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Introduzione

Nella tesi vengono trattati alcuni algoritmi utilizzati nelle applicazioni di mod-

elli markoviani nascosti. In particolare vengono esaminate le loro applicazioni nel

campo della biologia.

All’ inizio vengono definite le catene di Markov, ossia meccanismi probabilistici

con determinate proprietà. Le catene markoviane sono le sequenze di variabili

aleatorie {Xn}∞n=0 caratterizzate dal fatto che lo stato futuro della catena, Xn+1,

dipende solo da quello attuale, Xn, e non da tutti gli stati precedenti, X0, ..., Xn.

Gli elementi di base di una catena di Markov sono le probabilità di transizione

degli stati, che vengono esposti nella matrice di transizione e la sua distribuzione

iniziale di probabilità.

Questi processi, detti anche processi di Markov osservabili, sono difficilmente utiliz-

zabili nelle applicazioni. Viene quindi esposto l’argomento delle catene di Markov

nascoste. Queste sono dei processi probabilistici più complicati che includono due

meccanismi: una catena di Markov che è nascosta e un altro processo aleatorio i

cui risultati sono osservabili. È definita la matrice di transizione degli stati nascosti

e le probabilità di emissione di un’ osservazione che dipende dallo stato partico-

lare della catena nascosta. Però gli stati stessi della catena di Markov non sono

osservabili.

Il modello in generale è una descrizione semplificata di un fenomeno di cui rius-

ciamo a studiare meglio le caratteristiche determinandone le proprietà, le pos-
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iv Introduzione

sibili incertezze e i parametri. Di conseguenza derivano tre domande principali

riguardanti i modelli nascosti, che nascono dalla necessità di poter essere utilizzati

nelle applicazioni.

Tali domande sono:

La prima, dato un modello ed una sequenza di osservazioni o prodotti da un pro-

cesso random, qual è la probabilità che il modello abbia prodotto la sequenza delle

osservazioni?

La seconda, dato un modello ed una sequenza di osservazioni o, qual è la più prob-

abile sequenza degli stati nascosti s?

Il terzo problema è quello di migliorare le proprietà ed i parametri del modello,

affinché questo riesca a descrivere meglio le proprietà del fenomeno che stiamo

esaminando.

I modelli markoviani nascosti hanno un ampio utilizzo in diversi campi, uno dei

primi è stato quello di speech recognition.

Per quanto riguarda le applicazioni nel campo della biologia, i modelli marko-

viani nascosti vengono usati maggiormente nella modellizzazione della sintesi delle

proteine dal DNA e nel determinare certe proprietà delle sequenze geniche. Le

proteine sono le macromolecole essenziali per il funzionamento della cellula e sono

composte da sequenze di amminoacidi definite dal DNA. La sequenza degli ammi-

noacidi dipende dalla successione delle quattro basi azotate nella parte del gene.

Conoscendo questa, riusciamo a determinare la catena degli amminoacidi con le sue

proprietà e la sua conformazione spaziale. Tuttavia, conoscendo le proprietà delle

proteine, non è chiaro da quale catena di basi azotate esse provengano. Quindi

può essere conveniente usare gli algoritmi basati sui modelli markoviani per de-

terminarle. Questi modelli risultano spesso essere più efficaci rispetto alla ricerca

sperimentale. Gli argomenti di biologia vengono esaminati nel Capitolo 4.

Le sequenze geniche del DNA sono composte dalle parti che codificano l’informazione
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per la sintesi proteica e quelle che non codificano informazioni particolari, cioè le

parti coding e non coding. Le parti non codificanti vengono escluse durante il pro-

cesso. Siccome le parti coding e non coding hanno alcune proprietà diverse, anche

qui vengono usati i modelli markoviani nascosti per determinare l’informazione

non osservabile, cioè determinare quali sono gli stati che hanno la più alta proba-

bilità di essere coding o non coding.

Nel determinare la soluzione di questi problemi si utilizza l’algoritmo di Viterbi.

Questo è stato introdotto da Andrew Viterbi nel 1967. L’algoritmo cerca di de-

terminare la sequenza più probabile di stati nascosti, data una sequenza di osser-

vazioni ed un modello. L’idea è quella di considerare tutte le possibili sequenze di

stati nascosti e scegliere quella con la probabilità più alta. Siccome questo non è

conveniente computazionalmente, Viterbi propose di determinare le probabilità di

alcuni tipi particolari di sottosequenze per determinare quella più verosimile medi-

ante l’algoritmo ricorsivo. L’algoritmo viene descritto più in dettaglio nel Capitolo

5.

Si conclude con la descrizione di un algoritmo simile a quello di Viterbi che a

differenza di quest’ ultimo, dato un modello, viene utilizzato per determinare la

probabilità di ottenere una sequenza di osservazioni o. Questo viene chiamato al-

goritmo forward. L’algoritmo mediante la ricorsione e le sequenze parziali calcola

la probabilità che il modello produca la sequenza osservata.
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Chapter 1

Markov chains

1.1 Definitions

We will first introduce a few general notations that characterise probabilistic ex-

periments and their results.

The stochastic process X is a family {Xa : a ∈ A} of random variables in-

dexed in the set A. Stochastic processes can be divided into a few categories. One

possible classification can be done according to the cardinality of the set A. One

can refer to A as either a discrete-time or a continuous-time process depending on

whether A is discrete or continuous, respectively.

A family of random variables might be seen as a probabilistic experiment, in which

the values of the random variables are the outcomes of the experiment. Let S be

the set of the values of the random variables Xa. We will refer to S as the state

space.

Now we will assign a restrictive condition to the general definition of a stochastic

process. We will obtain a new family of stochastic processes, Markov chains.

Let us consider a sequence of random variables {Xn}∞n=0 which takes values in

1



2 1. Markov chains

the countable set S. The sequence {Xn}∞n=0 is called a Markov chain if

P (Xn+1 = jn+1|X0 = j0, X1 = j1, ..., Xn = jn)

= P (Xn+1 = jn+1|Xn = jn)

for all n ≥ 0 and j0, ..., jn+1 in S.

This condition is called the Markov property.

This means that a sequence of random variables satisfying this property has the

probability of the future event Xn+1 = jn+1 conditioned only by its present state

Xn = jn and not by all its past (and present) states X0 = j0, ..., Xn = jn.

Homogeneous chains are a particular type of Markov chains. A chain is said

to be homogeneous if its transition probabilities are stationary, which means that

they do not depend on time. The probabilities only depend on j and i and not on

n,

P (Xn+1 = j|Xn = i) = P (X1 = j|X0 = i).

This means that the probability distribution does not change over time.

