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ABSTRACT 

 

Nella pratica ingegneristica l’attività progettuale è basata sull’utilizzo di modelli il cui scopo è 

dare una rappresentazione sintetica ma allo stesso tempo vicina alla realtà fisica. Tali modelli in 

genere non tengono mai conto di imperfezioni che immancabilmente si presentano nel corso 

della realizzazione e della vita di utilizzo delle strutture, imperfezioni che possono implicare, 

per strutture iperstatiche, degli stati coattivi che si traducono in sollecitazioni addizionali, ma 

che per la loro natura aleatoria sono difficili da individuare e modellizzare. Di fronte alla 

complessità del problema il progettista dimentica consapevolmente tali situazioni, non solo per 

semplificare l’approccio progettuale ma soprattutto delegando il riassorbimento di tali 

sollecitazioni addizionali alla duttilità dei materiali e degli elementi strutturali. 

In questo senso si sviluppa lo scopo della tesi: investigare la relazione che gli stati coattivi 

dovuti a imperfezioni di realizzazione, effetti termici o cedimenti vincolari hanno con il carico 

ultimo sopportabile da strutture dotate di una certa duttilità. 

In particolare utilizzando calcoli a mano e programmi di calcolo delle strutture il moltiplicatore 

critico dei carichi λcr, che rappresenta il carico d collasso, è calcolato nel caso di diverse 

strutture di crescente complessità, caratterizzate da diversi livelli di imperfezioni iniziali 𝜉 e di 

duttilità 𝜇: 

𝜆𝐶𝑅 = 𝜆𝐶𝑅(𝜉 ;  𝜇) 

I risultati verranno dunque raccolti e confrontati per verificare come, per le strutture indagate, la 

duttilità giochi effettivamente un ruolo cruciale nell’insensibilità del carico di collasso agli stati 

coattivi iniziali. 
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1. INTRODUCTION 

1.1 BACKGROUND 

 

The usual design approach of structures leans on the assumption of applying the theories of 

structural mechanics to models that are thought to be the best representation of the real 

behaviour of the structural system but intrinsically imply its simplification. One of the most 

important, but sometimes under-estimated, is to not take into account for coercive states given 

by constraint displacements, components imperfections, thermal effects or construction 

processes in structural redundant structures. The verification of such situations and their impact 

on structural safety are usually complex to be identified and quantified. This simplification 

approach may seem superficial and lay on the unsafe side, but actually leans on the idea that 

local damage of structures do not influence the ultimate loading capacity of a structure given its 

ductility. The plasticity of the material and the ductility of components are thought to be the 

properties that allow the structure to adapt to the coercive states and overcome the presence of 

elevated local stresses. 

The topic of the influence of accidental coercive states on ultimate loading capacity is however 

not completely developed and entrusted to ductility 

 

1.2 AIM OF THE THESIS 

 

The aim of this thesis is to investigate the interaction between the collapse load and 

imperfections causing initial coercive states at different levels of ductility. Different types of 

structures and materials will be examined and subjected to different types of initial distortions, 

the collapse load will be then computed as a function of not only the element resistance but also 

of the level of initial distortion and the element ductility. 

 

1.3 STRUCTURE OF THE THESIS 

 

The thesis is composed of six chapters:  

1. the introduction; 

2. the history of ultimate load theory and plasticity, where the main steps, authors and 

publications that brought to the final definition of the theory will be reported; 
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3. the description of basic concepts of the theory of plasticity, such as different definitions of 

ductility, the analytical tools to perform the incremental or the limit plastic analysis, the impact 

of plastic behaviour on structural safety. 

4. the analytical study of one single beam fixed at the ends, where the previously described 

concepts are applied in some simple hand-made calculations. A simple software analysis is 

performed in order to get the hang of the software and compare the numerical results with the 

expected ones 

5. the ultimate load of a multi-storey reinforce concrete planar frame, where three levels of 

ductility (infinitely ductile, real ductility and brittle) are defined in order to understand the 

collapse load relation with the initial distortion given by the settlement of the supports; 

6. the real case of a collapsed steel roof under snow loads, where non-linear analysis are 

performed on different structural models, trying in understand and to represent the real 

behaviour of the structure and the lacks related with its unexpected collapse. 
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2. ULTIMATE LOAD THEORY 

2.1  HISTORY OF ULTIMATE LOAD METHOD 

 

Already from the last decades of 19
th
 century structural engineers working with steel praised the 

“ingenuity” or the “self-help” of their plastic and ductile material when the expected results 

coming from linear elastic structural investigations did not reflect adequately the real load-

bearing capacity. 

In the following years a large number of researchers started to investigate this phenomenon, in 

order to quantify the strength reserves and to expose to criticism the linear-elastic stress-strain 

relation, known as Hooke’s law, as far as it was no longer able to represent the real behaviour of 

structures subjected to limit load-bearing conditions. In the following paragraphs the terms 

“ultimate load method” and “plastic hinge method” will be used as synonyms. 

2.1.1 FIRST PUBLICATIONS 

In 1914 the Hungarian engineer  Gàbor Kazinski experienced the first investigation approaches. 

He led experimental measurements of the ultimate distributed load w applied to a steel beam, 

fixed at both ends, with an double-T cross-section, encased in concrete, with free span L of 6,00 

meters [Kazinski, 1914]. Kazinski concluded that the failure mode to be reached is the 

alignment of three plastic sections (plastic hinges), in a beam with two degrees of static 

indeterminacy. The resisting bending moment to be guaranteed is therefore no longer wL
2
/12 

but can be lower, with the value wL
2
/16. 

The economic design of steel structures that was involved in the previous statements became 

clear in the 1920s in Germany, Austria and Czechoslovakia and later in Great Britain and in the 

Soviet Union. The steel designers and producers gave a large impulse to the research on these 

topics, and many publications appeared in those years: Josef Fritsche, Karl Girkman, Martin 

Grüning and especially Maier-Leibnitz. 

Hermann Maier-Leibnitz clarified the already known “ingenuity” or ductility of steel structures 

carrying out experiments on the load-bearing capacity of simply-supported beams and 

continuous beams, in 1928 he summarized his work on beams with two equal spans and 

illustrated how the critical design moment is not the central support negative moment but rather 

the positive span moment. At the second A.I.P.C. congress (Assoc. Intern. Ponts & Charp.) held 

in Berlin in 1936, Maier-Leibnitz reported his results on continuous steel beams showing the 

significant insensitivity of the load bearing capacity of such structures to relative displacements 

imposed to its supports, i.e. to conditions that would largely affect the results of a linear-elastic 

analysis. 
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Josef Fritsche in 1930 investigated the clumped beam, the two-spans and three-spans beams 

with the method of plastic hinges and stated that “As the examples up to now show, calculating 

the load-carrying capacity is quite simple and avoids the – often tedious – calculation of the 

statically indeterminate variables, although knowledge of the purely elastic solution [...] is very 

helpful.” 

Already in 1932, Karl Girkmann was able to define a comprehensively formulated plastic 

design method, based on the works of the previously described authors, resting on several 

hypothesis like the demand for a positive dissipation work, the assurance against local failure or 

local buckling or the proper design of connections in order to obtain dissipation in the members. 

2.1.2 CONTROVERSIES 

The previously described development of the plastic hinge method, and especially the branch of 

limit analysis caused strong reactions in a part of the academic world that criticized the 

excessive simplicity of such a method applied to statically-redundant structures. 

In 1935 Fritz Stüssi & Curt Fritz Kollbrunner formulated the “paradox of plastic hinge method”. 

It is given a continuous beam on four supports, symmetric with respect to the middle point, 

where a concentrated force P is applied. The two lateral span are long 𝑙1 while the central span 

is long l. The load P is increased until failure of the structure. The plastic limit state of such a 

structure is reached with the presence of three plastic hinges (two on the supports and one in the 

middle of the central span) that change the system with two degrees of redundancy into a simple 

kinematically determinate structure. In this case the ultimate load given by a limit analysis is  

𝐹𝑢 = 8
𝑀𝑝𝑙

𝑙
⁄  where l is the length of the central span and Mp is the plastic bending moment 

given by the section.  

 

Figure 1 - paradox of plastic hinge method 
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By varying the length of the lateral spans 𝑙1, different limit cases can be obtained: 

when 𝑙1 → 0 the continuous beam tends to become a single beam of length l , clumped at the 

both ends, with an ultimate load of  𝐹𝑢 = 8
𝑀𝑝𝑙

𝑙
⁄   . 

If   𝑙1 → ∞ , the continuous beam tends to become a simple-supported beam of length l, which 

has a different ultimate load of   𝐹𝑢 = 4
𝑀𝑝𝑙

𝑙
⁄    . 

 

This paradox states that the ultimate load value depends on the relative stiffness of the 

members, and not only on the plastic moment magnitude. In fact, Kazinczy recognised this 

paradox already in 1931 and drew attention on the fact that the deflection of the beam in the 

case of   𝑙1 → ∞  “reaches an unacceptable magnitude”.  

 

2.1.3 THEORY DEVELOPEMENT & CONSENT 

The final contribution to the wide-spread use of the ultimate load theory was given by the so 

called “Anglo-American school of ultimate load” , developed by two professors, John 

Fleetwood Baker and William Prager, respectively from Cambridge and Brown Universities in 

the 1950s. They coordinated an intense research programme, together with several exchange 

programmes that led to a final rigorous formulation of plastic theory for steel frames. In 1956 

Figure 2 – limit cases 

Figure 3 – actual behaviour 
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Jacques Heyman, together with J.F. Baker and M.R. Horne published the first book on plastic 

theory for structural steelwork: “The steel skeleton, Vol.2 : Plastic behaviour and design” 

[Baker et al., 1956].This publication summarized all the work carried on by several teams in 

Cambridge in the previous ten years and was the first established mention to fundamental 

theorems of ultimate load theory together with the description of practical applications. It is to 

be reported that the fundamental theorems had been verified by the Soviet researcher Aleksei 

Aleksandrovich Gvozdev in 1936, but were unfortunately unknown to the West given that they 

were published only in Russian and only available through the Moscow Academy of Sciences. 

Theory of plasticity experienced its consolidation in the 1970s and 1980s, when several manuals 

were published, which led to the widespread application of the theory. Later it was realised that 

the principles applied to steelwork were valid also for any ductile material and construction 

technique. 
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3. THEORY OF PLASTICITY 

 

3.1 INTRODUCTION 

 

The aim of the following chapter is to recall some basic concepts that will enable the reader to 

understand all the following computations and results. All the computations and the analytical 

methods will be founded by the following hypothesis: 

 slender elements, with a compact and rigid cross-section (Eulero-Bernoulli beam); 

 bilateral stress-strain diagram σ-ε, i.e. an elastic-perfectly plastic material; 

 small displacement theory; 

 flexural behaviour of plastic zones summarized and located in pointwise elements 

called “plastic hinges”. 

3.1.1 THE CONCEPT OF DUCTILITY 

In the following lines, the concept of ductility will be introduced, with some practical examples 

in order to understand its effect on structures. 

MATERIAL DUCTILITY 

The ductility is the ability of a material to deform under stresses and in particular, in an elastic-

perfectly plastic material to maintain the yielding stress fy level until rupture (ε=εu). In Figure 4 

the bilateral stress-strain diagram of an elastic-perfectly plastic material is represented: 

 

The material ductility in such conditions is defined as: 

𝜇𝑚𝑎𝑡 =
𝜀𝑢
𝜀𝑦

 

σ 

ε εu εy 

fy 

Figure 4 – elastic-perfectly plastic σ-ε diagram 
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CROSS-SECTIONAL DUCTILITY 

The idea of material ductility can be transposed also to the moment-curvature diagram, i.e. to a 

cross-sectional level. In the Figure 5 the tri-linear moment-curvature diagram (M-χ) of a general 

reinforced concrete section is depicted.  

 

The cross-sectional flexural ductility is the ability of a given cross-section to sustain a bending 

moment 𝑀 ≥ 𝑀𝑦  also after the yielding of its components, in this case: 

𝜇𝑠𝑒𝑐 =
𝜒𝑢
𝜒𝑦

 

This feature of a given cross-section is not only given by the ductility of materials inserted in 

the cross-section but also of its geometry, so it is a synthetic parameter given by the ratio of the 

ultimate curvature at rupture and the curvature that involves the firs yielding of a component. 

Further features about the cross-section behaviour in elastic-plastic analysis will be reported in 

paragraph 3.1.3. 

 

 

STRUCTURAL DUCTILITY 

A further generalization of the concept of ductility is the structural ductility. A simple example 

follows: a cantilever vertical element is subjected to a horizontal force F, the top displacement u 

is monitored. The cross-section is meant to have an elastic-perfectly plastic behaviour, i.e. a 

bilinear moment-curvature diagram. The force-displacement diagram is depicted as follows: 

 

 

My 

Mu 

χu χy χcrack 

Mcr 

Figure 5 – trilinear M-χ diagram 
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Until the yielding of the first cross-section at the bottom of the column the structure behaviour 

is linear elastic. For further increments of the force F an increasing number of cross-sections is 

yielding, while the stiffness of the structure decreases  (i.e. the increases of the top displacement 

u get larger for decreasing increments of force F) until the reaching of the ultimate curvature χu 

in the bottom cross-section that takes to failure the structure. 

The structural ductility is thus given by the ratio between ultimate displacement uu and yielding 

displacement uy: 

𝜇𝑠𝑡𝑟 =
𝑢𝑢
𝑢𝑦

 

For more complex structural systems this ability of the structure to sustain loads also after 

yielding of its components is not only given by the material ductility and the cross-sectional 

ductility of its elements, but depends also on the geometrical arrangement of its components, 

their relative stiffness and resistance and the effectiveness of their connections. The structural 

ductility 𝜇𝑠𝑡𝑟 is thus a concise parameter to describe all the effectiveness of the previously 

mentioned features of a structure until its collapse. 

 

 

 

 

 

 

 

Fu 

Fy 

uy uu 

Figure 6 – structural force-displacement curve 
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3.1.2 THE EXAMPLE OF THE THREE RODS – THE BENFIT OF STRUCTURAL 

DUCTILIY 

A classic example of the theory of plasticity is the case of three rods supporting a rigid body 

subjected to an increasing force F. The system depicted in Figure 7 – three rods example and its 

deformed confguration is symmetric, the central rod has a length l1 and a cross-sectional area A, 

while the lateral rods have a length equal to l2 and a cross-sectional area of A/2.  

 

The rigid body subjected to the vertical force F moves downwards thus the three rods elongate 

of the same quantity in order to attain compatibility. The forces in the first elastic phase are thus 

distributed among the components proportionally to their relative stiffness: 

- 𝐹1 = 𝐹𝑡𝑜𝑡  
𝑙2

𝑙1+𝑙2
  →   𝜎1 =

𝐹𝑡𝑜𝑡

𝐴
 
𝑙2

𝑙1+𝑙2
   for the central rod; 

- 𝐹2 =
𝐹𝑡𝑜𝑡

2
 
𝑙1

𝑙1+𝑙2
  →   𝜎2 =

𝐹𝑡𝑜𝑡

𝐴
 
𝑙1

𝑙1+𝑙2
     for the lateral rods. 

In a first case the rods are thought to be made with a brittle material (i.e. 𝜇𝑚𝑎𝑡 =
𝜀𝑢

𝜀𝑦
= 1 ). 

