
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Matematica

ANALYSIS AND PARTIAL SOLUTIONS

OF SECURITY PROBLEMS

IN AUTOMOTIVE ENVIRONMENTS

Tesi di Laurea Magistrale in Crittografia

Relatore:

Chiar.mo Prof.

Davide Aliffi
Presentata da:

Elisa Bragaglia
Correlatore:

Chiar.mo Dott.

Cosimo Senni

III Sessione

Anno Accademico 2013/2014

Introduzione

I moderni veicoli non sono piú ‘semplici’ macchine meccaniche, ma contengono una

miriade di diverse componenti elettroniche collegate tra loro. Sono i computer, oggi,

che coordinano e monitorano questi componenti, i sensori, il guidatore e i passegeri

per ottimizzare le prestazioni del veicolo e la sicurezza degli utilizzatori. Ma questa

transformazione ha introdotto anche una gamma di nuovi potenziali rischi: questioni

sulla robustezza e l’affidabilità della comunicazione tra questi dispositivi e la prevenzione

della loro manomissione devono essere sollevate.

Questo scritto mira a fare una panoramica di questi problemi in campo automobilistico

e delle soluzioni oggigiorno disponibili.

Partendo con una descrizione generale del circuito interno dell’auto, analizzeremo i suoi

punti di accesso, e discuteremo i danni prodotti dalla sua manomissione illecita.

In seguito vedremo se é possibile prevenire tali attacchi, dando un’occhiata alle soluzioni

disponibili e soffermandoci in particolare sui moduli crittografici e le loro applicazioni.

Infine, presenteremo l’implementazione pratica di un protocollo di autenticazione tra

ECUs e una dimostrazione matematica della sua sicurezza.

Niente di tutto ciò sarebbe stato possibile, senza l’azienda Magneti Marelli di

Bologna, dove ho passato gli ultimi cinque mesi come tirocinante del CTO (Chief

Technical Office) e dove ho studiato e appreso ciò che ora racconterò a voi.

Introduction

Modern vehicles are no longer ‘simple’ mechanical devices, but contain a myriad of

different electronic components networked together. Computers coordinate and monitor

these components, the sensors, the driver and the passengers to optimize the performance

of the vehicle and increase the safety of the users. But this transformation has also

introduced a range of new potential risks: questions about the robustness and reliability

of the communication between those devices and the prevention of their tampering shall

be raised.

This report aims to give an overlook of these problems in automotive environments

and the solutions today’s available.

Starting with a general description of cars internal network, we will analyze its entry

points and we will discuss the damages originated by its illicit alteration.

Then we will see if it’s possible to avoid these attacks, having a look at the available

solutions and considering in particular the cryptographic modules and their applications.

Finally we will report the practical implementation of an ECUs authentication protocol

and a mathematical proof of its security.

None of this would not have been possible without the Magneti Marelli Company

of Bologna, where I passed the last five months as a trainee of the CTO (Chief Technical

Office) and where I studied and learned what I’m gonna write now.

Contents

I Analysis of Threats 1

1 How car’s brain works 3

1.1 ECUs and CAN packets . 3

1.2 Challenge-Response Authentication and Parallel Attack 7

2 Tampering a car 11

2.1 How to enter into car’s network . 11

2.2 Inject CAN data . 24

2.2.1 The little practical experiment . 25

2.2.2 A case study . 30

2.2.3 Other Damages . 37

2.3 Other attacks . 39

Conclusions 41

II Current Solutions to the Automotive Security Problems 45

Short Introduction 47

3 SHE specification 49

3.1 Secret Keys and Secure Flash . 51

3.2 Authentication SHE Compliant Protocol 52

3.3 Comments and Security Observations 52

7

CONTENTS CONTENTS

4 Immobilizers Authentication 55

4.1 Key to EWS Authentication . 56

4.1.1 1998 Original Protocol . 56

4.1.2 One-Time Password Identification Protocols 57

4.1.3 Modern Key to EWS Authentication 61

4.1.4 Implementation Observations . 63

4.2 ECUs marriage: EWS to DME Authentication 63

Appendices 65

A Detect attacks: Bus Guardian 67

B One Time Programmable (OTP) memory 69

C Hardware Secure Module (HSM) 71

C.1 EVITA Transport Protocol . 75

D Code Signing Authentication 79

III A Practical Implementation of a Challenge-Response

Authentication Protocol 81

Why an authentication protocol? 83

5 The Authentication Protocol’s Requirements 85

5.1 ECUs Authentication Protocol

Functional Requirements Specifications 85

5.1.1 Affected Systems . 86

5.1.2 Functionality Overview . 87

5.1.3 Functionality Description . 88

5.1.4 Interface Diagram . 91

5.1.5 I/O Interfaces, NVM Parameters 92

5.2 MASTER Authentication Manager

Functional Requirements Specifications 92

5.2.1 Functionality Overview . 92

5.2.2 Functionality Description . 93

5.2.3 Interface Diagram . 93

5.2.4 I/O Interfaces, NVM Parameters 93

6 A model in Simulink and Stateflow 95

7 How to Prove the Security of an Authentication Protocol 101

7.1 MAP1 security proof . 102

7.1.1 Notations and previous definitions 102

7.1.2 Adversary’s resources . 103

7.1.3 The mathematical model . 104

7.1.4 MAP1 protocol . 105

7.1.5 Security proof . 107

7.2 Observations and Conclusions . 111

Final Conclusions 115

Glossary 117

Bibliography 119

Webography 123

Part I

Analysis of Threats

1

Chapter 1

How car’s brain works

1.1 ECUs and CAN packets

Today, electronics is more and more used in the automotive industry.

Mechanic devices make ways for millions lines of code and automated components that

test, analyze, and take decisions in order to allow the motion, optimizing at the same

time the total performance of the vehicle.

Security, consumption, emission, drivetrain, brakes, lighting and entertainment are only

some examples of systems that are submitted to the control of electronics.

A modern vehicle contains between 50 and 80 independent computers: the Electronic

Control Units (ECUs).

ECUs exchange data with sensors and communicate each other over one or more shared

internal network buses; fundamental for this study is the Controller Area Network

(CAN) standard: the CAN-bus.

Available transmission rates are low-speed (around 33Kbps), mid-speed (around 128Kbps)

and high-speed CAN-buses (around 500Kbps).

This interconnection between ECUs increases safety cause it allows to share safety

relevant information. For example pre-tensioning of seat-belts, detect skids, perform

anti-lock braking, etc. and allows some convenient features like automatically varying

radio volume as a function of speed.

At the same time, this architecture permits that, on a given bus, each component has

3

4 1. How car’s brain works

implicit access to every other component, and, since some ECUs are connected to more

than one bus, the final result is that if an adversary were able to compromise and control

a single ECU then this capability would be sufficient to control critical components across

the entire car.

The table below presents the main ECUs in a modern car.

Component Functionality

ECM Engine Control Module

Controls the engine using information from sensors to determine the amount of

fuel, ignition timing, and other engine parameters.

EBCM Electronic Brake Control Module

Controls the Antilock Brake System (ABS) pump motor and valves, preventing

brakes from locking up and skidding by regulating hydraulic pressure.

TCM Transmission Control Module

Controls electronic transmission using data from sensors and from the ECM to

determine when and how to change gears.

BCM Body Control Module

Controls various vehicle functions, provides information to occupants, and acts as

a firewall between CAN-buses of different speed.

Telematics Telematics Module

Enables remote data communication with the vehicle via cellular link.

RCDLR Remote Control Door Lock Receiver

Receives the signal from the car’s key fob to lock/unlock the doors and the trunk.

It also receives data wirelessly from the Tire Pressure Monitoring System sensors.

HVAC Heating Ventilation, Air Conditioning

Controls cabin environment.

SDM Inflatable Restraint Sensing and Diagnostic Module

Controls airbags and seat belt pretensioners.

IPC/DIC Instrument Panel Cluster/Driver Information Center

Displays information to the driver about speed, fuel level, and various alerts about

the car’s status.

Radio Radio

In addition to regular radio functions, funnels and generates most of the incabin

sounds (beeps, buzzes, chimes).

TDM Theft Deterrent Module

Prevents vehicle from starting without a legitimate key.

4

1.1 ECUs and CAN packets 5

On the CAN-bus the ECUs communicate with each other by sending CAN packets,

broadcast to all components on the bus; each component decides whether it is intended

for them or not.

There’re two forms of CAN packets: standard or extended.

(from: http://en.wikipedia.org/wiki/File:CAN-Bus-frame_in_base_format_

without_stuffbits.svg)

As we can see in the figure, in a standard CAN packet we find:

• 11/29 bits for the Identifier (standard or extended)

• 1 bit for the IDE (Identifier Extension): 0 for standard CAN, 1 for extended.

• 4 bits for the size of the data (from 0 to 8 bytes)

• 0 to 64 bits (8 bytes) maximum of data (in the above example: 1 byte)

We are not interested now in the other bits, so we will ignore them.

We can classify CAN packets in two main types: normal and diagnostic.

Normal packets are sent from the ECUs and can be seen on the network at any given

time; they could be information for other ECUs, commands for other ECUs to act on,...

Diagnostic packets are sent by diagnostic tools used by mechanic to communicate with

and interrogate an ECU and usually they are not present during the normal operation

of the vehicle.

5

http://en.wikipedia.org/wiki/File:CAN-Bus-frame_in_base_format_without_stuffbits.svg
http://en.wikipedia.org/wiki/File:CAN-Bus-frame_in_base_format_without_stuffbits.svg

6 1. How car’s brain works

For normal CAN packets the identifier identify the content of the message and, if more

packets are sent at the same time, it’s essential to decide the priority of the transmission:

the lower the number of the identifier, the higher the priority.

ECUs and devices don’t have a fixed ID, everyone could send multiple arbitrary IDs, so

it’s impossible, a priori, to know which ECU is sending or receiving a particular packet.

This fact makes reverse engineering traffic complicated, but, on the other hand, during

an attack, it guarantees the anonymity of the sender.

On the contrary, in the case of CAN diagnostic packets, each ECU has a particular

ID assigned to it, to recognize it and to decide the priority of transmission, and usually

their structure follow a precise international standard: one of the most common is the

ISO-TP(Transport Protocol).

This standard defines a way to send arbitrary length data over the bus, and the two

specifications ISO 14229 and ISO 4230 describe the format of the actual data sent.

We won’t see the standard in detail but it’s useful to know that one byte of the data

reports the service ID, that is the number of the service to implement.

Some of the most important services are:

• 0x10 - Initiate diagnostics

• 0x11 - ECU Reset

• 0x14 - Clear Diagnostic Codes

• 0x22 - Read Data by ID

• 0x23 - Read Memory by Address

• 0x27 - Security Access

• 0x2e - Write Data by ID

• 0x34 - Request Download

• 0x35 - Request Upload

• 0x36 - Transfer Data

• 0x37 - Request Transfer Exit

• 0x3d - Write Memory By Address

• 0x3e TesterPresent

6

1.2 Challenge-Response Authentication and Parallel Attack 7

1.2 Challenge-Response Authentication and Parallel

Attack

Let’s focus for a while on the SecurityAccess (0x27).

This one is used to authenticate someone (e.g. a device) to the ECU in order to access

some protected information or important commands (e.g. flashing ROMs).

The ECU and the device have a shared cryptographic function and a key:

1. the ECU sends to the device a seed

2. the device computes the seed, using the function and the key, and sends it back to

the ECU

3. the ECU makes the same computation and controls if the one it recieved is correct:

• if yes, the device is authenticated and his request is accepted

• if no, the request is ignored

This authentication protocol is an example of a more general process, called

‘Challenge-Response’, used in Cryptography to authenticate an entity to another.

In simple words, in the ‘Challenge-Response’ method, an entity Y that wants to prove

X’s identity, sends him a random number as a challenge. X, in order to be authenticated,

has to send back to Y the right response. The computation of the response depends on

the technique chosen (e.g. symmetric key, public key, digital signature,..), but in any

case it requires the use of a secret information that only X and sometimes Y know.

In the example above a symmetric key technique is used for a one way authentication,

with a random number as challenge.

Here is the scheme of this process: B has to prove A’s identity.

• rB is a random number

• A and B share:

– k, the secret key

– Ek,ID(x), Ek,ID is the cryptographic function/algorithm that computes rB

with k and user’s ID

7

8 1. How car’s brain works

Algorithm:

1. B takes a random number rB and sends it to A (challenge)

2. A calculates Ek,ID(rB) = Ek,ID(rB, k, IDA) and sends it to B (response)

3. B calculates Ek,ID(rB) = Ek,ID(rB, k, IDA) and controls A’s result: if it’s correct

the authentication is done.

Why is important to encrypt A’s ID with rB and the key?

One reason could be to avoid a ‘Parallel Session attack’ that, under certain

conditions, permits an attacker to be correctly authenticated, without knowing any secret

key.

Let’s see the steps of this kind of attack when we don’t use any ID during the coding

process:

E is an attacker and B the entity that E wants to cheat

1. E asks B to be authenticated

2. B answers with the challenge rB

3. E sends to B a request of identification, and then the same challenge rB

4. B in order to answer E’s request, calculates Ek(rB) and sends it to E

5. E sends back Ek(rB) to B

6. B verify E’s computation of its challenge and validates E’s identity

Result: an attacker is correctly authenticated with B.

8

1.2 Challenge-Response Authentication and Parallel Attack 9

Since in normal CAN communication a unique ID to identify a component is not

contemplated, we should pay attention not to fall in this kind of trap.

If each component has a unique ID, coding it with rB is effectively a solution; in fact, while

in step n.4 B answers with Ek(rB, IDB), E in step n.5 should answer with Ek(rB, IDA),

where A is the legitimate entity that E wants to impersonate, that means E needs IDA

and k to succeed.

9

Chapter 2

Tampering a car

2.1 How to enter into car’s network

Now that we know how the brain of our car works, let’s see how a malicious attacker

could have access to its network.

Let’s put ourselves in hacker’s shoes: here are some attacks that we can implement

growing in ability:

• Fuzzing: inject random or partially random CAN packets in the networks, in order

to create indiscriminate disruption and overload the BUS.

• Extract the firmware, reverse engineer its I/O code, and inject precise CAN

traffic.

• Create a malware with our malicious code, reflash an ECU in order to memorize

it: control/damage remotely and repeatedly the car.

In any case, primarily, we need to find a way to enter in car’s hidden system in order to

spy/inject CAN traffic: we need an ‘entry point’.

This figure summarizes how vehicles communicate with the outside world:

11

12 2. Tampering a car

(from [2])

It’s necessary to make a distinction between gates who require a prior physical

access (we need to insert something phisically in the car in order to inject data: e.g.

connect a data’s transmitter device to the OBD-II) and those who are susceptible to

remote compromise (we don’t need physical acces to the car: wireless communication).

Theoretically every gate in the figure represents a possible threat, but an attack to the

CAN-bus via prior physical access is considered less realistic, because someone that has

direct access to the vehicle could compromise it manually (e.g. cutting the brake lines),

saving time and study.

So, without forgetting any entry points, the second group is considered as the real future

threat and the interesting part.

Prior physical access

In the first group we find:

a. the OBD-II Port

12

2.1 How to enter into car’s network 13

• PassThru device

• CAN Hacking Tool

b. the Infotainment System

c. CD player, USB, iPod/iPhone docking port

a. The OBD-II Port

On Board Diagnostic is a term referring to the vehicle’s capability of self-diagnosing

errors and breakdowns.

The OBD-II port is the gate that permits to enter directly in the CAN-bus to read all

these information (very useful for our mechanic that doesn’t have to check manually

every component of the automobile!).

The OBD-II port

It’s inside the cabin, usually on the steering column, and it can be connected to a

common laptop to observe/steal/inject CAN packets and reprogram car’s ECUs.

We can find specific cables and adaptors, available on the market, that permit a direct

connection between the port and the computer; then we need a software on the laptop

able to create an interface to make readable the CAN flow.

Otherwise, it exists a device, called ‘PassThru device’, that connects a laptop

to the CAN-bus and provides an interface to communicate with it to reprogram some

13

14 2. Tampering a car

vehicle’s control modules.

Since the way to reprogram ECUs changes depending on the manufacturer, this device

can’t connect to all cars, but only with vehicles that accept reprogrammation via a

specific standard: the J-2534 (frequently used in North America).

There’s a cable joining the device to the OBD-II port, and a USB cable or a Wi-Fi option

to connect it to the laptop.

As the communication between the client application and the PassThru device is

unauthenticated, the second solution presents a big threat: everyone connected to the

same Wi-Fi line and with the same interface has access to the data, that means that, if

it’s not well protected, we can penetrate in the Wi-Fi line and try to control the car.

A limitation is that the device can communicate with one application at a time, so we

need to wait for the device to be connected but not in use.

Furthermore, we can compromise the PassThru device itself, implant malicious code and

then infect a great number of vehicles.

It’s also possible to install a malware in an infected car that corrupts every PassThru

device we will connect to.

Moreover it’s proven1 that a worm can pass from one PassThru device to another,

infecting any device in range.

While this device is quite expensive, another similar gadget has been built with less

than $20 (luckily is not on the market!):

Two Spanish security researchers, Javier Vazquez-Vidal and Alberto Garcia Illera, presented

on march 2014, at the Black Hat Asia security conference in Singapore, a device they

created, called CHT (CAN Hacking Tool). With less than $20 they built this object,

smaller than a smartphone, that can be physically connected to a car’s internal network

(OBD-II port), draws power from the car’s electrical system, and controls remotely

components of the car (which components it depends on car’s model) sending wireless

commands from an attacker’s computer.

