
Alma Mater Studiorum · Università di Bologna

Campus di Cesena
Scuola di Ingegneria e Architettura

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA E
SCIENZE INFORMATICHE

NEW MARKOV CHAIN BASED METHODS FOR
SINGLE AND CROSS-DOMAIN SENTIMENT

CLASSIFICATION

Tesi in: Data Mining

Relatore:
Prof. GIANLUCA MORO
Correlatori:
DOTT. ING. GIACOMO
DOMENICONI
DOTT. ING. ROBERTO
PASOLINI

Presentata da:
ANDREA PAGLIARANI

ANNO ACCADEMICO 2013-2014
III SESSIONE

A B S T R A C T

Nowadays communication is switching from a centralized scenario,
where communication media like newspapers, radio, TV programs
produce information and people are just consumers, to a completely
different decentralized scenario, where everyone is potentially an in-
formation producer through the use of social networks, blogs, forums
that allow a real-time worldwide information exchange. These new
instruments, as a result of their widespread diffusion, have started
playing an important socio-economic role. They are the most used
communication media and, as a consequence, they constitute the
main source of information enterprises, political parties and other or-
ganizations can rely on. Analyzing data stored in servers all over the
world is feasible by means of Text Mining techniques like Sentiment
Analysis, which aims to extract opinions from huge amount of un-
structured texts. This could lead to determine, for instance, the user
satisfaction degree about products, services, politicians and so on.
In this context, this dissertation presents new Document Sentiment
Classification methods based on the mathematical theory of Markov
Chains. All these approaches bank on a Markov Chain based model,
which is language independent and whose killing features are sim-
plicity and generality, which make it interesting with respect to pre-
vious sophisticated techniques. Every discussed technique has been
tested in both Single-Domain and Cross-Domain Sentiment Classifi-
cation areas, comparing performance with those of other two previ-
ous works. The performed analysis shows that some of the examined
algorithms produce results comparable with the best methods in liter-
ature, with reference to both single-domain and cross-domain tasks,
in 2-classes (i.e. positive and negative) Document Sentiment Classi-
fication. However, there is still room for improvement, because this
work also shows the way to walk in order to enhance performance,
that is, a good novel feature selection process would be enough to
outperform the state of the art. Furthermore, since some of the pro-
posed approaches show promising results in 2-classes Single-Domain
Sentiment Classification, another future work will regard validating
these results also in tasks with more than 2 classes.

3

A B S T R A C T

Oggigiorno la comunicazione si sta evolvendo da uno scenario cen-
tralizzato, in cui mezzi di comunicazione come giornali, radio, pro-
grammi televisivi producono informazione e le persone fungono so-
lamente da consumatori, ad uno scenario completamente differente,
decentralizzato, in cui chiunque è potenzialmente un produttore di
informazioni grazie all’uso di social network, blog, forum che perme-
ttono uno scambio di informazioni capillare in tempo reale. Questi
nuovi strumenti, grazie alla loro diffusione mondiale, stanno iniziando
sempre più a giocare un importante ruolo socio-economico. Essendo i
mezzi di comunicazione oggi più usati, costituiscono di conseguenza
la fonte di informazioni primaria per aziende, partiti politici ed altre
organizzazioni. L’analisi dei dati memorizzati nei server sparsi per il
mondo è possibile grazie a tecniche di Text Mining come la Sentiment
Analisys, il cui obiettivo è l’estrazione di opinioni da enormi quantità
di testo non strutturato. Tali analisi possono permettere di deter-
minare ad esempio il grado di soddisfazione dell’utente riguardo a
prodotti, servizi, personaggi politici, ecc. All’interno di questo con-
testo, questo lavoro presenta nuovi metodi di Document Sentiment
Classification basati sulla teoria matematica delle Markov Chain. Tutti
gli approcci proposti hanno come loro modello base una Markov
Chain e non fanno assunzioni sulla lingua in cui i testi da analizzare
sono scritti. Le carte vincenti del modello proposto, che lo rendono
interessante rispetto alle precedenti tecniche spesso molto sofisticate,
sono la sua semplicità e la sua generalità. Tutte le tecniche discusse
sono state testate sia in Single-Domain che in Cross-Domain Senti-
ment Classification, confrontando le performance con quelle di altri
due lavori precedenti. Le analisi condotte mostrano che alcuni degli
algoritmi esaminati producono risultati in linea con i metodi della
letteratura con riferimento alla Document Sentiment Classification a
2 classi (i.e. positiva e negativa), sia in problemi single-domain che in
cross-domain. Tuttavia il margine di miglioramento è ancora ampio,
in quanto questo lavoro indica la strada da percorrere al fine di incre-
mentare le performance, ovvero la necessità di un nuovo metodo di
feature selection, che dovrebbe essere sufficiente a superare lo stato
dell’arte. Inoltre, dal momento che alcuni degli approcci presentati
si sono dimostrati promettenti nella Single-Domain Sentiment Clas-
sification a 2 classi, un ulteriore sviluppo futuro riguarderà la vali-
dazione di questi risultati estendendoli al caso di Single-Domain Sen-
timent Classification con più classi.

5

I dedicate my dissertation to my girlfriend Francesca, my family and
my friends. Francesca has always given her support, saying me to

believe in what I was doing and encouraging all my choices.
I also dedicate my work to my parents and my grandparents. They

always made sure I had everything I needed. I will never forget
what they have done, giving me the opportunity to carry on with

my studies.
A special thought is directed to my uncle Orio, who has gone

prematurely. He always said to me that there is not a career better
than another, what really matters is doing anything you like, because
this is the only way to make dreams come true. I will remember his

words forever and I will follow his precious suggestion.
In addition, I give a special thanks to my cousin Elisa, who gave me

many valuable advices regarding both my dissertation and my
future.

Finally, I dedicate this dissertation to my friends, especially Berna
and Mangia, who have constantly asked me about working progress.

A C K N O W L E D G E M E N T S

This dissertation would not have been possible unless the support of
my supervisor, Professor Gianluca Moro, who gave me the opportu-
nity of going abroad to carry it out. He trusted and supported me not
only in Italy, but also during my stay in Spain, giving many precious
suggestions and conveying interest to research.
I am also grateful to Professor Rubén Cuevas Rumín and to the
whole Telematic Engineering Department at Charles III University
of Madrid. They kindly hosted me from October to February, also
providing two important datasets, whose analysis helped improving
this work.
In addition, I would like to thank my co-supervisors, Dr. Eng. Gi-
acomo Domeniconi and Dr. Eng. Roberto Pasolini, who constantly
gave me food for thought. Without their valuable aid in several cir-
cumstances, results would not be as good as they are now.
Finally, I want to express my gratitude to my girlfriend and my fam-
ily, who always morally support me and help me believing in myself.

7

D E C L A R AT I O N

I declare that I have developed and written the enclosed Master The-
sis completely by myself, and have not used sources or means with-
out declaration in the text. Any thoughts from others or literal quo-
tations are clearly marked. The Master Thesis was not used in the
same or in a similar version to achieve an academic grading or is
being published elsewhere.

C O N T E N T S

1 markov models : an introduction 25

1.1 What is a Markov model? 25

1.2 Regular Markov Models 26

1.2.1 Directed Graph Representation 27

1.2.2 Transition Matrix Representation 29

1.2.3 Beyond Discrete-Time Markov Chains 29

1.2.4 Properties 32

1.2.5 Applications 34

1.3 Hidden Markov Models 35

1.3.1 Forward-Backward Algorithm 37

1.3.2 Viterbi Algorithm 38

1.3.3 Baum-Welch Algorithm 39

2 the state of the art 41

2.1 Information Retrieval 41

2.1.1 Markov Model based methods in Information
Retrieval 41

2.2 Text Categorization 46

2.2.1 Markov Model based methods in Text Catego-
rization 46

2.3 Opinion Mining and Sentiment Analysis 49

2.3.1 Markov Model based methods in Opinion Min-
ing and Sentiment Analysis 50

2.4 Cross-Domain Text Categorization 53

2.4.1 Document Sentiment Categorization approaches 58

3 the proposed markov chain based methods 61

3.1 A basic Markov model 61

3.2 The new proposed Markov based algorithm 66

3.2.1 The learning phase 67

3.2.2 The classification phase 69

3.3 Markov based algorithm: some variants 71

3.3.1 Document expansion by means of Markov Chain
Stationary Distribution 72

3.3.2 MCTM expansion by means of Markov Chain
Stationary Distribution 73

3.3.3 Document expansion by means of words dis-
tance 74

3.3.4 Do connection weights always represent term
co-occurrences? 75

3.3.5 Multi-Source approach 76

4 framework and implementation 79

4.1 The concurrent framework 79

4.1.1 Framework architecture 80

11

Contents

4.2 Markov Chain algorithm implementation 85

5 analysis and results 89

5.1 Data sources 89

5.1.1 Amazon dataset 89

5.1.2 Iberia and Repsol datasets 90

5.2 Planned tests 91

5.3 Testing the basic algorithm parametrization 92

5.3.1 Term weighting 92

5.3.2 Stemming vs lemmatization 94

5.3.3 Document and MCTM expansion 94

5.3.4 Document expansion by means of words dis-
tance 95

5.3.5 First comparison: MCAlgorithm vs SFA and PBT 96

5.4 Analysis of the words dictionary 97

5.4.1 Testing common and domain specific features 98

5.4.2 Testing supervised term weighting techniques 99

5.4.3 Testing opinion words 102

5.4.4 Adding feature selection ranking to the MCTM 104

5.5 Testing Multi-Source approach 106

5.6 Analysis in Single-Domain Sentiment Classification 107

5.7 Testing Repsol and Iberia 108

12

L I S T O F F I G U R E S

Fig. 1 The figure shows a directed graph representation of
a Markov Chain. Nodes represent the states in the
system being modeled, whereas arcs the transition
probabilities between them. Notice that this is a
fully connected graph, because each state is con-
nected with all others, but there is no need for this
since P(rainyn+1|rainyn) = 0. 28

Fig. 2 The figure represents the same model as in figure 1.
However, we can notice that the arc expressing that
P(rainyn+1|rainyn) = 0 has been removed, since
probabilities equal to 0 do not add useful informa-
tion. Thus, this representation is preferable to the
one in figure 1. 29

Fig. 3 The figure shows a HMM. The nodes y1, y2, ..., yn

represent hidden states. The nodes x1, x2, ..., xn rep-
resent observations. Notice that each state is related
to the previous one according to the Markov prop-
erty. Furthermore, state yi is also related to the
observation xi. 36

Fig. 4 The figure shows an example of undirected graph
used to model co-occurrences between terms. Each
arc between two nodes ti and tj has weight aij. 63

Fig. 5 The figure shows the same example already shown
in figure 4, to which positive and negative classes
have been added. From this example, we could no-
tice that t3 is not linked to negative class and t4 is
not linked to positive class. This means the former
never appears in negative documents, whereas the
latter never appears in positive documents. 64

Fig. 6 The figure shows the mapping between source and
target by means of common terms. st and tt repre-
sent two domain-specific terms, belonging to source
and target respectively. ct represents a common
term between the two domains. We could notice
that, even if tt is not linked with class, we know
that it is related to ct, which in turn is linked with
class. This is the way to walk in order to align
different domains. 67

13

List of Figures

Fig. 7 The figure shows the UML class diagram represent-
ing the concurrent architecture the framework relies
on. Notice that ITask is a powerful abstraction, be-
cause the concurrent architecture just depends on
it. In order to perform the analysis denominated
Task1, just two things are required: the first is that
Task1 needs to implement ITask, whereas the second
is that a method (called for instance addTask1()) has
to be created in MultithreadedSupport in order to
instantiate Task1. 85

Fig. 8 The figure shows a comparison between some pro-
posed methods combining opinion words with other
FS techniques on the one hand and SFA and PBT
on the other hand. 104

Fig. 9 The figure shows a comparison between some pro-
posed methods on the one hand and SFA and PBT
on the other hand. The proposed techniques ana-
lyzed here make use of opinion words and a super-
vised FS method to build the dictionary of terms
to be used for classification. Then, a term weight-
ing proportional to the feature selection ranking is
applied while constructing the MCTM. 106

Fig. 10 The figure compares some variants of MCAlgorithm
with both SFA and PBT, in a Single-Domain Sen-
timent Classification context. As immediately visi-
ble, results are approximately the same. 108

Fig. 11 The figure shows the comparison between some vari-
ants of MCAlgorithm in Single-Domain Sentiment
Classification over Iberia and Repsol datasets. F1-
measure is the metric used for the comparison. 110

Fig. 12 The figure shows the comparison between some vari-
ants of MCAlgorithm in Cross-Domain Sentiment
Classification over Iberia and Repsol datasets. F1-
measure is the metric used for the comparison. 111

14

L I S T O F TA B L E S

Table 1 The table represents the different but equiva-
lent way of expressing Markov Chain elements
in directed graph and transition matrix. 30

Table 2 This table shows the Transition Matrix repre-
sentation of a Markov Chain. CS stands for
current states, whereas FS stands for future
states. Notice that all rows sum-up to 1. 30

Table 3 Summary of the usage of Markov Chains in
the main Information Retrieval works. 54

Table 4 Summary of the usage of Markov Chains in
the main Text Categorization works. 55

Table 5 Summary of the usage of Markov Chains in
the main Sentiment Analysis works. 56

Table 6 This table shows the structure of MCTM. A
′

represents the set of transition probabilities that,
starting from a term, another term will be reached.
Similarly, B

′
represents the set of transition prob-

abilities that, starting from a term, a category
will be reached. E represents the set of tran-
sition probabilities that, starting from a class,
a term will be reached. F represents the set
of transition probabilities that, starting from a
class, another class will be reached. 68

Table 7 This table transposes the example in figure 5

to the MCTM. Notice that: dent1=a12 + a13 +

a14 + a15 + b11 + b12; dent2=a12 + b21 + b22;
dent3=a13 + a35 + b31; dent4=a14 + a45 + b42;
dent5=a15 + a35 + a45 + b51 + b52. 69

Table 8 This table explains the meaning of true pos-
itives (tp), true negatives (tn), false positives
(f p) and false negatives (f n). tp, tr, f p and f n
have to be related to a particular class. ci is
the class to which we are referring, whereas cj
stands for any other category. 92

Table 9 This table shows the accuracy of MCAlgorithm,
by using Porter stemmer, DFmin = 50 and chang-
ing the way term weights have been computed. 94

Table 10 This table shows the accuracy of MCAlgorithm,
by using DFmin = 50, TW = TFrel and compar-
ing Porter stemmer with Adorner lemmatizer for
English language. 95

15

List of Tables

Table 11 This table shows the accuracy of MCAlgorithm
and some of its variants, namely MCDocExpMCTM

and MCMCTM, by using Porter stemmer, DFmin =

50, TW = TFrel and T = 4. 95

Table 12 This table shows the comparison between the
standard MCAlgorithm and one of its variants
designed for document expansion, that is MCDocExpwd .
Other parameters used for this analysis are Porter
stemmer, DFmin = 50, TW = TFrel and T = 4.
The results display the accuracy reached by the
employed algorithm. 96

Table 13 This table shows the comparison of MCAlgorithm
with both SFA and PBT. The parameters used
for MCAlgorithm are Porter stemmer, DFmin = 50,
TW = TFrel . Each entry represents the classifi-
cation accuracy reached by an algorithm on a
certain couple source-target. 97

Table 14 This table shows the comparison between MCAlgorithm
and MCCommFeat. The parameters of the former
are Porter stemmer, TW = TFrel and DFmin =

50, while in the latter the last parameter be-
comes DFmin = 25 and a constraint is added,
namely only common words between source
and target must be in dictionary. 98

Table 15 This table shows the comparison between MCAlgorithm
and MC4KFeat. The parameters of the former
are Porter stemmer, TW = TFrel and DFmin =

50, while in the latter the last parameter is
substituted by introducing the constraint that
the most frequent 2000 common features, 1000
source specific features and 1000 target specific
features must be kept. 99

Table 16 This table shows the accuracy of MCAlgorithm in
comparison with its upper bound MCUB

Algorithm

and with the state of the art. MCUB
Algorithm have

been computed by keeping the best 250 terms
according to the IG score and applying the
standard MCAlgorithm. MCUB

Algorithm results have
been averaged on 10 random partitions con-
taining 1600 documents for training set and
400 documents for test set. 101

16

List of Tables

Table 17 This table shows the accuracy of MCAlgorithm
to which a feature selection method was previ-
ously applied. In IG_LogDFs

min-250-INF, scores
have been computed by means of IG · LogDFs

min,
keeping the best 250 features belonging to the
source, while no feature belonging just to the
target has been maintained. Similarly in CHI2_LogDFs

min-
250-INF, with the only exception that scores
have been computed by means of CHI2 · LogDFs

min. 102

Table 18 This table shows the accuracy of MCAlgorithm
to which a feature selection method was pre-
viously applied. OW states that only opinion
words have been selected as features. In all
others, apart from opinion words, other fea-
tures have been selected according to scores
assigned by a FS method. In CHI2_LogDFs

min-
250-INF-un, scores have been computed by means
of CHI2 · LogDFs

min, keeping the best 250 fea-
tures belonging to the source, while no fea-
ture belonging just to the target has been main-
tained. Similarly in GR-250-INF-un, with only
exception that scores have been computed by
means of GR. Again, in GR-500-INF-un scores
have been computed by means of GR, but this
time keeping the best 500 features belonging
to the source. 103

