3.3) on the measure ρ (with a = J and (b = h)) assures that
the latter passage of (3.24) is O(e−Nε) as N −→∞.
This proved the (3.23).
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At last we can proceed with the proof of the theorem (3.3.1).

Proof. By de�nition mN(σ) =
SN(σ)

N
.

Thus, by lemmas (3.3.4) and (3.3.5), we know that

W

N
1
2
−γ

+
SN(σ)−Nm

N1−γ ∼
exp

(
Nf

( x

Nγ
+m

))
dx∫

R
exp

(
Nf

( x

Nγ
+m

))
dx

,

hence with γ = 0 and m = 0:

W

N
1
2

+
SN(σ)

N
∼ exp (Nf(x)) ds∫

R
exp (Nf(x)) dx

where W ∼ N
(

0,
1

J

)
. We have to prove that for any bounded continuous

function φ(x) ∫
R
eNf(x)φ(x)dx∫
R
eNf(x)dx

−→

P∑
p=1

φ(µp)bp

P∑
p=1

bp

. (3.25)

Consider δ1, . . . , δP such that the conditions expressed in (3.17) are satis�ed,

i.e. for |x| < δpN
1
2k as N →∞ we must have:
NB

(
x

N
1
2k

;µp

)
=

λ

(2k)!
x2k + o(1)P2k(x)

NB

(
x

N
1
2k

;µp

)
≤ 1

2

λ

(2k)!
x2k + P2k+1(x)

We choose δ = min{δp|p = 1, . . . , P}, decreasing it, if necessary, to assure
that

0 < δ < min{|µp − µq| : 1 ≤ p 6= q ≤ P}.

We denote by V the closet set

V = R−
P⋃
p=1

(µp − δ, µp + δ).
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By (3.3.6) there exists ε > 0 such that as N →∞

e−NF
∫
V

eNf(x)φ(x)dx = O(e−Nε). (3.26)

For each p = 1, . . . , P , making the change of variable

x = u+ µp,

we have

N
1

2k∗ e−NF
∫ µp+δ

µp−δ
eNf(x)φ(x)dx =

=N
1

2k∗ e−Nf(µp)

∫ µp+δ

µp−δ
eNf(x)φ(x)dx =

=N
1

2k∗

∫ δ

−δ
eNf(u+µp)e−Nf(µp)φ(u+ µp)du =

=N
1

2k∗

∫ δ

−δ
exp (NB(u, µp))φ(u+ µp)du.

Making the change of variable

w = uN
1

2k∗ ,

the latter equation becomes:

N
1

2k∗

∫
|w|<δN

1
2k∗

exp

(
NB

(
w

N
1

2k∗
, µp

))
φ

(
w

N
1

2k∗
+ µp

)
dw

N
1

2k∗
=

=

∫
|w|<δN

1
2k∗

exp

(
NB

(
w

N
1

2k∗
, µp

))
φ

(
w

N
1

2k∗
+ µp

)
dw.

Thus by (3.17) and the dominated convergence theorem we have:

lim
N→∞

N
1

2k∗ e−NF
∫ µp+δ

µp−δ
eNf(x)φ(x)dx =

= lim
N→∞

∫
|w|<δN

1
2k∗

exp

(
NB

(
w

N
1

2k∗
, µp

))
φ

(
w

N
1

2k∗
+ µp

)
dw =

=

∫
R

exp (NB(0, µp))φ(0 + µp)dw =

=φ(µp)

∫
R

exp

(
λp

(2k∗)!
w2k∗

)
dw (3.27)
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Since λp < 0, the integral (3.27) is �nite.
Making the change of variable

x = w(−λp)
1

2k∗

we obtain that:

lim
N→∞

N
1

2k∗ e−NF
∫ µp+δ

µp−δ
eNf(x)φ(x)dx =

=
φ(µp)

(−λp)
1

2k∗

∫
R

exp

(
− x2k∗

(2k∗)!

)
dx. (3.28)

By (3.26) and (3.28)

lim
N→∞

N
1

2k∗ e−NF
∫
R
eNf(x)φ(x)dx =

=
P∑
p=1

φ(µp)

(−λp)
1

2k∗

∫
R

exp

(
− x2k∗

(2k∗)!

)
dx. (3.29)

In a similar way, for the denominator we have:

lim
N→∞

N
1

2k∗ e−NF
∫
R
eNf(x)φ(x)dx =

=
P∑
p=1

1

(−λp)
1

2k∗

∫
R

exp

(
− x2k∗

(2k∗)!

)
dx. (3.30)

By (3.29) and (3.30) we have the statement (3.25):∫
R
eNf(x)φ(x)dx∫
R
eNf(x)dx

N→∞−−−→

P∑
p=1

φ(µp)

(−λp)
1

2k∗

∫
R

exp

(
− x2k∗

(2k∗)!

)
dx

P∑
p=1

1

(−λp)
1

2k∗

∫
R

exp

(
− x2k∗

(2k∗)!

)
dx

=

P∑
p=1

φ(µp)bp

P∑
p=1

bp

.

Finally we prove the theorem (3.3.2).

Proof. As in the proof of theorem (3.3.1), by lemmas (3.3.6) and (3.3.7) with

γ =
1

2k
and m = µ, we have:

W

N
1
2
− 1

2k

+
SN(σ)−Nµ

N1− 1
2k

∼
exp

(
Nf

(
x

N
1
2k

+ µ

))
dx∫

R
exp

(
Nf

(
x

N
1
2k

+ µ

))
dx
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where W ∼ N
(

0,
1

J

)
. If k > 1,

we have to prove that for any bounded continuous function φ(x) : R −→ R∫
R

exp

(
Nf

(
x

N
1
2k

+ µ

))
φ(x)dx∫

R
exp

(
Nf

(
x

N
1
2k

+ µ

))
dx

N→∞−−−→

∫
R

exp

(
λ

(2k)!
x2k

)
φ(x)dx∫

R
exp

(
λ

(2k)!
x2k

)
dx

.

(3.31)
We pick δ > 0 such that it satis�es the conditions (3.17).
By lemma (3.3.6) there exists ε > 0 so that

lim
N→∞

e−NF
∫
|x|≥δN

1
2k

exp

(
Nf

(
x

N
1
2k

+ µ

))
φ(x)dx = O(N

1
2k e−Nε) (3.32)

where F = max{f(x)|x ∈ R}.
On the other hand, as |x| < δN

1
2k

e−NF
∫
|x|<δN

1
2k

exp

(
Nf

(
x

N
1
2k

+ µ

))
φ(x)dx =

=e−N(F−f(µ))

∫
|x|<δN

1
2k

exp

(
Nf

(
x

N
1
2k

+ µ

)
−Nf(µ)

)
φ(x)dx =

=e−N(F−f(µ))

∫
|x|<δN

1
2k

exp

(
NB

(
x

N
1
2k

, µ

))
φ(x)dx

=

∫
|x|<δN

1
2k

exp

(
NB

(
x

N
1
2k

, µ

))
φ(x)dx

By (3.17) and the dominate convergence theorem we have that:

lim
N→∞

e−Nf(µ)

∫
|x|<δN

1
2k

exp

(
Nf

(
x

N
1
2k

+ µ

))
φ(x)dx =

= lim
N→∞

∫
|x|<δN

1
2k

exp

(
NB

(
x

N
1
2k

, µ

))
φ(x)dx =

=

∫
R

exp

(
λ

(2k)!
x2k

)
φ(x)dx (3.33)

where the integral of the r.h.s. is �nite because λ < 0.
By (3.32) and (3.33), the statement (3.31) follows for k > 1.
If k = 1,
we obtain in an analogous way that for any bounded continuous function
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φ : R→ R:∫
R

exp

(
Nf

(
x√
N
µ

))
φ(x)dx∫

R
exp

(
Nf

(
x√
N

+ µ

))
dx

N→∞−−−→

∫
R

exp

(
λ

2
x2

)
φ(x)dx∫

R
exp

(
λ

2
x2

)
dx

.

Both the random variables W and W + S1(σ) have Gaussian distribution:

• W ∼ N
(

0,
1

J

)
by hypothesis,

• W+S1(σ) ∼ N
(

0,−1

λ

)
by the convolution of the limiting distribution

of the random variables W and S1(σ).

Hence the random variable S1(σ) as N →∞ has to converge to a Gaussian

whose covariance is −
(

1

λ
+

1

J

)
.

Indicated with ψW (t), ψS1
and ψW+S1

respectively the characteristic func-

tions of W,S1 and their sum, the following inequality holds:

ψW+S1
= ψW (t)ψS1

(t).

We can write:

ψS1
= ψ(W+S1)−W (t) =

ψW+S1
(t)

ψW (t)
=
e−

x2

λ

e
x2

J

= e−( 1
λ

+ 1
J )x2

Remark 3.12. To complete the proof, we must check that

−
(

1

λ
+

1

J

)
= −1

λ
− 1

J
=
λ+ J

−λJ
> 0. (3.34)

When k = 1, λ = f ′′(µ) as we have seen before in remark (3.8).
The denominator is positive because J > 0 by hypothesis and f ′′(µ) < 0
because µ is a maximum point.
Now we consider the numerator. We have just computed the �rst derivative
of the function f(x), we are now going to compute the second derivative of
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the function g(x) = f(x) +
J

2
x2.

g′′(x) =

(∫
R
s2 exp (s(Jx+ h)) dρ(s)

)(∫
R

exp (s(Jx+ h)) dρ(s))

)
(∫

R
exp (s(Jx+ h)) dρ(s)

)2 +

−

(∫
R
s exp (s(Jx+ h)) dρ(s)

)(∫
R
s exp (s(Jx+ h)) dρ(s)

)
(∫

R
exp (s(Jx+ h)) dρ(s)

)2 =

=

∫
R
s2 exp (s(Jx+ h)) dρ(s)∫
R

exp (s(Jx+ h)) dρ(s)
−


∫
R
s exp (s(Jx+ h)) dρ(s)∫

R
exp (s(Jx+ h)) dρ(s)


2

We de�ne a variable Y whose distribution is

ρx(s) =
exp (s(Jx+ h)) dρ(s)∫
R

exp (s(Jx+ h)) dρ(s)

so that we can write

g′′(x) =

∫
R
s2dρx(s)−

(∫
R
sdρx(s)

)2

= V arρx(Y ) > 0 ∀x ∈ R

since ρ is a nondegenerate measure and by de�nition of variance of a random
variable. So at the numerator we have

λ+ J = f ′′(µ) + J = g′′(µ) > 0.

To prove theorem (3.3.3) it's useful to consider the Legendre transforma-
tion of the function φρ de�ned in (3.18):

φ∗ρ(y) = sup
x∈R
{xy − φρ(x)}. (3.35)

We claim that it's possible to de�ne the function φ∗ρ because φ′′ρ(x) > 0
∀x ∈ R.

Lemma 3.3.7. Let φ∗ρ the function de�ned in (3.35) and µ a maximum point
of the function f(x) given by (3.7). Then:
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1. There exists an open (possibily unbounded) interval I containing µ such
that φ∗ρis �nite, real analytic and convex (with (φ∗ρ)

′′(x) > 0) on I and
φ∗ρ = +∞ on IC.

2. Consider the random variable UN(σ) = mN(σ) − µ. Denote by νU
its distribution on (RN ,

∏N
i=1 ρµ(σi)) where ρµ is given by (3.20) with

x = µ. For any u > 0:

P{UN(σ) > u} ≤ exp
(
−NJ(φ∗ρ(µ+ u)− φ∗ρ(µ))− (φ∗ρ)

′(µ)u
)
. (3.36)

3. There exists a number u0 > 0 such that ∀u ∈ (0, u0)

(φ∗ρ)
′(µ+ u)− (φ∗ρ)

′(µ) = u+ ξ(u) ξ(u) > 0. (3.37)

Proof. 1. Since φ′′ρ(x) > 0 ∀x ∈ R, the function φ′ρ is strictly increasing
and hence admits inverse (φ′ρ). By (3.35) the function φ∗ρ is bounded
if and only if there is a point x0 ∈ R such that y = φ′ρ(x0): infact,
computing the �rst derivative of φ∗ρ respect to x, we �nd:

d

dx
(xy − φρ(x)) = y − φ′ρ(x) = 0 ⇐⇒ ∃ x0 ∈ R : y = φ′ρ(x0).