For a practical demonstration video, see: http://goo.gl/sZxqUl

1source: [2], page 8

14

http://goo.gl/sZxqUl

2.1 How to enter into car’s network 15

b. The Infotainment System

The Infotainment System is the touchscreen interface that permits the driver to control

the options of his car (i.e. radio, CD player, Bluetooth, cell connection, GPS, ...).

Usually on this device runs an operation system (Windows CE, Linux,..); it’s possible

to enter the system and compromise it uploading executable files, apps and plugins.

It’s not faraway the day when the customer will be able to manage independently, e.g.

via Wi-Fi, the uploading of the software or the installation of apps.

As for the cell phone or the computer, everything we download from the network, if it’s

not well controlled and certified is a threat for the device’s security, so this situation

represents for the user higher danger to be duped and to install malicious programs.

If this device is not connected to the CAN-bus a hacker could potentially distract a

driver by blasting the stereo, or disable the navigation system, but these types of attacks

are more annoying than life-threatening (even if a spoofed GPS 2 could put you into a

hazardous situation: e.g. send you the wrong way down a one-way street).

Unluckily from this point of view, this connection already exists so the threat is real.

Moreover, the infotainment system is always connected to the telematics units that, we

will see, has a direct and dangerous access to the CAN-bus.

c. CD player, USB, iPod/iPhone docking port

Since the car’s media system ECU is frequently connected to the CAN-bus, all devices

it supports are indirectly connected to the CAN-bus too. So, in theory, if these devices

2source: [5] This article presents a study about how to spoof a GPS.

15

16 2. Tampering a car

permit the transmission of data to the ECU, understanding how it works, it is possible

to inject some malicious data in the CAN network via, for example, the CD player or

the USB port (via a USB flash drive or connecting an iPod/iPhone).

Speaking about the CD player, researchers at the University of California and the

University of Washington discovered two vulnerabilities, analyzing the unit: 3

• the media player capability of automatically installing firmware upgrades permits

the unit to:

– automatically recognize an ISO 9660(a file system standard)-formatted CD

with a particular name file

– present the user a cryptic message

– after the message, if a particular button is not pressed, reflash the unit with

the data contained in the file.

This capability allowed the researchers to reflash the media player ECU:

they created a CD taping on it that particular file and they let it play in the

CD player. The program inside the file reflashed the ECU in order to send some

selected message in the CAN-bus each time the unit recieved a specific message

over the FM RDS channel.

• a weakness in the firmware, in the input code for WMA files (see the article for

details) that permits to construct a WMA audio file and encode it in a CD: it plays

perfectly on a PC, but it sends chosen CAN packets in the bus, if played in the

car.

Remote compromise

In the remote compromise group we place all the devices that receive a wireless signal:

Over short range:

a. Bluetooth

b. Radio Frequency Identification (RFID):Immobilizer, Remote Keyless Entry and

3source: [2] pages 7, 12

16

2.1 How to enter into car’s network 17

Passive Keyless Entry and Start

c. Tire Pressure Monitoring System (TPMS)

d. Vehicle to Vehicle Communications (WiFi)

And over long range:

e. Global Position System (GPS)

f. Digital Radio

g. Traffic Message Channel (TMC)

h. Cellular Connection

a. Bluetooth

Bluetooth capabilities, built in the Telematics ECU, allow the user’s cell phone to connect

to the car.

A study 4 made by the University of Washington and the University of California

shows that every paired Bluetooth device could compromise the car’s telematics unit

and consequentially all the ECUs in the car. But, since the telematics interface and

system is custom-built, we don’t really know if the weakness found are generalizable to

any vehicles or only a few.

The researchers observed that during a Bluetooth configuration process some instructions

were copied using the strcpy function directly in the unit’s stack. The stack is a part

of the unit’s memory where data are temporarily stored, waiting to be analized and

executed by the program.

Since this copy is unchecked (i.e. none controls if the data copied are the real configuration

instructions), a previously paired Bluetooth device could penetrate in the system and

replace the good data with arbitrary ones (e.g. code that makes the unit send some

messages in the CAN-bus).

The researchers did so with a Trojan Horse application uploaded on a smartphone

running Android 2.1; the app was innocuous until they paired the smartphone to the

car’s telematics unit via Bluetooth, in this case it sent the attack payload, corrupting

the ECU.

Then we could examine the situation in the event that we don’t have a paired

4source: [2]: pages 8-9

17

strcpy

18 2. Tampering a car

Bluetooth device. It is proven 5 that it is possible to pair a device with a car

surreptitiously, if the car’s Bluetooth MAC address is known. This is the procedure

to do so:

• first we steal the car’s Bluetooth MAC address sniffing the Bluetooth traffic

of a device, previously paired to the car, that has its Bluetooth unit enabled

• then to pair our device, we should enter in the phone a secret PIN code, that

the car automatically generates and shows on the dashboard.

Since the car replays to the pairing request and generates the code automatically,

without driver’s approval, we have time to brute force it without letting the drive

suspect anything: the average is approximately 10 hours.

Someone could think that this attack is unrealistic because it could be successful only

if the PIN code doesn’t have a fixed period of time (e.g. 3 minutes) and only if the car

runs for all the time we need to force the code, in fact the PIN will surely change if we

restart the car.

Actually, in some particular situations, this attack could be a real threat: let’s see an

example:

Imagine that, during a day, you could sniff the MAC address of all cars parked in a

parking garage. Know that in 1 minute you can try 8 different PINs 6, probabilities∗ say

that: if a thousand of such cars leave this place in a day, you have good chances to brute

force the PIN for at least one of them within three minutes.

Of course there’s a limit: you can’t choose exactly your target.

∗Let’s try to give an explanation:

5source [2]: page 9
6source [2]: page 9, calculated on car’s response time

18

2.1 How to enter into car’s network 19

Given 1000 cars and a 4 digits PIN, for the first car we consider the events:

• A1,1 : my 1st PIN is equal to the 1st car’s PIN

A1,2 : my 2nd PIN is equal to the 1st car’s PIN
...

A1,24 : my 24th PIN is equal to the 1st car’s PIN

Now, we do the same with all the other 999 cars:

in general the Ak,i event, where k is referred to the car and i to the PIN we try, is:

Ak,i : my ith PIN is equal to the kth car’s PIN, for k = 1, · · · , 1000, i = 1, · · · , 24

Now,

P (Ak,i) =
1

104
for k = 1, · · · , 1000, i = 1, · · · , 24

So, the probability to guess the PIN of the kth car with 24 attemps is:

P

(
24⋃
i=1

Ak,i

)
=

24∑
i=1

P (Ak,i) =
24

104y
the Ak,i i = 1, · · · 24 events are mutually exclusive cause the PIN of a given car is unique

Note: we call
24⋃
i=1

Ak,i = A∗k for k = 1, · · · , 1000

So: given 1000 cars the probability to guess one of their PIN in 3 minutes (= 24

attemps) is:

P

(
1000⋃
k=1

A∗k

)
= 1− P

(
1000⋂
k=1

Ā∗k

)
= 1−

1000∏
k=1

P (Ā∗k) = 1−
(

1− 24

104

)1000

∼ 0.91y
the Ā∗k k = 1, · · · 1000 events are independent

♣

19

20 2. Tampering a car

0.5 1 1.5 2 2.5 3 3.5 4
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (min)

P
ro

b
a
b
ili

ty
 o

f
fi
n
d
in

g
 a

 P
IN

THE INCREASE IN PROBABILITIES OF FINDING A PIN OVER TIME

b. Radio Frequency Identification (RFID): Immobilizer, Remote Keyless Entry and

Passive Keyless Entry and Start

RFID appeared for the first time in U.S. in 1990’s; it’s a security system implemented

between the car and his key.

An RFID Immobilizer is a transponder embedded in the top part of an ignition key.

This transponder sends out an encrypted string of radio-frequency signals, basically a

particular number of impulses broadcast on various radio frequencies to create a specific

code, when the driver inserts it into the ignition-key slot.

Without this code, the car either won’t start or won’t activate the fuel pump. So even

if someone hotwires the car or copies an ignition key, the ignition isn’t going to work

because it hasn’t received the proper radio-frequency code.7

Recently this system improved into the Remote Keyless Entry (RKE).

The RKE, inserted in a KeyFob, permits, thanks to the RFID, to open/close car’s

doors, activate alarms, flash lights and disable immobilizers, by pressing a button in the

fob.

Modern systems, as an additional protection, typically change the RFID code every time,

using a rolling system.

7[Web: 14]

20

2.1 How to enter into car’s network 21

(a) KeyFob (b) Start Ignition Button

This obstacle could be bypassed jamming the keyfob signal by passing garbage data

within the passband of the receiver: this will prevent the receiver from changing the

rolling code and allow the attacker to view the correct key sequence.8

Some other problems could be given exploiting the facts that:

• sometimes Immobilizers have the key still in memory minutes after the key has

been removed

• it is possible to dump the memory of the transponder and get the secret key

• an attacker could simulate the ‘lock’ button press, preventing the car from locking

and allowing a person to enter in the vehicle.

The last step of this evolution is the Passive Keyless Entry and Start (PKES).

This system is very similar to the RKE except that we don’t neeed to ‘take out of pockets’

the keyfob: the only presence of the device in a short range (few meters) permits to

lock/unlock doors and to start ignition by pressing a button placed inside the car.

The PKES system is particularly sensitive to a relay attack; in this attack two paired

devices are placed respectively next to the car and next to the victim: the device relays

the signals from the victim to the vehicle and back, enabling the attaker to start the car.

In 2005 students at Johns Hopkins University in Maryland demonstrated how to break

the Immobilizer security controller without the physical key9 and in 2010 researchers at

the ETH in Zurich showed how to intercept and extend the signal of Passive Keyless

Entry and Start system up to 10 meter.

8source: [4]
9source: [6]

21

22 2. Tampering a car

c. Tire Pressure Monitoring System (TPMS)

In tires are embedded sensors that communicate to the car information about tires

pressure, temperature and rotation, via a radio frequency (RF) transmitter.

The receiver ECU analyzes data and can send results or commands to other ECUs over

CAN-bus, for example to trigger a warning message on the vehicle dashboard if the tires

are deflated.

Usually sensors broadcast information automatically every 60-90 seconds but they could

be forced to do it by sending a 125kHz LF signal.

Each pressure sensor contains a unique 32-bits ID, so merely eavesdropping enables

an attacker to identify and track vehicles remotely.12

The unique ID permits also to trigger additional events when the vehicle is near:

for example a system that opens authomatically garage’s door when the owner arrives:

in this case a radio receiver near the garage recognizes the unique signal of the car and

triggers a device to open the door.

The dangerous part is that in the same way someone could trigger evil events, like

detonating an explosive, and make with excellent precision an threat to the life of people

in the vehicle.

In closing, an attacker, broadcasting his own messages, could also alter and forge the

data sent by the sensors, in order to cause warning lights on the dashboard to turn

on without a real need. 10

d. Vehicle to Vehicle Communication11

This is an emerging study, that we won’t consider in the followings sections; it concerns

the communication between two or more vehicles and it includes the idea of using the

802.11 type protocol to create a mesh network between vehicles.

Speaking about the long range wireless communication, probably the most important

part is the cellular connection, because it provides continuous connectivity via cellular

voice and data networks.

10source: [4], [2]
11source: [4]

22

2.1 How to enter into car’s network 23

We will overlook the others.

e. Cellular Connection

Even if the cellular channels provide a broad range of important features (e.g. hands

free calling, crash reporting, remote track and disable a stolen vehicle,...), they offer

many advantages for attackers: they can be accessed over arbitrary distance in a totally

anonymous way, they support interactive control and data exfiltration, they are individually

addressable.

For example, a hacker could disable a car’s ignition the same way an anti-theft system

would.

The cell phone interface supports voice, SMS and 3G data; in particular the voice channel

is used for critical telematics functions (e.g. crash notification) because it’s the medium

with the widest service area.

In this channel, there’s a software that aims to synthetize a digital channel in this

environment.

Researchers of the University of California and the University of Washington12 used

reverse engineering to enter in one of those: the Airbiquity’s aqLink software, very

common in North America. The study shows how we can bypass the authentication step

and then discover some vulnerabilities in the implementation of the code, that permits

to send modified packets without being controlled by anyone.

12source: [2]

23

24 2. Tampering a car

2.2 Inject CAN data

Now the main question: if we have access to the car’s network, actually what could

we do?

Unluckily the answer is: with time, money, patience, and not too much knowledge,

serious damages.

Software and devices exist on the market that permit to transform the binary traffic

of cars in a readable form where you can see ID, length and data, usually written in the

practical hexadecimal form.

The layout will be something like this: a list of packets that moves and updates

continuously:

CAN traffic

If we are not experts of car hacking, the easiest way to try to control (or damage)

the car is to fuzzing the CAN, that means sending random data to a casual ID in the

list and looking for something to act strange.

24

2.2 Inject CAN data 25

Maybe, this is not really useful in this case, because the range of valid CAN packets is

rather small or sometimes is a collection of packets that causes a change, in addition

some of them are visible only with a moving vehicle (that makes the observation more

difficult and dangerous).

Instead, fuzz testing could be really useful when we have already discovered a connection

between the ID and the message or the device that will receive the packet; in fact, in

this case, sending arbitrary data and observing a specific reaction or analyzing an error

will let us know which one is the right input and how to control it.

But... how to make the first step?

We did a little practical experiment to figure it out.

2.2.1 The little practical experiment

First, we needed a car: Magneti Marelli provided one of hers, employed for tests.

Then, a planning with objectives, procedure and materials for the test:

Objectives:

• Recognize the CAN packets that control these actions, modifiy them, and inject

them again in the network to control the result:

– Control the Radio

– Tachometer reading (RPM)

– Lock/Unlock the doors

– Door ajar

• Inject a packet with ID=0x and observe possible consequences.

Looking also at articles of people that did it before me, we chose these actions because:

1. We could observe the effects without making the vehicle move

2. They are simple actions, that means a higher probability that they are controlled

by a single packet, not related with others.

Then, as the packet’s ID defines its priority, in theory, it could be possible to overload

the channel by sending repeatedly a packet with the lowest ID (0x), preventing, in this

25

26 2. Tampering a car

way, the transmission of all other messages.

Procedure:

Start recording CAN traffic, do the action, stop the recording.

Replay the record:

• If the action repeats, figure out which packet controls it by dividing in two parts the

record and play them to see where the instruction is. Repeat it until you find it.

Then verify it modifying and injecting it in the CAN bus.

• If the action doesn’t repeat, start again the record at least 2 times.

If it doesn’t work maybe:

– you can’t control this actions only with CAN packets

– the command is on a different BUS

– ?

We found this modality in a study13, and we liked it because it permits not to waste

time, searching for something that maybe couldn’t be found in that situation. On the

other side injecting so many packets at the same time, could seriously damage the car’s

circuit and, if we’re moving, endanger the user’s safety.

Anyway, the reality is that with my car it didn’t work at all, later we’ll try to explain

why. So we proceeded only with direct observations.

Materials:

Vector CANcase, Laptop (with the software Vector CANalyzer), cable for the OBD-II

port.

Experiment:

Connected the CANcase to the car and to the laptop, we opened the software.

Then, we started the capture of CAN traffic and we observed it in the ’trace’ section.

The Radio was not present on the car, so we concentrate on the Tachometer reading.

We followed the procedure we planned and we recorded the traffic pressing the accelerator,

then we injected it continuously in the BUS. Nothing happened.

13source: [4]

26

2.2 Inject CAN data 27

Configuration of the software

When you inject new packets in the bus you don’t cancel the original ones that are sent

continuously from the real car’s components, so we thought that maybe the frequency of

my input wasn’t so high to cover the real one and produce some effects. We tried to

modify it but we couldn’t reach any result, so we passed to the direct observation.

We observed for each ID the effect of pressing the accelerator, and, if we reached the

conclusion that the ID was not the one we were looking for, we filtered it.

Finally the choice was between less than 5 messages, all possible candidates: we randomly

selected one.

It was an 8 bytes length packet, but not all of them changed pressing the pedal so in reality

we modified three bytes, putting a higher value, and then we sent it with a frequency of 1

every 20 millisecond (ms). We noticed a variation of the RPM indicator, so we increased

the frequency until 1 every 10 ms, to have the confirmation that was the right one.

The result was the trembling of the indicator around our value.

We had to put the maximum frequency supported by my device (1 every ms): to obtain

the indicator’s complete stability on our value.

This first little victory took me more or less 40 minutes (it was the first time after all!).

27

28 2. Tampering a car

Later, with another packet, we tried to modify also the fixed bytes, but the consequence

was the appearance of an error, and none of my data were sent.

We proceeded in the same way to recognize the other commands: unluckily we didn’t

succeed.

We spent another hour in the car, but we couldn’t find any clear connection between CAN

packets and the light indicating ‘Door ajar’, or the command to lock/unlock the doors.

Instead, we found connections between packets and turn on/off lights, put on/off the

safety belt, insert/disable the city and the handbrake. Unluckily none of them if replayed

obtained any consequence. My hypothesis is that the packets we found were part of the

information statement or an incomplete command that didn’t trigger any reaction (i.e.

turn on/off the light of the handbrake on the instrument panel).