Table 19 This table shows the accuracy of MCAlgorithm.
Term weights have been modified multiplying
them by the rank returned from the applied FS
method. Features belonging just to the target
have never been maintained. In RFvar_LogDFs

min-
1000-INF-rank, scores have been computed by
means of RFvar · LogDFs

min, keeping the best
1000 features belonging to the source. Simi-
larly, in IG_LogDFs

min-250-INF-rank scores have
been computed by means of IG · LogDFs

min, keep-
ing the best 250 features belonging to the source.
In GR-500-INF-un-rank, opinion words have
been retrieved and scores have been computed
by means of GR, keeping the best 500 features
belonging to the source. Finally, in CHI2-250-
INF-rank scores have been calculated by means
of CHI2, keeping the best 250 features belong-
ing to the source. 105

17

List of Tables

Table 20 This table shows the performance of MCMS.
Several FS methods have been used to choose
the dictionary, but the best results are those
with GR and RFvar · LogDFs

min, always with 250
terms. RFvar relies on more than 250 features,
because DFtarget

min = 5 is applied as well. Fur-
thermore, all the best working variants make
use of the supervised ranking while construct-
ing the MCTM. Finally, classification is pos-
sibly performed by combining posterior class
probabilities. 107

Table 21 This table shows the performance of some vari-
ants of MCAlgorithm in Single-Domain Sentiment
Classification. To accomplish this experiment,
both opinion words and supervised FS meth-
ods have been taken into account. Moreover,
apart from GR-250-INF-un, also feature rank-
ing has been used to assign weights while con-
structing the MCTM. 108

Table 22 This table shows the comparison between some
variants of MCAlgorithm in Single-Domain Sen-
timent Classification over Iberia and Repsol datasets.
We could see that F1-measures are approxi-
mately the same, regardless the particular FS
method, the exact number of features and the
usage of opinion words. OWs do not help so
much in enhancing results. 110

Table 23 This table shows the comparison between some
variants of MCAlgorithm in Cross-Domain Senti-
ment Classification over Iberia and Repsol datasets.
Notice that F1-measures are always better over
I → R than over R→ I. 111

18

A C R O N Y M S

RMM Regular Markov Model

RMC Regular Markov Chain

HMM Hidden Markov Model

HMC Hidden Markov Chain

MC Markov Chain

DTMC Discrete-Time Markov Chain

TM Text Mining

TC Text Categorization

SA Sentiment Analysis

OM Opinion Mining

IR Information Retrieval

CD Cross-Domain

DSC Document Sentiment Classification

OW Opinion Words

FS Feature Selection

TW Term Weighting

MCSD Markov Chain Stationary Distribution

API Application Programming Interface

IDE Integrated Development Environment

19

I N T R O D U C T I O N

Communication is a purposeful activity of exchanging information
and meaning across space and time using various technical or nat-
ural means, whichever is available or preferred. Communication re-
quires a sender, a message, a medium and a recipient, although the
receiver does not have to be present or aware of the sender’s intent
to communicate at the time of communication; thus communication
can occur across vast distances in time and space. Communication
requires that the communicating parties share an area of communica-
tive commonality. The communication process is complete once the
receiver understands the sender’s message. 1

Centralized and professional media have been the main senders in the
communication process for a long time. News were used to be pub-
lished on newspapers, magazines, or to be broadcasted through news-
casts and other TV or radio programs. Although these media are still
used nowadays, communication has been evolving towards different
information media, such as social networks, blogs, forums, which al-
low an interactive and worldwide information exchange. This quick
evolution is having a strong social impact, because people can also
produce information rather than just being consumers. Consequently,
information exchange and the problems of forming and expressing
opinions become simpler, whereas at the same time news are spread
more rapidly than in the classical media. Recent example is the cri-
sis in Middle East, facilitated by social networks, which have enabled
both people organization and people awareness about social and eco-
nomical conditions in other countries.
Currently, along with their social value, social networks have started
playing an important role from the economical point of view, since
users exchange and share content about any topic, like for example
people, products, services, events, TV programs, and so on. There-
fore, information extraction from data could aid decision support for
a large variety of organizations, which go from public and private
enterprises to the financial sector, the political parties, etc. More-
over, relying on recent studies conducted by international companies
as Gartner Group 2 and Butler Group 3 [52], the business value of
textual information has overcome that of structured data (i.e. data
commonly stored in databases). In fact, they estimate that about 80%
of company’s information is unstructured (i.e. textual) data.
Analyzing the huge amount of data that is stored daily in servers,

1 http://en.wikipedia.org/wiki/Communication
2 http://www.gartner.com/
3 http://ovumlive.com/

21

List of Tables

it is possible to find out useful information. For example, we could
determine the users satisfaction degree about products or services,
we could study market demand in order to foresee which new prod-
ucts or services might be successful, and so on. These analyses could
be performed thanks to Text Mining [53, 54], a discipline that stud-
ies methods, techniques and algorithms aiming to extract knowledge
from huge quantity of texts and to produce models capable of de-
scribing and/or predicting social, economical, scientific phenomena.
Text Mining approaches have been widely used for security, biomed-
ical, marketing purposes, and so on, but the focus of this work is on
Sentiment Analysis (SA), also known as Opinion Mining (OM), a dis-
cipline framed within the area of Natural Language Processing (NLP)
that can be viewed as the computational treatment of opinions, feel-
ings and subjectivity in texts [1]. Over the years, lots of techniques
have been developed in this area and in particular in the context of
Document Sentiment Classification, which aims to find out document
polarity (i.e. positive, negative, neutral opinions). However, many
proposed models have a strong limitation, that is, they are able to clas-
sify polarity just in documents discussing the same topic they were
built over (i.e. Single Sentiment Classification), while they show poor
performance if applied to unrelated domains. To overcome this weak-
ness, researchers have started working on Cross-Domain Sentiment
Classification, whose goal is building general models over a particu-
lar domain, called source domain, and applying them to a different
domain, namely target domain. It is not hard to understand that
cross-domain problems are demanding, just think that analyses are
carried out focusing on words and that people make use of diverse
terms while describing things related to dissimilar topics. Literature
is plenty of promising methods; however, due to the aforementioned
complexity of the problem, the majority of them are complicated and
require strong effort in parameter calibration.
This dissertation proposes new general and relatively simple meth-
ods for Single-Domain and Cross-Domain Sentiment Classification,
based on the mathematical theory of Markov Chains. Markov mod-
els have shown being promising in various areas, such as Statistics,
Speech Recognition, Chemistry, Physics, Finance, Games, Music, and
they have been included in several Text Mining techniques that have
proved their usefulness. Therefore, the idea behind this work is ex-
ploiting the soundness of a mathematical theory to build and validate
a model for automated Document Sentiment Classification. Markov
Chains have been basically employed in order to model co-occurrences
of words in documents relying on a bag-of-words document represen-
tation. The performed tests have revealed results comparable with the
state of the art in both Single and Cross-Domain Sentiment Classifi-
cation.

22

List of Tables

The remainder of the dissertation is organized as follows:

• Chapter 1 introduces Markov models, describing their basic char-
acteristics and their main properties, with reference to both
Regular Markov Models and Hidden Markov Models. Then,
the chapter throws light on some algorithms, namely Forward-
Backward algorithm, Viterbi algorithm and Baum-Welch algo-
rithm, widely used in the Hidden Markov Models context.

• Chapter 2 exposes and analyzes some related works which made
use of Markov models in Text Mining branches as Informa-
tion Retrieval (IR), Text Categorization (TC), Sentiment Anal-
ysis (SA). Furthermore, some papers about Cross-Domain Text
Categorization and Document Sentiment Classification are de-
scribed as well.

• Chapter 3 presents the novel Markov Chain based methods for
Single and Cross-Domain Sentiment Classification, emphasiz-
ing their straightforwardness and generality. In particular, a ba-
sic algorithm relying on a Markov Chain model is introduced
at first. Then, other variants of this algorithm are discussed and
analyzed.

• Chapter 4 acquaints with the framework built for the sake of
implementing the proposed methods and performing analysis.
Further, some examples are shown about how the techniques
illustrated in the previous chapter can be realized in the pro-
posed framework.

• Chapter 5 first of all describes the datasets used to perform ex-
periments. Then, it illustrates tests carried out in both Single-
Domain and Cross-Domain Sentiment Classification, and shows
results, comparing them with other two methods, namely Spec-
tral Feature Alignment (SFA), advanced by Pan et al. [55], and
Joint sentiment-topic (JST) with polarity-bearing topics (PBT),
introduced by He et al. [56].

• The dissertation ends with a conclusion, where the work is
summed up and some possible future improvements are pro-
posed.

23

1
M A R K O V M O D E L S : A N I N T R O D U C T I O N

This chapter will give readers some basic notions about Markov mod-
els. Firstly, I will introduce Markov models and their fundamental
characteristics. Then, I will talk about two different Markov mod-
els, namely Regular Markov Models (RMMs) and Hidden Markov
Models (HMMs), widely used in many different areas. Finally, I
will analyze in detail some algorithms, such as Forward-Backward
algorithm, Viterbi algorithm and Baum-Welch algorithm, which have
been proved useful in solving some general problems related to HMMs.

1.1 what is a markov model?

Markov models derive their name from Andrej Markov (1856-1922),
a Russian mathematician who focused his researches on probabilistic
models, namely stochastic processes dealing with uncertainty.
A Markov process, better known as Markov Chain (MC), is a mathe-
matical system that, starting from an initial state, is subjected to tran-
sition from one state to another on a space state. The term “chain”
is due to the sequence of steps (i.e. transitions) the process moves
through. Basically, a MC is a discrete-time stochastic process hav-
ing the special characteristic to be memoryless. A stochastic pro-
cess is a collection of random variables (or aleatory variables) deal-
ing with some probability distribution. Stochastic processes are par-
ticularly useful in modeling non-deterministic scenarios, where we
cannot know in advance the exact evolution of the system, because
there is more than one available future state starting from the cur-
rent state. Stochastic processes are particularly suitable for modeling
Complex Systems, which usually are dynamical systems composed
of many elements having non-linear interactions and whose topology
can be represented as a network. These systems behaviour is intrin-
sically governed by non-determinism and for this reason stochastic
processes are appropriate models. Apart from being a stochastic pro-
cess, the characteristic distinguishing a Markov process is, as I said
before, memorylessness, which is guaranteed by the so called Markov
property. Essentially, this property states that the future state in the
system evolution depends only on present state, regardless all the
past states that have been crossed.
Formally, let T be an aleatory variable with negative exponential dis-

25

markov models : an introduction

tribution. Its probability density function (pdf) is:

f (x; λ) =

{
λe−λx, x ≥ 0

0, x < 0

and it satisfies:

P(T > s + t|T > s) = P(T > t), ∀t, s > 0 (1)

The equation 1 is known as Markov property. It is important to note
the assumption specifying that T has a negative exponential distri-
bution, because Markov property does not hold for any probability
distribution. As a consequence, not every process is suitable to be
modeled as a Markov process. For example, walk on graph without
visiting two times the same node is not a Markov process. The same
is true also for reacting in some way if two sequential events happen,
or for sampling without replacement in order to draw a particular
object in a container. All the aforementioned tasks are not fitted to
be modeled as Markov processes because they need for history trace,
whereas as I pointed out Markov processes are based on the assump-
tion of independence from past states. On the other hand, examples
of problems naturally representable by Markov processes are goals
scored in a soccer match, phone calls arrival, requests for a certain
document on a web server, and many others.

1.2 regular markov models

This section is about Regular Markov Models, according to the defi-
nition given in [85] to distinguish them from Hidden Markov Models
(see Section 1.3). Since in Section 1.1 we have introduced some basic
concepts, now we can give a formal definition of what a Discrete-Time
Markov Chain (DTMC) is. A Discrete-Time Markov Chain, or simply
a Markov Chain (MC), is a sequence of random variables having the
Markov property.

Definition Let X1, X2, ..., Xn be random variables satisfying the Markov
property. Then the following relation

P(Xn+1 = x|X1 = x1, X2 = x2, ..., Xn = xn) =

= P(Xn+1 = x|Xn = xn) (2)

holds if both conditional probabilities are well defined, that is, if

P(X1 = x1, X2 = x2, ..., Xn = xn) > 0

P(Xn = xn) > 0

All Xi values form the state space of the Markov Chain.

26

1.2 regular markov models

Being composed of a set of states and characterized by transition prob-
abilities of moving from one state to another, a Markov Chain can be
equivalently described in two main ways, that is, by means of:

• a sequence of directed graphs

• a sequence of transition matrices

However, Markov Chains are commonly assumed to be time-homogeneous,
namely transition probabilities between states do not change over
time (a better explanation of what a time-homogeneous Markov Chain
is can be found later in this chapter). In this case, for modeling pur-
poses it is enough a single directed graph, or equivalently a single
transition matrix. So we are going to explain better how these two
representations work.

1.2.1 Directed Graph Representation

As we have just declared, one way to represent a time-homogeneous
Markov Chain is through a directed graph. People unfamiliar with
Graph Theory could find a great introduction in [86]. Anyway, I
would like to remind that a graph is an ordered pair G = (V, A),
where V is a set of vertices and A is a set of arcs. Each arc is re-
lated with two vertices. If the relationship between the two vertices
and the edge is represented as an unordered pair, the graph is called
undirected (in this case the set A is indicated with the letter E). On
the other hand, if the relationship is an ordered pair, namely the
edge goes from a vertex x ∈ V to a vertex y ∈ V, the graph is named
directed and instead of edge we can use expressions like arc and di-
rected edge.
The directed graph representation is suitable for Markov Chains, be-
cause nodes (i.e. vertices) embody MC states and edges embody MC
transition probabilities between states. Of course, for each state, the
sum of all outgoing arcs values is equal to 1, since they represent
probabilities. More formally, let V = {x1, ..., xn} be the set of MC
states and let A = {(xi, xj)} be the set of couples (xi, xj) represent-
ing directed edges. Further, let each directed edge (xi, xj) embody
P(xj|xi), namely the conditional probability that, starting from a state
xi, a state xj is reached in one step. Then, the following properties
hold:

P(xi) ≥ 0, ∀i = 1, ..., n (3)

P(xj|xi) ≥ 0, ∀i, j = 1, ..., n (4)
n

∑
j=1

P(xj|xi) = 1, ∀i = 1, ..., n (5)

Equation 3 refers to the non-negativity property of probability. Fur-
ther, being arcs probability values, they must be non-negative as well,

27

markov models : an introduction

according to equation 4. Finally, equation 5 recalls the unitarity prop-
erty of probability. Careful readers could have noticed that equation 4

is general and it can be applied as is to fully connected graphs. How-
ever, we are not required dealing with fully connected graphs. There-
fore, when building the directed graph representation of the Markov
Chain, we can just draw arcs having a probability value greater than
zero, overlooking the others.
Before talking about the alternative mode to represent a Markov Chain,
let us look at a simple example just to clarify what we have just in-
troduced. Let us imagine we would like to model weather. Let us
assume for example that weather should be sunny, cloudy or rainy.
Then, let us suppose we know that the day after a sunny day will be
cloudy with probability 0.6, sunny again with probability 0.3, whereas
rainy with probability 0.1. Likewise, after a cloudy day will be sunny
day with probability 0.4, a rainy day with probability 0.4 and a cloudy
day again with probability 0.2. Finally, after a rainy day weather will
be sunny with probability 0.65 and cloudy with probability 0.35, while
it is not possible another rainy day. In this case, a Markov Chain could
be used to model this system, whose states will be sunny, cloudy and
rainy and whose transition probabilities will be the aforementioned
ones. Figures 1 and 2 will show two equivalent ways to represent
Markov Chain as directed graph. The second one, where the directed
graph is not fully connected if unnecessary, is obviously preferable.

Fig. 1: The figure shows a directed graph representation of a Markov Chain.
Nodes represent the states in the system being modeled, whereas arcs
the transition probabilities between them. Notice that this is a fully
connected graph, because each state is connected with all others, but
there is no need for this since P(rainyn+1|rainyn) = 0.

28

1.2 regular markov models

Fig. 2: The figure represents the same model as in figure 1. However, we can
notice that the arc expressing that P(rainyn+1|rainyn) = 0 has been
removed, since probabilities equal to 0 do not add useful information.
Thus, this representation is preferable to the one in figure 1.

1.2.2 Transition Matrix Representation

We have just shown that a time-homogeneous Markov Chain (or time-
homogeneous DTMC) can be portrayed as a directed graph. Besides
this, there is an alternative way to provide its description, namely the
Transition Matrix representation. A transition matrix T is simply a
squared matrix where rows contain current states (i.e. states at time
n) and columns contain future states (i.e. states at time n+ 1). So both
on rows and on columns the same set of states is represented. Instead
what is really discriminant is the content of each cell, which is the
probability that a future state is reached while being in a particular
current state. I would like to remind that this alternative illustration
is totally equivalent to the one based on directed graph. In fact, each
transition from state xi to state xj, occurring with probability P(xj|xi),
is mapped from directed graph to transition matrix as shown in table
1. Therefore, equations 3, 4 and 5 must hold as well. In particular, all
matrix rows sum-up to 1, as claimed by 5.

According to what I have just affirmed, we can find in table 2 how
the aforementioned example about weather results in transition ma-
trix representation.