 

When the central rod (the stiffer one) reaches the maximum capacity (𝜎1 = 𝑓𝑦) it collapses 

because all its fibres reach simultaneously the maximum stress, the force is then transferred to 

Figure 7 – three rods example and its deformed confguration 

fy - 

Figure 8 - brittle behaviour 
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the only lateral rods that cannot support this abrupt increase of applied forces and immediately 

collapse. This failure mechanism, peculiar of brittle systems, is called progressive collapse. The 

force that takes to the maximum stress fy the central rod is: 

𝐹𝑡𝑜𝑡,𝑒 = 𝐹𝑡𝑜𝑡,𝑢 = 𝑓𝑦𝐴 (1 +
𝑙1
𝑙2
) 

 

In the second case the rods section are made of a material with the same stiffness and maximum 

stress fy but with a remarkable material ductility   𝜇𝑚𝑎𝑡 =
𝜀𝑢

𝜀𝑦
≫ 1 . 

 

In this second case, when the central rod reaches its maximum capacity (𝜎1 = 𝑓𝑦), with the same 

external force 𝐹𝑡𝑜𝑡,𝑒 = 𝑓𝑦𝐴(1 +
𝑙1

𝑙2
)  , it does not fail but it exerts its plastic force  𝑁𝑝,1 = 𝐴 𝑓𝑦 

for further downwards displacements that correspond to increments of the applied external 

force, until also the lateral rods yield. The ultimate condition of the structure is given by the 

three plastic forces ( 𝑁𝑝,𝑖=𝐴𝑖𝑓𝑦 ) applied to the rigid body. The external load in this condition is: 

𝐹𝑡𝑜𝑡,𝑢 = 𝐹𝑡𝑜𝑡,𝑝 = 𝑓𝑦𝐴 + 2 (𝑓𝑦
𝐴

2
) = 2 𝑓𝑦𝐴 

The increase in the maximum external force is sensible and it is: 

𝛥𝐹𝑡𝑜𝑡
𝐹𝑡𝑜𝑡,𝑒

=
2 − (1 +

𝑙1
𝑙2
)

(1 +
𝑙1
𝑙2
)

 

fy - 

Figure 9 - ductile behaviour 
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 at the limit 𝑙2 ≫ 𝑙1 the increase is of 100% and it is given by the only increase in the material 

ductility, while the cross-section dimensions and maximum yielding stress remain constant. 

Moreover as previously reported about the structural ductility, the benefit of ductility, i.e. the 

increments of maximum external force and ultimate displacements, is not only function of the 

material ductility but also of geometrical arrangement of the structure ( ratio 
𝑙1
𝑙2
⁄ ) . The 

structural behaviour is summarized in the following graph: 

 

It is possible to notice how the stiffness of the structure decreases after the yielding of the first 

rod because the only stiffness is given by the only lateral rods that are still elastic. The ultimate 

displacement depends on the only ultimate strain of the material, but the force applied cannot 

exceed the value 𝐹𝑡𝑜𝑡,𝑢 = 2 𝑓𝑦𝐴 . 

 

 

 

 

 

 

 

 

 

Figure 10 - force-displacement diagram 
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3.1.3 RECTANGULAR CROSS SECTION UNDER BENDING 

A very simple and effective tool in the plastic structural analysis is the concept of plastic hinge. 

In order to define it, the behaviour of a general cross-section subjected to bending moment is 

described in the following paragraph. It has to be reported that several yielding criteria 

𝑓(𝜎𝑥 , … , 𝜏𝑦𝑧) = 𝑘 may be used in order to confront the presence of shear and normal stresses to 

the yielding stress. In the following paragraph the most simple framework of a cross-section 

with plastic behaviour will be applied, i.e. shear stresses will be neglected and the only axial 

state of stress will be taken into account. 

Given a rectangular cross-section with a width equal to b and depth equal to h, the external 

bending moment will increase until a certain plastic flow will appear. The cross section is made 

of an elastic-perfectly plastic material with a strongly ductile behaviour (𝜇𝑚𝑎𝑡 =
𝜀𝑢

𝜀𝑦
≫ 1). 

 

The elastic limit of the cross-section is obtained when the most stressed fibre reaches the 

yielding condition (case 1): 

𝜎 =
𝑀𝑒𝑥𝑡
𝐽

ℎ

2
=
𝑀𝑒𝑥𝑡
𝑏ℎ2

6 = 𝑓𝑦 

And the elastic bending moment is thus defined as: 

𝑀𝑒𝑙 = 𝑊𝑒 𝑓𝑦 = 
𝑏ℎ2

6
 𝑓𝑦 

Where We is called elastic section modulus. 

When the rod was considered all its fibres reached simultaneously the yielding condition, on the 

contrary the plastic behaviour of the rectangular cross-section starts from its edges while the 

internal fibres have still an elastic behaviour. Further increments of the external bending 

moment an increasing number of fibres undergo plastic strains (case 2). If the material 

composing the cross-section is thought to be infinitely ductile and the curvature χ tends to 

Figure 11- cross-sectional loading stages 
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infinite the cross-section exhibits half of its fibres yielded in tension and half in compression 

(case 3). In order to obtain rotation equilibrium in this case the external bending moment is 

equal to: 

𝑀𝑒𝑥𝑡 = 𝑀𝑝 = 
𝑏ℎ

2
 𝑓𝑦
ℎ

2
=
𝑏ℎ2

4
 𝑓𝑦 = 𝑊𝑝 𝑓𝑦 

Where Mp stands for plastic bending moment, and describes the limit condition 𝜒 → ∞. Wp is 

the plastic section modulus. 

As mentioned in the previous paragraph the plastic benefit to the cross section takes to an 

increment in the maximum applied bending moment from the elastic to the plastic one, is not 

given by an increment in strength of the material but by the only presence of ductility. 

 The plastic benefit depends on the section geometry and in the case of a rectangular cross-

section is given by: 

 
𝑀𝑝
𝑀𝑒

=
𝑊𝑝 𝑓𝑦

𝑊𝑒 𝑓𝑦
=

6

𝑏ℎ2
𝑏ℎ2

4

 𝑓𝑦

 𝑓𝑦
=
3

2
 

The plastic benefit can vary a lot depending on the cross-section. In fig.edgg three different 

moment-curvature diagrams are depicted. the three cross-section have the same value of elastic 

bending moment Me, but different plastic benefits depending on their shape, the rectangular one 

has a factor 
𝑊𝑝

𝑊𝑒
 equal to 1,5 while the lumped-masses cross-section has no plastic benefit thus 

𝑊𝑝

𝑊𝑒
= 1. Between these two “limit cases” rests a typical double-T shaped cross-section for which 

average values for the plastic benefit 
𝑊𝑝

𝑊𝑒
 are 1,1 or 1,2. 

 

Figure 12 - M-χ diagram for different cross-sectional shapes 
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The first linear branch lasts until the elastic bending moment Me is applied, for further 

increments an increasing number of fibres undergo plastic strains and the cross-sectional 

stiffness decreases, tending to zero while approaching the horizontal asymptote of Mp. The 

“speed” of convergence towards the value of Mp depends again on the geometry of the section. 

A valid simplification of the cross-sectional plastic behaviour under bending is given by the 

bilinear Prandtl diagram, depicted inFigure 12. Even if this simplified bilinear moment-

curvature diagram detaches from the real behaviour of the cross-section, the error is negligible. 

Moreover such M-χ diagram becomes a very strong tool for plastic analysis. 

3.1.4 PROPORTIONAL LOADING – THE LOAD MULTIPLIER 

In general all structures are subjected to different types of loads, usually independent one from 

the other (permanent loads, variable vertical loads, wind actions, etc.); however in the following 

chapters for convenient simplification the loads intensity will be described by only one 

parameter λ called load multiplier. This does not mean that all external forces have to be 

increased by the factor λ, but in the following cases specific load patterns will be defined, 

differentiating the group of permanent loads that will be kept constant and a group of variable 

loads increased proportionally to the load multiplier λ. Such patterns depend on the scope of the 

analysis, for example if a designer wants to evaluate the safety margin of a structure with 

respect to seismic actions, a convenient pattern will be to keep constant all the vertical loads 

(permanent and variable combined by means of suitable coefficients) and to increase 

proportionally to λ the only horizontal forces until collapse. 

3.1.5 CONCENTRATED PLASTICITY - THE PLASTIC HINGE 

The assumption of a bilinear moment-curvature diagram like the Prandtl diagram implies the 

idea of plastic hinge. As soon as one cross-section reaches the value Mp, its rotational stiffness 

drops to zero, the curvature tends to infinite and the internal bending moment cannot increase 

further. This cross-sectional state can be represented in the structural model as a plastic hinge, a 

node with free rotation and the plastic bending moment Mp applied.  

Figure 13 - plastic hinge 
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3.2 INCREMENTAL PLASTIC ANALYSIS 

 

The first method for an non-linear plastic structural analysis is described in the following 

paragraphs. As mentioned in the introduction of this chapter the analytical methods will rest on 

the following hypothesis: small displacement theory, slender elements, shear stresses effect are 

is neglected, a bilateral moment-curvature diagram M-χ is thus applied, i.e. the flexural 

behaviour of plastic zones is summarized in plastic hinges. 

3.2.1 INCREMENTAL ANALYSIS METHOD 

The collapse mechanism can be identified by means of the most intuitive method of plastic 

analysis, the incremental method: different steps of increasing loads multiplied by the load 

multiplier λ are applied to the structure. At each phase the loads increments λi bring to the 

formation of a new plastic hinge in the most stressed point of the structure; the computations are 

performed until the presence of all the plastic hinges make the structure hypostatic. 

The critical multiplier λcr that takes to collapse is given by the sum of load increments λi , it is 

thus determined by the a series of computations performed on linear-elastic structures. The 

complexity of this method is given by the number of different structural analysis that have to be 

performed on structures that are different at each step. Some practical examples useful for a 

better explanation are reported in chapter 4. 
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3.3 LIMIT PLASTIC ANALYS 

 

The second method to perform a non-linear plastic analysis is based on two theorems presented 

in the following paragraph. This type of analysis is directly focused on the collapse mechanism, 

useful to determine the collapse load multiplier λcr. As previously mentioned both the limit and 

the incremental plastic analysis method don’t take into account rupture criteria and the ultimate 

rotational capacity of plastic hinges. 

3.3.1 THEOREMS OF LIMIT ANALYSIS 

KINEMATIC THEOREM – UPPER BOUND 

Given an arbitrary collapse mechanism kinematically admissible, if the external work given by 

the applied loads λ P is equal to the internal one exploited by the plastic hinges, then the factor 

λK, the kinematic multiplier, is equal or greater than the critical load multiplier λcr. 

λ𝑐𝑟 ≤ λ𝐾 

This means that the critical load multiplier λcr is always lower or equal to any kinematically 

admissible load multiplier. 

STATIC THEOREM – LOWER BOUND 

The load multiplier λS that gives a bending moment distribution statically admissible is alway 

lower or at least equal to the critical load multiplier λcr. 

λ𝑆 ≤ λ𝑐𝑟 

This means that the critical load multiplier is always larger than any static admissible one. 

CONSEQUENSES OF LIMIT ANALYSIS THEOREMS 

The first consequence of the previously mentioned theorems is the uniqueness of the collapse or 

critical load multiplier. At collapse two circumstances have to be verified: static and kinematical 

admissibility. The load multiplier that makes true the both previous conditions is unique: let us 

suppose that two critical loads multiplier are given, 𝜆1 > 𝜆2; because of the kinematical 

theorem 𝜆1cannot be larger than 𝜆2, on the other hand given the static theorem  𝜆2 cannot be 

lower than 𝜆1; it must then be 𝜆1 = 𝜆2 = 𝜆𝑐𝑟 . 
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The use of the two theorems can take to the definition of a simple method for the resolution of 

small structures by means of limit analysis that in general ca be sensitively faster than the 

incremental plastic analysis. A short example is reported in the following lines to better explain 

the procedure of resolution. It is given a portal frame, with constant cross-section and constant 

plastic resisting moment Mp. 

 

 The degree redundancy R is 3; 

 The critical cross-sections C where a plastic hinge may appear are 5. The critical cross 

sections are typically points of application of forces or joints. 

 The independent collapse mechanisms are then M=C-R=2. 

The collapse mechanisms are the following: 

 

 The critical load multiplier 𝜆𝑐𝑟,𝑖 related to the kinematism of each collapse mechanism 

can be easily computed by the sum of the internal negative virtual works exploited by the plastic 

hinges and works given by the external forces. For the static theorem the critical load multiplier 

𝜆𝑐𝑟 will be the lowest. 

 In the end a check of the solution can be performed on the bending moment distribution, 

any value cannot exceed the value Mp. 

Figure 14 - sample portal frame 

Figure 15 - collapse mechanisms 
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3.3.2 DISTRIBUTED LOADS 

The solution of statically indeterminate structures loaded proportionally by distributed loads 

presents greater difficulties than structures subjected to concentrated forces. Recalling the 

procedure described in the previous paragraph, the complexity is the computation of critical 

cross-sections. There is not any systematic method, the only possibility might be given by a trial 

and error procedure or the analysis of the bending moment distribution maximums and 

minimums. 

3.3.1 RUPTURE ANALYSIS – NON-INFINITELY DUCTILE STRUCUTRES 

Both the incremental method, and the limit analysis described in the following paragraphs, lean 

on the use of plastic hinges that imply an infinitely ductile material. In fact even the most 

ductile material has an ultimate strain εu that may be reached in the most stressed fibres in the 

plastic zones, this means that the both analysis methods are completely insensitive to the 

ultimate strain condition but are based on pure kinematical assumptions. It is to be reported that 

some methods
1
 are available to define the ultimate rotation explicable by a plastic hinge and to 

compare the value with the one required reaching the ultimate condition. Such procedures 

undergo the name of rupture analysis methods. This approach may be of interest in determining 

a  unique solution to the “paradox of plastic hinge method” reported in paragraph 2.1.2. 

3.3.2 DEPENDENCE OF λCR ON COERCIVE STATES 

Given that the critical load multiplier λCR is unique and depends on the only value of loads and 

plastic bending moments, it may be to infer that the coercive states of redundant structures such 

as thermal effects or constraints displacements do not influence the magnitude of the ultimate 

load multiplier. This is consequence of the loss of structural redundancy at the formation of 

each plastic hinge, until the collapse that is related to an hypostatic structure, i.e. not really 

sensitive to coercive states. Even if the previous statements
2
 appear to be consistent, further 

remarks on this topic are reported in the following chapter. 

 

 

 

 

 

 

                                                      
1
 P. Pozzati C. Ceccoli,  Teoria e tecnica delle strutture vol. 3, paragraph 3.6 

2
 P. Pozzati C. Ceccoli,  Teoria e tecnica delle strutture vol. 3, paragraph 3.7.2 



25 

 

3.4 RELIABILITY OF STRUCTURES 

 

Many modern construction standards are based on semi-probabilistic approaches, i.e. loads and 

resistances are no longer taken as deterministic values but rather as random variables with their 

distributions. In the framework of this thesis it would be of interest to introduce some basic 

concepts related to the evaluation of the reliability of structural systems. The term “structural 

system” is referred to structures composed of many members or elements, each one to be 

verified under different limit states. Moreover there may exist limit states concerning the 

structure as a whole, which means that the reliability evaluation needs to consider multiple and 

perhaps correlated limit states. 

The failure of a structural system may be define by a number of different criteria such as: 

- maximum permissible stress in any point of the structure; 

- plastic collapse mechanism formed; 

- imposing a limit on the reduction of stiffness; 

- maximum deflection; 

- damage accumulation reaches a limit state (e.g. fatigue). 

Member or cross-sectional failure events defined as before may be combined into failure modes 

in order to investigate the structural reliability as a whole. When all failure modes are identified, 

each failure event  may be organized in order to form a sort of fault-tree diagram that can 

highlight logical relations between events. In order to define system reliability or its probability 

of failure as a function of the probability of failure of its components, two simple concepts may 

be involved: series and parallel systems. This types of systems are described in the following 

paragraphs. 