Finally, we injected the 0x ID packet but, also in this case, nothing happened. We

tried to modify the bytes of data, in order to find the right message to overload the

channel, but the other packets continued to be sent, without any consequence.

The manufacturer probably prevented this kind of attacks, for example making the car

28

2.2 Inject CAN data 29

ignoring the 0x ID at all or assigning it some specific data.

The table below summarizes the discoveries:

ID Data Command Description

A18A001x 03 00 18 80 03 62 4F 00
Tachometer

reading
03 62 4F = RPM

C1CA000x 00 01 6C 33 40 00 A0 A8/38 Light on/off A8, 20 = lights on

A18A000x 22 20/00 40 6E 00 37 20 43 38, 00 = lights off

C1CA000x 00 01 6C 33 40 00 A0/B0 38 Safety belt A0 = belt inserted

B0 = belt desabled

A18A000x 22 02/00 40 6E 00 37 20 43 CityCity Option 02 = City on

00 = City off

A18A000x 22/02 00 40 6E 00 37 20/00 43 Handbrake 22, 20 = Handbrake on

02, 00 = Handbrake off

Observations and Conclusions:

We can notice that some IDs are repeated for different devices, but the bytes involved

are different: so we can hypothesize that their message is not the one that triggers the

event, but it reports only the state of the objects.

In conclusion, we have seen how with zero experience, and little knowledge, we could

start to understand something simple about CAN traffic.

Next step is of course the hardest one, and it requires more time and patience, but the

researches in next pages will prove that is not impossible.

We wanted to continue our experiment, obtaining, for example, the control of the speed

reading, but we couldn’t do it, because of safety reasons.

In fact, finding that kind of messages demands a moving car, and tamper a moving car

should happen only in a controlled and safety context (e.g. with the car immobilized on

jack stands), in order to protect reaserchers’ safety.

Since this was not possible, in next section we will restrict our seach to explore what

other people had been able to do in months of work.

29

30 2. Tampering a car

2.2.2 A case study

Once understood to whom each ID is related and what each packet or sequence of

packets can control, it’s time to act and take the control of the car.

Of course, not everything can be controlled via CAN bus, for example 14 in the Ford

Escape the packet with ID 0200 has a byte that indicates how much the accelerator is

depressed; contrary to what we could think, replying this packet with different values,

doesn’t change the car’s acceleration or speed. This is because the packet is sent out

from the Power-train Control Module (PCM) to the Antilock Braking System, probably

to figure out if there’s a traction control event in progress, and, if changed, it doesn’t

produce any consequence to the throttle.

Furthermore, each car is different, so it’s not obvious that if something works for one

car it has to work in all vehicles, not even in a car built by the same manufacturer. In

particular the devices and the optionals embedded in the car play an important role: the

cellular connection, the Antilock Braking System, the Cruise Control, the Pre-Collision

System, etc. Usually, because of the large number of parameters that these systems

have to receive, their presence or their absence entails a different network, and for us, a

network with a dense presence of interconnections between components means, during

an attack, an higher probability to succeed.

In 2013, Charlie Miller and Chris Valasek, researchers at DARPA (Defense Advanced

Research Projects Agency), wrote in a report, ‘Adventures in Automotive Networks and

Control Units’, the experiments and the observations they made hacking a Ford Escape

and a Toyota Prius.

They injected CAN packets directly in the CAN bus via physical connection between

laptop and OBD-II port.

Inject Normal CAN packets

These are the results they reached for the Ford Escape, injecting normal CAN packets:15

14source: [3]
15see [3] for all details.

30

2.2 Inject CAN data 31

Command What they discovered What they did/Consequences

Door Ajar,

Lights

The messages that indicate lights’ and doors’

state on the dashboard

Make appear the messages even if door are

closed and lights off and vice versa.

Speedometer
The message that controls the speed’s

indicator.

Move the speed indicator indicate any value

they want.

Odometer
The message that increases the odometer’s

value.

Write a short program and make grow the

odometer’s value as they want.

On board The messages that report where you’re going. Write a program that sends fake information

Navigation about car’s position

Limited Steering

The overload of the CAN network prevents

the delivery of CAN messages⇒ in particular:

Power Steering Control Module shuts down.

Most of the dashboard’s lights turn on. The

car can make only gradual turns: the wheel

can’t move more than ∼ 45%.

Prevent Ignition The ID 0000 has the highest priority.

If played continuously before the car is

started the vehicle doesn’t switch on; after,

it overloads the network.

Stearing

The message that the PSCM uses to control

the steering, when the Parking Assistant

Module (PAM) is auto-parking.

Write a program that replays the curve of the

steering wheel and use it to steer the wheel to

any position.

And these are the results for the Toyota Prius:

Command What they discovered. What they did/Consequences.

Speedometer
The message that controls the speed’s

indicator.

Move the speed indicator indicate any value

they want.

Braking
The message that control the braking of the

Pre-Collision System (PCS)

Send the messages at any time to make the car

slow down, prevent the acceleration and even

stop.

Acceleration

The accelerator pedal is not directly connect

to the Engine Control Module/Throttle Body

Controls, but the Power Management Control

receives the physical signals and transmit

them to the ECM using CAN messages.

Since this message is not viewable all over the

network (e.g. not from the OBD-II port),

they should connect directly to the Power

Management ECU to catch it and reproduce

it to tamper the acceleration.

31

32 2. Tampering a car

Steering:

at speed < 4mph

The Intelligence Park Assist System uses a

combination of two messages to control the

steering, but only if the speed is < 4mph.

Write a program that uses those messages and

control the steering when the speed is < 5mph.

at any speed.

Tampering the steering at any speed is more

complicated: it requires the use of 2 cables

at the same time, one that sends bogus speed

messages and the other the steering control

messages.

Anyway they don’t obtain the complete

control, the results are some sporadic jerks of

the wheel, which cause vehicle instability.

Steering: with the

option: Lane Keep

Assistant (LKA)

The message used by the LKA is designed to

be used at any speed, but it can’t turn the

wheel more than about 5 degrees.

Use this message to turn a little bit the wheel:

it could be dangerous when we’re driving fast

on a small road or in traffic conditions.

Inject Diagnostic CAN packet

The researchers showed also what we can do controlling Diagnostic CAN packets:

but, before we can perform most diagnostic operations on a ECU, we need to authenticate

against it, using the SecurityAccess process, seen at page 7. The difficulty of this

step depends on the car and on the single ECU.

For example, in the Ford Escape, authentication against the Parking Assistant Module

(PAM) is quite easy, in fact, after the SecurityAccess request, the PAM always sends

the same seed, that means that the response also is always the same. So, if we sniff the

CAN traffic of a tool performing a SecurityAccess against the PAM, we can just replay

it and be authenticated too.

On the contrary, the other Ford ECUs change seed every time, to prevent the replay

attack, so, apparently, the only way to be authenticated is to get the secret key. This

could be accomplished by extracting the firmware and reversing the key out of it, or,

more simply, by reverse engineering the actual Ford Integrated Diagnostic Software (IDS)

tool.

This device and the license to use it could be bought (the total is quite expensive) by

anyone and used to auto-check the state of his own car. It can’t be used to authenticate

directly against all ECUs in the car (only a few), but it has the capability to do so: in

fact it contains a file with all keys of car’s ECUs (in plain). They are 407: once we have

found the file, we could just try them all to get the one we need.

Furthermore, in the IDS tool there are also some proprietary services, used for cars

32

2.2 Inject CAN data 33

check-up; reverse engineering the IDS tool permits to analyze and take the control of

these functions too:16

Command What they discovered Remarks

Brakes Engaged

The IDS function: DiagnosticCommand B1,

used to check the brakes, contains a message

that engages the brakes.

It could be used to engage the brakes, only if

the car is already stopped, and it will prevent

the motion, even if we push hard on the

accelerator.

No brakes

Similar to the last one, another

DiagnosticCommand bleeds the brakes,

preventing the brake pedal’s physical

depressing.

The message is considered valid only if the

car’s speed is < 5mph; even if at these low

speeds it doesn’t seam too dangerous, it could

be enough to cause incidents.

Lights Out

The message that shuts down Smart Junction

Box (SJB) ⇒ any device that depends on

the SJB stops working: radio, Heating,

Ventilating and Air Conditioning (HVAC),

HEADLIGHTS, BRAKE LIGHTS,etc.

The attack could be carried only when the

vehicle is stopped, but it continues to work

after that, even if the car is at speed.

Lights Flashing

Erasing data on the SJB (i.e. while

reprogramming it) causes all car’s lights

break, except the interior ones, that are

permanently turned on.

The situation continues permanently even

when we stop sending packets and

even if the car is restarted, until a new

reprogramming of the SJB is made.

Kill Engine

The message that kills the engine and

prevent to start up the car until we stop

sending it.

We could shut down the engine at all times

and at all speeds

! N.B.: We don’t need to establish

a diagnostic session before using it.

Speaking about the Toyota Prius, for all vehicles that could be sold in North

America, is available a software: ‘Toyota Techstream’17, supporting a J2534 PassThru

device, that permits to control some diagnostic actions, simulate active tests and reprogram

some ECUs.

As for the Ford Escape, Charlie Miller and Chris Valasek used reverse engineering to

discover some of the commands used in Toyota’s diagnostic session. They observed

16Remember: we should authenticate before performing any of these actions.
17[Web: 15]

33

34 2. Tampering a car

that only few diagnostic functions (specifically the ones that re-flash ECUs) required a

previous SecurityAcces.

Breaking the Toyota’s SecurityAccess by brute force is not useful cause the seed changes

after a specific number of wrong attempts (usually 10), so, as in the previous case, it’s

necessary to reverse out the secrets from the firmware or the Toyota Techstream software.

Since it is less complex, they chose the second way, let’s see what they discovered:

Command What they discovered Remarks

Braking

The messages that teste the solenoids within

the ABS and the Electronically-Controlled

Braking System (EBS).

?

Kill Engine Two messages that kill the engine.
One works only if the car is in park state, the

other could be used at any time.

Lights On/Off The messages that turn on/off the headlights It works only if the car is in ‘auto’ state

Horn On/Off. The messages that turn on/off the horn

The horn could be turned on forever as long

as the packet is sent: it will continue even if

the car is turned off.

Seat Belt

The message that tests the ability of the PCS

to pre-tighten the seatbelts in the event on an

impending accident.

Pre-tighten the seatbelts at any time.

Doors

Lock/Unlock
The messages that lock and unlock car’s doors.

They could be used at any time. The locking

one doesn’t prevent the doors from being

physically opened from the inside.

Fuel Gauge The message that controls the fuel gauge
Modifying the message the fuel gauge could

indicate an arbitrary value.

Re-flash ECUs

Furthermore, using diagnostic messages, it is possible to reprogram some ECUs.

For example, in the Ford Escape, with the 0x34 Diagnostic Service, the RequestDownload18,

the researchers were able to upload their own code to the PAM and to the SJB, make

it memorize by the ECUs and then make it execute, calling the Diagnostic Service:

RoutineControl.

Their code make the PAM read and write arbitrary CAN packets, which, as we’ve seen,

18The Diagnostic Services have to be read from ECU’s point of view, so the ‘Download’ service actually

means upload something to the ECU

34

2.2 Inject CAN data 35

can be used to control the vehicle in different ways.

Luckily reprogramming an ECU in the Ford Escape, even if it follows more or less the

Diagnostic Standard, is not very easy.

Going over all the steps that took us until here, we should:

1. Extract the ECU’s firmware or obtain the Ford Integrated Diagnostic tool

2. Reverse engineer the software or the firmware in order to find the ECUs-IDs

connections and some diagnostic commands that we want to implement

3. Find the key or, if it exists, another way to bypass the SecurityAcces for the ECU

we want to attack, in order to open a diagnostic session

4. Understand how the RequestDownoload service of the ECU works: in particular

which parameters it requires, in which form the data should be sent, which address

we should write in order to make data check by the RoutineControl,...

5. Find if the data are controlled by the ECU, e.g. with a checksum, and eventually

modify them in order to cheat it

6. Call the RoutineControl in order to check data and make them execute.

For the Toyota Prius the situation is more difficult: the ECUs re-flashing process

integrates some manufacturer’s own functions to the Diagnostic Standard. A consequence

is, for example, that the RequestDownload way, used before, doesn’t work for this car.

The reverse engineering complexity grows, and the security too.

However Miller and Valasek succeeded also in this conditions, observing the process

directly.

Some software allow the ECUs reprogramming, in particular they used the Toyota

Calibration Update Wizard19, that supports the .cuw files and works with the Teachstream,

seen before.

They downloaded a new legitimate calibration update for the ECU they wanted to

reprogram (the ECM). They installed it and they observed the exchange of CAN messages,

in order to understand the method and reproduce it.

The CAN traffic shows an initial SecurityAccess exchange, but then alternates some

custom-built messages to some diagnostic functions (e.g. 0x76 GetMemoryInfo, 0x26

19[Web: 13]

35

36 2. Tampering a car

EraseBlock, 0x45 WriteBlock, ...).

To understand the costum-built ones, they needed to reverse engineer the software,

extract the calibration .cuw file and read it to get information such as number of

calibrations, the new calibration ID after the update is applied (used by the ECM to

control that the version to upload is newer than the previous one; if it’s not the case it

will kill the process), the IDs they should use during the process, etc.

Furthermore they discovered that after the SecurityAccess the ECU requires another

value, like a password, in order to continue. This data is written in the calibration file

and it changes, in an unknown way, every time.

So, in order to re-flash the ECM we should reverse every time the calibration file of a new

legitimate update, to obtain the new ID and ‘password’; the ID and value of a previous

update won’t be considered valid by the ECU.

Speaking about other ECUs the process is similar and requires the same efforts, summarized

as a whole below:

1. Extract the ECU’s firmware or obtain the Toyota Teachstream Software

2. Reverse engineer the software or the firmware in order to find the ECUs-IDs

connections and some diagnostic commands that we want to implement

3. Find the Key to pass the SecurityAccess

4. Obtain a reprogrammation software, like Toyota Calibration Update Wizard, and

reverse engineer it to understand the custom-built dialogue and to satisfy all the

ECU’s requests

5. Use correctly 6 different diagnostic functions of the standard to write and verify

data.

Not impossible ... but what an effort!

36

2.2 Inject CAN data 37

2.2.3 Other Damages

Other few, less detailed, practical studies20 have been made about this argument.

The attacks that succeeded, with their dangerous consequences, are now reported. The

entry point is always the OBD-II port and, when is known, it’s specified if normal or

diagnostic packets are used.

1. Radio

The complete control -and disable user control of- the radio and to display arbitrary

messages.

4! An attacker could increase the volume and prevent the user from resetting it.

He could control other car’s sounds that are overseen by the radio: turn signal

clicks, seat belt warning alert,...

2. Instrument Panel Cluster

The complete control of the Instrument Panel Cluster.

4! An attacker could falsify the fuel level and the speedometer reading, modify

the illumination of instruments and display arbitrary messages

3. Body Controller

The control of the Body Control Module’s functions.

4! An attacker could lock/unlock doors, jam the doors locked, open the trunk,

control interior and exterior lights, honk the horn, control window and wipers,

continuously shoot windshield fluid,...

i In order to control the BCM he needs to reverse engineer its packets on the

low-speed bus, and fuzzing packets on the high speed bus.

4. Engine

Implement some Engine Control Module functions.

4! An attacker could disturb engine timing by resetting the learned crankshaft

angle sensor error, kill the engine and prevent restart, ...

i These commands were found fuzzing DeviceControl requests to the Engine

Control Module.

20source: [1]

37

38 2. Tampering a car

5. Brakes

Discover the Electronic Brake Control Module functions and messages.

4! An attacker could engage one or more brakes and lock them preventing the

manual override, even through a battery removal.

i These commands were found fuzzing the EBCM.

In some cars the EBCM doesn’t require any safety control in order to implement

these attacks (e.g. Toyota Prius), in others it requires a SecurityAccess when the

speed passes the 5mph.

6. Heating Ventilation, Air Conditioning (HVAC)

Control of the cabin environment.

4! An attacker could turn on/off the fans, the A/C and the heat.

i In some cases, the manual override was not permitted.

7. Generic Denial of Service

Disable, at arbitrary time, communication from/to an ECU, overflowing the bus.

4! From/to the ECM: it reduces the reported speed at zero.

From/to the BCM: it freezes the IPC in its current state; the car could be turned

off, but not restarted again.

4! An attacker could prevent the car to be turned off

i He could do this by activating the ignition output of the BCM and overriding

the key lock solenoid, preventing the key to be removed or allowing the removal

while the car is in drive.

38

2.3 Other attacks 39

2.3 Other attacks

Injecting CAN messages is certainly extremely dangerous but it’s not the only threat

we should be protected from: for example, installing counterfeit components could be

very risky too.

An example?

The U.S. Department of Transportation’s National Highway Traffic Safety Administration

(NHTSA) had issued some safety advisories for drivers and repair professionals to dissuade

them to buy not certified Airbags for their cars.

In fact, in case of accident, against regulations Airbags, instead of inflating, could

explode, becoming more dangerous then the accident itself.