For example, flipping a coin does not change the coin and the probabilities of

obtaining heads or tails always remain the same.

Hereafter we will only consider homogeneous Markov chains, unless specified oth-

erwise.

1.2 Transition probabilities

When describing the behaviour of a Markov chain, we must define the probability

of its state at the beginning, the initial distribution, and the probabilities of the
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state i transiting to the next state j. If we know these things, the chain is charac-

terized completely.

The probabilities of transiting from the state i to j are called the transition

probabilities:

pij = P (Xn+1 = j|Xn = i).

The transition probabilities can be displayed in a transition matrix P = (pij).

This is an |S|×|S| matrix of the conditional probabilities. It is a stochastic matrix,

which means that the entries of the matrix are greater or equal than 0 and the

sum of the rows of the matrix is always equal to 1, e.g., pij ≥ 0 and Σjpij = 1.

1.3 Examples

An example of a Markov chain is a simple random walk.

The state space is defined to be S = {0,±1,±2, ...} and the transition proba-

bilities are given by P (Xn+1 = j+1|Xn = j) = p, P (Xn+1 = j−1|Xn = j) = 1−p
and 0 otherwise.

This means that the probability of moving forward is p and the probability of

moving one step back is 1 − p. No other transition probabilities are defined, so

we can assume these to be zero, in particular the probability of remaining at the

same position is zero as well.

The transition matrix is infinite and has zeros on the diagonal, p above the diag-

onal (the elements p01, p12, p23, ... of the matrix), 1 − p under the diagonal (the

elements p10, p21, p32, ...) and zeros otherwise.

We can represent this graphically as in Figure 1.1.
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Figure 1.1: A simple random walk.

A binary Markov chain is a mechanism that produces zeros and ones. Its state

space is given by S = {0, 1} and its transition matrix is P =

(
1− p p

q 1− q

)
.

When the chain is at state 0, the probability of returning to state 0 on the next

step is 1 − p, and the probability of discovering the chain in state 1 in the next

step is p. Respectively, for state 1, the probability of returning to 1 on the next

step is 1− q and to gain 0 is q.

The graphical representation follows in Figure 1.2.

Figure 1.2: A binary Markov chain.

Another example.

Let us take the sequence {Xn}∞n=0 of independent and identically distributed ran-

dom variables such that P (Xk = 1) = p and P (Xk = 0) = 1− p.

Let us define Yn = X1 + ...+Xn and Y0 = 0.
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How can we prove whether the sequence {Yn}∞n=1 given by Yn is a Markov chain

or not? We shall check whether the Markov property holds.

First of all, we observe that Yn−1 is function of Xn−1, Xn−2, ..., X0 and that these

are supposed to be independent. We now use this observation in the statement

that follows.

P (Yn = yn|Yn−1 = yn−1)

= P (Yn−1 +Xn = yn|Yn−1 = yn−1)

= P (Xn = yn − yn−1|Yn−1 = yn−1)

= P (Xn = yn − yn−1) [← by the observation]

Now let us observe that

P (Yn = yn|Yn−1 = yn−1, ..., Y0 = y0)

= P (Yn−1 +Xn = yn|Yn−1 = yn−1, ..., Y0 = y0)

= P (Xn = yn − yn−1)

We see that these two values are equal. This means that the Markov property

holds and, accordingly, {Yn}∞n=1 is a Markov chain.

A counterexample.

We want to find out when a random process is not a Markov chain.

Let us consider the same notation and distribution from the example above. Now

we set Sn =
∑n

i=1Xi and S0 = X0. Let also Yn = S0 + S1 + ...+ Sn.

Is {Yn}∞n=1 a Markov chain?

Proceeding as in the previous example, we see that

P (Yn = yn|Yn−1 = yn−1, ..., Y0 = y0) = P (Xn =

yn − yn−1 −Xn−1 − ...−X0|Yn−1 = yn−1, ..., Y0 = y0)
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but since this is not independent from yn−1, we cannot use the observation we have

seen and, thus, this might not be a Markov chain.

Let us try to find a specific counterexample.

We consider a sequence of Xi such that

X0 = 0, X1 = 1, X2 = 0, X3 = 0,X4 = 0 X5 = 1.

In this case the Si is following:

S0 = 0, S1 = 1, S2 = 1, S3 = 1, S4 = 1, S5 = 2.

Respectively, for the Yi,

Y0 = 0, Y1 = 1, Y2 = 2, Y3 = 3, Y4 = 4, Y5 = 6.

Now, let us observe that

P (Y5 = 6|Y4 = 4, Y3 = 3)

= P (X5 = y5 − y4 −X4 −X3 −X2 −X1 −X0|Y4 = 4, Y3 = 3)

= P (X5 = 6− 4− 1|Y4 = 4, Y3 = 3)

= P (X5 = 1) = p.

But if {Yn}∞n=1 was a Markov chain, it would also have been true that P (Y5 =

6|Y4 = 4) = p.

Let us compute this.

P (Y5 = 6|Y4 = 4)

= P (X5 = y5 − y4 −X4 −X3 −X2 −X1 −X0|Y4 = 4)

= P (X5 = 6− 4− 2|Y4 = 4)

= P (X5 = 0) = 1− p.

This is obviously not the same as P (X5 = 1) = p for every p between 0 and

1, so {Yn}∞n=1 is not a Markov chain.
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1.4 Conditional probability

Joint probability distribution

How does the probability of event A change if we know that another event B oc-

curs? This intuitive question might be answered using the definition of conditional

probability.

We define the conditional probability of event A, given the probability of an

event B as

P (A|B) :=
P (A ∩B)

P (B)

for P (B) > 0.

Thus, the conditional probability of event A, given the occurrence of event B,

is the ratio between the probability of the intersection between these two events

and the probability of B itself. Of course, this makes sense only if P (B) is greater

than 0.

We want to see how we can express P (X0 = j0, X1 = j1, ..., Xn−1 = jn−1, Xn = jn)

using this identity and the Markov property.

P (X0 = j0, X1 = j1, ..., Xn−1 = jn−1, Xn = jn)

= P (Xn = jn|X0 = j0, ..., Xn−1 = jn−1)P (X0 = j0, ..., Xn−1 = jn−1)

= P (Xn = jn|Xn−1 = jn−1)P (X0 = j0, ..., Xn−1 = jn−1)

= pjn−1jnP (X0 = j0, ..., Xn−1 = jn−1)

= ...

= pjn−1jnpjn−2jn−1 ...pj0j1p
(0)
j0

where p
(0)
j0

is the initial probability of j0, p
(0)
j0

= P (X0 = j0).