3.4.1 SERIES SYSTEMS 

In a series system, also called “weakest link” system, the system failure is reached when at least 

one component reaches its limit state. This concept can be depicted as a chain under traction, 

where the system resistance is given by the weakest ring resistance. This means that the 

probability of failure of the system can be combined by means of an OR logical link as follows: 

𝑃𝑓 = 𝑃(𝐹1 ∪ …∪ 𝐹𝑖 ∪ …∪ 𝐹𝑁) 

The probability of failure can be written as a function of the reliability of the system: 

𝑃𝑓 = 1 − 𝑅𝑠𝑦𝑠 

The reliability of the system is attained when all its components are in safe condition, described 

by the logical ling AND: 

𝑅𝑠𝑦𝑠 = (𝑅1 ∩ …∩ 𝑅𝑖 ∩…∩ 𝑅𝑁) 
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If all the reliabilities of the components are statistically independent: 

𝑅𝑠𝑦𝑠 = (𝑅1 ∩ …∩ 𝑅𝑖 ∩…∩ 𝑅𝑁) =∏𝑅𝑖

𝑁

𝑖=1

=∏(1 − 𝑃𝑓,𝑖)

𝑁

𝑖=1

 

Given that for each i
th
 component it holds that: 𝑅𝑖 = (1 − 𝑃𝑓,𝑖) 

In the end the probability of failure of a series system of statistically independent elements can 

be written as a function of the probability of failure of its components as: 

𝑃𝑓 = 1 − 𝑅𝑠𝑦𝑠 = 1 −∏(1 − 𝑃𝑓,𝑖)

𝑁

𝑖=1

 

This expression is the basis for the analysis of the probability of failure distribution of brittle 

materials [Weibull, 1939]. The series system model is suitable for structures with brittle 

behaviour, where the failure of a single component leads to a sudden internal redistribution of 

forces that triggers the so called “progressive failure”. It is to be noticed that this formulation 

may not apply for a system with a large number of brittle elements, where the strength reserve 

might be large and depending on the single study case. 

3.4.2 PARALLEL SYSTEMS 

In a parallel system the failure of a single element does not take to the failure of the whole 

system. This possibility is given by the redundancy of elements. Two types of redundancy can 

be defined: by “active redundancy” is named a system where all elements participate even in 

low loading phases; the “passive (or stand-by or fail-safe) redundancy” occurs when the 

redundant elements participate only to prevent failure of the system. 

The failure of a parallel system denoted by active redundancy if given by the logic connector 

AND, as far as all elements must fail to attain the global failure: 

𝑃𝑓 = 𝑃(𝐹1 ∩ …∩ 𝐹𝑖 ∩ …∩ 𝐹𝑁) 

If the probabilities 𝑃𝑓,𝑖 of failure of the single elements are statistically independent, the 

probability of failure of the whole system can be written as a function of the probability of 

failure of the single elements as: 

𝑃𝑓 = 𝑃(𝐹1 ∩ …∩ 𝐹𝑖 ∩ …∩ 𝐹𝑁) =∏𝑃𝑓,𝑖

𝑁

𝑖=1

 

It has to be reported that the definition of parallel system is not given by the only geometrical 

configuration or material characteristics, but is dependent on several factors such as relative 

stiffness and resistance of members, the local but also the global ductility of a system. It is thus 

complex to typify a single feature that a system needs to be defined as a parallel system, the key 
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is rather to understand the relative behaviour of elements and the way they interact inside the 

system. 

3.4.3 DUCTILE BEHAVIOUR & STRUCTURAL SAFETY 

The classical approach to structural analysis based on linear-elastic relationships is conducted in 

order to assure the structure to be not damaged in all its point. This means that the general 

design approach is to keep the stress level under exercise loads μex as a rate γEL of the elastic 

limit
3
 μEL. 

𝜇𝑒𝑥
𝐼 =

𝜇𝐸𝐿
𝛾𝐸𝐿⁄  

 

As far as it is function of stress level in the most stressed point of a structure, the reduction 

factor γEL can be defined as a local safety factor. 

This approach was exposed to strong critiques, given the fact that actions that may have 

different importance in terms of collapse or damage are not given the proportioned burden. 

On the contrary the limit analysis can be employed to define the exercise stress level μex as a 

rate of the collapse load μPL: 

𝜇𝑒𝑥
𝐼𝐼 =

𝜇𝑃𝐿
𝛾𝑃𝐿⁄  

In this case the reduction factor γPI depicts the behaviour of the whole structure, it can be thus 

defined as a global safety factor. The benefit of this approach is to have a clear view of the 

structure as a whole, focusing the analysis on failure modes. Some drawbacks are present as 

well: the simplicity of Prandtl diagram, local failure modes are difficult to be identified given 

the randomness of accidental loads, the difficulty of identifying failure modes of complex 

structures. 

The two criteria may seem detached and independent, based on different analysis methods, but 

in fact they are more related than expected. It has to be noticed that the global reduction factor 

γPI may present a strong deterioration in time given the unavoidable repetition of stresses 

increments given by accidental loading. An effective tool to limit the damage given by exercise 

loading is the local safety factor γEL because it describes exactly the elastic behaviour until 

yielding at any point of the structure. On the matter of the dualism of elastic analysis and limit 

plastic analysis William Prager
4
 expressed his point in a congress in Warsaw in 1972: “This  

might be the moral of our times: we are experiencing an extremely rapid development of new 

theories of material mechanics. While one or the other can arise, for engineers, the importance 

                                                      
3
 As previously reported in the paragraph 3.1.3 the elastic limit is given by the first yielding of any fibre 

inside the cross-section or in general the first yielding point in a structure. 
4
 Symposium on Foundations of plasticity, 1972 Warsaw 
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of linear-elasticity, we have to ponder carefully before abandoning the old, but maybe still 

incomplete theories that can cover a crucial role”. 

It is to remark how the limit or plastic approach does not replace completely the linear-elastic 

one but the both have to contribute to the full understatement of the structural behaviour: not 

only because the first one is suitable to catch the collapse behaviour and the second one 

describes carefully the structural response under service loads, but also because the two 

approaches together can clarify the link between the local behaviour of single elements and the 

global structural performance under different loading phases. 
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4. THE ANALYTICAL STUDY 

 

In order to show how the ultimate or collapse 

load of some simple structures, infinitely ductile, 

investigated by means if both limit and  

incremental plastic analysis is not affected by 

imposed deformations the following study case is 

investigated. A slender beam, long L, fixed at the 

ends, subjected in the first example to a 

concentrated force F (Figure 16 top), in the 

second to a distributed load q (Figure 16  bottom) 

which are increased until reaching collapse in presence of an imposed lowering δ on the right 

side. 

 

4.1 LIMIT PLASTIC ANALYSY 

In the first chapter the example of limit plastic analysis is reported in order to understand the 

expected value of ultimate load multiplier for the two examples. In the limit plastic analysis the 

presence of the lateral lowering δ is neglected because in the computation of the collapse load 

multiplier FU, the virtual works are not sensitive to imposed displacements. 

4.1.1 FIRST EXAMPLE – CONCENTRATED LOAD 

 

The degree of redundancy R is 2 in the vertical direction, the critical cross-sections C are 3, this 

means that the independent failure mechanisms are M=C-R=1. The mechanism is depicted in 

the Figure 17. The collapse load is to be evaluated by means of the virtual works: given the 

Figure 16 – sample structures 

Figure 17 - collappse mechanism 
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kinematism, the external virtual work is given by 𝐹𝑢 ∗ 𝜑
𝐿

2
 and the internal virtual work 

exploited by the plastic moments is −4𝑀𝑃 ∗ 𝜑 the ultimate condition is given by the sum of 

virtual works: 

𝐹𝑢 ∗ 𝜑
𝐿

2
− 4𝑀𝑃 ∗ 𝜑 = 0  →   𝐹𝑢 =

8𝑀𝑃
𝐿
   

This collapse mechanism is also statically admissible because the bending moment distribution 

never exceeds the value MP, the ultimate loading capacity of a beam is thus 𝐹𝑢 =
8𝑀𝑃

𝐿
 . 

4.1.2 SECOND EXAMPLE – DISTRIBUTED LOAD 

 

For the second example, the degree of redundancy R is still 2 in the vertical direction, the 

critical cross-sections C are 3, this means that the independent failure mechanisms are M=C-

R=1. The position of the central plastic hinge is a first try, the idea is to put it in the position of 

maximum expected bending moment; in the following paragraphs it will be demonstrated that 

its position in exactly in the centre of the beam and is independent on the displacement δ. The 

mechanism is depicted in the Figure 18. The collapse load is to be evaluated by means of the 

virtual works: given the kinematism, the external virtual work is given by 𝑞𝑢 ∗ 𝜑
𝐿2

8
 and the 

internal virtual work exploited by the plastic moments is −4𝑀𝑃 ∗ 𝜑 the ultimate condition is 

given by the sum of virtual works: 

𝑞𝑢 ∗ 𝜑
𝐿2

4
− 4𝑀𝑃 ∗ 𝜑 = 0  →   𝑞𝑢 =

16𝑀𝑃
𝐿2

   

This collapse mechanism is also statically admissible because the bending moment distribution 

never exceeds the value MP, the ultimate loading capacity of a beam is thus 𝑞𝑢 =
16𝑀𝑃

𝐿2
 . 

 

 

Figure 18 - collapse mechanism 
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4.2 INCREMENTAL PLASTIC ANALYSIS 

4.2.1 FIRST EXAMPLE – CONCENTRATED LOAD 

FIRST PHASE 

In the first phase, the structure is totally elastic and, in 

order to represent the magnitude of the lowering δ, the 

following parameters are defined: 

- δy is the lowering that would yield the two extremities of 

the beam, given the bending moment distribution Mδ 

generated by the imposed displacement, and is: 

𝑀𝛿(𝐿) = |𝑀𝛿(0)| =
 6δ𝐸𝐽 

𝐿2
 

𝑖𝑓 𝑀𝛿(𝐿) = |𝑀𝛿(0)| = 𝑀𝑦     →     𝛿𝑦 = 
 𝑀𝑦 𝐿

2

6𝐸𝐽
 

- ξ is the grade of displacement applied to the structure: 

𝜉 =  
𝛿

𝛿𝑦
;     𝜉 ∈ [0; 1] 

Given the previous expressions, the bending moment distributiongenerated by the lowering δ  

(Figure 19 lower diagram) can be defined in the reference system z1 as follows: 

𝑀𝛿(𝑧1) = −
 6δ𝐸𝐽 

𝐿2
+
 12δ𝐸𝐽 

𝐿2
(
𝑧1
𝐿
) =

𝛿

𝛿𝑦
(
 6𝛿𝑦𝐸𝐽 

𝐿2
+
 12𝛿𝑦𝐸𝐽 

𝐿2
(
𝑧1
𝐿
)) 

𝑀𝛿(𝑧1) = 𝜉 (−𝑀𝑦 + 2𝑀𝑦 (
𝑧1
𝐿
))      𝑧1 ∈ [0; 𝐿] 

For seek of simplicity the bending moment distribution generated by the force F (Figure 19 

upper diagram) can be defined on two different reference systems z1 and z2: 

𝑀𝐹(𝑧1) = −
𝐹𝐿

8
+
𝐹𝐿

4
(
𝑧1
𝐿
2⁄
)      𝑧1 ∈ [0;

𝐿
2⁄ ] 

𝑀𝐹(𝑧2) =
𝐹𝐿

8
−
𝐹𝐿

4
(
𝑧2
𝐿
2⁄
)      𝑧2 ∈ [0;

𝐿
2⁄ ] 

Given the linear-elastic behaviour of the structure the superimposition of effects can be applied 

as follows: 

𝑀𝑡𝑜𝑡 1(𝑧) = 𝑀𝛿(𝑧) + 𝑀𝐹(𝑧) 

 

Figure 19 - first phase bending 

moment distribution 



33 

 

As far as the both Mδ and MF diagrams are 

represented by liner functions, only three 

critical cross-section can be immediately 

identified as possible location of the 

plastic hinges as they always represent the 

local minimum or maximum. The three 

cross sections are z1=0, z1=L/2 and z1=L. The diagram Mtot shows the total bending moment 

distribution in the first phase: 

𝑀𝑡𝑜𝑡 1(0) = −
𝐹𝐿

8
−
 6δ𝐸𝐽 

𝐿2
= −

𝐹𝐿

8
− 𝜉𝑀𝑦

𝑀𝑡𝑜𝑡 1(
𝐿
2⁄ ) = +

𝐹𝐿

8

𝑀𝑡𝑜𝑡 1(𝐿) = −
𝐹𝐿

8
+
 6δ𝐸𝐽 

𝐿2
= −

𝐹𝐿

8
+ 𝜉𝑀𝑦

 

 

The first plastic hinge will appear in z=0 because the largest bending moment in magnitude is 

clearly   𝑀𝑡𝑜𝑡 1(0) = −
𝐹𝐿

8
− 𝜉𝑀𝑦  . 

The value of the first load step F1 is easyly computed as follows: 

𝑀𝑡𝑜𝑡 1(0) = −
𝐹1𝐿

8
− 𝜉𝑀𝑦 = 𝑀𝑦    

→   𝐹1 =
8𝑀𝑦

𝐿
(1 − 𝜉) 

  

SECOND PHASE 

 

As far as the first plastic hinge appeared in z=0, for further 

increments ΔF2, the structure will behave like the one in 

Figure 21, with an hinge in z=0, and fixed in z=L. Given the 

previous discussion about the linear distribution of the 

bending moment, the only two remaining cross-sections, 

z=L/2 and z=L, will be investigated. For further increments 

ΔF2 : 

𝑀ΔF2(
𝐿
2⁄ ) = +

5 ΔF2𝐿

32

𝑀ΔF2(𝐿) = −
6 ΔF2𝐿

32

 

To the further increments ΔF2 the bending moment from the first phase is added as follows: 

Figure 20 - first phase 

Figure 21- second phase 
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𝑀𝑡𝑜𝑡 2(
𝐿
2⁄ ) = 𝑀𝑡𝑜𝑡 1(

𝐿
2⁄ ) +𝑀ΔF2(

𝐿
2⁄ ) = +

𝐹1𝐿

8
+
5 ΔF2𝐿

32

𝑀𝑡𝑜𝑡 2(𝐿) = 𝑀𝑡𝑜𝑡 1(𝐿) + 𝑀ΔF2(𝐿) = −
𝐹1𝐿

8
+ 𝜉𝑀𝑦 −

6 ΔF2𝐿

32

 

Given that from the first phase the load multiplier F1 is:     𝐹1 =
8𝑀𝑦

𝐿
(1 − 𝜉) 

𝑀𝑡𝑜𝑡 2(
𝐿
2⁄ ) = +

𝐹1𝐿

8
+
5 ΔF2𝐿

32
= 𝑀𝑦(1 − 𝜉)  +

5 ΔF2𝐿

32

𝑀𝑡𝑜𝑡 2(𝐿) = −
𝐹𝐿

8
+ 𝜉𝑀𝑦 −

6 ΔF2𝐿

32
= −𝑀𝑦 + 2𝜉𝑀𝑦 −

6 ΔF2𝐿

32

 

The simplest way to find the second load multiplier is to impose that 𝑀𝑡𝑜𝑡 2(𝑧) = 𝑀𝑦 for both 

z=L/2 and z=L. The lowest value of ΔF2 will be the correct one. 

