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Abstract 

______________________________________________________________________ 

 

In Airbus GmbH (Hamburg) has been developed a new design of Rear Pressure 

Bulkhead (RPB) for the A320-family. The new model has been formed with vacuum 

forming technology. During this process the wrinkling phenomenon occurs. In this 

thesis is described an analytical model for prediction of wrinkling based on the 

energetic method of Timoshenko. Large deflection theory has been used for analyze two 

cases of study: a simply supported circular thin plate stamped by a spherical punch and 

a simply supported circular thin plate formed with vacuum forming technique. If the 

edges are free to displace radially, thin plates will develop radial wrinkles near the edge 

at a central deflection approximately equal to four plate thicknesses 
𝑤0

ℎ
≈ 4 if they’re 

stamped by a spherical punch and 
𝑤0

ℎ
≈ 3 if they’re formed with vacuum forming 

technique. Initially, there are four symmetrical wrinkles, but the number increases if the 

central deflection is increased. By using experimental results, the “Snaptrhough” 

phenomenon is described. 
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1. Introduction 

______________________________________________________________________ 

 

Safety and weight are one of the most important aspects in an aircraft. Designers are led 

to using thin structural components for make them lighter. The structural behavior of 

thin plates or membranes has always attracted considerable attention. 

Airbus, a leading aircraft manufacturer, wanted to modify the Rear Pressure Bulkhead 

of  the A320 family with a new manufacturing process.  

Actually, the RPB, is made out of four riveted stretched formed Al alloy sheets. The 

new configuration  is going to be made out of a single thin sheet of metal formed by 

using a Creep age forming technique. 

Airbus noticed that during the forming process occurs one of the major defects in sheet 

metal forming: the wrinkling phenomenon. A circular elastic plate with this 

phenomenon is absolutely unusable for any purpose. The ability to predict the 

occurrence of wrinkling is critical to the design of tooling and processing parameters. It 

is possible to predict the wrinkling behavior by using three different methods: the 

bifurcation method, the energy equilibrium method (both analytical) and with the aid of 

finite element method.  

In this thesis is developed an analytical model for prediction of wrinkling by using a 

Timoshenko’s energy method. The next chapters will be mainly discuss about this 

phenomenon, explaining all the previous important studies with a detailed literature 

review.  

Two cases of study are developed:  

- Wrinkling of a circular elastic plate stamped by a spherical punch 

- Wrinkling of a circular elastic plate using vacuum forming 

In addition tests at different temperatures were studied, combining vacuum forming  and 

ageing forming techniques. All the results are discussed in the last chapter, defining new 

cases of study and new important tests that should be done. 
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2. Creep age forming 

______________________________________________________________________ 

 

Creep age forming is used for several decades in different areas under various 

conditions. It is a combination of vacuum forming with ageing on an alloy in an 

autoclave. It is used usually for aluminum machined plates. Figure 2.1 shows the three 

stages. As vacuum forming, creep age forming use vacuum between the plate and the 

tool. Autoclave pressure is raised up and  when the specimen is in contact with the 

negative mold (stage 1) heat is applied. Extra pressure can be imposed during the stage 

2. During the second stage, both of the temperature and pressure are optimized for the 

ageing process. As can be seen from the figure below, at the end of the process (stage 3) 

spring-back occurs since the temperature used for ageing is not high enough to allow a 

high enough stress relaxation. The interruption of the creep process due to ageing 

restriction leads to spring-backs in the order of 70%. Creep age forming is successfully 

used by different aircraft manufacturers in a wide range of applications. In order to be 

able to form a panel by creeping, a load has to be applied at a temperature higher than 

about 30% of the material melting temperature. 

 

Figure 2.1 – Creep age forming process stages [33] 

The first aircraft to receive creep age forming parts was the USAF B-1B Long Range 

Combat Aircraft. Both the upper and lower wing skins were manufactured using CAF. 

Gulfstream G-IV project marks the first time a double curvature wind panel was made 

using CAF techniques [33]. 

Airbus used CAF on Airbus 330 and 340 imparting twist and curvature to extruded 

stringers [34]. 
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Figure 2.2 – Autoclave used for Creep Age forming technique [39] 
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3. The wrinkling phenomenon 

____________________________________________________________________________ 

 

Wrinkling is a form of compressive instability, which usually occurs in a flange with a 

free edge [1]. It is a unwanted phenomenon in sheet metal forming, especially when it 

occurs on the edge of final part. It is a complex local phenomenon, which depends on 

local curvatures, sheet thickness, material properties and stress state [2]. Additionally it 

depends on the tooling used for forming and the corresponding degrees of freedom. 

Large wrinkles may damage dies, for these reasons the prediction and prevention of this 

phenomenon is really significant. For simple geometries and using several 

simplifications, the critical wrinkling stress may be defined. It is however possible to 

say, that among others a decrease in the ratio of the thickness to radius of curvature 

decreases the critical wrinkling stress and therefore increases the likelihood of 

wrinkling. Furthermore, wrinkling seems to depend more strongly on geometrical 

factors than on the material itself [1]. This phenomenon can be partially avoided by 

using a blank holder as it shows in Figure 3.1 

 

Figure 3.1 – Schematic of a Deep Drawing Operation [5] 
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Figure 3.2 – Sertom P2MF 200x4 press [29] 

 

This method is called “deep drawing”. The sheet is pressed by a punch (Figure 3.2) 

while it is fixed under the blank holder. This method is shown in Figure 3.3 and Figure 

3.4. Consequently, compressive hoop stress can be developed on the side of the wall or 

under the holder: this may cause wrinkling. 