This condition is veri�ed when y belongs to the image of φ′ρ. In this
case we have:

φ∗ρ(y) = yx0 − φρ(x0)

(φ∗ρ)
′(y) =

d

dx
sup
x∈R
{xy − φρ(x)} = sup

x∈R
{y − φ′ρ(x)} =⇒

=⇒ y = φ′ρ(x) ⇐⇒ x = (φ′ρ)
−1(y) ⇐⇒ (φ∗ρ)

′(y) = (φ′ρ)
−1(y)

(φ∗ρ)
′′(y) =

d

dx
(φ′ρ)

−1(x) =
1

φ′′ρ(x0)

(3.38)

Thus φ∗ρ is real analytic and convex, in particular with (φ∗ρ)
′′(y) > 0.

By (3.19) and (3.16) we have φ′ρ(µ) =
1

J
f ′(µ)+µ = µ; hence µ is inside

the image of φ′ρ. On the other hand, for y in the complement of the
closure of the image of φ′ρ, we have φ

∗
ρ(y) = +∞. This shows that the

�rst sentence of the lemma is proved taken I equal to the image of φ′ρ
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2. Let ν be any measure on B. Choosing Jy+h > 0, by the monotonicity
of the exponential we have the equality:

P

{
N∑
i=1

xi > Nω

}
=

=P

{
exp

(
N∑
i=1

xiβ(Jy + h)

)
> exp (Nωβ(Jy + h))

}
.

Using the exponential Chebychev's inequality and the de�nition of ex-
pectation we can write:

P

{
N∑
i=1

xi > Nω

}
≤

≤E [exp (xi(Jy + h))]N

exp (Nω(Jy + h))
=

= exp (−Nω(Jy + h))
N∏
i=1

∫
R

exp (xi(Jy + h)) dν(xi) ≤

≤ exp

(
−Nhω −NJ

(
ωy − 1

J

∫
R

exp (xi(Jy + h)) dν(xi)

))
≤

≤ exp (−Nhω −NJ sup {ωy − φν(y)|Jy + h > 0})

where φν is given by (3.18) with ρ = ν and E[·] denotes the expectation
value with respect to the measure ρ. By convexity of the function φν ,

whenever ω >

∫
R
xdν(x), the superior value of {ωy − φν(y)|y ∈ R} is

reached for Jy + h > 0. This shows that:

P

{
N∑
i=1

xi > Nω

}
≤ exp (−Nhω −NJφ∗ν(ω))

whenever ω >

∫
R
xdν(x).

Since µ is a maximum point, of the function f(x), by the condition
(3.16) and the de�nition of the measure ρµ in (3.20) with x = µ, thus:

∫
R
xdρµ(x) =

∫
R
x exp (x(Jµ+ h)) dρ(x)∫

R
exp (x(Jµ+ h)) dρµ(x)

= µ < µ+ u.
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Thus

P{UN(σ) > u} = P{SN(σ) > N(µ+ u)} ≤

≤ exp
(
−Nh(µ+ u)−NJφ∗ρµ(µ+ u)

)
,

where by de�nition of φρ and φ
∗
ρ:

φ∗ρµ(µ+ u) = sup
y∈R

{
(µ+ u)y − 1

J
ln

∫
R

exp (s(Jy + h)) dρµ(s)

}
.

Adding and subtracting the term µ+
h

J
, the last expression becomes:

= sup
y∈R

{
(µ+ u)

(
y + µ+

h

J

)
− 1

J
ln

∫
R

exp

(
s

(
J

(
y + µ+

h

J

)
+ h

))
dρµ(s)

}
+

+ sup
y∈R

{
−(µ+ u)

(
µ+

h

J

)
+

1

J
ln

∫
R

exp (s (Jµ+ h)) dρµ(s)

}
=

= sup
y∈R

{
(µ+ u)

(
y + µ+

h

J

)
− φρ

(
y + µ+

h

J

)}
+

− sup
y∈R

{
(µ+ u)

(
µ+

h

J

)
− φρ

(
µ+

h

J

)}
=

=φ∗ρ(µ+ u)− µ2 − µu− h

J
(µ+ u) + φρ(µ).

Since (φ′ρ)
−1(µ) = µ, by (3.38) we have:{

φ∗ρ(µ) = µ2 − φρ(µ)

(φ∗ρ)
′(µ) = µ.

Thus

P{UN(σ) > u} ≤ exp(−Nh(µ+ u)−NJ(φ∗ρ(µ+ u)− φ∗ρ(µ)+

− (φ∗ρ)
′(µ)u− h

J
(µ+ u)) =

= exp(−NJ
(
φ∗ρ(µ+ u)− φ∗ρ(µ)− (φ∗ρ)

′(µ)u
)

(3.39)

This proves the statement (3.36).

3. Since µ is a maximum point of f(x), there exists u0 > 0 such that
x > (φρ)

′(x) as x ∈ (µ, µ+ u0). Thus:

(φ∗ρ)
′(µ+ u) > µ+ u
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is true for any u ∈ (0, u0). Since (φ∗ρ)
′(µ) = µ, the statement (3.37) is

proved.

Lemma 3.3.8 (Transfer Principle). Let νU be the distribution of the random

variable UN(σ) = mN(σ) − µ on
(
RN ,

∏N
i=1 dρµ(σi)

)
. There exists B̂ > 0

only depending on ρ such that for each B ∈ (0, B̂) and for each a ∈ (0, B
2

)

and each r ∈ R, there exists δ = δ(a,B) > 0 such that as N →∞:∫
R

exp

(
irNγw − NJ

2
w2

)∫
|u|≤a

exp(NJuw)dνU(u)dw =

=

∫
|w|≤B

exp

(
irNγw − NJ

2
w2

)∫
R

exp(NJuw)dνU(u)dw +O(e−Nδ).

Proof. We shall �nd B̂ > 0 such that for each B ∈ (0, B̂) and each a ∈ (0, B
2

),

there exists δ = δ(a,B) > 0 such that as N −→∞∫
|w|>B

exp

(
−NJ

2
w2

)∫
|u|≤a

exp(NJuw)dνU(u)dw = O(e−Nδ) (3.40)

and∫
|w|≤B

exp

(
−NJ

2
w2

)∫
|u|>a

exp(NJuw)dνU(u)dw = O(e−Nδ). (3.41)

We start by equality (3.40).
For any B > 0 and a ∈ (0, B

2
) we have:∫

|w|>B
exp

(
−NJ

2
w2

)∫
|u|≤a

exp(NJuw)dνU(u)dw ≤

≤2

∫ ∞
B

exp

(
−NJ

(
w2

2
− aw

))
dw ≤

≤2

∫ ∞
B

exp

(
−NJw

(
B

2
− a
))

dw (3.42)

since we can use a as upper bound for u and B as lower bound for B. As
N →∞, the latter integral (3.42) is O(e−Nδ1), with δ1 = B(B

2
− a); thus the

equality (3.40) is proved.
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Now we proceede with the equality (3.41).
In the proof of the identity we exploit the following result:

E
[
Y I{a≤Y≤b}

]
≤ aP (Y ≥ a) +

∫ b

a

P (Y ≥ t)dt (3.43)

where:

• Y is a random variable whose distribution is given by ρY

• E[·] denotes the expectation value with respect to the distribution ρY

• I{a≤Y≤b} is the indicator function of the set {a ≤ Y ≤ b}.

The inequality (3.43) is obtained integrating by parts the l.h.s. of the follow-
ing: ∫ b

a

P (Y ≥ t)dt = bP (Y ≥ b)− aP (Y ≥ a)−
∫ b

a

tP (Y ≥ t)′dt =

= bP (Y ≥ b)− aP (Y ≥ a) +

∫ b

a

tρY (t)dt =

= bP (Y ≥ b)− aP (Y ≥ a) + E
[
Y I{a≤Y≤b}

]
;

then

E
[
Y I{a≤Y≤b}

]
= −bP (Y ≥ b) + aP (Y ≥ a) +

∫ b

a

P (Y ≥ t)dt ≤

≤ aP (Y ≥ a) +

∫ b

a

P (Y ≥ t)dt

The l.h.s. of the equality (3.41) is upper bounded by

2B sup
|w|≤B

∫
|u|>a

exp

(
−NJ

(
w2

2
− uw

))
dνU(u). (3.44)

The integral in (3.44) breaks up into one over (a,+∞) and another over
(−∞, a). For the �rst, using (3.43), we obtain:

sup
|w|≤B

∫ +∞

a

exp

(
−NJ

(
w2

2
− uw

))
dνU(u) ≤

≤ sup
|w|≤B

exp

(
−NJ

(
w2

2
− wa

))
P{UN(σ) > a}+

+JNB sup
|w|≤B

∫ +∞

a

exp

(
−NJ

(
w2

2
− uw

))
P{UN(σ) > u}du (3.45)
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By (3.36) we can bound P{UN(σ) > u}, where u ≥ a with

P{UN(σ) > u} ≤ exp(−NJ
(
φ∗ρ(µ+ u)− φ∗ρ(µ)− (φ∗ρ)

′(µ)u
)
.

In particular for u ≥ a, for the third statement of the lemma (3.3.7), it holds:

φ∗ρ(µ+ u)− φ∗ρ(µ)− (φ∗ρ)
′(µ)u ≥

{
u2 + θ1 for a ≤ u ≤ u0

uθ2 for u > u0

(3.46)

where θ1 =

∫ a

0

ξ(t)dt > 0 and θ2 =
ξ
(
u0
2

)
2

.

We consider an interval I such that lemma (3.3.7) is veri�ed.

For all µ+ u ∈ IC , the (3.46) holds since φ∗ρ(µ+ u) =∞.

For µ+ u ∈ I, if a ≤ u ≤ u0, by the fundamental theorem of calculus and by
(3.37) we have:

φ∗ρ(µ+ u)− φ∗ρ(µ)− (φ∗ρ)
′(µ)u =

∫ u

0

[
(φ∗ρ)

′(µ+ t)− (φ∗ρ)
′(µ)

]
dt =

=

∫ u

0

[t+ ξ(t)] dt;

integrating this expression we obtain:

φ∗ρ(µ+ u)− φ∗ρ(µ)− (φ∗ρ)
′(µ)u =

u2

2
+

∫ u

0

ξ(t)dt ≥ u2

2
+ θ1.

This proves the �rst line of (3.46).

If u > u0, for
u0

2
≤ t ≤ u, since φ∗ρ is monotonically increasing, we have:

(φ∗ρ)
′(µ+ t)− (φ∗ρ)

′(µ) ≥ (φ∗ρ)
′
(
µ+

u0

2

)
− (φ∗ρ)

′(µ) =

=
u0

2
+ ξ

(u0

2

)
≥

≥ ξ
(u0

2

)
.

Thus, if u ≥ u0∫ u

0

[
(φ∗ρ)

′(µ+ t)− (φ∗ρ)
′(µ)

]
dt ≥

∫ u

u0/2

[
(φ∗ρ)

′(µ+ t)− (φ∗ρ)
′(µ)

]
dt ≥

≥
(
u− u0

2

)
ξ
(u0

2

)
≥

≥ uθ2.
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This proves the second line of (3.46).
Choose B̂ such that 0 < B̂ < θ2, for any B ∈ (0, B̂). The integral in (3.45)
breaks up into one over (a, u0) and another over (u0,+∞). Using (3.36) and
(3.46) we have:

JNB sup
|w|≤B

∫ +∞

a

exp

(
−NJ

(
w2

2
− uw

))
P{UN(σ) > u}du ≤

≤JNB sup
|w|≤B

∫ u0

a

exp

(
−NJ

(
w2

2
− uw +

u2

2
+ θ1

))
du+

+ JNB sup
|w|≤B

∫ +∞

u0

exp

(
−NJ

(
w2

2
− uw + θ2

))
du.

Since ∫ u0

a

exp

(
−NJ

(
w2

2
− uw +

u2

2
+ θ1

))
du =

=e−NJθ1
∫ u0

a

exp

(
−NJ

2

(
w2 − 2uw + u2

))
du =

=e−NJθ1
∫ u0

a

exp

(
−NJ

2
(w − u)2

)
du

and

∫ +∞

u0

exp

(
−N

(
J

2
w2 − Juw + Juθ2

))
du =

exp

(
−NJ

(
w2

2
+ u0(θ2 − w)

))
NJ(θ2 − w)

.

We obtain:

JNB sup
|w|≤B

∫ +∞

a

exp

(
−NJ

(
w2

2
− uw

))
P{UN(σ) > u}du =

=O
(
Ne−Nθ1

)
+O

(
e−Nu0(θ2−B)

)
.

Thus the last line of (3.45) is O
(
Ne−Nδ2

)
where δ2 = min

{
θ1
2
, u0(θ2 −B)

}
.