This is called the joint probability distribution. Eventually,
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P (X0 = j0, X1 = j1, ..., Xn−1 = jn−1, Xn = jn) = p
(0)
j0

∏
k pjk−1jk .

1.5 K-th order Markov chains

Chapman-Kolmogorov equation

There are sequences of random variables whose future event does not only depend

upon the present state but that might have also some other restrictions, that go

back to the past. Let us see how it is possible to apply the concept of Markov

chains to this class of sequences of random variables.

Let us consider the sequence of random variables {Xn}∞n=0 taking values in a count-

able set S. The sequence {Xn}∞n=0 is called a k-th order Markov chain if

P (Xn+1 = jn+1|X0 = j0, X1 = j1, ..., Xn = jn)

= P (Xn+1 = jn+1|Xn+1−k = jn+1−k, ..., Xn = jn)

for all n ≥ 0, j0, ..., jn in S, and k a positive integer. Thus, the future event Xn+1

depends on the last k states of the chain. An ordinary chain defined in the past

section is then referred to as a first order Markov chain.

Let us denote

pij(n) = P (Xm+n = j|Xm = i)

for all n ≥ 1 and j0, ..., jn in S. This is the representation of the state of the chain

on its n-th step and thus these are called the n-step transition probabilities.

One can observe that these quantities do not depend on m, as the chain is homo-

geneous.

Similarly, pij(m+ n) = P (Xm+n = j|X0 = i).

Let us introduce the following identities:

1) the law of total probability:
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P (X) =
∑

k P (X|Ak)P (Ak)

2) the formula of conditional probabilities:

P (A ∩B|C) = P (A|B ∩ C)P (B|C).

Using these and the Markov property,

pij(m+ n) = P (Xm+n = j|X0 = i)

=
∑

k P (Xm+n = j,Xm = k|X0 = i)

=
∑

k P (Xm+n = j|Xm = k,X0 = i)P (Xm = k|X0 = i)

=
∑

k P (Xm+n = j|Xm = k)P (Xm = k|X0 = i)

=
∑

k pkj(n)pik(m)

=
∑

k pik(m)pkj(n).

The equation

pij(m+ n) =
∑

k pik(m)pkj(n)

is called the Chapman-Kolmogorov equation. It expresses the probability of

transiting from i to j in m+n steps as the sum of all the possible transitions from

state i to states k in m steps and from k to j in n steps.

It can also be represented using the matrix notation as

P (m+ n) = P (m)P (n).

By induction, since P 0 = I, P 1 = P , P 2 = PP , ..., one observes that

P (n) = P n.

Thus, the Chapman-Kolmogorov equation can be expressed as

Pm+n = PmP n.
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1.6 Invariant distribution

A chain is described completely by its transition probabilities and the probability

of its initial state. The transition probabilities have been defined and discussed

above. Let us now define the initial distribution as

π(0) = (P (X0 = 1), ..., P (X0 = J)) = (p
(0)
1 , ..., p

(0)
J ).

Similarly, we set

π(n) = (p
(n)
1 , ..., p

(n)
J ) = (P (Xn = 1), ..., P (Xn = J)).

This notation represents the vector of probabilities of finding the chain at time n

in state j, for j = 1, ..., J .

We will now introduce two other definitions.

First, a Markov chain is said to be stationary if p
(n)
j does not depend on n,

which means that it is independent from time.

Second, a distribution π = (π1, ..., πJ) is called invariant if it holds that p
(0)
j = πj

implies p
(1)
j = πj.

Let us now make a few observations about invariant distributions.

First of all, for any distribution, it is true that

π(n) = π(n− 1)P .

In fact, the equality holds, as p
(n)
j =

∑
k p

(n−1)
k pkj, applying the Chapman-Kolmogorov

equation.

Second, if π is invariant, then

π = πP .
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If π is invariant, then the result is π = π(0) = π(1), and as π(n) = π(n − 1)P ,

π(1) = π(0)P = π(0), and thus π = πP .

Vice versa, if π = πP , then π(1) = π(0)P = π(0) and then the distribution is

invariant.

Lastly, every Markov chain with a finite state space has at least one invariant

distribution.

In fact, let π = (1/J, ..., 1/J).

Than

Pπ =


p11 · · · p1J

...
. . .

...

pJ1 · · · pJJ




1/J
...

1/J

 =


1/J

∑
j p1j

...

1/J
∑

j pnj

 =


1/J

...

1/J

 = π

since
∑

j pij = 1 for every i.

We now want to discuss what the conditions are for the uniqueness of such

a distribution. First of all, we study the long-term behaviour of the chain.

1.7 Ergodic, irreducible, aperiodic chains

We want to examine how the chain behaves over the long term. We now seek the

position in which we find the chain after n steps and try to understand whether the

chain converges at a specific distribution. Let us see whether particular conditions

can be set such that every chain possessing these conditions will tend to a unique

invariant distribution.

A chain is said to be ergodic if there is a distribution a = (a1, ..., an) such that a

is the limiting distribution for a distribution π(n), e.g.,

limn→∞ π(n) = a.
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If a is a limiting distribution, then it is also the invariant distribution:

a = limn→∞ π(n)

= limn→∞ π(n+ 1)

= limn→∞ (π(n)P )

= (limn→∞ π(n))P [← since we suppose the state space to be finite]

= aP .

We note that this holds for any initial distribution π(0).

It is important to understand whether some states of the chain have anything

in common and examine some further properties of the states. We will try to find

out what these smaller parts of the chain are and how they can help us to study

the whole chain.

We say that state i can be reached from state j if there is an n such that pij(n) > 0.

The two states i, j are said to be communicating if the state i can be reached

from j and the state j can be reached from i.

A matrix of the chain is called irreducible if all the states are communicating.

We define a period d(i) of a state i the greatest common divisor of the times

when the chain returns to the state i, starting from i,

d(i) = gcd{n > 0 : pii(n) > 0}.

A state is said to be periodic or aperiodic if d(i) > 1 or d(i) = 1 respectively.

We note that all the communicating states have the same period.

An example: The simple random walk has the period 2.

Let us consider a Markov chain with finite state space S and stationary

transition probabilities, e.g., independent of n. If pij > 0 for all i,j, then
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limn→∞ pij(n) = πj

which means that the n-step transition probabilities converge at the stationary

distribution π for n tending to infinity. The rows of the n-step transition matrix

converge to the vector of the stationary distribution.

Let us consider an aperiodic irreducible Markov chain on a finite state

space. Then there is a unique distribution π such that

limn→∞ pij(n) = πj

for all i,j.

An example

Let us consider a Markov chain with transition matrix P =

(
1− p p

q 1− q

)
with

state space S = {0, 1}. The distribution

π =

(
q

q + p
,

p

q + p

)
is an invariant distribution for P .