 

 

Figure 3.3 – Deep drawing process [30] 
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Based on deep drawing modelling and experiments, a high clamping force could 

prevent or at least reduce wrinkling [22]. Due to the high forces involved, it does not 

seem to be feasible to rely on a reinforced sheet, but the tooling concept has to foresee a 

significant clamping system and probably enough excess material to allow proper 

clamping. 

 

 

Figure 3.4 – Deep drawing process [31] 

 

The compressive stress for initiate a side-wall wrinkle is smaller than the one for initiate 

a flange wrinkle. For this reason, a side-wall wrinkle is easier to be formed and then, 

this phenomenon, has greater industrial importance and interest.  

Sheet metal wrinkling is described as being linearly dependent on the thickness and to 

the square root of the hardening parameter [24]. The same author shows finite element 

method mesh refinement based on a wrinkling criteria and the influence of the blank 

holder force on wrinkling. It is shown, that if the sheet is not heavily clamped, wrinkling 

occurs. The same observation is also made by other authors [25]. 

A number of researches were performed in order to minimize errors in the final product. 

Flange (Figure 3.5) wrinkling has been solved in various studies [3-6] especially in 

Tomita [7] and Esche [8] ones.  
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Figure 3.5 – Flange wrinkles during deep drawing  [28] 

 

Even if the analytical solution can be achieved in an almost negligible computational 

time, a lot of studies focused on solving simple problems like a circular ring under 

inward tension, annular plate under bending with a conical punch at the center.  

Plastic bifurcation analysis is one of the most widely used approaches to predict the 

onset of wrinkling. Hutchinson and Neale [2] and Neale and Tugcu [9] studied this 

phenomenon where Donnell-Mushtari-Vlasov (DMV) plate shell theory were used.  

Since the application was applicable to the regions of the sheet which are free of 

contact, Tugcu [10,11] extended their approach with a flat plate of infinite curvatures.  

All of these  analyses are limited to long wavelength shallow mode avoiding all the 

boundary conditions along the edge. 

A similar approach was used by Wang [12] applying a criterion to axisymmetric shrink 

flanging.  

Triantafyllidis and Needleman [13] studied this problem by considering the binder as an 

elastic foundation, analyzing its effect on critical buckling and number of waves.  

Fatnassi [14] investigated the effect of geometry and material properties on the onset of 

non-axisymmetric plastic instability, connecting the buckling point determined by Hill’s 

bifurcation theory and a non-axisymmetric buckling mode.  

Another approach to analytically investigate the wrinkling/buckling problem is the 

energy method. This method will be discussed in the next chapters for solving the 
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prediction model of wrinkling in this thesis. Senior [16], Yu and Johnson  [17], Cao and 

Boyce  [3], Wang and Cao [5] and Cao and Wang [6] . 

The second main approach is to predict the wrinkling behavior by using he numerical 

simulations and experiments. Providing a reference of the wrinkling-resistant properties, 

Yoshida [18] developed a simple test by studying cup forming processes. Tomita and 

Shindo [19] studied analytically and numerically the effects of the  material properties 

in Yoshida tests. 

FEM simulations studies has been done. This approach  for predict the wrinkling is very 

efficient but it’s also very complicated since it need to set boundary conditions. 

Moreover, it’s difficult to predict a wrinkling phenomenon if the material is without 

initial imperfections. It is very sensitive to the input parameters (element type, mesh 

density etc.).  

Mackerle presented exhaustive bibliography in [20] about the FEM. He focused on 

material properties, fracture mechanics, bending, pressing, deep drawing etc. 

Ambrogio et al. in [21] focused on material formability and on the evaluation and 

compensation of elastic springback.  

Wang, Cao and Li in [22] applied bending on a thin walled product edges. The result of 

their study is that the thickness has no influence on the number of wrinkles.  

As written before, there are two main analytical methods for predict the wrinkles: the 

bifurcation analysis and the energy method. 
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3.1 The bifurcation method 
 

With the bifurcation analysis is possible to determine the critical wrinkling stress as 

shown in the equations below [27,28,32]. 

 

Figure 3.1.1 – Double-curved surface [27] 

𝜎1𝑐𝑟 = 
1

√3

𝑡

𝑅2
2
√2𝐿11

2 (
𝑅2
𝑅1
)
2

+ 3𝐿11𝐿22 + 4𝐿11𝐿12 (
𝑅2
𝑅1
) − 𝐿12

2  

𝐿11 = �̅�1111 =
4

3
�̅� − (�̅� − 𝐸𝑡) (

𝜎1
𝜎𝑒
)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

𝐿22 = �̅�2222 =
4

3
�̅� − (�̅� − 𝐸𝑡) (

𝜎2
𝜎𝑒
)
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 

𝐿12 = �̅�1122 =
2

3
�̅� − (�̅� − 𝐸𝑡) (

𝜎1𝜎2
𝜎𝑒2

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

 

𝜎𝑒 = √𝜎1
2 − 𝜎1𝜎2 + 𝜎2

2 

For surfaces without contact the critical stress may be expressed in a simplified way as 

shown below. This is probably more realistic for the creep forming process, where a 

vacuum  load gradually increases the radius of curvature. 