𝑀𝑡𝑜𝑡 2(
𝐿
2⁄ ) = 𝑀𝑦(1 − 𝜉)  +

5 ΔF2𝐿

32
= +𝑀𝑦    →    ΔF2 =

32

5
  
𝜉𝑀𝑦

𝐿
 

𝑀𝑡𝑜𝑡 2(𝐿) = −𝑀𝑦 + 2𝜉𝑀𝑦 −
6 ΔF2𝐿

32
= −𝑀𝑦    →    ΔF2 =

32

3
  
𝜉𝑀𝑦

𝐿
 

As far as   
32

5
  
𝜉𝑀𝑦

𝐿
<
32

3
  
𝜉𝑀𝑦

𝐿
  , the second plastic hinge appears in z=L/2 and the second load 

multiplier is: 

ΔF2 =
32

5
  
𝜉𝑀𝑦

𝐿
 

THIRD PHASE 

For further load increments ΔF2  the structure reacts as shown 

in Figure 22, as a cantilever element, subjected to a vertical 

force on its end, as far as the left portion of the beam does not 

offer any vertical reaction, given the presence of two 

subsequent hinges. The bending moment distribution is clearly 

triangular and reaches its maximum in the fixed end: 

𝑀ΔF3(𝐿) = −
ΔF3𝐿

2
 

To the further increments ΔF3 the bending moment from the first two phases are added as 

follows: 

𝑀𝑡𝑜𝑡 3(𝐿) = 𝑀𝑡𝑜𝑡 2(𝐿) + 𝑀ΔF3(𝐿) = −
𝐹1𝐿

8
+ 𝜉𝑀𝑦 −

6 ΔF2𝐿

32
−
ΔF3𝐿

2
 

Given that from the first two phases the load multipliers F1 and ΔF2 are: 

𝐹1 =
8𝑀𝑦

𝐿
(1 − 𝜉)    ;     ΔF2 =

32

5
  
𝜉𝑀𝑦

𝐿
 

The bending moment acting on the fixed end in third phase is thus: 

Figure 22 - third phase 
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𝑀𝑡𝑜𝑡 3(𝐿) = 𝑀𝑦(2𝜉 − 1) −
6 

5
𝜉𝑀𝑦 −

ΔF3𝐿

2
 

Imposing the yielding condition Mtot(L)=My, the third load multiplier is computed: 

𝑀𝑡𝑜𝑡 3(𝐿) = 𝑀𝑦(2𝜉 − 1) −
6 

5
𝜉𝑀𝑦 −

ΔF3𝐿

2
= −𝑀𝑦 

→    ΔF3 =
8

5
  
𝜉𝑀𝑦

𝐿
 

The total load multiplier that takes the structure to collapse will be the sum of the three steps 

previously described: 

F𝑢 = F1 + ΔF2 + ΔF3 =
8𝑀𝑦

𝐿
(1 − 𝜉) +

32

5
  
𝜉𝑀𝑦

𝐿
+
8

5
  
𝜉𝑀𝑦

𝐿
=
8𝑀𝑦

𝐿
(1 − 𝜉 + 𝜉) = 

=
8𝑀𝑦

𝐿
         ∀ 𝜉 ∈ [0; 1] 

The value of the ultimate or collapse load Fu is 8
𝑀𝑦

𝐿
  and does not depend on the displacement 

degree ξ. 
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4.2.2 SECOND EXAMPLE – DISTRIBUTED LOAD 

In the second example the same structure is investigated, subjected to the same lowering δ and 

to a distributed load q. As previously described (paragraph 3.3.2), in presence of a distributed 

load the development of the plastic analysis is more complicated, given that the location of local 

maximum or minimum bending moment may depend on the load q and the lowering δ. 

FIRST PHASE 

In the first phase the structure is totally elastic and, in 

order to represent the magnitude of the lowering δ, the 

following parameters are defined: 

- δy is the lowering that would yield the two extremities 

of the beam, given the bending moment distribution Mδ 

generated by the imposed displacement; 

𝑀𝛿(𝐿) = |𝑀𝛿(0)| =
 6δ𝐸𝐽 

𝐿2
         →         𝛿𝑦 = 

 𝑀𝑦 𝐿
2

6𝐸𝐽
 

- ξ represents the grade of displacement d applied to the 

structure 

𝜉 =  
𝛿

𝛿𝑦
;  𝜉 ∈ [0; 1] 

Given the previous expressions the bending moment 

diagrams are defined as follows: 

 

𝑀𝑞(𝑧) = 𝑞1 (−
𝑧2

2
+
𝑧𝐿

2
−
𝐿2

12
) 

𝑀𝛿(𝑧) = −
 6δ𝐸𝐽 

𝐿2
+
 12δ𝐸𝐽 

𝐿2
(
z

𝐿
) = −𝜉𝑀𝑦 + 2𝜉𝑀𝑦

𝑧

𝐿
 

Where Mq is the bending moment generated by the applied distributed load and Mδ generated by 

the imposed displacement, z is the abscissa starting from the left end, as shown inFigure 23. 

Given the linear-elasticity of the structure the superimposition of effects can be applied as 

follows:  

 

𝑀𝑡𝑜𝑡 1(𝑧) = 𝑀𝛿(𝑧) + 𝑀𝑞(𝑧) 

𝑀𝑡𝑜𝑡 1(𝑧) =  𝑞1 (−
𝑧2

2
+
𝑧𝐿

2
−
𝐿2

12
) − 𝜉𝑀𝑦 + 2𝜉𝑀𝑦

𝑧

𝐿
 

z 

Figure 23 - first phase 
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In order to define the first load step, the yielding condition will be applied to all the critical 

cross-sections and the first multiplier will be obtained taking the lowest value from all the 

critical cross-sections: 

𝑀𝑡𝑜𝑡 1(𝑧 = 0) = −
𝑞1𝐿

2

12
− 𝜉𝑀𝑦        𝑖𝑓 𝑀𝑡𝑜𝑡 1(0) = −𝑀𝑦    →      𝑞1 = 12

𝑀𝑦

𝐿2
(1 − 𝜉)  

𝑀𝑡𝑜𝑡 1(𝑧 = 𝐿) = −
𝑞1𝐿

2

12
+ 𝜉𝑀𝑦        𝑖𝑓 𝑀𝑡𝑜𝑡 1(𝐿) = −𝑀𝑦    →      𝑞1 = 12

𝑀𝑦

𝐿2
(1 + 𝜉) 

In order to find the maximum positive bending moment and its location, the first derivative of 

the bending moment distribution is imposed to be zero: 

𝑀𝑡𝑜𝑡 1
′(𝑧) =  

2𝜉𝑀𝑦

𝐿
− 𝑞1𝑧 + 

𝑞1𝐿

2
= 0   →      𝑧𝑚𝑎𝑥 =

𝐿

2
+
2𝜉𝑀𝑦

𝑞1𝐿
 

Where zmax is the abscissa of the maximum positive bending moment    𝑀𝑡𝑜𝑡 1(𝑧𝑚𝑎𝑥): 

𝑀𝑡𝑜𝑡 1(𝑧𝑚𝑎𝑥) =  
𝑞1𝐿

2

24
+
2(𝜉𝑀𝑦)

2

𝑞1𝐿
 

In order to define the firs multiplier the yielding condition is applied to the cross-section in zmax: 

 𝑖𝑓 𝑀𝑡𝑜𝑡 1(𝑧𝑚𝑎𝑥) =  
𝑞1𝐿

2

24
+
2(𝜉𝑀𝑦)

2

𝑞1𝐿
= +𝑀𝑦   → 𝑞1 = 12

𝑀𝑦

𝐿2
(1 ∓ √1 −

𝜉2

3
)      

𝑖𝑓   𝑞1 = 12
𝑀𝑦

𝐿2
(1 − √1 −

𝜉2

3
)    →    𝑧𝑚𝑎𝑥 > 𝐿 

→   𝑞1 = 12
𝑀𝑦

𝐿2
(1 + √1 −

𝜉2

3
)   

As far as: 

(1 + √1 −
𝜉2

3
) > (1 − 𝜉)  and (1 + 𝜉)  > (1 − 𝜉) 

The first plastic hinge appears in z=0 and the first load multiplier is: 

𝑞1 = 12
𝑀𝑦

𝐿2
(1 − 𝜉) 
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SECOND PHASE Δq2 

For further increments Δq2 the structure will react as 

the one represented in Figure 24, with a hinge in z=0. 

The bending moment distribution will be: 

𝛥𝑀𝑞2(𝑧) = 𝛥𝑞2 (−
𝑧2

2
+
3𝑧𝐿

8
) 

With the maximum and minimum: 

𝛥𝑀𝑞2(𝐿) = −
𝛥𝑞2 𝐿

2

8
  ;     𝛥𝑀𝑞2 (

3𝐿

8
) = +

9 𝛥𝑞2 𝐿
2

128
 

To the further increments Δq2 the bending moment 

from the first phase is added as follows: 

𝑀𝑡𝑜𝑡 2(𝑧) = 𝑀𝑡𝑜𝑡 1(𝑧) + 𝛥𝑀𝑞2(𝑧)

= 𝑞1 (−
𝑧2

2
+
𝑧𝐿

2
−
𝐿2

12
) − 𝜉𝑀𝑦 + 2𝜉𝑀𝑦

𝑧

𝐿
𝛥𝑞2 (−

𝑧2

2
+
3𝑧𝐿

8
) 

Imposing that the first load multiplier is  𝑞1 = 12
𝑀𝑦

𝐿2
(1 − 𝜉): 

𝑀𝑡𝑜𝑡 2(𝑧) = 12
𝑀𝑦

𝐿2
(1 − 𝜉) (−

𝑧2

2
+
𝑧𝐿

2
−
𝐿2

12
) − 𝜉𝑀𝑦 + 2𝜉𝑀𝑦

𝑧

𝐿
𝛥𝑞2 (−

𝑧2

2
+
3𝑧𝐿

8
) 

𝑀𝑡𝑜𝑡 2(𝑧) = 𝑧
2 (−

𝛥𝑞2
2
− 6

𝑀𝑦

𝐿2
(1 − 𝜉)) + 𝑧 (

3 𝛥𝑞2𝐿

8
+
𝑀𝑦

𝐿
(6 − 4𝜉)) −𝑀𝑦 

As it has been done for the first load step the yielding conditions will be imposed to all the 

critical cross-sections, the second load multiplier will be the one related to the lower increment 

Δq2 

𝑀𝑡𝑜𝑡 2(𝐿) = −
𝛥𝑞2 𝐿

2

8
−𝑀𝑦(1 − 2𝜉)          𝑖𝑓 𝑀𝑡𝑜𝑡 2(𝐿) = −𝑀𝑦       →         𝛥𝑞2 = 16

𝑀𝑦

𝐿2
𝜉 

Looking for the maximum positive and its location, the first derivative of the bending moment 

distribution is imposed to be zero: 

𝑀𝑡𝑜𝑡 2
′(𝑧𝑚𝑎𝑥) = 2𝑧 (−

𝛥𝑞2
2
− 6

𝑀𝑦

𝐿2
(1 − 𝜉)) + (

3 𝛥𝑞2𝐿

8
+
𝑀𝑦

𝐿
(6 − 4𝜉)) = 0 

→     𝑧𝑚𝑎𝑥 =
𝐿

2
 (

3 𝛥𝑞2
8 +

𝑀𝑦
𝐿2
(6 − 4𝜉)

−
𝛥𝑞2
2 − 6

𝑀𝑦
𝐿2
(1 − 𝜉)

) 

As far as the last expression is complicated to be investigated, it will be imposed that in z=L: 

 𝑀𝑡𝑜𝑡 2(𝐿) = −𝑀𝑦         →         𝛥𝑞
2
= 16

𝑀𝑦

𝐿2
𝜉  

And it will be checked that the positive bending moment is always lower than My: 

Figure 24 - second phase 
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𝑀𝑡𝑜𝑡 2 ,𝑚𝑎𝑥(𝑧) = 𝑀𝑡𝑜𝑡 2(𝑧𝑚𝑎𝑥) ≤ +𝑀𝑦       ∀ 𝜉 ∈ [0; 1]    ;      𝑧𝑚𝑎𝑥 = 𝑧𝑚𝑎𝑥 (𝛥𝑞2 = 16
𝑀𝑦

𝐿2
𝜉) 

It can be shown that, imposing the condition   𝑀𝑡𝑜𝑡 2(𝐿) = −𝑀𝑦  the maximum bending 

moment location zmax is always equal to L/2: 

𝑧𝑚𝑎𝑥 (𝛥𝑞2 = 16
𝑀𝑦

𝐿2
𝜉)   =   

𝐿

2
 

(

  
 
3 ∙ 16

𝑀𝑦
𝐿2
𝜉

8
+
𝑀𝑦
𝐿2
(6 − 4𝜉)

−
16
𝑀𝑦
𝐿2
𝜉

2 − 6
𝑀𝑦
𝐿2
(1 − 𝜉) )

  
 
   =    

𝐿

2
(

𝑀𝑦
𝐿2
 (6 + 2𝜉)

𝑀𝑦
𝐿2
(6 + 2𝜉)

)    =    
𝐿

2
 

Which leads to: 

𝑀𝑡𝑜𝑡 2 ,𝑚𝑎𝑥(𝑧) = 𝑀𝑡𝑜𝑡 2(𝑧𝑚𝑎𝑥) = +𝑀𝑦
(1 + 𝜉)

2
≤ +𝑀𝑦       ∀ 𝜉 ∈ [0; 1] 

The second plastic hinge appears in z=L and the second load multiplier is: 

𝛥𝑞2 = 16
𝑀𝑦

𝐿2
𝜉 

 

THIRD PHASE Δq3 

 

For further increments Δq3 the structure will behave as a simple 

supported beam, with the following bending moment 

distribution: 

𝛥𝑀𝑞3(𝑧) = 𝛥𝑞3 (−
𝑧2

2
+
𝑧𝐿

2
) 

𝛥𝑀𝑞3 (
𝐿

2
) =

𝛥𝑞3 𝐿
2

8
  ;    𝛥𝑀𝑞3(0) = 𝛥𝑀𝑞3(𝐿) = 0 

Adding the bending moment from the first two phases: 

𝑀𝑡𝑜𝑡 3(𝑧) = 𝑞1 (−
𝑧2

2
+
𝑧𝐿

2
−
𝐿2

12
) − 𝜉𝑀𝑦 + 2𝜉𝑀𝑦

𝑧

𝐿
𝛥𝑞2 (−

𝑧2

2
+
3𝑧𝐿

8
) + 𝛥𝑞3 (−

𝑧2

2
+
𝑧𝐿

2
) 

Imposing that the first two load multiplier are  𝑞1 = 12
𝑀𝑦

𝐿2
(1 − 𝜉)   ;    𝛥𝑞

2
= 16

𝑀𝑦

𝐿2
𝜉 

The bending moment distribution in the third phase is: 

𝑀𝑡𝑜𝑡 3(𝑧) =  𝑧
2 [−

𝑀𝑦

𝐿2
(6 + 2𝜉) −

𝛥𝑞3
2
] + 𝑧 [

𝑀𝑦

𝐿2
(6 + 2𝜉) +

𝛥𝑞3
2
] −𝑀𝑦 

𝑀𝑡𝑜𝑡 3(0) = 𝑀𝑡𝑜𝑡 3(𝐿) = −𝑀𝑦 

As far as the only critical cross-section is the one subjected to the maximum positive bending 

moment the first derivative of the bending moment is imposed to be equal to zero: 

Figure 25 - third phase 
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𝑀𝑡𝑜𝑡 3
′(𝑧) = 𝑧 [−

𝑀𝑦

𝐿2
(6 + 2𝜉) −

𝛥𝑞3
2
] + [

𝑀𝑦

𝐿2
(6 + 2𝜉) +

𝛥𝑞3
2
] = 0 

And the location of the maximum bending moment zmax is computed: 

→     𝑧𝑚𝑎𝑥 =
𝐿

2
(

𝑀𝑦

𝐿2
(6 + 2𝜉) +

𝛥𝑞3
2

𝑀𝑦

𝐿2
(6 + 2𝜉) +

𝛥𝑞3
2

) =
(
𝑀𝑦

𝐿2
(6 + 2𝜉) +

𝛥𝑞3
2 )

(
𝑀𝑦

𝐿2
(6 + 2𝜉) +

𝛥𝑞3
2 )

∙
𝐿

2
=
𝐿

2
         ∀ 𝜉 ∈ [0; 1] 

Where the yielding condition is: 

𝑀𝑡𝑜𝑡 3(𝑧𝑚𝑎𝑥) = 𝑀𝑡𝑜𝑡 3 (
𝐿

2
) =

𝛥𝑞3 𝐿
2

8
+
𝑀𝑦

2
(3 + 𝜉) = 𝑀𝑦 

That leads to the values 

→         𝛥𝑞3 = 4
𝑀𝑦

𝐿2
(1 − 𝜉) 

The third plastic hinge appears in z=L/2 and the third load multiplier is: 

𝛥𝑞3 = 4
𝑀𝑦

𝐿2
(1 − 𝜉) 

The total load multiplier that takes the structure to collapse will be the sum of the three steps 

previously described: 

𝑞𝑢 = 𝑞1+𝛥𝑞2 + 𝛥𝑞3 = 12
𝑀𝑦

𝐿2
(1 − 𝜉) + 16

𝑀𝑦

𝐿2
𝜉 + 4

𝑀𝑦

𝐿2
(1 − 𝜉) = 16

𝑀𝑦

𝐿2
         ∀ 𝜉 ∈ [0; 1] 

The value of the ultimate load qu is 16
𝑀𝑦

𝐿2
  and does not depend on the displacement degree ξ. 
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4.3 SOFTWARE IMPLEMENTATION 

 

In order to investigate how the f.e.m. (Sap2000 v.15) results are approximate w.r.t. the previous 

theoretical development, a practical example is solved for both the previous two examples. Five 

different lowering degrees will be applied (ξ= 0 ; 0,1 ; 0,5 ; 0,75 ; 1,0) and the results from the 

software will be compared with the expected theoretical ones. 