Now we want to see how we may compute it. The first step is to calculate P n and

then let n→∞. The easiest way to compute P n is to calculate the eigenvalues of

P .

The eigenvalues are λ1 = 1 and λ2 = 1 − p − q. Using the n-th power matrix

properties, this implies that a general element p
(n)
ij of P n is

p
(n)
ij = a1n + b(1− p− q)n

for some a and b. We must calculate these now.

For p11 one has it that p
(0)
11 = 1 since the probability to get back to the state 1 if we

start from 1 in time 0 is 1. From the general equation obtained above we see that
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p
(0)
11 = a + b = 1, by setting n = 0. Furthermore, p

(1)
11 = 1 − p = a + b(1 − p − q),

and so we get that

a =
q

p+ q
and b =

p

p+ q
.

By resolving similar equations for p12, p21 and p22 we obtain

P n =


p

(n)
11 p

(n)
12

p
(n)
21 p

(n)
22

 =
1

p+ q

(
q p

q p

)
+

(1− p− q)n

p+ q

(
p −p
−q q

)

and in the long term for n tending to infinity

P n n→∞−−−→ 1

p+ q

(
q p

q p

)
.

This implies that π, the invariant distribution, is

π =

(
q

p+ q
,

p

p+ q

)
.

By direct computation one can establish that

π = πP .

This is the long-term behaviour of the chain. It tends to the unique invariant

distribution we computed above. When we let n→∞, π is the representation of

the percentage of time that the chain spends in each state.

Counterexamples.

If the chain is periodic, there is no convergence, as the next simple example shows.

On S = {0, 1} with P =

(
1 0

0 1

)
, P 2k+1 =

(
0 1

1 0

)
and P 2k =

(
1 0

0 1

)
.

If the chain is reducible, there might not be the uniqueness of a stationary distri-

bution.
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On S = {1, 2, 3} with P =


a b c

0 1 0

0 0 1

 every distribution has to satisfy the equa-

tion π = πP to be stationary. But if a distribution satisfies the equation, it is

such that π1 = aπ1, π2 = bπ1 + π2 and π3 = cπ1 + π3. This means that every

distribution π̃ = (0, p, 1 − p), for 0 ≤ p ≤ 1, is stationary, and thus there is more

than one stationary distributions.
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Chapter 2

Learning of Markov chains

2.1 Introduction

A model is a simplified description of a phenomenon. It represents data or infor-

mation observable in the real world. Since the real world is not perfectly describ-

able by the models, we must express a particular range of the uncertainties for

each model. Likewise, all the possible parameters of the model must be examined.

To completely describe a phenomenon, one must define all the possible models

and learn the parameters and the uncertainties. After having studied these, one

can find out what the best possible model for the phenomenon is. The operation

of defining the best model is called learning. We want to see how this is applicable

in the field of Markov models.

As we have seen before, a phenomenon described by a Markov chain, to be de-

fined completely, must be specified by a transition matrix and an initial distribu-

tion. Let us consider the transition matrix Θ = (θij) and an initial distribution

p
(0)
j0

= P (X0 = j0). We call P (x|Θ) the family of models for a training sequence

x = (j0j1...jn), with x ∈ Sn+1, j0, j1, ..., jn outcomes of a Markov chain {Xn}∞n=0,

given the transition matrix Θ.

17
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Next, we will discuss how to find the best model of the defined family. We will

start with the definition of the likelihood function.

2.2 Likelihood function

The probability function predicts unknown outcomes based on known parame-

ters. We have seen before that

P (x|Θ) = P (X0 = j0, X1 = j1, ..., Xn−1 = jn−1, Xn = jn) = p
(0)
j0

∏
k θjk−1jk .

Let us now introduce the likelihood function L(Θ|x)

L(Θ|x): = P (x|Θ).

According to this definition, in contrast to the probability function, this is a func-

tion that predicts unknown parameters based on known outcomes.

Note: The likelihood function L(Θ|x) is often written just as L(Θ).

One can omit the initial distribution p
(0)
j0

and consider it a part of the problem.

By this assumption,

L(Θ) =
∏

k θjk−1jk .

It is often more convenient to use the addition notation, and when the numbers

are too small, it is more advantageous to do the computations using the logarithm

functions.

Thus, we define the log-likelihood function as

l(Θ) = ln(
∏

k θjk−1jk) =
∑

k ln(θjk−1jk).

The likelihood function predicts the unknown parameters of the model θij based

on the known outcome of a probabilistic experiment x. We do not know the exact
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value of θij but we can estimate its ”true value”. Let us denote the true value as

θ0. One of the possible methods of the estimation is maximizing the likelihood of x.

2.3 Maximum likelihood

Let us consider the sequence x = (j0j1...jn), the outcomes of an experiment. We

will now establish a few notations that will be used subsequently.

Let us first define Nij the number of l such that jl−1 = i, jl = j, 1 6 l 6 n.

We also set Ni the number of l such that jl = i, 1 6 l 6 n− 1.

The meaning of these two numbers is as follows: Nij is the number of passages

from state i to state j in x and Ni is the number of visits to the state i, excluding

the final instance.

Using the notation introduced above, the likelihood function can then be writ-

ten as

L(Θ) =
∏

k θjk−1jk =
∏

i

∏
j θ

Nij

ij .

Similarly for the log-likelihood,

l(Θ) =
∑

i

∑
j Nij ln(θij).

The maximum likelihood estimate is denoted by θ̂ij. It is defined as

θ̂ij = arg max0≤θ≤1 P (x|Θ = θ).

It can be proved that

θ̂ij =
Nij

Ni

, for all i, j.

Let us see this better in detail. The transition matrix is defined as Θ = (θij). Let

us set



20 2. Learning of Markov chains

θi = (θi1, ..., θin).

As this is a stochastic matrix, it is necessary that
∑

j θij = 1. Now let us calculate

the maximum likelihood estimate for θi.

By the definition,

θ̂i = arg maxθij P (x|θi) = arg maxθij θ
Ni1
i1 ...θNin

in

where j = 1, ..., n.

To make the computations clearer, let us set

θi = t, θij = tj, Ni = M and Nij = Mj

for one particular i. Note that in these conditions,
∑

j tj = 1. Now, the equation

above becomes

t̂ = arg maxtj P (x|t) = arg maxtj t
M1
1 ...tMn

n

for j = 1, ..., n.

By the definition of the log-likelihood

l(t) = l(t1, ..., tn) = lnP (x|t).

We now want to find the maximum of this value. This will be the solution of the

problem.