Concerning the term of (3.45) involving P{UN(σ) > a} we have

sup
|w|≤B

exp

(
−NJ

(
w2

2
− wa

))
P{UN(σ) > a} ≤

≤ sup
|w|≤B

exp

(
−NJ

(
w2

2
− wa+

a2

2
+ θ1

))
P{UN(σ) > a} = O

(
e−Nθ1

)
.

The integral over (−∞, a) is handled in the same way. Thus we have proved
identities (3.40) and (3.41) with δ = min{δ1, δ2}.
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Now we can prove the theorem (3.3.3).

Proof. If k > 1, to prove the statement, we must �nd A > 0 such that for
each r ∈ R and any a ∈ (0, A) when the magnetization mN(σ) is inside
[µ − a, µ + a], the Gibbs value of the characteristic function of the random
variable Sk(σ):

〈
eirSk(σ)

∣∣∣|mN(σ)− µ| ≤ a
〉
BG

=

∫
|mN (σ)−µ|≤a

eirSk(σ)e−HN (σ)

N∏
i=1

dρ(σi)∫
|mN (σ)−µ|≤a

e−HN (σ)

N∏
i=1

dρ(σi)

(3.47)
tends as N −→∞ to ∫

R
exp(irs) exp

(
λ

(2k)!
s2k

)
ds∫

R
exp

(
λ

(2k)!
s2k

)
ds

. (3.48)

De�ning

H̃N(σ) = −J
2

(
SN(σ)−Nµ√

N

)2

we can write (3.47) as

〈
eirSk(σ)

∣∣∣|mN(σ)− µ| ≤ a
〉
BG

=

∫
|mN (σ)−µ|≤a

eirSk(σ)e−H̃N (σ)

N∏
i=1

dρµ(σi)∫
|mN (σ)−µ|≤a

e−H̃N (σ)

N∏
i=1

dρµ(σi)

where ρµ is the function de�ned by (3.20) with x = µ.
Consider the variable

UN(σ) =
SN(σ)−Nµ

N

and let νU be its distribution on
(
RN ,

∏N
i=1 dρµ(σi)

)
. Making the change of

variable, since

Sk(σ) =
SN(σ)−Nµ

N1− 1
2k

= UN(σ)N
1
2k = UN(σ)Nγ,
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we can write:

〈
eirSk(σ)

∣∣∣|mN(σ)− µ| ≤ a
〉
BG

=

∫
u≤a

exp(irNγu) exp

(
NJ

2
u2

)
dνU(u)

N∏
i=1

dρ(σi)∫
u≤a

e−HN (σ)

N∏
i=1

dρ(σi)

.

(3.49)
By identity (3.6), we have that

exp

(
NJ

2
u2

)
=

(√
NJ

2π

)∫
R

exp

(
−NJ

2
x2 +NJxu

)
dx;

considering m = u and after the simpli�cation of the term

√
NJ

2π
, the r.h.s.

of (3.49) becomes∫
|u|≤a

exp(irNγu)

∫
R

exp

(
−NJ

2
x2 +NJxu

)
dνU(u)dx∫

{|u|≤a}×R
exp

(
−NJ

2
x2 +NJxu

)
dνU(u)dx

. (3.50)

Making the change of variable

w = x+
ir

JN1−γ , (3.51)

the (3.50) becomes:

exp

(
r2

2JN1−2γ

)∫
R

exp

(
irNγw − NJ

2
w2

)∫
|u|≤a

exp (NJwu) dνU(u)dw∫
R

exp

(
NJ

2
w2

)∫
|u|≤a

exp (NJwu) dνU(u)dw

.

(3.52)

The change of variable (3.51) is justi�ed by the analiticity of the integrand
in (3.52) as function of w complex and the rapid decrease of this integrand
to 0 as |Re(w)→∞| and |Im(w)| ≤ |r|Nγ. Since k > 1, we have that

exp

(
r2

2JN1−2γ

)
→ 1 as N →∞,
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hence we can neglect this term for the rest of the proof.
Using the Transfer principle 3.1.8 we can �nd B̂ > 0 such that (3.53) can
be written as

exp

(
r2

2JN1−2γ

)∫
|w|≤B̂

exp

(
irNγw − NJ

2
w2

)∫
R

exp (NJwu) dνU(u)dw∫
|w|≤B̂

exp

(
NJ

2
w2

)∫
R

exp (NJwu) dνU(u)dw

+

+O(e−Nδ). (3.53)

Making the change of variable s = Nγw and picking B = min{δ, B̂}, where
δ is taken such that the conditions (3.17) are veri�ed, we have for (3.53):

exp

(
r2

2JN1−2γ

)∫
|s|≤B̂Nγ

exp

(
irs− JN1−2γ s

2

2

)∫
R

exp
(
JN1−γus

)
dνU(u)ds∫

|s|≤B̂Nγ

exp

(
−JN1−2γ s

2

2

)∫
R

exp
(
JN1−γus

)
dνU(u)ds

+

+O(e−Nδ). (3.54)

We remember that

UN(σ) =
SN(σ)−Nµ

N
;

hence we can write:∫
R

exp
(
JN1−γus

)
dνU(u) =

=

∫
RN

exp

(
J

Nγ
s(SN(σ)−Nµ)

) N∏
i=1

dρ(σi) =

=

∫
RN

exp

(
J

Nγ
s(SN(σ)−Nµ)

)
exp (SN(σ)(Jµ+ h))

N∏
i=1

dρ(σi)∫
RN

exp (SN(σ)(Jµ+ h))
N∏
i=1

dρ(σi)

=

=

∫
RN

exp
[
SN(σ)

(
J
( s

Nγ
+ µ
)

+ h
)] N∏

i=1

dρ(σi)∫
RN

exp
(
NJµ

s

Nγ

) N∏
i=1

dρ(σi)

∫
RN

exp (SN(σ)(Jµ+ h))
N∏
i=1

dρ(σi)

=

= exp
(
NJ

(
φ
(
µ+

s

Nγ

)
− φ(µ)− µ s

Nγ

))
.
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The latter equality is obtained as follows. We rememeber the de�nition of
φ(x):

φ(x) =
1

J
ln

∫
R

exp (s(Jµ+ h)) dρ(s).

Thus we have:

• ∫
RN

exp
[
SN(σ)

(
J
( s

Nγ
+ µ
)

+ h
)] N∏

i=1

dρ(σi) =

= exp

(
NJ

(
1

J
ln

∫
R

exp
[
s
(
J
( s

Nγ
+ µ
)

+ h
)]
dρ(s)

))
=

= exp
(
NJφ

( s

Nγ
+ µ
))

• ∫
RN

exp
(
NJµ

s

Nγ

) N∏
i=1

dρ(σi) = exp

(
NJµ

Nγ

)∫
RN
s

N∏
i=1

dρ(σi) = exp

(
NJµs

Nγ

)
• ∫

RN
exp (SN(σ)(Jµ+ h))

N∏
i=1

dρ(σi) =

= exp

(
NJ

(
1

J
ln

∫
R

exp [s (Jµ+ h)] dρ(s)

))
=

= exp (NJφ(µ))

Thus:

exp

(
−JN1−2γ s

2

2

)∫
R

exp(JN1−γus)dνU(u) =

= exp

(
NJ

(
− s2

2N2γ
+ φ

(
µ+

s

Nγ

)
− φ(µ)− µ s

Nγ

))
=

by the de�nition of the function φ(x):

= exp
[
N
(
f
(
µ+

s

Nγ

)
− f(µ)

)]
=

by the de�nition of the function NB(x, µ):

= exp
(
NB

( s

Nγ
, µ
))

.
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By condition expressed in (3.17) and the dominated convergence theorem the
statement follows.
If k = 1 in an analogous way we obtain that

S1(σ) ∼ N
(

0,−
(

1

λ
+

1

J

))

(as for the theorem (3.3.2) we can show that −
(

1

λ
+

1

J

)
> 0).

Thus we have that:

Sk(σ) =
SN(σ)−Nµ

N1− 1
2k

D−→


N
(

0,−
(

1

λ
+

1

J

))
if k = 1

exp

(
λ

(2k)!
x2k

)
if k > 1

3.3.2 Example: the Curie-Weiss model

Now we describe the Curie-Weiss model, that is de�ned by Hamiltonian
(3.1) and distribution (3.2) where ρ is given by

ρ(x) =
1

2
(δ(x− 1) + δ(x+ 1)) .

For further arguments related to this model see [Ell05].
The de�nition of ρ implies that the space of all con�gurations is

ΩN = {−1,+1}N .

The function f given by (3.7) becomes

f(x) = −J
2
x2 + ln cosh(Jx+ h) (3.55)

whose estremality condition is given by the so called mean-�eld equation

µ = tanh(Jµ+ h). (3.56)

The solutions of this equations are the intersections between the hyperbolic
tangent y = tanh(Jµ+ h) and the line y = µ.
As h 6= 0, for any positive value of J , the equation (3.56) can admit one
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solution (in this case the point is the unique maximum of the function f)
or more (in this second case only one of them is a maximum point of the
function f). In both the cases the maximum µh has the same sign as the
�eld h and it holds µh 6= 0.
On the other hand, as h = 0, the number of solutions of equations (3.56)
depends on the slope J of the the hyperbolic tangent.

a. if J ≤ 1, there is a unique solution, the origin, which is the maximum
point of the function f .

b. if J > 1, the equation (3.56) admits other two solutions ±µ0.

To determinate the type and the strength of the maximum points of f as
parameters J and h, we compute the even derivatives of f in the points until
we obtain a value di�erent from 0.

f ′(x) =− Jx+ J tanh(Jx+ h)

f ′′(x) =− J + J2(1− tanh2(Jx+ h)) = −J(1− J(1− tanh2(Jx+ h)))

f ′′′(x) =− 2J3 tanh(Jx+ h)(1− tanh2(Jx+ h))

f (iv)(x) =− 2J4(1− tanh2(Jx+ h))(1− 3 tanh2(Jx+ h))

obtain:

a. if h 6= 0 and J > 0,
the maximum point µh is of type k = 1 and strength λ = −J(1−J(1−
µ2
h)):

f ′(µh) =− J(µ+ tanh(Jµ+ h)) = 0

f ′′(µh) =− J + J2(1− tanh2(Jµ+ h)) = −J(1− J(1− µ2
h));

b. if h = 0 and J < 1,
the maximum point 0 is of type k = 1 and strength λ = −J(1− J):

f ′(0) =− J(0 + tanh(J · 0)) = 0

f ′′(0) =− J + J2(1− tanh2(0)) = −J(1− J);

c. if h = 0 and J > 1,
maximum points ±µ0 is of type k = 1 and strength λ = −J(1− J(1−
µ2

0)):

f ′(µ0) =− J(µ0 + tanh(Jµ0)) = 0

f ′′(µ0) =− J + J2(1− tanh2(µ0)) = −J(1− J(1− µ2
0));
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d. if h = 0 and J = 1,
the maximum point 0 is of type k = 2 and strength λ = −2:

f ′(0) =− (0 + tanh(0)) = 0

f ′′(0) =− 1 + 1− tanh2(0) = 0

f ′′′(0) =− 2 tanh(0)(1− tanh2(0)) = 0

f (iv)(0) =− 2(1− tanh2(0))(1− 3 tanh2(0)) = −2.

By theorem (3.3.1) we get the distribution in the thermodynamic limit of the
magnetization:

mN(σ)
D−→


δ(x− µh) h 6= 0, J > 0

δ(x) h = 0, J ≤ 1
1

2
δ(x− µ0) +

1

2
δ(x+ µ0) h = 0, J > 1

We de�ne the susceptibility of the model as

χ =
∂µ

∂h
=
(
1− tanh2(Jµ+ h)

)(
J
∂µ

∂h
+ 1

)
= (1− µ2) (Jχ+ 1) ,

by the mean-�eld equation (3.55) we obtain

χ =
1− µ2

1− J(1− µ2)
.

By the theorem (3.3.2) it's easy to check that in the thermodynamic limit

SN(σ)−Nµ√
N

D−→ N (0, χ) as J > 0 and h 6= 0

SN(σ)√
N

D−→ N (0, χ) as 0 < J < 1 and h = 0

SN(σ)

N
3
4

D−→
exp

(
−x

4

12

)
dx∫

R
exp

(
−x

4

12

)
dx

as J = 1 and h = 0.

If J > 1 and h = 0, the function f admits two global maximum points ±µ0.
Considering the point µ0, by the theorem (3.3.3) there exists A > 0 such that
∀a ∈ (0, A), if mN(σ) ∈ [µ0 − a, µ0 + a]

SN(σ)−Nµ0√
N

D−→ N (0, χ).
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An analogous result holds for the point −µ0.