𝜎1𝑐𝑟 = 
1

√3

𝑡

𝑅2
2
√𝐿11𝐿22 − 𝐿12

2  

 



17 
 

Where: 

- t is the sheet thickness 

- 𝑅1 and 𝑅2 are the radii of curvature as shown in Figure 3.1.1  

- 𝐿𝑖𝑗 are the plane stress incremental, which generally depend on the stresses 

themselves. These values may be found in literature [28] 

- 𝜎𝑒 is the effective stress 

- 𝐸𝑡 is the tangent modulus (slope of the uniaxial strain curve at the effective 

stress level) 

- �̅� is the Young’s modulus (using the flow theory) 

- �̅� is equal to the secant modulus 𝐸𝑠at equivalent stress (𝐸𝑠 =
𝜎𝑒

𝜎𝑒𝜀
) (using 

deformation theory) 

Knowing the material behavior, it is therefore possible to apply the above wrinkling 

criterion together with a FEM package or analytical method for stress state 

determination. 

 

3.2 The energy method 

 

With various combinations of boundary conditions, it is possible to analyze the buckling 

of thin plates by using the Timoshenko’s energy method. 

Presuming the shape of the deformed plate, the critical buckling criterion can be 

obtained with an equilibrium hypothesis: when the internal energy of buckled plate ∆𝑈 

equals the work of the in-plane forces ∆𝑇. 

The internal energy must be always larger than the work of the membrane forces. In this 

case, the plate is in a stable equilibrium. 

This method starts with presumed function describing the wrinkling behavior using a 

double sine equation.  
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Since in this thesis are analyzed circular plates, the function will be: 

𝑤 = 𝑤0 sin(𝑚𝜃) sin (
𝑛𝜋(𝑟 − 𝑟𝑎)

(𝑟𝑟 − 𝑟𝑎)
)  

m,n = 1,2,3…  

 

Where: 

- 𝑤0 is the amplitude of wrinkles 

- m is the number of wrinkles per perimeter 

- n is the number of wrinkles in radial direction 

- 𝑟𝑎 is the lower tool radius 

- 𝑟𝑟 is the outer diameter of the plate 

The following boundary conditions must be applied: 

- w = 0 at 𝑟 = 𝑟𝑎 

- 
𝑑2𝑤

𝑑𝑟2
+
𝑣1

𝑟

𝑑𝑤

𝑑𝑟
= 0 at 𝑟 = 𝑟𝑎 

This method will be used for the two cases of study in the next chapter with a more 

accurate and detailed discussion.  
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4. The case study 

_____________________________________________________________________________ 

 

In this chapter are described the two cases of study:  

- Wrinkling of a circular elastic plate stamped by a spherical punch 

- Wrinkling of a circular elastic plate using vacuum forming 

The two analytical models will be described and the results will be discussed in the next 

chapter.  

A circular plate that is simply supported at the edge is pressed transversely near the 

center so it stretches and bends to a shallow bowl shape. Consequently the in-plane 

circumferential stress component near the center is tensile, while the stress is 

compressive near the edge. Due to the increasing out-of-plane deflection, the 

equilibrium configuration changes from an axisymmetric bowl to a bowl with radial 

corrugations at the edge: the edge of the plate buckles causing wrinkling. 

The elastic wrinkling load and shape is determined by a method based on energy 

integrals. The difference between the strain energy related with stretching and bending 

to a deformed configuration and the work done by the loads is the potential energy of 

the plate.  

 

4.1 Wrinkling of a circular elastic plate stamped 

by a spherical punch 
 

In this case of study, a circular plate, originally flat, is stamped by a spherical punch. 

This method has been described by T.X. Yu and W.J. Stronge [35]  and this has been 

the first step for developing the second method with vacuum forming technique.  The 

scheme of this method is shown in Figure 4.1.1. 
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Figure 4.1.1 – Punch scheme over the circular plate 

Initially the punch contacts the surface of the flat plate. Increasing the normal 

deflection, the contact radius of the punch increases [36] as it shown in Figure 4.1.3 

with the radius “b”. Applications of this method are shown in Figure 4.1.2 and 4.1.4. 

 

Figure 4.1.2 – Punch scheme over the circular plate – test [27] 
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Figure 4.1.3 – Contact area of the punch 

 

Figure 4.1.4 – Contact area of the punch – test [27] 
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The curvature of the punch has a resulting value of: 

1

𝑅
=

𝑃

4𝜋𝐷
[
1 − 𝑣

2(1 + 𝑣)
(1 −

𝑏2

𝑎2
) − ln (

𝑏

𝑎
) ]  𝑓𝑜𝑟 𝑟 < 𝑏 

Where: 

- a is the radius of the plate 

- b is the contact radius of the punch 

- h is the thickness of the plate 

- R is the radius of the punch 

- v is the Poisson’s ratio 

- D is the flexural rigidity of the plate 

- P is the total force of the punch 

This curvature is proportional to the total force of the punch P divided by 4πD (D=Eℎ3/ 

12 (1-v
2
), where E is the Young’s modulus for the material). In the “Theory of Plates 

and Shells” written by S.Timoshenko and S.Woinowsky-Krieger [37] is shown that the 

deflection of an elastic plate stamped by a spherical punch can be represented as:  

𝑤 = 

{
  
 

  
 

𝑃

8πD
[(𝑏2 + 𝑟2) ln (

b

a
) + (𝑎2 − 𝑏2)

(3 + 𝑣)𝑎2 − (1 − 𝑣)𝑟2

2(1 + 𝑣)𝑎2
  

                                                                                                 𝑓𝑜𝑟 0 ≤ 𝑟 ≤ 𝑏

𝑃

8πD
{(𝑎2 − 𝑟2) [1 +

1 − 𝑣

2(1 + 𝑣)
(1 −

𝑏2

𝑎2
)] + (𝑏2 + 𝑟2) ln(

𝑟

𝑎
)}

                                                                                                𝑓𝑜𝑟 𝑏 ≤ 𝑟 ≤ 𝑎

 