Here the warning video: https://www.youtube.com/watch?v=uEYExJhYbg8

The NHTSA in 2012 estimated that 250 thousand of counterfeit airbags had been sold

in U.S. up to that moment.21 4!
Moreover, the 31 August 2013, the Times of India related that up to 20 percent of all

road accidents in India were due to counterfeit auto parts.22

From an economic point of view, the General Motors Corporation reports that the

counterfeit auto parts is a worldwide business of around 12US$ billion, that means an

equal loss for the automotive industry, and it causes a job loss of 250,000 places. 23

21[Web: 11]
22[Web: 16]
23[Web: 12]

39

https://www.youtube.com/watch?v=uEYExJhYbg8

Conclusions:

How serious are the threats?

In this first part, we have seen how a spiteful person could enter in our car’s network,

using a physical connection, direct (a cable) or indirect (a WMA file, an App,...), or a

wireless channel (Bluetooth, cellular channel,...); then we discussed which damages the

injection of CAN packets could trigger and how, and finally other security and economic

damages.

Now, to complete the puzzle, we should ask ourselves:

How serious are the threats?

Speaking about messages’ injection, the answer isn’t clear: we can’t really know how

much time, efforts and tests have been done to reach those results.

What we could say is that some attacks are easier than others: the ability to track a

vehicle, for example, doesn’t require a real reverse engineering work, that means that

probably not so much time (on the order of weeks) is enough to succeed.

On the other hand, all those attacks that demand a reverse engineering effort, belong to

a higher level of difficulty, and their complexity is directly proportional to the quantity

of data that needs to be reversed: the time is at least several months for diagnostic

messages and something less for normal ones.

Furthermore, usually, diagnostic messages can be seen only during a check-up situation,

so the direct observation is quite rare and mechanics’ devices and software are required.

Moreover, some security and authentication controls need to be bypassed before sending

diagnostic commands.

Then, the price of the equipment is high; and the risk of seriously damaging the test car,

with consequent high-priced costs to the mechanic, too.

Otherwise, the web community of car’s hackers is extended and really active. Finding

Conclusions

the software descriptions and specifications, and starting the reverse engineering is not

a job for an inner circle anymore.

The system is not impenetrable, on the contrary it presents several exploitable bugs,

especially in the implementation of the diagnostic standard, and underestimating the

problem can be lethal.

The American Corporation Caterpillar knows something about this, since the Department

of Homeland Security for demostration purposes has been able to use a cyber-attack

causing the self-destruction of a large diesel generator.

This is the video released by the CNN that reports the experiment:

http://www.cnn.com/2007/US/09/26/power.at.risk/index.html#cnnSTCVideo

This was happening in 2007 ... after 7 years of development, we can only imagine what

people could be able to do now!

The field of cyber security is in rapid expansion, and the Department of Homeland

Security is not the only one that works on it: a lot of enterprises all over the world are

developing hacking researches, and consequent solutions, in order to contain the problem.

Most of the security is now committed to the morality of those people.

The situation could rapidly collapse if criminal and terroristic organizations start to work

on the subject, too. In fact, even if the effort needed to succeed (or the information’s

price) is really high, the recompenses are priceless.

A new entire ’theft business’, that tracks, opens and steals vehicles, could be born; and

the dealers are already gaining no little advantages decreasing car’s mileage before

selling it.

Furthermore: what would happen if suddenly all cars in Manhattan shut down in the

same moment? I can’t really imagine, not only the inconveniences, but the economic

loss of this terroristic act.

Again, any citizen driving a vehicle won’t be safe anymore from this kind of life, kidnapping

and extortion attacks.

Finally: given the high number of daily car crashes, it will be complicated to know for

certain if a tragedy is a real accident or the result of a car’s tampering; and, above all,

the fact that the injection of CAN messages, in general, doesn’t leave any trace

42

http://www.cnn.com/2007/US/09/26/power.at.risk/index.html#cnnSTCVideo

Conclusions 43

and it’s totally anonymous will make investigation work impossible4! .

Afterward it won’t be impossible to transfer the experience acquired to focus on targets

different from cars, like plains, military vehicles and tanks, compromising the security of

entire nations.

Lastly, but not for importance, we remember the real and current economic (12US$billion),

safety, and job loss (250,000 places) due to the black market of counterfeit auto

parts.24

Surely the list is not complete, but it’s enough to put in evidence the need to protect

car’s component from any criminal pursues.

Next section is committed to the current solutions on today’s market, and in particular

to their use of Cryptography.

24[Web: 12]

43

Part II

Current Solutions to the

Automotive Security Problems

45

Short Introduction

The previous study highlighted the need to develop a security system to protect next

cars generation.

Now, we will list some reasonable points that represent our expectations about future

cars (of course they are all related to each other):

• Authentication between car’s components (sensors, ECUs, devices,...):

– to prevent an unauthorized entity to act as an authentic one in order to reduce

the counterfeiting risk

– to prove sender’s identity, for each message, in order to ignore fake CAN

packets.

• Secure communication on the CAN bus

• Detect abnormalities in the CAN traffic:

– to alert the driver in case of tampering

• Secure wireless communication:

– with Immobilizer and TPMS

– to prevent the injection of malicious CAN messages by a remote user

– to allow additional advantages, like secure firmware updates via WiFi or

cellular channel

– between vehicles (V2V)

– between a vehicle and another entity (V2X)

• Protect data sets

47

48

– mileage

– engine maps 25

– fee-based services and features.

Security is a complex problem, and pretending to find an easy solution is not realistic,

but automotive companies all over the world are studying the subject and proposing

solutions more and more progressive.

So, let’s take a look at some proposals of today’s market.

25e.g.: little modifications of engine maps values could increase the speed and the pollution, bigger

ones could damage seriously the engine and endanger user’s safety.

48

Chapter 3

SHE specification

In 2008 the Hersteller Initiative Software (HIS, a group that involves the main German

manufacturers) presented a new specification called SHE (Secure Hardware Extension).

SHE describes a small hardware extension for adding essential security functionality (e.g.

protection of cryptographic keys, hardware crypto module, or secure boot) to standard

automotive microcontrollers.

It is considered the first specification that tries to answer to the previous security

problems and sets a standard in automotive security environment.

The objectives of SHE were:

• Protect cryptographic keys from software attacks

• Provide an authentic software environment

• Make security depend only on the strength of the cryptographic algorithm and the

confidentiality of the keys

• Allow for distributed key ownership

• Keep the flexibility high and the costs low

And the specifications:

• Hardware implementation of a crypto algorithm acceleration (AES-128)

• Secure Boot mechanism to verify custom firmware after reset

• 19 security specific functions

• Up to 10 general and 5 special purpose crypto keys

49

50 3. SHE specification

In 2009/2010 the American multinational corporation Freescale Semiconductor1 developed

the Cryptographic Services Engine (CSE) module, that implements the HIS

SHE-Specification.

The CSE is just an example of implementation of the SHE specification, and it’s not the

only one; the following CSE’s and protocols’ description, even if referred in particular to

this tool, could be related to any module that implements the SHE standard.

The CSE is a module embedded in the ECU, that could count on: his own core,

a unique 120-bit ID, the AES-128 algorithm (with Electronic Codebook (ECB) and

Cipher-block Chaining (CBC) modes), some secret 128-bit keys, shared with the components

it has to communicate with, and random number generators.

In a very very simple way, we could imagine it like this:

CSE module

Of course in the CSE there’re a lot of other components (memory tools, interfaces

to communicate with the ECU,...), but, since we are not electrical engineers, we will

overlook them.

Furthermore we will consider that the communication inside the CSE is secure and that

an attacker can’t penetrate in the module and have access to secret information (e.g. the

keys).

1[Web: 12]

50

3.1 Secret Keys and Secure Flash 51

3.1 Secret Keys and Secure Flash

Speaking about the secrets keys, in the figure above there’s an imprecision: in reality

they are all stored in the secure part of the flash, and the Unique ID too.

In particular the ‘secure flash’ contains:

1. 10 user keys

2. the Master Key (MK)

3. the Boot MAC Key (BMK)

4. the Boot MAC (BMAC)

5. the Unique ID (UID)

6. a Secret Key (SK)

1. User Keys are programmed by the user, and they are needed for message encryption/

decryption or authentication. An option permits to write them in an indelible way,

to prevent their modification: the process is not reversible.

2. Master ECU Key could be programmed and written in an indelible way by the

user; this key permits to update other keys without knowing them, if they are not

written in an irreversible way.

3. Boot MAC Key is used to calculate the: MAC2 value of the boot code; the key

and the value could be written in a indelible way too.

4. Boot MAC value is calculated using the previous key.

A computation of the boot MAC value is made every time we start the car, followed

by a check against the stored value in order to prevent any modification. If it’s not

written in an irreversible way, we could modify the boot code and the corresponding

boot MAC value using the correct keys

5. the Unique ID is written in an irreversible way by CSE’s manufacturer

6. the Secret Key is a random number written in an indelible way by CSE’s manufacturer,

2MAC (Message Authentication Code): given a message m, its MAC is f(m) where f is a MAC

function, that is a random association between all the possible input and output of n bit. [10]

In our case MAC(m) is the last block of the encryption of m with AES-128.

51

52 3. SHE specification

and used by the Random Number Generators.

Each key has an ID to identify it in an unique way, and a counter that should be increased

during an uploading, to prevent a malicious update with replay attack.

In case of compromised keys, knowing all of them, it’s possible to erase all those that

are not written in an irreversible way and set the secure flash back to factory state. We

will see later 3 how to write data in an irreversible way.

3.2 Authentication SHE Compliant Protocol

Now, let’s see an example of how we can use a SHE compliant system to implement

a ‘challenge- response’ protocol, in order to verify the identity of an ECU.

We suppose that the ECU master wants to prove ECUx’s identity:

keyn is a 128bits secret key, shared by the two ECUs

1. ECU master calculates a random challenge r thanks to the random number

generators, and sends it to ECUx

2. ECUx uses AES-128 and the key keyn, to encrypt together r and its ID

3. ECUx sends Ekeyn(r; ID) back to ECU master

4. ECU master decrypts the message received, calculating Dkeyn(Ekeyn(r; ID)), and

it obtains (r;ID).

5. ECU master verifies if r is the same random number it sent before and if ID is

ECUx’s ID.

3.3 Comments and Security Observations

The previous protocol does not specify in which mode is implemented the encryption

with AES-128. We said before that the CSE can support the ECB and CBC modes

for block cipher: we recall that the first one divides the message in 128-bit blocks and

3Appendix B 69: OTP

52

3.3 Comments and Security Observations 53

Challenge-Response Authentication

ciphers each block independently from the others; the second one divides the message

in 128-bit blocks and it encrypts each block summing it with the previous coded one. If

we want to use this last modality we have to choose a starting vector IV (Initialization

vector), that we will sum with the first block: it could be fixed, or different each time

and it can be public.4

The main difference between the two modalities is:

• ECB:

– using the same key, encodes equal plaintexts into equal ciphertexts

• CBC:

– using the same key, if the IV is different, equal plaintexts are enciphered into

different ciphertexts (this is not the case, if IV and the key are fixed)

Both of them can encode only blocks of fixed length of 128-bit.

If the key is fixed, Using ECB or CBC with fixed IV reveals information about the

frequency of the original plaintext, so if the coding purpose is to give less information as

possible to a malicious observer, the CBC mode with random IV is allowed.

In our case, we could think to use the random number r as IV, but the result will be

always the same: to equals plaintexts (i.e. equal r ⇒ equal IV) we will have equal

ciphertexts. In this case, to prevent a replay attack, the sequence of random numbers

should never be repeated: as this is guaranteed for cryptographic random number

generators, the solution is valid.

4source: [10], [11]

53

54 3. SHE specification

Anyway, if we are not worried by a frequency analysis, we can pass over the problem.

Speaking about AES-128, the main proof of its security is that none, in 13 years, has

never discovered an attack to find the secret key considerably more efficient than the

brute force one (i.e. check every possible key combination).

This last attack requires to find it between 2128 (∼ 3.4 · 1038) possibilities, whereas

the best recovery key attack to AES-128 ever implemented decreases the computational

complexity to 2126.1 (∼ 9.12 · 1037).5

The fastest computer in the world, up to November 2014, is the China’s Tianhe-2,

built at the China’s National University of Defense Technology: it can do 33.86 · 1015

Flops (Floating point operations per second)6; knowing that AES-128 takes about 1000

operations to check a key, we could try 33.86·1015
1000

= 33.86 · 1012 keys per second, using it.

This corresponds to: 2126.1

33.86·1012·31536000 = 8.54 · 1016 years.

5[18]
6[Web: 28]

54

Chapter 4

Immobilizers Authentication

Since 1994 BMW added in his cars an anti-theft technology called ”EWS”

(Elektronische Wegfahrsperr). EWS means literally Electronic Drive Away Protection,

but today it’s better known as Electronic Immobilizer. Being an immobilizer, its

scope is to prevent to run a car without the correct key1.

Starting from the first version in the 90’s the EWS evolved until today to EWS III.

To give an idea of how the system works we report the current BMW description of his

tool:

‘The electronic immobilizer secures your car using a chip with an electronic code

integrated in the car key. This code consists of a permanent personal code (1)

and a second code (2) changed by the immobilizer each time you start the engine.

Whenever the ignition is switched on, the immobilizer first reads the personal code

and then asks for the changing code. If both answers are correct, the immobilizer

will send another coded signal to the Digital Motor Electronics (DME) to unlock

the engine. Without which the engine cannot be started - not even by short-circuiting

it.

This data is transmitted wirelessly via an aerial in the steering wheel lock and the

key with integrated remote control.

The key is equipped with a maintenance-free battery which recharges automatically

while driving. And should you ever lose your key, you can have it deactivated by

1see also page 20

55

56 4. Immobilizers Authentication

your authorized BMW dealer and receive a replacement key without delay’ 2.

We found the detailed description3, of the immobilizer protocols of a BMW E38; this car

is not made any more since 2001 and we don’t know exactly how the process is changed in

these years for BMW and cars in general; however, laying together different information

caught on the web4, we can figure out how modern protocols work.

Two different processes are now described:

• one to authenticate the key to the EWS

• the other to authenticate the EWS to the DME

4.1 Key to EWS Authentication

4.1.1 1998 Original Protocol

This protocol prevents the usage of an unauthorized key to run a car.

The original process needs:

1. an EWS Control Module ECU, that communicates wirelessly with the key (e.g.

via radio waves) and wired with the DME. The EWS has a unique identification

number: the VIN (Vehicle Identification Number)

2. a key identification code (key ID) that identifies a key in a unique way.

This number is used by the EWS to verify if a key is correct and enabled: the EWS

stores indelibly in his memory 10 different enable key IDs, 4 of them correspond

to the 4 keys delivered with the vehicle; the others to the 6 additional keys that

may be ordered as replacement. If we lose a key, his ID in the EWS could be

deactivated, making the lost key harmless.

3. a password shared between the key and the EWS

4. a changing code sent by the EWS to the key

The original operation of key authentication follows these steps:

2[Web: 18]
3[Web: 19]
4[Web: 20], [Web: 21], [Web: 22]

56

4.1 Key to EWS Authentication 57

1. When the key is inserted in the car, the EWS module sends a 125kHz AM signal

to the antenna in the key

2. The signal powers up the key’s transponder, that sends the key identification

code to the EWS

3. The EWS verifies the key ID and checks if the key is enabled to prevent the use of

a lost key

4. If the key is enabled and correct the EWS sends a password to the transponder

via a 125kHz AM signal

5. If the password is correct the transponder answers with a changing code which

it received from EWS in a previous authentication process

6. EWS compares the changing code received with the one stored in its memory:

• If they match the car can crank but not start and the EWS sends to the

transponder a new changing code which it will use in a following authentication

request in step #5

• If they don’t nothing happens and a message of EWS error appears on the

dashboard.

The problem of this protocol is that the changing code transmission from the EWS to

the key happens in an insecure way. In fact, if an attacker eavesdrops the key ID

and the final changing code, when the car is restarted, he will be able to be correctly

authenticated to the EWS not only one time, but all the followings too, and this will

permit him, for example, to steal and run the car.

The idea of changing password each time is valid, but not the implementation. We could

have a better result using a ‘One-Time Password’ protocol.

4.1.2 One-Time Password Identification Protocols

This kind of protocols have been created with the purpose of generating, from

a starting key, a sequence of passwords which should be used only one time for an

authentication process.

The benefit is the impossibility, for an attacker, to guess the next password knowing the

current one.

57

58 4. Immobilizers Authentication

To do so we could use:

1. one-time password sequences based on a one-way function, or

2. sequentially updated one-time passwords.

We recall that f is a one way function if:

∀x ∈ X, f(x) is easy to compute but for essentially all elements y ∈ Im(f) it is not

computationally possible to find any x ∈ X : f(x) = y.

Hash functions are an example.

1. In the fist case, to obtain a one-time password algorithm we could follow the

‘Lamport’s Protocol’.

Lamport’s Protocol:

• H = shared one way function

A identifies itself to B using one-time passwords from a sequence. 5

(a) One-time Setup.

i. A chooses a secret number w and fixes a constant t (e.g. t=100 or

t=1000). t represents the length of the sequence.

ii. A computes w0 = H t(w) and sends it to B

iii. B initializes its counter for A: iA = 1.

(b) Protocol of the ith identification, 1 ≤ i ≤ t

i. A computes wi = H t−i(w) and sends to B (i, wi)

ii. B, known the previous password wi−1 = H t−i+1(w), checks that

H(wi) = wi−1 and that i = iA.

iii. If everything is correct the authentication is valid, and B sets iA = iA + 1

and saves wi for the next session.