1.2.3 Beyond Discrete-Time Markov Chains

So far I have presented Discrete-Time Markov Chains (DTMC). Here,
I will talk about some possible variations of this basic model, such as

29

markov models : an introduction

Element Directed Graph
Representation

Transition Ma-
trix Representa-
tion

Initial state xi Vertex xi where
the arc starts
from

State xi belong-
ing to rows

Final state xj Vertex xj where
the arc ends

State xj belong-
ing to columns

Transition be-
tween states
P(xj|xi)

Directed edge
(xi, xj) linking
the two vertices

Matrix entry
T[i, j]

Table 1: The table represents the different but equivalent way of ex-
pressing Markov Chain elements in directed graph and tran-
sition matrix.

FS
Sunny Cloudy Rainy

CS
Sunny 0.3 0.6 0.1
Cloudy 0.4 0.2 0.4
Rainy 0.65 0.35 0

Table 2: This table shows the Transition Matrix representation of a
Markov Chain. CS stands for current states, whereas FS
stands for future states. Notice that all rows sum-up to 1.

30

1.2 regular markov models

Time-Homogeneous Markov Chains (or Stationary Markov Chains)
and Markov Chains of order k. Further, I would like to point out
that these are not the only known variants. For example, another
largely employed model is Continuous-Time Markov Chains (CTMC),
which is substantially the continuous-time version of DTMC. I will
not discuss this and other models for time reason. Readers who like
to know more about these models can find more information in [77],
[78], [84] and [83].

1.2.3.1 Time-Homogeneous Markov Chains

We are already aware of the fact that DTMC can be represented in the
form of either a sequence of directed graphs or a sequence of transi-
tion matrices. This lets Markov Chains evolve, in accordance with the
fact that transition probabilities should change over time. Neverthe-
less, a widely used assumption is the time-homogeneity, which deals
with situations where the transition probabilities do not change over
time. Regarding the weather forecast example, this means that we
could model it in a given time range in which transition probabilities
remain the same. In fact, this is exactly what we did in the aforemen-
tioned example where, as pointed out, the time-homogeneity prop-
erty held. On the other side, we could not relate weather forecast in
two not overlapping time ranges characterized by diverse transition
probabilities (e.g. considering two years, the probability weather will
be sunny, cloudy or rainy should change from the first to the second
year).
Formally, Time-Homogeneous Markov Chains (also known as Station-
ary Markov Chains) are processes where

P(Xn+1 = x|Xn = y) = P(Xn = x|Xn−1 = y), ∀n ∈N+ (6)

that is, transition probabilities do not change over time. As a conse-
quence, an unique directed graph (or equivalently an unique transi-
tion matrix) is sufficient to represent the Markov Chain.

1.2.3.2 Markov Chains of order k

Another variant of standard DTMC is DTMC of order k, namely a
process where

P(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, ..., X1 = x1) =

= (Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, ..., Xn−k = xn−k),

∀n > k (7)

This is an extension of the basic memoryless version of Markov Chains.
In fact, one of the characteristics of standard Markov Chains is the in-
dependence from past states. Instead, introducing Markov Chains of
order k, the future state depends on the previous k states. According
to this, it is possible to partially keep history trace: incrementing k
the model will rely on a longer timespan and vice versa.

31

markov models : an introduction

1.2.4 Properties

Now we are going to analyze some Markov Chain properties. To
describe each property, let S = {s1, s2, ..., sn} be the set of Markov
Chain states and consider si = i and sj = j for simplicity of nota-
tion. Moreover, henceforth I will use the terms Markov Chains, MC,
Regular Markov Chains, RMC, Regular Markov Models, RMM inter-
changeably to indicate a Time-Homogeneous Discrete-Time Markov
Chain.

1.2.4.1 Reducibility

In order to describe the reducibility property, we need introducing
some preliminary auxiliary definitions.

A state j is defined as accessible from a state i, say i → j, if, starting
from i, the probability of transitioning into state j at some point is
greater than zero. In a formal fashion, a state j is accessible from a
state i if there exists kij ∈ Z such that

P(Xkij = j|X0 = i) = p
(kij)

ij > 0, i, j ∈ S (8)

where kij represents one particular iteration in the evolution of the
system (i.e. the iteration in which pij > 0).

A state i is said to communicate with a state j, say i ↔ j, if i and j
are accessible one from each other.

A set of states U is a communicating class if every pair of states in U
communicates with each other and no state in U communicates with
another state not in U.

Consequently, the reducibility property is as follows:

Definition A Markov Chain MC is said to be irreducible if its state
space is a communicating class (i.e. every pair of MC states commu-
nicates with each other). In other words, according to the definition of
the communication property, it is irreducible is any state is accessible
from any other state.

1.2.4.2 Periodicity

A state i is said to have period k if it is possible to reach this state only
in multiples of k time steps. The formal definition of period relies on
the greatest common divisor (gcd) function and it is as follows:

k = gcd{n : P(Xn = i|X0 = i) > 0} (9)

According to this, it is also possible that a periodic state having period
k will not be reached every k time steps. On the other hand, if a
periodic state having period k has been reached, the current time step
is surely a multiple of k.
Instead, a state i is defined as aperiodic if k = 1, because in this case
state i can be reached with no specified periodicity. More formally:

32

1.2 regular markov models

Definition A state i is said to be aperiodic if there exists n such that

P(Xn′ = i|X0 = i) > 0, ∀n
′ ≥ n, i ∈ S (10)

Definition A Markov Chain is called aperiodic if and only if each state
is aperiodic.

Theorem 1.2.1. Let MC be an irreducible Markov Chain. Then, if one state
is aperiodic this imply the entire Markov Chain is aperiodic.

1.2.4.3 Transience

A state i is said to be transient if the probability that, starting from i,
we will never return to it, is different from 0. More precisely:

Definition Let the random variable Ti be the so called hitting-time,
that is the first time we return to state i ∈ S:

Ti = in f {n > 1 : Xn = i|X0 = i} (11)

The probability we come back again to state i after n steps is

h(n)ii = P(Ti = n) (12)

Consequently, state i is transient if

P(Ti < ∞) =
∞

∑
n=1

h(n)ii < 1 (13)

A state which is not transient it is called recurrent.

Lemma 1.2.2. Recurrent states have always a finite hitting-time.

Definition The mean recurrence time at state i ∈ S is the expected
return time Mi:

Mi = E[Ti] =
∞

∑
n=1

n · h(n)ii (14)

If Mi is finite, state i is defined positive recurrent; otherwise, it is de-
fined null recurrent.

1.2.4.4 Absorbing States

Definition A state i ∈ S is said to be absorbing if

pij =

{
1 : i = j
0 : i 6= j

(15)

In other words, a state is absorbing if, once entered it, it is impossible
to leave.

Definition A Markov Chain is called an absorbing Markov Chain if any
Markov Chain state can reach an absorbing state.

33

markov models : an introduction

1.2.4.5 Ergodicity

Definition A state i ∈ S is ergodic if it is aperiodic and positive recur-
rent.

Definition An irreducible Markov Chain is said to be ergodic if all
Markov Chain states are ergodic.

Definition A model has the ergodic property if there exists N ∈ N+

such that any state can be reached from any other state in exactly N
steps.

Theorem 1.2.3. Let a finite state Markov Chain MC be irreducible. If MC
has an aperiodic state, then it is ergodic.

1.2.4.6 Stationary Distribution and Limiting Distribution

Definition Let MC be a Time-Homogeneous Markov Chain. Then
the vector π is defined as stationary distribution (or steady state) of the
Markov Chain if ∀j ∈ S the following relations hold:

0 ≤ πj ≤ 1
∑
j∈S

πj = 1

πj = ∑
i∈S

πi pij

(16)

where pij is the transition probability from state i ∈ S to state j ∈ S.

Theorem 1.2.4. Let MC be an irreducible Markov Chain. Then MC has
stationary distribution π if and only if all its states are positive recurrent.

Lemma 1.2.5. Let MC be an irreducible Markov Chain having stationary
distribution π. Then π is unique and it is related to the expected return
time as follows:

πj =
c

Mj
(17)

where c is a constant value.

Definition Let MC be a positive recurrent Markov Chain both irre-
ducible and aperiodic. Then MC has the so called limiting distribution
regardless its initial distribution, namely

lim
n→∞

p(n)ij =
c

Mj
, ∀i, j ∈ S (18)

1.2.5 Applications

Regular Markov Models are essentially a set of states linked by tran-
sition probabilities. These models are particular useful to accomplish
three general tasks:

34

1.3 hidden markov models

• Simulation

• Estimation

• Prediction

Simulation consists in generating a random sequence based on the
state transition probabilities, starting from a specified state in the
Markov Chain. Simulation is a widely used task in many scien-
tific contexts, mainly suitable for showing and/or understanding the
behaviour of a system. Regarding the aforementioned example, we
could for instance simulate the weather trend starting from a sunny
day and stopping the simulation after 20 days.
Another important achievable task is estimation, which is dual of
simulation. Here, starting from a sequence of observations we can fit
the model estimating transition probabilities between the states that
appeared in the observation itself. For example, if we knew what
weather was in a given time range, say 20 days, we could estimate
the probability that a sunny day is followed by a cloudy day and
so on. A widespread estimator is Maximum Likelihood Estimation
(MLE), which is

pMLE
ij =

nij
k
∑

u=1
niu

(19)

where nij is the number of sequences (Xt = si, Xt+1 = sj) found in the
input sample. Apart from this, other estimators could be used, like
for instance MLE with Laplace smoothing and Bootstrap estimator,
just to mention some.
A third common task solvable by RMMs is prediction, which involves
computing conditional probability distribution of Xt+1 given Xt = sj,
written as P(Xt+1 = si|Xt = sj), being sj the last realization of DTMC.
In accordance with the same example, prediction by means of Markov
Chains allows to forecast the next day’s weather given the current
meteorological condition.

1.3 hidden markov models

In this section I will give some basic concepts about Hidden Markov
Models, a more general and complex model than RMM. More com-
plete explanations can be found in [85], [83] and [80].
A Hidden Markov Model (HMM) is a statistical model in which the
system is modeled as a Markov process where

• state yi is not directly visible (hidden)

• output (or observation) xi, depending on states, is visible

As we can see in figure 3, since HMM states are linked by arcs rep-
resenting conditional dependencies, they satisfy the Markov property,

35

markov models : an introduction

Fig. 3: The figure shows a HMM. The nodes y1, y2, ..., yn represent hidden
states. The nodes x1, x2, ..., xn represent observations. Notice that
each state is related to the previous one according to the Markov
property. Furthermore, state yi is also related to the observation xi.

namely state yi+1 is conditionally independent from state yi−1 given
state yi. Therefore, the set of states form a Markov Chain as in Regu-
lar Markov Models. Similarly, also the output xi depends only on the
state yi. The main difference between a HMM and a RMM is that in
the latter states are completely visible. We exactly know all the states
being modeled in the system we are describing and, consequently,
the only parameters to be estimated are state transition probabilities.
Instead, in the former states are hidden and, as we will see, there are
many parameters to be calibrated.
Now that I have given readers an idea of what a Hidden Markov
Model is, let me also present a formal definition, which is as follows:

Definition Let S = {s1, ..., sN} be a set of states and let O = {o1, ..., oM}
be a set of possible observations. A Hidden Markov Model is a sta-
tistical model characterized by a triple of parameters Λ = {A, B, Π},
where

• A is the set of state transition probabilities

A = {aij}, aij = P(yt+1 = sj|yt = si)

• B is the set of observation probabilities

B = {bi(k)}, bi(k) = P(xt = ok|yt = si)

• Π is the initial state distribution

Π = {πi}, πi = P(y0 = si)

Given a HMM as just defined, there are three basic problems that can
be faced:

• The Evaluation Problem Given a HMM Λ and a sequence of
observations O = {o1, ..., oM}, what is the probability P(O|Λ)

that the observations have been generated by the model?

36

1.3 hidden markov models

• The Decoding Problem Given a HMM Λ and a sequence of
observations O = {o1, ..., oM}, what is the most likely state se-
quence in the model that can have produced the observations?

• The Learning Problem Given a HMM Λ and a sequence of
observations O = {o1, ..., oM}, how should we adjust the model
parameters {A, B, Π} in order to maximize P(O|Λ)?

Below I will discuss three algorithms to deal with these general prob-
lems.

1.3.1 Forward-Backward Algorithm

Remind that the Evaluation Problem consists in finding the probabil-
ity P(O|Λ) that the observations O = {o1, ..., oM} have been gener-
ated by a HMM Λ. That requires summation over all possible state
sequences. In fact, the probability of observing an output sequence
XT

1 = o1, ..., oT of length T is given by

P(XT
1 |Λ) = ∑YT

1
P(XT

1 |YT
1 , Λ)P(YT

1 |Λ), ∀YT
1 = y1, ..., yT (20)

where YT
1 is a possible state sequence. This problem complexity

grows exponentially with the length of observation sequence. There-
fore, a standard algorithm could not to find its optimal solution in a
finite time. Luckily, over the years a lot of techniques have been devel-
oped to deal with these computational issues, so that the Evaluation
Problem can be efficiently handled by using the forward-backward algo-
rithm. The forward-backward algorithm needs two kinds of variables
to be defined, say α and β.
Let

αt(i) = P(x1 = o1, ..., xt = ot, yt = si|Λ) (21)

be the forward (α) values and let

βt(i) = P(xt+1 = ot+1, ..., xT = oT|yt = si, Λ) (22)

be the backward (β) values. Since forward values allow solving the
problem through marginalizing, the probability of observing an out-
put sequence of length T becomes

P(XT
1 |Λ) =

N

∑
i=1

P(o1, ..., oT, yT = si|Λ) =
N

∑
i=1

αT(i) (23)

The forward values αT(i), 1 ≤ i ≤ N can be computed by means of
dynamic programming through the following recursion:

α1(j) = πjbj(o1), 1 ≤ j ≤ N

37

markov models : an introduction

αt+1(j) = bj(ot+1)
N

∑
i=1

αt(i)aij, 1 ≤ j ≤ N, 1 ≤ t ≤ T − 1 (24)

The probability P(O|Λ) required by the Evaluation Problem is

P(O|Λ) =
N

∑
i=1

αT(i) (25)

Similarly, there exists another dynamic programming recursion to
compute βt(i):

βT(i) = 1, 1 ≤ i ≤ N

N

∑
j=1

aijbj(ot+1)βt+1(j), 1 ≤ i ≤ N, 1 ≤ t ≤ T − 1 (26)

Since the following relation holds

αt(i)βt(i) = P(O, st = i|Λ), 1 ≤ i ≤ N, 1 ≤ t ≤ T (27)

we found another way to compute P(O|Λ), which makes use of both
forward and backward values:

P(O|Λ) =
N

∑
i=1

P(O, st = i|Λ) =
N

∑
i=1

αt(i)βt(i) (28)

The complexity of the forward-backward algorithm is O(T × N2),
where T is the length of the observed sequence and N is the num-
ber of states.

1.3.2 Viterbi Algorithm

Another relevant problem as I pointed out is the Decoding Problem,
that is finding the most likely state sequence in a HMM Λ that could
have produced the observations O = {o1, ..., oM}. That problem can
be efficiently solved thanks to the Viterbi algorithm.
Let Vt(j) be the probability of the most likely state sequence respon-
sible for the first t observations that ends in state sj. This probability
can be calculated through the following recursion:

V1(j) = bj(o1)πj, 1 ≤ j ≤ N

Vt(j) = bi(ot)max
i

(Vt−1(i)aij), 1 ≤ j ≤ N, 1 ≤ t ≤ T − 1 (29)

The Viterbi path, namely the most likely sequence that could have
produced the observed output, can be found by saving back point-
ers in order to remember which state yt = sj was used to compute

38

1.3 hidden markov models

Vt(j). In order to save back pointers, let Pointer(yt, si) be the func-
tion that calculates the yt−1 values. This function is employed for the
computation of Vt(i) in the following way:

yT = arg max
si∈S

VT(i) (30)

yt−1 = Pointer(yt, si) (31)

Once yT is found thanks to relation 30, all previous states can be
retrieved thanks to the function Pointer (equation 31). For each time
instant t, 1 ≤ t ≤ T, the Viterbi algorithm can be seen as a search in
a graph whose vertices are the HMM states.
The complexity of the Viterbi algorithm is O(T× N2), where T is the
length of the observed sequence and N is the number of states.

1.3.3 Baum-Welch Algorithm

The last well-known problem related to HMMs I mentioned before is
the Learning Problem, namely the task of adjusting the parameters
of a HMM Λ in order to maximize P(O|Λ), where O = {o1, ..., oM}
is a sequence of observed outputs. To solve this problem, a powerful
algorithm called Baum-Welch algorithm [87] is used, which utilizes the
forward-backward algorithm.