It can be solved by partially differentiating the log-likelihood. But, as the con-

straint
∑

j tj = 1 is known, only n − 1 of the variables are free. Thus, we can

set

l̃(t1, ..., tn−1) = l(t1, ..., tn−1, 1− (t1 + ...+ tn−1)).

By the definition
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l(t1, ..., tn−1, 1− (t1 + ...+ tn−1)) =

M1 ln(t1) + ...+Mn−1 ln(tn−1) +Mn ln(1− (t1 + ...+ tn−1)).

We can take the partial derivatives of this value and set them to 0, as we want to

find the maximum:

∂l̃

∂tj
(t1, ..., tn−1) =

Mj

tj
− Mn

1− (t1 + ...+ tn−1)
= 0.

By resolving a similar equation for all j from 1 to n, we obtain

M1

t1
=
M2

t2
= ... =

Mn

1− (t1 + ...+ tn−1)
=: λ.

We call the common value λ. Then

tj =
Mj

λ

for j = 1, ..., n. But since we know that
∑

j tj = 1, then

∑
j

Mj

λ
= 1

this is ∑
jMj

λ
= 1

and so

λ = M .

This means that t̂j =
Mj

M
and t̂ = (t̂1, ..., t̂n) = (

M1

M
, ...,

Mn

M
).

Note: To check that this is a maximum one needs to take the second order deriva-

tives.

Returning to the original notation from the beginning where θij = tj,

θ̂i = (θ̂i1, ..., θ̂in) = (t̂1, ..., t̂n) = (
M1

M
, ...,

Mn

M
) = (

Ni1

Ni

, ...,
Nin

Ni

).
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The procedure of calculating the maximum likelihood is the method of learning

the most likely value of the parameter Θ. This procedure estimates the unknown

parameters of the probability distribution from the given data. There are also

other methods of estimating the distribution of Θ, such as model averaging.

An example.

Let us consider a sequence of outcomes of a probabilistic experiment - in this case,

a coin flip - with possible results H for heads or T for tails. Suppose that the

tosses are independent. Let us suppose the result of the coin toss is the sequence

(HTTHH). The probability distribution is given by

P (Xi = H) = θ = 1− P (Xi = T ).

The coin is not necessarily fair, so the probabilities to obtain H or T are not equal

and θ varies between 0 and 1.

What is the most likely value for θ, given the outcomes (HTTHH)? First, we

calculate the probability of the sequence of the coin tosses. We can compute it as

P (HTTHH) = θ(1− θ)(1− θ)θθ.

Thus,

L(Θ|x) = P (x|Θ) = θ(1− θ)(1− θ)θθ.

To obtain the maximum likelihood, we need to take the derivative of the quantity

obtained above. Taking the derivative of L(Θ|x) one gets

θ̂ = 0.6.

This is the maximum likelihood estimation for the unknown parameter θ, given

the observable outcomes, the sequence (HTTHH).

2.4 Consistency of the maximum likelihood

We will now discuss when the maximum likelihood computation is useful. Does

an estimate of the likelihood always converge at the value of θ0? How can we use
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the value maximum likelihood to obtain the true value of an unknown parameter?

We define an estimate θ̂ of the likelihood to be consistent if θ̂ → θ0 in probability.

To derive some other results, we first state the law of large numbers. This

is an important aspect of probability theory that deals with sums of random vari-

ables. Let us take the independent and identically distributed random variables

X1, ..., Xn such that |E(X1)| <∞. Then

X̄n =
X1 + ...+Xn

n
→ E(X1) in probability,

or equivalently,

∀ε > 0 P (|X̄n − E(X1)| > 0)→ 0 as n→∞.

Let us now make an observation: It can be proved that the law of large numbers

holds for ergodic Markov chains.

Now, let {Xn}∞n=0 be an ergodic Markov chain taking values in S = {1, 2, ..., J},
with the invariant distribution π = (π1, ..., πJ). If φ is a measurable, bounded, real

valued function on S × S, then

limn→∞
1
n

∑n
j=1 φ(Xj−1, Xj) = EΘ[φ(X0, X1)] =

∑
i

∑
j φ(i, j)πiθij.

.

Now we want to discuss when the value of the maximum likelihood converges to

the true value we want to identify. We have seen before that the estimation of the

maximum likelihood is θ̂ij =
Nij

Ni

. Applying the law of large numbers for ergodic

Markov chains with a suitable function φ we get that

θ̂ij → θ0.

Thus, we have found out that the condition for a chain to have the value of the

maximum likelihood Θ̂ converging to the true value Θ0 is that it must be an ergodic

Markov chain.
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Chapter 3

Hidden Markov Models

3.1 Introduction

Up until this point, we were speaking about processes in which all the outputs

corresponded to an actual state that was recognizable. These are referred to as

observable Markov models. Since the conditions set above might be too restrictive

for real applications, we want to introduce a new family of more complex models.

A hidden Markov model is a stochastic process generated by two probabilis-

tic mechanisms: a finite state Markov chain and a set of random functions, each

associated to a state. When considering a hidden Markov model, one can only

observe the output of random functions, while the states of the Markov chain are

observable directly only through another set of processes.

3.2 Characteristics

When studying a hidden Markov model, we need to know some of its characteris-

tics. These are:

1) hidden Markov chain

25
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This is a homogeneous Markov chain {Xn}∞n=0 taking values in a finite state space

S = {1, 2, ..., J}. The transition probabilities of the chain are defined by

pij = P (Xn+1 = j|Xn = i)

and these give the transition matrix P = (pij), with pij ≥ 0 and Σjpij = 1. The

initial distribution

π(0) = (p
(0)
1 , ..., p

(0)
J )

is also specified. The Markov chain is said to be hidden because though we know

the probabilities of transiting from one state to another, we cannot see in which

state the chain is at a specific time.

2) observable random process

This is a random process {Yn}∞n=0 taking values in a finite state space O =

{o1, o2, ..., oK}. K does not necessarily equal J . The process is observable, we

can recognize the outputs of the functions. The conditional probabilities are given

by

bj(Ok) = P (Yn = Ok|Xn = j)

and these make part of the so called emission probability matrix B = (bjk). This

is also a stochastic matrix, so bj(Ok) ≥ 0 and Σkbj(Ok) = 1.

3) conditional independence

We assume that the emitted symbols are independent, given {Xn}∞n=0. Thus,

P (Y0 = O0, ..., Yn = On|X0 = j0, ..., Xn = jn, B) =
∏

l bjl(l).
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3.3 Examples

Coin toss.

Let us consider a sequence of coin tosses of two coins - a fair one (F ) and a biased

one (B). This is a hidden Markov model.