The Lamport’s scheme is a one-way authentication protocol: A doesn’t acquire any

information about B’s identity or legality and it remains vulnerable to an attacker

5[17]

58

4.1 Key to EWS Authentication 59

that aims to impersonate B.

However an attacker that eavesdrops the communication can’t impersonate A,

without knowing the secret w, because the hacker, to compute the pth password,

knowing the last p − 1, should calculate wp = H−1(wp−1) that is computationally

impossible since H is a one-way function.

The counter iA is useful to prevent replay attacks and should never be decreased

until the end of the sequence. If the synchronization goes out, and iA < i,

something (it depends of the context of application) should be done (e.g. B

increments iA until i).

The process presents two main limits:

• the finite length of the sequence: in fact we can’t choose t too big or the

probability to find a collision between two values of H will become too high.

• the synchronization: A and B shall maintaining an updated internal state,

but this could succumb to Denial of Service (DoS) attacks. Moreover, when

a sequence ends, the passage from that one to another can be problematic.

2. The other group of one-time password protocols is represented by those algorithms

that, given a shared starting seed, generate the same sequence in a not predictable

way. The main examples are the ‘Rolling Codes’.

Rolling Codes

A Rolling Code6 is a code programmed to change each time a precise action occurs

(e.g. the car is restarted), or after a precise time interval. Usually it follows a

precise sequence depending on the initial value and a calculation.

To preserve the security, an observer should see a deterministic Rolling Code as a

sequence of random numbers. To do so we can use a Pseudo Random Number

Generator (PRNG).

A PRNG is an algorithm for generating a sequence of numbers whose properties

approximate the properties of sequences of random numbers. The sequence has no

repeated values until it’s gone through every number it can generate, and then it

6[Web: 23]

59

60 4. Immobilizers Authentication

starts over again with the same order. The PRNG-generated sequence is not truly

random, because it is completely determined by a relatively small set of initial

values, called the PRNG’s seed: a PRNG initialized with the same seed will

always give the same sequence. Therefore to create the same Rolling Code,

it’s enough to share the same algorithm to calculate pseudo random numbers and

the same PRNG’s seed.

In this case the real problem is to obtain a real random number for the seed,

different for each car and to keep it secret. This last condition entails the seeds’

memorization in some secure sever, that should never be violated in order to

preserve cars’ security.

Moreover, different seeds should be used for different cars. In fact if the same

seed is used in two different cars, it’s possible to take the EWS of one car and the

DME of the other and reset them, in order to make the sequence start again and

synchronize their rolling codes even without knowing the seed.7

Speaking about the seed, if the PRNG period is long enough, it’s very hard to

find out the feedback number, because the number of values that needs to be

memorized, in order to try to find out the algorithm behind, is very high.

Anyway using only a PRNG is not cryptographically secure.

We recall that a random number generator is cryptographically secure if:8

• nobody, knowing the last k numbers generated (i.e. also the seed), can reliably

determine the k + 1 value with a polynomial-time algorithm.

In our case a Cryptographically Secure Pseudo Random Number Generator

(CSPRNG) is recommended. A way could be to encrypt the pseudo random

value, making each electronic keyfob have billions of possible codes.

Blocks ciphers and hash functions are often employed in this environment, in

particular the 64 bit block cipher ”KEELOQ”9 was commonly used for cars immobilizers

in automotive context, until 2008.

In March 2008, researchers from the Ruhr University in Bochum (Germany) presented

7[Web: 20]
8[17]
9[15]

60

4.1 Key to EWS Authentication 61

a complete break of remote keyless entry systems based on the KEELOQ RFID

technology, thanks to a side channel attack based on the DPA (Differential Power

Analysis). Their attack works on all known cars and building access control systems

that rely on the KEELOQ cipher10.

New systems, using different ciphers (e.g. AES-128), are required.

Furthermore, using automatic rolling codes, the loss of a key’s transmission by the

receiver, and the consequent desynchronization, is quite frequent, so after a failure

authentication, EWS’s code usually rolls forward for a maximum of n-times (n

chosen by the manufacturer, usually around 200), searching for key’s value. If it

finds it, it stops so that the devices will become synchronize with each other again

and the subsequent authentication proof will succeed.

We expect that a valid key can take at most two/three attempts to be approved.

As we saw the implementation of one-time password protocols, especially in case of

desynchronization, is always troublesome, so if it’s possible we suggest to give up this

solution and choose this one: use a symmetric cryptosystem with a secret key

to implement a double challenge-response protocol (e.g. using EWS’s VIN) for the

authentication of both sides.

However, since in modern immobilizer authentication protocols the use of rolling codes

is frequent, we will continue to take them as an example in the following section.

4.1.3 Modern Key to EWS Authentication

We repeat the two previous solutions to increase the security in our authentication

protocol that are commonly used in automotive context:

• insert a valid rolling code, shared between the key and the EWS

• share a secret key, and perform a challenge-response authentication protocol.

Protocol

A modern protocol for immobilizer and key’s control could work like this:

10[12] [14]

61

62 4. Immobilizers Authentication

1. When the key is inserted in the car, the EWS module sends a signal on a frequency

between 300 and 400 MHz to the antenna in the key

2. The signal powers up key’s transponder, that sends the key identification code

to the EWS

3. The EWS verifies the key ID and checks if the key is enabled to prevent the use of

a lost key

4. If the key is enabled and correct the EWS sends a not secret password/ challenge

to the transponder

5. If the password is correct the transponder answers with his rolling code/ the

encryption of the challenge and, in case of rolling code, the transponder rolls

to next value

6. The EWS calculates his own code and verify key’s ones:

• if they match, it allows the car to start and, if the code is a rolling one, when

the car is restarted it rolls to next code

• if they don’t the authentication fails and an EWS error message will appear

on the dashboard.

Another simpler way for the identification could be the use of a secret shared pre-

programmed algorithm: e.g. key and EWS take the same car’s parameters and

compute them with the same calculation, then EWS verifies key’s result: if it’s correct

the key is valid.

In reality, every Cryptography book advises against an algorithm, in which security is

based only on the secrecy of its operations: cipher history teaches that you can’t keep a

procedure secret for longtime.11

In this case, since the algorithm would be the same for lots of cars, finding the computation

once will allow you to enter in them all. For this reason we won’t consider this procedure

as an option.

11[9]

62

4.2 ECUs marriage: EWS to DME Authentication 63

4.1.4 Implementation Observations

In both cases (rolling code/symmetric cipher) we need to do some observations about

the implementation: a cryptographic secure algorithm could lose his efficiency

if it’s not well implemented in practice.

For example, it’s important to think where to store sensitive information in the ECU to

keep them safe from simple attacks: e.g. we can easily dump a memory placed outside

the microprocessor and read its data, so this data storage should never contain private

values or secret procedures.

As an additional security control, to prevent the substitution of the pair EWS-key,

the DME, before allowing car’s starting, can verify EWS’s authenticity:

4.2 ECUs marriage: EWS to DME Authentication

The process should prevent the substitution of the pair EWS-ignition key with a

counterfeit one by ‘marrying’ the EWS and the DME together.

It needs:

• a rolling code ISN (Individual Serial Number) shared between the EWS and the

DME

• the same VIN for the EWS and the DME

And it operates like this:

1. The DME verifies EWS’s VIN (how, could be various)

2. The EWS sends its rolling code to the DME

3. The DME calculates his own rolling code and verifies EWS ones:

• if they match, the ignition can now start

• if they don’t, the DME ‘rolls forward’ to the next n-codes, as in the previous

protocol, and tries the authentication again

4. When the engine is switched off, the EWS and the DME will automatically roll

forward to the next code. This will be used in the next EWS to DME authentication

process.

63

64 4. Immobilizers Authentication

To each VIN is associated a specific seed for the rolling code. If we try to substitute an

ECU, for example the EWS, with a not original one, the VIN and the rolling code won’t

match anymore: this will prevent the EWS to communicate with the DME and start the

ignition.

What about to substitute one of them in a legal way?

• A new EWS for our car could be requested to an authorized dealer: it will have

the right VIN and the right rolling code on it. After the installation on the car a

reset of the DME’s rolling code to the ‘Rolling Code #1’ is required.

• To substitute a DME we need to install on the car a new virgin DME, and inform

the EWS that a new ECU has been embedded. The next time we switch on the car

the EWS will send the entire Rolling Code (usually is just the seed) to the DME

and reset it to the ‘Rolling Code #1’.

The DME will automatically burn the Rolling Code into its memory in an indelible

way. Finally probably we have to synchronize the EWS and the DME again to

the same initial value.

For this reason, once a DME is ‘married’ to the vehicle it won’t work in any other

vehicle.

Of course some sagacity is needed during the implementation, like using different

seeds for different cars, to reduce the risk of being attacked.

Some high level threats are still possible: for example, with the right tools and knowledge,

it’s possible to take a DME, with a rolling code burned permanently in it, reprogram

arbitrarily its VIN and substitute the part with the rolling code with a new one, making

the unit virgin and ready to be married with the EWS desired12.

12[Web: 20]

64

Appendices

65

Appendix A

Detect attacks: Bus Guardian

Speaking about cyber attacks we reflected upon cryptography and its innovative

responses to increase security, but we haven’t mentioned yet the more immediate and

’simple’ solution.

Like in the computer case, we could think to create a guardian, that, as an antivirus,

detects harmful messages and filters them to protect the system.

Actually, system like this, are already existing and they are called: ‘Bus Guardian’. 1

In really few words, their validity is based on the facts that:

• the frequency of each CAN ID is predictable

• it’s difficult for an attacker to injects some messages and at the same time delete

the original ones.

So we could study the frequency of a Normal CAN packet:

the figure below 2 shows the frequency distribution of the Ford Escape CAN packet with

ID 0210.

The maximum is in (28,90) that means that for 90 times the numbers of messages

with this ID sent in a second was 28.

1[Web: 29], [Web: 30], [Web: 31]
2[3]

67

68 A. Detect attacks: Bus Guardian

Ford Escape

Instead, during an injection attack, the message was replayed at 10 to 20 times these

frequencies, that means that the maximum was probably in (56,90). 3

On the other hand, speaking about Diagnostic CAN packets, it’s even simpler,

because, with few exceptions, they shouldn’t be present during the normal operation

of the car.

Those the reasons why, in many cases, it is possible to detect frequency abnormalities

and prevent certain attacks.

3[3]

68

Appendix B

One Time Programmable (OTP)

memory

In the paper we said repeatedly that we can write data in a ‘indelible/ not reversible/

permanent’ way, but we didn’t give any information about how this is effectively possible.

Well, let’s see now how the One Time Programmable (OTP) memory (or

Programmable Read-Only Memory (PROM)) works:

As mathematicians, we will say, in few and simple words, that this memory is a form of

digital memory where the setting of each bit is locked by a fuse.1

A fuse is a safety device with a conductor thread that lies

together an electrical source and its associated load(s). When

the current that passes in it exceeds its designed threshold, the

fuse is calibrated to permanently open the series circuit, thereby

disconnecting the load(s) from the power source.

Once a fuse disconnects, to restore initial settings, it’s necessary

to discard it and replace it with a new one .

Fuses protects a circuit from overheating due to excessive current flow.2

In our case, the setting of bits is locked with fuses: if fuses are working, we can write and

reprogram data inside, when we want to fix the information memorized in a permanent

1[Web: 24]
2[Web: 25]

69

70 B. One Time Programmable (OTP) memory

way we can send a voltage higher than the supported one, burning out the fuses and

making the memory a read only one.

This process is known as burning the PROM.3

Like said before, the only way to have rewrite access of this memory is to substitute the

fuses with new ones.

If the PROM is inside the microprocessor the replacement operation is not possible

without specific and expensive equipment and very high knowledge, so we can consider

secure to memorize sensible data, like cryptographic keys, in this way.

3[Web: 26]

70

Appendix C

Hardware Secure Module (HSM)

EVITA Project

”The objective of the EVITA project is to design, verify, and prototype an

architecture for automotive on-board networks where security-relevant components

are protected against tampering and sensitive data are protected against compromise

when transferred inside a vehicle.1”

The EVITA (E-safety Vehicle Intrusion proTected Applications) was a European Union

project born in 2008 and ended in 2011, which has established state of the art specifications

of automotive Cyber Security.

Between the main participants there was: BMW, Bosch, Continental, Infineon, Fujitsu

and Escypt.

As reported before, the objective of the project was to create a new architecture for cars

network in order to increase their security.

The work made by the team merged in the description of a Hardware Secure Module

(HSM)2 for automotive purpose: an integrated chips specifically developed and designed

for security automotive use-cases. In technical words the HSMs are tamper-resistant

cryptographic coprocessors with a programmable secure core, integrated on the same

chips as the ECUs.

1[Web: 27]
2[16]

71

72 C. Hardware Secure Module (HSM)

To enable cost-efficiency and flexibility, different classes of HSMs have been specified

with different security requirements3:

• Full HSM for protecting the in-vehicle domain against vulnerabilities due to V2X

communication: This includes an asymmetric cryptographic engine for creating

and verifying electronic signatures. The full HSM provides the maximum level of

functionality, security, and performance of all the different HSM variants.

• Medium HSM for securing the on-board communication: The medium HSM resembles

the full HSM, but contains a little less performing microprocessor and no asymmetric

cryptographic engine in hardware. However, it is able to perform some non-time-

critical asymmetric cryptographic operations in software, e.g. for the establishment

of shared secrets.

• Light HSM for securing the interaction between ECUs and sensors and actuators:

It only contains a symmetric cryptographic engine and an I/O component in order

to fulfill the strict cost and efficiency requirements that are typical for sensors and

actuators.

In particular a Full HSM should be able to:

• prevent unauthorized manipulations of vehicular on-board electronics,

• prevent unauthorized modifications of vehicle applications especially regarding

safety and m-commerce applications,

• protect privacy of vehicle drivers,

• protect intellectual property of vehicle manufacturers and suppliers,

• maintain the operational performance of applications and security services.

The table shows the components of the different HSMs:

3[16]

72

73

HSM

Full Medium Light

RAM
√ √

optional

NVM (non-volatile memory)
√ √

optional

Symmetric cryptographic engine
√ √ √

Asymmetric cryptographic engine
√

Hash engine
√

Counters
√ √

optional

Random-number generator
√ √

optional

Secure CPU
√ √

I/O component
√ √ √

Components for HSM

HSM is compliant to the SHE specification. CSE security level is placed between a

Light and a Medium HSM.4

Nowadays some Medium HSM are available on the market: Freescale Semiconductor

Corporation and Infineon Technologies AG are the referential companies for their production.

Implementation of Full HSM is still on working.

The main differences between a medium HSM and a SHE specification module are

that in this case, the firmware is not pre-installed, but it is programmable by car’s

manufacturers, in order to be more compliant to their specific needs.

Furthermore with HSM, it’s possible to implement a valid control of Debug access.

To have an idea of what we are working with, we report the technical specifications

of the Freescale’s Calypso MPC5747G microprocessor and its Medium HSM:

4See chap. 3 pag. 49 for CSE description

73

74 C. Hardware Secure Module (HSM)

Calypso

Number

of cores
3

Maximum

Operating

Frequencies

160Mhz

160Mhz

80Mhz

Flash 4 MB

RAM 768 KB

HSM Available

(Level Medium)

LIN 17

CAN 8

MOST Available

FlexRay Available

USB 2.0 Available

Calypso MPC5747G

HSM

Number

of cores
1

Maximum

Operating

Frequencies

80Mhz

Dedicated

Secure Flash

144 (application)

+ 32 (data) KB

Dedicated

Secure RAM
32 KB

Debug

Interface
Secure

Cryptographic

HW engine

AES-128

(symmetric)

Firmware Programmable

Details of HSM

74

C.1 EVITA Transport Protocol 75

Thanks to the presence of a secure storage, the Random Number Generator and a

symmetric cipher, HSMs, or a cryptographic modules in general, can be used to establish

secure communications and identity proofs between multiple ECUs.

In the third part of this paper we will describe an authentication protocol between two

ECUs, equipped with Medium HSMs, communicating on CAN bus. The purpose is to

implement the protocol in the practice: we have already started to work on it, but we

haven’t reached the scope yet.

Anyway, for the communication on the CAN bus, we needed to decide how our CAN

packets shall be made:

as we saw before, our packets should have maximum: 29 bits of identifier plus 64 bits of

data.

The reduced length of data and the 128 bits blocks of AES-128 seam to be a bad

combination to manage. That is true, but, to minimize the gap, we decided to use

the ‘Transport Protocol’ on CAN bus, proposed in the EVITA project.

C.1 EVITA Transport Protocol

EVITA transport protocol defines a way to use the bits of the CAN packets in order

to transmit all the information necessary for the communication. Furthermore it defines

how to divide messages longer than 64 bits, in order to recompose them univocally.

Let’s see it more in details.

Generally in the CAN communication the same CAN ID could be used by more then

one ECU, but, in this case, it’s necessary to suppose that every ECU has a different ID

of 15 bits, that identifies it univocally.

We divide the messages in two categories:

1. Single: if the content of the message is ≤ 6 byte (48 bits)

2. Multiple: if the content of the message is > 6 byte

Single messages are sent with a single CAN packet, multiple messages shall be divided

75

76 C. Hardware Secure Module (HSM)

in a sequence of CAN packets.