Baum-Welch algorithm makes use of the variables α and β defined
in 21 and 22 respectively. Furthermore, it needs other two variables
to be defined, say ξ and γ, which can be expressed in terms of the
above mentioned ones.
Let

ξt(i, j) = P(st = i, st+1 = j|O, Λ) (32)

or, equivalently,

ξt(i, j) =
P(st = i, st+1 = j, O|Λ)

P(O|Λ)
(33)

be the probability of being in state i and j at times t and t + 1 respec-
tively.
Further, let

γt(i) = P(st = i|O, Λ) (34)

be the probability of being in state i at time t.
The ξ variables can be expressed in terms of α and β as follows:

ξt(i, j) =
αt(i)aijβt+1(j)bj(ot+1)

N
∑

i=1

N
∑

j=1
αt(i)aijβt+1(j)bj(ot+1)

(35)

39

markov models : an introduction

Similarly, the γ variables can be expressed in terms of α and β as
follows:

γt(i) =
αt(i)βt(i)

N
∑

i=1
αt(i)βt(i)

(36)

Comparing the equations 35 and 36 we can find that the relationship
between them is given by

γt(i) =
N

∑
j=1

ξt(i, j), 1 ≤ i ≤ N, 1 ≤ t ≤ M (37)

Once having defined these variables, let me describe the Baum-Welch
algorithm:

1. Set the parameters Λ = (A, B, Π) with random initial condi-
tions.

2. Compute the forward (i.e. α) and the backward (i.e. β) variables
by means of 21 and 22 formulas.

3. Compute ξ and γ variables by means of 35 and 36 formulas.

4. Update the HMM parameters according to the following equa-
tions:

π∗i = γ1(i), 1 ≤ i ≤ N (38)

a∗ij =

T−1
∑

t=1
ξt(i, j)

T−1
∑

t=1
γt(i)

, 1 ≤ i ≤ N, 1 ≤ j ≤ N (39)

b∗j (k) =

T
∑

t=1
st=νk

γt(j)

T
∑

t=1
γt(j)

, 1 ≤ j ≤ N, 1 ≤ k ≤ M (40)

These steps are repeated iteratively until reaching the desired level of
convergence.
Notice that the algorithm converges at a local maximum. Global max-
imum is not guaranteed.
The complexity of the Baum-Welch algorithm is Z×O(M× T× N2),
where Z is the number of iterations, M is the number of observed
sequences, T is the length of a sequence, N is the number of states.

40

2
T H E S TAT E O F T H E A RT

This chapter will analyze some works which made use of Markov
models in Text Mining branches as Information Retrieval (IR), Text
Categorization (TC), Sentiment Analysis (SA). Subsequently, being
this dissertation about Cross-Domain Sentiment Classification, pa-
pers about cross-domain techniques and Document Sentiment Classi-
fication will be described as well.

2.1 information retrieval

The sudden explosion in the amount of unstructured data both in-
side documents and on the Internet has led to the need for effective
and efficient automated methods that allow to recover information.
Information Retrieval (IR) fulfills this purpose, being the discipline
that deals with retrieval of unstructured data, especially textual doc-
uments, in response to a query which may itself be unstructured, like
a natural language sentence, or structured, as a boolean expression.
[18]
The ultimate goal of IR is satisfying the user information need. Unfor-
tunately this ambition is not easily achievable, because it is not trivial
to define what is relevant for a given query. There are plenty of fac-
tors that can affect relevance, like for example the time when query is
being formulated, the particular user who needs information, and so
on. Over the years, many researchers have developed methods and
strategies to handle the Information Retrieval complexity.
Now we are going to take a look at some Markov Model based ap-
proaches used for this purpose.

2.1.1 Markov Model based methods in Information Retrieval

It has been a long time since Markov Chain was viewed as a good
model to support Information Retrieval. Consider that when people
are looking for some information, they execute a search hoping to im-
mediately obtain the long result. Unfortunately, not always the first
search attempt succeeds. In this unlucky case, it is necessary to re-
fine the first submitted query in order to satisfy the information need.
What happens is that a search goes through a sequence of states, start-

41

the state of the art

ing from the initial query and ending when either users find what
they were looking for or they give up. An important achievable task
was studied by Qiu [25], who used Markov Chains to discover the
presence of patterns when humans search for information in hyper-
texts. Hypertexts can be naturally modeled as graphs, where pages or
paragraphs represent states and links represent transitions between
states. So this problem is strictly related to the one described above.
It can be characterized by Markov Chain, which is a reasonable model
because both it allows graph modeling and it permits prediction over
the built graph. Qiu found the configuration that fits best this task
is the second-order Markov model by using the log-linear model test.
This means that search future state depends not only on the present
state, but also on the immediately past state, while all previous states
are assumed to not affect the search.
A different goal was pursued by Mittendorf and Schäuble [24], who
encouraged making use of Hidden Markov Models (HMMs) in order
to retrieve documents. In particular, HMMs have been employed to
model two stochastic processes: the first one regards retrieving text
fragments relevant with respect to a particular query, whereas the sec-
ond one regards retrieving general text fragments (i.e. independent
from any query). Their approach has several advantages. In fact, the
position of occurrences of indexing features can be utilized for index-
ing, since they have conserved information about position of terms
in documents. Further, from training data they automatically derived
optimal weights for arbitrary features by using the Baum-Welch algo-
rithm. Finally, building a framework of probabilistic retrieval, each
document can be split into parts, either relevant or not depending on
a specific query. However, relevance has been evaluated by means
of scores, assigned by the Viterbi algorithm. So focus is on ranking
rather than on relevant passages extraction. Explaining better, they
did not clarify how effective their method is in extraction of passages
that are not only query-dependent but also mutually coherent.
Miller et al. [22] focused on retrieving relevant documents given
a query as well. They developed a Hidden Markov Model based
method that outperformed standard tf-idf ranking. When a user sub-
mits a query, before presenting results, an automatic query expansion
is performed to augment that initial query. In particular, after the
first search, words belonging to some of the returned documents are
used for the query expansion. The resulting augmented query will
be used in order to perform a second search. Their Hidden Markov
Model based method can also handle bigram productions, simply
adding new document-dependent states to be considered when com-
puting probabilities. Bigrams deal with the fact that words are not
independent one from each other: differently, they can have different
meanings depending on the context. On the other hand, there are
aspects excluded from their model, such as for instance explicit syn-

42

2.1 information retrieval

onym modeling and concept modeling.
Unlike the previous works, Cao et al. [30] proposed a different ap-
proach to query/document expansion. First of all, they expanded
both queries and documents rather than doing just one of these two
tasks. Furthermore, the expansion process they performed took into
account not only the directly related terms, but also indirect word
relationships, thanks to the use of multi-stage Markov Chains. The
idea behind this model is that after one step, we can only model re-
lationships between directly related terms, while after more steps we
can also take into account indirect relationships. Remarkably, when
the number of steps approaches to infinite, the transition probabil-
ity distribution is known as stationary distribution (or steady state)
of the Markov Chain. Cao et al. showed the usefulness of their
method, even if there are differences between query expansion and
document expansion, because the former task achieved much better
performance than the latter one, due to the document expansion task
complexity. Despite of the interesting idea, there were also some is-
sues in their approach, all related to the calculation of stationary dis-
tribution. In fact, it is not only difficult to establish if the process has
converged, but there is also no proof that the algorithm produces just
one single stationary distribution. Finally, the algorithm complexity
is not negligible. All these limitations, as explained by Hoenkamp et
al. in [19], can be circumvented if Markov Chain transition matrix is
ergodic. In fact, ergodic chains have the important property that they
reach the steady state (i.e. stationary distribution) after some steps,
regardless the initial state. Consequently, it is simple to see if the
process has converged. Moreover, the steady state is always unique
and convergence is very fast. In order to be ergodic, chains have to
be both aperiodic and irriducible. This is always true when creating
Markov Chain transition matrix from a corpus of documents, using
words as matrix states.
Like Cao et al. [30] did, Pan et al. [29] also thought about expanding
both queries and documents. They worked in the context of Spoken
Document Retrieval (SDR), employing a Markov decision process to
model allowable state transitions. Their idea was that both system
and users are essential in the retrieval process. In this approach, apart
from the results, given the users query, the system also returns a list
of ranked key terms, possibly selectable by the users in order to ex-
pand the query itself. These ranked key terms embody allowable
state transitions and hence can be naturally modeled as a Markov
process, whose initial state is obviously the users query. At each iter-
ation, users can either terminate the session, because they are satisfied
or give up, or iteratively choose one word in the key-list, according to
which the query will be refined. Notice that this is feasible because
every decision (i.e. taken by either the system or a user) affects the
same Markov process.

43

the state of the art

A related work is that of Benoit [48], who described information seek-
ing (IS) as a Markov process which handles user uncertainty. In fact,
as previously said, it is quite natural considering that each user inter-
action starts, goes through a series of states dynamically influencing
the system, and then terminates. Therefore, he suggested the integra-
tion of Markov Chains into dynamic information retrieval systems
where both the system itself and the user are involved in the retrieval
process. Markov Chains are useful to predict the process convergence,
whereas user choices have the effect of modifying model transition
probabilities. It is important to notice that thanks to these kind of in-
formation systems, the more users interact with the system the more
the system will be effective in satisfying information needs.
Apart from document/query expansion, Markov models can also be
used to accomplish other tasks. For example, in [47], Ghose et al.
investigated the applicability of Markov Chains in the analysis of in-
formation derived from large amounts of data. They used a Markov
process as main model, considering both entropy and conditional en-
tropy functions to measure the information content. These measures
are proved useful as transition probabilities of a Markov Chain, which
instead represents the whole information stream. Therefore, each
transition between two states corresponds to the information gain we
obtain by moving from the former state to the latter one.
In [28], Xu and Weischedel utilized a Hidden Markov Model in the
area of cross-lingual information retrieval. That is, starting from a
query written in a language, also documents in another language
could have been retrieved. Notice that it is unlikely to find an algo-
rithm capable of finding exact translations, because same words can
have many different meanings depending on context. Since HMM
is a model based on probability, it is suitable to handle this kind of
uncertainty. In particular, to accomplish this task their HMM based
system estimates the probability that a query in one language could
be generated from a document in another language. They chose per-
forming query translation rather than documents translation because
of flexibility, so that there was no need to change the index structure.
Therefore, all their experiments were based on a HMM monolingual
indexing.
One of the most known Information Retrieval application is the PageR-
ank by Brin and Page [26], which aims to define a ranking of Web
pages just dealing with their hypertext structure, regardless infor-
mation about page content. The way they walked is modeling Web
pages graph as a Markov Chain, whose states represent Web pages
and whose edges transition probabilities between Web pages. The
PageRank definition deals with random walks on graph, since it cor-
responds to the standing probability distribution of a random walk
on the Web graph. This definition is recursive, that is, the PageRank
of a Web page depends on PageRanks of other pages. In particular,

44

2.1 information retrieval

the more a page is referred by other pages the more its PageRank
tend to be high. Brin and Page also dealt with the problem of trying
to avoid loops in a small set of pages, because while a user is surf-
ing the Internet it is unlikely he/she persists in looping always in the
same small set of pages. This is the reason why they introduced an
additional factor in the model, that is, a probability distribution em-
bodying the fact the user, periodically, could get bored and randomly
jump to another completely different Web page.
The Brin and Page idea was pursued by Neumann et al. [43], who in-
troduced Markov Logic Sets (MLS) method, which relies on Markov
random walks and logical features, to compute set completions. This
method personalizes on the query the PageRank algorithm. As they
explained, Markov Logic Sets method basically takes a query consist-
ing of a small set of information and returns additional information.
Particularly, it computes the relevance score by comparing the poste-
rior (i.e. personalized) PageRank of an item given the query to the
prior (i.e. uniform) PageRank of that item. They proved MLS per-
forms effectively in retrieving relational set completions. However,
currently their approach has the drawback, as they pointed out, to
not deal with the problem of setting the size of completion (i.e. they
can get any amount of additional information).
In [23], Sarukkai performed probabilistic World Wide Web link pre-
diction and path analysis using Markov Chains. He used Markov
Chain states to model URLs and Markov Chain edges to model tran-
sition probabilities between URLs, which have been estimated based
on navigation history. As a matter of fact, Markov Chains allow the
system to dynamically model the URL access patterns that are ob-
served in navigation logs based on the previous state. Therefore, sim-
ply adding information regarding the navigation history for a particu-
lar client, web servers can predict the probabilities of HTTP requests.
Notice that, differently from PageRank, this model relies on user de-
pendent information in order to define the page relevance. Another
important application, achievable if we know history of visits for a
given user, concerns in suggesting him/her which other sites might
be of interest, namely what is also known as Recommendation. More-
over, Markov Chains can be used in a generative mode to automati-
cally obtain navigation tours (i.e. a sequence of URLs accessed by a
user). Finally, Markov Chain transition matrix can be analysed by us-
ing eigenvector decomposition in order to identify possible hubs and
authorities (i.e. important sites where to extract information from).
Besides this, Sarukkai pointed out some limitations of his approach
and more generally of Markov Chains, which need a huge amount
of training data and are not very scalable due to the dimensionality
(N ∗ N, if N is the number of states) of the Markov Chain transition
matrix. However, the latter problem can be softened just by consid-
ering that Markov Chain transition matrix is usually sparse. Hence,

45

the state of the art

sparse matrix representations can address the curse of dimensional-
ity.

2.2 text categorization

Nowadays on the Internet we can find almost any kind of data. There
are texts talking about economy, politics, sports, books, movies, and
so on. If we were interested in news about sports for example, we
would like to retrieve documents regarding every sports. IR tech-
niques could help us in finding most relevant documents according
to the query sport as we have already seen, possibly expanding this
query. Nevertheless, once users have chosen a Web page, again they
could find heterogeneous information because that Web page dis-
cusses not only about sports but also about different topics or maybe
because it contains disordered information about many sports. There-
fore, it would be important to categorize information so that we could
split texts according to their topic. Beyond general arguments, inside
a text could be argued even more specific topics. Consequently, we
might hierarchically organize information.
Now imagine we have a corpus of documents and a set of categories
representing topics, either hierarchically structured or unstructured.
Each document belongs to a certain subset of categories. When a new
document is added to the collection, it would be valuable to automat-
ically assign categories to that document, according with its content.
Text Categorization (or Text Classification) is the task fulfilling this
purpose.

2.2.1 Markov Model based methods in Text Categorization

One of the first attempts of using Markov based models in the con-
text of Text Categorization is the result of Yi and Beheshti’s work [39],
who investigated the applicability of HMMs in categorizing digital
documents with the aid of library classification and subject headings
for training purposes. Yi and Beheshti made use of a HMM for each
different category. They proposed a HMM architecture with one state
for each source of information used in order to model the particular
category. In this model the transition probabilities between states are
seen as the information quantity each source of information has, with
respect to a particular category, and are calculated by means of tf-idf.
The idea behind information sources is that they model different as-
pects and, as a consequence, they allow increasing the information
power. Moreover, if it was useful adding other sources of informa-
tion by need, it would be feasible thanks to the flexibility of their
HMM architecture.
In a following work [32], Yi and Beheshti proposed a HMM method
to classify medical documents. They used Medical Subject Heading

46

2.2 text categorization

(MeSH), a hierarchically organized thesaurus of medical subject head-
ings [81], as prior knowledge in their model in order to improve
HMM method performance. As in their preceding work [39], their
Hidden Markov Model is represented as a fully connected graph hav-
ing one state for each source of information (e.g. MeSH is a source of
information). Moreover, every state contains all preprocessed words
derived from the particular source of information. Since it would
be meaningless assigning probability values while passing from one
source of information to another, all the transition probabilities be-
tween states are equal, in spite of what is usually done with HMMs
and in spite of what they did in [39]. The main advantage of this ap-
proach is always flexibility, because the model could be extended just
by adding a new state for each new available source of information.
Notice that, due to the previously mentioned assumption about state
transition probabilities, there is no need of a training set in order to
calibrate them.
Vieira et al. [36] developed a HMM based classifier, following the
same strategy applied by Yi and Beheshti [32] in order to perform
classification, that is, using a HMM as a document generator. The
idea is, for each given document, to evaluate the probability of be-
ing generated by each HMM, finally assigning to that document the
class corresponding to the HMM maximizing this probability. Differ-
ently from Yi and Beheshti [32], whose model introduced one state
for each source of information, Vieira et al. used Markov Chain states
to encode words relevance. As they explained, the first state has
the most relevant words in the corpus as possible outputs and so
on regarding the following states, which encode observations of de-
creasing relevance. This approach reaches better results than Naive
Bayes and comparable performance with SVM. Despite modeling dif-
ferences in words relevance, Vieira’s method does not establish how
much a word is more relevant than another.
As in [36], Li et al. [38] thought about creating a different HMM for
each category. Each HMM has an initial state, a state transitions prob-
ability distribution and an observation probability distribution. These
parameters require a huge amount of training data in order to be es-
timated. After having built the model, a new document is labeled as
usual by evaluating the probability of being generated by each HMM,
finally assigning to it the class corresponding to the HMM maximiz-
ing this probability.
Xu et al. [31] combined HMMs with Text Categorization techniques
in order to improve medical evidence retrieval in Randomized Clin-
ical Trials (RCT) papers. A common problem in this area is that ab-
stracts are often unstructured, while it would be simpler extracting
the most relevant information if they were structured. To accomplish
this task, they created a Hidden Markov Model having one state for
each considered category (i.e. Background, Objective, Methods, Re-

47

the state of the art

sults, Conclusion), transforming the sentence labeling problem into
a HMM sequence alignment problem. The transition probabilities
between these 5 states have been estimated on the training set. In
particular, they have been assigned according to the number of times
a sentence belonging to a section is followed by another sentence be-
longing to a different section. Further, state probabilities have been
computed through the output probability distribution produced by
a standard classifier (e.g. Naive Bayes). Then, the final classification
has been performed on the HMM by means of the Viterbi algorithm,
which allows computing the most likely sequence of states for all
sentences. They showed their approach reaches high performance
(precision = 94% and recall = 93% on average).
Zhou and Li [34] extended the basic idea of random walk on a graph
by introducing the concept of reward. They assumed distance be-
tween vectors is based on Euclidean norm and considered the angle
between vectors as a correlation factor, which is directly employed as
reward in their model. It is important to note that the graph model
can be viewed as a Markov Chain, whose transition matrix has been
used to perform classification. Zhou and Li showed the results are
already good with this simple model, but even better if accumulating
rewards walk by walk. In fact, while the first memoryless version is
affected by noise, this advanced version is more robust.
In [37], Frasconi et al. proposed a HMM based model for Text Cat-
egorization to rely on correlation between documents to be classi-
fied, with reference to the case of multi-page documents. The idea
is modeling each page as a different bag-of-words and designing a
HMM which could link concepts in different pages. This approach
aims to exploit augmented contextual information, which deals not
only with the single page bag-of-words but also with relationships
between pages. They proved it is possible to improve classification
accuracy by taking between pages relationships into account. On the
other hand, they assigned a category to every page, assuming the co-
incidence between category boundaries and page boundaries, which
is not always true because a single page may contain more than one
concept and consequently it should be mapped to more than just one
category.
Li et al. [40] presented a completely different Markov based model
for classifying texts. Rather than dealing with a bag-of-words rep-
resentation of documents, they chose another model able to express
sequential information. Inter-words dependencies have been mod-
eled by means of Markov Chains with diverse order values (e.g. a k
order Markov Chain can model dependency of a certain word with
its previous k terms in the same document), which could also be com-
bined together to improve performance. Based on this choice, they
invented a novel adaptive procedure to classify documents, which
allows dynamical switching between different order Markov Chains.