 

 

4.3.1 STRUCTURAL DESCRIPTION 

The structure is composed by a single steel beam fixed at the ends, with a span of L=5 m. The 

mechanical and geometrical parameters are reported in the following table: 

Geometry Material 

L 5 m 
E 

2,00E+08 kN/m
2
 

h 305 mm 199,9 GPa 

b 127 mm fy 350 MPa 

A 0,0043 m
2
 fu 450 MPa 

I3 6,57E-05 m
4
 Plastic analysis 

We 4,31E-04 m
3
 Mp=Wp*fy 171,92 kNm 

Wp 4,91E-04 m
3
 My=We*fy 150,96 kNm 

Wp/We 1,14 - δy= 
 𝑀𝑝 𝐿

2

6𝐸𝐽
 54,53 mm 

 

The cross section is a symmetric double-T with the following dimensions: 

- h is the external height; 

- b is the flange width; 

- A is the cross-sectional area; 

- I3 is the strong-axis moment of inertia; 

- We and Wp are the  elastic and plastic section modules. 

Figure 26 - analysed beam 
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The material characteristics correspond to a non-standardized steel (defined for the only 

theoretical development): 

- E is the Young modulus; 

- fy and fu are the yielding and maximum stresses. 

 

Given these parameters, the plastic analysis ones are computed as follows: 

- 𝑀𝑝 = 𝑤𝑝𝑓𝑦 = 172 𝑘𝑁𝑚  is the plastic bending moment; 

- 𝑀𝑦 = 𝑤𝑒𝑓𝑦 = 151 𝑘𝑁𝑚  is the plastic yielding moment; 

- δy= 
 𝑀𝑝 𝐿

2

6𝐸𝐽
   is the lowering of the right end that causes the complete yielding of the two 

fixed ends. 

In the development of the theoretical results no distinction was made between My and Mp , as 

far as both the limit and incremental plastic analysis are based on the hypothesis of the Prandtl 

bending moment – curvature diagram (Figure 27). At the same way, the software applies the 

same elastic-perfectly plastic behaviour, with the only notation of Mp instead of My. 

 

 

 

 

 

 

0

0,5

1

1,5

2

2,5

0 0,5 1 1,5 2 2,5 3

M/My 

χ/χy 

Cross-section model M-χ 

Linear-elastic

Real

Prandtl - Sap2000

Figure 27 - M-x diagrams 
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4.3.2 FIRST EXAMPLE – CONCENTRATED FORCE 

The theoretical development of first example is described in the previous chapter, the only 

results are reported here: 

𝐹1 =
8𝑀𝑝
𝐿
(1 − 𝜉)    ;     ΔF2 =

32

5
  
𝜉𝑀𝑝
𝐿
   ;     ΔF3 =

8

5
  
𝜉𝑀𝑝
𝐿

 

With an ultimate load of: 

F𝑢 = F1 + ΔF2 + ΔF3 =
8𝑀𝑝
𝐿
         ∀ 𝜉 ∈ [0; 1] 

Given the example structure previously described, the values of the load increments expected 

for the different lowering grades ξi are: 

 

  
Theoretical load multiplier [kN] 

ξ = δ / δy δ [mm] F1 ΔF2 ΔF3 

0 0,00 275,1 0,0 0,0 

0,1 5,45 247,6 22,0 5,5 

0,5 27,26 137,5 110,0 27,5 

0,75 40,89 68,8 165,0 41,3 

1 54,52 0,0 220,1 55,0 

 

And the ultimate load  F𝑢 = F1 + ΔF2 + ΔF3 =
8𝑀𝑝

𝐿
= 275,1 𝑘𝑁         ∀ 𝜉 ∈ [0; 1] 

SOFTWARE RESULTS 

In the following table all the results of a non-linear static analysis are reported, different load 

cases have been defined in order to subject the structure to the lowering grades ξi=δi/δy : 

ξ = δ / δy δ [mm] 

0 0,00 

0,1 5,45 

0,5 27,26 

0,75 40,89 

1 54,52 

 

All the load increments and the central node deflection for each lading stage and lowering grade 

are reported in the following table and graph: 
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δ/δy=0,0 
       

U3 [m] ΔU3 [mm] F [kN] ΔF [kN] 
    

0 0 0 - 
    

-0,015937 -15,937 275,065 275,065 
    

-0,04927 -49,27 275,065 0 
    

-0,082604 -82,604 275,065 0 
    

δ/δy=0,1 
   

δ/δy=0,5 
   

U3 [m] ΔU3 [mm] F [kN] ΔF [kN] U3 [m] ΔU3 [mm] F [kN] ΔF [kN] 

-0,002725 0 7,105E-15 - -0,01363 0 -1,421E-14 - 

-0,017133 -14,408 248,681 248,681 -0,021921 -8,291 143,095 143,095 

-0,019153 -16,428 269,656 20,975 -0,03202 -18,39 248,011 104,916 

-0,021387 -18,662 275,065 5,409 -0,043197 -29,567 275,065 27,054 

-0,10472 -101,995 275,065 0 -0,12653 -112,9 275,065 0 

δ/δy=0,75 
   

δ/δy=1,0 
   

U3 [m] ΔU3 [mm] F [kN] ΔF [kN] U3 [m] ΔU3 [mm] F [kN] ΔF [kN] 

-0,020445 0 7,105E-15 - -0,02726 0 1,421E-14 - 

-0,024913 -4,468 77,111 77,111 -0,027905 -0,645 11,126 11,126 

-0,040062 -19,617 234,484 157,373 -0,048104 -20,844 220,957 209,831 

-0,056827 -36,382 275,065 40,581 -0,070457 -43,197 275,065 54,108 

-0,14016 -119,715 275,066 0,001 -0,070457 -43,197 275,065 54,108 

 

 

As it is evident, all the ultimate loads Fu computed by the software are equal and do not depend 

on the lowering grade ξ , as expected. In order to evaluate the real efficiency of the non-linear 

analysis of the software, in the following table are reported and compared all the load 

increments ΔF: 
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Figure 28 - force displacement graph 
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Theoretical [kN] Sap2000 [kN] error 

ξ =δ/δy F1 ΔF2 ΔF3 F1 ΔF2 ΔF3 Fu F1 ΔF2 ΔF3 

0 275,1 0,0 0,0 275,1 0,0 0,0 275,1 0% 0% 0% 

0,1 247,6 22,0 5,5 248,7 21,0 5,4 275,1 0% 0% 0% 

0,5 137,5 110,0 27,5 143,1 104,9 27,1 275,1 -2% 2% 0% 

0,75 68,8 165,0 41,3 77,1 157,4 40,6 275,1 -3% 3% 0% 

1 0,0 220,1 55,0 11,1 209,8 54,1 275,1 -4% 4% 0% 

 
Fu 275,1 kN 

       

 

4.3.3 SECOND EXAMPLE – DISTRIBUTED LOAD 

The theoretical development of first example is described in the previous chapter, the only 

results are reported here: 

𝑞1 = 12
𝑀𝑝
𝐿2
(1 − 𝜉)   ;    𝛥𝑞

2
= 16

𝑀𝑝

𝐿2
𝜉    ;   𝛥𝑞3 = 4

𝑀𝑝
𝐿2
(1 − 𝜉) 

With an ultimate load of: 

𝑞𝑢 = 𝑞1+𝛥𝑞2 + 𝛥𝑞3 = 16
𝑀𝑝

𝐿2
         ∀ 𝜉 ∈ [0; 1] 

Given the example structure previously described, the values of the load increments expected 

for the different lowering grades ξi are: 

  
Theoretical load multiplier  [kN/m] 

δ/δy d [mm] qL1 ΔqL2 ΔqL3 

0,0 0,0 82,5 0,0 27,5 

0,1 5,5 74,3 11,0 24,8 

0,5 27,3 41,3 55,0 13,8 

0,8 40,9 20,6 82,5 6,9 

1,0 54,5 0,0 110,0 0,0 

  
qu 110,0 kN/m 

 

And the ultimate load    𝑞𝑢 = 𝑞1+𝛥𝑞2 + 𝛥𝑞3 = 16
𝑀𝑝

𝐿2
= 110,0 𝑘𝑁 𝑚⁄          ∀ 𝜉 ∈ [0; 1] 
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SOFTWARE RESULTS 

In the following table all the results of a non-linear static analysis are reported, different load 

cases have been defined in order to subject the structure to the lowering grades ξi=δi/δy: 

 

δ/δy=0,0 
       

U3 [m] ΔU3 [mm] qL [kN] Δq [kN] 
    

0 0 0 - 
    

-0,011953 -11,953 412,597 82,52 
    

-0,029564 -29,564 550,13 27,51 
    

-0,062897 -62,897 550,13 0,00 
    

δ/δy=0,1 
   

δ/δy=0,5 
   

U3 [m] ΔU3 [mm] qL [kN] Δq [kN] U3 [m] ΔU3 [mm] qL [kN] Δq [kN] 

-0,002725 0 7,105E-15 - -0,01363 0 -1,421E-14 - 

-0,013531 -10,806 373,021 74,60 -0,019848 -6,218 214,643 42,93 

-0,016439 -13,714 426,349 10,67 -0,03439 -20,76 481,379 53,35 

-0,032289 -29,564 550,13 24,76 -0,043194 -29,564 550,13 13,75 

-0,115622 -112,897 550,131 0,00 -0,126527 -112,897 550,131 0,00 

δ/δy=0,75 
   

δ/δy=1,0 
   

U3 [m] ΔU3 [mm] qL [kN] Δq [kN] U3 [m] ΔU3 [mm] qL [kN] Δq [kN] 

-0,020445 0 7,105E-15 - -0,02726 0 1,421E-14 - 

-0,023796 -3,351 115,666 23,13 -0,027743 -0,483 16,689 3,34 

-0,045609 -25,164 515,769 80,02 -0,056825 -29,565 550,101 106,68 

-0,050009 -29,564 550,13 6,87 -0,140158 -112,898 550,102 0,00 

-0,133342 -112,897 550,131 0,00 -0,193095 -165,835 550,102 0,00 

 

As it is evident, all the ultimate loads qu computed by the software are equal and do not depend 

on the lowering grade ξ , as expected. 

The value is correct,  𝑞𝑢 𝐿 = 16
𝑀𝑝

𝐿2
𝐿 = 110,0 ∙ 5 𝑘𝑁 = 550,0         ∀ 𝜉 ∈ [0; 1] 

In order to evaluate the real efficiency of the non-linear analysis of the software, in the 

following table are reported and compared all the load increments ΔF: 
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Theoretical [kN/m] Sap2000 [kN/m] Error 

δ/δy qL1 ΔqL2 ΔqL3 qL1 ΔqL2 ΔqL3 qu qL1 ΔqL2 ΔqL3 

0,0 82,5 0,0 27,5 82,5 0,0 27,5 110,0 0% 0% 0% 

0,1 74,3 11,0 24,8 74,6 10,7 24,8 110,0 0% 0% 0% 

0,5 41,3 55,0 13,8 42,9 53,3 13,8 110,0 -2% 2% 0% 

0,8 20,6 82,5 6,9 23,1 80,0 6,9 110,0 -2% 2% 0% 

1,0 0,0 110,0 0,0 3,3 106,7 0,0 110,0 -3% 3% 0% 

 
qu 110,0 kN/m 
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4.4 BRITTLE BEHAVIOUR & CONCLUSIONS 

 

All the previous examples and computations have been performed under the assumption of 

infinite ductility. On the other hand if the components are thought to be brittle, i.e. failure 

happens as soon as the maximum capacity is reached, the maximum bearing capacity decreases 

linearly with the initial displacement grade ξ. In particular the first load increment in order to 

reach the formation of the first plastic hinge, if applied to a brittle beam, it represents the 

collapse load. 

For the concentrated load, the bearing capacity of a brittle beam is given by: 

𝐹1 = 𝐹𝑈 =
8𝑀𝑃
𝐿
(1 − 𝜉) 

While in the case of a ductile beam the ultimate load bearing capacity is: 

F𝑢 = F1 + ΔF2 + ΔF3 =
8𝑀𝑃
𝐿
         ∀ 𝜉 ∈ [0; 1] 

 

For the distributed load, the bearing capacity of a brittle beam is given by: 

𝑞1 = 𝑞𝑈 = 12
𝑀𝑦

𝐿2
(1 − 𝜉) 

While in the case of a ductile beam the ultimate load bearing capacity is: 

𝑞𝑢 = 𝑞1+𝛥𝑞2 + 𝛥𝑞3 = 16
𝑀𝑦

𝐿2
         ∀ 𝜉 ∈ [0; 1] 

 

In this first simple example the ductility has the double benefit of increasing the perfect 

structure (i.e. in case of 𝜉 = 0) bearing capacity in case of distributed load from 12
𝑀𝑦

𝐿2
 to 16

𝑀𝑦

𝐿2
 

and in second place to make the ultimate load of ductile structures insensible on the initial 

displacement grade 𝜉. 

 

 

  



49 

 

 

  



50 

 

5. CONCRETE FRAME 

The previous case can be generalized to a more complex structure: in the following chapter a 

reinforced concrete frame will be subjected to an initial settlement configuration and then to a 

vertical push-over analysis in order to determine its vertical ultimate resistance. Different 

ductility levels will be given to the elements composing the frame in order to understand the 

relation between ductility and ultimate bearing capacity in presence of increasing settlement of 

supports. The aim of this analysis is not strictly related to the design of the frame components 

but, given some cross-section geometries and their resistance parameters, to report the ultimate 

bearing capacity, i.e. the maximum load multiplier λQ, as a function of both settlement ratio ξ 

and elements ductility μel. 