The CAN packets considered have 29 + 64 bits, that means:

• 29 bits for the identifier (ID)

• 64 bits for data

The 29 bits of fixed CAN ID are divided as follow:

- 7 bits for ‘Security Features’: they define if the content of the message is encrypted

and in which way

- 15 bits for ‘Source Address’ : they report the unique CAN address of the ECU

that is sending the packet

- 7 bits for ‘Receiver ID 1’: they report the first part of receiver’s ID

29 bits of ID

7 bits 15 bits 7 bits

Security Features Source Address Receiver ID 1

The 64 bits of variable Data are used as follow:

• For SINGLE messages:

– 8 bits for ‘Receiver ID 2’: they report the second part of receiver’s ID

– 8 bits for ’Length’: they report the total length of the content of the message

– 48 bits for ’Message’: they report the content of the message

64 bits of Data (8 byte)

8 bits (1 byte) 8 bits (1 byte) 48 bits (6 byte)

Receiver ID 2 Length Message

• For MULTIPLE messages we should differentiate two cases:

1. the packet is the FIRST packet of a sequence:

– 8 bits for ‘Receiver ID 2’: they report the second part of receiver’s ID

76

C.1 EVITA Transport Protocol 77

– 8 bits for ‘Length’: they report the total length of the content of the

message

– 48 bits for ‘Message’: they report the first part of the message

64 bits of Data (8 byte)

8 bits (1 byte) 8 bits (1 byte) 48 bits (6 byte)

Receiver ID 2 Length Message

2. the packet is a FOLLOWING (i.e. not the first one) packet of a sequence:

It’s the same as for a single message

– 8 bits for the ‘Counter’: they count the packets of the sequence (we shall

enumerate them in order to recompose them in the right order)

– 56 bits for ‘Message’: they report the following parts of the message

64 bits of Data (8 byte)

8 bits (1 byte) 56 bits (7 byte)

Counter Message

The scope of this transport protocol is to exploit for the better, the reduced length of

the packets maintaining the transmission clear for the receiver.

For this reason we decided to use it in our practical implementation of the authentication

between ECUs.

77

Appendix D

Code Signing Authentication

Code Signing is a technique used to authenticate an important part of the code (e.g.

engine maps, secret information, the flag that identifies the state of a car’s option with

fee) set in an insecure memory (e.g. flash), in order to prevent a modification without

the legitimate permission.

A trustworthy processor with a secure memory is necessary to verify the authentication:

the HSM module, with his secure flash, could be a valid option.

The implementations are various, one way could be to use an hash function, like SHA

or MD5.

Supposing that our scope is to validate an engine map M stored in the flash; if the HSM

is integrated in the same ECU that has the map, a possible solution is described by the

following procedure, where h is a hash cryptographic function:

HSM has stored in his memory the hash value of the original map = HM , called finger

print

1. At action X (e.g. car is switched on), the HSM reads M from the flash and

computes h(M)

2. HSM compares h(M) and HM :

• if they are equal, the authentication is done

• if they are different, a recovery solution is implemented, such as:

– restore the map to a default value, memorized in the secure flash

79

80 D. Code Signing Authentication

– only a limited use of the vehicle is permitted

– a Denial of Service (DoS) state is recognized

– etc.

Signing all the code could be too costly, so we should chose to validate only some

selected parts of it. Then, since HSM should store their hash value in his memory from

the start, they should be fixed a priori by the manufacturer; if they could be modify or

update after, depends on the way finger prints are memorized (OTP or not).

An attacker can’t make the HSM accept his own code if it’s not able to modify the finger

print in the secure flash.

Supposing the HSM embedded in the ECU we want to test, allows us to assume the

exchange of information secure.

However, probably, not every ECU could have a HSM module integrated, so what if the

HSM has to validate the map of a not secure ECU?

The difficult increases considerably, because HSM can’t trust anymore the map’s value

received; in fact a hacker could modify the map, but send always the original value in

order to be authenticated.

A solution could be to ask to the ECU not the hash value of the total map (that is always

the same), but the hash value of a random walk on map’s code, generated with a seed

choosen by the HSM. The difference is that the ECU should calculate the hash value

only of some random parts of the code and not of all. But a problem is still present:

to succeed, the HSM should have in his memory the hash value of the random walk

associated to the seed, that means, known the seed, it exists a way to determine which

path the random walk will do: it could be follow a precise algorithm (like the one to

generate pseudo random numbers), a pre-determined sequence or even something not

directly related to the seed. In any case, the way will be stored somewhere in the ECU,

and we can’t prevent a corrupt ECU to have access to it.

If the attacker has access to the original map and the ‘random’ algorithm/information,

it could calculate all the hash values the HSM asks for.

The problem is still opened.

80

Part III

A Practical Implementation of a

Challenge-Response

Authentication Protocol

81

Why an authentication protocol?

As practical activity, we decided to implement an authentication protocol between

ECUs.

The introduction of an authentication protocol between car’s ECUs can prevent the

substitution of one of them with an unauthorized one in order to:

• avoid some dangerous consequences, like the installation of a counterfeit airbag

(seen at page 39)

• restrain the black-market of auto parts

• permit the ‘marriage’ between ECUs that have to exchange sensitive information,

that can damage the car if modified

• avoid the installation of ECUs that have been created and calibrated for a different

car: for example the ECM with its engine maps, or the CDCM with its type of

transmission (manual, automatic or semi-automatic)

In our design an ECU, called Master, shall test the authenticity of some other ECUs,

called Slaves, when the car is started. We suppose the presence of a cryptographic

module, with certain characteristics, later explained, in every ECU considered.

For the moment, the authentication we started to implement is one-directional, mainly

for simplicity reasons, but it’s reasonable to think that in a future application it will

become mutual.

A negative result of the authentication process can be used later to trigger some consequences,

like preventing the car from running or reducing its performances and forcing the driver

to go to an authorized dealer or workshop in order to detect and solve the problem.

83

Chapter 5

The Authentication Protocol’s

Requirements

Before starting to model a project it’s necessary to write its Functional Requirements

Specifications, that means one or more papers where it’s reported the detailed description

of the model.

The objective is to create into the reader, a unique idea of how the model shall be done

and how it should work, setting the main guidelines of the implementation, without any

detail of the code.

5.1 ECUs Authentication Protocol

Functional Requirements Specifications

Fist, we’re going to describe the affected systems, then we will give the general

overview of the functionality and finally an explicative diagram.

Because of enterprise’s security and secrecy reasons we will omit the detailed description

and the Input/Output/NVM Parameters explanation.

85

86 5. The Authentication Protocol’s Requirements

5.1.1 Affected Systems

This Functional Requirements Specification is intended for ECUs with a dedicated

module to do hardware cryptography, integrated in the microprocessor.

In particular, we consider a network with a MASTER ECU and a set of SLAVE ECUs

associated.

The purpose is that MASTER ECU verifies the identity of its associates in order to

prevent their unauthorized replacement.

As soon as the car is started, MASTER ECU shall run the authentication protocol.

Then depending on the results of the authentication it should trigger some consequences,

like the permission of running the car or not.

For this reason, only an ECU that controls critical components of the car is a good

choice of MASTER ECU.

MASTER ECU’s cryptographic module shall have:

• a dedicated core

• a dedicated secure RAM

• a secure debug interface

• a unique ID

• a secure part of NV(Non-Volatile) memory where:

– its own ID

– a vector that contains all SLAVE ECUs IDs

– a vector that contains all the keys shared with SLAVE ECUs,

– a vector that contains the estimated time of answering for each SLAVE ECU

are stored

• a cryptographic HW engine (symmetric cipher)

• a cryptographically secure Random Number Generator

A SLAVE ECU’s cryptographic module shall have:

• a dedicated core

• a dedicated secure RAM

• a secure debug interface

• a unique ID

86

5.1 ECUs Authentication Protocol
Functional Requirements Specifications 87

• a secure part of NV memory where:

– the key shared with MASTER ECU

– and its own ID

are stored

• a Cryptographic HW engine (symmetric cipher)

The symmetric cipher of MASTER ECU and SLAVE ECU shall be the same. Otherwise

no encrypted communication is possible between them.

5.1.2 Functionality Overview

The aim of this functionality is to implement an Authentication Protocol that permits

MASTER ECU to verify the identity of one or more SLAVE ECUs, one at a time,

communicating with them on an insecure channel (e.g. CAN bus).

One of the purposes of this authentication is to prevent the unauthorized replacement

of ECU.

By default configuration, when the car is started, MASTER ECU tests all its associated

SLAVE ECUs, but the option to test only one or more chosen ECUs shall be available.

MASTER ECU implements a ‘challenge- response’ protocol in order to verify a

SLAVE ECU ID.

Protocol overview:

1. MASTER ECU sends a challenge to a SLAVE ECU

2. SLAVE ECU encrypts it with its own ID, using the secret key, and sends back the

response,

3. MASTER ECU verifies if the answer is the correct one. If the response is the right

one, SLAVE ECU’s identity is proven.

With this process MASTER ECU could verify the identity of all SLAVE ECUs, taken

one by one, and then use the information acquired to implement the related consequences.

87

88 5. The Authentication Protocol’s Requirements

The main outputs of the protocol are:

1. The global state of the authentication protocol (completed/interrupted/not performed/...)

2. The state of each SLAVE ECU authentication test (successful/failed/...)

5.1.3 Functionality Description

[· · ·] We will call SLAVE#x a generic SLAVE ECU associated to the MASTER.

To guarantee proper functionalities of the transmission on the CAN bus, SLAVEs authentication

shall be done considering the SLAVE ECUs ONE AT A TIME. And when the last

ECUs that shall be tested completes the protocol, the authentication process shall be

considered concluded. To end an authentication process, it is not necessary to have a

successful authentication result in all cases.

[· · ·]

Challenge-Response Authentication Protocol Description

The protocol is the one described at page 52. See that page for all details.

Protocol Activation/Deactivation Criteria

1. NECESSARY CRITERIA

These criteria shall be controlled and satisfied, before allowing the implementation

of the protocol:

(a) Integrity of MASTER ECU’s cryptographic module:

The integrity of MASTER’s cryptographic module (keys, secure memory,...)

shall be checked to prevent possible modifications

(b) MASTER ECU’s communication is active:

MASTER ECU shall be able to send and receive messages via CAN bus

2. TRIGGERING CRITERIA

(a) MASTER ECU shall start the authentication process as soon as the driver

turns the ignition keys to the on position

88

5.1 ECUs Authentication Protocol
Functional Requirements Specifications 89

(b) later, MASTER ECU shall repeat the test for those SLAVE ECUs that failed

the authentication, for a maximum of MaxNumAuthFail times.

3. TERMINATION CRITERIA

The protocol shall be stopped before the end if:

(a) For some reasons CAN communication is not working anymore

(b) The debug port of the cryptographic module of MASTER ECU is opened

Main Outputs of the functionality

The main outputs of the functionality are two processes:

1. The state of the authentication; the possible states are:

• Not Performed: before the start of the authentication protocol (default state)

• Running: while the authentication process is performing

• Performed: if the authentication process ends. This means that the authentication

of all ECUs has been run, but not that all the ECUs passed successfully the

authentication test.

• Interrupted: if the authentication process is interrupted before completion

(i.e. because of one of the Termination Criteria)

2. The results of the authentication protocol for each SLAVE ECU.

For each ECU the possible states are:

• No Challenge Reception: SLAVE ECU didn’t received the challenge

• Successful: SLAVE ECU passed correctly the test, that means its authentication

is succeed

• Failed: SLAVE ECU sent the wrong answer that means its authentication has

failed

• Expired Time: SLAVE ECU took too much time to answer or didn’t answer

at all

MASTER ECU Functionality

MASTER ECU functionality is partitioned in the following sub-functionalities:

89

90 5. The Authentication Protocol’s Requirements

1. Authentication Manager

2. Crypto

3. Communication

1. Authentication Manager, is the brain of the authentication process: following the

Necessary Criteria and the Triggering Criteria, it sets the start of the protocol’s

implementation and which SLAVE ECUs have to be tested.

Then it uses Crypto and Communication to implement the protocol.

Furthermore it manages the outputs that describe the state of the authentication

and the authentication results.

2. Crypto is implemented by the cryptographic module, and it carries out the cryptographic

functionalities.

3. Communication manages the communication between MASTER ECU and SLAVE

ECUs over the CAN bus.

SLAVE#x ECU Functionality

SLAVE#x ECU functionality is partitioned in the following sub-functionalities:

1. Application

2. Crypto

3. Communication

1. Application uses the other modules (SLAVE Crypto and SLAVE Communication)

to generate and send the response to MASTER ECU.

Furthermore: since a SLAVE can answer only to a limited number of authentication

challenges in a minute, it shall control that the request didn’t overshoot the limit.

2. Crypto is implemented by the cryptographic module; in particular it generates the

response to the authentication test.

3. Communication manages the communication between the ECU and MASTER

ECU over the CAN bus.

90

5.1 ECUs Authentication Protocol
Functional Requirements Specifications 91

5.1.4 Interface Diagram

I/O interface of MASTER ECU

I/O interface of an SLAVE#x ECU

91

92 5. The Authentication Protocol’s Requirements

5.1.5 I/O Interfaces, NVM Parameters

[· · ·]

————————————————————————

Despite the gaps, now we should have a general idea of which kind of model we are going

to create.

Now, all the specifications of the Master and the Slave sub-functionalities shall be written,

and only after, we can start to program the model. The process is long and actually we

haven’t finished yet.

Up to now, we modeled in Simulink/MATLAB only the Master Authentication Manager,

so in the following chapters we will describe only its specifications and some parts of its

model, keeping private most details, for obvious enterprise’s secrecy reasons.

5.2 MASTER Authentication Manager

Functional Requirements Specifications

5.2.1 Functionality Overview

The aim of this functionality is to manage the authentication protocol, using the

other sub-functionalities, in particular, it shall:

• decide which ECUs SLAVE shall be tested

• start the Authentication process and set its progress

• ask to Crypto to generate the challenges

• authenticate the requested ECU, managing the expiration time of the response

• verify which ECUs passed the test and eventually trigger some consequences (i.e.

repeat the authentication)

Since the authentication is done considering one SLAVE at a time, the challenge shall

be different for each ECU tested. This choice prevents a SLAVE to have more time than

is necessary to generate the answer.

92

5.2 MASTER Authentication Manager
Functional Requirements Specifications 93

Otherwise, a SLAVE that knows in advance which challenge the MASTER will send

it, makes useless the control of the expiration time of its response. And the limited

expiration time of the response is important because it shall partially prevent this kind

of ‘man in the middle’ attacks:

• a malicious ECU uses the extra-time and the challenge to ask in advance to the

SLAVE it wants to impersonate, the correct authentication response.

Then it replays the answer with the MASTER during its authentication test. At

the end it will be authenticated even without knowing any secret information.

Of course this attack is still possible, but at least, not the extra-time.

5.2.2 Functionality Description

[· · ·]

5.2.3 Interface Diagram

I/O interface of Master Authentication Manager

5.2.4 I/O Interfaces, NVM Parameters

[· · ·]

93

Chapter 6

A model in Simulink and Stateflow

To create our model we used ‘Simulink’ and ‘Stateflow’.

“Simulink is a block diagram environment for multidomain simulation and

Model-Based Design. It supports system-level design, simulation, automatic

code generation, and continuous test and verification of embedded systems.

Simulink provides a graphical editor, customizable block libraries, and solvers

for modeling and simulating dynamic systems. It is integrated with MATLAB,

enabling you to incorporate MATLAB algorithms into models and export

simulation results to MATLAB for further analysis.”1

“Stateflow is an environment for modeling and simulating combinatorial

and sequential decision logic based on state machines and flow charts. Stateflow

lets you combine graphical and tabular representations, including state transition

diagrams, flow charts, state transition tables, and truth tables, to model

how your system reacts to events, time-based conditions, and external input

signals.”2

During the modeling, we followed the ‘MAAB Rules’:

The MAAB (MathWorks Automotive Advisory Board) is an independent board that

1[Web: 32]
2[Web: 33]

95

96 6. A model in Simulink and Stateflow

Example of Model in Simulink/Stateflow

focus on the usage and enhancements of MathWorks controls, simulation, and code

generation products and, in particular, develops guidelines for using MATLAB, Simulink,

Stateflow and Embedded Coder; it involves many of the major automotive OEMs and

suppliers.3

Some of the benefits of following these rules are:4

• System integration without problems

• Uniform appearance of models, code and documentation

• Reusable models

• Readable models

• A simple, effective process

• Fast software changes

We can’t specify now the details of Manager Authentication’s model, or the strategies

we adopted, I’ll just say that it was an interesting challenge, and we rode it out.

3[Web: 34]
4[19]

96

97

Here are reported some pictures of our model:

Simulink: 3 subsystems; the gray rectangle contains our model, the left one the simulation

of the external Inputs and the right one the model’s Outputs.

Simulink: 2 subsystems, triggered by certain events

97

98 6. A model in Simulink and Stateflow

Stateflow: a finite state machine; on the left the Inputs that will be processed inside and

on the right the Outputs

Stateflow: inside the previous state machine; the triangle is a for cycle and the horizontal

and vertical lines are if/else conditions.

After, we created 14 test patterns: a test pattern is a MATLAB script where the

values of model’s inputs are specified in every instant of time of model’s running.

98

99

Nine of them were done considering one Slave to test, the others, two.

Tests patterns are useful to test the running and the accuracy of the model in an initial

stage.

Furthermore, thanks to them, we computed also the decision coverage.