The transition of the coins is the hidden Markov chain with the state space

S = {F,B}. Its transition matrix is known. For example, if we know that on

the n-th toss Xn we use the fair coin, we know the probability p that it will be

used also on the n + 1-st toss and the probability 1 − p that the biased coin will

be used next.

We can observe the results of the tosses - heads (H) and tails (T ). This is an

observable process where O = {H,T}. Since one of the coins is biased, the se-

quence observed will not have the long term proportion between Hs and T s equal

to 0.5. Based on these observations it is not clear what exactly the sequence of

the states is, e.g., when the fair coin was used and when the biased the coin was

used. This is the hidden part of the model, only by seeing the results of the coin

tosses, it is not clear what the sequence of coins that have produced it is.

This model is demonstrated in the following example. Let P =

(
0.1 0.9

0.3 0.7

)

be the transition matrix of the coin states. Let also B =

(
0.5 0.5

0.8 0.2

)
be the

emission probabilities matrix.

Therefore, if the coin is fair, the probabilities to obtain heads or tails are equal,

bF (H) = 0.5 and bF (T ) = 0.5, while if the coin is biased, we have bB(H) = 0.8

and bB(T ) = 0.2. The probability of observing heads and tails clearly depends on

the coin used.

If we also set the initial distribution π(0) = (πF (0), πB(0)), we have character-
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ized completely the model. The reason why this is called a hidden Markov model

is that the states of the coins are not observable.

If we only consider a single coin, there is just one unknown parameter, namely

the probability of obtaining heads or tails. It is clear that when increasing the

number of coins, the number of unknown parameters increases as well. For exam-

ple, if we use two biased coins, we have 22 unknown parameters, for a system with

three biased coins it is 32 and so on. We can extend the example of the coin toss

to a more general case.

Urn and ball model.

Let us suppose to have J different urns, numbered 1, 2, ..., J , and K different

colours of balls. In each urn there are K balls, all of them of different colours. The

emission probability bnumber(colour) is given for each urn and each colour.

By a defined random process, we choose a ball from an urn. The process is the

hidden Markov chain, so we do not know which urn has been chosen. Then the

colour of the ball is registered and the ball is replaced to the same urn from which

it was selected.

Afterwards, according to the defined probabilistic mechanism, we pick another

urn, choose a ball and repeat the procedure. Thus, we obtain a sequence of ob-

served colours, o = (O1O2...) = (yellow, green, ...). The colour of the ball is the

observable random process. According to the colour sequence, one can use a spe-

cific algorithm and determine the most probable sequence of the numbers of the

urns from which the balls have been chosen. However, there is no such thing as

the correct state sequence.
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3.4 Influence Diagram

A hidden Markov model can be expressed by an influence diagram as shows

Figure 3.1.

Figure 3.1: Influence diagram.

The nodes Yi represent the observations we made. For a standard model, these are

independent. The only assumption we make is represented by the arrows in the

figure. This is the Markov property for {Xn}∞n=0, so that the state Xj+1 depends

only upon Xj.

We can only see the observations Yi while the states Xj are hidden. We can,

though, try to reveal them using the algorithms that will be discussed in the fol-

lowing sections.

3.5 Problems

Given a standard hidden Markov model, there are a few basic problems we want

to solve so that the model can be useful in applications.

The first question is the so-called likelihood problem. We can formulate the ques-

tion as follows: Given a sequence and a model, what is the probability that

the model has generated the sequence? To resolve this question, we can cal-

culate the probability of all the possible sequences that might have produced the
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observations and than choose the one with the highest probability. This might not

be easy for long sequences with lots of possible states, and we will see algorithms

that might facilitate this task later on.

This question can also be viewed as a scoring problem. The question would be:

How well does the model describe the phenomenon? We can give a score to each

of the models and according to this we can choose the best model for the phe-

nomenon we are modelling.

The second task is to try to understand what is the optimal hidden state se-

quence that produces the observations o = (O0...On), given a sequence of symbols-

observations. The most frequent way to do this involves finding the sequence

(j∗0 ...j
∗
n) that maximizes P (X0 = j0, ..., Xn = jn, Y0 = O0, ..., Yn = On|P,B, π(0)).

It is impossible to say what state the system is in when looking at the output,

since there are many sequences of the states that can generate the sequence of

symbols. Considering that all these have different probabilities, we want to find

the most likely one.

The difficulty here is to set the right criteria concerning what the optimal se-

quence actually is. We might be looking for the sequence of the most probable

single individual states, for the whole sequence of states with the highest proba-

bility or set some other criteria.

Lastly, one needs to find the model that is the most likely to produce the

sequence o = (O0...On). Given some data, we want to create the best model that

represents a phenomenon. We can improve the properties of the model so that it

has greater capability to model the sequences. This cannot be resolved analyti-

cally. Instead, we use a so-called training sequence. Based on this, we re-estimate

the parameters of the model and continue iteratively until we obtain the desired

parameter’s quantity.



3. Hidden Markov Models 31

It is important to reveal only the main features of the modelled data, not to

describe every single detail - otherwise, the model might become over-fitted and

not be able to generalise the data well enough.

Later, the first and the second problem will be discussed in detail.
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Chapter 4

Biology

4.1 The structure of the nucleic acids

A cell is the basic structural, functional, and biological unit of all known living

organisms. The biological information of all the organisms is contained in the

cell. There are two different types of genetic material: deoxyribonucleic acid and

ribonucleic acid.

The molecule of deoxyribonucleic acid (DNA) consists of two strands of nucleotides.

A nucleotide is the basic element of the acid. It is made of a nitrogenous base, a

sugar and a phosphate group. There are two different types of nitrogenous bases:

the purines, adenine (A) and guanine (G), and the pyrimidines, cytosine (C) and

thymine (T). The bases of the two strands form hydrogen bonds between them-

selves - namely, guanine forms three hydrogen bonds with cytosine and adenine

forms two hydrogen bonds with thymine. These bonds are the cause of the char-

acteristic natural structure of DNA: the double helix. The bases are orientated

towards the inside of the helix, with the phosphate group and the sugar bone out-

side. Two strands of DNA run antiparallel and are held together by the hydrogen

bonds between the bases. The strands are complementary, so it is sufficient to

have the representation of just one of them to know the other one. The order of

the nucleotides in the strand is dependent on the way the genetic information is

33
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saved in the cell. Different organisms have different sequences of DNA in their cells.

RNA, ribonucleic acid, is a chain of nucleotides that forms a unique strand. The

bases here are adenine, guanine, cytosine and uracil (U). There are different types

of RNA, all having different functions inside the cell.