To complete the description of the Curie-Weiss model we analyze its phase
transition. A phase transition point is any point of non-analyticity of the
thermodynamic limit of the pressure occurring for real h and/or real positive
J .
If h 6= 0 it is easy to show that there is not any phase transition, infact:

lim
N→∞

pN(J, h) = −J
2
µ2
h + ln cosh(Jµh + h),

which is a di�erentiable function.
Di�erentiating this limit with respect to J we obtain:

∂

∂J

(
lim
N→∞

pN(J, h)
)

= −1

2
µ2
h − Jµh

∂µh
∂J

+ tanh(Jµh + h)

(
µh + J

∂µh
∂J

)
=

= −1

2
µ2
h − Jµh

∂µh
∂J

+ µ2
h + Jµh

∂µh
∂J

=

=
1

2
µ2
h.

Di�erentiating this limit with respect to J a second time we obtain:

∂2

∂J2

(
−J

2
µ2
h + ln cosh(Jµh + h)

)
=

∂

∂J

1

2
µ2
h =

= µh
∂µh
∂J

=
1

2

∂µ2
h

∂J
.

On the other hand, de�erentiating this limit with respect to h a �rst time
we obtain:

∂

∂h

(
−J

2
µ2
h + ln cosh(Jµh + h)

)
= µh.

On the other hand, de�erentiating this limit with respect to h a second time
we obtain:

∂2

∂h2

(
−J

2
µ2
h + ln cosh(Jµh + h)

)
=

∂

∂h
µh = χ.

The hyperbolic tangent is an analytic function, thus, if h 6= 0, for any values
of J we don't have any phase transition.
The situation is totally di�erent as h = 0. In absence of the �eld h we have:

lim
N→∞

pN(J, 0) =

0 when J ≤ 1

−J
2
µ2

0 + ln cosh(Jµ0) when J > 1
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As J → 1+ the spontaneous magnetization µ0 → 0, thus the limit of the
pressure is continuous for every values of J .
Thus, in an analogous way, in 0 the magnetic �eld

∂

∂J

(
lim
N→∞

pN(J, 0)
)

=

0 when J ≤ 1

−J
2
µ2

0 when J > 1

Also this function is continuous in J . If we di�erentiate another time the
limit of the pressure we get:

∂2

∂J2

(
lim
N→∞

pN(J, 0)
)

= µ
∂µ

∂J
.

Since

µ
∂µ

∂J
=

1

2

∂µ2

∂J
(3.57)

in zero �eld we have:

∂2

∂J2

(
lim
N→∞

pN(J, 0)
)

=


0 when J ≤ 1

1

2

∂µ2
0

∂J
when J > 1

(3.58)

Just below J = 1 the value of µ0 is small, thus we can expand the hyperbolic
tangent of the mean-�eld equation (3.55):

µ0 = Jµ0 −
(Jµ0)3

3
+O(µ5

0) as J → 1+. (3.59)

Since µ0 6= 0 as J > 1, we can divide by Jµ0 the equation (3.59). We obtain

1

J
= 1− (Jµ0)2

3
+O(µ4

0) as J → 1+. (3.60)

Thus

µ0 ∼
(

3

J2

(
1− 1

J

)) 1
2

∼
(

3

(
1− 1

J

)) 1
2

as J → 1+

and the second line of (3.57) can be approximate in the following way:

1

2

dµ2
0

dJ
∼ 1

2

d

dJ

(
3

(
1− 1

J

))
=

3

2J2
as J → 1+. (3.61)

By (3.61) it follows that the second derivative of the thermodynamic limit of
(3.58) is discontinuous. The model exhibits a phase transition of the second
order for h = 0 and J = 1. We claim that for this choice of the parameters
the normalize sum of spins does not converge to a Gaussian distribution in
the thermodynamic limit. Thus the theorems (3.3.2) and (3.3.3) are potent
tools to obtain information about the critically of a phase.
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3.4 Hamiltonian de�ned by J=1 and h=0

In this section we will prove that the central limit theorem always breaks
down when it is applied on a model determined by the coupling constant J
equal to one and the magnetic �eld h equal to zero. We will use the results
given in the previous section. After have given some general preliminary
results, we will apply them to the Curie-Weiss model.

3.4.1 Preliminary results

Consider the Hamiltonian de�ned by the coupling constant J equal to
one and the magnetic �eld h equal to zero:

HN(σ) = − 1

2N

N∑
i,j=1

σiσj. (3.62)

Observe that, under these hypothesis, the function f(x) given by (3.7) can
be written as

f(x) = −1

2
x2 + ln

(∫
R

exp(sx)dρ(s)

)
. (3.63)

By theorem (3.3.2), we can see that if the function f(x) has a unique maxi-
mum point µ of type k and strength λ, we assist to the breaking down of the
central limit theorem when k > 1: then, according to this theorem and to
the theorem (3.3.3), we will prove that when J = 1 and h = 0, the function
f(x) admits one or more maximum points of type k > 1.

To compute the maximum of the function f(x) consider its �rst deriva-
tive:

f ′(x) = −x+

∫
R
s exp(sx)dρ(s)∫

R
exp(sx)dρ(s)

and observe that a maximum point µ solves the equation

µ =

∫
R
s exp(sµ)dρ(s)∫

R
exp(sµ)dρ(s)

. (3.64)

In order to prove that under these hypothesis the central limit theorem breaks
down, we have to show that f ′′(µ) = 0, hence we compute the second deriva-
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tive of f(x).

f ′′(x) = −1 +

(∫
R
s2 exp (sx) dρ(s)

)(∫
R

exp (sx) dρ(s))

)
(∫

R
exp (sx) dρ(s)

)2 +

−

(∫
R
s exp (sx) dρ(s)

)(∫
R
s exp (sx) dρ(s)

)
(∫

R
exp (sx) dρ(s)

)2 =

= −1 +

∫
R
s2 exp (sx) dρ(s)∫
R

exp (sx) dρ(s)
−


∫
R
s exp (sx) dρ(s)∫

R
exp (sx) dρ(s)


2

.

De�ning a variable Y whose distribution is

ρx(s) =
exp (sx) dρ(s)∫
R

exp (sx) dρ(s)
(3.65)

we can write

f ′′(x) = −1 +

∫
R
s2dρx(s)−

(∫
R
sdρx(s)

)2

= −1 + V arρx(Y ).

Finally we have to show that V arρµ(Y ) = 1.

In order to show our purpouse we recall the de�nition of the moment-
generating function of a random variable which, in probability, is an alter-
native speci�cation of its probability distribution. In probability theory and
statistics, the moment-generating function of a random variable X is de�ned
as

MX(t) = E[eXt], t ∈ R

whenever the expectation of the random variable exists.
Observe the correlation between the characteristic function and the moment-
generating function of a random variableX: the characteristic function ϕX(t)
is related to the moment-generating function via

ϕX(t) = MiX(t) = MX(it).
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We can consider the characteristic function as the moment-generating func-
tion of iX or as the moment generating function of X evaluated on the
imaginary axis. A key problem with moment-generating functions is that
moments and the moment-generating function may not exist, as the inte-
grals need not converge absolutely. By contrast, the characteristic function
always exists (because it is the integral of a bounded function on a space of
�nite measure), and thus may be used instead.
The reason for de�ning the moment-generating function is that it can be used
to �nd all the moments of the distribution of the random variable. Consider
the series expansion of etX :

etX =
∞∑
n=0

tnXn

n!
=

= 1 + tX +
t2X2

2
+
t3X3

3!
+ . . .+

tnXn

n!
+ o ((tX)n) .

Hence

MX(t) = E[eXt] =

=
∞∑
n=0

tnE[Xn]

n!
=

= 1 + tE[X] +
t2E[X2]

2
+
t3E[X3]

3!
+ . . .+

tnE[Xn]

n!
+ o (tnE[Xn]) =

= 1 + tm1 +
t2m2

2
+
t3m3

3!
+ . . .+

tnmn

n!
+ o (tnmn) ,

where mn is the nth moment. The moment-generating function is so called
because if it exists on an open interval around t = 0, then it is the exponential
generating function of the moments of the probability distribution:

mn(t) =
∂n

∂tn
MX(t)

∣∣∣
t=0
.

Moreover, by the moment-generating function, we can de�ne the cumulants-
generating function as

KX(t) = log (MX(t)) = log
(
E[eXt]

)
.

In an analogous way as for the moments, we can obtain the cumulants kn
from a power series expansion of the cumulant generating function

KX(t) =
∑
n=0

kn
tnXn

n!
. (3.66)
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the nth cumulant can be obtained by di�erentiating the above expansion n
times and evaluating the result at zero

kn(t) =
∂n

∂tn
KX(t)

∣∣∣
t=0
.

Observe that, using the cumulants of the random variable X and according
to (3.66), the integral in (3.63) can be written as∫

R
exp(sx)dρ(s) = exp

(∑
n=0

kn
sn

n!

)
. (3.67)

Consider the following results.

Remark 3.13. Let f(x) be the function de�ned in (3.63).
By (3.67) the function f(x) has an expansion near the origin given by

f(x) = −1

2
x2 + ln

(
exp

(∑
n=0

kn
tnsn

n!

))
=

= k1s+ (k2 − 1)
s2

2
+
∑
n=3

kn
sn

n!
.

Thus a (local) maximum point of type k and strength λ occurs at the origin
if and only if 

k2 = 1

k1 = k3 = . . . = k2k−2 = k2k−1 = 0

k2k = λ

Remark 3.14. Without loss of generality, it's su�cient to consider that the
maximum µ de�ned in (3.64) is equal to zero.

Proof. If µ 6= 0, de�ne the measure

dρ̄(s) =
exp(µs)dρ(s+ µ)∫
R

exp(µs)dρ(s+ µ)
.

Set

fρ̄(x) = −1

2
x2 + ln

(∫
R

exp(sx)dρ̄(s)

)
=

= −1

2
x2 + ln


∫
R

exp(sx) exp(µs)dρ(s+ µ)∫
R

exp(µs)dρ(s+ µ)
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and

fρ(x) = −1

2
x2 + ln

(∫
R

exp(sx)dρ(s)

)
.

We have to prove that

fρ(x+ µ)− fρ(µ) = fρ̄(x),

i.e. that

−1

2
(x+ µ)2 + ln

(∫
R

exp(s(x+ µ))dρ(s)

)
+

1

2
µ2 − ln

(∫
R

exp(sµ)dρ(s)

)
=

= −1

2
x2 + ln


∫
R

exp(sx) exp(µs)dρ(s+ µ)∫
R

exp(µs)dρ(s+ µ)

 .

Making some simpli�cations and by logarithm's properties we obtain

xµ+ ln


∫
R

exp(s(x+ µ))dρ(s)∫
R

exp(sµ)dρ(s)

 = ln


∫
R

exp(sx) exp(µs)dρ(s+ µ)∫
R

exp(µs)dρ(s+ µ)

 .

(3.68)
Making the change of variable

s+ µ = y,

the r.h.s. of (3.68) becomes

ln


∫
R

exp((y − µ)(x+ µ))dρ(y)∫
R

exp(µ(y − µ))dρ(y)

 =

= ln


∫
R

exp(xy − xµ− µ2 + yµ)dρ(y)∫
R

exp(yµ− µ2)dρ(y)

 =

= ln

e
−xµ−µ2

∫
R

exp(xy + yµ)dρ(y)

e−µ2
∫
R

exp(yµ)dρ(y)

 =

=− xµ+ ln


∫
R

exp(y(x+ µ))dρ(y)∫
R

exp(yµ)dρ(y)

 .
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Thus the existence and the nature of a maximum of fρ̄(x) at µ is equivalent
to the corresponding facts about fρ(x) at the origin.

In conclusion, by remark (3.13) and by remark (4.1) we can say that
the va-riance, which corresponds to the moment of the second order, of the
random variable Y with distribution (3.65) is equal to one. Thus

f ′′(µ) = −1 + V arρµ(Y ) = −1 + 1 = 0,

i.e. µ is a (local) maximum point of the function f(x), de�ned for J = 1 and
h = 0, of type k ≥ 2. According to the theorem (3.3.2) and to the theorem
(3.3.3) we claim that, when the Hamiltonian is de�ned for J = 1 and h = 0,
the central limit theorem breaks down.

3.4.2 Example: the Curie Weiss Model

In this section we will apply the results which have been discussed above
on a Curie Weiss Model: when the coupling constant J is equal to one and
the magnetic �eld h is equal to zero, we assist to a phase transition which
occurs at the values where the central limit theorem breaks down.