Decision coverage analyzes elements that represent decision points in a model, such as

a Switch block or Stateflow states. For each item, decision coverage determines the

percentage of the total number of simulation paths through the item that the simulation

actually traversed.5

The model’s decision coverage of the union of the five tests patterns with two Slaves to

test, is 98%. (The minimum admitted for a model is 80%.)

5[Web: 35]

99

Chapter 7

How to Prove the Security of an

Authentication Protocol

All the work we did until now, implementing and optimizing our authentication

protocol, will be totally useless if we don’t try to give a proof of the security of the

protocol.

So how we can prove the security of an authentication protocol?

The answer is not trivial.

For centuries, when a new scheme was proposed, people tried to break it. After a while,

if they didn’t succeed, then the scheme was assumed to be appropriate.

History teaches that this is not the best way to prove security, in fact, in most part of

cases protocols were broken, maybe some years after their birth.

Hence the necessity of a ‘provable security’, that means: “prove the security under

‘standard’ and well-believed complexity theoretic assumptions (e.g. the assumed intractability

of factoring)” 1.

In 1993, Mihir Bellare and Phillip Rogaway, with their article ‘Entity Authentication

and Key Distribution’, gave a formal security proof of a Mutual Authentication Protocol

(MAP1).

In this chapter we will reminisce their reasoning and then we will observe the linking

1[20]

101

102 7. How to Prove the Security of an Authentication Protocol

with their and our authentication protocol of page 52.

7.1 MAP1 security proof

7.1.1 Notations and previous definitions

• {0, 1}∗ will denote the set of finite binary strings

{0, 1}∞ will denote the set of infinite ones

{0, 1}≤L the set of binary strings of length at most L

λ the empty string.

• if a, b are strings, we denote a||b the concatenation of a and b.

Now, we consider a set of identities I, which defines the players who can legally

participate in the protocol (i.e. the adversary E /∈ I and we won’t refer to her as a

player).

For simplicity, our authentication protocol will involve only 2 parties (I = {A,B}), but,

in general, the set of players could be larger.

The protocol we consider is formally specified by a computable function Π on the

following inputs:

• 1k , k ∈ N: the security parameter.

• A , A ∈ I ⊆ {0, 1}k: the identity of the sender.

• B, B ∈ I ⊆ {0, 1}k: the identity of the legitimate partner.

• a , a ∈ {0, 1}∗: the secret information of the sender. It’s its secret key, also called

long-lived key. In our protocol all players i ∈ I will get the same a.

• k , k ∈ {0, 1}∗: the conversation had until that moment

• r , r ∈ 0, 1∞: the random coin flips of the sender

The value of Π(1k, i, j, a, k, r) = (m, δ) is:

• m , m ∈ {0, 1}∗ ∪ {∗}: the next message to send out.

In this case {∗} means the player sends no message.

102

7.1 MAP1 security proof 103

• δ , δ ∈ {A,R, ∗}: the ‘decision’.

A means Accept, R Reject, and ∗ means ‘the player has not reached a decision yet’.

Definition 7.1.1.1. (efficiently computable)

A function is efficiently computable if it can be computed in time polynomial in its first

argument.

Definition 7.1.1.2. (negligible)

A real-valued function f(k) is negligible if:

∀ c ∈ R, c > 0, ∃ kc > 0 such that f(k) <
1

kc
, ∀ k > kc

Definition 7.1.1.3. (LL-key Generator)

The LL-key generator (long-lived key generator) G(1k, i, rG) is a polynomial time algorithm

which takes as input: the security parameter 1k, the identity of a party i ∈ I ∪ E and

an infinite string rG ∈ {0, 1}∞ (coin flips of the generator).

Its output is the secret key a, also called long-lived key.

In the protocol considered, the LL-key generator is a symmetric one, that means:

G(1k, i, rG) = G(1k, j, rG) ∀i, j ∈ I and G(1k, E, rG) = λ.

7.1.2 Adversary’s resources

Let’s make now some hypothesis of what an adversary can do to annoy the authentication

process: we assume that any communication among the parties is under the adversary’s

control. In particular it can:

• read the messages produces by the parties

• provide messages of his own to them

• modify messages before they reach their destination

• delay messages

• replay messages

• engage many session at once with all the parties (e.g. like in a parallel attack, see

page 7)

103

104 7. How to Prove the Security of an Authentication Protocol

7.1.3 The mathematical model

Formally each player is modeled by an infinite collection of oracles which the adversary

may run. So, the oracle Πs
A,B models player A attempting to authenticate player B in

session s.

The adversary E, instead, is a probabilistic machine E(1k, aE, rE) equipped with an

infinite collection of oracles (the players) Πs
i,j ∀ i, j ∈ {A,B} and s ∈ N.

In few words, we can imagine a probabilistic machine as a virtual computer, with the

ability to make random decisions, that means: at each point it randomly chooses between

the available transitions, according to some probability distributions.

E communicates with the oracles via queries of the form (i, j, s, x), i, j ∈ {A,B}, s ∈ N.

The query shall be red as follow: ‘E is sending the message x to A, claiming that is from

B in section s’.

In our model, a query will be answered by Πs
A,B; the response will be generate according

to the following protocol:

Running of the protocol Π, with LL-key generator, in the presence of an adversary E,

using the security parameter k:

(1) Choose a random string rG ∈ {0, 1}∞, and set a = G(1k, A, rG) = aA = aB (the

secret key), and aE = G(1k, E, rG)

(2) Choose a random string rE ∈ {0, 1}∞, and a random string rsi,j ∈ {0, 1}∞ for each

i, j ∈ {A,B}, s ∈ N.

(3) Set ksi,j = λ ∀i, j ∈ {A,B}, s ∈ N.

(4) Run adversary E on input (1k, aE, rE):

when E asks a query (i, j, s, x), oracle Πs
i,j computes (m, δ) = Π(1k, i, j, a, ksi,j||x, rsi,j)

and answers with (m, δ).

Then ksi,j gets replaces by ksi,j||x

So, from an oracle’s answer, E learns out the outgoing message m and whether or not

the oracles has accepted or rejected.

To have a time notion, we can say that the adversary’s l-th query to an oracle occurs

104

7.1 MAP1 security proof 105

at time τl ∈ R.

More notions of time are available, like: τl = l ‘absolute time’, τl = the l-th step in

E’s computation: ‘Turing machine time’, or τl = the exact time when the l-th query is

made: ‘real time’.

We can choose the one we prefer under the condition τl < τp when l < p.

7.1.4 MAP1 protocol

We will define mutual authentication (MA) by an experiment involving the running

of adversary E with security parameter k. When E terminates, each oracle Πs
i,j has had

a certain conversation ksi,j with E, and it has reached a certain decision δ ∈ {A,R, ∗}.

Definition 7.1.4.1. (initiator and responder oracle)

Fixed an execution of an adversary E (i.e. fixed the coins of the LL-key generator, the

oracles and the adversary), for any oracles Πs
i,j we can capture its conversation by a

sequence

K = (τ1, α1, β1), (τ2, α2, β2), · · · (τm, αm, βm)

This sequence encodes that at time τl oracle Πs
i,j was asked αl and responded with βl.

Suppose oracle Πs
i,j has conversation prefixed by (τ1, α1, β1).

Then, if α1 = λ we call Πs
i,j an initiator oracle.

If α1 is any other string we call Πs
i,j a responder oracle.

Definition 7.1.4.2. (matching conversation)

Fixed a number of moves R = 2p − 1 (we suppose R odd, the case with R even is

analogous) and a R-move protocol Π, given two oracles Πs
A,B and Πt

B,A, we run Π in the

presence of an adversary E.

Let K and K ′ be the corresponding conversations engaged.

(1) We say that K ′ is a matching conversation to K if there exist τ0 < τ1 < · · · < τR

and α1, β1, ..., αp, βp, such that K is prefixed by:

(τ0, λ, α1), (τ2, β1, α2), (τ4, β2, α3), · · · , (τ2p−4, βp−2, αp−1), (τ2p−2, βp−1, αp)

and K ′ is prefixed by:

(τ1, α1, β1), (τ3, α2, β2), (τ5, α3, β3), · · · , (τ2p−3, αp−1, βp−1)

105

106 7. How to Prove the Security of an Authentication Protocol

(2) We say that K is a matching conversation to K ′ if there exist τ0 < τ1 < · · · < τR

and α1, β1, ..., αp, βp, such that K ′ is prefixed by:

(τ1, α1, β1), (τ3, α2, β2), (τ5, α3, β3), · · · , (τ2p−3, αp−1, βp−1), (τ2p−1, αp, ∗)

and K is prefixed by:

(τ0, λ, α1), (τ2, β1, α2), (τ4, β2, α3), · · · , (τ2p−4, βp−2, αp−1), (τ2p−2, βp−1, αp)

Observation 1. Case (1) defines when the conversation of a responder oracle matches the

conversation of an initiator oracle. Case (2) defines when the conversation of an initiator

oracle matches the conversation of a responder oracle.

Observation 2. To explain our definition we can consider the execution in which Πs
A,B is

the initiator oracle and Πt
B,A is the responder oracle.

If every message that Πs
A,B sends out, except maybe the last one, is subsequently delivered

to Πt
B,A, and the response to this message is returned to Πs

A,B as its own next message,

then we can say that the conversation of Πt
B,A matches that of Πs

A,B.

Similarly, if every message that Πt
B,A receives was previously generated by Πs

A,B, and

each message that Πt
B,A sends out is subsequently delivered to Πs

A,B, and the response

this message generates is returned to Πt
B,A as its own next message, then we can say that

the conversation of Πs
A,B matches the one of Πt

B,A.

Example 1. The following figure reports a matching conversation for a 3-move protocol:

the left-hand conversation matches the right-hand one and, omitting arrows associated

to τ3 , the right-hand conversation matches the left-hand one.

Now, let f be a pseudorandom function family.

A pseudorandom function family (PRF) is a collection of efficiently-computable functions

which emulate a random oracle in the following way: no probabilistic algorithm that runs

in polynomial time can distinguish between a function chosen randomly from the PRF

family and a random oracle (a function whose outputs are fixed completely at random).

We denote fa : {0, 1}≤L(k) → {0, 1}l(k) the function specified by key a.

In general the length of the key a, the length L of the input of fa and the length l of the

106

7.1 MAP1 security proof 107

output, are all functions of the security parameter 1k. Here we assume that the length

of the key is k, L(k) = 4k and l(k) = k.

For any string x ∈ {0, 1}≤L(k) we define [x]a = (x, fa(x)): this will serve as an authentication

of message x, and for any i ∈ A,B, [i||x]a will serve as i’s authentication of message x.

Definition 7.1.4.3. (MAP1)

We define the following mutual authentication protocol MAP1:

1. A sends to B a random challenge RA of length k

2. B responds making up a different random challengeRB and returning [B||A||RA||RB]a

3. A checks if this message is of the right form and is correctly tagged as coming from

B. This includes checking that the nonce present in the message is the same nonce

sent in the first message.

If it is, the identity of B is proven and A accepts. Then A sends B the message

[A||RB]a

4. B checks if this message is of the right form and is correctly tagged as coming from

A.

If it is, the identity of A is proven and he accepts

7.1.5 Security proof

Definition 7.1.5.1. (secure mutual authentication)

107

108 7. How to Prove the Security of an Authentication Protocol

MAP1 protocol

Π is a secure mutual authentication protocol if for any polynomial time adversary E,

1. (Matching Conversations ⇒ acceptance)

If oracles Πs
A,B and Πt

B,A have matching conversations, then both oracles accept

2. (Acceptance ⇒ matching conversation)

The probability of No-MatchingE(k) is negligible.

No-MatchingE(k) is the event that there exist i, j, s such that Πs
i,j accepts but

there is no oracle Πt
j,i which engaged in a matching conversation.

Definition 7.1.5.2. (MAP1g protocol)

Let g be a random function from {0, 1}≤L(k) to {0, 1}k, we denote [x]g = (x, g(x)).

We call MAP1g a protocol that works like MAP1, but in which the parties, instead of

sharing a secret key a, share an oracle for g, and they ask him to compute [x]g every

time that MAP1 asks for [x]a.

Observation 3. E doesn’t have access to the g oracle.

When g = fa, for randomly chosen a, then, running E for MAP1 coincides to running

E for MAP1g.

Lemma 7.1.5.1. The probability that an adversary E is successful in running MAP1g

is at most TE(k)2 · 2−k, where TE(k) is a polynomial bound on the number of oracle calls

made by E; we assume, without loss of generality, that this is at least two.

Proof. (of Lemma (7.1.5.1))

Case 1:

We demonstrate now that: fixed A, B, s, and given an initiator oracle (suppose

Πs
A,B), the probability that it accepts without a matching conversation is at most

108

7.1 MAP1 security proof 109

TE(k) · 2−k.

We suppose that at time τ0 oracle Πs
A,B sent the challenge RA. We set:

R(τ0) = {R′A ∈ {0, 1}k : ∃τ, t such that Πt
B,A was given R′A as first flow at a time τ < τ0}

If Πs
A,B is to accept, then at some time τ2 > τ0 it must receive [B||A||RA||RB]g

for some RB. If no oracle previously output this message, the probability that the

adversary can compute it correctly is at most 2−k.

So, consider the case where some oracle did output this flow. The form of the

message implies that the oracle which output it must be Πt
B,A which earlier received

RA .

The probability of this event happening before time τ0 is bounded by the probability

that RA ∈ R(τ0), and this probability is at most [TE(k)− 1] · 2−k. If it happened

after time τ0 then we would have a matching conversation.

We conclude that the probability that Πs
A,B accepts but there is no matching

conversation is at most TE(k) · 2−k.

Case 2:

We demonstrate that: fixed B, A, t, and given a responder oracle (suppose Πt
B,A),

the probability that it accepts without a matching conversation is at most TE(k) ·
2−k.

Suppose at time τ1 oracle Πt
B,A received RA and responded with [B||A||RA||RB]g.

If Πt
B,A is to accept, then at some time τ3 > τ1 it must receive [A||RB]g. If no oracle

previously output this message, the probability that the adversary can compute it

correctly is at most 2−k.

We consider now the case where some oracle did output this message. The form of

the flow implies that the oracle which output it must be a Πs
A,C oracle.

The interaction of a Πs
A,C oracle with E has in general the form:

(τ0, λ, R
′
A), (τ2, [C||A||R′A||R′B]g, [A||R′B]g) for some τ0 < τ2

For any such interaction, with probability 1 − 2−k, there is a Πu
C,A oracle which

output [C||A||R′A||R′B]g at some time.

Now, if (u,C) 6= (t, B), then the probability that R′B = RB is at most

109

110 7. How to Prove the Security of an Authentication Protocol

[TE(k) − 2] · 2−k, and so, the probability that the message [A||R′B]g leads Πt
B,A to

accept is at most [TE(k)− 2] · 2−k.

On the contrary, if (u,C) = (t, B), then R′A = RA, R′B = RB and τ0 < τ1 < τ2 < τ3,

that means: the conversations match.

Finally the probability that there is no matching conversation and Πt
B,A accepts is

at most TE(k) · 2−k

We can conclude that: the probability that exists an oracle which accepts without a

matching conversation is at most TE(k) times the bound obtained before, so:

TE(k)2 · 2−k.

Theorem 7.1.5.2. (MAP1 is a secure MA)

Suppose f is a pseudorandom (PRF) function family; then, the protocol MAP1, described

above and based on f, is a secure mutual authentication.

Proposition 7.1.5.3. (uniqueness)

Suppose Π is a secure MA protocol. Let E be any polynomial time adversary.

The probability of Multiple-MatchE(k) is negligible.

Multiple-MatchE(k) is the event that Πs
i,j accepts and there are at least two distinct

oracles Πt
j,i and Πt′

j,i which have had matching conversations with Πs
i,j.

Proof. (of Theorem (7.1.5.2))

We shall prove that the two conditions of the definition (7.1.5.1) are verified:

1. (Matching Conversations ⇒ acceptance) is satisfied because it says that when the

messages between A and B are faithfully relayed to one another, each party accepts,

and this is true for our protocol.

2. (Acceptance ⇒ matching conversation), proof by contradiction:

Suppose that the probability that an adversaryE is successful (that is the probability

that the event No-MatchingE(k) happens) is not negligible. This in particular

means:

there is an infinite set K and a constant c > 0 such that: ∀k ∈ K the probability

of No-Matching(k) is at least k−c.

110

7.2 Observations and Conclusions 111

Now, we consider a polynomial time test T which distinguished random functions

from pseudo-random functions.

As an oracle, T receives a function:

g : {0, 1}≤L(k) → {0, 1}k

chosen according to the following rule: flip a coin C,

g =

{
a random function if C = 1

fa, with a random otherwise

T ’s job is to predict C with some advantages, that means with a probability > 1
2
;

T ’s strategy is to run E for the protocol MAP1g. In this experiment T it self

simulates all oracles and answers to E’s queries.

If E is successful, then T predicts 0 (i.e. g is pseudo-random), else T predicts 1 (g

is random).

Now, when g = fa, running E for MAP1g coincides to running E for MAP1, but,

since we supposed E successful in MAP1 with probability at least k−c, we obtain

that T gains an advantage k−d, for some d > 0 and ∀k ∈ K. And this implies

that: the probability that T can distinguish between a random function and a

pseudo-random one is not negligible.

But this contradicts the hypothesis of pseudo-randomness of f .

It follows: the probability of No-MatchingE(k) is negligible.