This deflection can be written in nondimensional form as: 

𝛿 =

{
 
 

 
 

𝛼

2
(
𝐴

𝐵
− 𝜌2)      

                                                                              𝑓𝑜𝑟 0 ≤ 𝜌 ≤ 𝛽
𝛼

2𝐵
{[(3 + 𝑣) − (1 − 𝑣)𝛽2](1 − 𝜌2) + 2(1 + 𝑣)(𝛽2 + 𝜌2) ln 𝜌}  

                                                                             𝑓𝑜𝑟 𝛽 ≤ 𝜌 ≤ 1
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Where: 

- 𝛿 =
𝑤

ℎ
 

- 𝛽 =
𝑏

𝑎
 

- 𝛼 =
𝑎2

𝑅ℎ
 

- 𝐴 = (3 + 𝑣)(1 − 𝛽2) + 2(1 + 𝑣)𝛽2 ln 𝛽 

- 𝐵 = (1 − 𝑣)(1 − 𝛽2) − 2(1 + 𝑣) ln𝛽 

Consequently, the radial inclination 
𝑑𝛿

𝑑𝜌
 is: 

𝛿′ =
𝑑𝛿

𝑑𝜌
=  

{
 
 

 
 
− 𝛼𝜌                                                                              

𝑓𝑜𝑟 0 ≤ 𝜌 ≤ 𝛽

−
𝛼𝜌

𝐵
[2 − (1 − 𝑣)𝛽2 − (1 + 𝑣)(

𝛽2

𝜌2
+ 2 ln𝜌) ] 

𝑓𝑜𝑟 𝛽 ≤ 𝜌 ≤ 1

  

If the deflection of a circular plate is not small in comparison to the plate thickness, the 

radial displacements causes in-plane forces: 

𝑁𝑟 =
𝐸ℎ

1 − 𝑣2
[
𝑑𝑢

𝑑𝑟
+
1

2
(
𝑑𝑤

𝑑𝑟
)
2

+ 𝑣 (
𝑢

𝑟
)] 

𝑁𝜃 =
𝐸ℎ

1 − 𝑣2
[
𝑢

𝑟
+ 𝑣 (

𝑑𝑢

𝑑𝑟
) +

𝑣

2
(
𝑑𝑤

𝑑𝑟
)
2

] 

Where:  

- u is the radial deflection 

- w is the transverse deflection 

In the radial direction, the equilibrium equation can be written as: 

𝑑

𝑑𝑟
(𝑟𝑁𝑟) − 𝑁𝜃 = 0  
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Then, substituting the in-plane forces in the previous equation:  

𝑑2𝑢

𝑑𝑟2
+
1

𝑟
(
𝑑𝑢

𝑑𝑟
) −

𝑢

𝑟2
= −

1 − 𝑣

2𝑟
(
𝑑𝑤

𝑑𝑟
)
2

−
𝑑𝑤

𝑑𝑟
(
𝑑2𝑤

𝑑𝑟2
) 

These in-plane forces equations can be written in a nondimensional form substituting 

𝜀 =
𝑢

𝑟
:  

𝜀′ +
𝑣𝜀

𝜌
+
ℎ

2𝑎
𝛿′
2
=
𝑎(1 − 𝑣2)𝑁𝑟

𝐸ℎ2
 

𝑣𝜀′ +
𝜀

𝜌
+
𝑣ℎ

2𝑎
𝛿′2 = 𝑎

(1 − 𝑣2)𝑁𝑟
𝐸ℎ2

 

and  

𝜀′′ +
𝜀

𝜌
−
𝜀′

𝜌2
= −

ℎ𝛿′

𝑎
(
1 − 𝑣

2𝜌
𝛿′ + 𝛿′′) 

Substituting these equations with the plate inclination can be obtained:  

𝜀′′ +
𝜀′

𝜌
−
𝜀

𝜌2
 

=

{
  
 

  
 −

ℎ𝛼2𝜌(3 − 𝑣)

2𝑎
𝑓𝑜𝑟 0 ≤ 𝜌 ≤ 𝛽

(
ℎ𝛼2

𝑎𝐵2
) [𝑆1𝜌

−3 + 𝑆2𝜌
−1 + 𝑆3𝜌

−1 ln 𝜌 + 𝑆4𝜌 + 𝑆5𝜌 ln 𝜌 + 𝑆6𝜌(ln 𝜌)
2]

𝑓𝑜𝑟 𝛽 ≤ 𝜌 ≤ 1

 

Where: 

- 𝑆1 =
(1+𝑣)3𝛽4

2
 

- 𝑆2 = −4𝑣(1 + 𝑣)𝛽
2 − (1 + 𝑣)(1 − 𝑣)2𝛽4 

- 𝑆3 = −2(1 + 𝑣)
2(1 − 𝑣)𝛽2 

- 𝑆4 = −2(1 − 3𝑣) + 4(1 − 𝑣
2)𝛽2 −

(1−𝑣)2(3−𝑣)𝛽4

2
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- 𝑆5 = 8(1 − 𝑣
2) − 2(1 − 𝑣2)(3 − 𝑣)𝛽2 

- 𝑆6 = −2(1 + 𝑣)
2(3 − 𝑣) 

The equilibrium equation has a solution: 