When J = 1 and h = 0, the Curie Weiss model is de�ned by the Hamil-
tonian

HN(σ) = − 1

2N

N∑
i,j=1

σiσj

and the spins are identically distributed according to the distribution

ρ(x) =
1

2
(δ(x+ 1) + δ(x− 1)).

The space of all con�gurations is ΩN = {−1,+1}N , thus the probability of a
con�guration of N spins is given by

PN,J=1,h=0{σ} =

exp

(
−N x2

2
+N ln(cosh(x))

)
dx∫

RN
exp

(
−N x2

2
+N ln(cosh(x))

)
dx

.

The function f(x) given in (3.63) becomes

f(x) = −1

2
x2 + ln (cosh(x)) . (3.69)
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We can observe that µ = 0 is the maximum point of the function in (3.69)
and it's the only solution of the mean-�eld equation

µ = tanh(µ).

If the central limit theorem was valid when J = 1 and h = 0, we would �nd
that the sum of spins with square-root normalization had converged toward
the Gaussian distribution, but it doesn't happen.
Proceede according to the results seen above and compute the �rst and the
second derivative of f(x):

f ′(x) = −x+ tanh(x)

f ′′(x) = −1 + 1 + tanh2(x) = tanh2(x)

Thus
f ′′(µ) = f ′′(0) = 0

and the central limit theorem breaks down.
Infact, according to the results in the previous section, yelds:

SN(σ)

N
3
4

D−→
exp

(
−x

4

12

)
dx∫

R
exp

(
−x

4

12

)
dx

.





Chapter 4

Conclusions ans perspectives

In this thesis we have investigated some limiting theorems for interact-
ing particle systems. While we have shown that, under suitable hipothesis,
the limiting distribution exists and is normal (central limit theorem), we
have also shown how speci�c cases of statistical mechanics models do violate
the central limit theorem and converge, suitably normalised, to a di�erent
probability density at the so called critical point. It would be interesting
to investigate if it is possible to recover the classical central limit theorem
everywhere but at the critical point using its extensions to the interacting
variables. In order to do so, for instance for the mean-�eld models, one
should identify a notion of in�nite volume equilibrium state (like in [LST07]
and [Sta06]) to test hypothesis like the condition of strongly mixing. The
following considerations are a �rst step on such direction.
In this chapter, we will �rstly prove some properties full�lled by a con�gura-
tion of spins and then we will make some considerations about the unsolved
problem mentioned above.

In order to work with the Curie-Weiss model, we will brie�y recall some
results and de�nitions given in the previous chapter.

The Curie Weiss model is de�ned by the Hamiltonian

HN(σ) = − J

2N

N∑
i,j=1

σiσj − h
N∑
i=1

σi

where the spins are identically distributed according to the distribution

ρ(x) =
1

2
(δ(x+ 1) + δ(x− 1)).

115
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The space of all con�gurations is ΩN = {−1,+1}N , thus the probability of a
con�guration

σ = (σ1, . . . , σN)

is given by the measure of Boltzmann-Gibbs

PN,J,h{σ} =

e−HN (σ)

N∏
i=1

dρ(σi)

ZN(J, h)
,

which, in the case of the model of Curie-Weiss, has the following continuous
formulation:

PN,J,h{σ} =

exp

(
−N Jx2

2
+N ln(cosh(Jx+ h))

)
dx∫

RN
exp

(
−N Jx2

2
+N ln(cosh(Jx+ h))

)
dx

.

We saw in the third chapter that the main observable of the model is the
magnetization mN(σ) of a con�guration σ = (σ1, . . . , σN), which is de�ned
by

mN(σ) =
1

N

N∑
i=1

σi.

By the de�nition of the magnetization, we have that for each i = 1, . . . , N :

〈σi〉BG = 〈mN(σ)〉BG.

Indicate with m(J, h) the stable solution of the mean-�eld equation,

m(J, h) = tanh(Jm(J, h) + h), (4.1)

which admits:

a. one solution µh, if h 6= 0 and J > 0,

b. one solution µ0 = 0, if h = 0 and J < 1,

c. two solutions ±µ0, if h = 0 and J > 1,

d. one solution µ0 = 0, if h = 0 and J = 1.
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When J > 0 and h 6= 0 or J ≤ 1 and h = 0, the Curie-Weiss model
satis�es the following property (see [Ell05])

lim
N→∞

〈mN(σ)〉BG = m(J, h), (4.2)

On the other hand, when h = 0 and J > 1, (4.1) has two di�erent stable
solutions ±m(J, 0) and the identity (4.2) is not veri�ed. Anyway, there exists
ε > 0 such that, whenever

mN(σ) ∈ (±m(J, 0)− ε,±m(J, 0) + ε),

the following limit holds (see [ENR80])

lim
N→∞

〈mN(σ)〉BG = ±m(J, 0).

In order to simplify the notations we will denote m(J, h) with µ.

The variance of a spin is �nite and can be computed, for each i = 1, . . . N ,
as

var(σi) = 〈σ2
i 〉BG − 〈σi〉2BG = 1− 〈mN(σ)〉2BG,

thus at the thermodynamic limit we have:

lim
N→∞

(1− 〈mN(σ)〉2BG) = 1− µ2.

We will proceede proving some technical properties of the con�guration
of N spins.

Proposition 4.0.1. Let σ = (σ1, . . . , σN) be a con�guration of N spins.
De�ne SN(σ) = σ1 + . . .+ σN .
Then when J > 0 and h 6= 0 or J < 1 and h = 0, we can write

var(SN(σ)) = Nh(N),

where h(N) is a slowly varying function such that c1 ≤ h(N) ≤ c2, with
c1, c2 ∈ R.

Proof. Using the de�nition of the variance for a sum of random variables we
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have that

var(SN(σ)) =
N∑
i=1

var(σi) +
∑
i 6=j

cov(σi, σj) =

= N

(
var(σi) + 2

∑
i<j cov(σi, σj)

N

)
=

= N

var(σi) +

2N(N − 1)

2
cov(σi, σj)

N

 =

= N (var(σi) + (N − 1)cov(σi, σj)) .

Set

h(N) = (var(σi) + (N − 1)cov(σi, σj)) .

We want to prove that h(N) is slowly varying. An example of slowly varying
function, by de�nition, is given by f : (0,+∞)→ (0,+∞) such that

lim
n→∞

f(x) = c ∈ R,

infact, for any choice of the real number a ∈ R, we will have:

lim
x→∞

f(ax)

f(x)
=
c

c
= 1.

We will prove that (N − 1)cov(σi, σj) is constant as N →∞.
Make the following considerations.
Using the de�nition of covariance, we �nd that:

cov(σi, σj) = E [(σi − E(σi))(σj − E(σj))] =

= E [σiσj − E(σi)σj − σiE(σj) + E(σi)E(σj)] =

= 〈σiσj〉BG − 〈mN〉2BG − 〈mN〉2BG + 〈mN〉2BG =

= 〈σiσj〉BG − 〈mN〉2BG. (4.3)

Remembering the de�nition of magnetizazion and splitting up the sum over
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the spins in the following way, we �nd an expression for 〈σiσj〉BG:

〈m2
N〉BG = 〈

(
1

N

N∑
i=1

σi

)2

〉BG =

=
1

N2
〈
N∑

i,j=1

σiσj〉BG =

=
1

N2
〈

N∑
i 6=j=1

σiσj〉BG +
1

N2
〈
N∑
i=1

σ2
i 〉BG =

=
N(N − 1)

N2
〈σiσj〉BG +

N

N2
=

=
N − 1

N
〈σiσj〉BG +

1

N

=⇒ 〈σiσj〉BG =

(
〈m2

N〉BG −
1

N

)
N

N − 1
=

=
N

N − 1
〈m2

N〉BG −
1

N − 1
, (4.4)

hence, as N →∞,

cov(σi, σj) =
N

N − 1
〈m2

N〉BG −
1

N − 1
− 〈mN〉2BG ∼

∼ var(mN) =
1

N

∂2pN(J, h)

∂h2
.

Thus we have that the second derivative of the pressure function corresponds
to the variance of the magnetization multiplied by N :

∂2pN(J, h)

∂h2
= N〈m2

N(σ)〉BG − 〈mN(σ)〉2BG.

Remark 4.1. Working in �nite volume, we �nd that
∂2pN(J, h)

∂h2
is a �nite

quantity.

Proof. We will proceede by induction on N .
For N = 1, we have only one spin σ = σ1 and the hamiltonian becomes

H1(σ) = −J − hσ1.

Thus
∂2p1(J, h)

∂h2
= var(m1) = 1− 1 = 0.
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Suppose true for N and show for N + 1.
Considering a con�guration of N + 1 spins σ = (σ1, . . . , σN+1), we �nd that

∂2pN+1(J, h)

∂h2
= (N + 1)var(mN+1) =

= Nvar(mN+1) + var(mN+1).

Using the following identity

mN+1 =

N+1∑
i=1

σi

N + 1
=

=

N∑
i=1

σi + σN+1

N + 1
=

=
N

N + 1

N∑
i=1

σi

N
+

σN+1

N + 1
=

=
N

N + 1
mN +

σN+1

N + 1
,

we can say that

var(mN+1) =〈
(

N

N + 1
mN +

σN+1

N + 1

)2

〉BG − 〈
N

N + 1
mN +

σN+1

N + 1
〉2BG =

=
1

(N + 1)2

(
N2〈m2

N〉BG + 1 + 2N〈mNσN+1〉BG+

−N2〈mN〉2BG − 〈σN+1〉2BG − 2N〈mN〉BG〈σN+1〉BG
)

=

=
1

(N + 1)2

(
N2var(mN) + var(σN+1)+

+2N(〈mNσN+1〉BG − 〈mN〉BG〈σN+1〉BG)) .

Observing that
〈mNσN+1〉BG ≤ 〈mN〉BG

and
〈mN〉BG〈σN+1〉BG ≥ −〈mN〉BG,

we can say that:

var(mN+1) ≤ 1

(N + 1)2

(
N2var(mN) + var(σN+1) + 4N(〈mN〉BG)

)
.
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Hence:

∂2pN+1(J, h)

∂h2
= (N + 1)var(mN+1) ≤

≤ 1

N + 1

(
N2var(mN) + var(σN+1) + 4N(〈mN〉BG)

)
≤

≤ N2 + 4N + 1

N + 1
.

At the thermodynamic limit, consider the susceptibility of the model
which can be computed di�erentiating (4.2) with respect to h:

χ(J, h) = lim
N→∞

∂

∂h
〈mN(σ)〉BG =

=
∂

∂h
lim
N→∞

〈mN(σ)〉BG =

=
∂m(J, h)

∂h
=

=
1−m2(J, h)

1− J(1−m2(J, h))
=

=
1− µ2

1− J(1− µ2)
. (4.5)

Using (3.60), we want to understand the behaviour of the susceptibility for
di�erent values of the coupling constant J and of the magnetic �eld h.
When the magnetic �eld is not equal to zero, as we saw in section 3.3.2, there
is not any phase transition. According to the notations used above, we have
that

χ =
∂2pN(J, h)

∂h2
=

1− µ2
h

1− J(1−m2
h)
<∞.

When h 6= 0, the pressure function is an analytic function, hence it doesn't
have points of discontinuity, thus the second derivative of the pressure func-
tion with respect to h is a �nite quantity.
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When the magnetic �eld is equal to zero, we �nd that

χ =
1−m2(J, 0)

1− J(1−m2(J, 0))
∼

∼
1− 3

(
1− 1

J

)
1− J

(
1− 3

(
1− 1

J

)) =

=
−2 +

3

J
2J − 2

.

When J → 1+, we have a phase transition and the susceptibility explodes:

χ =
3− 2J

J(2J − 2)

J→1+−−−→∞. (4.6)

When (J, h) = (1, 0), the pressure function is not an analytic function: in-
fact its second derivative with respect to h presents a point of discontinuity
as J → 1+. On the other side, when h = 0 and J > 1, we can't observe
any phase transtion and the second derivative of the pressure function with
respect to h is a �nite quantity.

In conclusion, using remark (4.1) and the equations (4.3), (4.4) and (4.6)
we can say that, when (J, h) 6= (1, 0), h(N) is a slowly varying function.
Moreover, according to the hypothesis of the theorem, we can choose as lower
bound c1 = var(σi) and as upper bound c2 = var(σi) +C, where C is bigger
than the variance of the magnetization.