𝜆𝑄 = 𝜆𝑄(𝜉 ;  𝜇𝑒𝑙) 

 

5.1 STRUCTURE DESCRIPTION 

5.1.1 GEOMETRICL DESCRIPTION 

The frame is composed of four storeys and four spans, 

the spans are equally distributed and have a length of 5 

meters, the inter-storey distance is 3,1 meters. The 

frame has been thought as principal resisting part of a 

building having transversal slabs 6 meters long, the 

vertical loads will be thus given to the frame as linear 

loads, coming from a distributed load multiplied by a 

influence length of 6 meters. 

5.1.2 MATERIAL PROPERTIES 

The materials composing the structures are the most common ones used in the design of 

ordinary buildings: the concrete is of class C25/30 while the reinforcement steel is of class B 

450 C. the me4chanical parameters are reported in the following tables: 

CONCRETE C30/37   STEEL B450C   

fck 25 N/mm2 fyk 450 N/mm2 

fcd 14,2 N/mm2 fyd 391,30 N/mm2 

fctm 2,6 N/mm2 Agt 7,50 % 

fctk 1,8 N/mm2 εud 6,75 % 

εcu 0,35 % εyd 0,196 % 

Ecm 31 Gpa Es 200 Gpa 

 

Figure 30 - concrete frame 
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5.1.3 CROSS-SECION PROPERTIES 

In order to define two different  cases two different types of frame will be defined and subjected 

to the same loading configurations: one case where beams are weaker than columns and a 

second one  where beams are stronger than columns. To obtain such a behaviour the cross-

sections of elements will differ in the two cases. 

As expressed in the paragraph 3.2 the collapse load is obtained focusing on the only flexural 

resistance of elements, i.e. the shear resistance is thought to be sufficiently higher than the 

flexural one in order to obtain a only flexural failure. 

 

 

 

WEAK BEAM CASE 

In the first case the beam is in averagely
5
 weaker than the 

column. Its cross section is 30 cm wide and 50 cm high, the 

top reinforcement is placed at 4 cm from the top fibre, the 

bottom one at a distance d of 46 cm. Both the top and the 

bottom reinforcement are composed of 4 bars of a diameter 

of 16 mm (4Φ16), corresponding to an area of 𝐴𝑠 = 𝐴𝑠 =

8,04 𝑐𝑚2. The resisting bending moment MRd=135,9 kNm. 

 

In order to be more resistant than the beam, the column has 

a cross-sectional width of 30 cm and a depth of 60 cm, the 

reinforcement is placed in four layers, the external ones 4 

cm far from the concrete edge hold 5 bars with a diameter of 

20 mm (5Φ20), the internal layers have only two Φ20 bars. 

The external layers are the ones that provide the major part 

of the bending resistance have a steel area of 𝐴𝑠 = 𝐴𝑠 =

15,7 𝑐𝑚2. The MRd-NRd diagram for the column is depicted 

as follows. 

                                                      
5
 The column flexural resistance is function of the normal force applied, in this case the column is 

stronger than the beam for normal forces in between 0 and 0,85 NRd 

Figure 31 - r.c. sections details 
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WEAK COLUMN CASE 

In order to have a more complete description of the phenomenon also the case of weak column 

is investigated. In this configuration the crisis appears in the column sections, where the 

interaction M-N is more relevant and thus the procedure is more complex. 

The beam cross-section in this case maintains the same dimensions, while the reinforcement is 

increased. The both top and bottom reinforcement are composed of 4Φ20 bars, with a total area 

of reinforcement of 𝐴𝑠 = 𝐴𝑠 = 12,6 𝑐𝑚
2. The resisting bending moment is thus MRd=209,7 

kNm. 

In order to decrease the bending resistance trying to avoid the collapse for excessive normal 

force, the dimensions of the column cross-section have been changed. The height is reduced to 

40 cm, while the width is increased to 40 cm. the reinforcement ratio is kept reasonably low, 

𝐴𝑠 = 𝐴𝑠 = 8,04 𝑐𝑚
2. The MRd-NRd diagram for the column is depicted as follows.  

Figure 32 - M-N diagram "weak beam"  case 

Figure 33 - M-N diagram 

"weak column"  case 
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5.2 ACTIONS 

 

The actions applied to the structure are taken from an average civil building, with hollow-clay 

blocks slabs, an ordinary non-structural layering at each floor, and office accidental loads 

proposed by the Italian standard. 

In the framework of the thesis some initial differential settlements are imposed to the structure 

together with the permanent loads. The accidental load Q is then increased until failure of the 

structure. The ultimate or critical load multiplier λQ will be then reported and compared. 

 

5.2.1 VERTICAL LOADS 

As previously mentioned all the vertical loads are usual values for civil buildings. As far as the 

aim of this analysis is not the design of a particular structure but the investigation on its 

behaviour in ultimate conditions, the magnitude of loads is not a crucial parameter but it is 

reported for a complete description of the procedure. 

The permanent structural loads are given by the self-weight of beam and columns (𝛾𝑅𝐶 =

25 𝑘𝑁
𝑚3⁄ ) and by the resisting section of slabs, evaluated equal to 3,15 𝑘𝑁

𝑚2⁄ . The influence 

length is thought to be 6 meters. The structural load G1,k given by the slab to the frame is thus 

18,9 𝑘𝑁 𝑚⁄ . 

The permanent non-structural load G2,k is evaluated as 4,2 𝑘𝑁
𝑚2⁄  on the slab, the frame is thus 

subjected to 25,2 𝑘𝑁 𝑚⁄ . 

The variable load Q suggested by the Italian standards is 3,0 𝑘𝑁
𝑚2⁄    translated into 18 𝑘𝑁 𝑚⁄  

on the frame. 

 

5.2.2 SETTLEMENT CONFIGURATIONS 

In order to evaluate the impact of initial coercive states on the structure, two different settlement 

configurations have been imposed to the concrete frame. The shapes have been normalized on 

the highest displacement, and then scaled by the parameter  𝜉 𝛿𝑦 = (
𝛿

𝛿𝑦
) 𝛿𝑦 which gives the 

initial stress level. 
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SETTLEMENT CONFIGURATION 1 

The first differential settlement configuration is a linear anti-symmetric distribution of 

settlements, increasing on one side. The shape is depicted in Figure 34. 

 

The five supports from left to right are subjected to a settlement following the pattern δ (0; 0,25; 

0,5; 0,75; 1). 

Defining the yielding settlement δy is slightly more complicated than the simple case with a 

single beam: the general procedure starts from the choice of the most stressed cross-section 

from the combination of vertical permanent loads and the imposed settlements. The definition 

of δy is then based on the ration between the residual bending capacity after the application of 

vertical loads and the bending moment generated by the unitary settlement pattern (0; 0,25; 0,5; 

0,75; 1): 

𝛿𝑦 =
(𝑀𝑅𝑑 −𝑀𝐸𝑑

𝐺1+𝐺2)

𝑀𝐸𝑑
𝛿=1

 

In this way when the load pattern  𝛿 = 𝛿𝑦 is applied together with the permanent loads G1 and 

G2 the most stressed cross-section is subjected to an external bending moment 𝑀𝐸𝑑 = 𝑀𝑅𝑑. 

The value of 𝛿𝑦 for the first settlement configuration in the case of the “weak beam” structure is 

4,83 cm, while in the case of “weak column” it is equal to 13,3 cm given the lower stiffness. 

SETTLEMENT CONFIGURATION 2 

The second settlement configuration is a symmetric 

settlement, following the pattern δ (0; 0,3; 1; 0,3; 

0) as it is shown in Figure 35. 

This settlement configuration is more demanding 

with respect to the previous one, given the fact that 

the differential settlements are larger from one 

Figure 34 - settlement 

configuration 1 

Figure 35 - settlement configuration 2 
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support to the adjacent one. The yielding parameter  𝛿𝑦  is thus 0,65 cm for the case of the 

“weak beam” and 1,4 cm for in the case of “weak column”. 

 

 

5.3 STATIC PLASTIC ANALYSIS (VERTICAL PUSH-OVER) 

 

In order to evaluate the relationship between the bearing capacity of the structure and the initial 

settlements the ultimate load multiplier will be evaluated by means of a non-linear plastic 

analysis, performed increasing the vertical variable load multiplier λQ. The initial state of the 

structure is giving by the application of both the permanent loads G1 and G2 and the settlement 

ratio as: 

𝛾𝐺1𝐺 1 + 𝛾𝐺2𝐺 2 + 𝛿 = 1,3 𝐺 1 + 1,5 𝐺 2 +  𝜉 𝛿𝑦  ;    𝜉 ∈ [0,1] 

The variable load is then increased by means of the factor λQ until reaching the collapse. 

5.3.1 CROSS-SECTION MODELS 

In order to evaluate quantitatively the effect on ductility on the relation between the collapse 

load and the initial settlements different levels of cross-sectional ductility will be given to the 

elements and the structure will then be pushed to failure. In the end the critical or ultimate load 

multiplier will be function of both settlements and ductility levels: 

𝜆𝐶𝑅 = 𝜆𝐶𝑅(𝜉 ;  𝜇) 

In particular three levels are defined as reported in Figure 36: 

 

The cross-section in the “DUCTILE” case have a ductility that tends to infinite, while the 

“BRITTLE” cross-section fails as soon as the maximum capacity is reached. 

In the case “REAL” the cross-section has a finite ductility, i.e. the ultimate condition is reached 

when the ultimate curvature is reached. In this case the plastic non-linear analysis can be still 

DUCTILE REAL BRITTLE 

Figure 36 - cross-sectional ductility models 
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performed but the maximum rotational capacity of the plastic hinges must be carefully defined. 

The rotation capacity of plastic hinges of reinforced concrete elements depends on many factors, 

therefore many different expressions are available, one of the most simple and widespread is the 

one proposed by Baker and Aramakone in 1964 for non-confined elements: 

𝛩𝑝 =
𝜀𝑐𝑢−𝜀𝑐,𝑒𝑙

𝑥𝑢
 𝐿𝑃 for cracked sections 

𝛩𝑝 =
𝜀𝑐𝑢−𝜀𝑐,𝑒𝑙

d
 𝐿𝑃 for fully-compressed elements. 

Where: 

-  𝜀𝑐𝑢 and 𝜀𝑐,𝑒𝑙  are the plastic and elastic limit strains for concrete and value 3,5‰ 

and 2,0‰ 

- 𝑥𝑢  is the position of neutral axis in ultimate conditions; 

- 𝐿𝑃  is the length of the plastic hinge evaluated as follows: 

 𝐿𝑃 = 𝑘1𝑘2𝑘3 (
z

𝑑
 )

1
4
 𝑑 

Where: 

- 𝑘1 = 0,7 for hot rolled steel bars; 

- 𝑘2 = (1 + 0,5
𝑁

𝑁𝑅𝑑
) takes into account the normal force N; 

- 𝑘3 = 0,78 for concrete cubic resistance 𝑅𝑐𝑘 = 30 𝑀𝑃𝑎; 

- 𝑧 is the distance between the two section having the maximum ant the null bending 

moment; 

- 𝑑 is the distance between the reinforcement ant the top of the beam. 

The parameters are reported in the following table: 

 
WEAK BEAM WEAK COLUMN 

 
BEAM 30X50 COLUMN30X60 BEAM30X50 COLUMN 40X40 

h [cm] 50 60 50 40 

b [cm] 30 30 30 40 

d [cm] 46 56 46 36 

MRd [kNm] 135 >135 210 <210 

xu [cm] 5,3 32 5,1 36 

Lp [cm] 34,8 45,4 34,8 41,6 

𝛩𝑝 [rad] 0,010 0,0024 0,099 0,0013 

 

 

 



57 

 

5.3.2 “WEAK BEAM” STRUCTURE 

Given all the parameters described in the previous chapters, the vertical pushover analysis is 

performed increasing the parameter λQ until failure in the following load combination: 

𝛾𝐺1𝐺 1 + 𝛾𝐺2𝐺 2 +  𝜉 𝛿𝑦 + 𝜆𝑄𝑄    ;    𝜉 ∈ [0,1] 

The maximum load multiplier has been obtained with the ductile case, it is independent on the 

grade or the configuration of settlement and is: 

𝜆𝑄,𝑚𝑎𝑥(𝜉) = 3,07    ∀𝜉 ∈ [0,1] 

The value by itself is not of major interest and depends on the resistance of the elements and 

their geometry. It is interesting to compare this value with the ones obtained with the cases of 

lower ductility: 

- in the case of “REAL” ductility the value appears again to be independent on the grade 

or the configuration of settlement and is 𝜆𝑄,𝑚𝑎𝑥(𝜉) = 3,03    ∀𝜉 ∈ [0,1] ; 

- in the case of “BRITTLE” cross-sections, the value of 𝜆𝑄,𝑚𝑎𝑥 is lower than 3,07 even 

for zero settlement, in fact it values 2,40; moreover it appears to be strictly dependent on the 

settlement grade 𝜉 and tends to be zero for 𝜉 = 0 as expected. 

This results are summarized in the following graph, where 𝜆𝑄,𝑚𝑎𝑥(𝜉) is reported for the three 

different levels of ductility and for the two settlement configurations. 
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Figure 37 - ultimate capacity vs. degree of settlement 
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The results are also reported in the following tables: 

λQ max 

ξ - conf 1 ductile real brittle 

0 3,07 100% 3,04 99% 2,40 78% 

0,1 3,07 100% 3,04 99% 2,32 76% 

0,25 3,07 100% 3,04 99% 2,00 65% 

0,5 3,07 100% 3,04 99% 1,36 44% 

0,75 3,07 100% 3,04 99% 0,64 21% 

0,9 3,07 100% 3,04 99% 0,24 8% 

1 3,06 100% 3,04 99% 0,00 0% 

       
λQ max 

ξ - config 2 ductile real brittle 

0 3,07 100% 3,04 99% 2,40 78% 

0,1 3,07 100% 3,04 99% 2,24 73% 

0,25 3,07 100% 3,04 99% 2,00 65% 

0,5 3,07 100% 3,04 99% 1,28 42% 

0,75 3,07 100% 3,04 99% 0,56 18% 

0,9 3,07 100% 3,04 99% 0,15 5% 

1 3,06 100% 3,03 99% 0,00 0% 

 

 

5.3.3 “WEAK COLUMN” STRUCTURE 

The procedure for the “weak column” case is more complex as far as the resisting bending 

moment is function of the normal load applied: 

𝑀𝑅𝑑 = 𝑀𝑅𝑑(𝑁𝐸𝑑) 

 

This situation makes extremely complex and time consuming the definition of a yielding 

settlement δy for the two settlement configurations. This means that the value of δy may not 

correspond to the effective yielding condition of the most stressed element; nevertheless some 

data have been reported in order to find a correlation between some settlement grades 
𝛿

𝛿𝑦
 the 

ultimate loads and the ductility levels of the cross-sections. 

Moreover when the crisis is due to the columns the ductility of the “REAL” case is of complex 

definition but in general lower than the one provided by the column because it has to be 

remarked that the presence of normal force applied to the section reduces its flexural ductility. 

The vertical pushover analysis is performed increasing the parameter λQ until failure in the 

following load combination: 𝛾𝐺1𝐺 
1
+ 𝛾𝐺2𝐺 

2
+  𝜉 𝛿𝑦 + 𝜆𝑄𝑄    ;    𝜉 ∈ [0,1] . 
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The maximum load multiplier has been obtained with the ductile case, it is independent on the 

grade or the configuration of settlement and is  𝜆𝑄,𝑚𝑎𝑥(𝜉) = 4,7    ∀𝜉 ∈ [0,1] . 

