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Abstract 
The technical advancements of the last decades have made organic Rankine cycles 

(ORC) an attractive option for automotive applications: several examples of waste heat 

recovery systems suitable for internal combustion engines of heavy duty vehicles are 

available in literature. 

Mobile power systems must be compact and light: generally heat exchangers constitute 

the largest part of the whole installation, hence the priority in reducing their dimensions 

and weight. Microchannels heat exchangers (MCHE) are distinguished by a very high 

ratio of surface area to volume, low thermal resistances, small volumes, low total mass 

and low inventory of working fluids, and are therefore the ideal candidate.  

Typically, applications such as waste heat recovery usually involve heat loads and mass 

flow rates significantly higher than any device found in the open literature: automotive 

MCHE exist as proprietary or in-house packages only and have not penetrated the 

market yet. Further research is therefore needed to assess performance and limits of 

microchannel technology coupled with mobile ORC systems. The task is complicated by 

the sensibility of microflows to phenomena usually negligible in channels of 

conventional size. 

The present work, carried out at the Propulsion&Power Department of Delft University 

of Technology, aims to design a microchannel regenerator optimized for a specific ORC 

waste heat recovery system, which is the target of a recent feasibility study funded by 

TU Delft in cooperation with two European automotive manufacturers. The system 

requires the regenerator to transfer around 35 kWth from the gas-side to the-liquid-side. 

In the open literature, no microchannel devices are proposed above 5 kWth nor is a 

suitable optimization procedure available, making the project original and innovative.  

The optimization process developed in this document is implemented in the MATLAB 

environment. Appropriate values for each design parameter describing the geometry of 

the MCHE core are selected in order to obtain a light and compact device. Each 
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parameter is allowed to vary between a maximum and a minimum value, determined 

from information on the manufacturing method, on the distribution elements and on the 

other components of the ORC system in which the MCHE is to be integrated. Some of the 

considerations made to establish the constraints have general validity and may come 

handy for diverse microchannel applications. 

An important feature of the procedure is the accurate estimation of conjugate heat 

transfer, which is shown to have strong impact on the thermal behavior of the 

microchannel device. Two different alloys with substantially different thermal 

conductivity are considered for the solid walls, leading to remarkably different optimal 

design parameters. 

For each material, specifically a copper-based and an aluminium based alloy suitable for 

the required manufacturing method, the optimization process calculates the best 

counterflow and crossflow configuration which satisfy the thermohydraulic 

requirements fed to the MATLAB script. Four optimized heat exchangers, from the 

lightness and compactness point of view, are provided in only a few minutes of 

computational time.  

In order to validate the simplification introduced in the selection process, the optimal 

designs are rated in detail and the magnitude of the scaling effects is estimated 

following the guidelines available in literature. Computational fluid-dynamics (CFD) 

analysis of the crossflow arrangement are impracticable, but the symmetry planes of the 

crossflow MCHE may be exploited to single out a sufficiently contained computational 

domain. CFD simulations in ANSYS Fluent are in good agreement with the implemented 

model, with relative errors of in the order of only 0.5 % for what concern both the heat 

exchanger effectiveness and the total pressure drop in the core. 

The optimized microchannel devices offer striking improvement in compactness and 

lightness compared to the exchanger originally meant for the specified ORC system. The 

distribution elements are found to have major impact on dimension and weight. A 

preliminary design is given however improvement might be needed. Experimental 

information on the manufacturing process and the materials are also required.  
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Nomenclature 
Appropriate SI base and derived units eventually with metric prefixes are used 

throughout the present document; IEEE Standards Style is adopted for numbering and 

citing references, equations, figures and tables. 

Acronyms 

ASME American Society of Mechanical Engineers 
CFD computational fluid-dynamics 
DN Nominal Diameter, designator used in the SI  system to describe pipe size 
EU European Union 
EU-28 the 28 member states comprised by EU since July 2013 
GHG greenhouse gas: CO2 ; CH4 ; N2O ; HFCs ; PFCs ; SF6 
HDV heavy-duty vehicle: motor vehicle with gross weight greater than 7500 kg 
IEEE Institute of Electrical and Electronics Engineers 
LIGA Lithographie, Galvanoformung und Abformung 
MCHE microchannel heat exchanger 
NADCA North American Die Casting Association 
NIST National Institute of Standards and Technology 
ORC organic Rankine cycle 
PFHE plate-fin heat exchanger 
PHE plate heat exchanger 
SI international system of units 
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Roman Symbols 

A heat transfer surface area, better specified by the subscript [m2] 
a aspect ratio of the channels on the hot-side [#] 
b aspect ratio of the channels on the cold-side [#] 
Br Brinkmann number [#] 
C heat capacity rate [W/K] 
c long dimension of the cold-side channels [m] 
cP specific heat of fluid at constant pressure [ J/(kg K)] 
d short dimension of the cold-side channels [m] 
D diameter of the supply or return pipe, better specified by the subscript [m] 
DC smallest characteristic length for heat exchanger passages [m] 
DH hydraulic diameter of flow passages [m] 
f Fanning friction factor [#] 
G fluid mass flux, mass flow rate per unit surface area [kg/(m2 s)] 
h heat transfer coefficient [W/(m2 K)] 
H header parameter [#] 
k thermal conductivity [W/(m K)] 
𝐾𝐾∞ Hagenbach’s factor [#] 
Kn Knudsen number [#] 
L fluid flow length on one side of the heat exchanger [m] 
l long dimension of the hot-side channels [m] 
LHD hydrodynamic entrance length [m] 
LTH thermal entrance length [m] 
Lw width of the counterflow modules [m] 
m fin parameter [#] 
�̇�𝑚 fluid mass flow rate [kg/s] 
M molar mass of a gas [kg/mol] 
Nc number of channels on the cold-side [#] 
Nh number of channels on the hot-side [#] 
Nm number of modules [#] 
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Np number of plates [#] 
NTU number of transfer units [#] 
Nu Nusselt number [#] 
p fluid static pressure [Pa] 
P perimeter [m] 
Pe Peclét number [m] 
Po Poiseuille number [#] 
Pr Prandtl number [#] 
q heat flux, heat transfer rate per unit surface area [W/m2] 

�̇�𝑄 heat transfer rate: thermal power exchanged or heat duty [W] 

R universal gas constant [J/(mol K)] 
r heat capacity rate ratio [#] 
R thermal resistance [K/W] 
Re Reynolds number [#] 
S free flow area, better specified by the subscript [m2] 
s short dimension of the hot-side channels [m] 
Sw area of the dividing wall [m2] 
T fluid temperature, better specified by the subscript: static [°C] or absolute [K] 
tw wall shear stress [Pa] 
u fluid mean axial velocity inside the microchannel [m/s] 
UA overall thermal conductance [W/K] 
V volume, better specified by the subscript [m3] 
v fluid mean axial velocity inside the headers [m/s] 
x coordinate along the flow direction of the hot fluid [m] 
X non-dimensional coordinate along the flow direction of the hot fluid [m] 
xh coordinate in the flow direction of the header [m] 
y coordinate along the flow direction of the cold fluid [m] 
Y non-dimensional coordinate along the flow direction of the cold fluid [m] 
yc coordinate perpendicular to the core for the cold-side outlet header [m] 
yh coordinate perpendicular to the core for the cold-side outlet header [m] 
z coordinate along the no-flow or stack height direction [m] 
zc coordinate perpendicular to the core for the cold-side inlet header [m] 
zh coordinate perpendicular to the core for the hot-side inlet header [m] 
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Greek Symbols 

α ratio of the total transfer area to the total exchanger mass [m2/kg] 
β heat transfer surface area density [m2/m3] 
δ thickness of the dividing wall [m] 
ϵ average surface roughness height [m] 
ε heat exchanger effectiveness [#] 
ηf fin efficiency [#] 
ηo extended surface efficiency [#] 
θ non-dimensional hot-side temperature [#] 
Θ non-dimensional wall temperature [#] 
ϑ non-dimensional cold-side temperature [#] 
κHD dimensionless hydrodynamic entrance length [#] 
κTH dimensionless thermal entrance length [#] 
λ mean free path [m] 
Λ longitudinal heat conduction parameter [#] 
μ fluid dynamic viscosity [Pa s] 
ρ mass density [kg/m3] 
ϱ ratio of the cold fluid heat capacity rate to the hot fluid heat capacity rate [#] 
σ ratio of the free flow area to the frontal area [#] 
τ frame thickness [m] 
φ fin thickness [m] 
ψ generic physical property in the appropriate units of measurement 
ω weight [kg] 
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Subscripts 

abrupt abrupt entrance and exit in the headers 
acc acceleration 
app apparent 
av average 
b bulk 
c cold-fluid side (liquid) 
f fin 
fr friction 
h hot-fluid side (gas) 
head header 
in inlet 
max maximum 
min minimum 
out outlet 
p primary 
pipe supply and return piping 
r reference 
w wall separating the fluids 
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1 Introduction 

The European Union (EU) climate and energy policy targets towards 2020 include 

international commitments pursuant to the Kyoto Protocol and a more ambitious EU 

unilateral commitment, the so-called 20/20/20 triple objective [1]. Endorsed by the 

European Council in 2007 and implemented through the 2009 Climate and Energy 

Package and the 2012 Energy Efficiency Directive, this program aims to achieve the 

following improvements with respect to the base year 1990: 

• 20 % reduction of greenhouse gas emissions 

• 20 % share of renewable energy in energy consumption 

• 20 % increase in energy efficiency 

The EU-28 Countries are essentially on track towards their respective targets: for what 

concerns greenhouse gas (GHG) emissions, in 2012 approximately 4544 Tg CO2 

equivalents of GHE were released to the atmosphere, corresponding to 19.2 % less than 

base year levels. An estimated decrease of 1.3 % occurred between 2011 and 2012 [2]. 

In the same year, the share of GHG emissions ascribable to road transport was 19.7 %, of 

which 98.8 % were CO2 [2]. If no additional measures are adopted, the future scenarios 

outlined in Figure 1 forecast a rise in emissions from this sector, in contrast to a 

generally decreasing trend. It is therefore evident that more efforts should be made to 
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limit GHG emissions especially from vehicles. The most significant existing measures 

include the implementation of the 2009/443/EC and 2011/510/EU Regulations and 

following Amendments, which set limits for CO2 emissions from new cars and light 

commercial vehicles.  On the other hand, heavier vehicles such as trucks and buses are 

currently unrestricted. 

 
Figure 1: sectoral trends and projections of EU GHG emissions in EU-28 [1] 

In 2011, heavy-duty vehicles (HDV) accounted for approximately 26 % of EU-28 road 

transport related CO2 [3]. Despite a CO2 emission normative specific to HDV has not 

entered yet into legal force, a strategy for reducing CO2 from HDV was defined with the 

2014/285/COM Communication. Climate Action Commissioner Connie Hedegaard 

stated short after the approval: 

« Today we are taking the next steps to curb emissions from road transport. We first 

regulated cars and vans, and we can now see the results: emissions have been reduced, 
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air pollution in cities is in decline, and more innovative, fuel-efficient vehicles are now 

available to consumers. That is why we turn now to trucks and buses. This strategy 

outlines new measures which over time will cut CO2 emissions of these vehicles, save 

operators money and make the EU less dependent on imported oil. » * 

This policy was also welcomed by the European commercial vehicle industry. Erik 

Jonnaert, Secretary General of the European Automobile Manufacturers’ Association, 

commented on the certification system introduced in the approved Communication: 

« Fuel efficiency is a top priority for the transport companies who buy and use trucks 

and buses, because fuel accounts for over one-third of their total operating costs. Fuel 

efficiency is therefore the number one competitive factor in developing and selling 

heavy-duty vehicles. This system will empower customers to compare and choose the 

most fuel-efficient vehicle combination adapted to their needs. » ** 

In order to reduce fuel consumption and therefore emissions, the documentation [3] 

attached to 2014/285/COM recommends several waste heat recovery technologies 

suitable for HDV engines, among which bottoming systems based on organic Rankine 

cycle (ORC) are possibly the most promising choice [4]. The literature reviewed in [5] 

clearly reports that fuel economy improvements around 10 % are a practicable outcome, 

granting a payback period of only 2-5 years.  

In HDV reciprocating engines, exhaust gas energy has the highest and most technically 

feasible recovery potential [6] and represents a significant amount of the fuel energy, as 

shown in Figure 2. The exhaust gas is available at temperatures ranging from 200 to 

400 °C, and in the exhaust gas recirculation (EGR) system at even higher temperatures, 

from 280 to 580 °C. [6]. 

ORC systems have already been widely exploited for heat recovery from stationary 

                                                 

* “Climate action: Commission sets out strategy to curb CO2 emissions from trucks, buses and coaches”, 
European Commission press release, Brussels, 21/5/2014 

** “European auto industry welcomes transparency for customers on CO2 from heavy-duty vehicles”, 
European Automobile Manufacturers’ Association press release, Brussels, 21/5/2014 
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energy sources at comparable temperature [7]. However, the implementation on board 

of vehicles is challenging, and it is still in research phase. Although the first ORC studies 

date from the oil crisis of the 1970s, no commercial application exists [6]. Recent 

published papers sponsored by Honda, Toyota, BMW, Wartsila and Volvo show a 

renewed interest in this technology, impelled by the surge in fuel prices and upcoming 

regulations [5]. Naturally, the ideal condition for such systems is stable engine load and 

speed over a large portion of operation hours [8]. This is why research concentrates on 

HDV designed for freight transport on long hauling routes. However, in principle this 

concept may be applied also to passengers car [9], which would require even more 

compact equipment due to reduced size. 

 
Figure 2: typical fuel energy dissipation in a HDV [10] 

Compactness and lightweight are of course crucial for mobile applications [6]. The 

technical advancements of the last decades in the critical components (evaporator, 

condenser, regenerator, expander, etc.) of ORC systems are now making them a concrete 

option to increase the thermal efficiency of automotive internal combustion engines [9]. 

However, the heat exchangers (PHE) usually employed in such systems are still 

considered more voluminous than desirable [6]. Generally, heat exchangers constitute 

the largest part of the space occupied by the whole bottoming installation, hence the 

priority in reducing their dimensions and weight [8]. Microchannels heat exchangers 

(MCHE) are ideal candidates due to several features: high ratio of surface area to 
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volume, low thermal resistances, small volumes, low total mass and low inventory of 

working fluids [11]. While a comprehensive literature on MCHE for electronic cooling 

is available, there is limited research that focuses on larger applications such as waste 

heat recovery. Automotive MCHE exist as proprietary or in-house packages only and 

have not penetrated the market yet [12]. In order to provide a better alternative to the 

state-of-the-art technology, it is therefore important to assess the performance of such 

heat exchangers in mobile ORC systems. 

1.1 Organic Rankine Cycle 

The organic Rankine cycle (ORC) is a Rankine cycle that does not use steam as its 

working fluid, but an organic fluid, i.e. a compost, not necessarily present in living 

organisms, containing a significant quantity of carbon [13]. 

1.1.1 Field of Application 

Figure 3 approximately represents the field of employment, in terms of temperature and 

power, for heat engines using steam or organic fluids. Steam has practically no rivals in 

applications requiring largepower levels (higher than 500-1000 kWe) and at medium-

high temperatures (above 200-250 °C). For lower power levels, the steam turbine is 

usually too expensive due to several factors that increase the cost: high maximum 

pressure (150-300 bar) and temperature (500-700 °C) of the cycle, complexity of the 

plant layout (numerous regenerators) and of the turbine expander (several stages) [13].  

Only few organic fluids can be operated at temperatures above 300°C, due to thermal 

stability issues. Temperatures below 70-100 °C make the costs of the ORC engine 

prohibitive, so that it is often recommended not to use them unless the power levels are 

particularly high, as in the case of ocean thermal energy conversion (OTEC) systems. 

Very low power levels (below a few tens of kWe, typical in micro-cogeneration 

systems) mean high costs for the organic fluid engine and, consequently, it becomes at 

present often uneconomic [13]. 
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Nevertheless, interest in the ORC technology is growing rapidly and the range of 

potential applications, at low and medium-high temperatures, is vast. Development 

potential is high in the sectors of primary generation and cogeneration (including the 

domestic field, within the range of a few kWe); in biomass fired systems; when there are 

difficult fuels involved (syngas, flare gas, etc.); in the concentrated solar power sector; 

in the various forms of heat recovery (from industrial processes, from gas turbines, from 

reciprocating internal combustion engines, in plants for re-gasification of natural gas, 

etc.); in the exploitation of geothermal sources and in OTEC systems [13]. 

 
Figure 3: fields of employment for the Rankine cycle [14] 

1.1.2 Features of the Candidate Working Fluid 

The versatility of ORC is principally owed to the working fluid, which may also be a 

mixture of two or more components [15]. The fluid constituents and concentrations can 

be tailored to maximize the efficiency of power plants with different applications and 

configurations. 

The selection of organic fluids, instead of steam, leads to desirable thermodynamic and 
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turbine design features [13]: 

• fluids with different critical parameters allows for thermodynamic cycle 

configurations otherwise inaccessible in the state diagram of water, e.g. 

supercritical cycles at low maximum temperatures and pressures 

• even in the presence of significant differences between the temperatures of the 

heat source and the cold well, efficient thermodynamic cycles can be achieved 

through a relatively simple plant set-up, without vapor extraction and perhaps 

with one expansion stage, thanks to the regeneration that occurs with a de-

superheating of the vapor at the turbine outlet 

• the turbine generally requires modest peripheral speed and condensation is 

avoided during the expansion without superheating. The turbine, though, often 

has supersonic flows with high expansion ratios 

• the choice of the fluid influences the volumetric flows, consenting turbine 

optimization for any power level 

• pressure levels and expansion ratios may be chosen with a certain freedom, 

independently of the temperature levels of the heat source and the cold well, 

e.g. low temperatures may be associated with high pressures and high 

temperatures with low pressures 

Inevitably, the selection of working fluids brings performance trade-offs, due to the 

influence of the fluid properties in most components (e.g. different condensation 

pressures for given saturation temperature cause wide variations in volume flows at the 

condenser inlet, which directly affect design and dimensions of the expander and the 

regenerator). Therefore, the assessment of the benefits of a particular solution must be 

based on the system as a whole [7]. Moreover, the choice of the working fluid is 

unavoidably influenced by safety and financial concerns. Consequently, it is generally 

the result of a compromise between the required and the desirable features of the 

working fluid in Rankine power systems: above all, adequate thermo-physical and 

thermodynamic properties, compatibility with the materials  used in building the plant 

and the limits of thermal stability of the fluid, the health and safety issues, the fluid’s 
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availability and its cost [16]. 

1.1.3 Components and Thermodynamic Aspects 

The classic configuration of the critical components of an ORC engine and the 

thermodynamic representation of the cycle in a T-s diagram are shown in Figure 4. The 

working fluid, which may be saturated as in the picture, superheated or even in 

supercritical conditions [17], is expanded (A → B) generally in a turbine, which in small 

power units may be substituted with a less expensive scroll expander [18]. In B, the 

temperature of the fluid might be high enough to include a recuperative heat exchanger, 

frequently called regenerator, in order to cool the vapor (B → C) and preheat the liquid 

(C → D). In the regenerator, the heat recovered is exploited to preheat (E → F) the liquid 

originating from the pump (D → E) and heading to the evaporator (F → A), which feeds 

the working fluid again to the expander. 

 
Figure 4: T-s diagram and component layout for a hexamethyldisiloxane ORC cycle [19] 

The molecular structure of the working fluid is strongly related to the shape of the 

saturation curve in the T-s diagram: the slope of the saturated vapor line tend to be 

negative for fluids with low molecular complexity like water, characterized by the well-
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known bell-shaped curve, while is positive for fluids with high molecular complexity 

[20], as for the siloxane of Figure 4. Often organic fluids have a complex molecular 

structure, which usually makes the employment of a regenerator necessary to achieve an 

acceptable thermal efficiency. In fact, the working fluid expands from A to B in the 

superheated vapor region, moving away from the saturation line. Therefore, a large 

amount of thermal energy can be recovered from the vapor flow before it enters the 

condenser, raising cycle performance. This operation improves the cycle efficiency, 

depending on the performance of the regenerator itself [13]. It should be also noted that 

a positive slopes makes it possible to avoid superheating the working fluid after the 

evaporation without concerns of condensation inside the expander. 

Phase change in ORC systems cannot always be considered isothermal. Zeotropic 

mixtures, i.e. multicomponent fluids whose composition can be altered through simple 

distillation, are characterized by a temperature difference between the dew and the 

bubble temperatures. This temperature glide depends on the fluids and their mass 

fraction in the mixture. In practice, a better thermal match between the heat source and 

the working fluid results in less irreversibility within the evaporator, limiting the 

available work lost by the system as a whole [21]. Therefore, the presence of a 

temperature glide could be useful from the thermodynamic point of view in those cases 

where the heat source is not intrinsically isothermal, as in the heat recovery of exhausts 

[13]. Moreover, if a refrigerant with a modest heat capacity is used for condensation, 

the non-isothermal phase change may still be useful in reducing the mass flow rate 

necessary [15]. The differences between zeotropic and azeotropic mixtures are 

qualitatively shown in Figure 5, where diagrams for two ORC optimized for the same 

heat source are reported. 

An improved thermal match with heat source at variable temperature may also be 

obtained with supercritical heating processes, which are strongly non-isothermal. By 

changing the composition of the mixture, the critical point varies continually, even in a 

non-linear fashion [13]. Tis characteristic may prove useful in creating thermodynamic 

cycles with low critical temperatures and pressures [15]. 
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Figure 5: phase change in azeotropic (a) and zeotropic (b) mixtures [15] 

1.2 Microchannel Heat Exchangers 

The literature on heat transfer and fluid-dynamics in small passages is filled with terms 

to describe channel size (nano-, micro-, meso-, mini-, etc.), reflecting the lack of a 

universally accepted criterion separating microchannels from the conventional scale 

[22]. However, any flow passage with cross-sectional characteristic dimension less than 

1 mm is generally classified as microchannel [12]. This definition for microchannel 

heat exchangers (MCHE) is then adopted throughout the present document and, within 

this context, the smallest characteristic dimension is considered, e.g. the short side 

length of a rectangular cross-section. 

1.2.1 Thermohydraulic Performance 

In heat exchangers, thermal energy (enthalpy) is generally transferred by forced 

convection between a fluid and a solid surface [23]. Convective heat transfer process 

for internal flows is described by the following well-known equation written for the 

differential element of a heat exchanger: 

 d ሶܳ = ℎ dܣ ( ௪ܶ − ܶ) = ሶ݉ ܿ d ܶ (1.1)

where ሶܳ  is the heat transfer rate, and represents the thermal power exchanged between a 

fluid at the bulk temperature Tb and the enclosing walls at temperature Tw ; h is the 

(a)  (b)
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convective heat transfer coefficient; A is the convective heat transfer surface area, which 

corresponds to the wall-fluid interface area; cP is the specific heat at constant pressure of 

the fluid; ሶ݉  is the fluid mass flow rate, which can be expressed as ሶ݉ =  where u is ,ܵ ݑ ߩ

the fluid mean axial velocity, ρ is the fluid mass density and S is the flow area. 

Efforts are made to enhance h and A with constraints on the overall volume and weight, 

in order to develop compact devices capable of dealing with the desired heat duty in a 

reduced space. The small passages that constitute MCHE consent to improve both 

quantities simultaneously [24].  