Proposition 4.0.2. Let σ = (σ1, . . . , σN) be a con�guration of N spins.
De�ne SN(σ) = σ1 + . . .+ σN .
Then, when J > 0 and h 6= 0 or J ≤ 1 and h = 0

lim
M→∞

lim sup
N→∞

∫
|z|>M

z2dFN(z) =

{
0 if (J, h) 6= (1, 0)

+∞ if (J, h) = (1, 0)

where FN(z) is the distribution function of the random variable
SN(σ)−Nµ√

N
and µ is the solution of the mean-�eld equation.

Proof. As it has been shown, the distribution function of SN(σ) is given by

1

ZN(J, h)
exp

(
J

2N
s2 + hs

)
dνS(s)
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where dνS(s) denotes the distribution of SN(σ) on

(
RN ,

N∏
i=1

ρ(σi)

)
.

Ellis, Newmann and Rosen proved that as N →∞,

SN(σ)−Nµ
N1− 1

2k

D−→


N
(

0,−
(

1

λ
+

1

J

))
if k = 1

exp

(
λ

(2k)!
x2k

)
if k > 1

where f(x) is the function de�ned in (3.7) and k and λ are respectively the
type and the strength of the solution µ of the mean-�eld equation.
In order to verify the hypothesis of the theorem, we will work in the case
that k = 1, since we have to normalize with

√
N .

At the thermodynamic limit, we �nd that:

χ = lim
N→∞

∂2pN(J, h)

∂h2
=

=
1−m2(J, h)

1− J(1−m2(J, h))
,

where m(J, h) is the solution of the mean-�eld equation.

When (J, h) 6= (1, 0), as we proved in the section 3.3.2, the point µ has
type k = 1 and the sum with square-root normalization converges toward
the gaussian distribution with mean equal to 0 and variance equal to the
susceptibility χ, which is �nite.
Hence it holds:

0 ≤ lim
M→∞

∫
|z|>M

z2dN (0, χ)(z) = 0.

When (J, h) = (1, 0), the maximum point µ = 0 has type k = 2 and
f ′′(µ) = 0, as we computed in the section 3.3.2. Hence the random variable
SN(σ)

N
1
2

, has the following distribution:

FN(x) = exp

(
f ′′(µ)

2!
x2

)
= exp(0) = 1.

Consider now the equation (4.6) studied above.
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It holds:

lim
M→∞

lim sup
N→∞

∫
|z|>M

z2dFN(z) =

= lim
M→∞

∫
|z|>M

lim sup
N→∞

z2dFN(z) ≥

≥ lim
M→∞

∫
|z|>M

lim
N→∞

z2dFN(z) =

= lim
M→∞

∫
|z|>M

z2dz = +∞.

Consider in particular the su�cient and necessary conditions given by
theorem (2.4.2), which states that:

Let Xi be a strongly mixing sequence of random variables such that E(Xi) = 0
and E(X2

i ) = var(Xi) <∞. Suppose that

var(Sn) = nh(n) as n→∞, (4.7)

where h(n) is a slowly varying function such that as n→∞, c1 ≤ h(n) ≤ c2,
where c1 ≤ c2 are constants. Then the sequence Xi satis�es the central limit
theorem if and only if

lim
M→∞

lim sup
n→∞

∫
|z|>M

z2dFn(z) = 0, (4.8)

where Fn(z) is the distribution function of the normalized sum

Zn =
1√

var(Sn)

n∑
i=1

Xi.

Remark 4.2. More in general, if we suppose that the variables are identically
distributed with expectation E(X) 6= 0, we have to consider the asymptotic
behaviour of the variable

Sn − nE(X)√
var(Sn)

.

Remark 4.3. Observe that the conditions (4.7) and (4.8) are proved in the
propositions (4.0.1) and (4.0.2). In particular we �nd that they are full�lled
if and only if (J, h) 6= (1, 0): this is a �rst signal that at the critical point the
sum of the spins with square-root normalization can't converge toward the
Gaussian distribution.
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Following the introduction of this chapter, in order to identify a con�gura-
tion of N spins with a random process, we can imagine that the con�guration
presents the evolution in time of the values assumed by a single spin during
descrete instants. Anyway it is necessary that the probability associated to
the random process does not depend by its length: in the case of the Curie-
Weiss model, we have a di�erent probability for every con�guration with
di�erent length, de�ned by the measure of Boltzmann-Gibbs. Thus, working
in a �nite volume, we don't have problems for de�ning the probability of the
con�guration of spins but we need to extend it at the thermodynamic limit.

If we �x a natural N , a con�guration of spins of the Curie-Weiss model,
and more in general the spins which interact one with each other according
to the Hamiltonian (3.1), de�ne a stationary process.
Consider a positive integer τ and consider the con�guration

στ = (σ1+τ , . . . , σN+τ ).

Let M be a positive integer such that M ≥ N + τ . The space of all con�-
gurations ΩM contains the space ΩN , hence it contains all the con�gurations
of length less or equal to M : hence both the con�gurations σ and στ can
be found in ΩM . The probability of Boltzmann-Gibbs only depends on the
number of spins of the con�guration, then, if we shift the spins of a param-
eter τ , the probability of the con�guration doesn't change: thus it may be
identi�ed as a stationary process.

It remains to prove that the stationary process satis�es the property of
strongly mixing : in order to do this we need to prove that there exists a
probability measure P , which is the extension of the measure of Boltzmann-
Gibbs at the thermodynamic limit.

After having proved this property, it is possible to apply the hypothesis
of the theorem (2.4.2) to a con�guration of the Curie-Weiss model, in order
to see that the sum of the spins with square-root normalization converges
toward the Gaussian distribution if and only if (J, h) 6= (1, 0).





Appendix A

Bochner-Kinchin's theorem

Let mn(x) be the normalized Lebesgue measure on Rn such that

mn(x) =
1

(2π)n
dx.

If µ is a �nite positive Borel measure on Rn, the Fourier transform of µ is
the function µ̂ : Rn −→ C de�ned by:

µ̂(ξ) =

∫
Rn
e−i<x,ξ>dµ(x), ξ ∈ Rn.

Using the dominated convergence theorem, it's easy to prove that µ̂ is a
continuous function. If f ∈ L1(Rn), the Fourier transform of f is the function
f̂ : Rn −→ C de�ned by:

f̂(ξ) =

∫
Rn
e−i<x,ξ>f(x)dmn(x), ξ ∈ Rn.

Likewise, using the dominated convergence theorem, it's easy to prove that
f̂ is a continuous function. One proves that if f ∈ L1(Rn) and if f̂ ∈ L1(Rn),
then, for almost all x ∈ (Rn)

f(x) =

∫
Rn
ei<x,ξ>f̂(ξ)dmn(ξ).

Moreover, observe that as

µ̂(0) =

∫
Rn
dµ(x) = µ(Rn),

µ is a probability measure if an only if µ̂(0) = 1.
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Theorem A.0.3 (Bochner-Kinchin's theorem). Let φ : Rn −→ C be a
positive-de�nite and continuous function that satis�es the condition φ(0) = 1.
Then there is some Borel probability measure µ on Rn such that φ = µ̂.

Proof. Let {ψU} be an approximate identity, that is, for each neighborhoo
U of 0, ψU is a function such that:

(i) suppψU is compact and contained in U ,

(ii) ψ ≥ 0 and ψU(x) = ψU(−x),

(iii)

∫
Rn
ψU(x)dmn(x) = 1.

For every f ∈ L1(Rn), an approximate identity satis�es

||f ∗ ψU − f ||L1 −→ 0, as U → {0}.

We have that ψ∗U := ψU(−x) = ψ−U(x), so

supp(ψ∗U ∗ ψU) ⊂ suppψ−U + suppψU = suppψ−U + suppψU = −U + U.

Moreover ∫
Rn

(f ∗ g)dmn =

∫
Rn
fdmn

∫
Rn
gdmn.

Therefore {ψ∗U ∗ ψU} is an approximate identity.
For all f, g ∈ L1(Rn), de�ne

< f, g >φ=

∫
Rn

(g∗ ∗ f)φdmn :

this is a positive Hermitian form, i.e. < f, f >φ≥ 0 for all f ∈ L1(Rn. Using
the Cauchy-Schwartz inequality,

| < f, g >φ |2 ≤< f, f >φ< g, g >φ .

We have laid out the tools that we will use for the proof.
Let f ∈ L1(Rn), ψU ∗ f → f as U → {0}; as φ is bounded this gives∫

Rn
(ψU ∗ f)φdmn →

∫
Rn
fφdmn as U → {0}.

Because {ψ∗U ∗ ψU} is an approximate identity,∫
Rn

(ψ∗U ∗ ψU)φdmn → φ(0) as U → {0},
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that is we have

< f, ψU >φ→
∫
Rn
fφdmn

and

< ψU , ψU >φ→ φ(0)

as U → {0} and as φ(0) = 1; thus the Cauchy-Schwartz inequality produces∣∣∣∣∫
Rn
fφdmn

∣∣∣∣2 ≤ ∫
Rn

(f ∗ ∗ f)φdmn. (A.1)

With h = f ∗ ∗ f, the inequality (A.1) reads∣∣∣∣∫
Rn
fφdmn

∣∣∣∣2 ≤ ∫
Rn
hφdmn.

De�ne h(1) = h, h(2) = h∗h, h(3) = h∗h∗h, etc., apply (A.1) to the function
h and obtain, because h∗ = h,∣∣∣∣∫

Rn
hφdmn

∣∣∣∣2 ≤ ∫
Rn
h(2)φdmn.

Applying (A.1) to h(2), which satis�es
(
h(2)
)∗

= h(2),∣∣∣∣∫
Rn
h(2)φdmn

∣∣∣∣2 ≤ ∫ (4)

Rn
φdmn.

Thus, for any m ≥ 0 we have∣∣∣∣∫
Rn
fφdmn

∣∣∣∣2 ≤ ∣∣∣∣∫
Rn
h(2m)φdmn

∣∣∣∣2−(m+1)

≤

≤
∥∥h(2m)

∥∥2−(m+1)

L1 ≤

≤
(∥∥h(2m)

∥∥2−m

L1

) 1
2

,

since ‖Φ‖∞ = φ(0) = 1. With convolution as multiplication, L1(Rn) is a
commutative Banach algebra. The Gelfand transform is an algebra homo-
morphism L1(Rn)→ C0(Rn) that satis�es:

‖ĝ‖∞ = lim
k→∞

∥∥g(k)
∥∥ 1
k

L1 , g ∈ L1(Rn);
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for f ∈ L1(Rn), the Gelfand transform is the Fourier transform.
Write the Fourier transform as F : L1(Rn)→ C0(Rn).
Stating that the Gelfand transform is an homomorphism means that

F(g1 ∗ g2) = F(g1)F(g2),

because multiplication in the Banach algebra C0(Rn) is pointwise multipli-
cation. Then, since a subsequence of a convergent sequence converges to the
same limit,

lim
m→∞

(∥∥h(2m)
∥∥2−m

L1

) 1
2

=
(∥∥∥ĥ∥∥∥

∞

) 1
2
.

But

ĥ = F(f ∗ ∗ f) = F(f ∗)F(f) = F(f)F(f) = |F(f)|2.

so (∥∥∥ĥ∥∥∥
∞

) 1
2

=
(∥∥∥|f̂ |2∥∥∥

∞

) 1
2

=
∥∥∥f̂∥∥∥

∞
.

Putting things together, we have that for any f ∈ L1(Rn),∣∣∣∣∫
Rn
fφdmn

∣∣∣∣ ≤ ∥∥∥f̂∥∥∥∞ .
Therefore

f̂ 7−→
∫
Rn
fφdmn

is a bounded linear functional F(L1(Rn)))→ C.
Moreover it has norm ≤ 1.
To prove it remember that φ(0) = 1; appling the inequality to F(δ), we can
see that the two sides are equal, hence, appling the inequality to a sequence of
functions that converge weakly to δ, we obtain that the norm of the functional
satis�es the requested bound.
Remember that F(L1(Rn)) is dense in the Banach space C0(Rn), so there is
a bounded linear functional Φ : C0(Rn)→ C whose restriction to F(L1(Rn))
is equal to

f̂ 7−→
∫
Rn
fφdmn and ||Φ|| = 1.

Using the Riesz-Markov theorem, there is a regular complex Borel measure
µ on Rn such that

Φ(g) =

∫
Rn
gdµ, g ∈ C0(Rn),
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and ||µ|| = ||Φ||; |µ| is the total variation norm of µ: ||µ|| = |µ|(Rn). Then,
for f ∈ L1(Rn), we have:∫

Rn
fφdmn = Φ(f̂) =

=

∫
Rn
fdµ =

=

∫
Rn

(∫
Rn
e−i<x,ξ>f(x)dmn(x)

)
dµ(ξ) =

=

∫
Rn
f(x)

(∫
Rn
e−i<x,ξ>dµ(ξ)

)
dmn(x) =

=

∫
Rn
f(x)µ̂(x)dmn(x).