𝜀1 = 𝐶11𝜌 +
𝐶12
𝜌
−
ℎ𝛼2𝜌3(3 − 𝑣)

16𝑎
 

                                                                                                                   for 0 ≤ 𝜌 ≤ 𝛽 

𝜀2 =  

𝐶21𝜌 +
𝐶22
𝜌
+ (

ℎ𝛼2

𝑎𝐵2
) {

𝑡1𝜌
−1 ln 𝜌 + 𝑡2𝜌 ln 𝜌

+𝑡3𝜌(ln 𝜌)
2 + 𝑡4𝜌

3 + 𝑡5𝜌
3 ln 𝜌 + 𝑡6𝜌

3(ln 𝜌)2
} 

                                                                                                                   for 𝛽 ≤ 𝜌 ≤ 1 

Where: 

- 𝑡1 = −
𝑆1

2
 

- 𝑡2 =
(2𝑆2−𝑆3)

4
 

- 𝑡3 =
𝑆3

4
 

- 𝑡4 =
8𝑆4−6𝑆5+7𝑆6

64
 

- 𝑡5 =
2𝑆5−3𝑆6

4
 

- 𝑡6 =
𝑆6

8
 

If it’s considered a Poisson’s ratio equal to 0.3: 

- 𝑡1 = −0.549𝛽
4 

- 𝑡2 = −0.189𝛽
2 − 0.319𝛽4 

- 𝑡3 = −0.592𝛽
2 

- 𝑡4 = −1.706 + 0.706𝛽
2 − 0.083𝛽4 

- 𝑡5 = 2.621 − 0.614𝛽
2 

- 𝑡6 = −1.141 
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As explained before, the wrinkling phenomenon occurs when the equilibrium 

configuration changes from axisymmetric bowl shape to a bowl containing radial waves 

in a compressed region near the edge. Yu and Stronge [35] assumed that the 

configuration can be described as a perturbation 𝛿̅separable with a function of radius 

and azimuth: 

𝛿̅ =  𝜙(𝜌)𝜓(𝜃) 

With this hypothesis it’s possible to adjust the previous equations and calculate the 

constants by writing the boundary conditions. 

For both cases of study, the edge of the plate is free to move from the support, so:  

 

𝜓(𝜃) ≤ 0  

for 0 ≤ 𝜃 ≤ 2𝜋 

Assuming a periodic function of the form: 

 

𝜓(𝜃) = sin(𝑛𝜃) − 1 

where n is the number of wrinkling waves. 

Since it’s simply supported, the radial moment at the edge must be equal to zero. 

 

𝑀𝑟 = −
𝐷ℎ

𝑎2
(
𝑑2𝛿̅

𝑑𝜌2
+
𝑣

𝜌

𝑑𝛿̅

𝑑𝜌
) = 0    𝑎𝑡 𝜌 = 1  

The equation that satisfy this condition is 𝑀𝑟(𝜌) = 0. 

Then:  

𝜙′′(𝜌) +
𝑣

𝜌
 𝜙′(𝜌) = 0   𝑓𝑜𝑟 𝜌𝑤 ≤ 𝜌 ≤ 1 

with 𝜌𝑤 inner radius of the wrinkled region. 

If there is a zero displacement at 𝜌𝑤, 𝜙(𝜌) = (−𝜌𝑤
1−𝑣 + 𝜌1−𝑣). 

Then:  

𝛿 = 𝐶(−𝜌𝑤
1−𝑣 + 𝜌1−𝑣)(− sin(𝑛𝜃) + 1) 

 

Knowing the boundary conditions it is possible to determine the constants 

𝐶11, 𝐶12, 𝐶21, 𝐶22. 
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Assuming a Poisson’s ratio equal to 0.3: 

𝐶11 =
ℎ

𝑎
(
𝛼2

𝐵2
) {0.776 − 0.403𝛽2 + 2.092𝛽2 ln 𝛽 − 0.593𝛽2(ln 𝛽)2

− 0.412𝛽4 + 0.124𝛽4 ln 𝛽 + 0.040𝛽5} 

𝐶12 = 0 

𝐶21 =
ℎ

𝑎
(
𝛼2

𝐵2
) {0.776 + 1.902𝛽2 − 1.027𝛽4 + 0.443𝛽4 ln 𝛽 + 0.040𝛽6} 

𝐶22 =
ℎ

𝑎
(
𝛼2

𝐵2
) {−0.682𝛽4 + 0.823𝛽4 ln 𝛽 + 0.074𝛽6} 

Consequently the in-plane forces will be: 

𝑁𝑟 =
12𝐷𝛼2

𝑎2𝐵2
{1.3𝐶11̅̅ ̅̅ − 0.057𝐵

2𝜌2} 

𝑁𝜃 =
12𝐷𝛼2

𝑎2𝐵2
{1.3𝐶11̅̅ ̅̅ − 0.171𝐵

2𝜌2} 

                                                                                                                   for 0 ≤ 𝜌 ≤ 𝛽 

 

𝑁𝑟 =
12𝐷𝛼2

𝑎2𝐵2
{1.3𝐶11̅̅ ̅̅ − 0.7𝐶22̅̅ ̅̅ + (3.3𝑡4 + 𝑡5)𝜌

2 + (3.3𝑡5 + 2𝑡6)𝜌
2 ln 𝜌

+ 3.3𝑡6𝜌
2(ln 𝜌)2 + 𝑡2 + (1.3𝑡2 + 2𝑡3) ln 𝜌 + 1.3𝑡3(ln 𝜌)