48

2.3 opinion mining and sentiment analysis

This feature makes this method able to model different length word
dependencies. Another benefit related to this is that all preprocessing
tasks are not required.
Beyond directly using HMMs to perform Text Classification, Li and
Dong [41] also utilized them to model inter-cluster associations. More
precisely, they clustered words in documents by means of tf-idf for di-
mensionality reduction purposes, mapping each cluster to a Markov
Chain state. Instead, document classification is executed as usual
by considering n HMMs (i.e. one for each class) and computing the
probability that the observed sequence is produced by each HMM.
Of course, a document will be assigned to the most likely category. It
is important to note that this method and, in general, all previously
mentioned ones where a different HMM is required for each class
have a linear complexity, which grows with the number of categories.
Wren et al. [42] relied on a n-gram Markov model in order to classify
DNA sequences. A DNA sequence is a succession of tags (i.e. char-
acters) that constitute a word. Each word has a different length de-
pending on if it is a nucleic acid, a peptide abbreviation or a symbolic
peptide string. The approach they followed is the classical one, that is,
constructing a HMM with one state for each possible tag, estimating
all state transition probability between tags. Then, when classifying
a word they assigned the label according to the most likely sequence
of tags that could have generated that particular word.

2.3 opinion mining and sentiment analysis

Everyday it happens that someone needs suggestions or guidelines
about something. For example, if we wanted to buy some products,
knowing in advance which ones have been proved to be the most re-
liable or the best working would surely be a valuable information. It
is essentially for this reason that product reviews are written. They
usually describe in a detailed way product characteristics and give
readers suggestions comparing either goods or their individual parts
with other alike artefacts, possibly made by different brands. Similar
considerations could be done with reference to movie reviews, book
reviews and so on. However, reviews are just one precious source of
opinions. In fact nowadays we can find sentiment everywhere thanks
to the widespread use of the Internet, since people daily write com-
ments about everything happens in the world. So today the Internet
has probably become the main source of information.
Both medium-sized enterprises and large companies are very inter-
ested in knowledge extraction in order to improve their business, but
analysis cannot be done simply reading each article, comment or re-
view, due to the huge quantity of data stored in servers all around the
world. This is basically the reason why we need automated systems
capable of performing large-scale analysis.

49

the state of the art

Opinion Mining (OM) or Sentiment Analysis (SA) is a discipline
framed within the area of Natural Language Processing (NLP) that
can be viewed as the computational treatment of opinions, feelings
and subjectivity in texts [1]. An opinion is simply a positive or neg-
ative sentiment, emotion or appraisal about an entity or an aspect of
the entity expressed by an opinion holder. Analyzing texts we could
find several opinions and it is not uncommon to detect also com-
parative opinions, where a comparison is made either between some
entities or between some specific characteristics of entities [2, 50].
One of the most studied topics in the literature [1] related to Senti-
ment Analysis is Document Sentiment Classification, or simply Sen-
timent Classification. The goal is to classify a document (e.g., a prod-
uct review) as expressing a positive or negative opinion. The main
assumption is that every document expresses opinions on a single
entity and that it is written by a single opinion holder. This is typ-
ically true with regard to reviews, but not if we are considering fo-
rum or blog posting. In literature we can find plenty of supervised
techniques, but unsupervised methods are used as well in Document
Sentiment Classification. In the supervised version, Sentiment Clas-
sification can be formulated as learning problem with three classes:
positive, negative and neutral. Dataset could be split into a training
set and a test set and then analyzed applying a traditional classifica-
tion algorithm (e.g., SVM, RandomForest, IBk, etc.). Although Doc-
ument Sentiment Classification is useful in order to extract opinions
from reviews, it is not simply applicable in other domains. In fact,
on the one hand forum and blog postings typically evaluate more
than one entity, whereas we pointed out that Sentiment Classification
can only detect the general polarity inside a document. On the other
hand, these traditional techniques are not always effective when we
try to classify short texts like for example tweets, because of the lack
of a large number of words. Therefore, more complex techniques
need to be developed in order to deal with these critical issues that
can negatively affect Sentiment Classification.

2.3.1 Markov Model based methods in Opinion Mining and Sentiment
Analysis

In Sentiment Analysis, Markov Chains are typically used to model
word dependencies and above all having as main goal to find out
opinion words (i.e. words that express sentiment). For example, in
[3] Li et al. made use of a Markov Chain for this purpose. Their
method aims to establish words polarity even before classifying the
whole document sentiment. So a Hidden Markov Model is used,
where the observation layer is made of all words whose sentiment
has to be extracted, whereas the sentiment layer is hidden (i.e. has
to be discovered). According to what has been stated before, their

50

2.3 opinion mining and sentiment analysis

Markov Chain is capable of modeling word dependencies, because
each word depends on its previous one due to the Markov property.
Moreover, they relied on some knowledge bases to guess words po-
larity. However, every word that does not match with any entry will
be assigned to a random label rather than using other information
for the sake of guessing words polarity. Since they correctly said that
words inside a sentence usually retain the same polarity while a nega-
tive conjunction is found, a probably better alternative could include
these conjunctions in the model.
Another approach to Document Sentiment Classification is described
by Jin et al. in [27], who integrated in a HMM framework both
Part-Of-Speech (POS) tagging and lexicalization. The HMM they pro-
posed is provided with a state for each couple {word, POS tag} and
it basically outputs what they called hybrid tag, which is a more com-
plex tag taking into account word relationships and positions. Fur-
thermore, they also investigated the information propagation prob-
lem, using Microsoft Word’s thesaurus to find synonyms, antonyms,
related words and also considering bigrams. Finally, they used the
Viterbi algorithm to estimate the most likely sequence of hybrid tags.
This model not only deals with some linguistic features, but it has
also the merit of identifying not frequently used expressions thanks
to the utilization of Microsoft Word’s thesaurus. On the other hand,
the underlined method has some trouble in distinguishing opinions
about different objects in the same document. This could be an issue
because if we think about the common case of reviews, it is not rare
that a reviewer compares the product he/she is reviewing with an-
other one.
As pointed out, POS tagging is an outstanding helpful task in the
context of Opinion Mining and Sentiment Analysis. Markov models
have been widely used to accomplish this task. A standard way to
cope with this problem has been used by Nasukawa and Yi [35], who
performed POS tagging following the description in [82]. The idea
is that a Markov model is used to represent the sequence of tags or,
more precisely, each Markov Chain state corresponds to a tag. When
a tagging for a sequence of words is demanded, the goal is to find
the most likely sequence of tags for that sequence of words. So, since
tags are mapped into Markov Chain states, this means computing the
most likely sequence of Markov Chain states, which could be calcu-
lated via Maximum Likelihood Estimation by means of the Viterbi
algorithm.
Mei et al. [33] with their Topic Sentiment Mixture (TSM) tried jointly
modeling topics and sentiments by means of a Hidden Markov Model.
They intended tagging each word with a sentiment label in the direc-
tion of extracting the polarity of an entire document. To fulfil this
purpose, their HMM has one state for each topic, which is fully con-
nected with all its subtopics, in turn connected to other two states

51

the state of the art

modeling polarity (i.e. positive and negative). All transition probabil-
ities and output probabilities between states are estimated by using
the Baum-Welch algorithm, while the most likely sequence of topics
and related sentiments is computed through the Viterbi algorithm.
Despite of attempting to model together topics and sentiments, they
are represented by using two different language models.
Mei’s approach was outperformed by Jo and Oh in [45], whose As-
pect and Sentiment Unification Model (ASUM) integrated both topics
and sentiments in the same language model. In this way it is possible
to understand how much a word is correlated with particular topics
and sentiments. ASUM is an extension of Sentence-LDA, which is in
turn an extension of the classical LDA (Latent Dirichlet Allocation)
[79]. Once again, beyond other interesting aspects, what involves us
is that all the aforementioned are graphical models having Markov
Chains as basic model. A big benefit of ASUM is the capability of
extracting different sentiments regarding the same aspect. On the
contrary, as the authors revealed, they assumed each sentence con-
tains exactly one aspect, which is not always an acceptable hypothe-
sis. Moreover, they did not make use of a POS tagger, which in other
works has already shown being helpful and which could facilitate
the identification of both attributes (often expressing sentiments) and
conjunctions/negations (relevant in individuating either different as-
pects or changes in polarity inside a sentence).
So far we spoke about the utilization of HMMs with reference to En-
glish language. Anyway we could notice that HMMs are quite gen-
eral and therefore they could be extended to other languages with
little modifications. For example, in [44] Zhang et al. applied a Hier-
archical Hidden Markov Model (HHMM) based technique to Chinese
language. A HHMM is more complex than a HMM, because a single
state in a higher level HMM forms another lower level independent
HMM. Further, the main difference between Chinese and English is
that in the former a sentence is written without whitespaces and thus
a word segmentation process is needed. They proved a class based
word segmentation process, in addition with n-shortest-path (NSP) al-
gorithm, can solve word segmentation ambiguity. As a consequence,
their HHMM based method has been shown effective in Chinese lex-
ical analysis.
Slightly different areas in which Markov based method can be uti-
lized are speech recognition [80] and gesture recognition [49], because
of the effectiveness in modeling human communication dynamism.
Morency et al. [46] exploited this idea using a HMM based approach
in order to classify the polarity of a Youtube video clip. In their
model, each Markov Chain state represents a spoken utterance in a
Youtube video clip. Every utterance is modeled by using tri-modal
features, i.e. including text, audio and video in the Hidden Markov
Model. In spite of the not so good performance in video sentiment

52

2.4 cross-domain text categorization

classification, the authors showed the utility of tri-modal features in
comparison with models based only on one of the three kind of fea-
tures.
A not less interesting work was made by Choudhury et al. [51],
who investigated Texting Language (TL), that is the compressed lan-
guage often used in SMS, informal chats, and so on. They aspired
to translate compressed language into its standard form, reaching
this goal with more than 80% of accuracy. To accomplish this task, a
HMM was built for each word that is used to be abbreviated in TL.
Markov Chain states represent graphemes and phonemes, utilized
to deal with any possible modification of the standard word. Both
state transition probabilities and state observation probabilities have
been estimated based on the training data, with some tricks for es-
timating values for unseen words as well. The translation from the
compressed word to the standard one is obtained by applying a vari-
ant of the Viterbi algorithm. It is important to note that this work
is orthogonal to Information Retrieval, Text Categorization and Senti-
ment Analysis tasks and hence it could be useful as base step in other
methods.

2.4 cross-domain text categorization

Before, we have already spoke about Text Categorization. Remind
that it consists in organizing textual documents into a user-defined
taxonomy of categories or classes. Categories usually correspond to
the topics discussed in those texts, such as politics, sport, music, and
so forth. As already pointed out, this task is helpful to put documents
in order, organizing them hierarchically. As a consequence, Text Cat-
egorization can be the basic step of other methods, such as spam
filtering, Sentiment Analysis and in particular Document Sentiment
Classification. In a standard Text Categorization task, a training set
of labeled documents is demanded in order to build a model, which
can be subsequently used to classify another set of unlabeled docu-
ments, named test set. Formally, let C = {c1, ..., cM} be the set of
available categories. Then, let us imagine we have a set of documents
Dtrain = {dtrain

1 , ..., dtrain
Ns
}, whose labels are available, and a set of doc-

uments Dtest = {dtest
1 , ..., dtest

Nt
}, whose labels are unknown. The goal

is assigning to each document dtest
i ∈ Dtest a class cj ∈ C.

For the sake of being effective, the Text Categorization process should
rely on a reasonably dimensioned training set, which in turn should
have the same classes of test set documents. A dictionary of strongly
related terms between training and test is required as well. In real
world, the main problem is that not always training set is available or,
anyway, its manual construction inevitably requires non-negligible
time. Sometimes, it may happen that we have a training set about a

53

the state of the art

A
uthor(s)

Task
M

arkov
C

hain
U

sage
M

C
N

odes
M

C
Edges

Q
ui[

2
5]

Pattern
discov-

ery
in

user’s
search.

R
M

C
m

od-
eling

W
eb

pages.

U
R

Ls
Transition

prob-
abilities

betw
een

U
R

Ls.
M

iller
et

al.[
2
2]

D
ocum

ent
R

e-
trieval

H
M

M
m

odel-
ing

the
gen-

eration
of

a
query.

O
ne

H
M

M
for

each
docum

ent.
A

t
each

state,
a

w
ord

is
gener-

ated.

A
state

m
odeling

a
w

ord
from

the
doc-

um
ent.

A
state

m
odeling

a
w

ord
not

in
the

docu-
m

ent.
O

ther
states

for
synonym

s,etc.

Transition
prob-

abilities
betw

een
w

ords.

C
ao

etal.
[
3
0]

Q
uery

(D
ocu-

m
ent)

Expan-
sion

H
M

M
m

odel-
ing

query
(doc-

um
ent).

Term
s

in
query

(docum
ent).

Transition
prob-

abilities
betw

een
term

s,
based

on
co-occurrences
betw

een
term

s.
Pan

et
al.

[
2
9]

Q
uery

Expan-
sion

R
M

C
m

od-
eling

the
generation

of
a

query.

Term
s

in
query.

Transition
prob-

abilities
betw

een
term

s.

Benoit
et

al.[
4
8]

D
ocum

ent
R

e-
trieval

R
M

C
m

od-
eling

user
uncertainty

in
Inform

ation
Seeking

(IS).

C
urrent

state
in

user-system
interaction.

Transition
prob-

abilities
betw

een
states

in
IS

pro-
cess.

Sarukkai
[
2
3]

W
eb

link
pre-

diction
and

path
analysis

H
M

M
m

odel-
ing

user
access

to
W

eb
pages.

U
R

Ls
Transition

prob-
abilities

betw
een

U
R

Ls.
Brin

and
Page
[
2
6]

PageR
ank

R
M

C
m

od-
eling

W
eb

pages.

U
R

Ls
Transition

prob-
abilities

betw
een

U
R

Ls.

Table
3:Sum

m
ary

of
the

usage
of

M
arkov

C
hains

in
the

m
ain

Inform
ation

R
etrievalw

orks.

54

2.4 cross-domain text categorization

A
ut

ho
r(

s)
Ta

sk
M

ar
ko

v
C

ha
in

U
sa

ge
M

C
N

od
es

M
C

Ed
ge

s
Yi

an
d

Be
-

he
sh

ti
[3

9
]

Te
xt

C
at

eg
o-

ri
za

ti
on

H
M

M
as

do
cu

m
en

t
ge

ne
r-

at
or

.
O

ne
H

M
M

fo
r

ea
ch

ca
te

go
ry

.

So
ur

ce
s

of
in

fo
rm

a-
ti

on
.

Tr
an

si
ti

on
pr

ob
ab

ili
ti

es
be

-
tw

ee
n

di
ff

er
en

t
so

ur
ce

s
of

in
fo

rm
at

io
n,

co
m

pu
te

d
us

-
in

g
tf-

id
f.

Yi
an

d
Be

-
he

sh
ti

[3
2
]

Te
xt

C
at

eg
o-

ri
za

ti
on

H
M

M
as

do
cu

m
en

t
ge

ne
r-

at
or

.
O

ne
H

M
M

fo
r

ea
ch

ca
te

go
ry

.

So
ur

ce
s

of
in

fo
rm

a-
ti

on
.

Tr
an

si
ti

on
pr

ob
ab

ili
ti

es
be

-
tw

ee
n

di
ff

er
en

t
so

ur
ce

s
of

in
fo

rm
at

io
n.

St
ar

ti
ng

fr
om

a
st

at
e,

al
lf

ut
ur

e
st

at
es

ar
e

eq
ua

lly
lik

el
y.

V
ie

ir
a

et
al

.
[3

6
]

Te
xt

C
at

eg
o-

ri
za

ti
on

H
M

M
as

do
cu

m
en

t
ge

ne
r-

at
or

.
O

ne
H

M
M

fo
r

ea
ch

ca
te

go
ry

.

H
M

M
st

at
es

re
pr

es
en

t
w

or
ds

.
Fi

rs
t

st
at

es
en

co
de

m
os

t
re

le
va

nt
w

or
ds

in
th

e
co

rp
us

,
an

d
so

on
un

ti
l

re
ac

h-
in

g
la

st
st

at
es

,
w

hi
ch

en
co

de
le

as
t

re
le

va
nt

w
or

ds
.