These and other important aspects associated to microchannels can best be outlined with 

a simple analysis [25]. Consider two channels I and II of different hydraulic diameter DH 

and length L, in which flows the same fluid with constant physical properties. Both 

streams are characterized by the mass flux  ܩ = ݑ ߩ = ሶ݉ ୍ ୍ܵ⁄ = ሶ݉ ୍୍ ୍୍ܵ⁄   and are 

submitted to an equal temperature difference ΔTb between the outlet and the inlet, 

caused by the heat flux at the channel wall  ݍ = d ሶܳ dܣ⁄ = ሶ୍ܳ ⁄୍ܣ = ሶܳ ୍୍ ⁄୍୍ܣ   constant 

along the flow direction. With reference to a single channel of type I, the number ୍୍ܰ of 

channels of type II required to obtain the same total heat transfer rate, surface area, mass 

flow rate and flow area is: 

 ୍୍ܰ =
 ୍ܣ
୍୍ܣ

=
 ୍ܣ ݍ
୍୍ܣ ݍ

=
ሶܳ ୍
ሶܳ ୍୍

=
ሶ݉ ୍ ܿ ∆ ܶ

ሶ݉ ୍୍ ܿ ∆ ܶ
=

ሶ݉ ୍
ሶ݉ ୍୍

=
ܩ ୍ܵ

ܩ ୍୍ܵ
= ୍ܵ 

୍୍ܵ
 (1.2)

Then, the ratio of the ratio of the hydraulic diameters holds: 

 
 ୍,ுܦ
୍୍,ுܦ

=
4 ୍ܵ ୍ܮ ⁄୍ܣ

4 ୍୍ܵ ୍୍ܮ ⁄୍୍ܣ = ୍୍ܰ ୍ܮ

୍୍ܰ ୍୍ܮ
=

୍ܮ

୍୍ܮ
 (1.3)

which means that the flow length is directly proportional to the hydraulic diameter: 

ܮ  ∝ ு (1.4)ܦ

If the walls have zero thickness, the volume V occupied by the channel is equal to the 

volume occupied by the fluid, the following expression may be obtained: 

 
୍ܣ ୍ܸ⁄

୍୍ܣ ୍ܸ ୍⁄ = ୍୍ܵ ୍୍ܮ ୍ܣ

୍ܵ ୍୍ܮ ୍୍ܣ
=

୍ܮ

୍୍ܮ
=

୍,ுܦ

୍୍,ுܦ
 (1.5)
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and therefore: 

ߚ  =
ܣ
ܸ

∝
1

ுܦ
 (1.6)

The ratio of the total transfer area to the total exchanger volume is called the heat 

transfer surface area density β, which is the most widely used heat exchanger 

specification related to compactness and surface area enhancement: low DH implies high 

β, indicating that more heat transfer area can be made available in a reduced space. 

Considering now the Reynolds number Re: 

 ܴ݁ =  
ݑ ߩ ுܦ

ߤ
=

ܩ ுܦ

ߤ
∝ ு (1.7)ܦ

where μ is the fluid dynamic viscosity. Hence, Re decreases with the hydraulic diameter, 

so that at smaller scale the flow tends towards the laminar region [21]. The critical 

Reynolds number for a laminar condition to prevail depends on the surface geometry 

itself: for straight smooth channels it is generally safe to assume that the laminar 

condition will apply for  Re < 2200 , while some surfaces designed to avoid boundary 

layer formation and enhance heat transfer may have transitional or turbulent flow at 

Reynolds numbers as low as about 300 [21]. 

For laminar flows, under several assumptions that will be listed in Section 1.2.2, the 

continuity, the momentum and the energy equations can be analytically solved, and 

constant asymptotic values are obtained for the Nusselt number Nu and the Poiseuille 

number Po, which are defined as: 

ݑܰ  =  
 ℎ ுܦ

݇
= ݐ݊ܽݐݏ݊ܿ  (1.8)

 
ܲ  =  ݂ ܴ݁ = ݐ݊ܽݐݏ݊ܿ  (1.9)

where k is the thermal conductivity of the fluid; f is the Fanning friction factor. 

Rearranging the definition of Nu, the improvement in the heat transfer coefficient 

employing microchannels becomes clear: 
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 ℎ =
ݑܰ ݇

ுܦ
∝

1
ுܦ

 (1.10)

Then the temperature difference between the wall and the fluid does not vary along the 

flow direction and is reduced for smaller hydraulic diameters, as a result of the heat 

transfer coefficient enhancement: 

 ( ௪ܶ − ܶ) =
ݍ
ℎ

=
ݍ ுܦ

ݑܰ ݇
∝ ுܦ  (1.11)

Also the axial temperature gradient is constant along the flow direction, in fact, since 

the wall flux is independent of the axial coordinate x as the flow area: 

 d ܶ

dݔ
=

ݍ
ሶ݉  ܿ

dܣ
dݔ

=
ݍ
ሶ݉  ܿ

 
d ቀ4 ܵ ݔ

ுܦ
ቁ

dݔ
=

4 ܵ ݍ
ுܦ ሶ݉ ܿ

=
ݍ ܣ
ሶ݉ ܿ ܮ

=
∆ ܶ

ܮ 
 ∝

1
ுܦ

  (1.12)

Therefore, if the fluid temperature does not vary significantly on the small cross-

section, a considerable temperature difference may occur between the inlet and the 

outlet, in the case of in microchannels with considerable flow length [25]. 

The length of the channels is important also in relation to the frictional pressure drop, in 

fact:  

∆ = න
1
2

ߩ  ଶݑ  
4 ݂
ுܦ

dݔ



= න

2 ଶܩ

ߩ ுܦ

ܲ
ܴ݁

dݔ



=

2 ߤ ܩ ܲ
ߩ ுܦ

ଶ න dݔ



=

ܮ ܲ ܩ ߤ 2
ுܦ ߩ

ଶ  (1.13)

Considering again I and II it holds: 

∆  ∝
1

ுܦ
 (1.14)

which shows that the improvement in thermal performance achieved reducing the 

channel size is accompanied by deterioration in hydraulic performance [24]. As a 

consequence, the designer must find a compromise between these two aspects. The 

degrees of freedom are numerous: for example, considering a third channel III related to 

I through the same assumption for II with the exception of imposed Δpfr instead of G, it 

leads to: 
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 ୍୍୍ܰ =
 ୍ܣ
୍୍୍ܣ

=
ሶܳ ୍

ሶܳ ୍୍୍
=

ሶ݉ ୍
ሶ݉ ୍୍୍

=
୍ܩ ୍ܵ

୍୍୍ܩ ୍୍୍ܵ
= ୍ܵ

୍୍୍ܵ
ඨ

୍,ுܦ

୍୍,ுܦ
 (1.15)

where the following relationship is used: 

ܩ  =
ுܦ ߩ

ଶ ∆

ܮ ܲ ߤ 2
=

∆ ுܦ ܵ ߩ 2

ܲ ܣ ߤ
∝

ܵ ுܦ

ܣ
⟹

୍ܩ

୍୍୍ܩ
= ୍ܵ ୍,ுܦ

୍୍୍ܰ ୍୍୍ܵ ୍୍୍,ுܦ
 (1.16)

Then it holds 

ܮ  ∝ ுܦ
ଵ.ହ (1.17)

From (1.4) and (1.17), if  ܦு,୍୍୍ = ୍୍୍ܵ  ு,୍୍  , which also impliesܦ = ୍୍ܵ  if the cross-

sectional shape is maintained: 

 
୍୍୍ܮ

୍୍ܮ
=

୍ܮ ൬
୍୍,ுܦ
୍,ுܦ

൰
ଵ.ହ

୍ܮ
୍୍,ுܦ
୍,ுܦ

= ඨ
୍୍,ுܦ

୍,ுܦ
< 1 (1.18)

 

 ୍୍୍ܰ

୍୍ܰ
=

 ୍୍ܣ
୍୍୍ܣ

=

4 ୍୍ܵ ୍୍ܮ
୍୍,ுܦ

4 ୍୍ܵ ୍୍୍ܮ
୍୍,ுܦ

= ඨ
୍,ுܦ

୍୍,ுܦ
> 1 (1.19)

and with (1.15) and (1.16): 

 
୍୍୍ܴ݁

୍୍ܴ݁
=

୍୍୍ݑ

୍୍ݑ
=

୍୍୍ܩ

୍୍ܩ
=

୍୍୍ܩ

୍ܩ
= ඨ

୍୍,ுܦ

୍,ுܦ
< 1 (1.20)

Therefore the pressure drop can be contained using a larger number of shorter channels, 

which provides augmented total flow area  ୍୍୍ܰ ୍୍୍ܵ  and reduced fluid velocity. Since L 

and the flow area vary significantly, it is clear that the shape of the heat exchanger as a 

whole changes as the hydraulic diameter is reduced. 

This is how I would have done this few sentences: 

With the assumptions for channel III, it can be easily shown that (1.6) holds true. 

However, while calculating the heat transfer surface area density, the wall thickness is 
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not considered. The thickness of the walls contributes to the exchanger volume, which 

is the denominator of (1.6). Generally, due to manufacturing and/or operational 

constraints, in small passages the wall thickness is comparable to the hydraulic 

diameter, and sometimes even larger. Hence, if the wall thickness has reached its lower 

limit, a hydraulic diameter below which β starts to decrease must exist. This concept 

will be further developed for rectangular channels in Section 2.2.2. 

1.2.2 Scaling Effects 

Many recent works on forced convection through microchannels report discrepancies 

between experimental data and the well-established theory, claiming that laws 

governing transport phenomena within passages of macroscopic dimensions are not 

suitable to evaluate pressure drop and convective heat transfer coefficients in 

microchannels. New phenomena specific to the small scale are sometimes invoked to 

explain the inconsistency between the empirical results and the conventional 

correlations [26].  

In the last few years, this conclusion seems to be controverted by additional, more 

accurate experimental data. The open literature nowadays seems to indicate that a large 

part of the results obtained for microchannels can be completely explained applying in a 

right way the existing theory and correlations, considering that certain known effects 

can be of different importance in macro- or microsystems [27] [28]. 

For instance, in single-phase forced convection Equations (1.8) and (1.9) hold true 

under the following assumptions [29]: 

• the fluid can be treated as a continuum medium 

• steady fully developed laminar flow 

• simplified boundary conditions 

• simple geometries with smooth surfaces 

• the physical properties are independent of temperature and pressure 

• the heating due to viscous dissipation can be neglected 
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• the heat conduction in the fluid in the flow direction can be neglected  

• no electromagnetic effects take place 

In microchannels, depending on whether the flow is liquid or gaseous, some of the 

above assumptions may no longer be acceptable. The so-called Scaling effects are 

defined as those effects that may be neglected at the reference geometrical scale, but 

which become important when the scale changes. The reformulation of the conservation 

equations and/or their associated boundary conditions may be required as the 

characteristic scale of the system is reduced. The magnitude of these phenomena should 

be determined in order to assess the validity of the constant Nu and Po hypothesis [30] 

[31] [32]. 

A brief description of the main effects that may arise in single-phase flows inside 

microchannels is reported below. Notice that the scale of the system is of primary 

importance as the conditions required to ignore these effects involve the characteristic 

dimension of the cross-section and/or the channel length and/or the Reynolds number. 

Rarefaction Effects  

Shrinking down the dimensions of microfluidic systems dealing with internal gas flows, 

the free path of the fluid molecules may become comparable to the characteristic 

dimension of the passages, even at standard pressure and temperatures. The fluid then 

can no longer be treated as a continuum and the behavior of the single molecules comes 

to be predominant. It should be noted that rarefaction effects are usually irrelevant for 

liquids [29]. 

The ratio of the mean free path λ to the smallest characteristic dimension Dc is called the 

Knudsen number Kn. Many collision models are available to evaluate λ [22], among 

which the hard sphere model is a cautious choice, since particle interactions are 

considered to occur only at null relative distance, overestimating as a consequence the 

mean free path. The Knudsen number may then be written as: 
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݊ܭ  =
ߣ

ܦ
=

1.277

ටܴ
ܯ ܶ

(ܶ)ߤ
ߩ ܦ

= 1.277
(ܶ)ߤ

ܦ
ඨ

ܴ
ܯ

ܶ
ଶ (1.21)

where R is the universal gas constant; M is the molar mass of the gas; T is the absolute 

temperature. It should be noted that the last equality holds true only for an ideal gas. 

Nevertheless it shows the dependence of the rarefaction effect from temperature and 

pressure. 

Based on the magnitude of the Knudsen number, four different flow regimes are 

identified [22]: 

• for  Kn < 10ିଷ  the flow is a continuum flow and it is accurately modeled by 

the classical theory with no-slip boundary conditions 

• for  10ିଷ < Kn < 10ିଵ  the flow is a slip flow and the classical equations 

remain applicable, provided a velocity slip and a temperature jump are taken 

into account at the walls. These new boundary conditions point out that 

rarefaction effects become sensitive at the wall first. Since the velocity and 

temperature fields are modified with respect to the continuum flow, pressure 

drop and heat transfer inevitably influenced: correction factors for Po are 

available in [33], while several correlations for Nu are provided in [34] 

• for  10ିଵ < Kn < 10  the flow is a transition flow and the continuum approach  

is no longer valid. However, the intermolecular collisions are not yet 

negligible and should be taken into account. The Monte Carlo method or the 

Lattice-Boltzmann model may be employed in this range: the molecules are 

treated in large groups, still considerably smaller than the smallest length scale 

of the simulation in question [29] 

• for  Kn > 10  the flow is a free molecular flow and the occurrence of 

intermolecular collisions is negligible compared with the one of collisions 

between the gas molecules and the walls. Molecular dynamics models are 

available, however, the computational demands of resolving individual 

molecules are so heavy that only very small volumes can be addressed [29] 
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Entrance Effects  

At the entrance of a heated or cooled channel, the flow is not hydrodynamically nor 

thermally developed, and the Poiseuille and Nusselt numbers are typically greater that 

the corresponding asymptotic values. Therefore these contributions can be ignored only 

if the velocity and the temperature profile stabilize within a short distance from inlet 

when compared to the entire channel length. This means that the channel length must be 

large when compared to the hydrodynamic entrance length LHD and to the thermal 

entrance length LTH. These two quantities can be expressed as: 

ுܮ  = ுߢ ுܦ ܴ݁ (1.22)
 

ு்ܮ  = ு்ߢ ுܦ ܴ݁ (1.23) ݎܲ

where κHD and κTH are constants that depend only on the cross-sectional shape: κHD may 

be found in tables, while κTH may be calculated from the definition and information on 

the local Nusselt number [23]; Pr is the Prandtl number, defined as: 

ݎܲ  =
ߤ ܿ

݇
 (1.24)

To neglect the entrance effect on pressure drop, the following condition should be 

verified [35]: 

 
ܮ

ுܦ 
> 60 ⟺

ுܮ

ܮ
<

ுߢ ܴ݁
60

 (1.25)

while heat transfer is not influenced if [27]: 

 ܴ݁ ݎܲ
ுܦ 

ܮ
< 10 ⟺

ு்ܮ

ܮ
< 10 ு (1.26)்ߢ

Several correlations are available for Po and Nu in hydrodinamically, thermally or 

simultaneously developing flows [36] [37] [38] but, due to their complexity, tables and 

charts [21] [22] [23] may sometime be a quicker instrument. 

Conjugate Heat Transfer  

In microflows, the thermal energy transferred by conduction in the solid and in the axial 
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direction of the flow may be of the same order of magnitude as the energy exchanged 

by convection with the fluid. Temperature profiles and heat transfer may be strongly 

influenced, affecting the boundary conditions [39]. 

Conjugate effects may be neglected if the heat transfer rate by conduction in the solid 

walls is negligible with respect to the thermal power exchanged by convection [39], that 

is to say if: 

߉  =
݇௪ ௪ܣ

ሶ݉ ܿ ܮ
=

݇௪ ௪ܣ
∆ܶ
ܮ

ሶ݉ ܿ∆ܶ
< 0.01 (1.27)

where Λ is the longitudinal heat conduction parameter; kw is the wall thermal 

conductivity; Aw is the heat transfer surface area available to longitudinal conduction 

and coincides with the total wall cross-sectional area, perpendicular to the flow 

direction.  

Conjugate heat transfer becomes significant in compact heat exchangers, characterized 

by reduced L and often elevated values of Aw, due to the manufacturing constraints on 

the wall thickness. Crossflow configurations are particularly exposed to the 

phenomenon, which assume a two-dimensional connotation [23]. Finally, it can be 

easily shown that Λ is amplified at low Reynolds numbers [27], typical of 

microchannels; in fact: 

߉  =
݇௪ ܣ௪

ሶ݉  ܿ ܮ

ߤ ܿ
݇

ݎܲ

4 ሶ݉ ܮ
ߤ ܣ
ܴ݁

=
4

ܴ݁ ݎܲ
݇௪

݇
௪ܣ

ܣ
 (1.28)

It will be shown that conjugate effects should be considered, as they have strong 

influence on the case study. A few models are available [23] [39]; the one presented in 

[40] is chosen for being accurate, versatile and fairly simple at the same time. 

Surface Roughness  

In the microscale it is practically impossible to produce what would be generally 

considered as a smooth surface, because the average height ϵ of the surface irregularities 
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may not be negligible compared to the smallest duct characteristic dimension. Usually 

Nu and Po for fully developed laminar flow are not influenced as long as the following 

condition is respected: 

 
߳

ܦ
< 0.01 (1.29)

Otherwise, the surface roughness changes the effective flow cross-sectional geometry, 

which in turn affects heat transfer and pressure drop [23]. Moreover, earlier transition to 

turbulent flow may be induced, which could explain some results showing dependence 

on Reynolds number for both Nu and Po even at  Re < 2200 [41]. 

Both Nusselt and Poiseuille numbers grow with surface roughness, correlation and plots 

can be found for example in [42] [43]. However, the drawbacks from the increased 

friction factor usually overcome the enhancement in the heat transfer coefficient. This 

conclusion, though, is reversed when microchannels are deliberately fabricated with 

protrusions for heat transfer improvement purposes [42]. 

Variable Properties  

The assumption of constant ρ, μ, k and cP allows to solve independently the momentum 

equation for the pressure field and the energy equation for the temperature field inside 

the channel. On the contrary, the two equations are coupled if the physical properties 

are strong functions of temperature and pressure [44]. 

The variation with T or p for the generic property ψ can be neglected if the following 

conditions [25] are respected: 

 ቤ൬
ܶ
߰

߲߰
߲ܶ

൰
ೝ்

ቤ ≪ 1 (1.30)

 

 ቤ൬

߰

߲߰
߲

൰
ೝ

ቤ ≪ 1 (1.31)

where the terms between the absolute value designators are sensitivity coefficients 

calculated at an appropriate reference temperature Tr and pressure pr. In the opposite 
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situation, heat transfer and frictional losses can be heavily influenced by property 

variation [45] [46]. 

For what concerns temperature dependent properties, the variation along the flow 

direction may play an relevant role in the small scale. In fact, according to Equation 

(1.12), the axial temperature gradients become large when the channel size is reduced 

[25]. Consequently, the constant properties assumption may not be a good 

approximation even in relatively short channels: in this case, the heat exchanger should 

be ideally subdivided into zones with limited axial temperature difference, in which 

properties do not vary significantly [23]. 

On the contrary, in microchannels the temperature difference the direction 

perpendicular to the flow can generally be neglected [25]. Considering Equation (1.11) 

it is clear that at the small scale the temperature becomes more uniform over the cross-

section. Nevertheless, corrections may be applied to Nu and Po employing the property 

ratio method available in [23]. 

Equation (1.13) shows that, for small passages, the pressure difference between the 

inlet and the outlet could be considerable. However, as discussed in Section 1.2.1, 

pressure drop can be contained increasing the total flow area and reducing the fluid 

velocity, and the variation of physical property dependence on pressure may often be 

ignored, coherently to what is reported in [25] [47]. 

Viscous Dissipation  

The dissipation function is usually neglected in the energy equation. However, when the 

hydraulic diameter is very small, the internal heat generation due to the viscous forces 

may produce a significant temperature rise that can remarkably influence the heat 

transfer. The Brinkmann number Br, which can be seen as the ratio of the viscous 

heating rate to the average heat transfer rate by convection, is usually employed to 

evaluate if the viscous heating effects can be influential. The following inequality 

should be satisfied in order to neglect viscous heating: 
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ݎܤ  = ଶݑ ߤ ܮ
ሶܳ < 0.05

ுܦ
ଶ

2 ܵ ܲ
 (1.32)

This condition is obtained imposing a small temperature rise caused by viscous 

dissipation inside the fluid when compared to the temperature difference due to 

convection. If it does not hold true, the Nusselt number should be corrected as a 

function of Br as described in [48]. 

The effects of the Brinkman number on Nusselt number depend on the characteristics of 

the boundary conditions: for flows with constant wall temperature, Nu increases, 

because of viscous heating effects, to a value that is not dependent on Br; for flows with 

constant wall heat flux, Nu decreases as Br number increases [29]. 

Fluid Axial Conduction  

In the energy equation, the term related to heat transfer by conduction in the fluid and in 

the axial direction can generally be neglected with respect to the convective term. This 

is mathematically expressed through the Peclét number Pe as: 

 ܲ݁ = ݎܲ ܴ݁ =
ߩ ܿ ݑ ுܦ

݇
> 100 (1.33)

In fact, for small Pe, conduction becomes the dominant mechanism for heat transfer: in 

this situation, the thermal entrance length is heavily reduced and the Nusselt number 

inside the channel becomes sensible to upstream and downstream conditions [49] 

Electroviscous Effect 

Solid non-conductive materials may acquire a relative electric charge when in contact 

with polar liquids. If the liquid contains ions, e.g. due to impurities, the surface charges 

will attract the opposite ions. Stream-induced currents and potentials differences are 

generated along the flow direction following the radial redistribution of charges, in 

zones characterized by different fluid velocity. The overall result is an additional drag 

force which increases the pressure drop and also affects heat transfer [50]. 

This effect may become non-negligible in the small scale, as shown by the models 
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available in literature [51] [52]. However, if the channel walls are not charged relatively 

to the liquid and/or if the bulk ionic concentration is close to zero, this complex 

phenomenon can be ignored, regardless of the characteristic dimension [53]. 

1.2.3 Fabrication Techniques 

Ultra-compact structured surfaces such as microchannels or microfins can be fabricated 

through several different processes and from a broad variety of materials including 

glasses, polymers, metals, ceramics, and semiconductors [11]. When selecting the 

manufacturing technology for compact heat exchangers, the important factors to 

consider are [54]: 

• desired channel cross-sectional shape, aspect ratio and other geometric 

constraints 

• compatibility of channel interior surface materials with the working fluid 

• interior wall roughness 

• complexity and cost of fabrication 

• maximum pressure and temperature ratings of various materials used, 

including those applied for bonding 

A few manufacturing techniques suitable to obtain metal-based microstructures will be 

now briefly outlined. Each method grants typical minimum feature dimension of a few 

nanometers with tolerances below 1 μm. High aspect ratios of 10 or more are feasible 

and the maximum size of the workpiece on which the compact structures are obtained 

can be of several hundreds of square centimeters [54]. 

Micro-machining is a category of processes available for micro heat exchangers 

fabrication which covers any technique where tools are used to cut, bond, form, deform 

or remove material to create channels or heat exchanger assemblies. The only limitation 

is on materials, which need to be soft and ductile enough to be machined [55]. 

Dry etching involves the vaporization of the solid surface, physically by ion 
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bombardment, chemically by the contact with a reactive species, or by the combined use 

of both mechanisms. A mask is used to transfer the desired pattern on the surface with 

high precision. [54]. 

LIGA process, from the German acronym for lithography, molding and electroplating, 

employs X-rays emitted onto a suitable photo-resist material that has been bonded to a 

conductive substrate material. A mask positioned between the X-ray source and the 

workpiece enables the X-ray projection to take the shape of the final design. The 

conductive substrate and photo-resist material are then immersed in a nickel ion 

solution bath. The nickel in solution is electroplated onto the photo-resist material with 

the pattern arranged by the mask. The nickel structure can then be directly used or 

employed as a mold for other materials. This process can be repeated several times and 

the final products may be bonded together to create more complex builds [54].  

Recently, high temperature compression molding was used to produce cost-effective 

layers of aluminium and copper based high-aspect-ratio microscale structures [56] 

characterized by a surface roughness height in the order of 10 μm. The layers were then 

stacked up and joined together by eutectic bonding [57] to form arrays of rectangular 

microchannels 150 μm wide and 400 μm high, spaced by 750 μm thick walls. Molding 

replication seems then an interesting option for microchannel heat exchangers 

fabrication [58], and each manufacturing method described above may be employed to 

create the mold. 

1.3 Motivation and Scope 

As already mentioned, microchannels heat exchangers are ideal candidates for mobile 

applications due to several features: high ratio of surface area to volume, low thermal 

resistances, small volumes, low total mass and low inventory of working fluids [11]. 

However, the open literature provide extremely limited information on MCHE for 

applications in the range of several kWth , typical of waste heat recovery systems for 

heavy-duty vehicles.  
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Only one relevant document [59] could be found, in which a 5 kWth microchannel 

regenerator for an ORC system is described. The device, characterized by a mass flow 

rate around 0.04 kg/s, was tested and rated with promising results: as expected, the 

employ of microchannels led to enhanced heat transfer but also increased pressure drop 

when compared to a plate heat exchanger (PHE). Nevertheless, as noted by the authors 

and as shown in Section 1.2.1, it is certainly possible to optimize the MCHE and 

improve its performance.  

In order to assess the potential of microchannel technology in mobile ORC systems, it is 

therefore important to develop a suitable optimization method. The scope of the present 

thesis is to obtain an optimized microchannel regenerator; the device must be smaller 

and lighter with respect to the state-of-the-art solutions. 