This is true for all f ∈ L1(Rn) implies that φ = m̂u. As

µ̂(Rn) = µ̂(0) = φ(0) = 1

and
||µ|| = ||Φ|| = 1,

we have that µ(Rn) = ||µ|| and implies that µ is the positive, hence, as
µ(Rn) = 1, is a probability measure.
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Herglotz's theorem

Herglotz's theorem characterizes the complex-valued autocovariance func-
tions on the integers as the function which can be written in the form

Rt =

∫ π

−π
eitλdF (λ), (B.1)

for some bounded distribution function F with mass concentrated in the
interval [−π, π].

Theorem B.0.4 (Herglotz's theorem). A complex-valued function Rt de�ned
on the integers is non-negative de�nite if an only if

Rt =

∫ π

−π
eitλdF (λ), ∀t = 0,±1, . . . , (B.2)

where F (·) is a right-continuous, non-decreasing, bounded function on [−π, π]
and F (−π) = 0. The function F is called spectral istribution function of R
and if

F (λ) =

∫ λ

−∞
f(v)dv, −π ≤ λ ≤ π,

the f is called spectral density function of R.

Proof. If Rt has the representation (B.2), then it is clear that Rt is Hermitian,
i.e. R−t = Rt. Moreover, if ar ∈ C, r = 1, . . . , n, then

n∑
r,s=1

arRr−sās =

∫ π

−π

n∑
r,s=1

arās exp (iv(r − s)) dF (v) =

=

∫ π

−π

∣∣∣∣∣
n∑
r=1

ar exp (ivr)

∣∣∣∣∣
2

dF (v) ≥ 0
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so that Rt is also non-negative de�nite an therefore is an autocovariance
function by the properties de�ned in Chapter 4.

Conversely suppose that Rt is a non-negative de�nite function on the
integers. Then, de�ning

fN(v) =
1

2πN

N∑
r,s=1

exp (−ivr)Rr−s exp(ivs) =

=
1

2πN

∑
m<N

(N − |m|) exp (−ivm)Rm,

we see from the negative de�niteness of Rt that

fN(v) ≥ 0 ∀v ∈ [−π, π].

Let FN(·) be the distribution function corresponding to the density fN(·)I[−π,π](·).
Thus 

FN(λ) = 0 as λ ≤ −π
FN(λ) = FN(π) as λ ≥ π

FN(λ) =

∫ π

−π
fN(v)dv as − π ≤ λπ.

Then for any integer t,∫ π

−π
exp(ivt)dFN(v) =

1

2π

∑
|m<N |

(
1− |m|

N

)
Rm

∫ π

−π
exp(i(t−m)v)dFN(v),

i.e. ∫ π

−π
exp(ivt)dFN(v) =


(

1− |t|
N

)
Rt, as |t| < N,

0 otherwise.
(B.3)

Since

FN(π) =

∫ π

−π
dFN(v) = R0 <∞, ∀N,

we can �n a distribution function F and a subsequence {FNk} of the sequence
{FN} such that for any bounded continuous function g, with g(π) = g(−π),∫ π

−π
g(v)dFNk(v)

k→∞−−−→
∫ π

−π
g(v)dFN(v).



135

Replacing N by Nk in (B.3) and letting k →∞, we obtain

Rt =

∫ π

−π
exp(ivt)dF (v),

which is the required spectral representation of Rt.





Appendix C

In�nitely divisible distributions

and stable distributions

A distribution function F (x) is said to be in�nitely divisible if, for each
n∈ N, there exists a distribution Fn such that

F (x) = Fn(x)∗n.

Thus a random variable X with an in�nitely divisible distribution can be
expressed, for every n, in the form

X = X1,n +X2,n + . . .+Xn,n

where Xj,n, j ∈ {1, 2, . . . , n} are identically distributed.

Theorem C.0.5. 1 In order that the function ψX(t) be the characteristic
function of any in�nitely divisible distribution it is necessary and su�cient
that

log (ψX(t)) = iγt− 1

2
σ2t2 +

∫ 0

−∞

(
eiut − 1− iut

1 + u2

)
dM(u)+

+

∫ ∞
0

(
eiut − 1− iut

1 + u2

)
dN(u), (C.1)

where σ ≥ 0, γ ∈ R, M and N are non-decreasing functions with

M(−∞) = N(∞) = 0

and ∫ 0

−ε
u2dM(u)

∫ ε

0

u2dN(u) <∞

1The proof of this theorem can be �nd in the text Limit distributions for sums of

independent random variables, written by Gnedenko and Kolmogorov in 1954.
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for all ε > 0. The representation is unique.
The equation (C.1) is called Levy's formula.

Theorem C.0.6. 2 In order that the distribution F (x) should be, for an
appropriate choice of constants An, the weak limit of the distribution of

Zn = Xn,1 +Xn,2 + . . .+Xn,kn − An, as n→∞, (C.2)

where the Xn,k are uniformly asymptotically negligible, it is necessary and
su�cient that F (x) is in�nitely divisible.

Conditions for the convergence to a particular F (x) can be expressed in
the following way.

Theorem C.0.7. 3 In order that, for an appropriate choice of the An, the
distribution of (C.2) should converge to F (x), it is necessary and su�cient
that

kn∑
k=1

Fn,k(x)→M(x), x < 0

kn∑
k=1

(1− Fn,k(x))→ N(x), x > 0

at every point of continuity of M(x) and N(x) and

lim
ε→0

lim sup
n→∞

kn∑
k=1

[∫
|x|<ε

x2dFn,k(x)− (xdFn,k(x))2

]
=

= lim
ε→0

lim inf
n→∞

kn∑
k=1

[∫
|x|<ε

x2dFn,k(x)− (xdFn,k(x))2

]
= σ2,

where M(x), N(x) and σ2 are as in the Levy formula for F (x) and Fn,k is
the distribution of Xn,k.

A distribution function F (x) is said to be stable if, for any a1, a2 > 0 and
any b1, b2, there exists constants a > 0 and b such that

F (a1x+ b1) ∗ F (a2x+ b2) = F (ax+ b). (C.3)

In terms of the characteristic function ψ(t) of F (x), (C.3) becomes:

ψ

(
t

a1

)
ψ

(
t

a2

)
= ψ

(
t

a

)
e−ibt. (C.4)

2See 1.
3See 1.
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Theorem C.0.8. In order that a distribution F (x) is stable, it is necessary
and su�cient that F (x) is in�nitely divisible, with Levy representation either

log (ψX(t)) = iγt+

∫ 0

−∞

(
eiut − 1− iut

1 + u2

)
dM(u)+

+

∫ ∞
0

(
eiut − 1− iut

1 + u2

)
dN(u), (C.5)

with

M(u) = c1(−u)−α, N(u) = −cα2 ,
0 < α < 2, c1 ≥ 0, c2 ≥ 0, c1 + c2 > 0

or

log (ψX(t)) = iγt− 1

2
σ2t2. (C.6)

Proof. The in�nite divisibility of F (x) follows from the results above. Con-
sequently log (ψ(t)) has the Levy representation (C.1). The equation (C.4)
gives

log

(
ψ

(
t

a1

))
+ log

(
ψ

(
t

a2

))
= log

(
ψ

(
t

a

)
e−ibt

)
. (C.7)

Comparing this with (C.1) we have

iγa−1t− 1

2
σ2a−2t2 +

∫ 0

−∞

(
eiut − 1− iut

1 + u2

)
dM(au)+

+

∫ ∞
0

(
eiut − 1− iut

1 + u2

)
dN(au) =

=iγa−1
1 t− 1

2
σ2a−2

1 t2 +

∫ 0

−∞

(
eiut − 1− iut

1 + u2

)
dM(a1u)+

+

∫ ∞
0

(
eiut − 1− iut

1 + u2

)
dN(a1u)+

+ iγa−1
2 t− 1

2
σ2a−2

2 t2 +

∫ 0

−∞

(
eiut − 1− iut

1 + u2

)
dM(a2u)+

+

∫ ∞
0

(
eiut − 1− iut

1 + u2

)
dN(a2u)+

+ ibt.

The uniqueness of the Levy representation therefore implies that

σ2(a−2 − a−2
1 − a−2

2 ) = 0, (C.8)

M(au) = M(a1u) +M(a2u), if u < 0, (C.9)

N(au) = N(a1u) +N(a2u), if u > 0. (C.10)
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Suppose that M is not identically zero and write

m(x) = M(e−x), x ∈ R.

From the second equation in (C.8) it follows that, for any λ1, λ2, . . . , λn, there
exists λ = λ(λ1, λ2, . . . , λn) such that, for all x,

m(x+ λ) = m(x+ λ1) + . . .+m(x+ λn). (C.11)

Setting λ1 = . . . = λn = 0, there exists λ = λ(n) such that

m(x+ λ)nm(x). (C.12)

If p
q
is any positive rational in its lowest terms, de�ne

λ

(
p

q

)
= λ(p)− λ(q);

then (C.12) implies that

p

q
m(x) = pm (x− λ(q)) = m (x+ λ(p)− λ(q)) = m

(
x+ λ(

p

q
)

)
.

Thus, for any rational r > 0,

m (x+ λ(r)) = rm(x). (C.13)

SinceM is non increasing,m is non increasing, and so therefore is the function
λ de�ne on the positive rationals. Consequently, λ has right and left limits at
all s > 0. From (C.13) these are equal and λ(s) is de�ne as a non increasing
continuous function on s > 0, satisfying

m (x+ λ(s)) = sm(x). (C.14)

Moreover, it follows from this equation that

lim
s→0

λ(s) =∞,

lim
s→∞

λ(s) = −∞.

Since m is not identically zero, we may assume that m(0) 6= 0 and write

m1(x) =
m(x)

m(0)
. Let x1, x2 arbitrary, and choose s1, s2 so that

λ(s1) = x1, λ(s2) = x2.
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Then

s1m(0) = m(x1), s2m(0) = m(x2), s2m(x1) = m(x1 + x2),

so that
m(x1 + x2) = m(x1)m(x2). (C.15)

Since m1 is non negative, non increasing and not identically zero, (C.15)
shows that m1 > 0 and then m2 = log(m1) is monotonic and satis�es

m(x1 + x2) = m(x1) +m(x2). (C.16)

The only monotonic functions satisfying this equation are of the form

m2(x) = αx.

Since M(−∞) = 0, this implies that

m1(x) = e−αx,

M(u) = c1(−u)−α, α > 0, c1 > 0.

As the integral ∫ 0

−1

u2dM(u) = c1α

∫ 1

0

u1−αdu

must converge, we have α < 2.
Thus �nally

M(u) = c1(−u)−α, 0 < α < 2, c1 ≥ 0. (C.17)

In a similar way

N(u) = −c1(u)−β, 0 < β < 2, c2 ≥ 0. (C.18)

Taking a1 = a2 = 1 in the second and in the third equation in (C.8) we have

a−α = a−β = 2, (C.19)

whence α = β.
Moreover the �rst equation in (C.8) becomes

σ2(a−2 − 2) = 0.

This is incompatible with (C.19) unless σ2 = 0, so that either σ2 = 0 or
M(u) = N(u) = 0 for all u.
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Lemma C.0.9. Let X be a random variable de�ned on the probability space
(Ω,F , P ) with distribution F (x).
F (x) is stable if and only if the characteristic function of X can be expressible
in the form

log(ψ(t)) = iγt− c|t|α
(

1− iβ t

|t|
ω(t, α)

)
, (C.20)

where α, β, γ and c are constants such that c ≥ 0, 0 < α ≤ 2, |β| ≤ 1 and

ω(t, α) =


tan

(
1

2
πα

)
, α 6= 1,

2

π
log |t|, α = 1.

Proof. Examine (C.20) in three di�erent cases as we did in the previous
theorem.

1. 0 < α < 1
In this case the integrals ∫ 0

−∞

u

1 + u2

du

|u|1+α

and ∫ ∞
0

u

1 + u2

du

u1+α

are �nite and log(ψ(t)) can be written, for some γ′, as

log(ψ(t)) = iγ′t+ αc1

∫ 0

−∞
(eitu − 1)

du

|u|1+α
+ αc2

∫ ∞
0

(eitu − 1)
du

u1+α
.