Tr
an

si
ti

on
pr

ob
ab

ili
ti

es
be

-
tw

ee
n

w
or

ds
.

X
u

et
al

.[
3
1
]

Te
xt

C
at

eg
o-

ri
za

ti
on

H
M

M
m

od
el

in
g

se
qu

en
ce

ty
pe

s
in

R
an

do
m

iz
ed

C
lin

-
ic

al
Tr

ia
l(

R
C

T)
ab

st
ra

ct
s.

Se
nt

en
ce

ty
pe

s
(B

ac
k-

gr
ou

nd
,

O
bj

ec
ti

ve
,

M
et

ho
ds

,
R

es
ul

ts
,

C
on

cl
us

io
n)

.

Tr
an

si
ti

on
pr

ob
ab

ili
ti

es
be

-
tw

ee
n

st
at

es
.

Fr
as

co
ni

et
al

.
[3

7
]

M
ul

ti
-P

ag
e

D
oc

um
en

ts
C

at
eg

or
iz

at
io

n

H
M

M
lin

ki
ng

co
nc

ep
ts

in
di

ff
er

en
t

pa
ge

s.
A

st
at

e
fo

r
ea

ch
un

iq
ue

pa
ge

ca
te

go
ry

.
Tr

an
si

ti
on

pr
ob

ab
ili

ty
be

-
tw

ee
n

so
ur

ce
st

at
e

an
d

ta
r-

ge
t

st
at

e.
Li

an
d

D
on

g
[4

1
]

Te
xt

C
at

eg
o-

ri
za

ti
on

H
M

M
m

od
el

in
g

in
te

r-
cl

us
te

r
as

so
ci

at
io

ns
.

Ea
ch

cl
us

te
r

co
nt

ai
ns

so
m

e
w

or
ds

in
a

do
cu

m
en

t.
A

H
M

M
is

bu
ilt

fo
r

ea
ch

ca
te

go
ry

.

A
st

at
e

fo
r

ea
ch

cl
us

-
te

r.
Tr

an
si

ti
on

pr
ob

ab
ili

ti
es

be
-

tw
ee

n
st

at
es

.

W
re

n
et

al
.

[4
2
]

D
N

A
se

-
qu

en
ce

s
C

at
e-

go
ri

za
ti

on

H
M

M
m

od
el

in
g

se
qu

en
ce

s
of

ta
gs

.
Ea

ch
ta

g
co

ns
ti

-
tu

te
s

a
w

or
d

(i
.e

.a
pa

rt
ic

u-
la

r
am

in
o

ac
id

).

Ta
gs

.
Tr

an
si

ti
on

pr
ob

ab
ili

ti
es

be
-

tw
ee

n
ad

ja
ce

nt
ta

gs
.

Ta
bl

e
4

:S
um

m
ar

y
of

th
e

us
ag

e
of

M
ar

ko
v

C
ha

in
s

in
th

e
m

ai
n

Te
xt

C
at

eg
or

iz
at

io
n

w
or

ks
.

55

the state of the art

A
uthor(s)

Task
M

arkov
C

hain
U

sage
M

C
N

odes
M

C
Edges

Liet
al.[

3]
D

ocum
ent

Sentim
ent

C
lassification

H
M

M
m

odeling
w

ord
dependencies.

W
ords

Transition
probabilities
em

bodying
w

ord
depen-

dencies.
Jin

et
al.[

2
7]

D
ocum

ent
Sentim

ent
C

lassification

H
M

M
m

odeling
both

Part-O
f-Speech

(PO
S)

tagging
and

lexicaliza-
tion.

C
ouples

{w
ord,

PO
S

tag}
Transition
probabili-
ties

betw
een

couples.
N

asukaw
a

and
Yi[

3
5]

PO
S

tagging
R

M
C

m
odeling

the
se-

quence
of

tags.
Tags

Transition
probabilities
betw

een
tags.

These
prob-

abilities
are

related
to

co-occurrences
in

the
training

set.
M

eiet
al.[

3
3]

D
ocum

ent
Sentim

ent
C

lassification

H
M

M
jointly

m
odel-

ing
topics

and
senti-

m
ents.

A
state

for
each

topic,
fully

connected
w

ith
all

its
subtopics,

in
turn

connected
w

ith
other

tw
o

states
m

od-
eling

polarity.

Transition
probabili-
ties

betw
een

states.

C
houdhury

et
al.[

5
1]

Texting
Lan-

guage
H

M
M

deals
w

ith
the

problem
oftranslation

from
com

pressed
lan-

guage
to

standard
lan-

guage.
A

H
M

M
is

built
for

each
w

ord.

G
raphem

es
and

phonem
es.

Transition
probabili-
ties

betw
een

consecutive
graphem

es
or

phonem
es.

Table
5:Sum

m
ary

of
the

usage
of

M
arkov

C
hains

in
the

m
ain

Sentim
ent

A
nalysis

w
orks.

56

2.4 cross-domain text categorization

certain topic and we need classifying a test set about a similar theme,
possibly the same, but described with different terms. To deal with
this problem, many techniques have been developed in the context
of Cross-Domain Text Categorization (CDTC), where information ex-
tracted from a source domain is used to classify unlabeled documents
belonging to a target domain. CDTC is framed within transfer learn-
ing approaches (a great survey about transfer learning can be found
in [63]), because a mapping is needed to adapt knowledge obtained
from source domain to information to be utilized in target domain,
since source and target usually express related concepts by using
different words. CDTC is a demanding task, so that all previous
methods include sophisticated statistical notions and techniques and
require strong parameters calibration.
In literature, many different approaches, both supervised and unsu-
pervised, have been proposed to deal with Cross-Domain Text Cate-
gorization problems. When training set labels are known, supervised
machine learning approaches have been employed by Joachims in
[64], Dumais et al. in [65], Yang and Liu in [66] and Sebastiani in [67].
Instead, when training set labels are unknown, unsupervised tech-
niques have been used, like for example those illustrated by Merkl
in [68] and by Kohonen et al. in [69]. In spite of being less power-
ful than supervised methods, these ones allow finding related docu-
ments anyway. The most used documents representation is known as
bag-of-words model [67], where a document is seen as a set of words
having certain weights. Several techniques have been advanced dur-
ing the years for the sake of improving this basic model capability,
like for instance Latent Semantic Indexing [70] and Latent Dirichlet
Allocation [79]. On the other hand, external sources of information,
such as the WordNet database [71] and Wikipedia [72] have been used
too.
As previously said, transfer learning approaches are required to map
source domain to target domain. More specifically, Pan and Yang
identified in their survey [63] two transfer mode: instance-transfer
and feature-representation-transfer. The former aims to bridge the
inter-domains gap by adjusting instances from source to target. Vice
versa, the latter pursues the same goal by mapping features of both
source and target in a different space. In the Text Categorization
context, transfer learning has been fulfilled in some ways, such as
through clustering together documents and words [73], through ex-
tending Probabilistic Latent Semantic Analysis also to unlabeled in-
stances [74], through extracting latent words and topics, both com-
mon and domain specific [75].

57

the state of the art

2.4.1 Document Sentiment Categorization approaches

Similar to Text Categorization, Document Sentiment Classification
(DSC), or simply Sentiment Classification, is a particular classifica-
tion task where categories represent document polarities. For this
reason, DSC is also related to Sentiment Analysis, being focused on
opinions (e.g. positive, negative, neutral). Apart from the aforemen-
tioned ones, involving Markov Chains, a number of different tech-
niques have been developed over the years solely for Document Sen-
timent Classification. For example, Dave et al. [4] draws on Informa-
tion Retrieval methods for feature extraction and to build a scoring
function based on words found in positive and negative reviews. Tan
et al. [6] considered a set of commonly used words in expressing sen-
timent. They employed it to label a portion of informative examples
from a given domain in order to reduce the labeling effort and to use
the labeled documents as training set for a supervised classifier. Qui
et al. [7] utilized a similar approach: in fact they also relied on a sen-
timent dictionary to classify some reviews and generate a training set.
Melville et al. [8] presented a framework where some lexical informa-
tion about associations between words and classes can be exploited
and refined for specific domains by means of training examples to
enhance sentiment analysis accuracy. Paltoglou et al. [5] employed
some variants of the well-known tf-idf term weighting scheme, us-
ing a sublinear function for term frequency weights and document
frequency smoothing. Deng et al. [9] proposed a supervised term
weighting scheme based on both the importance of a term in a doc-
ument and the importance of a term for expressing sentiment. Re-
garding the former they outlined that most of the high-performance
approaches introduce some kind of normalization of term frequency,
whereas concerning the latter they found the best results using ei-
ther mutual information or odds ratio as statistical functions. Wu et
al. [10] introduced the concept of over-weighting, claiming that all
previous works suffer from that problem. To address the issue they
proposed two regularization techniques called singular term cutting
and bias term. Finally, they also pioneered a new supervised term
weighting scheme: regularized entropy.
In the same way of Text Categorization, the main issue in Document
Sentiment Classification regards cross-domain problems. In particu-
lar, it is likely that people use different words to express opinions in
diverse domains. In fact, if we are considering reviews about books
and electrical appliances, there will be many domain specific terms
expressing positive and negative orientation. For example, a book can
be interesting, boring, funny, but the same attributes are meaningless
in the description of electrical appliances. On the other hand, an elec-
trical appliance can be efficient, noisy, clean, but again these attributes
could not be used for reviewing books. Therefore, what we need is

58

2.4 cross-domain text categorization

a sort of mapping between terms appearing in source domain and
those in target domain.
Since classifiers trained in one domain do not usually perform well
in others, researchers have attempted to address the Cross-Domain
Document Sentiment Classification problem in several manners. Aue
et al [11] tried some approaches to customize a classifier to a new
target domain and discussed their performance. Yang et al. [15] used
knowledge transfer to enable cross-domain learning. In [13], Blitzer
et al. discovered a measure of domain similarity contributing to a bet-
ter domain adaptation. In [14] Pan et al. advanced a spectral feature
alignment algorithm which aims to align words belonging to different
domains into same clusters, by means of domain-independent words.
The clusters form a latent space which can be used to improve senti-
ment classification accuracy of target domain. He et al. [56] extended
the Joint Sentiment-Topic (JST) model by adding prior words senti-
ment, thanks to the modification of the topic-word Dirichlet priors.
Bollegala et al. [12] suggested the adoption of a thesaurus contain-
ing labeled data from source domains and unlabeled data from both
source and target domains. Since the thesaurus can be employed to
measure similarity between words, they used it to expand feature vec-
tors in both training set and test set.
In all the previously mentioned techniques some kind of supervision
is applied. On the other hand, Document Sentiment Classification
may be performed as well by using unsupervised methods. In the
latter case, features are overwhelmingly commonly used words in ex-
pressing sentiment. For instance, in [17] Turner exposed an algorithm
to classify reviews either in positive or negative. He basically evalu-
ated mutual information between the given sentence and two words
taken as reference: excellent and poor. Another interesting work in
sentiment extraction from text is that of Taboada et al. [16]. They not
only built dictionaries of words annotated with both their semantic
polarity and their weights, but also incorporated intensification and
negation.
Although Document Sentiment Classification is useful in order to ex-
tract opinions from reviews, it is not simply applicable in other do-
mains. In fact, on the one hand forum and blog postings typically
evaluate more than one entity, whereas we pointed out that Senti-
ment Classification can only detect the general polarity inside a docu-
ment. On the other hand, these traditional techniques are not always
effective when we try to classify short texts like for example tweets,
because of the lack of a large number of words.

59

3

T H E P R O P O S E D M A R K O V C H A I N B A S E D
M E T H O D S

In this chapter, I will define new Markov Chain based methods. At
the beginning, I will introduce the basic model all the presented ap-
proaches are built on. Later, I will illustrate how to create the new Sen-
timent Classification algorithm based on the aforementioned model.
Finally, I will show you some variants of this algorithm, trying to
motivate the reason behind each different method.

3.1 a basic markov model

Let us remind that this work focuses on Sentiment Analysis and in
particular on Document Sentiment Classification (DSC). DSC is the
task of classifying an opinion document (i.e. a document expressing
opinions about something) discussing about a particular topic, as pos-
itive, negative or possibly neutral. In a formal fashion, let us give a
definition of what DSC is.

Definition Let D = {d1, ..., dN} be a corpus of documents talking
about a certain topic. Let C = {c1, ..., cM} be a set of categories, each
one representing a possible document polarity. Document Sentiment
Classification (DSC) is the task that consists in assigning to each doc-
ument di ∈ D a class cj ∈ C.

In practice, DSC is a specific kind of Text Categorization where classes
are document polarities. According to the given definition, we may
notice that the implicit assumption DSC does is considering just the
general document polarity, ignoring the potential presence of opin-
ions, possibly conflicting, regarding either more than one entity or
more than one aspect related to the same entity. This assumption
could be feasible or infeasible depending on what we are looking
for. Although any set of polarities can be used for the DSC task,
the most meaningful ones as well as the most used in literature are
C = {positive, negative} and C = {positive, negative, neutral}. In fact,
when people express opinions (i.e. opinion holders, according to the
definition in [85]) about something in real contexts, their point of
view could have not only a positive or a negative orientation, because
they use words that make other readers understand that they take

61

the proposed markov chain based methods

a particular side, but also a neutral orientation, because either the
terms they utilize are quite general or they make use of expressions
showing indecision/equilibrium, like pros and cons or others. So the
3-classes problem is probably the one describing better what hap-
pens in real world. However, if our goal was either understanding
if people are generally satisfied/unsatisfied about a certain topic or
identifying positive and negative opinions to further investigate the
reason why they are for or against the specified topic, then consider-
ing a 2-classes problem could be meaningful as well. However, as I
said before, other categories could be employed in the DSC process.
For example, regarding opinions on TripAdvisor 1, reviewers give a
score from 1 to 5 stars to products, places, etc. Besides this, they also
write a review. Thus, a meaningful task is, for instance, building a
model capable of classifying that review in 5 classes corresponding to
stars. Alternatively, this 5-classes problem could be mapped into the
previous 3-classes problem, by mapping 5 and 4 stars in the positive
class, 3 stars in the neutral class and 2 stars and 1 star in the negative
one.
Anyhow, we may notice that in DSC tasks a central problem is find-
ing the so called opinion words, namely the terms that show a strong
orientation towards a particular class. This means that they guide
the classification process, aiding to categorize documents according
to their polarity. These terms are usually frequent inside a corpus
but at the same time they should not be found in every document,
because in that case they would not help in discriminating among
different categories. Beyond being frequent, opinion words should
also be significant inside a particular document in order to spread
their polarity out to the entire document. In accordance with this
consideration, their weight should be higher than that of other less
important words. We will see some examples of widespread methods
to assign a meaningful weight to a term belonging to a corpus of doc-
uments, but at the moment let us just focus our attention on the fact
that the most relevant terms have the highest weights. Of course, it
is infeasible that all the words inside a corpus of documents have the
above mentioned characteristics. On the other side, also a less impor-
tant word could support the classification process in some ways. We
will refer to these kind of words as support words. So, being opinion
words the task driving force, we could think linking support words
to them for the sake of increasing the discriminative power while clas-
sifying.
In line with what has been stated until now, two main questions arise:

1. How to link words together?

2. How to link a particular word with the document label?

1 http://www.tripadvisor.com

62

3.1 a basic markov model

In order to answer to the first question, a straightforward, widely
used idea is modeling words co-occurrences inside documents. The
idea is that the more two terms co-occur in documents the more their
connection will be stronger. Consequently, if one of the two is an opin-
ion word, it not only leads the categorization process of a document
towards an orientation, but also pushes other words to do the same.
We could see the words co-occurrences modeling as a graph whose
nodes represent words and whose edges represent the strength of the
connections between two different words (an example is shown in
figure 4).

Fig. 4: The figure shows an example of undirected graph used to model co-
occurrences between terms. Each arc between two nodes ti and tj has
weight aij.

Formally, let D = {d1, ..., dN} be the corpus of documents and let
T = {t1, ..., tk} be the dictionary of terms we are considering. Let
A = {aij} be the set of edges between terms, i.e. the set of connec-
tion weights between terms ti and tj. Then, one meaningful way to
compute term co-occurrences is

aij = aji =
N

∑
d=1

wd
ti
· wd

tj
, ∀i 6= j (41)

where wd
th

represents the weight of term th in document d. In fact,
analyzing the relation, we could notice that if two terms co-occur in
a document, the connection between them will be strengthen. More-
over, the higher their weights are the more the connection will be
strengthen. Finally, if two terms do not co-occur in a document means
that at least one of them is absent (of course, wd

ti
= 0 if ti does not

exist in document d) and, consequently, the connection will not be
strengthen because wd

ti
· wd

tj
= 0.

The same strategy could be followed to link a certain word with a par-
ticular class, that is, finding the polarity of a certain word. Clearly, to

63

the proposed markov chain based methods

accomplish this task, knowledge about document polarity is manda-
tory, unless having an external knowledge base which tells us that
a word is intrinsically positive, negative or neutral. In any case,
let us imagine we know document polarities inside a corpus. The
idea is modeling co-occurrences between a word and a category for
every document belonging to the corpus, namely augmenting the
strength of the relationship between a word and a class if that speci-
fied word appears in a document of that particular class. Again, these
co-occurrences can be modeled as a graph. Since we already have a
node for each word, we just need adding another node for each class,
linking by arcs every couple word-class where that word appears at
least in one document belonging to that class (the same example in
figure 4 with also class nodes is shown in figure 5).