2

+ 𝑡1𝜌
−2 − 0.7𝑡1𝜌

−2 ln 𝜌

+
𝜌2

2
[−2 + 0.7𝛽2 + 2.6 ln 𝜌 +

1.3𝛽2

𝜌2
]

2

} 

 

𝑁𝜃 =
12𝐷𝛼2

𝑎2𝐵2
{1.3𝐶11̅̅ ̅̅ − 0.7𝐶22̅̅ ̅̅ + (1.9𝑡4 + 0.3𝑡5)𝜌

2 + (1.9𝑡5

+ 0.6𝑡6)𝜌
2 ln 𝜌 + 1.9𝑡6𝜌

2(ln 𝜌)2 + 0.3𝑡2

+ (1.3𝑡2 + 0.6𝑡3) ln 𝜌 + 1.3𝑡3(ln𝜌)
2 + 0.3𝑡1𝜌

−2

+ 0.7𝑡1𝜌
−2 ln 𝜌 + 0.15𝜌2 [−2 + 0.7𝛽2 + 2.6 ln 𝜌 +

1.3𝛽2

𝜌2
]

2

} 

                                                                                                                   for 𝛽 ≤ 𝜌 ≤ 1 
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With 𝐶𝑖𝑗̅̅̅̅ = 𝐶𝑖𝑗/(
ℎ

𝑎
)(
𝛼2

𝐵2
). 

 

Assuming a 𝛽 = 0.5 the in-plane forces are shown in Figure 4.1.3. 

 

Figure 4.1.4 – In-plane forces 

 

At this punch displacement, the radial in-plane force is tensile throughout the entire 

plate, while the circumferential force is positive near the center and negative near the 

edge. 

 

Knowing the in-plane forces behavior it’s necessary for predict the wrinkling 

phenomenon. The method for study this problem is already been used for deep-drawing 

processes for clamped circular plates [17].  

To establish the wrinkling criterion an energy integral method has been used [38]. 

The bending and stretching energy need to be determined.  

According to Timoshenko studies, the bending energy can be written as: 

∆𝑈𝑏 =
𝐷ℎ2

2𝑎2
∫ ∫ {(

𝑑2�̅�

𝑑𝜌2
+

1

𝜌
(
𝑑�̅�

𝑑𝜌
) +

1

𝜌2
(
𝑑2�̅�

𝑑𝜃2
)
2

− 2(1 − 𝑣)
𝑑2�̅�

𝑑𝜌2
(
1

𝜌
(
𝑑�̅�

𝑑𝜌
) +

1

𝜌𝑤

2𝜋

0

(
1

𝜌2
) (

𝑑2�̅�

𝑑𝜃2
) + 2(1 − 𝑣) (

1

𝜌

𝑑2�̅�

𝑑𝜌𝑑𝜃
−

1

𝜌2
(
𝑑�̅�

𝑑𝜃
)
2

} 𝜌 𝑑𝜌 𝑑𝜃   

Knowing the previous assumptions for boundary conditions, the previous equation will 

be:  

∆𝑈𝑏 =
𝜋

2
𝐷𝐶2 (

ℎ2

𝑎2
)𝐹(𝛽, 𝑛, 𝜌𝑤)  
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Where: 

𝐹(𝛽, 𝑛, 𝜌𝑤) = (0.6282𝑛
4 − 0.8795𝑛2 + 2.2295)𝜌𝑤

−0.6

− (1.6667𝑛4 − 1.9133𝑛2 + 0.7432)

+ (1.5385𝑛4 − 0.33338𝑛2)𝜌𝑤
0.7 − (0.5𝑛4 + 0.7𝑛2)𝜌𝑤

1.4 

The stretching energy will be [3]:  

∆𝑈𝑠 =
ℎ2

2
∫ ∫ {𝑁𝑟 (

𝑑𝛿̅

𝑑𝜌
)

2

+𝑁𝜃 (
𝑑𝛿̅

𝜌𝑑𝜌
)

2

} 𝜌 𝑑𝜌 𝑑𝜃
1

𝜌𝑤

2𝜋

0

 

Since the in-plane forces are already determined, the stretching energy will be: 

∆𝑈𝑠 = 6𝜋𝐷𝑐
2 (
ℎ2

𝑎2
)𝐺(𝛽, 𝑛, 𝜌𝑤) 

Where: 

𝐺(𝛽, 𝑛, 𝜌𝑤) = ∫ {3(1 − 𝑣)2𝜌−2𝑣 (
𝑁𝑟

12𝐷 (
𝛼2

𝑎2
)
)

1

𝜌𝑤

+ 𝑛2(𝜌−𝑣 − 𝜌𝑤
1−𝑣𝜌−1)2(

𝑁𝜃

12𝐷 (
𝛼2

𝑎2
)
)𝜌 𝑑𝜌 

G can be calculated by fixing a value of 𝛽, 𝑛, 𝜌𝑤. 

For knowing the exact value of deflection where wrinkling begins, the stretching energy 

and the bending energy must be equal. 

Then: 

𝐹(𝛽, 𝑛, 𝜌𝑤) = 12𝛼
2𝐺(𝛽, 𝑛, 𝜌𝑤) 

The relation between the center of deflection and the contact radius is: 

 

𝛿0
𝛼
=
𝐴

2𝐵
=
((3 + 𝑣)(1 − 𝛽2) + 2(1 + 𝑣)𝛽2 ln 𝛽)

2(1 − 𝑣)(1 − 𝛽2) − 4(1 + 𝑣) ln𝛽
 

 

For this method, n and 𝜌𝑤are parameters. For knowing the exact value of 𝛿0 must be 

scanned each value of 𝜌𝑤from 0 to 1, the lowest value of the displacement will be the 

right one. 
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4.2 Wrinkling of a circular elastic plate using 

vacuum forming 
 

This case of study is similar to the previous one, but with some differences. 