Therefore, in t > 0,

log(ψ(t)) = iγ′t+ αtα
[
c1

∫ ∞
0

(eiu − 1)
du

u1+α
+ c2

∫ ∞
0

(eiu − 1)
du

u1+α

]
.

The function
eiu − 1

u1+α

is analytic in the complex plane cut along the positive half of the real
axis. Integrating it round a contour consisting of the segment (r, R),
0 < r < R, the circular arc with centre 0 from R to iR, the line segment
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(iR, ir) and the circular arc from ir to r, we obtain, as R→∞ and as
r → 0, ∫ ∞

0

(eiu − 1)
du

u1+α
=

∫ i∞

0

(eiu − 1)
du

u1+α
=

= exp

(
−1

2
iπα

)
L(α),

where

L(α) =

∫ ∞
0

(e−u − 1)
du

u1+α
= −Γ(1− α)

α
< 0.

Similarly ∫ ∞
0

(e−iu − 1)
du

u1+α
=

∫ i∞

0

(e−iu − 1)
du

u1+α
=

= exp

(
1

2
iπα

)
L(α).

Therefore, for t > 0,

log(ψ(t)) = iγ′t+ αL(α)tα
[
(c1 + c2) cos

(
1

2
πα

)
+ (c1 − c2) sin

(
1

2
πα

)]
=

= iγ′t− ctα
[
1− iβ tan

(
1

2
πα

)]
,

where

c = −αL(α)(c1 + c2) cos

(
1

2
πα

)
≥ 0,

β =
c1 − c2

c1 + c2

, |β| ≤ 1.

For t < 0,

log(ψ(t)) = log f(−t) = iγ′t− ctα
[
1− iβ tan

(
1

2
πα

)]
.

Hence (C.20) holds for all t.

2. 1 < α < 2
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For this case we can throw (C.20) into the form, for t > 0,

log(ψ(t)) = iγ′t+ c1α

∫ 0

−∞
(eitu − 1− itu)

du

|u|1+α
+

+ c2α

∫ ∞
0

(eitu − 1− itu)
du

u1+α
=

= iγ′t+ αtα
[
c1

∫ ∞
0

(e−iu − 1− itu)
du

u1+α

]
+

+ αtα
[
c2

∫ ∞
0

(e−iu − 1− itu)
du

u1+α

]
.

Integrating the function

e−iu − 1− itu
u1+α

round the same contour as above we obtain∫ ∞
0

(e−iu − 1− itu)
du

u1+α
= exp

(
−1

2
iπα

)
M(α)

and ∫ ∞
0

(eiu − 1− itu)
du

u1+α
= exp

(
1

2
iπα

)
M(α).

where

M(α) =

∫ ∞
0

(e−u − 1 + u)
du

u1+α
=

Γ(2− α)

α(α− 1)
> 0.

Proceeding as before, we deduce that (C.20) holds with

c = −αM(α)(c1 + c2) cos

(
1

2
πα

)
≥ 0,

β =
c1 − c2

c1 + c2

, |β| ≤ 1.

3. α = 1
Using the fact that ∫ ∞

0

1− cosu

u2
du =

1

2
π,



145

we have∫ ∞
0

(eitu − 1− itu

1 + u2
)
du

u2
=

=

∫ ∞
0

cos tu− 1

u2
du+ i

∫ ∞
0

(
sin tu− ut

1 + u2

)
du

u2
=

= −1

2
π + i lim

ε→0

[∫ ∞
ε

sin tu

u2
du− t

∫ ∞
ε

du

u(1 + u2)

]
=

= −1

2
π − i lim

ε→0

[
−t
∫ ∞
ε

sinu

u2
du+ t

∫ ∞
ε

(
sinu

u2
− 1

1 + u2

)
du

]
=

= −1

2
π − it lim

ε→0

∫ εt

ε

du

u
+ it

∫ ∞
0

(
sinu

u2
− 1

1 + u2

)
du =

= −1

2
π − it log t+ itΓ.

Thus (C.20) is satis�ed with

c =
1

2
(c1 + c2)

β =
c1 − c2

c1 + c2

, |β| ≤ 1.





Appendix D

The asympthotic behaviour of the

Hamiltonian

Let N ∈ N. Let σ be a con�guration over N spins which take values in
the set {−1, 1}.
Consider the hamiltonian de�ned for the Curie Weiss model by parameters
J > 0 and h:

HN(σ) = − J

2N

N∑
i,j=1

σiσj − h
N∑
i=1

σi.

Without loss of generality, we will work under the hypothesis that h = 0.
Suppose to divide the spins in two sets P1 and P2 respectively with cardinality
N1 and N2.
Set the relative sizes of the sets as

α =
N1

N
and 1− α =

N2

N
.

We start working with the following hamiltonian:

H̃N(σ) = H̃N
(1)

+ H̃N
(2)

+ H̃N
(12)

, (D.1)
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where:

H̃N
(1)

= − αJ

2(αN − 1)

∑
i 6=j∈P1

σiσj,

H̃N
(2)

= − (1− α)J

2((1− α)N − 1)

∑
i 6=j∈P2

σiσj,

H̃N
(12)

= − J
N

∑
i∈P1,j∈P2

σiσj.

Lemma D.0.10. Under the notations above:

〈H̃N〉BG = 〈H̃N
(1)〉BG + 〈H̃N

(2)〉BG + 〈H̃N
(12)〉BG

Proof.

〈H̃N
(1)〉BG =− αJ

2(αN − 1)
〈
∑

i 6=j∈P1

σiσj〉BG =

=− αJ(αN − 1)(αN)

2(αN − 1)
〈σiσj〉BG =

=− α2JN

2
〈σiσj〉BG

〈H̃N
(2)〉BG =− (1− α)J

2((1− α)N − 1)
〈
∑

i 6=j∈P2

σiσj〉BG =

=− (1− α)J((1− α)N − 1)((1− α)N)

2((1− α)N − 1)
〈σiσj〉BG =

=− (1− α)2JN

2
〈σiσj〉BG

〈H̃N
(12)〉BG =− J

N
〈
∑

i 6=j∈P1

σiσj〉BG =

=− J(αN)((1− α)N)

N
〈σiσj〉BG =

=− Jα(1− α)N〈σiσj〉BG
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In conclusion:

〈H̃N
(1)〉BG + 〈H̃N

(2)〉BG + 〈H̃N
(12)〉BG =

=− α2JN

2
〈σiσj〉BG −

(1− α)2JN

2
〈σiσj〉BG − Jα(1− α)N〈σiσj〉BG =

=− JN

2
〈σiσj〉BG

[
α2 + (1− α)2 + 2α(1− α)

]
=

=− JN

2
〈σiσj〉BG =

=〈H̃N〉BG.

We proceede working with the following hamiltonian:

ĤN(σ) = ĤN

(1)
+ ĤN

(2)
+ ĤN

(12)
, (D.2)

where:

ĤN

(1)
= − J

2N

∑
i,j∈P1

σiσj,

ĤN
(2)

= − J

2N

∑
i,j∈P2

σiσj,

ĤN

(12)
= − J

N
sumi∈P1,j∈P2σiσj.

Lemma D.0.11. Under the notations above, it holds:

lim
N→∞

ĤN

N
= limN →∞H̃N

N
, (D.3)

or equivalently
ĤN = H̃N + o(1).

Proof.

ĤN
(1)

= − Jα(αN − 1)

2αN(αN − 1)

∑
i 6=j∈P1

σiσj −
JαN

2N
=

= − Jα2N

2αN(αN − 1)

∑
i 6=j∈P1

σiσj −
Jα

2αN(αN − 1)

∑
i 6=j∈P1

σiσj −
Jα

2
=

= − Jα

2(αN − 1)

∑
i 6=j∈P1

σiσj −
J

2N(αN − 1)

∑
i 6=j∈P1

σiσj −
Jα

2
=

= H̃N
(1)

+ o(1)
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and

ĤN

(2)
=− J(1− α)((1− α)N − 1)

2(1− α)N((1− α)N − 1)

∑
i 6=j∈P2

σiσj −
J(1− α)N

2N
=

=− J(1− α)2N

2(1− α)N((1− α)N − 1)

∑
i 6=j∈P2

σiσj−

− J(1− α)

2(1− α)N((1− α)N − 1)

∑
i 6=j∈P2

σiσj −
J(1− α)

2
=

=− J(1− α)

2((1− α)N − 1)

∑
i 6=j∈P2

σiσj −
J

2N((1− α)N − 1)

∑
i 6=j∈P2

σiσj −
J(1− α)

2
=

=H̃N
(2)

+ o(1).

Thus
ĤN = H̃N + o(1).



Bibliography

[Bar08] A. Barra. The mean �eld ising model trough interpolating tech-
niques. Journalf Statistical Physics, no. 5,787-809, 2008.

[BCG03] A. Bianchi, P. Contucci, and C. Giardina. Thermodynamic limit
for mean-�eld spin model. MPEJ, 2003.

[BD06] P.J. Brockwell and R.A. Davis. Time series: Theory and methods.
Springer, 2006.

[Bra05] R. Bradley. Basic properties of strong mixing conditions. a survey
and some open questions. Probability Surveys, no. 2, 107-144, 2005.

[CG07] P. Contucci and S. Ghirlanda. Modeling society with statistical
mechanics: an application to cultural contact and immigration.
Quality and Quantity, no. 4, 569-578, 2007.

[EL09] P. Eichelsbacher and M. Lowe. Stein's method for dependent ran-
dom variables occurring in statistical mechanics. Arxiv preprint
arXiv:0908.1909v1, 2009.

[Ell05] R. Ellis. Entropy, large deviation, and statistical mechanics.
Springer, Verlag, 2005.

[EN78a] R.S. Ellis and C.M. Newmann. Limit theorems for sums of depen-
dent random variables occurring in statistical mechanics. Probabil-
ity Theory and related �elds, no. 2,117-139, 1978.

[EN78b] R.S. Ellis and C.M. Newmann. The statistics of curie-weiss model.
Journal of statistical Physics, no. 2,149-161, 1978.

[ENR80] R.S. Ellis, C.M. Newmann, and J.S. Rosen. Limit theorems for
sums of dependent random variables occurring in statistical me-
chanics. Probability Theory and related �elds, no. 2,153-169, 1980.

151



152 BIBLIOGRAPHY

[FC11] M. Fedele and P. Contucci. Scaling limits for multispecies statistical
mean-�eld models. Arxiv preprint arXiv:1011.3216, 2011.

[Fed11] M. Fedele. A mean-�eld model for the collective behaviour of in-
teracting multi-species particles: mathematical results and appli-
cation to the inverse problem. Alma Mater Studiorum, University
of Bologna, PhD thesis, 2011.

[Fed13] M. Fedele. Rescaled magnetization for critical bipartite mean-�elds
models. Arxiv preprint arXiv:1310.7615v1, 2013.

[FF12] M. Fedele and F.Unguendoli. Rigorous result on the bipartite
mean-�elds model. Arxiv preprint arXiv:1204.4420, 2012.

[FVC12] M. Fedele, C. Vernia, and P. Contucci. Inverse problem ro-
bustness for multi-species mean-�eld spin models. Arxiv preprint
arXiv:1211.0465, 2012.

[GC08a] I. Gallo and P. Contucci. Bipartite mean �eld spin system. exis-
tence and solution. MPEJ, 2008.

[GC08b] I. Gallo and P. Contucci. Parameter evaluation of a simple mean-
�eld model of social interaction. Arxiv preprint arXiv:0810.3029,
2008.

[Gia07] C. Giardina. Ferromagnets. Course 2S620, Lecture 2, 2007.

[Gra03] L. Grafakos. Classical and modern Fourier Analysis. Prentice Hall,
2003.

[GT02] F. Guerra and F.L. Toninelli. The thermodynamic limit in
mean �eld-spin glasses models. Arxiv preprint arXiv:cond-
mat/0204280v1, 2002.

[IL71] I.A. Ibragimov and Yu.V. Linnik. Independent and stationary se-
quences of random variables. University of Oxford, 1971.

[LST07] T. M. Ligget, J. E. Steif, and B. Toth. Statistical mechanical
systems on complete graphs, in�nite enchengeability, �nite ex-
tensions and a discrete �nite moment problem. Arxiv preprint
arXiv:math/0512191v4, 2007.

[Rud87] W. Rudin. Real and complex analysis. McGraw-Hill Book Com-
pany, 1987.



BIBLIOGRAPHY 153

[Sta06] S. Starr. Solution of the c-w model by the de �netti's theorem.
Topics in mathematical physics, Lecture 7, 2006.


	tesi.pdf
	chapter0ita
	tesi