Fig. 5: The figure shows the same example already shown in figure 4, to
which positive and negative classes have been added. From this
example, we could notice that t3 is not linked to negative class and
t4 is not linked to positive class. This means the former never appears
in negative documents, whereas the latter never appears in positive
documents.

Formally, let C = {c1, ..., cM} be a set of categories. Let B = {bij} be
the set of edges between a term ti and a class cj. The weight between
term ti and category cj is

bij =
N

∑
d=1

wd
ti

, cd = cj (42)

where cd is the category value of the document d.
Once having represented co-occurrences by means of an undirected
graph, we could notice that it is possible to transpose this model to a
Regular Markov Chain, where graph vertices are simply mapped to
MC nodes and graph edges are split into two directed edges (i.e. the
edge linking states ti and tj is split into one directed edge from ti to

64

3.1 a basic markov model

tj and another directed edge from tj to ti). Though, this transposition
is not enough to say that the model we have produced is a sound
MC, because we need proving that the Markov property holds, along
with other basic properties related to probability. First of all, proba-
bility non-negativity must hold both for states and for arcs, as stated
by relations 3 and 4. The former holds because the model includes
just states corresponding to terms in the analyzed corpus. The lat-
ter holds as well because transition probabilities (modeled by arcs)
are proportional to weights between words, which in turn cannot be
lower than 0 since they model term co-occurrences. Another prop-
erty that must hold is probability unitarity 5, namely for each state
the sum of all outgoing arcs must be equal to 1. However, in general

k

∑
i=1

aji +
M

∑
i=1

bji 6= 1, ∀j = 1, ..., k

because aij and bij have been computed separately through formulas
41 and 42, ignoring this constraint. Therefore, a normalization step
is required to transform weights into probabilities. Normalization is
performed as follows:

a
′
ij =

aij
k
∑

z=1
aiz +

M
∑

z=1
biz

, ∀i, j = 1, ..., k, i 6= j (43)

b
′
ij =

bij
k
∑

z=1
aiz +

M
∑

z=1
biz

, ∀i = 1, ..., k, ∀j = 1, ..., M (44)

Now we are sure that probability unitarity property holds

k

∑
i=1

a
′
ji +

M

∑
i=1

b
′
ji = 1, ∀j = 1, ..., k (45)

and, at the same time, we have not changed the semantics of the
model, keeping the same proportions between weights. As previ-
ously said, a Markov Chain is a stochastic process characterized by
the so called Markov property, which says that the future state in
the system evolution depends only on present state and does not de-
pend on all past states. So, apart from basic probability theorems, we
need proving that Markov property holds but, before doing this, let
S = {s1, ..., sk} be the set of Markov Chain states, where each si cor-
responds to a term ti in the corpus. Let X = {x1, ..., xT} be the set of
states crossed during the system evolution imaging that T iterations
occurred, where x1 represents the first state crossed and xT the last
state crossed. According to these definitions, Markov property says:

P(St+1 = xt+1|S1 = x1, ..., St = xt) =

= (St+1 = xt+1|St = xt), 1 ≤ t ≤ T − 1 (46)

65

the proposed markov chain based methods

Markov property surely holds in the proposed model, because the
probability that system will transit to future state does not depend
on all past states, but just on present state. Furthermore, since states
represent words, in accordance with equations 43 and 44 this proba-
bility is always equal to a

′
ij and b

′
ij respectively, being si the current

state and sj the future state.
In conclusion, I used Markov Chain model in order to represent

words co-occurrences in the considered corpus of documents. Fur-
thermore, it is the first time that classes have been included in a Reg-
ular Markov Model to perform Document Sentiment Classification.
The main advantages of relying on the soundness of this mathemati-
cal theory are:

• A mathematical theory guarantees to easily control the sound-
ness of the entire approach.

• Markov Chains have been widely used in many scientific works
(as shown in Chapter 2) and they have already proved being
useful.

3.2 the new proposed markov based algorithm

After having understood the main reasons behind the utilization of
Markov Chains, we are going to explain how to use them to design
an algorithm for Document Sentiment Classification. Let us remind
that the set of terms is T = {t1, ..., tk} and the set of categories is
C = {c1, ..., cM}. Now let us imagine we have a set of documents
Dtrain = {dtrain

1 , ..., dtrain
Ns
}, whose labels are available, and a set of doc-

uments Dtest = {dtest
1 , ..., dtest

Nt
}, whose labels are unknown. The goal is

assigning to each document dtest
i ∈ Dtest a class cj ∈ C. Without lack

of generality, let us consider a cross-domain problem, that is, the set
of documents Dtrain is about a certain topic and the set of documents
Dtest is about a different topic. Both topics have C as their set of pos-
sible labels (notice that, being in a Sentiment Classification context,
this is feasible because labels represent polarities). As we have al-
ready seen in chapter 2, the main issue in cross-domain is that people
could use different words to express opinions. Therefore, what we
need is a sort of mapping between terms appearing in source domain
and those in target domain. The idea I rely on is that, apart from
domain specific words, there is a subset of common terms between
the two domains. This is almost always true in Sentiment Classifica-
tion problems, just think about words like good, bad, optimum, and so
on, which are general, independent from the topic discussed. Conse-
quently, these words could act as a bridge between domain specific
terms.
Since the goal is classifying target documents, we require exploiting
this bridge, in order to allow information about classes flowing from

66

3.2 the new proposed markov based algorithm

domain specific terms belonging to the source to domain specific
terms belonging to the target. How to realize this?
The answer is straightforward: through modeling term co-occurrences
as explained in the previous section. In fact, if two domain specific
words belonging to different domains are connected with a general
(i.e. common) opinion word (see figure 6), they tend to assume the
same orientation.

Fig. 6: The figure shows the mapping between source and target by means
of common terms. st and tt represent two domain-specific terms,
belonging to source and target respectively. ct represents a common
term between the two domains. We could notice that, even if tt is not
linked with class, we know that it is related to ct, which in turn is
linked with class. This is the way to walk in order to align different
domains.

Once having motivated how to align target with source domain,
we could see how the new proposed Markov Chain algorithm works.
The algorithm is composed of two parts:

1. the learning phase

2. the classification phase

3.2.1 The learning phase

The goal of the learning phase is building a model that can be sub-
sequently used to classify documents in the classification phase. The
model produced by the learning phase of the proposed algorithm is a
Markov Chain, which could be represented as a Markov Chain tran-
sition matrix (MCTM), as pointed out in chapter 1. MCTM, whose
basic structure is shown in table 6, is a (k + M)× (k + M) matrix hav-
ing current states as rows and future states as columns. As we have
stated in the previous section, each state corresponds to either a term
or a class. Each entry of MCTM is computed differently depending
on the nature of current and future states as described below.

Remind that A = {aij} is the set of connection weights from term
ti to term tj, as said by relation 41 that we could rewrite as

67

the proposed markov chain based methods

t1, ..., tk c1, ..., cM

t1, ..., tk A
′

B
′

c1, ..., cM E F

Table 6: This table shows the structure of MCTM. A
′

represents the
set of transition probabilities that, starting from a term, an-
other term will be reached. Similarly, B

′
represents the set of

transition probabilities that, starting from a term, a category
will be reached. E represents the set of transition probabili-
ties that, starting from a class, a term will be reached. F rep-
resents the set of transition probabilities that, starting from a
class, another class will be reached.

aij = aji =

0, i = j

∑
d∈Dtrain∪Dtest

wd
ti
· wd

tj
, i 6= j , ∀i, j = 1, ..., k (47)

and that B = {bij} is the set of connection weights from term ti to
class cj, as stated by relation 42 that we could rewrite as

bij = ∑
d∈Dtrain

wd
ti

, cd = cj, ∀i = 1, ..., k, ∀j = 1, ..., M (48)

because we only know class labels for documents belonging to the
source set Dtrain. Then, the set of transition probabilities from term ti
to term tj, namely A

′
= {a′ij}, and the set of transition probabilities

between term ti and class cj, namely B
′
= {b′ij}, are represented by

relations 43 and 44. On the other hand, regarding the set of transition
probabilities from class ci to term tj, namely E = {eij}, and the set
of transition probabilities from class ci to class cj, namely F = { fij},
the idea is that classes are absorbing states. Therefore, eij and fij are
computed as follows:

eij = 0, ∀i = 1, ..., M ∀j = 1, ..., k (49)

fij =

{
1, i = j

0, i 6= j
, ∀i, j = 1, ..., M (50)

In accordance with these definitions, table 7 shows how the exam-
ple illustrated in figure 5 can be transposed in the MCTM.

The computational complexity of the learning phase is exactly the
time required to build the MCTM, say time(MCTM), which is:

time(MCTM) = time(A) + time(B) + time(A
′
+ B

′
) + time(E) + time(F)

(51)

68

3.2 the new proposed markov based algorithm

t1 t2 t3 t4 t5 positive negative
t1 0 a12

dent1
a13

dent1
a14

dent1
a15

dent1
b11

dent1
b12

dent1

t2
a12

dent2
0 a23

dent2
a24

dent2
a25

dent2
b21

dent2
b22

dent2

t3
a13

dent3
a23

dent3
0 a34

dent3
a35

dent3
b31

dent3
b32

dent3

t4
a14

dent4
a24

dent4
a34

dent4
0 a45

dent4
b41

dent4
b42

dent4

t5
a15

dent5
a25

dent5
a35

dent5
a45

dent5
0 b51

dent5
b52

dent5

positive 0 0 0 0 0 1 0
negative 0 0 0 0 0 0 1

Table 7: This table transposes the example in figure 5 to the
MCTM. Notice that: dent1=a12 + a13 + a14 + a15 + b11 + b12;
dent2=a12 + b21 + b22; dent3=a13 + a35 + b31; dent4=a14 +

a45 + b42; dent5=a15 + a35 + a45 + b51 + b52.

Thus, since time complexity depends on these factors, we have to
estimate each of them. The only assumption we can do is that in
general k >> M.

time(A) = O(
k2

2
× (Ns + Nt)) = O(k2 × (Ns + Nt))

time(B) = O(k×M× Ns) = O(k× Ns)

time(A
′
+ B

′
) = O(k× (k + M) + k + M) = O((k + 1)× (k + M)) = O(k2)

time(E) = O(k2)

time(F) = O(k×M) = O(k)

Therefore, the computational complexity of the learning phase is:

time(MCTM) ' time(A) = O(k2 × (Ns + Nt)) (52)

where I remind that k is the number of terms, Ns and Nt are the
number of documents belonging to training (i.e. source in a cross-
domain problem) and test (i.e. target in a cross domain problem)
respectively.

3.2.2 The classification phase

The goal of the classification phase is categorizing documents Dtest be-
longing to the target domain by means of the model built in the learn-
ing phase. The document representation I rely on is bag-of-words,
which is essentially a term-document matrix where each document is

69

the proposed markov chain based methods

seen as a set (i.e. bag) of words. Each word has a specified weight,
usually independent from its position inside the document. Hence,
a document d to be classified can be considered as a vector of terms.
In accordance with this consideration and with the model output of
the learning phase, we could define d as a document having the same
terms t1, ..., tk of the corpus used to build the MCTM and the same
class values. Obviously, all the terms actually in d will have a weight
greater than 0, while all missing terms will have a weight equal to 0.
Class values will be set to 0 as well because the document has to be
classified and of course we could not know in advance its class label.
Formally, let dt ∈ Dtest be a document to be classified. According to
the bag-of-words representation, it can be expressed as follows:

dt = (wdt
t1

, ..., wdt
tk

, c1, ..., cM)

where wdt
ti

is the weight of term ti in document dt and ci ∈ C is one of
the available classes as previously defined. Those weights are prior
measures, expressing just the initial term relevance in dt. Thus we can
see wdt

t1
, ..., wdt

tk
as the probability distribution representing the initial

state of the MCTM, while the prior probability that at the beginning
a class is relevant for a test document (and consequently that a class
can be the initial state) is trivially equal to 0 (i.e. c1 = ... = cM =

0). So, we initially hypothesize to be in many different states (i.e.
every state ti so that wdt

ti
> 0) at the same time. Then, simulating a

single step inside the MCTM, we will obtain a posterior probability
distribution not only over terms, but also over classes, because classes
are admissible states as well. In such a way, estimating the posterior
probability that dt belongs to a certain class ci, we could assign to dt

the most likely label ci ∈ C. The posterior probability distribution
after one step in the MCTM, starting from document dt, is:

d∗t = (wd∗t
t1

, ..., wd∗t
tk

, c∗1 , ..., c∗M) = dt ·MCTM (53)

where the size of dt is 1 × (k + M) and the size of MCTM is (k +
M) × (k + M). As we have already mentioned before, the category
that will be assigned to dt is computed as follows:

cdt = arg max
i∈C∗

c∗i (54)

where C∗ = {c∗1 , ..., c∗M} is the posterior probability distribution over
classes.

The computational complexity of the classification phase of the al-
gorithm is:

time(CLASS) = time(MatProd) + time(Max)

where time(MatProd) is the time required to compute the d∗t values,
whereas time(Max) is that to compute the cdt values.

time(MatProd) = O((k + M)2 × Nt) = O(k2 × Nt)

70

3.3 markov based algorithm : some variants

time(Max) = O(M× Nt)

Therefore, the computational complexity results:

time(CLASS) ' time(MatProd) = O(k2 × Nt) (55)

where, again, k is the number of terms and Nt is the number of docu-
ments belonging to test (i.e. target in a cross-domain problem).
Finally, the computational complexity of the entire algorithm is given
by

time(MCAlgorithm) = time(MCTM) + time(CLASS) '
' time(MCTM) = O(k2 × (Ns + Nt)) (56)

We would like to point out that the just described algorithm is
absolutely general, because it is sound if we consider both a Single-
Domain problem and a Cross-Domain problem. In fact, although this
approach was designed to deal with Cross-Domain Sentiment Clas-
sification tasks, there is no need to change anything if training set
and test set belong to the same domain (i.e. for Single-Domain Sen-
timent Classification). Obviously, Single-Domain DSC is a simpler
task than Cross-Domain DSC, because in the former there are usually
more common words between training set and test set than in the lat-
ter, belonging these two sets to the same domain. Another important
feature of the algorithm is its language independence: there is no as-
sumption about the nature of words, because the only thing we need
to know is the weight of each term inside each document (i.e. we only
need to represent each document as a vector of terms). Related to that
just described, the last significant advantage is the simplicity of this
approach, since the only parameter to be decided is the measure to
be employed for the computation of term weights inside documents.

3.3 markov based algorithm : some variants

In this section we will see some possible variants of the general ap-
proach just introduced. I will call the original algorithm MCAlgorithm
for disambiguation purposes. The majority of the methods I will
describe aim to expand documents. Explaining better, for every doc-
ument d the weight wd

ti
> 0 if and only if the term ti ∈ d. However,

it is possible that inside the corpus there are other terms tj /∈ d that
are semantically related to ti (examples of semantic relationships be-
tween words are synonymy, antonymy, hyponymy, hypernymy, and
so on). In this case, it would be meaningful expanding the initial
probability distribution over words inside document d, by including
semantically related terms as well. The variants that fulfil this goal I
will propose in this work are:

• Document expansion by means of Markov Chain Stationary Dis-
tribution (MCSD)

71

the proposed markov chain based methods

• MCTM expansion by means of MCSD

• Document expansion by means of words distance

On the other hand, another modification slightly different from doc-
ument expansion arises answering to the question: Do connection
weights always represent term co-occurrences? Finally, the last variant
I would like to discuss is a totally diverse approach to Cross-Domain
Sentiment Classification. As previously said, one of the biggest issue
of this task is finding a set of common words between source and
target, that can guide the classification process. Nevertheless, it is not
always simple to extract a general feature set. To overcome this lim-
itation, my idea consists in using more than just one source domain
when building the MCTM model. I will call this variant Multi-Source
approach, written as MCMS.

3.3.1 Document expansion by means of Markov Chain Stationary Distri-
bution

We have already discussed the reason why document expansion could
be useful. Now let us see how a document can be expanded accord-
ing to the Markov Chain model. Remember that at the beginning a
document is expressed as a set of weights and that executing a single
step in the MCTM means simulating a state transition, hypothesizing
to start from every state corresponding to a non-null weight. Conse-
quently, the idea is to allow the simulation of T steps rather than just
one, in order to spread the term relationships out, involving as many
semantically related terms as possible.
Moreover, another consideration to be done is that initial term weights
could not to reproduce the trend of the entire corpus, introducing
classification issues. However, we know from Markov Chain theory
that if a MC is ergodic, then it has a stationary distribution, which
can be interpreted as a new term weighting (TW), a posterior prob-
ability distribution stating the relevance of each term. According to
what Hoenkamp et al. said in [19], it is trivial to prove that a MC
built on a bag-of-words representation is always ergodic. Therefore,
we could think about substituting the initial term weights in each
document with the ones returned by the computation of the Markov
Chain Stationary Distribution (MCSD). Subsequently, the expansion
process will be executed over the documents just modified.
Formally, the entire expansion process, performed between the learn-
ing phase and the classification phase, is as follows:

1. Compute the MCSD = {wtst
1

, ..., wtst
k
}. This is possible because

when MC is ergodic, beyond the existence of MCSD, it is also
guaranteed that it is the unique solution to A

′
x = x, where A

′

is the same MCTM submatrix as defined in 43. Thus we could
solve (A

′ − I)x = 0, replacing the first row with the constraint

72

3.3 markov based algorithm : some variants

that says that the sum of x coordinates must be equal to 1, since
x represents a probability distribution. Let v be a column vector
of size k× 1, where

v =


1
0
...
0


Then, the stationary distribution MCSD can be computed as
follows:

(MCTMt − I) ·MCSDt = v⇒

⇒ MCSD = ((MCTMt − I)−1 · v)t (57)

where the exponent t states the transpose operator and I ∈ (k×
k) is the identity matrix of order k.