A plate heat exchanger is a common choice [6] [59] in similar situations, even though it 

is doubtfully the best option for gas-to-liquid exchanger [23]. Often, a PHE, even if 

optimized for the application, is still more voluminous than desirable [6]. The 

compactness of the device is generally limited by the pressure drop on the gas-side, 

which is often several orders of magnitude higher than on the liquid-side. In fact, in 

PHE the two sides are similar, and often identical, in term of heat transfer surface area 

and flow area; high gas velocity is then needed to ensure turbulent flow with high heat 

transfer coefficient [60], comparable to that of the liquid. If the total flow area is 

increased, as suggested in Section 1.2.1, in order to reduce the flow velocity and 

therefore the pressure drop, the heat transfer coefficient will diminish, making it 

necessary to enhance the surface area, which evidently penalizes the compactness. 

A microchannel heat exchanger manufactured as described in Section 1.2.3 can be 

classified as a laminar flows plate-fin heat exchanger (PFHE). Such a device is a better 

alternative to PHE, since surface areas and pressure drop may be redistributed on the 

two sides adjusting the size and/or the aspect ratio of the channels formed between the 

fins. In this way, it possible to increase the compactness complying with the hydraulic 

constraints imposed by the other components of the heat recovery system, compensating 

for the lower gas-side heat transfer coefficient with greater surface area than on the 

liquid side. 
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2 Method 

As already mentioned, the studied microchannel heat exchanger (MCHE) can be 

classified as a plate-fin heat exchanger (PFHE). Such a device can be directly sized for 

given maximum pressure drop allowed on the gas-side (usually the most critical), 

provided that the extended surface features are known for both sides [23]. This would 

require to pre-determine the dimensions and the number of the rectangular channels, 

optimized according to some desired objective function.  

Unfortunately, guidelines to accomplish the task are particularly scarce in the open 

literature: often the choice of the microchannel dimension is not justified [61], 

sometimes simply concluding that «there is sizable design space to optimize the 

dimensions» [59]. In other papers, only few parameters are considered in the selection 

process [62] [63] [64]. However, the general approach is to iteratively assign values to 

the design parameters and rate the resulting exchangers [65] [66], which must satisfy 

constraints imposed by the manufacturing method [67] [68] [69].  

It is always possible to reduce the sizing problem to an iterative rating problem by 

tentatively specifying the dimensions and other design parameters to calculate the 

performance [23]. This method is particularly suitable to test different surfaces and 

select the best one, but it can be computationally demanding even for simple 

geometries, due the numerous design parameters. Therefore, particular attention is given 



28 Results 

A. Mantovanelli M.Eng. Thesis 

to reducing the number of operations at each iteration and to selecting appropriately 

small intervals for each parameter, which constitute the design space where the optimal 

values are searched.  

The design space is defined by constraints imposed by the manufacturing method and 

by other components of the ORC system. Genetic algorithms may prove useful in similar 

situations [70], but two different formulations of the problem were attempted with no 

satisfying results in acceptable computational time and the tool was abandoned. The 

design space is then discretized to obtain, for each design parameter, a finite number of 

values, among which the optimal ones are searched. All the combinations of the 

candidate values are tested in order to obtain first attempt solutions. Some of these 

rough designs are then selected for refinement.  

As described in Section 1.2.2, the thermohydraulic behavior of microflows is 

increasingly complicated by scaling effects as the passage dimension is reduced. 

However, as reported in Table 1, the case study involves a heat load and a mass flow 

rate with no precedents in the open literature, almost one order of magnitude higher than 

the quantities reported in [59] and in Section 1.3. It is then easy to imagine that a 

suitable microchannel heat exchanger will not feature extremely small passages: the 

scaling effects are therefore expected to have weak influence on the thermohydraulic 

behavior of the MCHE. As a consequence, the assumptions listed at the beginning of 

Section 1.2.2 are supposed true for a fast, simple optimization process implemented in 

MATLAB. The resulting design will then be then rated in the next chapter in order to 

assess the validity of the hypotheses.  

An exception must be made for conjugate effects: in fact, as shown in Section 1.2.2, 

wall longitudinal heat conduction has a particularly strong impact on compact crossflow 

heat exchangers, characterized by reduced flow length, elevated total wall cross-

sectional area and low Reynolds numbers. Since the microchannel heat exchanger to 

optimize falls into this case, the mathematical model implemented in the selection 

process must include conjugate heat transfer.  

The optimization process developed in the following sections considers both the 
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crossflow and the counterflow arrangement. If the desired exchanger effectiveness is 

below 80 %, a crossflow configuration is the most suitable choice, due to greater 

flexibility in managing the heat transfer surface area, the flow area, the flow length and 

the pressure drop of each side. Similar devices are already commercially available from 

manufactures such as Modine for automotive and air-conditioning applications [71]. 

Thermodynamically, the effectiveness of the crossflow exchanger is between those of 

the counterflow and parallelflow arrangements. Therefore, in the case of high desired 

effectiveness, counterflow unit is advised, because the size penalty for the crossflow 

exchanger may become excessive; as a drawback, the design of the distribution 

elements may become challenging [23].  

2.1 Input Data 

The microchannel heat regenerator is optimized for a specific waste heat recovery 

system based on an ORC turbogenerator. This system, suitable for a heavy-duty truck 

engine, was targeted in a recent feasibility study [6] carried out within a cooperative 

project funded by the Austrian Research Promotion Agency involving the Graz 

University of Technology, the Delft University of Technology, and two large European 

automotive original equipment manufacturers. The authors consider the plate heat 

exchangers (PHE) employed as more voluminous than desirable, but the specifications 

are omitted in the paper due to a non-disclosure agreement with the private companies. 

A commercial optimization code is then employed to produce a benchmark PHE to 

which the MCHE can be compared. 

2.1.1 Benchmark Plate Heat Exchanger 

The PHE to be used for comparison with the optimized MCHE is designed employing 

proprietary software, Aspen EDR, to which the operating conditions of the heat 

exchanger used in [6] are fed. The specifications of interest are reported in Table 1. As 

anticipated in Section 1.3, the pressure drop on the cold-side is negligible with respect 

to the losses on the hot-side. The cold-side of the heat exchanger corresponds to the 

liquid-side and the hot-side to the gas-side. 



30 Results 

A. Mantovanelli M.Eng. Thesis 

Table 1: specifications of the benchmark plate heat exchanger 

Specification Cold-side Hot -side  Unit 

Inlet temperature 373.15 487.15  K 

Outlet temperature 451.56 398.15  K 

Inlet pressure 392000 8700  Pa 

Pressure drop 6 3220  Pa 

Fluid velocity 0.01 17.18  m s⁄  

Heat transfer coefficient (mean) 81.9 88.1  W (mଶ K⁄ ) 

Heat transfer rate 35.59 kW 

Mass flow rate 0.266  kg s⁄  

UA 1143  W K⁄  

Effective MTD 31.13  K 

NTU 2.86  # 

ε 0.7807  # 

Number of plates 41  # 

Plate thickness 0.6  mm 

Plate pitch 5.28  mm 

Plate length 1596  mm 

Plate width  495  mm 

Stack height 222  mm 

Heat transfer surface area 26.96  mଶ 

Heat transfer surface area density 427  mଶ mଷ⁄  

Volume of metal 0.01889  mଷ 

Fluid charge 58.6  kg 

Overall dimensions 222×495×1596  mଷ 
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Data from Table 1 can be used for comparison with both an aluminium-based and a 

copper-based MCHE, since the thermal conductivity of the material composing the 

plates has negligible effect on the reported numerical values. In fact, for the PHE, the 

longitudinal heat conduction parameter is in the order of 10-3 and conjugate effects can 

be ignored, as follows from (1.27). Moreover, the wall thermal resistance is three orders 

of magnitude lower that the convective resistance and has then no significant influence 

on the overall heat transfer coefficient. 

Using the data of Table 3 and Table 1, some upper bounds may be defined: 

 ߱௫ =

ە
ۖ
۔

ۖ
0.01889ۓ ∙ 2630 + 58.6 = 108.3 [kg] for A360

0.01889 ∙ 8300 + 58.6 = 215.4 [kg] for C878
 (2.1)

 

௫∆  = 3220 + 6 = 3226 [Pa] (2.2)

which represent, respectively, the maximum weight and pressure drop allowable to be 

used in the optimization process. 

The heat capacity rates can be determined from the data of Table 1: 

௫ܥ  = ܿ, ሶ݉ =
ሶܳ

ܶ,௨௧ − ܶ,
= 453.8 

ܹ
ܭ

൨ (2.3)

 

ܥ  = ܿ, ሶ݉ =
ሶܳ

ܶ, − ܶ,௨௧
= 399.8 

ܹ
ܭ

൨ (2.4)

 

ݎ  =
ܥ

௫ܥ
= ܶ,௨௧ − ܶ,

ܶ, − ܶ,௨௧
= 0.8810 (2.5)

where, the subscripts c and h denote quantities referred to the cold-side and to the hot-

side respectively, while the subscripts in and out refer to the inlet or outlet cross-section 

of the channels. 

It is then possible to obtain the required heat exchanger effectiveness, defined as: 
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ߝ  =
ܿ, ሶ݉
ܥ

 
( ܶ, − ܶ,௨௧)
( ܶ, − ܶ,)

= ܶ, − ܶ,௨௧

ܶ, − ܶ,
= 0.78070175 =  (2.6)ߝ

It should be noted that the value of the thermal power exchanged in the regenerator 

calculated in [6] is 5 % higher than the values computed with the Aspen software 

bundle for the benchmark PHE. This incongruity is probably due to a different 

thermodynamic library exploited in the automated procedure used by the authors to size 

their PHE. Different values of the specific heat at constant pressure also slightly modify 

the outlet temperature of the cold-side. However, the exchanger effectiveness, as 

defined in (2.6), is not affected by this error and will be used as thermal requirement to 

satisfy. 

2.1.2 Materials and Physical Properties 

The working fluid is D4, a cyclic siloxane [6]; the physical properties of the organic 

fluid at inlet pressure are obtained from the NIST database through the software Aspen 

Properties. For each side of the MCHE, the properties are averaged with an arithmetic 

mean between the values at the inlet and outlet temperatures, as the pressure 

dependence is small enough to be neglected. The averages of interest for the case study 

are reported in Table 2, along the corresponding values calculated at the inlet and outlet 

temperatures. 

Table 2: physical properties of the working fluid 

Property 
Cold-side Hot-side 

Unit 
Inlet Outlet Mean Inlet Outlet Mean 

Specific heat at constant pressure 1589 1822 1706 1612 1392 1502 J (kg K)⁄  

Density 866.85 767.38 817.12 0.64 0.79 0.72 kg mଷ⁄  

Viscosity 0.7194 0.3583 0.5389 0.0102 0.0083 0.0093 g (m s)⁄  

Thermal conductivity 0.0940 0.0764 0.0852 0.0195 0.0136 0.0165 W (m K)⁄

It should be mentioned that the arithmetic averages of the specific heat at constant 

pressure of Table 2 satisfy almost perfectly equations (2.3) and (2.4), meaning that  ܿ,  
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and  ܿ,  are closely linear functions of the temperature. According to the 

thermodynamic library employed, in the considered temperature range all the properties 

of interest behave likewise. If also the fluid temperature is roughly linear with the axial 

coordinate of the flow, the arithmetic averages of Table 2 are a suitable approximation 

of the real conditions inside the heat exchanger. 

As pointed out in Section 1.2.3, copper and aluminium alloys are suitable candidates for 

microchannel heat exchanger cores. Following the guidelines of the NADCA, the alloys 

commercially designated as A360 and C878 are selected considering the behavior at 

high temperature (tensile and yield strengths after prolonged heating at testing 

temperature up to 260 °C; coefficient of thermal expansion; mold-filling capacity; anti-

soldering to the mold). The physical properties of interest, at 20 °C since more precise 

data could not be found, are retrieved from [72] and are reported in Table 3.  

Table 3: physical properties of the solid walls 

Property A360 C878 Unit 

Density 2630 8300 kg mଷ⁄  

Thermal conductivity 113 27.7 W (m K)⁄  

2.2 Core Geometry 

The core of the MCHE, qualitatively shown in Figure 1, comprises Nm identical modules 

for the cold-side alternated with (Nm – 1) modules for the hot-side, so that the first and 

the last module are at the lowest temperature possible, a common practice to minimize 

the heat losses to ambient [23]. Each module consists in a flat rectangular plate of 

thickness δ, which constitutes the dividing wall that separates the two sides, and several 

plain rectangular fins of thickness φ, formed directly on the plate.  

When the modules are stacked up and bonded together, Nc and Nh rectangular channels 

are formed between the fins of the cold- and the hot-side respectively; an additional flat 

plate with no fins is needed to close the module at the top of the pile. The stack length is 
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Lm while the channels height, width and length are c, d and Lc for the cold-side, and l, s 

and Lh for the hot-side. The modules can be piled in crossflow or counterflow 

configuration; however, since the required effectiveness in (2.6) is lower than 80 %, a 

crossflow configuration may be the best choice [23], as follows from the discussion of 

Section 1.3. In this case, the channel lengths on the hot- and cold-side are not 

necessarily equal and, together with the stack lengths, determine the dimensions of the 

core. 

 
Figure 6: details of the microchannel regenerator and nomenclature of the design parameters 
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2.2.1 Parameterization of the Geometry 

The geometric parameters of the single-pass crossflow MCHE of Figure 6 can be used to 

define the following quantities, needed for the thermohydraulic design: 

ܮ  = (ܿ + (ߜ ܰ + (݈ + (ߜ (ܰ − 1) (2.7)
 

ܮ  = ݀ ܰ + ߮ ( ܰ + 1) (2.8)
 

ܮ  = ݏ ܰ + ߮ ( ܰ + 1) (2.9)
 

 ܵ = ݈ ݏ ܰ (ܰ − 1) (2.10)
 

 ܵ = ܿ ݀ ܰ ܰ (2.11)
 

 ௪ܸ = ߜ ܮ ܮ  (2 ܰ − 1) + ܿ ߮ )ܮ ܰ + 1) ܰ + ݈ ߮ )ܮ ܰ + 1)(ܰ − 1) (2.12)
 

 ܸ = ݏ ݈ ܮ ܰ (ܰ − 1) (2.13)
 

 ܸ = ܿ ݀ ܮ ܰ ܰ (2.14)

where Sh and Sc are the total flow areas of the hot- and the cold-side; Vw is the volume of 

the metal matrix of the MCHE core; Vh and Vc are the volumes occupied by the gas and 

the liquid. 

The hydraulic diameters DH,h, and DH,c, , the channels aspect ratios a and b, and the fin 

aspect ratio ܽఝ are calculated as follows: 

ு,ܦ  =
2 ݏ ݈
ݏ + ݈

 (2.15)

 

ு,ܦ  =
2 ܿ ݀
ܿ + ݀

 (2.16)

 

 ܽ =
݈
ݏ
 (2.17)

 

 ܾ =
ܿ
݀

 (2.18)
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 ܽఝ =
݈
߮

 (2.19)

The proposed MCHE can be classified as plate-fin heat exchanger: these devices are 

usually designed sizing only one plate, which consists in dividing wall and half-height 

fins on each side [73], as shown in Figure 7. If the stack length is sufficient to ignore 

edge effects due to heat losses to the ambient at the bottom and at the top of the pile, the 

said subdivision exploits symmetry planes, and therefore each plate is equivalent. It is 

therefore convenient to define geometric relations on the element of Figure 7. The 

whole exchanger is now seen as the sum of 

 ܰ = 2(ܰ − 1) (2.20)

plates, or elements, plus half cold-side module on each extremity of the stack. These 

two small parts are supposed to contribute to the total flow area but not to the total heat 

transfer surface area, since they are expected to exchange principally with the 

environment. 

 
Figure 7: single element or plate of the microchannel heat exchanger, constituted by the dividing 

wall and half-height fins on both sides 

The following quantities are then defined, basing on Figure 7:  

,ܣ  = ݏ ܮ ܰ (2.21)
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,ܣ = ݈ ܮ ܰ (2.22)

ܣ = +,ܣ  ,ܣ = ݏ) + ݈) ܮ ܰ (2.23)

,ܣ = ݀ ܮ ܰ (2.24)

,ܣ = ܿ ܮ ܰ (2.25)

ܣ = +,ܣ  ,ܣ = (݀ + ܿ) ܮ ܰ (2.26)

ܵ௪ = ܮ  (2.27)ܮ

where Ap and Af are the primary area and the fin area, and together form the heat transfer 

surface area A; Sw is the area of the dividing wall. Multiplying these areas by Np, the 

total corresponding values for the whole MCHE are obtained, since, as said, the two 

terminal parts are neglected. 

2.2.2 Channel Aspect Ratio and Compactness 

From the geometric point of view, the MCHE can also be seen as the sum of single 

microchannels, dividing the core matrix as shown in Figure 8 for the hot-side.  

Figure 8: section of a single channel; the region occupied by the solid wall is shown in gray while 
the fluid is left 
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Considering ܰ (ܰ − 1) of such channels for the hot-side and ܰ  ܰ channels for the 

cold-side (obtained with a similar subdivision), only a small portion of the metal matrix 

at the beginning and end of each module is neglected. Then, the heat transfer surface 

area density β, introduced in Section 1.2.1 to mathematically express the concept of 

compactness, can be written as: 

ߚ =
ܣ

௪ܸ, + ܸ
=

ݏ) 2 + ݈) ܮ ܰ

(߮ ݈ + ݏ ߜ + ߜ ߮) ܮ ܰ + ݈ ݏ ܮ ܰ
=

2 (1 + ݏ ( ܽ
ݏ) + ߮) (ܽ ݏ + (ߜ

(2.28)

Clearly, as φ and δ decrease, the geometry becomes more compact. Supposing s the 

shortest side of the rectangular cross-section and l the longest, the channel aspect ratio 

defined by (2.17) reads: 

ܽ ≥ 1 (2.29)

It is interesting to investigate the behavior of βh as the channel dimensions vary, 

considering wall thickness fixed to the minimal values allowed by the manufacturing 

method. Since it is reasonable to presume a larger thickness for the plates when 

compared to the fins, the following inequality is considered: 

߮ ≤ ߜ (2.30)

The partial derivative of βh with respect to s reads: 

ߚ߲

ݏ߲
=

2 (1 + ߜ)(ܽ ߮ − ܽ (ଶݏ
(ܽ ݏ + ଶ(ߜ ݏ) + ߮)ଶ  (2.31)

which is equal to zero in: 

ఉݏ = ඨߜ ߮
ܽ

(2.32)

For each a, this coordinate corresponds to the maximum of βh with respect to s, due to 

the mean value theorem, in fact: 

lim௦→ ߚ =0 (2.33)
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lim
௦→௦ഁ

ߚ =
2 (1 + ܽ)

ߜ√) + ඥܽ ߮)ଶ
> 0 (2.34)

lim
௦→ஶ

ߚ = 0 (2.35)

The expression reported in (2.34) represents the maximum compactness obtainable for 

given channel aspect ratio and wall thicknesses. 

It should be mentioned that the definition (2.28) is different from the one generally 

considered [23], as it also takes the thickness of the dividing wall into account when 

calculating the volume: using the traditional definition, ߜ disappears from (2.28) and the 

maximum of β, which turn out to be monotonically decreasing, moves to  ݏ = 0 . 

However, when ݏ becomes comparable to ߜ, increasing β do not necessary correspond to 

reduced dimensions of the heat exchanger as a whole. The definition (2.28) restores the 

parallelism between surface area density and compactness of the device.  

Taking now the partial derivative of βh with respect to a: 

ߚ߲

߲ܽ
=

2 ߜ) − (ݏ ݏ
(ܽ ݏ + ଶ(ߜ ݏ) + ߮)

(2.36)

Therefore βh grows or decreases monotonically with respect to a according to the sign 

of  ߜ − ܽ) meaning that high aspect ratios ,  ݏ → ∞) are to be preferred if  ݏ <  while  ߜ

low aspect ratios (ܽ → 1) are desirable if  ݏ > ݏ In the particular case . ߜ =  the , ߜ

surface area density is independent of a. Then, for each s, the maximum of βh  with 

respect to a is:  

lim
→ஶ

ߚ =
2

ݏ + ߮
if ݏ < (2.37) ߜ

lim
→ଵ

ߚ =
4

ݏ) + ݏ)(ߜ + ߮)
if ݏ > (2.38) ߜ

For each value of a, as said, equation (2.32) gives the coordinate ݏఉ corresponding to 

the maximum of βh with respect to s. Therefore, considering ݏ =  in the above ߚݏ

equation leads to: 
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,௫ߚ = lim௦→௦ഁ
→ஶ

ߚ =
2
߮ (2.39)

,௫ߚ̅ = lim௦→௦ഁ
→ଵ

ߚ =
4

ߜ√) + ඥ߮)ଶ (2.40)

It can be easily shown that if (2.30) holds true, then  ߚ,௫ >   ,௫ߚ  ,௫  ; thereforeߚ̅

is the absolute maximum of βh and depends only on φ. Evidently, this level of 

compactness cannot be reached in practice, nevertheless it shows the importance of 

reducing the fin thickness φ in particular. 

The following dimensionless quantities are defined: 

∗ݏ =
ݏ
߮

 (2.41)

ߚ
∗ =

ߚ

,௫ߚ
=

߮ ߚ

2
=

(1 + ܽ ) ∗ݏ

∗ݏ) + 1) ቀܽ ∗ݏ + ߜ
߮ቁ

(2.42)

Figure 9: ࢎࢼ
∗   as a function of  ࢙∗ and a for the particular case ߜ = ߮ 
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In the particular case  ߜ = ߚ , ߮
∗ becomes a function of ݏ∗ and a only, as shown in 

Figure 9. Notice that the surface area density is enhanced reducing the channel size until 

the condition expressed by (2.32) is met. Then, if the channel size is further diminished 

leaving the wall thickness untouched, βh starts to decrease, as anticipated in Section 

1.2.1. 

While imposing (2.32) ensures high compactness, it is not the best choice for a light 

MCHE. In order to prove this statement and to mathematically express the concept of 

lightness in the same way as β represents compactness, the parameter α is defined as the 

ratio of the total transfer area to the total exchanger mass. For the hot-side of the 

geometry of Figure 8, the parameter ߙ can be written as: 

ߙ =
ܣ

௪ ௪ܸ,ߩ +  ܸߩ
=

2 ݏ) + ݈) ܮ

௪ߩ (݈ ߮ + ݏ ߜ + ߜ ܮ(߮ + ߩ ܮ ݏ ݈

=
2 (1 + ܽ ݏ(

௪ߩ (߮ ܽ ݏ + ݏߜ + ߜ ߮) + ߩ ܽ  ଶݏ

(2.43)

This function behaves qualitatively as (2.28). For each a and fixed wall thicknesses and 

densities, the coordinate corresponding to the maximum of  ߙwith respect to s can be 

found with the same procedure followed to obtain (2.32), giving: 

ఈݏ = ඨ
௪ߩ ߜ ߮

ߩ ܽ
> ඨߜ ߮

ܽ
= ఉ (2.44)ݏ

In Figure 10,  ߙା = ାߚ  and  (ఈݏ)ߙ/ߙ =  for the ∗ݏ are plotted as functions of  (ఉݏ)ߚ/ߚ

hot- and the cold-side, in the particular case of  ܽ = 10  and  ߜ = ߮ . The copper alloy 

is considered for the solid wall and the working fluid is D4. Due to the low density of 

the gas, the maximum for ߙ occurs at high values of ݏ∗ and is left out of the figure to 

emphasize the other two maxima.  

Anyhow, whichever side is considered, for  ݏ > ݏ  and  ߙݏ <  ;decrease ߚ and ߙ both  ߚݏ

therefore it is convenient to choose the smallest side of the rectangular microchannel 

such as: 

ఈݏ ≥ ݏ ≥ ఉ (2.45)ݏ
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In this interval, higher aspect ratios guarantee higher ߙ ; on the other hand, , according 

to (2.36), the value of ߜ −   . Inߚ has to be considered to determine the behavior of ݏ

fact, even if it is necessarily ߜ ≥  ఈݏ  ,ఉ (from (2.32), considering (2.29) and (2.30))ݏ

can be both greater or less than ߜ, depending on the ratio of the wall density to the fluid 

density (from (2.44)). Therefore, in general, the choice of high aspect ratios enhances 

the compactness of the device if  ߜ ≥ ݏ ≥ ఈݏ  ఉ  and penalizes it ifݏ ≥ ݏ ≥   . ߜ

 
Figure 10: normalized  ࢻ  and  ࢼ  for  ࢇ =   and  ࢾ =  ࣐

Since the objective function to minimize is the total weight of the MCHE, high aspect 

ratios are expected in the optimal device. The equations of the present section are 

obtained starting from the assumption  ݏ < ݈ . In the opposite case ݏ > ݈ , symmetrical 

results are obtained, with equal or lower ߚ and ߙ  because of (2.30). For example, the 

absolute maxima now become respectively 2 ⁄ߜ ≤ 2 ߮⁄  and 2 ൫ߜ ݓߩ൯⁄ ≤ 2 ൫ݓߩ ߮൯⁄ . 