7.2 Observations and Conclusions

Observation 4. (explanation of the proofs)

Forgetting the formalism for a moment, we can observe, now, what we really demonstrated

before; in few simple words:

• With the Lemma (7.1.5.1) we proved that: if we consider the protocol with a real

random function, the probability that the adversary gains a significant advantage

111

112 7. How to Prove the Security of an Authentication Protocol

in the protocol execution (and the consequential victory) is negligible (O(2−k)).

That means that we can consider this protocol secure.

• In the practice, on the contrary, we can’t suppose that the players share a real

random function because it would be like sharing an infinite table of random values,

so we shall consider pseudo-random functions.

The idea of theorem’s demonstration is that: if the adversary E wins with a

significant advantage, then, it means that, in the implementation, a pseudo-random

function has been used (the advantage, in fact, can’t be significant in the presence

of a real one because of the Lemma), and so that it’s possible to create a test

that differentiates the pseudo-random functions from the real-random ones, using

the results of E’s authentication attempts. But this is contradicting because a

pseudo-random function is not, for definition, polynomial distinguishable from a

real-random one.

It follows: E can’t win with a significant advantage, and so the protocol is secure.

Previous proofs concern a mutual authentication protocol, different from the one we

implemented. In fact, ours is just a 2-moves one way authentication protocol, where only

one player, A for example, wants to prove an other identity (B). In this case, we can

model A with an initiator oracle and B with a responder one.

Our protocol will have only 2 moves and we can represent it as follow:

One-way authentication protocol

Furthermore, we can modify the definition of secure authentication into:

Definition 7.2.0.3. (secure one way authentication)

Π is a one way secure authentication protocol if for any polynomial time adversary E:

1. (Matching Conversations ⇒ acceptance)

If oracles Πs
A,B and Πt

B,A have matching conversations, then the initiator oracle

112

7.2 Observations and Conclusions 113

accepts

2. (Acceptance ⇒ matching conversation)

The probability of No-MatchingE(k) is negligible.

No-MatchingE(k) is the event where the initiator oracle accepts but there is no

responder oracle which engaged in a matching conversation.

And, following this new definition, we can say that our protocol is a secure one-way

authentication.

That means that, an adversary E can’t win in this authentication process with a significant

advantage, and the only way for her to enter in the conversation between the two players

and makes the initiator oracle accept, is simply to read the messages sent and replay

them to the right receiver without changing their order or their content, as shown in the

following figure:

E’s eavesdropping permitted

113

Final Conclusions

Here we arrive at the end of this report; we should have acquired now a general view

of automotive security problems and some glimpses of the solutions that cars world is

developing.

We know perfectly that our work is incomplete and the subject is more ample than this,

in fact, the research of solutions has just started. What we hope is that this paper

showed how serious are the threat and the necessity of improving in this field for the

good of all.

Lastly it’s always interesting to discover unexpected environments where Math in general,

and Cryptography in particular, can be applied in our practical life.

Glossary

City Option increases the steering effort of the steering wheel, helping the driver in

certain situations, usually in a city context.

LKA Lane Keep Assistant detects, under certain conditions, if the vehicle is veering

off the road. If this is the case it will adjust the steering wheel to correct the

automobile’s course.

PCS Pre-Collision System determines if the car is going to collide with something, if

this is the case it will alert the driver and apply the brakes, regardless of the

state of the acceleration pedal.

RDS Radio Data System is a communications protocol standard for embedding small

amounts of digital information in conventional FM radio broadcasts.

boot the totality of the process that are executed during the starting phase in order

to turn on a computer.

engine maps To control the engine’s Air/Fuel ratio, ignition timing, idle speed, electronic

valves, etc. the ECM has to calculate specific functions, that depend on more values

like RPM, gas pedal,... To save time and decrease difficulty, the ECM doesn’t

calculate these functions every time, but, considering the input parameters, it

chooses the output configuration using multidimensional performance maps.

worm is a malware computer program that replicates itself in order to spread to other

computers (http://en.wikipedia.org/wiki/Computer_worm). Here the worm

passes from one device to another.

117

http://en.wikipedia.org/wiki/Computer_worm

Bibliography

[1] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy,

B. Kantor, D. Anderson, H. Shacham, and S. Savage, ‘Experimental Security Analysis

of a Modern Automobile’, In D. Evans and G. Vigna, editors, IEEE Symposium on

Security and Privacy. IEEE Computer Society, May 2010.

[2] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, and Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner,

and Tadayoshi Kohno, ‘Comprehensive Experimental Analyses of Automotive Attack

Surfaces’, In USENIX Security Symposium, 2011

[3] Dr. Charlie Miller, Chris Valasek, ‘Adventures in Automotive Networks and Control

Units’, 2013

[4] OpenGarages, ‘Car Hacker’s Handbook’, http://opengarages.org/handbook/

[5] Todd E. Humphreys, Brent M. Ledvina, Mark L. Psiaki, Brady W. OHanlon, and

Paul M. Kintner, ‘Assessing the Spoofing Threat: Development of a Portable GPS

Civilian Spoofer’, in Proceedings of the ION GNSS Meeting, (Savannah, GA),

Institute of Navigation, 2008

[6] Stephen C. Bono, Matthew Green, Adam Stubblefield, Ari Juels, Aviel D. Rubin,

Michael Szydlo, ‘Security Analysis of a Cryptographically-Enabled RFID Device’, In

USENIX Security Symposium, 2005

[7] Aurelien Francillon, Boris Danev, Srdjan Capkun, ‘Relay Attacks on Passive Keyless

Entry and Start Systems in Modern Cars’, In A. Perrig, editor, NDSS 2011. ISOC,

Feb. 2011

119

http://opengarages.org/handbook/

BIBLIOGRAPHY

[8] Freescale Semiconductor: Geoff Emerson, Jurgen Frank, Stefan Luellmann

Applications Engineering, Microcontroller Solutions Group, ‘Using the Cryptographic

Service Engine (CSE)’, 2011

[9] W.Trappe, L.C.Washington, ‘Introduction to Cryptography (with Coding Theory)’,

Pearson-Pentice Hall, 2009

[10] Niels Ferguson, Bruce Schneier, ‘Practical Cryptography’, John Wiley & Sons, 2003

[11] Daniel J. Bernstein, ‘Cache-timing attacks on AES’, Department of Mathematics,

Statistics, and Computer Science (M/C 249), The University of Illinois at Chicago,

2005

[12] Thomas Eisenbarth1, Timo Kasper, Amir Moradi, Christof Paar, Mahmoud

Salmasizadeh, and Mohammad T. Manzuri Shalmani, ‘On the Power of Power

Analysis in the Real World: A Complete Break of the KeeLoq Code Hopping Scheme’,

D. Wagner (Ed.): CRYPTO 2008, LNCS 5157, pp. 203220, 2008

[13] Amir Moradi and Timo Kasper, ‘A New Remote Keyless Entry System

Resistant to Power Analysis Attacks’, 7th International Conference on Information,

Communications and Signal Processing, ICICS 2009

[14] Markus Kasper, Timo Kasper, Amir Moradi, and Christof Paar, ‘Breaking KeeLoq

in a Flash’, AFRICACRYPT 2009

[15] Andrey Bogdanov, ‘Cryptanalysis of the KeeLoq block cipher’, https://eprint.

iacr.org/2007/055.pdf

[16] E-safety vehicle intrusion protected applications, ‘Project Summary’, April 2012,

http://www.evita-project.org/Publications/EVITAD0.pdf

[17] A.Menezes, P.C. van Oorschot, S.A. Vanstone, ‘Handbook of Applied Cryptography’,

CRC Press, 1997

[18] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger, ‘Biclique

Cryptanalysis of the Full AES’, ASIACRYPT 2011

120

https://eprint.iacr.org/2007/055.pdf
https://eprint.iacr.org/2007/055.pdf
http://www.evita-project.org/Publications/EVITAD0.pdf

BIBLIOGRAPHY 121

[19] MathWorks Automotive Advisory Board (MAAB), ‘Control Algorithm Modeling

Guidelines using MATLAB, Simulink, and Stateflow’, Version 3.0

[20] Mihir Bellare, Phillip Rogaway, ‘Entity Authentication and Key Distribution’,

August 1993

[21] Yang, Song Y., ‘An introduction to: Formal Languages and Machine Computation’,

World Scientific, 1998

121

Webography

[Web: 1] http://www.digitaltrends.com/cars/can-your-car-be-hacked-car-\

hacking-threats-analyzed/

[Web: 2] http://resources.infosecinstitute.com/car-hacking-safety-without-\

security/

[Web: 3] www.autosec.org

[Web: 4] www.escar.info

[Web: 5] http://www.forbes.com/sites/andygreenberg/2014/02/05/

this-iphone-\sized-device-can-hack-a-car-researchers-plan-to-demonstrate/

[Web: 6] http://securityaffairs.co/wordpress/22070/hacking/

can-hacking-tools.html

[Web: 7] http://cmu95752.wordpress.com/2012/07/21/automotive-telematics\

infotainment-systems-security-vulnerabilities-and-risks/

[Web: 8] http://en.wikipedia.org/

[Web: 9] http://www.cnn.com/2007/US/09/26/power.at.risk/index.html

[Web: 10] http://www.freescale.com/

[Web: 11] http://www.havocscope.com/number-of-counterfeit-airbags-available\

-on-market/

123

http://www.digitaltrends.com/cars/can-your-car-be-hacked-car-\hacking-threats-analyzed/
http://www.digitaltrends.com/cars/can-your-car-be-hacked-car-\hacking-threats-analyzed/
http://resources.infosecinstitute.com/car-hacking-safety-without-\security/
http://resources.infosecinstitute.com/car-hacking-safety-without-\security/
www.autosec.org
www.escar.info
http://www.forbes.com/sites/andygreenberg/2014/02/05/this-iphone-\sized-device-can-hack-a-car-researchers-plan-to-demonstrate/
http://www.forbes.com/sites/andygreenberg/2014/02/05/this-iphone-\sized-device-can-hack-a-car-researchers-plan-to-demonstrate/
http://securityaffairs.co/wordpress/22070/hacking/can-hacking-tools.html
http://securityaffairs.co/wordpress/22070/hacking/can-hacking-tools.html
http://cmu95752.wordpress.com/2012/07/21/automotive-telematics\infotainment-systems-security-vulnerabilities-and-risks/
http://cmu95752.wordpress.com/2012/07/21/automotive-telematics\infotainment-systems-security-vulnerabilities-and-risks/
http://en.wikipedia.org/
http://www.cnn.com/2007/US/09/26/power.at.risk/index.html
http://www.freescale.com/
http://www.havocscope.com/number-of-counterfeit-airbags-available\-on-market/
http://www.havocscope.com/number-of-counterfeit-airbags-available\-on-market/

BIBLIOGRAPHY

[Web: 12] http://media.gm.com/media/me/en/gm/news.detail.html/content/

Pages/news/me/en/2013/gm/General-Motors-Highlights-Issue-of-Counterfeit\

-Parts-in-the-Middle-East.html

[Web: 13] https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti?

_pageLabel=ti_j2534_device&_nfpb=true

[Web: 14] http://electronics.howstuffworks.com/gadgets/automotive/

rfid-ignition-system.htm

[Web: 15] https://techinfo.toyota.com

[Web: 16] http://timesofindia.indiatimes.com/city/patna/

Fake-spares-cause-20-of-mishaps-Reports/articleshow/22174552.cms

[Web: 17] http://www.eetimes.com/document.asp?doc_id=1279619

[Web: 18] http://www.bmw.com/com/en/insights/technology/technology_guide/

articles/electronic_immobiliser.html

[Web: 19] http://www.e38.org/EWS.pdf

[Web: 20] http://www.ecudoctors.com/bmw-ecu-dme-reprogrammed-and-rebuilt.

html

[Web: 21] http://www.locksmithsacramento.net/Transponder_Keys.html

[Web: 22] http://advanced-keys.co.uk/product_ref.php

[Web: 23] http://electronics.stackexchange.com/questions/85657/

rolling-code-explanation

[Web: 24] http://computer.howstuffworks.com/rom3.htmhttp://computer.

howstuffworks.com/rom3.htm

[Web: 25] http://en.wikipedia.org/wiki/Programmable_read-only_memory

[Web: 26] http://en.wikipedia.org/wiki/Fuse_(electrical)

124

http://media.gm.com/media/me/en/gm/news.detail.html/content/Pages/news/me/en/2013/gm/General-Motors-Highlights-Issue-of-Counterfeit\-Parts-in-the-Middle-East.html
http://media.gm.com/media/me/en/gm/news.detail.html/content/Pages/news/me/en/2013/gm/General-Motors-Highlights-Issue-of-Counterfeit\-Parts-in-the-Middle-East.html
http://media.gm.com/media/me/en/gm/news.detail.html/content/Pages/news/me/en/2013/gm/General-Motors-Highlights-Issue-of-Counterfeit\-Parts-in-the-Middle-East.html
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti?_pageLabel=ti_j2534_device&_nfpb=true
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti?_pageLabel=ti_j2534_device&_nfpb=true
http://electronics.howstuffworks.com/gadgets/automotive/rfid-ignition-system.htm
http://electronics.howstuffworks.com/gadgets/automotive/rfid-ignition-system.htm
https://techinfo.toyota.com
http://timesofindia.indiatimes.com/city/patna/Fake-spares-cause-20-of-mishaps-Reports/articleshow/22174552.cms
http://timesofindia.indiatimes.com/city/patna/Fake-spares-cause-20-of-mishaps-Reports/articleshow/22174552.cms
http://www.eetimes.com/document.asp?doc_id=1279619
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/electronic_immobiliser.html
http://www.bmw.com/com/en/insights/technology/technology_guide/articles/electronic_immobiliser.html
http://www.e38.org/EWS.pdf
http://www.ecudoctors.com/bmw-ecu-dme-reprogrammed-and-rebuilt.html
http://www.ecudoctors.com/bmw-ecu-dme-reprogrammed-and-rebuilt.html
http://www.locksmithsacramento.net/Transponder_Keys.html
http://advanced-keys.co.uk/product_ref.php
http://electronics.stackexchange.com/questions/85657/rolling-code-explanation
http://electronics.stackexchange.com/questions/85657/rolling-code-explanation
http://computer.howstuffworks.com/rom3.htmhttp://computer.howstuffworks.com/rom3.htm
http://computer.howstuffworks.com/rom3.htmhttp://computer.howstuffworks.com/rom3.htm
http://en.wikipedia.org/wiki/Programmable_read-only_memory
http://en.wikipedia.org/wiki/Fuse_(electrical)

BIBLIOGRAPHY 125

[Web: 27] http://www.evita-project.org/index.html

[Web: 28] http://www.top500.org/lists/2014/11/

[Web: 29] http://argus-sec.com/

[Web: 30] http://www.tower-sec.com/

[Web: 31] http://www.cisco.com/

[Web: 32] http://it.mathworks.com/help/simulink/gs/product-description.

html

[Web: 33] http://www.mathworks.com/products/stateflow/

[Web: 34] http://www.mathworks.com/solutions/automotive/standards/maab.

html

[Web: 35] http://www.mathworks.com/help/slvnv/ug/types-of-model-coverage.

html#bqi9xaj

125

http://www.evita-project.org/index.html
http://www.top500.org/lists/2014/11/
http://argus-sec.com/
http://www.tower-sec.com/
http://www.cisco.com/
http://it.mathworks.com/help/simulink/gs/product-description.html
http://it.mathworks.com/help/simulink/gs/product-description.html
http://www.mathworks.com/products/stateflow/
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/solutions/automotive/standards/maab.html
http://www.mathworks.com/help/slvnv/ug/types-of-model-coverage.html#bqi9xaj
http://www.mathworks.com/help/slvnv/ug/types-of-model-coverage.html#bqi9xaj

	I Analysis of Threats
	How car's brain works
	ECUs and CAN packets
	Challenge-Response Authentication and Parallel Attack

	Tampering a car
	How to enter into car's network
	Inject CAN data
	The little practical experiment
	A case study
	Other Damages

	Other attacks

	Conclusions

	II Current Solutions to the Automotive Security Problems
	Short Introduction
	SHE specification
	Secret Keys and Secure Flash
	Authentication SHE Compliant Protocol
	 Comments and Security Observations

	Immobilizers Authentication
	Key to EWS Authentication
	1998 Original Protocol
	One-Time Password Identification Protocols
	Modern Key to EWS Authentication
	Implementation Observations

	ECUs marriage: EWS to DME Authentication

	Appendices
	Detect attacks: Bus Guardian
	One Time Programmable (OTP) memory
	Hardware Secure Module (HSM)
	EVITA Transport Protocol

	Code Signing Authentication

	III A Practical Implementation of a Challenge-Response Authentication Protocol
	Why an authentication protocol?
	The Authentication Protocol's Requirements
	ECUs Authentication Protocol Functional Requirements Specifications
	Affected Systems
	Functionality Overview
	Functionality Description
	Interface Diagram
	I/O Interfaces, NVM Parameters

	MASTER Authentication ManagerFunctional Requirements Specifications
	Functionality Overview
	Functionality Description
	Interface Diagram
	I/O Interfaces, NVM Parameters

	A model in Simulink and Stateflow
	How to Prove the Security of an Authentication Protocol
	MAP1 security proof
	Notations and previous definitions
	Adversary's resources
	The mathematical model
	MAP1 protocol
	Security proof

	Observations and Conclusions

	Final Conclusions
	Glossary
	Bibliography
	Webography