A flat elastic plate is formed by using a vacuum forming machine. This mean that the 

pressure over the surface will be constant and without any contact region like the punch 

as it showed in Figure 4.2.1. 

 

Figure 4.2.1 – Circular elastic plate under uniform load 

 

According to Theory of Plates and Shells of Timoshenko, the new deflection of the 

plate will be: 

𝑤 =
𝑃0𝑎

4

64 𝐷
[1 − (

𝑟

𝑎
)
2

] [
5 + 𝑣

1 + 𝑣
− (

𝑟

𝑎
)
2

] 

Where: 

- 𝑃0is the load over the plate 

- D is the flexural rigidity of the plate 

- a is the radius of the plate 

- h is the thickness of the plate 

- v is the Poisson’s ratio 

- r is the radial coordinate 
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Since it has been necessary avoid the parameter 𝑃0and find a relation between the 

pressure and the geometry some calculations have been done. 

The maximum value of the displacement will be at r = 0. Then: 

𝑤𝑚𝑎𝑥(𝑟 = 0) =
𝑃0𝑎

4

64 𝐷
[
5 + 𝑣

1 + 𝑣
]  

Knowing the radius of final curvature R it’s possible to find an easy relation between 

wand R as it shown in Figure 2.2.2 

 

Figure 4.2.2 – Relation between w and R 

𝑤𝑚𝑎𝑥
2 − 2𝑅𝑤𝑚𝑎𝑥 + 𝑎

2 = 0 

𝑤𝑚𝑎𝑥
2

2𝑤𝑚𝑎𝑥
+

𝑎2

2𝑤𝑚𝑎𝑥
= 𝑅 

𝑤𝑚𝑎𝑥
2

≪
𝑎2

2𝑤𝑚𝑎𝑥
 

𝑅~
𝑎2

2𝑤𝑚𝑎𝑥
 

Linking this equation to the first one: 

𝑅 =
64𝐷

2𝑎2𝑃0
(
1 + 𝑣

5 + 𝑣
) 

𝑃0 =
64𝐷

2𝑎2𝑅
(
1 + 𝑣

5 + 𝑣
) 
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It has been found a relation between 𝑃0and R. 

𝑤 =
64𝐷

2𝑎2𝑅
(
1 + 𝑣

5 + 𝑣
)
𝑎4

64 𝐷
[1 − (

𝑟

𝑎
)
2

] [
5 + 𝑣

1 + 𝑣
− (

𝑟

𝑎
)
2

] 

𝑤 =
𝑎2

2𝑅
(
1 + 𝑣

5 + 𝑣
) [1 − (

𝑟

𝑎
)
2

] [
5 + 𝑣

1 + 𝑣
− (

𝑟

𝑎
)
2

] 

Again it’s possible to write the displacement in a nondimensional form dividing by the 

thickness h: 

𝛿 =
𝛼

2
(
1 + 𝑣

5 + 𝑣
) [1 − (

𝑟

𝑎
)
2

] [
5 + 𝑣

1 + 𝑣
− (

𝑟

𝑎
)
2

] 

Where: 

- 𝛼 =
𝑎2

𝑅ℎ
 

The radial inclination will be: 

𝛿′ = −𝛼𝜌 (
1 + 𝑣

5 + 𝑣
) − 𝛼𝜌 +

4𝜌3𝛼

2
(
1 + 𝑣

5 + 𝑣
) 

The new differential equation then will be: 

𝛿′′ = −𝛼 (
6 + 2𝑣

5 + 𝑣
) + 6 (

1 + 𝑣

5 + 𝑣
)𝛼𝜌2 

𝜀′′ +
𝜀

𝜌
−
𝜀′

𝜌2
= −

ℎ𝛿′

𝑎
(
1 − 𝑣

2𝜌
𝛿′ + 𝛿′′)

=  −
ℎ

𝑎
(−𝛼 (

6 + 2𝑣

5 + 𝑣
)𝜌

+ 2𝛼 (
1 + 𝑣

5 + 𝑣
)𝜌3) [(

1 − 𝑣

2𝜌
) (−𝛼 (

6 + 2𝑣

5 + 𝑣
)𝜌

+ 2𝛼 (
1 + 𝑣

5 + 𝑣
)𝜌3) + (−𝛼 (

6 + 2𝑣

5 + 𝑣
) + 6𝛼 (

1 + 𝑣

5 + 𝑣
)𝜌2)] 
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When r=0 the displacement will be: 

𝛿0
𝛼
=
1

2
 

Where: 

- 𝜌 =
𝑟

𝑎
 

The wrinkling begins then: 

𝛿0 =
1

2
[
𝐹(𝛽, 𝑛, 𝜌𝑤)

12𝐺(𝛽, 𝑛, 𝜌𝑤)
]

0.5
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5. Discussion of results 

_____________________________________________________________________________ 

 

The wrinkling criterion for the smallest wave-numbers n have been computed for v=0.3. 

All of the results are shown on a 1/α, 𝛿0 map.  

𝛿0 = 𝑤/ℎ 

𝛼 =
𝑎2

𝑅ℎ
 

The Figure 5.1 shows the results of the circular elastic plate stamped by a spherical 

punch.  