High aspect ratio microchannels characterized by ݏ < ݈ are then to be preferred. This 

choice also improves the structural strength of the MCHE because of a larger number of 

contact points between the modules. Moreover, fewer modules (and bonds) are needed 

when compared to the case  ݏ > ݈ , but longer fins are required between the channels.  
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It should be noted that increasing the fin length l penalizes the fin efficiency ηf,h, in fact 

from its definition: 

 lim
→ஶ

,ߟ = lim
→ஶ

tanh ቆට 2 ℎ
݇௪ ߮

݈
2ቇ

ට 2 ℎ
݇௪ ߮

݈
2

= 0 (2.46)

However, the high thermal conductivity of the material limits the negative impact of 

longer fins. Moreover, in the small scale the difference between primary and extended 

surfaces weakens, as the fin efficiency ηf,h tend to 1: 

 lim
ఝ→

,ߟ = lim
ఝ→

tanh ቆට 2 ℎ
݇௪ ߮

݈
2ቇ

ට 2 ℎ
݇௪ ߮

݈
2

≥ lim
ఝ→

tanh ቆට2 ℎ
݇௪

ܽఝ,௫
2 ඥ߮ቇ

ට2 ℎ
݇௪

ܽఝ,௫
2 ඥ߮

= 1 (2.47)

The manufacturing method sets the maximum aspect ratio of the microchannels ܽ௫ 

and/or the of the fins ܽఝ,௫ ; considering the procedures described in Section 1.2.3, a 

reasonable maximum channel aspect ratio is set to: 

 ܽ௫ = ܽఝ,௫ = 10 (2.48)

A criterion to select a suitable minimum channel aspect ratio will be developed in 

Section 2.4.2; until then, from (2.29) it can be considered ܽ = 1. Then, the constraint 

expressed by (2.45) can be relaxed to: 

 ඨ
௪ߩ ߜ ߮
ߩ ܽ

> ݏ > ඨ
ߜ ߮

ܽ௫
 (2.49)

Using the definition of a  (2.17), equation (2.45) can also be written as: 

 
௪ߩ ߜ ߮

ߩ ݏ
> ݈ >

ߜ ߮
ݏ

 (2.50)

Finally, the following conditions are obtained: 

ݏ  <
߮ ܽఝ,௫

ܽ
 (2.51)
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 ݈ < ߮ ܽఝ,௫ (2.52)

 

ܽ ݏ  < ݈ < ݏ ܽ௫ (2.53)

It is worth to underline that the analysis carried on in this section is based on purely 

geometric relationships. The shape of the channel affects heat transfer, pressure drop 

and scaling effects, so that the most attractive configuration from a geometric point of 

view might actually be less desirable than others. This is why, instead of imposing 

(2.32) or (2.44), the optimal values for channel dimensions are sought after in the 

selected intervals, obtained above for the hot-side and reported below for the cold-side: 

 ඨ
߮ ߜ ௪ߩ
 ܽߩ

> ݀ > ඨ
ߜ ߮

ܽ௫
 (2.54)

 

 
ߜ ௪ߩ ߮

݀ ߩ
> ܿ >

ߜ ߮
݀

 (2.55)

 

 ݀ <
߮ ܽఝ,௫

ܽ
 (2.56)

 

 ܿ < ߮ ܽఝ,௫ (2.57)

 

 ݀ ܽ < ܿ < ݀ ܽ௫ (2.58)

From the literature reviewed, the following minimal value of the wall thickness is 

within reach and is hence adopted to minimize both (2.28) and (2.43) : 

 ߮ = ߜ = ߮ = ߜ = 0.0003 [m] (2.59)

2.3 Additional Elements 

In addition to the core, i.e. the metal matrix described in the above sections, every heat 

exchanger is constituted by other components, which distribute the working fluid or 

guarantee the integrity of the assembly. These components impose constraints on the 

optimal solution and contribute to the total weight, which is the objective function to 
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minimize. The headers, in particular, deserve special attention since their impact on 

both the pressure drop and the weight of the device is of the same order of magnitude as 

the contribution of the core. 

2.3.1 Frame 

To improve the structural strength of the exchanger, the employ of two plates of 

thickness  ߬ 2⁄ ≫ ߮  at the top and at the bottom of the stack could prove useful. 

Moreover, as shown in Figure 11, on each module the thickness of the first and the last 

fins is increased of the same quantity  ߬/2. A frame is then formed, on which the 

headers can be brazed. In addition, the frame offers a relatively large surface suitable for 

eutectic bonding, or alternatively it makes room for bolts in the four corners, as can be 

seen in Figure 11. To prevent leakage, gaskets as in Figure 12 could be formed directly 

on the modules in the molding process 

The presence of the frame is neglected for what concern heat transfer but is taken into 

account regarding the core volume; equation (2.12) now becomes: 

 

௪ܸ = ߜ ܮ ܮ (2 ܰ − 1) + ܿ ߮ )ܮ ܰ + 1) ܰ + ݈ ߮ )ܮ ܰ + 1)(ܰ − 1)
+ ܮ) + ܮ)(߬ + ߬) ߬ + ܮ) + ߬) ߬ (ܿ + (ߜ ܰ
+ ܮ) + ߬) ߬ (݈ + (ߜ (ܰ − 1) + ( ܰ + 1)߬ ߮ ܿ ܰ
+ ( ܰ + 1) ߬ ߮ ݈ (ܰ − 1) + ߬ ܮ ߜ ܰ + ߬ ܮ ܰ) ߜ − 1) 

(2.60)

 
Figure 11: corner detail of the MCHE with focus on the frame 
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Figure 12: gaskets to be formed directly on the plates 

Quantitatively, ߬ should be as small as possible, then it is arbitrarily chosen: 

   ߬ = ߬ = 0.01 [m]  (2.61)

2.3.2 Piping 

The supply and return pipes are to be connected to the distribution elements, which will 

be addressed in the next section. In general, the free flow area of the pipes is smaller 

than the flow area of the headers and properly sized diverging and converging 

connections may be excessively big if the area difference is large. The simplest (and 

smallest) connections, usually called abrupt entrance and exit (with reference to the 

smaller passage), are therefore chosen. These connections are widely employed in plate-

fin exchangers [74]; however, the pressure difference across these elements may be 

large.  

The pressure loss due to the abrupt entrance and exit is expressed as follows: 

௨௧∆  =

ۏ
ێ
ێ
0.7ۍ − 0.2 

ܵ
ܵௗ

− 0.5 ൬
ܵ
ܵௗ

൰
ଶ

௨௧ߩ
−

ܵ
ܵௗ

− ൬
ܵ
ܵௗ

൰
ଶ

ߩ
ے
ۑ
ۑ
ې

ቆ
ሶ݉

ܵ
ቇ

ଶ

 (2.62)

where  ܵ  and  ܵௗ  are the flow area of the piping and at the inlet of the headers; 
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this expression is obtained considering the equations given in Section 2.4.2 if, on each 

side,  ܵ  is unique for the supply and return pipe and if  ܵௗ  is the same for the 

inlet and outlet headers. Equation (2.62) clearly shows that, for given operating 

conditions, it is necessary to increase  ܵ  and/or to decrease  ܵௗ  in order to reduce 

the hydraulic losses at the inlet and at the outlet of the headers.  

Because of the high density, on the cold-side of the studied MCHE, steel pipes DN 40 

[75] are sufficiently big to guarantee losses lower than 1 % of the allowable pressure 

drop of equation (2.2), regardless of the free flow area of the headers; therefore it is 

assumed the following diameter Dc for the cold-side piping: 

ܦ  = 40.90 [mm] (2.63)

On the other hand, the hot side inlet header faces directly the turbine designed in [6]; 

the diameter of the hot-side piping Dh is therefore considered equal to the turbine outlet 

diameter: 

ܦ  = 85 [mm] (2.64)

Since this diameter then cannot be increased and the pressure losses are comparable to 

the core pressure drop, the area change across the entrance and the exit of the headers 

should be kept small. The header flow area is then to be limited, because  ܵ  is 

imposed by (2.64). However, as it will be discussed in the next section, if  ܵௗ  is too 

small, the pressure drop along the header would be excessive. Therefore, an optimal 

value for  ܵௗ  exists, which minimizes the total pressure drop in the header.  

It is mentioned for completeness that, for the diameters of (2.63) and (2.64), standard 

thicknesses [75] are more than sufficient, according to ASME guidelines for pipes under 

internal [76] and external [77] pressure. Moreover, the rules of thumb for the maximum 

velocity of liquid and vapor lines of refrigerant suggested in Perry's Chemical 

Engineers' Handbook [78] are well satisfied. For simplicity, it is assumed a unique 

thickness ߬/2 as defined by (2.61), which is close to the standard values. 
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2.3.3 Headers 

In compact gas-to-liquid exchanger, the gas-side header design is more difficult because 

of the large frontal area needed to reduce the pressure drop. In such cases, either no 

header is used, as in an automobile radiator (on the air side), or an oblique flow header 

is generally employed [23]. Since the heat recovery system for which the MCHE is 

designed is based on a closed cycle, distribution elements are needed also on the gas-

side.  

The headers should be designed to achieve uniform distribution of the fluid flow within 

the heat exchanger core, and minimal pressure drop within the header itself, since no 

heat transfer is generally associated with the pressure drop expenditure [23]. The first 

requirement is fulfilled determining the appropriate shape of the headers in order to 

produce a matching pressure profile in the inlet and outlet headers: the two-dimensional 

theory for oblique-flow headers presented in [79] is therefore considered. The second 

requirement is satisfied determining the optimal value for  ܵௗ  such as the total 

pressure drop ascribable to the distribution elements is minimized; the discussion 

follows from the precedent section and will be continued once the header shape is 

determined. 

In an oblique-flow header, the fluid inlet flow direction is not perpendicular to the core 

face (as in a normal-flow header). A particular subgroup of oblique-flow headers has 

the inlet flow direction parallel to the core face area. The main quality of this class of 

distribution elements is the minimization of header volume and flow separation [23]. 

The model considers headers with uniform inlet velocity and rectangular cross-section; 

however it will be here used for semielliptical cross-sections, which are a better match 

to the round piping and help to reduce weight and space occupied for given header 

height, width and depth.  

Depending on whether the supply and the return pipes of the heat exchanger are on the 

same side of the device or not, the oblique-flow headers assume a counterflow or 

parallelflow configuration. In both arrangements, the optimal outlet header (to minimize 

the pressure drop in the distribution elements and the flow maldistribution in the core) is 
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a box header, i.e. with constant cross-section. The best inlet header for the counterflow 

arrangement is a box header too, which acts as a diffuser, increasing the pressure of the 

flow as the mass flow rate diminishes along the axial direction of the header (because 

part of the fluid goes into the core of the exchanger). This counterbalances the different 

length of the paths followed by the various streamlines inside the whole device. On the 

other hand, in the parallelflow arrangement, since there is no difference in the path of 

the streamlines, the optimal cross-section of the inlet header reduces along the axial 

direction. 

 
Figure 13: parallelflow headers for the microchannel heat exchanger 

Parallelflow headers have higher pressure drop than counterflow headers. Moreover, the 

inlet header is more difficult to manufacture due to the reducing cross-section. On the 

other hand, parallelflow headers are smaller and lighter, since the outlet header can be 

reduced arbitrarily, varying at the same time the shape of the inlet header for the 

matching pressure profile needed to assure uniform flow distribution in the core. 

Contrarily, the dimensions of the inlet an outlet counterflow headers are not 

independent: for what concern the case study, the required size is too big to consider. 

Parallel flow headers are then chosen and dimensioned. 

The information on the piping system is here used to size the headers; the equations 

reported below refer to the hot-side. However the correspondent equations for the cold 
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side are obtained simply inverting the subscripts h and c . Considering the diameter of 

equation (2.64) and the parameters of Figure 13, it must be: 

,ݖ  > ܦ + ߬ (2.65)
 

ݕ  = ,௨௧ݕ > ܦ + ߬ (2.66)

Moreover, because of the shape of the headers, it is reasonable to impose: 

,ݖ  <  (2.67)ܮ
 

,௨௧ݕ  <  (2.68)ܮ

Defining now the following parameter: 

ܪ  =  
ߨ
2

,ݖ

,௨௧ݕ
ඨ

,ߩ

,௨௧ߩ
 (2.69)

the optimal profile of the inlet headers assume the form: 

ݖ  =
ቀ1 − ݔ

ܮ
ቁ ,ݖ

ට1 + ቀܪ ݔ
ܮ

ቁ
ଶ
 (2.70)

which is function of the axial coordinate of the header xh, as shown in Figure 14. 

 
Figure 14: non-dimensional profile of the hot-side inlet header 
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The volume of the solid material constituting the inlet header needs some 

approximations in order to be calculated; the perimeter ܲௗ , function of the axial 

coordinate of the header, is the semicircumference of an ellipsis, which is slightly 

overestimated by the following correlation: 

 
ܲௗ = ߨ ඩቀܮ

2 ቁ
ଶ

+ ݖ
ଶ

2
 

(2.71)

while the cross sectional area of the header walls, supposed of thickness ߬/2 , is a 

semielliptical crown and is approximated as: 

 ܵௗ,௪ =
߬
2 ܲௗ (2.72)

The above equation requires the following conditions to be satisfied for all xh: 

 
߬
2

≅
߬
2

  
1

cos arctan dݖ
dݔ

=
߬
2

ඨ1 + ൬
dݖ

dݔ
൰

ଶ

⟹
dݖ

dݔ
≪ 1 (2.73)

 

ඩ ߨ 
ቀܮ

2 ቁ
ଶ

+ ݖ
ଶ

2
≅ ߨ ඩቀܮ + ߬

2 ቁ
ଶ

+ ቀݖ + ߬
2ቁ

ଶ

2
⟹ ൞

 
߬ ≪ ݖ

 
߬ ≪ ܮ

 

 (2.74)

Then, considering also the walls closing the header frontally, the volume  ܸௗ,, of 

metal composing the hot-side inlet header is written as: 

 ܸௗ,, =  
ߨ
8

ܮ)߬ + ߬)൫ݖ, + ߬൯ + න ܵௗ,௪ dݔ




 (2.75)

 

න ܵௗ,௪ dݔ
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ߨ ߬
4√2

 න ඪܮ
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ܮ

ቁ
ଶ

,ݖ
ଶ

1 + ቀݔ ܪ
ܮ 

ቁ
ଶ  dݔ





= ܮ
ߨ ߬

4√2
න ඨܮ

ଶ + 4
(1 − ܺ)ଶݖ,

ଶ

1 + ܪ) ܺ)ଶ dܺ
ଵ


 

(2.76)
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The integral now can be solved numerically, independently of Nm: 

 

න ඨܮ
ଶ + 4 

(1 − ܺ)ଶݖ,
ଶ

1 + ଶ(ܺ ܪ)  dܺ
ଵ
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(2.77)

If the Natural number n is sufficiently high, the integrating function is well 

approximated by a polygonal. 

The volume  ܸ௨ௗ,,  of fluid contained in the inlet header is obtained with a similar 

procedure, with a better approximation; the semielliptical cross-section of the header is 

analytically expressed as: 

 ܵௗ, =
ߨ
4

ܮ  (2.78)ݖ

Then, the fluid volume is calculated as: 

 ܸ௨ௗ,, = න ܵௗ, dݔ




= ܮ

ߨ ܮ

4
න

(1 − ,ݖ(ܺ

ඥ1 + ܪ) ܺ)ଶ
݀ܺ

ଵ


 (2.79)
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ට1 + ቀܪ ݅
݊ቁ

ଶ

ିଵ

ୀଵ
ے
ۑ
ۑ
ې
 (2.80)

The volumes of metal and fluid in the outlet header are straightforward to calculate, 

since the geometries are based on cylinders with semielliptical cross-section: 

 ܸௗ,,௨௧ =
ߨ
8

ܮ) + ܮ)(߬ + ߬)(2 ݕ + ߬) −
ߨ
4

ܮ ܮ  (2.81)ݕ

 

 ܸ௨ௗ,,௨௧ =
ߨ
4

ܮ ܮ ݕ  (2.82)

Notice that the model here adopted for the headers is recommended only if [79]: 
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,ݖ

ܮ
>

1
3

 (2.83)

 

 
,∆

1
2 ,ߩ ,ݒ

ଶ
>

1
2

 (2.84)

where  ∆,  is the total pressure losses ascribable to the hot-side of the heat exchanger 

core;  ݒ, is the mean axial fluid velocity at the entrance of the hot-side inlet header, 

which is calculated as: 

,ݒ   =
ሶ݉

,ߩ ܵௗ,,
=

ሶ݉

,ߩ
ߨ ܮ ,ݖ

4

 (2.85)

The pressure drop in the distribution elements is then evaluated as follows: 

ௗ,∆   = ൬1 −
4

ଶ൰ߨ ଶܪ + 1൨
,ߩ ,ݒ

ଶ

2
 (2.86)

This quantity contributes to the total pressure drop of the MCHE and accounts for both 

the inlet and the outlet header. 

Since parallelflow headers are employed, the designer is free to choose arbitrary values 

for  ݖ,  and  ݕ,௨௧ . It can then be imposed: 

,ݖ  = ,௨௧ (2.87)ݕ
 

ܪ  =
ߨ
2 ඨ

,ߩ

,௨௧ߩ
 (2.88)

Therefore, equation (2.86) becomes a function of the sole  ܵௗ,, ; the sum of 

equation (2.62) and (2.86) can then be minimized with respect to  ܵௗ  ≡  ܵௗ,,  in 

order to find the optimal value  ܵ௧  for the inlet flow area of the headers; the various 

contributions and the total pressure drop in the distribution elements of one side of the 

crossflow MCHE are plotted in Figure 15. 

For the given operating conditions, the optimal value is: 
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  ܵ௧ =
,൯ݖ ܮ൫ ߨ

௧

4
= 0.0164989 [mଶ] (2.89)

which gives the minimal header pressure drop: 

ௗ,∆  + ௨௧,∆ = 1261 [Pa] (2.90)

 
Figure 15: pressure drop in the hot-side headers as a function of the inlet cross-sectional area of 

the headers; the red line is the pressure drop in the inlet and outlet headers, according 
to (2.86); the blue and the green lines corresponds to the two terms summed in(2.62) 
and represents the pressure drop and rise (negative values) due to the abrupt area 
change across the connections between the headers and the piping; the black line is 
the sum of the various contributions it represents the total pressure drop in the hot-
side headers to be minimized; the origin of the axis is set in (Spipe , -1000) 

From equation (2.2), the allowable pressure drop for the microchannel core then 

becomes: 

௫∆  = 3226 − 1261 = 1965 [Pa] (2.91)

Moreover, from equation (2.65) (2.67) and (2.89):  
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4 ܵ௧

,൯ݖ ൫ ߨ
௫

=
4 ܵ௧

ߨ ܮ
< ܮ <

4 ܵ௧

ߨ ܦ) + ߬) =
4 ܵ௧

ߨ ൫ ,൯ݖ


 (2.92)

Substituting (2.9) into the above equations it gives: 

 2ටܵ௧
ߨ − ߮

ݏ + ߮
< ܰ <

4 ܵ௧
ߨ ܦ) + ߬) − ߮

ݏ + ߮
 

(2.93)

Once Nh is assigned,  ݖ,  can be calculated with (2.9) and (2.89). However, the 

greater Lc  the larger are the hot-side modules; this helps to contain the number of 

modules and the length of the stack. Since the header cross section is imposed by 

(2.89), a shorter MCHE has lighter headers, and is therefore a better candidate for the 

optimal design. Hence, the constraint (2.93) can be substituted with: 

 
ܰ =

4 ܵ௧
ߨ ܦ) + 2 ߬) − ߮

ݏ + ߮
 

(2.94)

 

,ݖ   = ,௨௧ݕ = ܦ + ߬ (2.95)

This is confirmed by the final result of the optimization process, which does not vary 

considering (2.93) instead of (2.97). 

As said, such a limiting constraint is not necessary for the cold-side; then, bearing in 

mind equation (2.8), it can be imposed what follows: 

,ݖ   = ,௨௧ݕ = ܦ + ߬ (2.96)
 

ܦ  + ߬ < ܮ < ௫ܮ − ߬ (2.97)
 

 
ܦ + ߬ − ߮

݀ + ߮
< ܰ <

௫ܮ − ߬ − ߮
݀ + ߮

 (2.98)

To quantify the maximum channel length  ܮ௫ , a typical dimension of the suitable 

workpiece for the fabrication processes of Section 1.2.3 is considered: 

௫ܮ  = 0.3 [m] (2.99)
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2.4 Mathematical Model 

The optimal design is sought considering a number of properly selected intervals equal 

to the degrees of freedom of the system. The intervals, which constitute the design 

space, are discretized into arrays of values to be tested in the optimization process. For 

each combination of the elements from these arrays, a MCHE design that satisfy thermal 

requirement of Table 1 is found. Each design is then evaluated in terms of weight and 

pressure drop and, if the result respects the constraints, the solution is refined including 

longitudinal heat conduction in the model. Among the refined designs, the optimal 

solution can be chosen basing on the total weight of the exchanger as objective 

functions to minimize. 

The degrees of freedom of the system correspond to the independent design parameters 

of Figure 6. The parameters are limited by the constraints found in the previous 

sections, which define the abovementioned intervals. The number of independent 

parameters is reduced by only one equation, derived from the well-known ε-NTU 

method, extensively described in several book on heat exchanger design [23] and [80]. 

This equation links the design parameters of Figure 6 through the thermal requirements 

of Table 1, and it is used to obtain the first attempt solution to be refined.  

2.4.1 Thermal Design 

The studied MCHE is a single-pass crossflow heat exchanger composed by a large 

number of uninterrupted channels with small cross-section, therefore both fluid are 

considered unmixed. The model generally employed to characterize such a device is 

derived for example in [23]. It comprises the following system of partial differential 

equations of the first order, obtained through a power balance on a differential element 

of the exchanger: 

 
߲ ܶ

ݔ߲
=

ܥ

ܥ

ܷܰܶ
ܮ

( ܶ − ܶ) (2.100)

 

 
߲ ܶ

ݕ߲
=

ܥ

ܥ

ܷܰܶ
ܮ

( ܶ − ܶ) (2.101)
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The assumptions of uniform distribution of the heat transfer area and uniform 

temperature on the channel cross section is invoked, as well as the hypotheses listed at 

the beginning of Section 1.2.2.  

If the inlet temperatures are imposed as boundary conditions, the equation system can 

be analytically solved. Once the temperature field has been determined, analytical 

expressions of the terminal temperatures are obtained and substituted into the definition 

of exchanger effectiveness, reported in (2.6). Many equivalent forms of the 

effectiveness based on the exact solution of (2.100) and (2.101) are available in the 

relevant literature [81], among which the following is one of the simplest: 

ߝ  = 1 − exp(−ܷܰܶ) − exp[−(1 + [ܷܶܰ(ݎ 
ݎ

(݊ + 1)!


݊ + 1 − ݆
݆!