The value by itself is not of major interest and depends on the resistance of the elements and 

their geometry. It is interesting to compare this value with the ones obtained with the cases of 

lower ductility: 

- in the case of “REAL” ductility the value is 𝜆𝑄,𝑚𝑎𝑥(𝜉) = 3,54     ; 

- in the case of “BRITTLE” cross-sections, the value of 𝜆𝑄,𝑚𝑎𝑥 is lower, for zero 

settlement it values 2,34 and in general decreases when 𝜉 increases. 

This results are summarized in the following graph, where 𝜆𝑄,𝑚𝑎𝑥(𝜉) is reported for the three 

different levels of ductility and for the two settlement configurations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 38 - ultimate capacity vs.  settlement grad 
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The results are also reported in the following tables: 

 

λQ max 

ξ - conf 1 ductile real brittle 

0 4,7 100% 3,54 76% 2,34 50% 

0,1 4,7 100% 3,54 76% 2,34 50% 

0,25 4,7 100% 3,54 76% 2,34 50% 

0,5 4,6 99% 3,54 76% 2,34 50% 

0,75 4,6 99% 3,42 73% 2,34 50% 

1 4,6 99% 3,37 72% 1,98 42% 

       
λQ max 

ξ - conf 2 ductile real brittle 

0 4,7 100% 3,54 76% 2,34 50% 

0,1 4,6 99% 3,3 70% 2,04 44% 

0,25 4,6 99% 3,24 69% 2,04 44% 

0,5 4,7 100% 2,92 62% 1,74 37% 

0,75 4,6 99% 2,6 56% 1,38 30% 

1 4,6 99% 2,31 49% 1,08 23% 

 

 

5.4 CONCLUSIONS 

 

Given the previous results some remarks are possible: 

- in all the previous cases the resistance of elements is not changed, the only variable 

parameters are the elements ductility and the initial settlements imposed to the frames 

- in the case of “weak beam” the behaviour of the structure is largely expected, i.e. the 

bearing capacity of brittle structure is reasonably lower and strictly dependent on the settlement 

grade, no difference is registered between the two settlement configurations. On the other hand 

the “ductile” and the “real” structures resistance is not dependent at all on the settlement grade 

and appears to be really similar, this is due to the fact that failure happens in the beam, in which 

the effective ductility is really large and independent on the loads applied. 
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- in the case of “weak column” the results are less expected but for this reason more 

interesting. In first instance the brittle structures resistance do not show a strict dependence on 

the settlement grade as in the case of “weak beam” but show a general decrease; this may be 

addressed to the fact that especially with lower settlement degrees (𝜉 = 0 ÷ 0,5) failure happens 

in cross-section poorly stressed by the initial settlements. In fact failure appears in the last 

storey columns, while the settlement of supports causes the most strong effects on the first 

storey columns as shown in Figure 39 . 

 

 

Moreover in the case of “real” ductility the bearing capacity decreases strongly with respect to 

the “weak beam” case, this is due to the fact that the ductility of a compressed column is much 

lower than the one of the beam due to the very low position of the neutral axis at the ultimate 

condition. The “ductile” structure indeed show an higher bearing capacity and a total insensivity 

to the settlements conditions. 

In conclusion of this chapter it is possible to notice the double benefit that ductility provides to 

structures: the ductile structures with equal resisting bending moment are able of an higher 

bearing capacity given the possibility to develop  a plastic failure mechanism; moreover the 

ductile structures show the possibility to “adapt” to imperfection that cause initial coercive 

states without any lost in the ultimate load bearing capacity. 

It has to be reported that, as it happened in the case of “weak column”, failure may be not fully 

dependent on the initial coercive states even for brittle structures. In this case the linear-elastic 

analysis of the structure is very useful to understand the internal forces distribution at low load 

levels in order to understand the effective correlation between settlements and failure modes of 

the structure. 

Figure 39 - brittle failure  in "weak column" case 
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6. PORTOMAGGIORE STUDY CASE 

6.1 INTRODUCTION 

 

All the ideas described in the previous chapters will be now applied to a real structure. The 

study case concerns a collapsed covering of a sports hall of the school campus of 

Portomaggiore, province of Ferrara (Emilia Romagna, Italy).  

 

The gym is a recent building, construction works started in 2005 and finished in March 2008. 

After only two years in service, the roof collapsed on 10
th
 March 2010 in the early hours of the 

day. The external cause was an overload due to an ordinary snowfall. As it will be explained in 

the following chapters, the failure was caused by the junction system of the spatial steel truss 

that formed the covering system, as far as it does not provide enough strength and ductility. 

In order to evaluate the effect of ductility on the ultimate load, different levels of ductility and 

strength will be given to the resisting truss structure, starting from theoretical values and 

approaching gradually the real behaviour of trusses at the moment of collapse; all the related 

maximum snow load will be then reported and compared in case of different initial coercive 

states. 

 

6.1.1 DESCRIPTION OF THE STRUCTURE 

The building is a prismatic structure, the dimensions are approximately 43x27 meters in plan 

and 9,8 m in elevation. In the following description two systems will be defined, the first is the 

concrete  frame system, it has the function of transmitting the vertical loads from the roof to the 

foundations and is also the horizontal resisting system. The second system is the steel truss 

Figure 40 - Portomaggiore gym 
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system composing the cover of the sports hall; as it will be exposed in the following, the causes 

of collapse concern almost exclusively this second structure. 

CONCRETE FRAME 

The frame system is composed of twenty concrete pillars, (60x50 cm of section), giving height 

to the copping beam (50x85 cm of section). The copping concrete beam has a regular span of 

6,55 meters on the short side and 7,03 meters on the long one. The foundation system is a strip 

footing, supporting the twenty columns and forming a regular grid on the interior of the 

structure on order to give a larger regularity to the system. 

 

This structure did not suffer almost any damage during collapse and was not involved in the 

failure. In the following table are reported the mechanical parameters of the reinforced concrete, 

as described in the design technical report: 

Foundations concrete  Class Rck=30 N/mm2  

Frame concrete  Class Rck=35 N/mm2  

Steel reebars  Class FeB44K  
 

 

 

 

 

 

 

 

 

Figure 41 - Concrete frame system with foundations 



64 

 

STEEL TRUSS ROOF 

The truss system supporting the sports hall cover is composed of 790 rods, divided into two 

layers, each one counts 187 rods, the lower ones work mainly under traction while the upper 

ones are subjected to compression. 

 

The two layers are connected by 416 diagonal rods to guarantee shear connection. All 

components are 3,25 meters long, i.e. the truss system is composed of equilateral pyramids. The 

two layers are thus 2,30 meters far from each other. All rods are connected by 230 nodes, made 

of a screw and spheres system. The steel truss system transfers the loads to the concrete frame 

through 42 steel supports. In the middle of the lower layer, the central rod is shorter (3,00 

meters) in order to give to the roof a 4% slope in the transversal or shorter direction for rain 

water discharge. 

 

 

 

 

 

 

 

 

 

Figure 42 - steel truss elevation 
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6.1.2 TRUSS SYSTEM DESCRIPTION 

The only part of the structure that was involved in the collapse on the 10
th
 March 2010 was the 

truss system, in the following chapter all its components will be shortly described. 

RODS 

The rods are made of structural steel S275 JR, characterized by a yielding stress of 275 N/mm
2
, 

an ultimate stress of 430 N/mm
2
, modulus of elasticity of 210 GPa. 

All the rods have a tubular cross-section, defined in the following lines by its external diameter 

and its thickness denoted by the code B_diameter X thickness. Five different cross-sections are 

present in the steel truss: B70x3 and B70x5 for the diagonals and B82.5x3; B82.5x5, B101.6x5 

for the horizontal layers. In the following table all the relevant cross-sectional parameters are 

reported: 

 

SECTION m [kg/m] As [cm] 

[cm
2
] 

I [cm
4
] ρ Wel [cm

3
] 𝑁𝑅𝑑

+  [𝑘𝑁] 𝑁𝑐𝑟,𝑒
−  [𝑘𝑁] 𝑁𝑏𝑢𝑐𝑘

+  [𝑘𝑁] 

B70x3 5,0 6,3 35,5 2,4 10,1 165 -68 -56 

B70x5 8,0 10,2 54,2 2,3 15,5 267 -104 -85 

B82.5x3 5,9 7,5 59,3 2,8 14,4 196 -114 -88 

B82.5x5 9,6 12,2 91,8 2,8 22,3 319 -177 -139 

B101.6x5 11,9 15,2 177,0 3,4 34,9 397 -342 -235 

 

 

Where: 

- m is the self-weight expressed in [kg/m]; 

- As is the cross-sectional area 

- I is the moment of inertia of the cross-section in every direction given the circular shape; 

- ρ = √𝐼 𝐴⁄  is the radius of gyration of the section; 

- 𝑊𝑒𝑙 is the elastic modulus of the section; 

- 𝑁𝑅𝑑
+  is the yielding tension axial force; 

- 𝑁𝑐𝑟,𝑒
−  is the eulerian critical load taking the free length 𝑙0 = 𝑙 = 3,25 𝑚; 

- 𝑁𝑏𝑢𝑐𝑘
+  is the buckling load given by the Italian standard

6
. 

 

 

                                                      
6
 NTC08 , cap 4.2.4.1.3 ,curve a 
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CONNECTION SYSTEM 

The connection system is composed of a large number of elements connecting each rod to the 

others, in each connection point meet in average eight rods connected by a system of screws to a 

single sphere. The series of components is depicted in Figure 43: 

 

 

These connections are similar to the type ‘Mero kk’ as the German company MERO TSK 

Gmbh patented these joints at the 40’s. 

The connection system is compound of 5 pieces: ‘Sfera-stress’, ‘Vite-stress’, ‘Ghiera-stress’, 

‘Nottolino-stress’ and ‘Terminale-stress’. In the next lines it will be explained the function of 

each piece. 

- ‘Sfera-stress’: all the rods axis converge in the central point where the sphere is placed. 

The material of the spheres is a non-alloy free-cutting steel according to the norm EN 10027-1, 

table 13. It  is similar to steel 11SMnPb37 which properties are specified in the norms EN 

10087 and EN 10277-3. The main properties are the yielding stress fy = 375 MPa and the tensile 

strength fu = 460 MPa. The designer took an admissible strength σadm = 250 MPa. 

- ‘Vite-stress’: it is the adjacent element to the sphere. It’s a fastener with two different 

screws, the big one, screwed to the element ‘ghiera-stress’ and the small one festende to the 

‘sphere-stress’. They are the transition between a small screw suitable to the small drill made in 

the sphere and the conic piece called ‘ghiera-stress’. The ‘vite-stress’ is made of a non-alloy 

steel according to the norm EN 10027-1, table 12, similar to a steel C60 which properties are 

specified in the norms EN 10083 and EN 10277-2. The main properties are the yielding stress fy 

= 780 MPa and the tensile strength fu = 930 MPa. The designer took an allowable stress σadm = 

520 MPa. 

Figure 43 - ‘Mero kk’  connection system 
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- ‘Ghiera-stress’ : it is the conic elements which makes the transition between a small 

screw and the diameter of the rod in order to connect through the ‘terminale-stress’ the rod. It is 

made of the same material of ‘sfera-stress’, that is the steel 11SMnPb37. 

- ‘Nottolino-stress’ : It’s a special kind of bolt, also called stud, i.e. a bold without head 

where all the shank is threaded in order to connect two female screws composing the ‘ghiera-

stress’ and the ‘terminale stress’. The material of the ‘nottolino-stress’ is specified fastener 

which properties are regulated by ISO norm 898-1. The normalized class of the stud is 10.9 with 

the following properties: yielding stress fy = 900 MPa and the tensile strength fu = 1000 MPa. 

The designer took an admissible stress of σadm = 458 MPa. 

- ‘Terminale-stress’ : It’s the last element of the linking system and it has a female 

screw to join the ‘nottolino-stress’ in one side and in the other one is welded with the rod. It is 

made of the same material of the ‘sfera-stress’, that is the steel 11SMnPb37. 

In the next picture the position of each component is depicted. 

 

SUPPORTS 

The truss system is connected to the concrete frame by means of 42 steel supports. This 

connectors are made of a vertical steel rod welded steel plates and ribs in order to abstain a stiff 

element. The supports are then connected to the concrete girder by means of  ISO bolts M22 

drowned in concrete at the moment of cast and then inserted into the holes of the base plate of 

the supports and tighten with a nut. The rod is then screwed to the first ‘Sfera-stress’ of the truss 

system.  

Figure 44 - exploded diagram of the connection system 
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TRACTION TESTS ON THE CONNECTION SYSTEM 

In the framework of this thesis the ultimate load bearing capacity of the structure has to be 

compared between different levels of ductility and initial imperfections: 

𝑞𝑈 = 𝑞𝑈 (𝜉 ;  𝜇) 

The main cause of the collapse on the 10
th
 March 2010 was the bad quality of  the connection 

system, in particular in the thread between the components “sfera-stress” and ”vite-stress”, 

which led to a strong decrease in both resistance and ductility of the connection. The aim of this 

thesis does not regard the particular failure mechanism of the screwed system or the material 

quality, the only two relevant parameters taken into account are the connection resistance and its 

ductility. Therefor in the following line are reported some results of the traction tests performed 

on the connection systems and the sections that are connected by each of them. 

 

Figure 45 - steel supports 

Figure 46 - traction tests on the connection system 
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The traction tests show a strongly brittle behaviour of the connection that fails suddenly for the 

pull-out of the “vite-stress” from the “sfera-stress”. The pull-out happens with the reduction of 

the external diameter of the bolt of “vite-stress” and the internal diameter of  “sfera-stress” as 

shown in Figure 46 The values for the different types of connections are reported in the 

following table: 

 

 

Where: 

- A is the area of nominal effort for each bolt section 

- σadm is the admissible stress defined by the designer for the material composing the bolts, 

similar to a steel C60; 

- 𝑁𝑅𝑑
𝐸𝑋𝑃 is the expected exercise force of the connections; 

- 𝑁𝑅𝑑
𝑅𝐸𝐴𝐿   is the maximum traction force obtained from the tests 

- RODS CONNECTED indicates which cross-sections are connected by the different types of 

“vite stress”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

BOLT A [mm
2
] σadm [N/mm

2
] 𝑁𝑅𝑑

𝐸𝑋𝑃 [𝑘𝑁] 𝑁𝑅𝑑
𝑅𝐸𝐴𝐿  [𝑘𝑁] RODS 

CONNECTED 

M30 561 520 291,7 227,7 B101.6x5 

M24 353 520 183,6 89,7 B82.5x3 & B82.5x5 

M18 192 520 99,8 83,3÷80,8 B70x3 & B70x5 
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6.2 ACTIONS 

 

In the following paragraphs all the loads applied to the model are reported. 

6.2.1 PERMANENT LOADS 

The permanent loads applied to the truss system are given by the only self-weight of the steel 

structure and the permanent non-structural components of the cover and insulation layers. 

The self-weight of the steel components obtained by the steel density (𝜌𝑠 = 7,85 𝑡
𝑚3⁄  ) is 

approximately 𝐺1,𝑘 ≅ 16
𝑘𝑔

𝑚2
⁄   on the roof surface.  

The permanent non-structural load has been evaluated by the designer as 𝐺2,𝑘 = 25
𝑘𝑔

𝑚2
⁄  . 

This load expressed as a distributed load has been applied to the truss model as concentrated 

forces on the upper layer nodes, given the influence area 𝐴𝐺2 = 3,25 × 3,25 𝑚
2 = 10,56  𝑚2. 

To all the nodes of the upper layer have been thus applied 2,65 kN . 