 

Figure 5.1 – The initiation of wrinkling of the circular elastic plate stamped by a spherical 

punch 
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The equation for the initiation of wrinkling has been analyzed for different wave-

numbers. This figure indicates that: 

- Elastic wrinkling does not occur until the deflection of the plate is about four 

times the plate thickness 

- Wrinkling initiates in a four wave mode of deformation 

- Wrinkling depends more on the thickness/displacement ratio instead of the 1/𝛼 

ratio 

The Figure 5.2 shows the results of the circular elastic plate using vacuum forming.  

 

Figure 5.2 – The initiation of wrinkling of the circular elastic plate using vacuum 

forming 

In this case the wrinkling phenomenon  occurs earlier. This is due to the fact that the 

presence of the punch mechanically block the formation of wrinkles.  

Looking at the results, it is easy to understand how the displacement 𝛿0 changes on 

varying the number of wrinkles. By increasing 𝛿0 the plate will move to a 4-waves to an 

higher waves configuration. 

FEM analysis in Figure 5.3 show the increasing wave numbers by increasing the contact 

area of the punch (i.e. increasing the displacement). 
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a                                                        b                                                   c 

Figure 5.3 – Buckling mode shapes (a- without transversal waves, b- with 4 waves, c- with 8 

waves) 

The analytical models have been tested also for different materials with different 

Poisson’s ratios as it shown in Figure 5.4. This test provide a good understanding of the 

dependence of the wrinkling phenomenon and the temperature of the plate (during a 

Creep age forming).  

 

Figure 5.4 – Dependence of the wrinkling phenomenon and the Poisson’s ratio 
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5.1 Experimental results 

 

Figure 5.1.1 Validation of the model 

According to an experimental result presented by M.P.F. Sutcliffe [27], the model has 

been set with the correct values of his Aluminum alloy. The data are showing several 

test with different values of the plate radius a, the negative mold radius R and with an 

increasing thickness from 1.2mm to 3.1mm. In Figure 5.1.1 are overlapped the results 

and the predictions. The analytical model underestimate the phenomenon. One of the 

causes is the poor dependence of thickness variation during the forming process. 

Sutcliffe used a punch with a large radius. The large radius punch have been always in 

full contact with the surface. This have been the closest experiment result comparable 

with a vacuum forming technique. 

Vacuum forming process can be stopped only in two cases: 

- when the sheet completely cover the negative mold (there is no more air) 

- when the borders of the sheet stop to be in contact with the mold (air flows in 

the negative mold)  

In Figure 5.1.2 are shown the results of the vacuum forming trials.  
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Figure 5.1.2 – Vacuum forming trials at room temperature 

These results show a ten times higher 𝛿0 . This is due to the fact that the tests stopped 

only when a bigger wrinkle has been formed as shown in Figure 5.1.3. 

 

Figure 5.1.3 – Snapthrough 

Plates transform from a four- to an higher lobe mode of wrinkling during a single stroke 

of stamping. Over a certain high lobe mode, on the wrinkle plate start to grow a big 

wrinkle: this phenomenon is called snapthrough. It is a bifurcation buckling of the plate 
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rather than wrinkling. The circumferential curvature changes from the smooth flexure of 

wrinkling to flexure concentrated along narrow, radial, plastic hinge lines. The test, 

during vacuum forming, is no more in contact with mold and then stop.  

Therefore, the results in Figure 5.1.2 don’t show a wrinkled or an unwrinkled test but a 

test with the snapthrough phenomenon or not.  

In Figure 5.1.4 is clear that the circular plate was already wrinkled, reaching a 36-lobe 

wrinkles, before the snapthrough. 

 

Figure 5.1.4 – Snapthrough and wrinkling phenomenon 

 

Creep forming process has been adopted for avoid wrinkling phenomenon. By 

increasing the temperature, snapthrough phenomenon showed up at higher 

displacements as it shown in Figure 5.1.5. 
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Figure 5.1.5 – Snapthrough at different temperatures 
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6. Conclusions 

_____________________________________________________________________ 

 

An analytical model for prediction of wrinkling has been presented.  Both of the 

discussed cases were been discussed in detail.  Elastic wrinkling does not occur until 

𝑤0

ℎ
≈ 4 if the plate is loaded by a spherical punch and 

𝑤0

ℎ
≈ 3 if the plate is under 

uniform pressure.  With increasing displacement beyond the initiation of wrinkling, the 

deformation mode changes to a larger number of waves. 

From the analytical model the wrinkles phenomenon begins with a 4-lobe configuration 

up to undefined number of  wrinkles. From the experimental results has been noticed 

that this number stops growing  when the snapthrough phenomenon occur.  

The model shows also that by increasing the Poisson’s ratio of the material, the wrinkles 

begins at higher displacements. This is directly related to the temperature of the 

material, which has been tested also at different temperatures with a creep forming 

technique. 

The design of the new Rear Pressure Bulkhead requires a displacement higher than 

𝑤0 = 500mm. Since it needs to be light, it’s not possible to use this forming processes 

without occurring in wrinkling phenomenon. Neither of the wrinkles or snapthrough are 

acceptable for this component.  

Therefore, the Rear Pressure Bulkhead cannot be formed with this processes.  

These techniques, however, can be useful for other components with lower 

displacements. Thus, a more detailed experimental analysis is required for having better 

results at the beginning of wrinkling since the beginning of 4-lobes configuration was 

difficult to study during vacuum forming technique. 
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