ܷܰܶା


ୀଵ

ஶ

ୀଵ

 (2.102)

Due to the complexity of the analytical solution, approximated formulas are usually 

employed [82]; the following is cited in many textbook such as [21] [23]: 

ߝ  = 1 − exp ቊ 
ܷܰܶ.ଶଶ

ݎ
[exp(−ݎ ∙ ܷܰܶ.଼ ) − 1] ቋ (2.103)

Recently, a more accurate correlation has been proposed [83]: 

ߝ  = [1 + 0.44 (1 − [(ݎ ቊ1 − 
1

0.92 + ߨ) .ଵହݎ ܷܰܶ)ଵ.ଶହ൨
.ସ

ቋ (2.104)

Equation (2.104) gives a relative error with respect to (2.102) below 2 % for  0 ≤ ݎ ≤ 1  

and  0 ≤ ܷܰܶ ≤ 6 , while it can reach 3.8 % if (2.103) is employed in the same range; 

moreover, equation (2.104) has the benefit of being invertible: 

 ܷܰܶ =
1

.ଵହݎ ߨ ൝ቈ
1 + 0.44(1 − (ݎ

1 − ߝ + 0.44(1 − (ݎ
ଶ.ହ

− 0.92ൡ
.଼

 (2.105)

Substituting into (2.105) the required values for r and ε reported in (2.5) and (2.6): 

 ܷܰܶ = 4.5794 (2.106)

From the definition of number of transfer unit NTU, replacing ሶ݉  and cp,h with the 

corresponding values in Table 1 and Table 2: 
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ܣܷ  = ܷܶܰ ܥ = ܿ, ሶ݉ ܷܰܶ = 1829.6 [W/K] (2.107)

Considering the geometry of Figure 6, the definition of UA gives: 

 
ܣܷ =

1
ܴ + ܴ௪ + ܴ 

=
1

1
ܰ ߟ, ℎ ܣ

+ ߜ
ܰ ܵ௪ ݇௪

+ 1
ܰ ,ߟ ℎ ܣ

 
 

(2.108)

where Rh and Rc are the convective resistances, and Rw is the wall thermal resistance; ηo,h 

and ηo,c are the extended surface efficiencies: 

,ߟ  = 1 − ܰ ܣ,

ܰ ܣ
 ൫1 − ,൯ߟ = 1 −

,ܣ

ܣ
൫1 − ,൯ (2.109)ߟ

  

,ߟ  = 1 −
,ܣ

ܣ
൫1 − ,൯ (2.110)ߟ

Thanks to the symmetry planes used to cut the geometry of Figure 7, the fin efficiencies 

ηf,h and ηf,c can be expressed as follows, as in the majority of two-fluid plate-fin 

exchangers [23]: 

,ߟ  =
tanh ቀ݉

݈
2ቁ

݉
݈
2

 (2.111)

 

,ߟ  =
tanh ቀ݉

ܿ
2ቁ

݉
ܿ
2

 (2.112)

which correspond to the efficiency of half-height fin with adiabatic tip; the fin 

parameters mh and mc are written as: 

 ݉ = ඨ
2 ℎ

݇௪ ߮
 (2.113)

 

 ݉ = ඨ
2 ℎ

݇௪ ߮
 (2.114)

As already mentioned, the assumptions listed in Section 1.2.2 are supposed true for the 
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optimization process and the heat transfer coefficients hh and hc are then considered 

constant on each side of the exchanger. The scaling effects are evaluated as following 

task in order to assess the validity of the hypotheses. The constant value for the heat 

transfer coefficient of fully-developed laminar flows in rectangular channels can be 

analytically determined. It depends only on the aspect ratio and the thermal boundary 

conditions. In the macroscale, crossflow heat exchangers characterized by high thermal 

conductivity, such as in the case of copper or aluminium alloys, are usually treated 

considering uniform wall temperature, both axially and peripherally [84]. The so-called 

T boundary condition is then here considered also for the microchannel device. In this 

case, the following equations, obtained with a point-matching method, give the Nusselt 

number as a function of the aspect ratio with an error within ±0.1 % with respect to the 

analytical values [84]:  

ݑܰ = 7.541 (1 − 2.610 ܽିଵ + 4.970 ܽିଶ − 5.119 ܽିଷ + 2.702 ܽିସ − 0.548 ܽିହ) (2.115)
 

ݑܰ = 7.541 (1 − 2.610 ܾିଵ + 4.970 ܾିଶ − 5.119 ܾିଷ + 2.702 ܾିସ − 0.548 ܾିହ) (2.116)

Substituting (2.115) and (2.116) into the definition of Nu (1.8), the heat transfer 

coefficients are obtained. It should be noted that the effect of the real boundary 

condition on heat transfer can only be assessed experimentally or through computational 

fluid-dynamics (CFD) analysis. To account for this issue, for flow maldistribution and 

for the other minor effects described in Section 1.2.2, a safety factor is introduced. 

Plate-fin heat exchangers having fully developed laminar flows are generally 

dimensioned considering the magnitude of the analytical Nu reduced by a minimum of 

10% [23]. 

2.4.2 Hydraulic Design 

The pressure drop admitted in the distribution elements is treated in Section 2.3.2 and 

2.3.3, and it is already accounted trough equation (2.91). For a plate-fin heat exchanger, 

the total pressure drop on one side of the core can be expressed as [23]: 

∆  = ∆ + ∆ + ∆ + ௨௧∆  (2.117)

where Δpfr is the pressure drop produced by fluid friction; Δpacc is the contribution 
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caused by density variations; Δpin is the core entrance pressure drop; Δpout is the core 

exit pressure rise. Since the equations are identical for the hot- and the cold-side, the 

subscripts h and c are omitted for the sake of brevity. 

The term representing the effects of fluid friction usually includes the change in the 

momentum rates of developing flows; if  ܮ >  :ு , it can be expressed asܮ

∆  =
1
2

ଶݑ ߩ   
4 ݂

ுܦ
ܮ =

1
2

ߩ ଶݑ ൬4
ܮ

ுܦ
݂ + ஶ൰ (2.118)ܭ

The apparent friction factor fapp depends on the channel shape and can be found in tables 

and charts [23]; if the channel length is greater than the hydrodynamic entrance length, 

fapp becomes:  

 ݂ = ݂ +
ுܦ

4 ܮ
ஶ (2.119)ܭ

where the Hagenbach’s factor ܭஶ is given by the following curve-fit correlation [22]: 

ஶܭ  = 0.680 + 1.220 ܽ + 3.309 ܽଶ − 9.592 ܽଷ + 8.909 ܽସ − 2.996 ܽହ (2.120)

The change of the momentum rate in the core caused by the flow acceleration (or 

deceleration) due to density variation across the heated (or cooled) channels produces 

the following pressure drop (or rise) [23]: 

∆  = ଶߩ ଶݑ ൬
1

௨௧ߩ
−

1
ߩ

൰ (2.121)

To estimate the core entrance and exit contributions, the contraction and expansion loss 

coefficients due to area changes Kc and Ke are available in charts as functions of σ, the 

ratio of the free flow areas on the considered side to the corresponding frontal area [22] 

[85]; the pressure variations are then calculated as: 

∆  =
ଶߩ ଶݑ

ߩ 2
(1 − ଶߪ + ) (2.122)ܭ

 

௨௧∆  = −
ଶߩ ଶݑ

2 ௨௧ߩ
(1 − ଶߪ − ) (2.123)ܭ
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The same equations and charts can be used to determine the pressure drop across the 

connection between the piping and the headers [23]; in this case, the following 

expression are suggested: 

ܭ  = 0.4 (1 − (2.124) (ߪ
 

ܭ  = (1 − ଶ (2.125)(ߪ

And the free flow area ratio becomes: 

ߪ  =
ܵ

ܵௗ
< 1 (2.126)

Usually, in (2.117) the frictional term is dominant, accounting for more than 90 % of 

the total pressure drop [23]. If the hydrodynamic entrance effect is neglected coherently 

with the assumption of Section 1.2.2, equation (2.118) reduces to (1.13), conveniently 

rewritten here for both sides:  

,∆  =
2 ߤ ሶ݉ ܲ ܮ) + ߬)

ߩ ܵ ு,ܦ
ଶ  (2.127)

 

,∆  =
2 ߤ ሶ݉ ܲ ܮ) + ߬)

ߩ ܵ ு,ܦ
ଶ  (2.128)

Equations (2.127) and (2.128) represent the only contribution considered in the 

optimization process, a common practice also in direct-sizing methods [73]. The other 

terms will then be evaluated only for the optimal design.  

The Poiseuille number is approximated by the following correlations with a maximum 

overestimation of 0.05 % with respect to the analytically determined values for fully-

developed flows, which depend only on the channel aspect ratio [84]: 

ܲ = 24 (1 − 1.3553 ܽିଵ + 1.9467 ܽିଶ − 1.7012 ܽିଷ + 0.9564 ܽିସ − 0.2537 ܽିହ) (2.129)
 

ܲ = 24 (1 − 1.3553 ܾିଵ + 1.9467 ܾିଶ − 1.7012 ܾିଷ + 0.9564 ܾିସ − 0.2537 ܾିହ) (2.130)

For the same reasons that lead to consider lower Nu for plain fin geometries, it is 

advised to increase the value of the analytical Po by a minimum of 10% for design 
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purposes [23]. 

The ratio of the Nusselt number from (2.115) to the Poiseuille number of (2.129) may 

now be plotted as a function of a, as shown in Figure 16. It should be noted that, 

multiplying the mentioned ratio by ܲିݎଵ ଷ⁄ , the surface flow area goodness factor is 

obtained: a surface having a higher ratio is good because it will require lower free-flow 

area and hence lower frontal area for the exchanger [23]. Observing Figure 16, it is 

clear that high aspect ratios are more convenient, as was also found in Section 2.2.2. 

The minimum channel aspect ratio introduced in the same section can be obtained 

compelling the area goodness factor to be a high percentage of the maximum reachable 

value. The following implicit equation can be solved iteratively to find amin for given 

amax, using the correlations (2.115) and (2.129): 

 ൬
ݑܰ
ܲ

൰


= ൬1 −
1

ܽ௫
൰ ൬

ݑܰ
ܲ

൰
ೌೣ

 (2.131)

 
Figure 16: ratio of the Nusselt number to the Poiseuille number as a function of the aspect ratio 
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2.4.3 First Attempt Solutions 

In the above sections, several constraints on the design parameters of Figure 6 are 

determined in order to select the appropriate design space. These constraints are 

conveniently summarized in Table 4; as it can be easily noticed, only the constraints on 

s and d are defined starting merely from input data, since the other constraints depend 

indeed on s and d: therefore, the design space for the other design parameters are 

generated after the selection of a value for s and d in their already defined design space. 

For each parameter, the corresponding design space is discretized to generate a finite 

number of values to be tested. For every combination of these values, the smallest 

Natural number of modules Nm necessary to fulfill the thermal requirements is found 

considering equations (2.20) (2.107) and (2.108). If the wall thermal resistance is 

negligible, as it usually is in heat exchangers characterized by thin walls with high 

thermal conductivity, especially when at least one of the two fluids is gaseous [23], Nm 

can be written as: 

 ܰ = ceil ቈ1 +
ܣܷ

2
ቆ

1
,ߟ ℎ ܣ

+
1

,ߟ ℎ ܣ
ቇ = ఌܰ (2.132)

It should be noted that neglecting the wall thermal resistance does not simplify the form 

of (2.132), but it is ignored to save computational time while calculating the first 

attempt solution. In addition, also the more accurate model, reported in the following 

section and used to refine the solution, does not account for the wall thermal resistance. 

What makes the (2.132) simple to handle, is the assumption of constant heat transfer 

coefficient as functions of the aspect ratio only. The non-linearity of the problem is then 

confined on s, l, c, and d through equations (2.17) (2.111) (2.115) and (2.129) for the 

hot-side, and the correspondent ones for the cold-side. Assigning values from the 

discretized design space to the mentioned parameters, which are then considered as 

input data and not as unknowns, the non-linearity disappears. However, in Section 2.2.1 

a small contribution to the heat transfer area of the first and the last module of the stack 

was neglected; if accounted for, equation (2.132) would become quadratic in Nm. 
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Table 4: constraints on the design parameters 

Parameter Constraint Equation 
  

φ ߮ = ߮ (2.59) 
   

δ ߜ =   (2.59)ߜ
   

τ ߬ = ߬ (2.61) 
   

s ඨ
߮ ߜ

ܽ௫
< ݏ < ඨ

௪ߩ ߜ ߮
ߩ ܽ

 (2.49) 

ݏ  <
߮ ܽఝ,௫

ܽ
 (2.51) 

   

d ඨ
߮ ߜ

ܽ௫
< ݀ < ඨ

௪ߩ ߜ ߮
ߩ ܽ

 (2.54) 

 ݀ <
߮ ܽఝ,௫

ܽ
 (2.56) 

   

l 
߮ ߜ
ݏ 

< ݈ <
௪ߩ ߜ ߮

ߩ ݏ
 (2.50) 

 ݈ < ߮ ܽఝ,௫ (2.52) 

ܽ ݏ  < ݈ < ݏ ܽ௫ (2.53) 
   

c 
߮ ߜ
݀

< ܿ <
௪ߩ ߜ ߮

ߩ ݀
 (2.55) 

 ܿ < ߮ ܽఝ,௫ (2.57)  

 ݀ ܽ < ܿ < ݀ ܽ௫ (2.58) 
   

Nh 
ܰ =

4 ܵ௧
ܦ) ߨ + ߬) − ߮

ݏ + ߮
 

(2.93) 

   

Nc 
ܦ + ߬ − ߮

݀ + ߮
< ܰ <

௫ܮ − ߬ − ߮
݀ + ߮

 (2.98) 
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The pressure drop is then evaluated for both sides from (2.127) and (2.128), 

considering also (2.10) (2.11) and (2.27) (2.28): 

,∆  =
2 ሶ݉ ߤ   ܲ ܮ) + ߬)

ݏ ݈ ܰ ு,ܦ
ଶ ߩ

1
ܰ + 1

= ܲ

ܰ + 1
 (2.133)

 

,∆  =
2 ሶ݉ ߤ ܲ ܮ) + ߬)

ܿ ݀ ܰܦு,
ଶ ߩ

1
ܰ

= ܲ

ܰ
 (2.134)

where Ph and Pc are coefficients depending on all the design parameters of Figure 6 

except Nm. Since in the ORC heat recovery system the working fluid passes firstly 

through one side of the microchannel regenerator and then through the other, the above 

equations are summed to give the total frictional pressure drop Δptot in the MCHE core: 

௧௧∆  = ,∆ + ,∆ = ܲ

ܰ + 1
+ ܲ

ܰ
 (2.135)

while the total weight of the MCHE is expressed as: 

 
߱௧௧ = ௪ߩ ൫ ௪ܸ + ܸௗ,, + ܸௗ,, + ܸௗ,௨௧, + ܸௗ,௨௧,൯

+  ൫ߩ ܸ + ܸ௨ௗ,, + ܸ௨ௗ,௨௧,൯
+  ൫ߩ ܸ + ܸ௨ௗ,, + ܸ௨ௗ,௨௧,൯ = ܰ ଵܹ + ଶܹ 

(2.136)

where W1 and W2 are found  considering equations (2.13) (2.14) (2.60) (2.75) (2.79) 

(2.81) and (2.82): 

 ଵܹ = ଵܹ൫ݏ , ݈ , ܿ , ݀ , ߮ , ߜ , ߬ , ,ݖ , ,௨௧ݖ , ,ݕ , ,௨௧ݕ , ܰ , ܰ൯ (2.137)

 

  ଶܹ = ଶܹ൫ݏ , ݈ , ܿ , ݀ , ߮ , ߜ , ߬ , ,ݖ , ,௨௧ݖ , ,ݕ , ,௨௧ݕ , ܰ , ܰ൯ (2.138)

In equation (2.135) and (2.136), Nm is collected to reduce the computational time of the 

optimization process, as the refinement of the solution consists in increasing 

progressively Nm until the conjugate effect is counterbalanced, or until the weight or the 

pressure drop exceed the maximum values imposed. All the equations are manipulated 

and simplified using Wolfram Mathematica in order to reduce the number of operations 

in the optimization process and therefore the computational time. 
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2.4.4 Final Design 

If conjugate effects are taken into account, there is no clean analytical solution to solve 

the unmixed crossflow problem, nor a numerical solution that can be coded without 

some effort [73]. The most recommended [21] [23] method, proposes a set of three 

partial differential equations, from which a non-homogeneous linear system is obtained 

employing a successive substitution technique on a finite difference formulation of the 

governing equations. This system is composed by linear equations equal in number to 

the cells of the two-dimensional domain properly discretized, and it can be solved with 

traditional algorithms pre-implemented in MATLAB. In other words, this approach 

consists in writing simultaneous finite-difference expressions to be loaded in a matrix 

for direct solution [73]. The output is an array containing the values of the wall 

temperature in each cell, from which the fluid temperature in each node is calculated, 

recalling the recursive formulas used for the successive substitutions. The temperature 

field is then completely determined along with the heat exchanger effectiveness.  

This model is fully described in [40]; here, the main equations are rewritten in a form 

suitable for the implementation in MATLAB, maintaining where possible the original 

nomenclature. The results of the numerical method (values of the effectiveness as a 

function of several parameters) are also presented in [23], in an easily reproducible 

manner appropriate for the validation of the MATLAB script. 

The governing equations are: 

 
߲ ܶ

ݔ߲
=

,ߟ ℎ ܣ

ܮ ܥ
( ௪ܶ − ܶ) (2.139)

 

 
߲ ܶ

ݕ߲
=

,ߟ ℎ ܣ

ܮ ܥ
( ௪ܶ − ܶ) (2.140)

 

 ݇௪ ܣ௪, ܮ  
߲ଶ

௪ܶ

ଶݔ߲ + ݇௪ ܣ௪, ܮ
߲ଶ

௪ܶ

ଶݕ߲ = ܮ ܥ
߲ ܶ

ݔ߲
+ ܮ ܥ

߲ ܶ

ݕ߲
 (2.141)

These equations are obtained from a power balance on the two fluids and the dividing 

wall, and are written for geometries such as the one of Figure 7. Several hypotheses are 
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made, coherently with those listed in Section 1.2.2. In addition, it is assumed uniform 

distribution of the heat transfer area, uniform temperature on the channel cross section, 

negligible thermal resistance through the exchanger wall in the direction normal to the 

fluid flows. It should be noticed that the fluid properties and the heat transfer 

coefficients are supposed constant along the channels. However, this approach would be 

adaptable, through an iterative process, to the case of varying conditions through the 

exchanger [73]. With some modifications, non-uniformity of the inlet temperature 

profiles and of the flow distribution may be introduced [86]. 

Defining the non-dimensional temperature of the wall Θ, of the hot fluid θ and of the 

cold fluid ϑ such as: 

߆  = ௪ܶ − ܶ,

ܶ, − ܶ,
 (2.142)

 

ߠ  = ܶ − ܶ,

ܶ, − ܶ,
 (2.143)

 

ߴ  = ܶ − ܶ,

ܶ, − ܶ,
 (2.144)

and the non-dimensional coordinates as: 

 ܺ =
ݔ

ܮ
 (2.145)

 

 ܻ =
ݕ
ܮ

 (2.146)

the governing equations become: 

 
ߠ߲
߲ܺ

+ ܷܰܶ ߠ) − (߆ = 0 (2.147)

 

 
ߴ߲
߲ܻ

+ ܰܶ ܷ ߴ) − (߆ = 0 (2.148)

 

߉   
߲ଶ߆
߲ܺଶ + ߉ ߷

߲ଶ߆
߲ܻଶ −

ߠ߲
߲ܺ

− ߷
ߴ߲
߲ܻ

= 0 (2.149)
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where NTUh and NTUc are the number of transfer units defined for the side indicated by 

the subscripts; Λh and Λh are the longitudinal heat conduction parameters; ϱ is the ratio 

of the cold fluid heat capacity rate to the hot fluid heat capacity rate. For the single plate 

of Figure 7, these non-dimensional parameters are expressed as: 

 ܷܰܶ =  
ܣ , ℎߟ

ܥ
= 2 (ܰ݉ − 1)

,ߟ ℎ ܣ

ܿ, ሶ݉
 (2.150)

 

 ܰܶ ܷ =  
, ℎߟ ܣ

ܥ
= 2 ܰ݉

,ߟ ℎ ܣ

ܿ, ሶ݉
 (2.151)

 

߉  =
݇௪ ܣ௪,

ܮ ܥ
= 2 (ܰ݉ − 1)

݇௪ ቂߜ ܮ + ߮ ( ܰ + 1) ݈
2ቃ

ܮ ܿ, ሶ݉
 (2.152)

 

߉  =
݇௪ ܣ௪,

ܥ ܮ
= 2 ܰ݉

݇௪ ቂߜ ܮ + ߮ ( ܰ + 1) ܿ
2ቃ

ܮ ܿ, ሶ݉
 (2.153)

 

 ߷ =
ܥ

ܥ
=

ܿ,

ܿ,

ܰ݉ − 1
ܰ݉

 (2.154)

The two-dimensional domain is discretized considering constant distance between the 

nodes of the grid, expressed as: 

 ∆ܺ =
1
ݔ݊

 (2.155)

 

 ∆ܻ =
1
ݕ݊

 (2.156)

where it is considered  ݊௫ = ݊௬ = 10  as suggested in the original paper. Therefore the 

two-dimensional domain is subdivided into 100 cells, which is sufficient to calculate the 

exchanger effectiveness with accuracy to the third digit [40].Then, the governing 

equations are written in finite difference form. By means of successive substitutions, the 

fluid temperatures in any node (݅ , ݆) of the discretization grid can be related to the inlet 

temperature of the fluid and to the wall temperature of all the upstream subdivisions in 

the same flow channel, that is i for the hot-side and j for the cold-side. Bearing in mind 
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that the non-dimensional inlet conditions become  ߠ = 1  and  ߴ = 0 because of 

equations (2.43) and (2.44), the following recursive formulas are obtained: 

 

ە
ۖۖ
ۖ
۔

ۖۖ
ۖ
ۓ

,ߠ = ൬
ܤ
ܦ

൰
ିଵ

+
1
ܦ

 ,߆

ିଵ

ୀଵ

൬
ܤ
ܦ

൰
ିଵି

݅ = 1 , 2 , … , ݊௬                                        

݆ = 1 , 2 , … , ݊௫ + 1

 (2.157)

 

 

ە
ۖ
ۖ
۔

ۖ
ۖ
,ߴۓ =

1
ܨ

 ,߆

ିଵ

ୀଵ

൬
ܧ
ܨ

൰
ିଵି

݅ = 1 , 2 , … , ݊௬ +  1            

݆ = 1 , 2 , … , ݊௫

 (2.158)

Considering the above expressions, the third governing equation gives the wall 

temperature in the center of each cell (݅ , ݆) : 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ

,ାଵ߆ ܩ + ାଵ,߆ ܪ + ,߆ ܹ + ଵܲ ,ିଵ߆ + ଶܲ߆ିଵ, + ଷܲ   ,߆

ିଶ

ୀଵ

൬
ܤ
ܦ

൰
ିଶି

+ ସܲ   ,߆
ିଶ

ୀଵ

൬
ܧ
ܨ

൰
ିଶି

= ହܲ ൬ 
ܤ
ܦ

൰
ିଵ

݅ = 2 , 3 , … , ݊௬ − 1                                                                                                       

݆ = 2 , 3 , … , ݊௫ − 1                                     

 (2.159)

The above expression is also valid for the cells at the boundary of the discretized 

domain (i.e. when at least one of the following condition is true: ݅ = 1 ;  ݆ = 1 ;  ݅ = ݊௬ ; 

 ݆ = ݊௫ ) provided that only the terms with subscripts strictly positive and not exceeding 

the number of cells are retained.The following coefficients are defined to obtain (2.157) 

(2.158) and (2.159): 
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ܤ  =
1

ܷܰܶ ∆ܺ
−

1
2

 (2.160)

 

ܦ  = ܤ + 1 (2.161)
 

ܧ  =
1

ܰܶ ܷ ∆ܻ
−

1
2

 (2.162)

 

ܨ  = ܧ + 1 (2.163)
 

ܩ  =
߉

(∆ܺ)ଶ (2.164)

 

ܪ  =
߉ ߷

(∆ܻ)ଶ (2.165)

 

 ܴ =
1
2

ܷܰܶ (2.166)

 

 ܼ =
1
2

߷ ܰܶ ܷ (2.167)

 

 ଵܲ = ܩ +
ܴ
ܦ

൬1 +
ܤ
ܦ

൰ (2.168)

 

 ଶܲ = ܪ +
ܼ
ܨ

൬1 +
ܧ
ܨ

൰  (2.169)

 

 ଷܲ =
ܴ ܤ
ଶܦ ൬1 +

ܤ
ܦ

൰ (2.170)

 

 ସܲ =
ܼ ܧ
ଶܨ ൬1 +

ܧ
ܨ

൰ (2.171)

 

 ହܲ = −ܴ ൬1 +
ܤ
ܦ

൰ (2.172)

 

 ܹ = ܣ +
ܴ
ܦ

+
ܼ
ܨ

 (2.173)
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ܣ =
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ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۖ
ܩ) 2−ۓ + ܪ + ܴ + ܼ)     if ݅ = 2 , 3 , … , ݊௬ − 1 ∧ ݆ = 2 , 3 , … , ݊௫ − 1

−2 ൬ܩ +
ܪ
2

+ ܴ + ܼ൰    if   ݅ = 1 , ݊௬   ∧   ݆ = 2 , 3 , … , ݊௫ − 1                  

−2 ൬
ܩ
2

+ ܪ + ܴ + ܼ൰    if   ݆ = 1 , ݊௫   ∧   ݅ = 2 , 3 , … , ݊௬ − 1                  

−2 ൬
ܩ
2

+
ܪ
2

+ ܴ + ܼ൰   if (݅, ݆) = (1,1) , (1, ݊௫) , ൫݊௬, 1൯ , ൫݊௬, ݊௫൯       

 (2.174)

The above expression is found considering that some terms of the power balance 

disappear for the boundary cells. In fact, adiabatic boundary condition is considered in 

the finite difference form of equation (2.149) by imposing zero first order derivative for 

the wall temperature. 