A gene is a sequence of DNA that can be transcribed into RNA and translated

into a string of amino acids called a polypeptide. Genes are made of two different

types of segments, exons and introns. The exons are the parts of the gene that are

later transformed into a polypeptide. The introns are the non-coding parts.

4.2 Proteins

Proteins are important cell macromolecules with a wide variety of functions vital

for the functioning of the cell, and they are involved in all intracellular phenom-

ena. They are composed of strings of amino acids, the polypeptides. There are 20

different amino acids in nature, and they can form thousands of different proteins.

Proteins are synthesised from DNA through the process of transcription and trans-

lation. First, the information encoded in DNA is transcribed onto mRNA with

the respective complementary bases. Later, the non-coding part of the sequence

of the gene is removed. A triplet, three bases of mRNA, is called a codon. On one

side, tRNA carries another triplet of bases. This is called an anticodon. The bases

of the anticodon are complementary to the bases of the codon on mRNA. The

other end of the tRNA carries an amino acid. The amino acid is specific for each

codon. In the process of translation, the amino acids are joined together to form

a protein. The amino acids are labelled by three letters, depending on their names.

The nature and the properties of the proteins change depending on the sequence

of amino acids. Also, the sequence influences the 3D form of the protein. There
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Figure 4.1: The translation and transcription process.

are different levels of organisation of the molecule. The first level is a simple linear

sequence of amino acids. The sequence folds further according to what amino acids

it is made of, as these form bonds among themselves, and forms a 3D secondary

structure. An example of a secondary structure is an alpha helix or a beta sheet.

Figure 4.2: Secondary structure of a protein.

There are 4 different nitrogenous bases, and they can form 43 = 64 different

triplets, but there only are 20 amino acids, so for each amino acid there are differ-

ent codons, as shown in Figure 4.3. There is one codon that initiates the protein
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synthesis and three possible codons to end it.

Figure 4.3: Aminoacids and codons.

Note: If the sequence of the bases is known, we are able obtain the sequence

of the amino acids and understand the structure and the function of the protein.

If only the structure of the protein is known, we do not precisely know the sequence

of the bases.

4.3 Sequences

For biological purposes, it is important to understand whether two sequences of

proteins, DNA or RNA have some structural or evolutionary similarities. There-

fore, we want to align two sequences and find out whether there are any regions

that might share the same ancestor. If two sequences have some analogies, we say

they are homologous. We can compare two sequences by finding the number of

steps needed to transform one sequence to the other one.
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We align two sequences and see whether the corresponding symbols match, mis-

match or cannot be compared. This is translated into biological terminology as a

possible mutation, insertion or deletion of a part of a sequence.

We want to find the method of aligning the sequences with the lowest possible

number of steps needed to transform one to another and then evaluate whether

they are homologous or not.

It is important to note that in biology, if two symbols of two sequences do not

match, it does not necessarily mean they are completely different. It is necessary

to establish a scoring system that assigns certain values to symbols that are not

equal but that might have analogies anyway.

4.4 Hidden Markov models

How is the concept of hidden Markov models applicable in the field of biology? Let

us make a short and rather simplified description of the problems we are concerned

about.

Regarding the genome sequences, we have seen that a gene is made of introns

and exons. These have certain properties that differ from the others - namely, the

frequency of the occurrence of the four nitrogenous bases. We want to determine

which parts of the gene participate actively in the protein synthesis and use al-

gorithms to reveal the sections of the gene that are most likely to be introns and

the segments that might be exons. Hidden models are also useful in predicting

the protein secondary structure, in modelling families that have related DNA or

protein sequences and other problems.
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Chapter 5

Viterbi algorithm

5.1 The algorithm

We will now discuss the solution to the second problem. The question we want

to answer is: Given a sequence of symbols, what is the optimal hidden state

sequence?

We want to find the sequence that represents the best the observed symbols. There

is no correct sequence that solves this problem; however, we can set a few param-

eters, according to a few of our criteria, to be able to define which one is the best

solution, and based on these we can attempt to uncover the hidden sequence.

This can be done in many different ways - there are more possibilities of what

exactly can be meant by the optimal sequence. For our purposes, it makes sense

to look for the most probable sequence of states.

One other option is to seek a sequence of single states having the highest proba-

bility. In this case, the whole sequence might not be very likely to occur, as the

probability pij that one state follows another might be zero or very low. Thus, we

will now look for the solution for the problem defined in the previous paragraph,

trying to find the most probable sequence as a whole.
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The solution to this is the Viterbi algorithm, proposed by Andrew Viterbi in

1967.

The idea is to consider all the possible sequences and evaluate the probabili-

ties that these are generated by the model we defined. Eventually, one can choose

the one with the highest probability. This is the simplest possible idea. Since it is

computationally not very reasonable, one can proceed in the following way.

For every sequence of hidden states x = (j0...jn) we evaluate the probability for

the subsequence ending at the position i, for i = 0, ..., n, at a state l with a symbol

Oi by

pl(Oi) = bl(Oi) ·maxk{pk(Oi−1) · pkl}

where

pkl is the probability of transiting from state k to l, by the hidden Markov chain

with the state space S = {1, 2, ..., J}, as defined above,

pk(Oi−1) is the probability for the path ending at the position i − 1 at state k

with a symbol Oi−1,

and bl(Oi) is the emission probability of symbol Oi at the state l.

It is important to notice that it is often more convenient to use the logarithm

function and the addition notation for calculations, as probability values might be

too small for the calculus.

There are J possible states at the position i − 1 and, therefore J possible paths,

of which one has a higher probability. Thus, at the state i, there are J2 possible

states, since there are J states up to the step i−1 and other J possibilities for the

passage to the step i.
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Upon reaching the final state n, we look for the state with the highest proba-

bility from the previous step n− 1. Since there is only one such sequence, we can

return back to the state n− 1 to reveal the position at the state, and so on, up to

the state 0, tracking back the entire the sequence.

The algorithm consists of four steps.

It begins with the initialization:

pl(O0) = bl(O0) · p(0)
l

for all the states l from 1 to J . Since we also want to remember the best possible

sequence, that will be back-traced at the end of the procedure, a new array is

introduced:

ψ1(0) = 0.

The next step is to continue the operations recursively:

pl(Oi) = bl(Oi) ·maxk{pk(Oi−1) · pkl}

for all the states l from 1 to J , and all the positions i from 1 to n. We also continue

recursively recalling the ψ function:

ψi(l) = arg maxk{pk(Oi−1) · pkl}

for l from 1 to J , for i from 1 to n.

Then the termination follows. We set

P ∗ = maxl{pl(On)},

this is the highest probability at the last position,

and

Q∗i = arg maxl{pl(On)},



42 5. Viterbi algorithm

this is the state with the highest probability.