6.2.2 VARIABLE LOADS 

The loads described in the following paragraph are denominated “variable” not only because of 

their nature, as for the snow load, but rather because both the snow load and the initial supports 

displacements are varied in order to obtain the maximum snow load bearing capacity as a 

function of the initial imperfection generated by the initial supports displacements. 

Q – SNOW LOAD 

The snow load indicated by the designer is equal to a distributed load 𝑄𝑘 = 160 × 0,8 =

128
𝑘𝑔

𝑚2
⁄  The engineer that investigated on this case reported that in the night of the 10

th
 

March 2010 the actual snow load was considerably lower, evaluated as 𝑄𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 = 40 
𝑘𝑔

𝑚2
⁄  , 

approximately one third of the characteristic expected value. 

SUPPORTS DISPLACEMENTS 

The supports initial displacements have been defined as a random extraction of 42 values from a 

normal distribution having average μ=0 mm and a standard deviation of 𝜎 =
5 𝑚𝑚

1,64
= 3,05 𝑚𝑚 

defined in order to obtain the 95
th
 percentile equal to 5 millimetres. the next figure shows the 

displacement application on the 42 supports reported in millimetres. 
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6.3 STRUCTURAL ANALYSYS 

In order to understand the magnitude of the actions applied to the elements and the required 

structural performance, some linear elastic analysis have been performed on the structural 

model. The linear load combinations applied to the structure are: 

- ULS: the ultimate vertical limit state evaluated as 𝛾𝐺1𝐺1,𝑘 + 𝛾𝐺2𝐺2,𝑘 + 𝛾𝑄𝑄𝑘  

- Characteristic load combination : 𝐺1,𝑘 + 𝐺2,𝑘 + 𝑄𝑘 

- “collapse” load combination, i.e. the evaluated expected loads present on the structure at 

the moment of collapse : 𝐺1,𝑘 + 𝐺2,𝑘 + 𝑄𝑐𝑜𝑙𝑙𝑎𝑝𝑠𝑒 

6.3.1 LINEAR ELASTIC ANALYSYS 

Given its rectangular shape, the truss system is divided into two main directions, a longitudinal 

one on the longest side of 42 meters and the shortest one 26 meters long. The horizontal rods are 

Figure 47 - supports imposed displacements 

Figure 48 - normal forces distribution ULS combination 
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following these two directions, the transversal alignment is the shorter, and thus the stiffer, that 

means the most stressed one; for this reason the transversal rods have the larger sections in the 

central position. The longitudinal rods on the contrary are less stressed and maintain the section 

B82.5x3 for the whole length. If the truss system is seen as a single component, the stresses in 

the horizontal rods follow the bending moment applied by the vertical load, that is larger in the 

central portion and decreases towards the supports as shown in Figure 48. 

On the other hand the diagonal rods are stressed proportionally to the shear applied to the truss 

system as a whole. As shown in Figure 49, this means that the most stressed diagonal 

components are the ones placed towards the supports, their cross-sections are therefore larger, 

B70x3 in the central portions and B70x5 in the rods close to the supports. 

 

In the ultimate limit state ULS combination the central rods of the upper transversal layer, 

section B101,6x5, are subjected to a maximum of 260 kN compression force, in the longitudinal 

direction, section B82,5x3, to a maximum of 90 kN in compression. In the lower layer in the 

transversal direction the most stressed  rods with a section of B101,6x5 are subjected to 250 kN 

under traction, while in the longitudinal direction with a section  B82,5x3, the most stressed 

rods are subjected to only 80 kN under traction. 

 

 

 

Figure 49 - normal forces distribution on diagonal rods ULS combination 
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6.3.2 BUCKLING ANALYSIS & VERIFICATIONS 

As far as the rods composing the truss system are very slender, the buckling resistance is the 

real resistance of rods under compression. In the composition of the truss system all the 

elements subjected to compression have the same length (3,25 m); given that the rotational 

stiffness of the connection system is really difficult to evaluate and modelling the truss system 

as connected by hinges, the effective length is taken as 𝑙0 = 𝑙 = 3,25 𝑚. In the following table 

all the buckling resisting forces of the different cross-section are reported: 

section 𝑁𝑅𝑑
+  [𝑘𝑁] L0 [m] A [m2] I [m4] ρ [m] λ 

70x3 165 3,25 0,000631 3,55E-07 0,024 137 

70x5 267 3,25 0,001021 5,42E-07 0,023 141 

82,5x3 196 3,25 0,000749 5,93E-07 0,028 116 

82,5x5 319 3,25 0,001217 9,18E-07 0,027 118 

101x5 397 3,25 0,001517 1,78E-06 0,034 95 

 
NTC 08 

section α - curve a 𝑁𝑐𝑟,𝑒
−  [𝑘𝑁] λ_ Φ χ 𝑁𝑏𝑢𝑐𝑘

+  [𝑘𝑁] 

70x3 0,21 68,33 1,594 1,91603 0,335585 55 

70x5 0,21 104,40 1,640 1,995838 0,319141 85 

82,5x3 0,21 114,11 1,344 1,522632 0,446613 88 

82,5x5 0,21 176,66 1,376 1,570727 0,429638 137 

101x5 0,21 341,66 1,105 1,20553 0,592594 235 

 

Where: 

- 𝑁𝑅𝑑
+  is the yielding tensile force 

- L0 , A , I are the effective length, cross-sectional area and inertial modulus 

- ρ = √𝐼 𝐴⁄  is the radius of gyration of the section; 

- 𝜆 =
ρ
𝐿⁄  is the elements slenderness; 

- α is the imperfection factor given by Italian standards; 

- 𝑁𝑐𝑟,𝑒
−  is the eulerian critical load; 

 

Given these values some rods in the central portion appear to not be verified against buckling. 

This fact, even if relevant in the design process is not related to the collapse, that happened to 

lower force levels: the equivalent snow load for the ultimate limit state is approximately 207 

kg/m
2
, while the snow present at the moment of collapse was evaluated to be 40 kg/m

2
. 

A linear buckling analysis has also been performed in order to check the previously reported 

results and the buckling mode shapes and buckling load multiplier agreed fully. 
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6.4 STATIC PLASTIC ANALYSIS (PUSH-OVER) 

 

In the framework of this thesis, a vertical push-over analysis has been performed on the 

numerical model in order to evaluate the structural ultimate capacity and the its relation with the 

initial imperfection describe in the paragraph 6.2.2. In order to investigate how this relation is 

influenced by the ductility, in the non-linear static analysis different cross-sectional model  have 

been defined and then the ultimate snow load bearing capacity is been computed and compared. 

6.4.1 CROSS-SECTION MODELS 

The three cross-sectional force-displacement models relay on imposing to the members three 

different failure modes that influence both resistance and ductility of members. 

YIELDING-YIELDING MECHANISM – STOCKY ELEMENTS 

The firs model relies on the only material capacity, without taking into account any second-

order effects or the connection capacity. The only failure possible for elements is yielding f the 

cross-section both in tension and compression as reported in the following graph: 

 

As far as the failure mode is under compression only, in the abscissa the nodal displacement 𝑢 is 

reported, it is related to the axial strain  𝜀𝑧 by the relation 𝑢 = 𝜀𝑧 𝐿. 

Beside the graph is reported a sketch representing the rod element as stocky and connected by 

welding to the node, i.e. that exploits exactly the yielding force both in tension and in 

compression. 

 

 

 

section 𝑁𝑅𝑑
∓  [𝑘𝑁] 

70x3 ∓165 

70x5 ∓267 

82,5x3 ∓196 

82,5x5 ∓319 

101x5 ∓397 

Figure 50 - stocky elements model 
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BUCKLING-YIELDING FAILURE MODE – SLENDER ELEMENTS 

 A second axial force-displacement model is defined taking into account the second order 

effects,. i.e. the buckling resistance of elements, but still considering the yielding resistance of 

the material under traction. 

 

BUCKLING-PULL-OUT FAILURE MODE – SLENDER ELEMENTS WITH 

CONNECTORS 

The third force-displacement model takes into account also the connectors capacity under 

traction, while in compression the failure is given by buckling of the rods.  

  

 

The connection capacity under traction is defined following the traction tests described in the 

paragraph 6.1.2 and the correspondence between connection systems and elements sections. 

When an element is connected to two different “vite-stress” systems, with different resistances, 

the weakest one is taken for the whole element. 

section 𝑁𝑅𝑑
+  [𝑘𝑁] 𝑁𝑅𝑑,𝑏𝑢𝑐𝑘

−  [𝑘𝑁 

70x3 165 -55 

70x5 267 -85 

82,5x3 196 -88 

82,5x5 319 -137 

101x5 397 -235 

section 𝑁𝑐𝑜𝑛𝑛
+  [𝑘𝑁] 𝑁𝑅𝑑,𝑏𝑢𝑐𝑘

−  [𝑘𝑁 

70x3 82,5 -55 

70x5 82,5 -85 

82,5x3 89,7 -88 

82,5x5 89,7 -137 

101x5 227,7 -235 

Figure 51 - slender elemetns model 

Figure 52 - connected elements model 
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SOFTWARE MODEL IMPLEMENTATION 

In order to represent the models described in the previous paragraphs in the software different 

types of axial plastic hinges have been defined: 

- For the “stocky-elements” model, the so called displacement-controlled plastic 

hinges have been defined, i.e. ductile hinges. These devices, put at the extremities 

of the element, start working as axial plastic hinges at the ends of elements when 

the yielding capacity is reached and maintain the same force level for the whole 

plastic deformation, until the ultimate strain 𝜀𝑈 is reached. 

- In the “slender-elements” model, given the fact that the behaviour under traction is 

ductile and under compression is strongly brittle, the analysis was carried out “by 

hand”: an incremental analysis has been performed making use of a Matlab code in 

order to manage the huge number of rods, extract the most stressed ones and if 

failed under traction, to remove them and to apply the further load increments until 

failure of the structure is reached. 

- In the “slender-elements with connectors” model a software-based analysis has been 

carried out, making use of the so called force-controlled hinges, that correspond to 

the brittle failure modes given by buckling und pulling-out of the rods. 
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6.4.2 “STOCKY-ELEMENTS” STRUCTURE 

The vertical pushover analysis is performed using as initial condition the presence of permanent 

loads with their characteristic value and the possible presence of supports settlement. 

𝐺 1 + 𝐺 2(+𝛿) 

The snow load is then increased until reaching failure of the steel truss. In this firs case the 

structure performs very well and huge ultimate snow load have been reached. In the following 

graph the snow load vs. the related central node deflection is reported. 

On the graph the required snow load are reported for the ultimate limit state in blue, the 

characteristic combination in green and the snow load level present ate moment of collapse on 

the 10
th
 March 2010 in red. The structure behaves linearly, i.e. no yielding of elements appears, 

until the load of 265 kg/m
2
, which is really beyond the 208 required by the ultimate limit state. 

Moreover the plastic benefit of the structure is very high: the ultimate snow loadbearing 

capacity of the structure taking into account the only yielding of its elements is 350 kg/m
2
. 

In the framework of the thesis, the influence of initial displacements of supports is evaluated: in 

the case of stocky-elements model the structural behaviour are strongly ductile, and no 

difference in the ultimate bearing capacity appears if initial supports settlements are given (red 

graph indicated as G1+G2+imperf 5mm). 
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Figure 53 - force-displacemente graph 



78 

 

6.4.3 “SLENDER-ELEMENTS” STRUCTURE 

The overall bearing capacity of the structure decreases significantly if the buckling of the 

elements is taken into account. The two drawbacks that the second order effects imply are both 

a reduction on strength and the reduction of ductility under compression as far as buckling is a 

strongly brittle failure. in the following graph the snow load and the central deflection are 

reported. 

 

In this second case the lower structural ductility and resistance are evident: the ultimate bearing 

capacity drops from the 350 to the 190 kg/m
2
, and the ultimate deflection in the central node is 

only 8 cm. the first linear-elastic branch maintains the same slope, this means that the stiffness 

is not affected for lower loading levels. 

The structural ductility is much lower given the brittleness of the buckling failure mode. This 

becomes more clear comparing different initial conditions: in the case of zero initial settlements 

with the only permanent loads applied (blue graph) the bearing capacity reaches 190 kg/m
2
, 

while with the presence of the initial displacement distribution with the 95
th
 percentile equal to 5 

mm the ultimate capacity of the structure is only 155 kg/m
2
. 
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Figure 54 - force-displacement graph 
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It is interesting to notice how the fact that some rods are not verified against buckling is shown 

in the graph: the structure, even if in perfect conditions, cannot reach the ULS load level of 207 

kg/m
2
 (blue line). 

 

6.4.4 “SLENDER ELEMENTS WITH CONNECTORS” STRUCTURE 

Taking into account the traction resistance of connectors leads to a significant drop in the load-

bearing capacity of the structure.  

 

The overall capacity is decreased to 53 kg/m
2
 for the structure without imperfections. It seems 

that the load-bearing capacity of the structure, even if strongly reduced by the bad quality of the 

connection system, may be sufficient to meet the load demand of 40 kg/m
2
 present on the 10

th
 

March 2010. Unfortunately the small application of imperfection with a 95
th
 percentile of 3 

millimetres is sufficient to drop the overall resistance from 53 to 45 kg/m
2
. 

It is expectable that at the moment of collapse several coercive states were acting on the 

structure, not only the non-planarity of supports, but also some assembly tolerances or some 

thermal differences that may have caused local overloads, not re-distributed because of the lack 

of ductility, that may have triggered a progressive collapse of the structure. 
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Figure 55 - force-displacement graph 
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6.5 CONCLUSIONS 

 

In the previous chapter the steel truss system supporting roof of the gym in Portomaggiore (FE) 

has been analysed by means of both linear and non-linear analysis, calibrating some initial 

imperfection given by the supports differential settlements in order to understand if the vertical 

load-bearing capacity in this case may vary under different conditions od coercive states an 

ductility levels. In the following graph the maximum snow load that the truss system with the 

real connection resistances can bear as a function of initial imperfections. 

 

In conclusion the main responsibility of the collapse, as reported from the engineers that 

investigated on this collapse, are to be addressed to the bad quality of the connection system 

composed of screwed spheres. By the way the load-bearing capacity of the truss system as a 

whole, even if decreased significantly, seems to be sufficient with respect to the snow load 

present at the moment of collapse. In fact the other drawback of the poor connection system is 

the brittleness of its pull-out failure mode, that together with the unavoidable presence of small 

coercive states given by the probable presence of imperfections such as supports settlements, 

Figure 56 - collapsed truss system in Portomaggiore (FE) 
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Figure 57 - ultimate snow load function of initial imperfections 
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length tolerances or thermal actions, may have caused the activation of a progressive collapse of 

the structure. The collapse seems to be caused by the pull-out of some B82,5x5 rods, in the 

lower layer in central position and the consequent collapse of adjacent alignments until a full 

kinematism forms. 
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7. CONCLUSIONS 

The aim of this thesis was to investigate the relation between coercive states that may be caused 

by imperfections such as differential settlements, thermal effects, and construction tolerances 

and the ultimate bearing capacity of static-indeterminate structures. 

In particular the role of ductility has been analysed and in many cases it has been showed as a 

sufficient grade of ductility may lead to the insensibility of structures ultimate bearing capacity 

to imperfection and coercive states. 

Both hand-made calculations, software based analysis and direct comparison of results have 

been employed to better understand the behaviour of different types of structures and materials, 

their related ductility and strength. 

In conclusion ductility seems to play the major role in two positive benefits to the ultimate 

capacity of structures: 

- ductility allows in general structures to develop a plastic collapse mechanism that 

leads to a larger load levels with respect to the first formation of local yielding; 

- ductile structures bearing capacity showed a general independence from coercive 

states. 
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