The cells of the discretized domain can be numbered so as to express (2.159) with a 

single index, defined as: 

 

ە
ۖۖ

۔

ۖۖ

ܫۓ = (݅ − 1)݊௫ + ݆

݅ = 1 , … , ݊௬          

݆ = 1 , 2 , … , ݊௫

 (2.175)

The problem has now the form of a non-homogeneous system of nx ny linear equations 

and can be easily solved to find Θ. The wall temperature can then be switched back to 

the two-index formulation employing the following relationships: 
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ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

݅ = ceil ൬
ܫ

݊௫
൰

݆ = ܫ − ceil ൬
ܫ

݊௫
൰ − 1൨ ݊௫ 

ܫ = 1 , 2 , … , ݊௫ ݊௬

 (2.176)

The hot-side outlet temperature θout is then evaluated with (2.157). From the definition 

(2.6) and considering also (2.143), the exchanger effectiveness is calculated as: 

ߝ  =  ܶ, − ܶ,௨௧

ܶ, − ܶ,
= 1 − ܶ,௨௧ − ܶ,

ܶ, − ܶ,
= 1 − ௨௧ߠ = (2.177) ௸ߝ

Since the chances to make mistakes while building the matrix of coefficients of the 

linear system are many, the validation of the MATLAB script is necessary. As already 

mentioned, the results published in [23] are a suitable reference.  

2.5 Optimization Process 

Despite of the intricate formulation, the method described in Section 2.4.4 is rapidly 

computed. Therefore an iterative procedure can be established to refine the first attempt 

design of Section 2.4.3 by taking conjugate effects into account. The method consists in 

a progressive increase of the number of modules Nm , keeping the geometry of the 

modules fixed. In fact, as described in Section 1.2.2, conjugate effects reduce the heat 

exchanger performance, deteriorating its effectiveness and making necessary additional 

heat transfer surface: if the modules geometry is fixed, the only way to provide larger 

area is increasing Nm. At each iteration, equation (2.177) is evaluated with the new 

value of Nm, until the thermal requirement represented by (2.6) is fulfilled. The final 

design for the considered module geometry is then obtained. 

Each combination of the design parameters of Table 4 gives a fixed module geometry; 

however, aiming to reduce the computational time, some of them may be discarded 
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before being fed to the iterative procedure introduced above. This can be done defining 

minimum and maximum values for ܰ, to be compared with the ఌܰ resulting from the 

first attempt solution. From (2.135), approximating  ܰ with  ܰ − 1 : 

 ܰ > 1 + ܲ + ܲ

௫∆
= ∆ܰ (2.178)

The approximation is valid for  ܰ ≫ 1 , otherwise (2.178) can be substituted with the 

only acceptable solution of a quadratic equation. Moreover, from (2.136): 

 ܰ <
߱௫ − ଶܹ

ଵܹ
= ఠܰ (2.179)

The quantities ∆௫ and ߱௫ , corresponding to the maximum allowable pressure drop 

and weight, are defined in (2.1) and (2.2); however, during the optimization process, 

߱௫ is progressively substituted whenever a final design with lower weight is found. 

Then, the condition to be respected in order to start the iterative procedure is: 

 max൫ ఌܰ , ∆ܰ൯ < ఠܰ (2.180)

If this condition is false conjugate effects are not calculated, the considered geometry is 

discarded and the algorithm proceeds to the first attempt design of the next fixed 

geometry (or combination of parameters).  

In the opposite case, a suitable increment of ܰ must be determined at each iteration, 

but some considerations on the shape of the curve  ߝ(ܰ)  are needed first. From the 

conventional heat exchanger theory (see Section 2.4.1) where conjugate effects are 

neglected, it is well-know that t  ߝ(ܷܰܶ)  is a concave function, as it maintains a negative 

second order derivative for all NTU. Also ߝ(ܰ) is a concave function: in fact, 

considering equations (2.107) and (2.132), and that Nm is increased keeping the 

modules geometry fixed, NTU becomes proportional to Nm: 

 ܷܰܶ =
ܣܷ

ܿ, ሶ݉
=

2(ܰ݉ − 1)
1

,ߟ ܣ ℎ
+ 1

,ߟ ܣ ℎ

 (2.181)

It can be assumed that these considerations remain true if axial heat conduction is taken 
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into account, since conjugate effects are not likely to alter qualitatively this general 

behavior. The only expected difference is a lower curve, as a consequence of the 

degradation of the exchanger effectiveness [40]. Then, at the iteration i, the increment 

∆ܰ݅ of the number of modules  ܰ = ܰ  for the following iteration can be defined as: 

 

ە
ۖ
۔

ۖ
ۓ

∆ ܰ =
ߝ − ߝ

ߝ − ିଵߝ
∆ ܰିଵ

݅ = 2 , 3 , …

  (2.182)

which is the increment that would be necessary to obtain the required effectiveness ε if 

the function  ߝ(ܰ)  was linear and coincident with the line passing by (ܰ݅−1 ,  and (1−݅ߝ 

(ܰ݅ ,  Because of the concave shape of (ܰ) , the linear function is greater for all . (݅ߝ 

ܰ > ܰ ; therefore, the increment will always be lower than the necessary, consenting 

to approach the required effectiveness avoiding the risk of crossing it. In the firsts 

iterations (except the very first) the increment will be larger depending on how far is the 

solution, accelerating the convergence. 

To initiate the recursive formula (2.182), at the first iteration  ߝଵ is calculated starting 

with  ଵܰ = max൫ܰ  ,  ܰ,൯  from equation (2.180); then it is imposed  ∆ܰ1 = 1  to 

obtain the number of modules for the next iteration, evaluated with the following 

expression: 

 

ە
ۖ
۔

ۖ
ۓ

ܰାଵ = ܰ + ∆ ܰ

݅ = 1 , 2 , …
  (2.183)

The iterative process is truncated if one of the following conditions is verified: 

• the required effectiveness ε is reached 

• the maximum allowable weight  ߱௫ is reached, i.e. when ܰ > ܰఠ 

• the increment  ∆ܰ݉  becomes negative 
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Figure 17: flow chart of the optimization process 

If the reason of the truncation is the first of the above, the final design is saved and 

߱௫ is updated. The saved design respects the hydraulic requirements because of 

(2.180) and, because the reason of the truncation, fulfills the thermal requirements, 

accounting for the performance degradation caused by conjugate heat transfer. This 
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𝜀𝑚in ← Equation (2.6) 
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𝜀𝛬 ← Equation (2.176) 
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𝑖 < 𝑛𝑑es 
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𝜔𝑡ot ← Equation (2.135) 
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design also is lighter than all the previously saved design, otherwise the reason of 

truncation would have been the second. The last motivation would indicate that 

increasing ܰ the effectiveness is reduced, because the conjugate effects overcome the 

benefits of additional heat transfer area: in fact also the longitudinal heat conduction 

parameters Λh and Λh of equations (2.152) and (2.153) are proportional to ܰ . A 

simplified flow diagram of the optimization process is reported in Figure 17. 

2.6 Counterflow Configuration 

The method proposed in the above sections for a crossflow MCHE is easily traduced for 

counterflow arrangement. The only difference in the parameterization of the geometry 

is that s, d, Nh , and Nc are no longer independent, since the channel lengths defined by 

(2.8) and (2.9) are equal. The width Lw of the modules represents the link between the 

above mentioned variables: 

௪ܮ  = ݀ ܰ + ߮ ( ܰ + 1) + ߬ = ݏ ܰ + ߮ ( ܰ + 1) + ߬ (2.184)

An additional parameter, the channel length L, is then considered; equation (2.99) is 

suitable to define the upper limit of L, while as lower limit it is arbitrarily considered τ. 

This value could probably be augmented since too short channels are characterized by 

elevated conjugate effect. However it is not possible to define a constraint involving the 

longitudinal heat conduction parameter since, as from equation (2.152), it is a function 

of Nm, the dependent variable of the optimization process. For the same reason, an upper 

limit involving pressure is not considered. Therefore, the constraints on L are simply: 

 ߬ < ܮ < ௫ܮ  (2.185)

A suitable value for ܮ௪ is obtained considering the distribution elements. As already 

mentioned, the headers for the counterflow configuration are more complicated than 

those for the crossflow arrangement described in Section 2.3.3. Various types of 

distributors can be used for plate-fin heat exchangers [74]. However, microchannel 

devices often employ manifolds and ports which are similar to the typical distribution 

elements of plate heat exchangers [56] [67] [87]. The risk of flow maldistribution in 
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MCHE employing such distributors is high. In-depth numerical analysis is needed for a 

proper design [67], which is beyond the purposes of the present work. Nevertheless a 

few geometrical considerations can be made. 

The values of ܦ and ܦ given in Section 2.3.2 are chosen as diameters of the circular 

ports. The sketch in Figure 18, roughly representing the distributor of one single 

module, is completely determined by ܮ௪ . The total area ܣௗ of the drawing is 

calculated by the CAD software employed, Solid Edge. In Figure 19,  ܣௗ  and  

 ௪ . From the latter function, it can be inferredܮ  ௪  are plotted as a function ofܮ/ௗܣ

that the larger ܮ௪ the lighter is the device. In fact, for given channel dimensions, less 

modules (but with more channels) are needed, reducing the contribution of the 

distributors (and of the frame) to the total weight. However, larger ܮ௪ is likely to 

increase flow maldistribution, since the path followed by the various streamlines 

become more and more different. The choice of ܮ௪ such that ܣௗ is minimized seems 

a good compromise: 

௪ܮ  = 0.18346 [m]  (2.186)

Equation (2.184) then gives: 

 ܰ =
௪ܮ − ߬ − ߮

ݏ + ߮
 (2.187)

 

 ܰ  =
௪ܮ − ߬ − ߮

݀ + ߮
=

ݏ + ߮
݀ + ߮ ܰ (2.188)

 
Figure 18: sketch of the distributors 
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In Figure 20, the modules for the crossflow configuration are shown. These modules are 

obtained connecting the distributors sketched in Figure 18 to the finned core elements 

of Figure 6. Depending on the wall thickness and on the pressure difference between the 

two sides of the exchanger, additional finned surface or pillars may be needed in the 

distributors to avoid deformation. Generally, these elements alter significantly the 

velocity and pressure profiles, and numerical simulations are required for an accurate 

designed [67]. 

 
Figure 19: surface area and effective height of the distributors as a function of the exchanger width 

 
Figure 20: cold- and hot-side modules for the counterflow arrangement 
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The pressure drop in distributors similar to those in Figure 20 is often of the same order 

of magnitude as the core pressure drop. The following expression, obtained 

experimentally, is recommended [23]: 

 
ௗ,∆ =

1.5  ሶ݉
ߨ
4 ܦ

ଶ
൩

ଶ

2 ,ߩ
= 2575 [Pa] 

(2.189)

 

 
ௗ,∆ =

1.5  ሶ݉
ߨ
4 ܦ

ଶ
൩

ଶ

2 ,ߩ
= 36 [Pa] 

(2.190)

From equation (2.2), the allowable pressure drop for the microchannel core then 

becomes: 

௫∆  = 3226 − ௗ,∆ − ௗ,∆ = 615 [Pa] (2.191)

The volumes to be considered in the optimization process are: 

 ܸ = ݏ  ݈ ܰ (ܰ ܮ − 1) +
ߨ
4

ܦ
ଶ ܮ + 7.839 ∙ 10ିଷ (ܰ − 1) ݈ (2.192)

 

 ܸ = ܰ ܰ ܮ ݀ ܿ +
ߨ
4

ܦ
ଶ ܮ + 6.463 ∙ 10ିଷ ܰ ܿ (2.193)

 

 ௪ܸ = ܰ 2) ߜ ௪ܮ ܮ − 1) + ܿ ߮ )ܮ ܰ + 1)ܰ + ݈ ߮ )ܮ ܰ + 1)(ܰ − 1)
+ ܿ) ߬ ܮ + (ߜ ܰ + ܮ ߬ (݈ + (ߜ (ܰ − 1) + 37.773 ∙ 10ିଷ߬ 

(2.194)

 

 ܸௗ, =  (ܰ − 1)(24.380 ߜ + 5.856 ݈) ∙ 10ିଷ (2.195)
 

 ܸௗ, = ܰ(24.380 ߜ + 6.702 ܿ) ∙ 10ିଷ  (2.196)

where the numerical values are retrieved through the CAD software and are expressed in 

square meters. 

Another difference with respect to the crossflow arrangement is the thermal boundary 

condition considered to evaluate the heat transfer coefficient: in fact, the H1 boundary 
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condition is recommended for counterflow heat exchangers made of highly conductive 

materials [84]. The following correlation is then to be implemented: 

ݑܰ = 8.235 (1 − 2.042 ܽିଵ + 3.085 ܽିଶ − 2.477 ܽିଷ + 1.058 ܽିସ − 0.186 ܽିହ) (2.197) 

The well-known ε-NTU relationship for counterflow exchanger gives [23]: 

 ܷܰܶ =
1

1 − ݎ
ln

1 − ݎ ߝ
1 − ߝ

 (2.198)

Substituting in (2.198) the required values for r and ε reported in (2.5) and (2.6): 

 ܷܰܶ = 2.9076 (2.199)

From the definition of number of transfer unit NTU, replacing ሶ݉  and cp,h with the 

corresponding values in Table 1 and Table 2: 

ܣܷ  = 1161.7 (2.200)

Then, the first attempt solution is still expressed by (2.132). The constraints of Table 4 

remain valid for all the design parameters with the exception of L, Nh and Nc, for which 

(2.185) (2.187)and (2.188) are considered. 

The model proposed in [40] and introduced in Section 2.4.4 to evaluate the conjugate 

effect can be adapted to the counterflow arrangement; the domain is now one-

dimensional and the governing equations become:  

 
d ܶ

dݔ
=

,ߟ ℎ ܣ

ܮ ܥ
( ܶ − ௪ܶ) (2.201)

 

 
d ܶ

dݔ
=

,ߟ ℎ ܣ

ܮ ܥ
( ௪ܶ − ܶ) (2.202)

 

 ݇௪ ܣ௪  
dଶ

௪ܶ

dݔଶ + ܥ
d ܶ

dݔ
− ܥ

d ܶ

dݔ
= 0 (2.203)

from which the following recursive formulas are obtained: 
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ە
ۖ
۔

ۖ
ߴۓ = ܨ  ߆

ିଵ

ୀଵ

ିଵିܧ

݅ = 1 , 2 , … , ݊ + 1

 (2.205)

 

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ

ଵܲ ାଵ߆ + ଶܲ ߆ + ଷܲ߆ିଵ + ସܲ  ାଵି߆

ିଵି

ୀଵ

ିିܣ

+ ହܲ   ߆
ିଶ

ୀଵ

ିଵିܧ = ܲܣି

݅ = 2 , 3 , … , ݊ − 1

 (2.206)

 

ە
ۖ
۔

ۖ
ۓ

ଵܲ ଶ߆ + ଶܲ ߆ଵ + ସܲ  ାଵି߆

ିଶ

ୀଵ

ିଵିܣ = ܲܣିଵ

 

݅ = 1                  

 (2.207)

 

ە
ۖ
۔

ۖ
ۓ

ଶܲ ߆ + ଷܲ߆ିଵ + ହܲ  ߆

ିଶ

ୀଵ

ିଵିܧ = ܲ

݅ = ݊          

 (2.208)

To write the above equations, several quantities are defined, some of which are 

expressed exactly as in in Section 2.4.4 and are therefore not reported below: 

 

ە
ۖ
۔

ۖ
ߠۓ = ାଵିܣ + ܤ  ାଵି߆

ାଵି

ୀଵ

ାଵିିܣ

݅ = 1 , 2 , … , ݊ + 1

 (2.204)
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߉ =
݇௪ ܣ௪

ܥ ܮ
= 2 (ܰ݉ − 1) 

݇௪   ቂܮ )ߜ௪ − ߬) + ߮ ( ܰ + 1) ݈
2 + ߮ ( ܰ + 1) ܿ

2ቃ

ܮ ܿ, ሶ݉
 (2.209)

 

 ∆ܺ =
1
݊

 (2.210)

 

ܣ  =
2 − ∆ܺ ܷܰܶ

2 + ∆ܺ ܷܰܶ
 (2.211)

 

ܤ  =
2 ∆ܺ ܷܰܶ

2 + ∆ܺ ܷܰܶ
 (2.212)

 

ܧ  =
2 − ∆ܺ ܰܶ ܷ

2 + ∆ܺ ܰܶ ܷ
 (2.213)

 

ܨ  =
2 ∆ܺ ܰܶ ܷ

2 + ∆ܺ ܰܶ ܷ
 (2.214)

 

 ଵܲ =
߉

∆ܺ
− ܤ ܣ) − 1) (2.215)

 

 ଶܲ =

ە
ۖۖ
۔

ۖۖ
ۓ

− ൬2
߉

∆ܺ
+ ܤ + ߷ ൰ܨ if ݅ = 2 , 3 , … , ݊ − 1

− ൬
߉

∆ܺ
+ ܤ + ߷ ൰ܨ if ݅ = 1 , ݊

 (2.216)

 

 ଷܲ =
߉

∆ܺ
− ߷ ܨ ܧ) − 1) (2.217)

 

 ସܲ = ܤ− ܣ) − 1) (2.218)
 

 ହܲ = −߷ ܨ ܧ) − 1) (2.219)
 

 ܲ = ܣ − 1 (2.220)

In the case of ߉ = 0 , the output of the MATLAB script implementing the presented 

model is in perfect agreement with equation (2.198); considering  ݊ = 20 in (2.210) is 
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sufficient to calculate the exchanger effectiveness with accuracy to the third digit. If 

߉ > 0, the results are in good agreement with the less accurate method suggested in [23] 

to evaluate the conjugate effects in counterflow exchangers. It should be mentioned 

that, because of the heat transfer and the pressure drop in the distributors, the 

assumption of unique mass flow rate and inlet temperature for each channel may be 

inadequate. In this case, the model could be adapted as described in [86]. 
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3 Results 

The MATLAB script implementing the method described in the previous chapter 

calculates, in only a few minutes, the design parameters of Figure 6 for the optimal 

crossflow and counterflow MCHE. The optimal values are searched in the design space 

defined by the constraints of Table 4. The optimal MCHE geometries are determined 

considering two different alloys for the walls. In  Figure 21 the space occupied by the 

considered heat exchangers is visualized for a quick comparison. The optimal values of 

the design parameters are reported in Table 5 and Table 6, along with the discretization 

step used for the corresponding design space.  

 
 Figure 21: overall dimensions [mm] of the benchmark PHE (a), the copper (b) and aluminium (c) 

crossflow MCHE, the copper (d) and aluminium (e) counterflow MCHE  

(a) (b) 

(d) 

(c) 

(e) 
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Table 5: optimized design parameters for the crossflow MCHE 

Design parameter Symbol 
Crossflow

Unit 
C878 A360 Step 

Number of modules ܰ 106 105 — # 

Number of hot-side channels ܰ 370 320 — # 

Number of cold-side channels ܰ 120 230 10 # 

Cold-side channel height ܿ 1.9 1.3 0.1 mm 

Cold-side channel width ݀ 0.35 0.30 0.05 mm 

Hot-side channel height ݈ 3.0 3.0 0.1 mm 

Hot-side channel width 0.05 0.4 0.30 ݏ mm 

Fin thickness ߮ 0.30 0.30 — mm 

Dividing wall thickness 0.30 0.30 ߜ — mm 

Hot-side channel length ܮ 88.3 148.3 — mm 

Cold-side channel length ܮ 232.3 234.3 — mm 

Length of the stack of modules ܮ 589.7 521.2 — mm 

Table 6: optimized design parameters for the counterflow MCHE 

Design parameter Symbol 
Counterflow

Unit 
C878 A360 Step 

Number of modules ܰ 139 136 — # 

Number of hot-side channels ܰ 247 204 — # 

Number of cold-side channels ܰ 288 267 — # 

Cold-side channel height ܿ 1.1 1.1 0.1 mm 

Cold-side channel width ݀ 0.30 0.35 0.05 mm 

Hot-side channel height ݈ 3.0 3.0 0.1 mm 

Hot-side channel width 0.05 0.55 0.40 ݏ mm 

Fin thickness ߮ 0.30 0.30 — mm 

Dividing wall thickness 0.30 0.30 ߜ — mm 

Hot-side channel length 1 112 61 ܮ mm 

Module width ܮ௪ 183,2 183,9 — mm 

Length of the stack of modules ܮ 660.0 645.9 — mm 
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In the following sections, the proposed devices are rated and the validity of the 

approximations made in the optimization process is assessed by evaluating the 

magnitude of the scaling effects neglected. An accurate test of the crossflow exchanger 

using commercial computational fluid-dynamics software such as ANSYS Fluent would 

require the simulation of a whole plate, due to the two-dimensional nature of the heat 

transfer process. An excessive number of discretization cells would be needed to resolve 

the temperature field inside the various microchannels, because the characteristic length 

of the microstructures is several orders of magnitude lower than the dimensions of the 

plate. On the other hand, considering a single channel for each side is sufficient to 

model the counterflow MCHE: numerical simulations can then be executed in acceptable 

computational time, for a further validation of the considered model. 

As shown in Table 3, the thermal conductivity of the aluminium-based alloy A360 is 

four times the conductivity of the copper-based alloy C878. Conjugate effects are 

therefore more significant in the aluminium-based devices. Consequently, the copper-

based devices are appreciably smaller. With this exception, for each flow arrangement 

no relevant difference is found rating the copper-based or the aluminium-based 

exchangers of Table 5 and Table 6: to avoid repetition, in the following sections the 

focus is on the copper-based crossflow and counterflow devices. 

3.1 Outlet Temperatures and Effectiveness 

The model described in Section 2.4.4 evaluates the exchanger effectiveness for the 

optimization process. To do so, it first calculates the temperature field in one single 

plate of the crossflow MCHE. The temperature field for the copper-based crossflow 

device of Table 5 is shown in Figure 22. The upper surface corresponds to the hot-side, 

the lower to the cold-side and the surface in the middle represents the temperature of the 

dividing wall. 

While for the counterflow configuration the temperature at the outlet of each channel is 

the same, for the crossflow configuration it depends on the position of the microchannel 

in the core. In this case, the outlet temperature of the exchanger is the adiabatic mixing 
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temperature and, since uniform flow distribution is assumed, it corresponds to the 

arithmetic average of the outlet temperatures of the various channels. In Figure 23, the 

temperature distributions at the outlet of the two sides and the respective averaged value 

are shown.  

 
Figure 22: temperature field in one plate of the copper-based crossflow MCHE 

 

 

Figure 23: temperature distributions at the outlet of the hot-side (a) and of the cold-side (b) 
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As anticipated in Section 2.4.4, if the geometry of the modules is kept fixed, the 

exchanger effectiveness can be expressed as a function of the number of modules Nm 

only. Figure 24 shows values of the effectiveness as function of the number of modules. 

Observing the chart, the importance of considering conjugate effect becomes clear. The 

intersection between the horizontal line and the green curve represents the first attempt 

solution of Section 2.4.3, while the final design corresponds to the intersection between 

the horizontal line, the vertical line and the blue curve. A difference of 16 modules on 

each side exists between the two designs, corresponding to a relative error of 15.1 %. 

The error grows to 31.4 % if the aluminium-based MCHE is considered, due to higher 

thermal conductivity. 