Lastly, we want to reverse the selected sequence. We do this using the ψi(l)

array we introduced at the beginning:

Q∗i = ψi+1(Q∗i+1)

for the positions i back from n− 1, n− 2, ... to the beginning 0.

5.2 An example

Let us consider a hidden Markov model as in Figure 5.1.

Figure 5.1: Hidden Markov Model.

According to the figure, the state space is made of the states S = {L,H} and

the random process, which in this case might be a DNA sequence, takes values in

O = {C,G, T,A}.

Let us consider a sequence of the observed symbols o = (GCAGGATA). Now, we

know that there might be many possible sequences of the states hidden under this

observation.

One of them, for example, might be s = (LLHHLHHH).
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First of all, what is the probability that the model has produced the sequence

o through s? We can compute the probability, using the notations defined above,

as

P = p
(0)
L · bL(G) · pLL · bL(C) · pLH ... = 0.5 · 0.2 · 0.6 · 0.2 · 0.4...

Any other path of hidden states producing the sequence o will have a different

probability.

Then, to describe the most likely path, we use the Viterbi algorithm.

For example, using the formula for the probability of a subsequence introduced

above, one can calculate the probability of the most likely path ending at state H

with the observation A on the 3rd position:

pH(A[3]) = bH(A) ·max{pL(C[2]) · pLH , pH(C[2]) · pHH}.

One can compute these probabilities for both states H and L for all the positions.

At the last position, we seek the hidden state with the highest probability. Con-

sidering that in the algorithm the states are recalled through the ψ function, we

can reverse the sequence from the final state to the beginning using ψ.

Note: There are more efficient ways to calculate the probabilities then those de-

scribed above.
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Chapter 6

Forward-backward algorithm

6.1 Forward algorithm

We will now try to find a solution to the first problem. That is, given a model, what

is the probability of seeing the sequence of observations o = (O0...On)?

Let us first suggest the simplest possible answer to the question. It would be

easy to take every possible sequence of the hidden states x = (j0...jn) of length

n+ 1 and evaluate all the probabilities of all these sequences.

Let us try to solve this for one particular sequence. The probability of seeing

the observations is given by

P (o|x) =
∏n

i=0 P (Yi = Oi|Xi = ji) = bj0(O0)...bjn(On).

The probability of obtaining the sequence of the hidden states x is

P (x) = p
(0)
j0
pj0j1pj1j2 ...pjn−1jn .

Using the formula of the conditional probability

P (o, x) = P (o|x)P (x).

Then, considering all the possible sequences x,

45
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P (o) =
∑

x P (o|x)P (x)

and this can be written as

P (o) =
∑

ji
p

(0)
j0
bj0(O0)pj0j1bj1(01)pj1j2 ...bjn(On).

This is the sum of

the initial distribution probability p
(0)
j0

,

the transition probabilities form one state to another, pij,

the emission probabilities of the symbol Oi at the state jk, bjk(Oi).

Thus, we are summing up the initial probability, the probability of transiting

from the first state to the second one, the probability of observing the first symbol

at the second state, and so on.

This is the formal description of the intuitive computation of the probability of

obtaining a sequence of symbols, given a sequence of states, that we made in the

previous section. But this is not an efficient computation - it requires an order of

(n+ 1)J (n+1) calculations, as at every time from 0 to n there are J possible states

and for every state we need an order of n+ 1 calculations.

This is the reason we need a more efficient algorithm. We will now discuss

such an algorithm: The forward-backward algorithm.

Similar to our investigation of the Viterbi algorithm, we consider a partial se-

quence of observations from time 0 up to time i. Let us introduce a new variable

αl(Oi)

to be the probability of observing a subsequence of x up to the time i being at

state l at the time i. One can compute αk(Oi+1) by induction, using the ”forward”
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part of the algorithm.

It consists of 3 steps that are similar to those introduced before.

First of all, the initialization,

αl(O0) = πl(0)bl(O0).

For all the states l from 1 to J , this is the probability of finding the chain on the

first step at the state l and to observe the first symbol of the sequence at the state l.

Then the recursion follows,

αl(Oi+1) = (
∑

k αk(Oi) · pkl) · blOi+1

for all the states l from 1 to J and all the times from 1 up to n−1. Here, as usual,

pkl is the transition probability of the hidden states of the chain,

bl(Oi+1) is the emission probability of the symbol Oi+1 at state l,

αk(Oi) is the probability to obtain the subsequence (O0...Oi)

and by multiplying it by pkl we receive the probability of reaching state k and

of observing the sequence (O0...Oi).

By summing over k the αks we get the probability of reaching state k at time

i+ 1.

The final multiplication gives us the probability of observing the symbol Oi+1

at time i+ 1, given that the chain is at the state l.

The last step is the termination,
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P (o) =
∑

l αl(On).

This algorithm is computationally more reasonable than its simpler version from

the beginning in that it is of the order of (n + 1)J2 - for every time i there are

J possible states, no matter now long the sequence of the observations is. Using

this algorithm, we can obtain the probability that the model has produced the

observed sequence. This is the solution to the first problem.

6.2 Backward algorithm

The solution to the second problem is the computation of the most likely sequence

of hidden states. Let us now formulate a different criterion of the definition of the

optimal sequence. We will now calculate the sequence of the single most probable

states.

To calculate the probability of a hidden state, we do not only need the observations

previous to Oi, but also those following after the symbol Oi in the sequence, as

these influence the underlying states of the Markov chain as well.

Thus, we define the backward algorithm similarly to the forward part. We intro-

duce an array

βk(Oi)

as the probability of observing the partial sequence (Oi+1...On) given that at the

time i the chain is at the state k.

The algorithm is described in what follows.

First of all,

βk(On) = 1.
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This is an arbitrary choice for any state.

The recursion steps begin from the last time and return to the first time as follows,

βk(Oi) =
∑

l βl(Oi+1) · pkl · bl(Oi+1)

for all the times i from n− 1, n− 2, ... up to 0. This works similarly, except in re-

verse, as the forward algorithm, and the order of the computation is also the same.

Eventually, we can define the probability of being at state k at time i given the

observed sequence:

P (Xi = ji|o) =
αk(Oi)βk(Oi)

P (o)
=

αk(Oi)βk(Oi)∑
k αk(Oi)βk(Oi)

.

This is the probability of the sequence being in a particular time at a particular

state. If we compute this value for every state ji, we obtain the sequence of the

most probable single states.

The difference between this result and the Viterbi algorithm solution is that these

single states might have a small probability of following one another. They are

the most probable states individually, but the probability that this whole state

sequence has produced the observations might be very small.
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