 
Figure 24: effectiveness of the copper-based crossflow MCHE as a function of the number of 

modules; the geometry of the modules is kept constant and given in Table 5; the green 
line is the effectiveness neglecting conjugate effect, calculated using (2.105); the blue 
line is the effectiveness taking conjugate effects into account, evaluated with the model 
of Section 2.4.4; the black horizontal and vertical lines mark, respectively, the 
required effectiveness and the number of modules needed to obtain it, and their 
intersection represents the optimal design 

The response of the crossflow MCHE in situations involving off-design mass flow rate is 

visualized in Figure 25. It is evident that conjugate effects become stronger and stronger 

as the flow rate diminishes. 
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Figure 25: effectiveness of the copper-based crossflow MCHE as a function of the mass flow rate; 

the geometry of the exchanger is kept constant and given in Table 5; the green line is 
the effectiveness neglecting conjugate effect, calculated using (2.105); the blue line is 
the effectiveness taking conjugate effects into account, evaluated with the model of 
Section 2.4.4; the black horizontal and vertical lines mark, respectively, the required 
effectiveness and mass flow rate, and their intersection represents the design point 

Similar conclusions are made when the counterflow geometries of Table 6 are 

considered.Tthe one-dimensional temperature profiles of the copper-based counterflow 

exchangers are shown in Figure 26, while the effectiveness is plotted as a function of 

the number of modules and of the mass flow rate in Figure 27. The relative error on the 

number of modules between the first attempt solution and the final design is 15.1 % for 

the copper-based MCHE and 27.2 % for the aluminium-based MCHE. 

It should be noted that the results of this section are obtained neglecting the wall 

thermal resistance in the direction normal to the fluid flows, which, however, represents 

less than 1.7 % of the total thermal resistance of (2.108) for both the copper-based 

exchangers and less than 0.2 % for the aluminium-based devices. However, the contact 

resistance due to the bonds between two modules may be non-negligible [23] and 

should be evaluated empirically. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

m  [kg/s]

ε

. 



References 91 

M.Eng. Thesis A. Mantovanelli 

 
Figure 26: temperature field inside one channel of the copper-based counterflow MCHE of Table 6; 

the green line is the temperature of the dividing wall; the blue line is the fluid 
temperature on the cold-side and the red line is the fluid temperature on the hot-side 

  

Figure 27: effectiveness of the copper-based counterflow MCHE of Table 6 as a function of the 
number of modules (a) and of the mass flow rate (b) (see the caption of Figure 24 and 
Figure 25) 
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effect can be neglected are discussed in Section 1.2.2 and evaluated below. Similar 

results are obtained for each of proposed devices, therefore, to avoid repetitions, these 

relationships are here evaluated only for the copper based crossflow MCHE, unless 

significant differences arise. 

Rarefaction Effects  

The threshold condition to be respected in order to safely ignore rarefaction effect is: 

 
݊ܭ =

1.277

ටܴ
ܯ ܶ

ߤ
ߩ ܦ

< 10ିଷ 
(3.1)

Substituting the appropriate values for the hot-side of the considered MCHE: 

݊ܭ =
1.277

ඩ
8.314 J

mol K
296.61 g

mol

398.15 + 487.15
2 K

0.0093 g
m s

 0.72 kg
mଷ  ∙ 0.3 mm

= 4.9 ∙ 10ିସ < 10ିଷ 

(3.2) 

Rarefaction effects may therefore be neglected. 

Entrance Effects 

The threshold condition to be respected in order to safely ignore hydrodynamic entrance 

effects is: 

 
ܮ

ுܦ
> 60 (3.3)

while thermal entrance effects can be neglected if: 

 ܴ݁ ݎܲ
ுܦ

ܮ
< 10  (3.4)

Substituting the appropriate values for the hot-side of the co MCHE: 

 
ܮ

ு,ܦ 
=

0.0883
0.00055

= 160.5 > 60 (3.5)
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 ܴ݁ ݎܲ
ு,ܦ 

ܮ
= 446.2 ∙ 0.8466

0.00055
0.0883

= 2.35 < 10  (3.6)

Entrance effects may therefore be neglected. 

Conjugate Heat Transfer  

The threshold condition to be respected in order to safely ignore conjugate effects is: 

߉  =
݇௪ ௪ܣ

ሶ݉ ܿ ܮ
< 0.01 (3.7)

Substituting the appropriate values for the hot-side of the crossflow MCHE: 

߉  = 0.0434 > 0.01 (3.8)

Therefore conjugate effect cannot be neglected. However, since longer channels are 

involved, the cold-side is not appreciably influenced: 

߉  = 0.0034 > 0.01 (3.9)

On the other hand, the effect is more marked in the counterflow exchangers; for the 

copper-based device: 

߉  = 0.0662 > 0.01 (3.10)

while for the aluminium based-device, characterized by higher thermal conductivity: 

߉  = 0.1285 > 0.01 (3.11)

Conjugate effects are properly taken into consideration thanks to the model described in 

Section 2.4.4 and 2.6; if conjugate effects were not accounted for, the optimal design 

would be substantially different.  

Surface Roughness  

The threshold condition to be respected in order to safely ignore conjugate effects is: 
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߳

ܦ
< 0.01 (3.12)

For the hot-side of the crossflow MCHE, considering an appropriate value for the 

surface roughness retrieved from [56]:  

 
߳
݀

=
0.01 mm
0.3 mm

= 0.03 > 0.01 (3.13)

Therefore, heat transfer and pressure drop may be slightly influenced by the roughness 

of the surface. However, in similar situations the relative error on the Nusselt and 

Poiseuille numbers is still likely to be below 1 % [43]. It should be noted that, among 

the devices of Table 5 and Table 6, the hot-side of the crossflow MCHE is characterized 

by the smallest microchannels, and is therefore the most influenced by surface 

roughness effect. 

Variable Properties  

The threshold condition to be respected in order to safely consider temperature 

independent properties is: 

 ቤ൬
ܶ
߰

߲߰
߲ܶ

൰
ೝ்

ቤ ≪ 1 (3.14)

while physical properties are independent of the pressure if: 

 ቤ൬

߰

߲߰
߲

൰
ೝ

ቤ ≪ 1 (3.15)

Considering the working pressures of Table 1 and the allowable pressure drop, the 

thermodynamic library employed gives physical properties substantially pressure-

independent and closely linear with the temperature. Therefore, the only threshold 

condition to evaluate is: 

 ቤ൬
ܶ
߰

 
߲߰
߲ܶ

൰
ೝ்

ቤ = ቤ൬
ܶ
߰

d߰
dܶ

൰
ೝ்

ቤ ≅ ቤ൬
ܶ
߰

∆߰
∆ܶ

൰
ೝ்

ቤ ≅ ฬ
߰ − ߰௨௧

߰ + ߰௨௧

ܶ + ܶ௨௧

ܶ − ܶ௨௧
ฬ ≪ 1 (3.16)

where the arithmetic average between the inlet and outlet temperatures is chosen as 
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reference temperature.  

Considering the values of Table 1 for the temperatures and of Table 2 for the various 

physical properties involved, the values of Table 7 are obtained:  

Table 7: temperature sensitivity coefficients for the physical property of interest 

Physical property ܿ, ܿ, ߩ ߩ ߤ ߤ ݇ ݇ 

Sensitivity coefficient 6.52 5.26 9.33 5.25 9.14 25.80 15.86 7.95 

Therefore, all the physical properties are strongly temperature dependent, both for the 

hot- and the cold-side. With the exception of the viscosity, the dependence from the 

temperature is weaker in the liquid. 

In the optimization process, averaged values are calculated through an arithmetic mean 

between the inlet an outlet values. This choice does not introduce an excessive error in 

the counterflow exchangers since, as mentioned, the properties are closely directly 

proportional to the fluid temperature, and since, as can be seen in Figure 26, in each 

channel the bulk temperature is almost linearly distributed between the inlet and outlet 

values, contrarily to the crossflow case of Figure 22. As already mentioned, the method 

employed to evaluate the exchanger effectiveness could be easily adapted, through an 

additional iterative process, to the case of varying conditions throughout the exchanger. 

Viscous Dissipation 

The threshold condition to be respected in order to safely ignore viscous heating is: 

ݎܤ  = ଶݑ ߤ ܮ
ሶܳ = ߤ ଶݑ ܮ

ሶ݉ ܿ| ܶ − ܶ௨௧| < 0.05
ுܦ

ଶ

2 ܵ ܲ
 (3.17)

Substituting the appropriate values for the hot-side of the crossflow MCHE: 

ݎܤ  = 2.03 ∙ 10ିସ < 3.55 ∙ 10ିସ = 0.05
ு,ܦ

ଶ

2 ݈ ݏ ܲ
 (3.18)

It should be mentioned that, among the proposed devices, the hot-side of the copper-
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based crossflow MCHE is the most influenced by viscous heating effect, which can be 

neglected according to this established thresholds. 

Fluid Axial Conduction 

The threshold condition to be respected in order to safely ignore heat conduction in the 

fluid is: 

 ܲ݁ =
ߩ ܿ ݑ ுܦ

݇
> 100 (3.19)

Substituting the appropriate values for the hot-side of the crossflow MCHE: 

 ܲ݁ = 377.7 > 100 (3.20)

Fluid axial conduction effects may therefore be neglected. 

Electroviscous Effect 

The walls of the exchangers are made of electrically conductive materials and therefore 

can’t be charged relatively to the liquid; moreover, the working fluid can be considered 

as pure and does not contain a significant amount of ions. Therefore, electroviscous 

effects do not take place. 

3.3 Total Pressure Drop 

In Table 8, the various contributions to the total pressure drop of the copper-based heat 

exchangers are reported. The information from Section 2.3.3, 2.4.2 and 2.6 are 

employed to calculate the mentioned quantities.  

The values of Table 8 may be used to calculate the relative error introduced with the 

approximations imposed for the optimization process. Both in the counterflow and 

crossflow configurations, considering only the pressure drop on the hot-side distribution 

system and the core frictional pressure drop with no entrance effect, the total pressure 

drop are underestimated approximately by 3 %. 
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Table 8: total pressure drop; all values are expressed in Pa, negative values indicate pressure rise 

Contribution to pressure drop 
Crossflow C878 Counterflow C878

Cold-side Hot-side Cold-side Hot-side

Piping abrupt entrance pressure drop 31 1591  — — 

Piping abrupt exit pressure rise -10 -775  — — 

Header pressure drop 7 444  36 2575 

Core abrupt entrance pressure drop 1 78  0 54 

Core abrupt exit pressure rise 0 -18  0 -16 

Core frictional pressure drop 587 1368  144 465 

Dynamic inlet effect 1 33  0 26 

Pressure change due to density variation 0 -17  0 -13 

Total pressure drop on one side 617 2704  180 3091 

Total pressure drop 3321  3271 

3.4 Numerical Validation 

As mentioned earlier, an accurate three-dimensional CFD analysis of the crossflow 

exchanger using proprietary software is impracticable, due to the excessive number of 

discretization cells required. On the other hand, the symmetry planes of the counterflow 

MCHE can be exploited to reduce the computational domain, so that the numerical 

analysis is executed in acceptable computational time. 

Three different simulations are implemented in ANSYS Fluent considering the optimal 

copper-based counterflow MCHE. The first one considers constant properties and zero 

thermal conductivity in the axial direction, to neglect conjugate effects; the second one 

still involves constant properties but considers isotropic thermal conductivity, 

accounting therefore for longitudinal heat conduction; in the third simulation, the 

temperature dependence of the physical properties is defined. 

 The considered geometry, shown in Figure 28 as well as the boundary conditions 
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imposed, consists in a quarter of the hot-side and cold-side channels. The values chosen 

for the design parameters, reported in Table 9, are selected by the optimization process 

imposing  ݀ =  as further constraint. In this way, each side has the same number of  ݏ

channels, as follows from (2.184), and each channel on one side matches exactly a 

channel the other side of the exchanger. Symmetry planes are formed and used to single 

out the element of Figure 28. The inlet temperatures and pressures of Table 1 are used 

as boundary conditions, together with the inlet velocities calculated as ݑ = ሶ݉  . (ܵ ߩ)/

       

Figure 28: geometry (a) and boundary conditions (b) considered for the numerical simulation of 
the counterflow arrangement; the region occupied by the solid wall is shown in gray 
while the fluid is left ; symmetry boundary condition, marked in yellow, is 
imposed on all the four sides of the geometry; the velocity inlet of the cold-side is filled 
with blue, while the pressure outlet of the hot side in red; adiabatic walls are indicated 
in green 

Table 9: copper-based counterflow MCHE considered for the numerical simulation 

Design parameter ܰ ܰ ܰ ܮ ߜ ߮ ܿ ݈ ݀ ݏ 

Optimized value 120 247 247 0.4 0.4 3.0 1.2 0.3 0.3 68 

Unit [#] [#] [#] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

Since more precise data could not be found, the physical properties of the copper alloy 

are considered constant as reported in Table 3. On the other hand, the physical 

(a)    (b)
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properties of the fluid are approximated as quadratic functions of the temperature, 

interpolating the values of Table 2. As a matter of fact, all the fluid property are closely 

linear with the temperature, except the viscosity of the liquid, which, as shown in Figure 

29, is well approximated by the following expression: 

ߤ  = 8.172 ∙ 10ିଷ − 3.264 ∙ 10ିହ ܶ + 3.395 ∙ 10ି଼ ܶଶ (3.21)

 
Figure 29: temperature dependence of the viscosity of the liquid; the quadratic equation (3.21), 

plotted in blue, closely approximates the data, in red, obtained from the considered 
thermodynamic library (see Section 2.1.2) 

For each quantity of interest, the numerical simulation provides an array containing the 

values of the considered quantity in all the discretization cells. An arbitrary number of 

positions along the channel is chosen; at each position, the average value for each 

quantity is calculated manipulating the arrays in the MATLAB environment. In this way, 

the bulk temperature ෨ܶ  , the wall temperature ෨ܶ௪ , the wall heat flux ݍ௪ , the wall shear 

stress ̃ݐ௪ and the axial velocity ݑ  are determined. For each side, these quantities are 

employed to evaluate the local values of the Nusselt and Poiseuille numbers as follows: 

ݑܰ  =
ℎ ுܦ

݇
=

௪ݍ ுܦ

݇ ൫ ෨ܶ௪ − ෨ܶ൯
 (3.22)

 

ܲ  = ݂ ܴ݁ =
2 ௪ݐ̃ ுܦ

ߤ ݑ
 (3.23)
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The geometry of Figure 28 is discretized using GAMBIT. Around three millions of cells 

are considered: further refinement does not cause significant variations in the results, 

guaranteeing the independence of the solution from the mesh. The convergence of the 

solution is monitored by examining the residuals, shown in Figure 30, by checking 

relevant integrated quantities, as shown in Figure 31 and Figure 32, and, finally, by 

calculating mass and energy imbalances. 

 

 
Figure 30: convergence history of the residuals for each of the conserved variables 

 

 
Figure 31: convergence history of the hot-side outlet bulk temperature 
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Figure 32: convergence history of the hot-side outlet axial velocity 

When constant physical properties are considered, the Poiseuille number in the fully 

developed region matches almost perfectly the analytical values given by (2.129) and 

(2.130), as displayed in Figure 33. In the same figure it is shown that Po is significantly 

lowered when the momentum and the energy equations are coupled through temperature 

dependent properties. This alters the velocity profile and therefore the wall shear stress.  

 
Figure 33: Poiseuille number as a function of the axial coordinate of the microchannels; the values 

for the hot-side are plotted in red, those for the cold-side in blue; the respective 
analytical values are marked in green and yellow; solid lines refer to the temperature 
dependent properties case while dashed lines refer to constant properties  
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In Figure 33 it can also be noted that the hydrodynamic entrance length is 

approximately 1/10 of the channel length for the hot-side, while it is much shorter for 

the cold-side. This is well predicted by equation (1.22): in fact the hot-side is 

characterized by higher Reynolds number, higher hydraulic diameter and a higher 

multiplying constant (for geometric reasons). The thermal entrance lengths, which can 

be identified in Figure 34, are similar on the two sides, due to the low viscosity of the 

gas, giving a lower Prandtl number for equation (1.23) 

 
Figure 34: Nusselt number as a function of the axial coordinate of the microchannels; the values for 

the hot-side are plotted in red, those for the cold-side in blue; the respective analytical 
values are marked in green and yellow; solid lines refer to the temperature dependent 
properties case, dashed lines refer to constant properties, dotted lines to zero 
longitudinal heat conduction 

The Nusselt number, plotted in Figure 34, stabilizes close to the analytical value for the 

H1 boundary condition given by equation (2.197), even if the wall heat flux, shown in 

Figure 35, is not perfectly constant. Especially for the gas-side, a slight variation of Nu 

is ascribable to temperature dependent properties, which, however leads to an 

overestimation of the effectiveness of only 0,6 %.  
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Figure 35: wall heat flux as a function of the axial coordinate of the microchannels; the values for 

the hot-side are plotted in red, those for the cold-side in blue; solid lines refer to the 
temperature dependent properties case, dashed lines refer to constant properties, 
dotted lines to zero longitudinal heat conduction 

On the other hand, conjugate effects do not influence Nu appreciably, except in the 

entrance and exit region. Nonetheless the difference in ε is almost 3.4 % and the heat 

flux is sensibly decreased. As a consequence, according to (3.22), also the average 

temperature difference between the wall and the fluid temperature diminishes, as shown 

in Figure 36. Therefore, conjugate effects seem not to reduce the heat transfer 

coefficient with respect to the analytical value but, as assumed in [40], the performance 

deterioration is produced by the altered temperature profile in the walls. However, when 

the longitudinal heat conduction is particularly strong, also the boundary conditions are 

changed [39]. A progressive approach to the lower value characteristic of T boundary 

condition may be expected as limit when the thermal conductivity tends to infinity or Re 

to 0. In this case, the longitudinal heat conduction parameter of (1.28) is exceptionally 

high and the wall temperature distribution is flattened [21]. 

The results of the numerical analysis, confirm the choice of as correlation for Nu and 

Po. The temperature and pressure distribution along the channel are now considered to 

complete the validation. As visualized in Figure 37, heat transfer is well modelled, 

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

x [m]

q
w

[W/m2]



104 References 

A. Mantovanelli M.Eng. Thesis 

giving a relative error of only 0.4 % on the effectiveness, when the values obtained from 

the optimization process are compared to the output of the numerical simulation. The 

pressure profile, plotted in Figure 38 relatively to the inlet pressure of each side, is 

altered by temperature dependent properties, as is the Poiseuille number. However, the 

variation is significant only for the hot-side and, as a whole, the relative error is not 

more than 0.6 %. On the other hand, in the crossflow configuration, temperature 

dependent properties may have stronger impact, since the temperature distribution along 

the channel is markedly non-linear. As already mentioned, it is possible to consider 

local values in the model of Section 2.4.4. 

Notice that the geometries of Table 5 and Table 6 are designed considering Nu reduced 

by 10 % and Po increased by 10 % with respect to the analytical values. As described in 

Section 2.4.1 and 2.4.2, this common practice is suggested to account for flow 

maldistribution [23], which is not modeled in the optimization process nor in the 

numerical simulation. In addition, for the crossflow configuration 

 
Figure 36: wall-fluid temperature difference (absolute value) as a function of the axial coordinate 

of the microchannels; the values for the hot-side are plotted in red, those for the cold-
side in blue; solid lines refer to the temperature dependent properties case, dashed 
lines refer to constant properties, dotted lines to zero longitudinal heat conduction 
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Figure 37: temperature field inside the microchannels; the green and yellow lines are the 

temperature on each side of the dividing wall; the blue line is the fluid temperature on 
the cold-side and the red line is the fluid temperature on the hot-side; the values 
calculated in the optimization process are indicated with ⨯ makers (no temperature 
jump is considered in the wall) 

 
Figure 38: pressure drop relative to the inlet pressure as a function of the axial coordinate of the 

microchannels; the blue lines denote the cold-side and the red lines the hot-side; solid 
lines refer to the temperature dependent properties case while dashed lines refer to 
constant properties; the values calculated in the optimization process are indicated 
with ⨯ makers 
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3.5 Discussion 

The optimization process, presented in the previous chapter and validated in the above 

sections, provides the best crossflow and counterflow configurations considering two 

different alloys, for a total of four devices. The overall dimensions and total weights are 

collected in Table 10. 

Table 10: overall dimensions and weight of the optimized heat exchangers 

Specification 
Crossflow 
C878 

Counterflow 
C878 

Crossflow 
A360 

Counterflow 
A360 

Unit

Overall dimensions 318×374×590 184×309×660 376×378×521 184×360×645 mmଷ

Total weight 87.7 84.1 41.9 35.0 kg 

It is well known that, for given heat transfer surface area, the effectiveness of 

counterflow exchanger is considerably higher than for crossflow exchangers. However, 

the counterflow configurations of Table 10 are not significantly smaller or lighter than 

the crossflow arrangements, as can also be appreciated in  Figure 21. The reason is that 

the headers constitute around two thirds of the device and, in the counterflow 

exchangers, are almost twice as heavy as the distribution elements of the crossflow 

exchangers. The choice between one configuration and the other should be made after a 

more precise design of the distribution elements and an evaluation of the manufacturing 

costs. In general, as already mentioned, crossflow heat exchangers are not suitable for 

application requiring effectiveness above 80 %. However, even for smaller 

effectiveness, the outlet temperature the firsts channels of each module almost reaches 

the inlet temperature of the other side, as shown in Figure 22. The crossflow 

configuration should then be avoided for a microchannel regenerator if the inlet 

temperatures are such that the risk of phase change is elevated. 

Comparing the weight of each configuration considering the two different material, it 

turns out that the difference in weight do not reflects the difference in the density of the 

alloys, since the material with lower density has higher thermal conductivity. In fact, 

heavier conjugate effects make necessary to increase the heat transfer surface area, and 
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then the volume. The choice of the material should be therefore heavily influenced by 

thermal conductivity, which should be kept sufficiently high to neglect the thermal 

resistance of the dividing wall, but also appropriately low to avoid severe conjugate 

effects. It should be noted that the thermal conductivity of metals may be strongly 

temperature dependent. Unfortunately, no information was found for the considered 

alloys, with the exception of the values at 300 K, which are expected to be significantly 

lower than at the working temperature.  

Table 11: specifications of the copper-based optimal MCHE and of the benchmark PHE 

Specification 

Crossflow –
C878 

 
Counterflow –

C878 
 PHE  

Unit 
Cold-
side 

Hot-
side 

 
Cold-
side 

Hot-
side 

 
Cold-
side 

Hot-
side 

 

Outlet temperature 452.46 397.91  452.12 398.14  451.56 398.15  K 

Total pressure drop 617 2704  180 3091  6 3220  Pa 

Fluid velocity 0.0385 10.64  0.0246 9.10  0.01 17.18  m s⁄  

Heat transfer 
coefficient (mean) 

644.5 160.9  841.0 134.6  81.9 88.1  W (mଶ K)⁄

Heat transfer 
surface area 

12.60 20.08  6.79 14.14  26.96 26.96   

Heat transfer 
surface area density 

3596 3627  3967 3030  427 427  mଶ mଷ⁄

UA 2245  1400  1143  W K⁄  

Effective MTD 15.81  25.36  31.13  K 

NTU 5.62  3.50  2.86  # 

ε 0.7828  0.7811  0.7807  # 

Weight (empty) 82.1  81.9  156.8  kg 

Fluid charge 5.6  2.2  58.6  kg 

Overall dimension 318×374×590  184×309×660  222×495×1596  mଷ 
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When selecting the material for the metal matrix, attention should be paid also to the 

maximum temperatures. In the case study, the hot-side inlet temperature (487 K) is 

close to the recommended limit (523 K) for the aluminium based alloy, above which the 

mechanical properties are progressively lost. Frequent thermal transients may 

compromise the durability of the component. 

For a quick comparison, the specifications of the copper-based optimal geometries are 

reported in Table 11, aside of the specifications of the benchmark PHE from Table 1. It 

is apparent that the thermohydraulic requirement are satisfied with considerably smaller 

devices, which only need half of the material to be manufactured and require a fluid 

charge reduced by one order of magnitude.  

The velocity of the cold-side is increased while the hot fluid is slowed down by 

modifying the flow areas. This allows compactness to be enhanced while containing the 

pressure drop on the gas side. Even if the pressure drop on the cold-side is higher in the 

MCHE compared to the PHE, the losses on the hot-side remain the most critic. 

For obvious reasons, UA and NTU are larger in the crossflow exchanger. However, 

comparing the values of the other two devices of Table 11, it can be noted that higher 

values are required in the MCHE than in the benchmark PHE (in counterflow 

arrangement too). This is due to conjugate effects, which act as a heat bypass and 

reduce the effective NTU, although without actual heat loss [21]. 

Even if the turbulent flow of the PHE is characterized by significantly higher Nusselt 

number with respect to the laminar flow of the MCHE, the dramatic reduction of the 

hydraulic diameter leads to enhanced heat transfer coefficient in the MCHE, as expected 

from the discussion of Section 1.2.1. Since, in laminar conditions, Nu is independent of 

Re and therefore from the flow velocity, the heat transfer coefficient of the gas-side 

becomes considerably lower than on the cold-side, due to the lower thermal 

conductivity of the gas. However, the convective resistances are in part rebalanced by 

improving the heat transfer surface area in particular on the hot side. In any case, the 

required heat transfer surface is noticeably reduced compared to the PHE, because of 

the augmented heat transfer coefficient. Additionally, the surface is arranged in a more 
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efficient way, as the surface area densities is one order of magnitude higher when 

microchannels are used. It should be mentioned that the area densities of Table 11 are 

evaluated in the traditional way, where the volume of the dividing wall is not 

considered, differently from Section 2.2.2.  

The minimum achievable weight, i.e. the weight of the optimal MCHE, is extremely 

sensitive to the maximum pressure drop allowed by the ORC heat recovery system. 

Strong influence is exerted also by the constraints of the available microfabrication 

techniques, in particular for what concerns the thickness of the microchannel walls and 

by the maximum aspect ratio allowed. The sensitivity analysis is accomplished 

executing iteratively the optimization process and varying (in separate tests) these 

quantities. The copper-based alloy and the counterflow configuration are taken into 

consideration. 

Figure 39(a) shows that it is possible to reduce further the weight of the optimal device 

by increasing the allowed pressure drop, but it also suggests that the weight could 

hardly be halved with respect to the case study. On the other hand, it seems difficult to 

cut the pressure losses below 3000 Pa without dramatically increasing the weight of the 

MCHE; however, this restriction is not due to the use of microchannels per se, but rather 

to the distribution elements, which cause the highest pressure drop (see equation 

(2.189) and Table 8) could probably be improved. 

A closely linear relationship between the minimal wall thickness imposed and the 

minimum achievable weight is illustrated by Figure 39(b). The manufacturing method 

and its limitations are therefore fundamental aspects to investigate, and are expected to 

play a fundamental role in a cost analysis. 

The manufacturing process sets also the maximum aspect ratio of the microchannels 

and of the fins. Supposing these two quantities equal and varying their value, the results 

of Figure 39(c) are obtained. As anticipated in Section 2.2.2, higher aspect ratios 

guarantee lower weight. 
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Figure 39: sensitivity analysis of the optimal solution with respect to the maximum pressure drop 
allowed (a), to the minimum wall thickness (b) and to the maximum aspect ratio (c); 
the • markers indicates the design point of the case study, characterized by equations 
(2.2) (2.59) and (2.48) 
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3.6 Conclusions and Recommendations 

In this work, the performance of microchannel heat exchangers was assessed in gas-to-

liquid applications of several tens of kWth . The technology is suitable for exhaust heat 

recovery systems based on organic Rankine cycle. In order to design a light and 

compact microchannel heat exchanger, an optimization process was developed and 

validated numerically. No application of microchannels at comparable power level is 

available in the open literature, and little attention is given to optimization of 

microchannel devices, such that unprecedented number of design parameters is 

considered in the present work, including but not limited to dimensions, length and 

number of the microchannels on each side of the exchanger. 

The model employed in the procedure was validated through computational fluid-

dynamics analysis with commercial software. It was shown that conjugate effects have a 

significant impact on the heat transfer performance of the device. The Nusselt number is 

close to the analytical value of laminar flows with H-boundary condition; however, the 

heat transfer pattern is altered by variations in the wall temperature distribution. The 

effect is well modeled in the optimization process, such that the relative error on the 

exchanger effectiveness is less than 0.4% when the optimized geometry is simulated 

numerically. The variation of the fluid properties with temperature reduces the 

Poiseuille number. However, the relative error between the core pressure drop 

accounted in the proposed methodology and the one calculated trough numerical 

analysis is in order of 0,6 %. 

The selection process needs only a few minutes of computational time, since great effort 

was made to minimize the number of operations for each iteration, and to define 

suitable constraints, which limit the design space where the optimal value of the design 

parameters are searched. These constraints were imposed through considerations on the 

manufacturing method, on the distribution elements and on the interaction of the 

proposed device with the other component of the mobile ORC heat recovery system. 

The input for the optimization is constituted by the required effectiveness, the maximum 

allowable pressure drop and some information on the distribution elements, since their 
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design could not be automated. The output of the procedure is constituted by four 

different designs, since both the counterflow and the crossflow arrangements are 

considered for two different alloys for the metal matrix. 

The aluminium-based alloy, even if significantly lighter with respect to the copper-

based alloy, determines larger devices, due to higher thermal conductivity and conjugate 

effects. Moreover, the working temperature is dangerously close to the thermal stability 

limit of the material. For these reasons, a copper-based microchannel exchanger seems 

to be preferable. 

No significant difference was found comparing the counterflow and crossflow 

arrangements obtained through the optimization process, as the distribution elements 

constitutes the largest part of the microchannel exchangers. Both devices are strikingly 

smaller and lighter than the benchmark heat exchanger, which is almost five times big 

and two times heavier. Microchannel heat exchangers are therefore a competitive 

technology not only for low power applications but also when heat fluxes in the order of 

several tens of kWth are involved.  

The distribution elements, especially those on the hot-side, are critical for the design of 

MCHE: several constraints were imposed to limit their dimension, weight and pressure 

losses. In this paper, however, only a rough header design was considered, due to the 

lack of a comprehensive theory. Numerical simulations and field experience are needed 

to acquire accurate flow distribution and pressure drop predictions: the flow 

characteristic of the headers, along with their technical feasibility and cost, are expected 

to impact on the choice between the crossflow and the counterflow arrangement. 

Information and experience on the manufacturing method and materials are also needed. 

In fact, some of the imposed constraints depend on the microfabrication methods 

available, which are then expected to play a fundamental role in a future cost-benefit 

analysis; in addition, the performance of the MCHE is strongly related to surface 

roughness and thermal conductivity of the walls. Special attention is due to the bonding 

technique employed, in order to guarantee structural integrity and acceptable contact 

resistance at a reasonable cost. 

A. Mantovanelli M.Eng. Thesis 



Software References 113 

References 
[1] European Environment Agency, "Trends and projections in Europe 2013: 

Tracking progress towards Europe's climate and energy targets until 2020", 
EEA Report no. 10/2013. 

[2] European Environment Agency, "Annual European Union greenhouse gas 
inventory 1990–2012 and inventory report 2014", Technical report no. 
09/2014. 

[3] AEA Technology, "Reduction and Testing of Greenhouse Gas Emissions from 
Heavy Duty Vehicles – Lot 1: Strategy", Final Report to the European 
Commission – DG Climate Action, 2011. 

[4] S. N. Hossain and S. Bari, "Waste heat recovery from the exhaust of a diesel 
generator using Rankine Cycle", Energy Conversion and Management, vol. 75, 
2013. 

[5] C. Sprouse and C. Depcik, "Review of organic Rankine cycles for internal 
combustion engine exhaust waste heat recovery", Applied Thermal 
Engineering, vol. 51, 2013. 

[6] W. Lang, P. Colonna, and R. Almbauer, "Assessment of Waste Heat Recovery 
from a Heavy-Duty Truck Engine by Means of an ORC Turbogenerator", 
Journal of Engineering for Gas Turbines and Power, vol. 135, 2013. 

[7] G. Angelino, M. Gaia, and M. Macchi, "A review of Italian activity in the field of 
Organic Rankine Cycles", in VDI Berichte 539 – Verein Deutscher Ingenieure, 
ORC-HP-technology Working Fluid Problems, Proceedings of the international 
VFI-seminar, Zurich, Switzerland, 1984. 

[8] T. Wang et al., "A review of researches on thermal exhaust heat recovery with 
Rankine cycle", Renewable and Sustainable Energy Reviews 15 (2011) 2862– 
2871, vol. 15, 2011. 

[9] D. T. Hountalas et al., "Improvement of bottoming cycle efficiency and heat 
rejection for HD truck applications by utilization of EGR and CAC heat", Energy 
Conversion and Management, vol. 53, 2012. 

[10] L. Guillaume et al., "Sizing Models and Performance Analysis of Waste Heat 
Recovery Organic Rankine Cycles for Heavy Duty Trucks", in Second 
International Seminar on ORC Power Systems, Rotterdam, The Netherlands, 
2013. 

M.Eng. Thesis A. Mantovanelli 



114 References 

[11] M. Ohadi et al., Next Generation Microchannel Heat Exchangers, Springer, 2013. 

[12] M. G. Khan and A. Fartaj, "A review on Microchannel Heat Exchangers and 
Potential Applications", International Journal of Energy Research, vol. 35, 
2011. 

[13] C. M. Invernizzi, Closed Power Cycle: Thermodynamic Fundamentals and 
Applications, Springer-Verlag, 2013. 

[14] M. Gaia, "Thirty years of organic Rankine cycle development", in First 
International Seminar on ORC Power Systems, Delft, the Netherlands, 2012. 

[15] G. Angelino and P. Colonna, "Multicomponent Working Fluids for Organic 
Rankine cycles", Energy, vol. 23, 1998. 

[16] O. Badr, S. D. Probert, and P. W. O'Callaghan, "Selecting a Working Fluid for a 
Rankine-Cycle Engine", Applied Energy, vol. 21, 1985. 

[17] B. Saleh et al., "Working fluids for low-temperature organic Rankine cycles", 
Energy, vol. 32, 2007. 

[18] P. Song et al., "A review of scroll expanders for organic Rankine cycle 
systems", Applied Thermal Engineering, vol. xxx, 2014. 

[19] P. Bombarda, C. M. Invernizzi, and C. Pietra, "Heat recovery from Diesel 
engines: A thermodynamic comparison between Kalina and ORC cycles", 
Applied Thermal Engineering, vol. 30, 2007. 

[20] C. M. Invernizzi, P. Iora, and P. Silva, "Bottoming micro-Rankine cycles for 
micro-gas turbines", Applied Thermal Engineering, vol. 27, 2007. 

[21] J. E. Hesselgreaves, Compact Heat Exchangers: Selection, Design and Operation., 
Pergamon, 2001. 

[22] S Kandlikar et al., Heat Transfer and Fluid Flow in Minichannels and 
Microchannels, Elsevier, 2006. 

[23] R.K. Shah and D.P. Sekulic, Fundamentals of Heat Exchanger Design, John Wiley 
& Sons, 2003. 

[24] S. G. Kandlikar and W. J. Grande, "Evolution of Microchannel Flow Passages: 
Thermohydraulic Performance and Fabrication Technology ", Heat Transfer 
Engineering, vol. 24, 2003. 

[25] H. Herwig and S. P. Mahulikar, "Variable property effects in single-phase 
incompressible flows through microchannels", International Journal of 

A. Mantovanelli M.Eng. Thesis 



Software References 115 

Thermal Sciences, vol. 45, 2006. 

[26] H. Herwig and O. Hausner, "Critical View on “New Results in Micro-Fluid 
Mechanics”: An Example", International Journal Heat Mass Transfer, vol. 46, 
2003. 

[27] G. L. Morini, "Scaling Effects for Liquid Flows in Microchannels", Heat Transfer 
Engineering, vol. 27, 2006. 

[28] Z. Y. Guo and Z. X. Li, "Size effect on single-phase channel flow and heat 
transfer at microscale", International Journal of Heat and Fluid Flow 24 (2003) 
284–298, vol. 24, 2003. 

[29] P. Rosa, T. G. Karayiannis, and M. W. Collins, "Single-Phase Heat Transfer in 
Microchannels: The Importance of Scaling Effects", Applied Thermal 
Engineering, vol. 29. 

[30] G. L. Morini and Y. Yang, "Guidelines for the Determination of Single-Phase 
Forced Convection Coefficients in Microchannels", Journal of Heat Transfer, 
vol. 135, 2013. 

[31] G. L. Morini et. al., "A critical review of the measurement techniques for the 
analysis of gas microflows through microchannels", Experimental Thermal and 
Fluid Science, no. 35, 2011. 

[32] G. Hetsroni et al., "Fluid flow in micro-channels", International Journal of Heat 
and Mass Transfer, vol. 48, 2005. 

[33] G. L. Morini and M. Spiga, "Slip Flow in Rectangular microtubes", Microscale 
Thermophysical Engineering, vol. 2, 1998. 

[34] S. Colin, "Gas Microflows in the Slip Flow Regime: A Critical Review on 
Convective Heat Transfer", Journal of Heat Transfer, vol. 134, 2012. 

[35] C. Li, L. Jia, and T. Zhang, "The Entrance Effect on Gases Flow Characteristics in 
Micro-tube", Journal of Thermal Science, vol. 18, 2009. 

[36] T. M. Harms, M. J. Kazmierczak, and F. M. Gerner, "Developing convective heat 
transfer in deep rectangular microchannels", International Journal of Heat and 
Fluid Flow, vol. 20, 1999. 

[37] M. K. Moharana, G. Agarwal, and S. Khandekar, "Axial conduction in single-
phase simultaneously developing flow in a rectangular mini-channel array", 
International Journal of Thermal Sciences, vol. 50, 2011. 

[38] Y. S. Muzychka and M. M. Yovanovich, "Laminar Forced Convection Heat 
Transfer in the Combined Entry Region of Non-Circular Ducts", Journal of Heat 

M.Eng. Thesis A. Mantovanelli 



116 References 

Transfer, vol. 126, 2004. 

[39] G. Maranzana, I. Perry, and D. Maillet, "Mini- and micro-channels: influence of 
axial conduction in the walls", International Journal of Heat and Mass Transfer, 
vol. 47, 2004. 

[40] J. P. Chiou, "The Effect of Longitudinal Heat Conduction on Crossflow Heat 
Exchanger", Journal of Heat Transfer, vol. 100, 1978. 

[41] S. G. Kandlikar, S. Joshi, and S. Tian, "Effect of Surface Roughness on Heat 
Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small 
Diameter Tubes", Heat Transfer Engineering, vol. 24, 2003. 

[42] G. Gamrat, M. Favre-Marinet, and S. Le Person, "Modelling of roughness effects 
on heat transfer in thermally fully-developed laminar flows through 
microchannels", International Journal of Thermal Sciences, vol. 48, 2009. 

[43] G. Croce, P. D’agaro, and C. Nonino, "Three-dimensional roughness effect on 
microchannel heat transfer and pressure drop", nternational Journal of Heat 
and Mass Transfer, vol. 50, 2007. 

[44] M Gad-el-Hak, "The Fluid Mechanics of Microdevices—The Freeman Scholar 
Lecture", Journal of Fluids Engineering, vol. 121, 1999. 

[45] N. P. Gulhane and S. P. Mahulikar, "Numerical study of compressible 
convective heat transfer with variations in all fluid properties", International 
Journal of Thermal Sciences, vol. 49, 2010. 

[46] Z. Li et al., "Effects of thermal property variations on the liquid flow and heat 
transfer in microchannel heat sinks", Applied Thermal Engineering, vol. 27, 
2007. 

[47] G. L. Morini et al., "Experimental Analysis of Pressure Drop and Laminar to 
Turbulent Transition for Gas Flows in Smooth Microtubes", Heat Transfer 
Engineering, vol. 28, 2007. 

[48] G. L. Morini and M. Spiga, "The Role of the Viscous Dissipation in Heated 
Microchannels", Journal of Heat Transfer, vol. 129, 2007. 

[49] K. D. Cole and B. Çetin, "The effect of axial conduction on heat transfer in a 
liquid microchannel flow", International Journal of Heat and Mass Transfer, 
vol. 54, 2011. 

[50] C. Yang, D. Li, and J. B. Masliyah, "Modelling forced liquid convection in 
rectangular microchannels with electrokinetic effects", International Journal 
of Heat and Mass Transfer, vol. 41, 1998. 

A. Mantovanelli M.Eng. Thesis 



Software References 117 

[51] G. M. Mala and D. Li, "Flow characteristics of water through a microchannel 
between two parallel plates with electrokinetic effects", International Journal 
of Heat and Fluid Flow, vol. 18, 1997. 

[52] C. L. Ren and D. Li, "Improved understanding of the effect of electrical double 
layer on pressure-driven flow in microchannels", Analytica Chimica Acta, vol. 
531, 2005. 

[53] C. Yang and D. Li, "Analysis of electrokinetic effects on the liquid flow in 
rectangular microchannels", Colloids and Surfaces A: Physicochemical and 
Engineering Aspects, vol. 143, 1998. 

[54] S. S. Mehendale, A. M. Jacobi, and R. K. Shah, "Fluid flow and heat transfer at 
micro- and meso-scales with application to heat exchanger design", Applied 
Mechanics Reviews, vol. 53, no. 2000. 

[55] S. Ashman and S. G. Kandlikar, "A Review of Manufacturing Processes for 
Microchannel Heat Exchanger Fabrication", in Fourth International Conference 
on Nanochannels, Microchannels and Minichannels, Limerick, Ireland, 2006. 

[56] F. Mei et al., "Fabrication, Assembly, and Testing of Cu- and Al-Based 
Microchannel Heat Exchangers", Journal of Microelectromechanical Systems, 
vol. 17, 2008. 

[57] F. Mei and W. J. Meng, "Structure of vapor-phase deposited Al-Ge thin films 
and Al-Ge intermediate layer bonding of Al-based microchannel structures", 
Journal of Materials Research, vol. 24, 2009. 

[58] D. M. Cao and W. J. Meng, "Microscale compression molding of Al with surface 
engineered LiGA inserts", Microsystem Technologies, vol. 10, 2004. 

[59] H. Wang and R. B. Peterson, "Performance enhancement of a thermally 
activated cooling system using microchannel heat exchangers", Applied 
Thermal Engineering, vol. 31, 2011. 

[60] V. Gnielinski, "Ein Neues Berechnungsverfahren fur die Warmeubertragung 
im Ubergangsbereich zwischen Laminaren und Turbulenter Rohstromung", 
Forschung im Ingenieurwesen - Engineering Research, vol. 61, 1995. 

[61] H. Cao, G. Chen, and Q. Yuan, "Testing and Design of a Microchannel Heat 
Exchanger with Multiple Plates", Industrial and Engineering Chemistry 
Reasearch, vol. 48, 2009. 

[62] C. Harris, M. Despa, and K. Kelly, "Design and Fabrication of a Cross Flow 
Micro Heat Exchanger", Journal of Microelectromechanical systems, vol. 9, 
2000. 

M.Eng. Thesis A. Mantovanelli 



118 References 

[63] Y. S. Muzychka, "Constructal design of forced convection cooled microchannel 
heat sinks and heat exchangers", International Journal of Heat and Mass 
Transfer, vol. 48, 2005. 

[64] M. I. Hasan et al., "Influence of channel geometry on the performance of a 
counter flow microchannel heat exchanger", International Journal of Thermal 
Sciences, vol. 48, 2009. 

[65] B, Northcutt and I. Mudawar, "Enhanced Design of Cross-Flow Microchannel 
Heat Exchanger Module for High-Performance Aircraft Gas Turbine Engines", 
Journal of Heat Transfer, vol. 134, 2012. 

[66] J. V. C. Vargas, A. Bejan, and D. L. Siems, "Integrative Thermodynamic 
Optimization of the Crossflow Heat Exchanger for an Aircraft Environmental 
Control System", Journal of Heat Transfer, vol. 123, 2001. 

[67] Y. Yang, J. J. Brandner, and G. L. Morini, "Hydraulic and thermal design of a gas 
microchannel heat exchanger", Journal of Physics: Conference Series, vol. 362, 
2012. 

[68] D. T. Crane and G. S. Jackson, "Optimization of cross flow heat exchangers for 
thermoelectric waste heat recovery", Energy Conversion and Management, vol. 
45, 2004. 

[69] H. H. Bau, "Optimization of conduits’ shape in micro heat exchangers", 
International Journal of Heat and Mass Transfer, vol. 41, 1998. 

[70] L. Gosselin, M. T. Gingras, and F. M. Potvin, "Review of utilization of genetic 
algorithms in heat transfer problems", International Journal of Heat and Mass 
Transfer, vol. 52, 2009. 

[71] TIAX, "Energy Consumption Characteristics of Commercial Building HVAC 
Systems Volume III: Energy Savings Potential", Reference No. 68370-00, 2002. 

[72] North American Die Casting Association, "Product Specification Standards for 
Die Castings", NADCA Publication #402 2009. 

[73] E. M. Smith, Advances in Thermal Design of Heat Exchangers, A Numerical 
Approach:Direct-sizing, step-wise rating, and transients, John Wiley & Sons, 
2005. 

[74] AEA Technology, "The Standards of the Brazed Aluminum Plate-Fin heat 
Exchanger Manufacturer Association", ALPEMA, 2000. 

[75] American Society of Mechanical Engineers, "Welded and Seamless Wrought 
Steel Pipe", ASME B36.10M-2004. 

A. Mantovanelli M.Eng. Thesis 



Software References 119 

[76] American Society of Mechanical Engineers, "Power Piping", ASME B31.1-2007. 

[77] American Society of Mechanical Engineers, "Construction of Pressure 
Vessels", ASME BPVC-VIII-1-2010. 

[78] C. Branan, Rules of Thumb for Chemical Engineers, Elsevier, 2005. 

[79] A. L. London, G. Klopfer, and S. Wolf, "Oblique Flow Headers for Heat 
Exchangers", Journal of Engineering for Power, July 1968. 

[80] S. Kakaç and Liu H., Heat Exchangers - Selection, Rating and Thermal Design, 
CRC Press, 2002. 

[81] B.S. Baclic and P.J. Heggs, "On the search for new solutions of the single-pass 
crossflow heat exchanger problem", International Journal of Heat and Mass 
Transfer , vol. 28, 1985. 

[82] R. Laskowski, "The concept of a new approximate relation for exchanger heat 
transfer effectiveness for a cross-flow heat exchanger with unmixed fluids", 
Journal of Power Technologies, vol. 91, 2011. 

[83] A. Triboix, "Exact and approximate formulas for cross flow heat exchangers 
with unmixed fluids", International Communications in Heat and Mass 
Transfer, vol. 36, 2009. 

[84] R. K. Shah and A. L. London, Laminar Flow Forced Convection in Ducts: a Source 
Book for Compact Heat Exchanger Analytical Data, Academic Press, 1978. 

[85] W. M. Kays and A. L. London, Compact Heat Exchangers, McGraw-Hill, 1984. 

[86] J. P. Chiou, "Thermal Performance Deterioration in Crossflow Heat Exchanger 
due to the Flow Nonuniformity", Journal of Heat Transfer, vol. 100, 1978. 

[87] J. J. Brandner et al., "Microstructure Heat Exchanger Applications in 
Laboratory and Industry", Heat Transfer Engineering, vol. 28, 2007. 

 

 

 

 

 

M.Eng. Thesis A. Mantovanelli 



120 References 

 

 

 

 

 

 

 

 

A. Mantovanelli M.Eng. Thesis 



Software References 121 

Software References 
• Aspen Exchanger Design&Rating (EDR) V7.3.1 by  Aspen Technology Inc. 

• Aspen Properties V7.3.1 by  Aspen Technology Inc. 

• Fluent 6.3.26 by ANSYS Inc. 

• GAMBIT 2.4.6 by ANSYS Inc. 

• Mathematica 9.0.1.0 by Wolfram Research Inc. 

 • MATLAB 7.10.0 (R2010a) by MathWorks Inc. 

• Solid Edge ST6 by Siemens PLM Software Inc. 

 

 

 

 

 

 

 

 

 

 

 

 

M.Eng. Thesis A. Mantovanelli 



122  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Mantovanelli M.Eng. Thesis 


	Cover
	Contents
	Acknowledgments
	Abstract
	Nomenclature
	1 Introduction
	1.1 Organic Rankine Cycle
	1.1.1 Field of Application
	1.1.2 Features of the Candidate Working Fluid
	1.1.3 Components and Thermodynamic Aspects

	1.2 Microchannel Heat Exchangers
	1.2.1 Thermohydraulic Performance
	1.2.2 Scaling Effects
	1.2.3 Fabrication Techniques

	1.3 Motivation and Scope

	2 Method
	2.1 Input Data
	2.1.1 Benchmark Plate Heat Exchanger
	2.1.2 Materials and Physical Properties

	2.2 Core Geometry
	2.2.1 Parameterization of the Geometry
	2.2.2 Channel Aspect Ratio and Compactness

	2.3 Additional Elements
	2.3.1 Frame
	2.3.2 Piping
	2.3.3 Headers

	2.4 Mathematical Model
	2.4.1 Thermal Design
	2.4.2 Hydraulic Design
	2.4.3 First Attempt Solutions
	2.4.4 Final Design

	2.5 Optimization Process
	2.6 Counterflow Configuration

	3 Results
	3.1 Outlet Temperatures and Effectiveness
	3.2 Magnitude of the Scaling Effects
	3.3 Total Pressure Drop
	3.4 Numerical Validation
	3.5 Discussion
	3.6 Conclusions and Recommendations

	References
	Software References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