2. For each document dt ∈ Dtest, dt = {wt1 , ..., wtk , 01, ..., 0M}, sub-
stitute dt with a new document d∗t = {wt∗1 , ..., wt∗k , 01, ..., 0M},
where

wt∗i =

{
0, wti = 0

wtst
i

, wti > 0
, ∀i = 1, ..., k (58)

3. For each document dt ∈ Dtest, expand dt by executing the prod-
uct:

dexp
t = dt ·MCTMT (59)

where MCTMT means that T steps in the MCTM have to be
executed.

Henceforth, this variant will be referred as MCDocExpMCTM .

3.3.2 MCTM expansion by means of Markov Chain Stationary Distribu-
tion

As we have seen, the MCSD can be interpreted as a new term weight-
ing, a new probability distribution taking into account the entire cor-
pus of documents involved in the Sentiment Classification task. Apart
from documents to be classified, we could think about expanding
training documents as well. The idea is the following:

1. Compute the MCSD as in 57.

2. For each document d ∈ Dtrain ∪Dtest, expand dt in the same way
explained by relations 58 and 59.

73

the proposed markov chain based methods

3. Use the new documents to create an expanded MCTM, as in the
learning phase of the standard MCAlgorithm.

The new MCTM models term co-occurrences as before, but taking
into consideration also semantically related terms. In fact, once ex-
panded, documents contain both original terms and semantically re-
lated ones. Obviously, the probability distribution over terms inside
a document is different from the initial one due to the expansion
step. Notice that this approach, to which we will refer as MCMCTMExp,
does not exclude MCDocExpMCTM . Therefore, we could combine these
two variants, by expanding documents in order to both create a new
MCTM and classify test documents executing a step in the MCTM
itself.

3.3.3 Document expansion by means of words distance

A diverse approach to document expansion, referred as MCDocExpwd ,
relies on distance among words. The goal is finding the distance be-
tween the words inside a document and all other terms in the whole
corpus, giving to the new encountered words a weight that decreases
by augmenting the distance. To accomplish this task, a key question
is: How to compute the distance between two words?
I would like to make you remember that each step in the MCTM
simulates a state transition, starting from every MC state correspond-
ing to the words inside a document. Consequently, as I have already
pointed out, the probability distribution over words in a document
changes after each step, so that after having performed the step, a
term t whose weight was wt = 0 could have a new weight w∗t > 0.
If this happens, it means that from the initial probability distribution
t has been reached thanks to the last state transition (i.e. the step in
which the weight of t has changed from wt to w∗t). Hence, we could
define the distance as the number of steps required to hit a new term.
Formally, let distd

ti
be the distance of the term ti from document d.

Then, we can say that

distd
ti
= zi, zi ∈N (60)

if ∃Ti ∈N so that

wti =

{
0, Ti < zi

w∗ti
, Ti ≥ zi, w∗ti

> 0

where Ti represents the number of iterations in the MCTM needed to
reach ti, whereas w∗ti

is the weight of ti after Ti iterations.
Now that we know how to calculate the distance value for each word,
we could design another variant of the MCAlgorithm introducing a doc-
ument expansion phase in this way:

1. Compute the MCSD, with MCSD = {wtst
1

, ..., wtst
k
}, as in 57.

74

3.3 markov based algorithm : some variants

2. For each document d ∈ Dtrain∪Dtest, with d = {wt1 , ..., wtk , c1, ..., cM},
expand d in d∗ in the following way:

d∗ = {wz1+1
tst
1

, ..., wzk+1
tst
k

, c1, ..., cM} (61)

where zi is the distance of term ti from document d, as indicated
by equation 60. Notice that this relation allows achieving the
established goal, namely the more terms are distant from the
document the more their weight should be low. In fact, being
MCSD a probability distribution, the following relation holds

0 ≤ wtst
i
≤ 1, ∀i = 1, ..., k

and, consequently,

lim
zi→∞

wzi+1
tst
i

= 0

3. Use the expanded documents to create an expanded MCTM, as
in the learning phase of the standard MCAlgorithm.

3.3.4 Do connection weights always represent term co-occurrences?

Until now, I have affirmed that Markov Chains are suitable to model
term co-occurrences. According to this, every transition probability
between two MC states is generally function of connection weights
among terms, which in turn are usually the higher the more two
words co-occur. In particular, in MCAlgorithm the relationship between
a term ti and a class ci depends on the weights ti has in documents
of class ci and those weights are higher the more ti occurs in those
documents. This means that ti has a certain polarity if it frequently
appears in documents having the same polarity. In spite of being
reasonable assumptions, another remark could be done. Imagine we
had a technique capable to establish how much ti really affects the
classification process; for each term ti a ranking would be computed
and it could be exploited in MCAlgorithm. This is feasible because in
literature there are plenty of supervised techniques that give terms
scores proportional to their classification capabilities.
Formally, let R = {r1, ..., rk} be the set of ranking returned by a super-
vised technique for each term in the corpus. Let wd

ti
be the original

weight of a term ti in a document d. Then, we could change wd
ti

in a
weight wd

t∗i
computed as follows:

wd
t∗i
= wd

ti
· ri (62)

Both the learning phase and the classification phase of MCAlgorithm
remain unaltered, but every weight wd

ti
will be substituted by wd

t∗i
.

75

the proposed markov chain based methods

3.3.5 Multi-Source approach

The last variant we are going to discuss, referred as MCMS, is not ex-
plicitly related to document expansion. The idea is similar to that of
Bollegala et al. in [57], who proposed using more than just one source
domain to improve the performance of Cross-Domain task. They re-
lied on a sentiment sensitive thesaurus, where semantically related
words are grouped, in order to perform a meaningful document ex-
pansion. Instead, the aim of MCMS is just providing a bigger and
heterogeneous feature set, which could help the mapping between
domain specific words belonging to the source domain and those be-
longing to the target domain.
Due to this consideration, the main structure of MCAlgorithm is un-
changed, whilst the Multi-Source approach directly affects both the
content of the MCTM and the way the classification phase is per-
formed.

3.3.5.1 The learning phase

The structure of the learning phase is almost stable, except for the
fact we need to take into account some source domains. For this
purpose, let DOM = {dom1, ..., domh} be the set of the considered
source domains. As a consequence, the training set becomes

Dtrain = {Dtraindom1 , ..., Dtraindomh }

where Dtraindomi = {d1domi , ..., d
N

domi
s
}, and the set of classes become

C = {Cdom1 , ..., Cdomh}

where Cdomi = {c1domi , ..., cMdomi }. So, the total number of classes is
M = Mdom1 + ... + Mdomh . Furthermore, remind that the MCTM can
be considered being composed of 4 submatrices, namely A

′
, B

′
, E

and F (see table 6). Under the above mentioned considerations, these
submatrices still remain expressed as they were in the relations 43, 44,
49 and 50.

3.3.5.2 The classification phase

As for the learning phase, also the structure of the classification phase
is unaltered. However, we could notice that we need dealing with
more classes. This makes us understand that each domain (i.e. both
sources and target) must have the same set of categories in order to
perform classification in the right way, formally Cdom1 = ... = Cdomh =

Ctest. Due to this reason, we have two basic viable ways to categorize
test documents after having computed the posterior probability dis-
tribution over classes with equation 53. The first consists in choosing

76

3.3 markov based algorithm : some variants

the most likely class, as in relation 54. On the other hand, the second
assigns the category cdt as follows:

cdt = arg max
i∈C∗sum

c∗sumi
(63)

where c∗sumi
is the sum of probabilities of class c

idomj in every source
domain, that is

c∗sumi
=

h

∑
j=1

c
idomj

and C∗sum is the final probability distribution over classes that will be
used to compute the most likely category, namely

C∗sum = {c∗sum1
, ..., c∗sumM

}

Both alternatives are sound and require just a little modification of
the classification phase.

77

4

F R A M E W O R K A N D I M P L E M E N TAT I O N

This chapter explains how the methods proposed in chapter 3 have
been implemented to further carry analysis out. Firstly, the employed
framework is introduced, giving an idea of its architectural design.
Subsequently, some examples are shown about how the standard
MCAlgorithm and its variants have been realized within the framework.

4.1 the concurrent framework

Obviously, after having created a model representing the essential
characteristics a system fulfilling a purpose should have, it is neces-
sary to create a framework in order to realize it. Lots of tools are
available for data analysis: for instance, Weka 1, which is a largely
used Java 2 software, including a collection of machine learning al-
gorithms, suitable for data pre-processing, classification, clustering,
and so on. One important advantage is the fact that Weka makes a
set of APIs available, so that it is simple both using the algorithms
from the tool provided and calling them from Java code. Another
relevant instrument for data analysis purposes is R 3, which is a func-
tional programming language designed for statistical computing and
graphics. In fact, R has a broad range of statistical packages, easily
invokable to perform simple analysis. Moreover, also an IDE called
RStudio 4 is available in order to facilitate R usage.
However, due to flexibility reason, I preferred not relying on neither
Weka nor RStudio. More precisely, I chose developing my own frame-
work in Java, providing some classes to make the interfacing with
both Weka and R possible. In fact, Java is suitable on the one hand
because Weka APIs are directly callable from code, since Weka is Java-
based as well. On the other hand, also R scripts can be effortlessly
called from Java code. Though, apart from considerations about Weka
and R, I believe that the usage of a general purpose language is the
best way to walk for the sake of developing new algorithms like those
introduced in chapter 3. In fact, I did not need using well-known

1 http://www.cs.waikato.ac.nz/ml/weka/
2 https://www.java.com/
3 http://www.r-project.org/
4 http://www.rstudio.com/

79

framework and implementation

algorithms, already proved useful, but just implementing novel tech-
niques and conducting several tests. Parametrization, need for paral-
lelism, algorithm performance evaluation are surely good reasons to
choose realizing a new framework.

4.1.1 Framework architecture

Hereinafter, I will overlook some details, like for example how my
framework interfaces with Weka and R, and I will focus on the main
architectural components needed for performing analysis.
The framework architecture I designed can be divided into some
main macro-parts:

• Models, containing the basic data modeling. Data are express-
ible in many different ways, so that any diverse dataset might
have its own. Nevertheless, it is important to rely on an in-
ternal data representation, which is general, independent from
datasets representation and, at the same time, comfortable for
analysis.

• Filters, including any technique suitable for data pre-processing.
Depending on the task we are required to accomplish, some
filters could be demanding. In particular, in Text Mining, data
are almost always long plain texts, which are not manageable
at all. Therefore, some transformations could be necessary in
order to map these texts to the internal model used for analysis.

• Algorithms, incorporating every proposed variant discussed in
chapter 3. Each algorithm takes in input data expressed in the
internal model defined by Models, executes the learning phase
and the classification phase and returns a result expressed in
the internal model as well.

• Input-Output, providing utilities useful to input-output interac-
tion. In fact, texts have to be scanned and imported in frame-
work before being analyzed. Likewise, after having performed
experiments, the corresponding results might be printed in out-
put, for example to the console or to some kind of file.

• Concurrent Architecture, incorporating the concurrent architec-
ture necessary to perform large-scale tests. As already pointed
out, algorithms have some parameters and, as a consequence,
many initial configurations are required to be tested. Therefore,
it is appropriate a support allowing the concurrent and parallel
execution of many experiments at a time.

The whole framework has been implemented in Java, using Eclipse
IDE 5 to ease the development. Every macro-part has been mapped

5 https://eclipse.org/

80

4.1 the concurrent framework

into a Java package. Below we can find a bit more detailed description
of what kind of Java classes have been included in each macro-part.
UML diagrams will be included just regarding the concurrent sup-
port, that is the most interesting macro-part of the built architecture.

4.1.1.1 Models

Models contains the basic data modeling and it is mapped into the
package models. Essentially, internal representations of both docu-
ment corpus and analysis results are required.

• Couple: a POJO representing a couple of values. This class is
mainly used in order to model a term in the corpus, to which
both an identifier and a term weighting are associated.

• Category: a POJO modeling available categories. This class stores
information about the name used to refer to category and about
its list of admissible values.

• Document: a POJO representing a document, namely any text,
such as a comment, a review, and so on. A document is mod-
eled as a list of Couple and is identified by a Category. Obvi-
ously, every utility method has to be provided, like for instance
changing a term weight or searching if a term exists inside the
document.

• Dictionary: a POJO used to store the word dictionary. Each word
is trivially modeled as a java.lang.String.

• BagOfWords: a POJO modeling the whole document corpus, ba-
sically represented as a list of Document. Notice that the term
bag-of-words usually indicates a term-document matrix, having
a row for each word in the considered dictionary, a column for
each document in the corpus and where an entry represents
the weight of certain term into a particular document. On the
other hand, the internal representation of a bag-of-words is a
list of Document, where in turn each document is a list of Couple
embodying term weights. This class also refers Dictionary.

• CategoryMeasure: a POJO representing the analysis results with
respect to a certain Category. It includes methods to compute
accuracy, precision, recall, f1-measure, and so on.

• Result: a POJO used to model the whole analysis results. It is
constituted by a list of CategoryMeasure, typically long as the
number of possible class values. This list is used to calculate
the overall performance.

81

framework and implementation

4.1.1.2 Filters

Filters includes every technique suitable for data pre-processing. It
is implemented in two packages, namely filters and filters.en, respec-
tively containing generic filters and specific filters appropriate for En-
glish. filters incorporates the following classes and interfaces:

• ITextFilter: a general interface, implemented by any generic fil-
ter, whose unique method is

String[] filter(String textToFilter);

• Tokenizer: a filter useful to split a sentence into some words.

• PunctuationRemover: a filter useful to remove any punctuation
mark, like commas, dots, semicolons, colons, question marks,
exclamation marks, and so on.

• NumberRemover: a filter useful to remove any number found in
text.

• CaseFolder: a filter converting every character to lower case.

• StopWordsRemover: a filter useful to discard every stop word.
Stop words are terms that appear pervasively. Due to this rea-
son, their presence does not help the classification process, be-
cause they tend to occur in any document regardless its cate-
gory.

• Lemmatizer: a filter useful to lemmatize words, namely to deter-
mine the lemma for a given word. The lemma is a particular
word representing a family of words, where each word in that
family appears in an inflected form. For example, both demo-
cratic and democratization will be reduced to the same lemma,
which is democracy. Lemmatizer is abstract, since stemming is
heavily dependent on the specific language. Thus, it needs to
be extended by other classes, containing specific stemming al-
gorithms for each particular language.

• Stemmer: a filter useful to stem words to reduce inflected words.
The reduction does not necessarily correspond to the lemma,
because a morphological root is not demanded. In fact, related
words just need to be reduced to the same stem. An example
of stemming is automate, automatic, automation, which will be
mapped into automat. However, stemming is similar to lemma-
tization, because it is a language dependent task and, conse-
quently, requires relying on specific algorithms. Therefore, Stem-
mer is an abstract class as well.

• TextFilters: a class that allows applying filters one by one. TextFil-
ters can be configured, including any number of ITextFilter, ap-
plicable in whatever order.

82

4.1 the concurrent framework

On the other hand, filters.en contains specific filters, suitable for En-
glish language. This package is mainly used to host classes imple-
menting any possible extension to previously mentioned filters, use-
ful to perform experiments. Primarily, Stemmer and Lemmatizer might
be extended, because they are highly dependent on language.

4.1.1.3 Algorithms

Algorithms involves the basic MCAlgorithm and its variants, proposed
in chapter 3. All this is implemented in the package algorithms, con-
taining the following classes:

• MarkovChainAlgorithm: a class implementing the basic MCAlgorithm,
providing parametric methods for both the learning phase and
the classification phase.

• MCADocumentExpansion: a class that extends MarkovChainAlgo-
rithm, allowing the computation of the stationary distribution
and overriding the classification phase of the basic MCAlgorithm
according to the description illustrated in 3.3.1.

• MCAMCTMExpansion: a class that extends MarkovChainAlgo-
rithm, allowing the computation of the stationary distribution
and overriding the learning phase of the basic MCAlgorithm ac-
cording to the description illustrated in 3.3.2.

• MCADocAndMCTMExpansion: a class that extends MarkovChainAl-
gorithm, allowing the computation of the stationary distribution
and overriding both the learning phase and the classification
phase of the basic MCAlgorithm, combining MCADocumentExpan-
sion with MCAMCTMExpansion.

• MCADistanceExpansion: a class that extends MarkovChainAlgo-
rithm, allowing the computation of the stationary distribution
and overriding both the learning phase and the classification
phase of the basic MCAlgorithm according to the description illus-
trated in 3.3.3.

• MCAWithRanking: a class that extends MarkovChainAlgorithm,
overriding both the learning phase and the classification phase
of the basic MCAlgorithm, according to the description illustrated
in 3.3.4.

• MCAMultiSource: a class that extends MarkovChainAlgorithm,
overriding both the learning phase and the classification phase
of the basic MCAlgorithm, according to the description illustrated
in 3.3.5.

83

framework and implementation

4.1.1.4 Input-Output

Input-Output is mapped into the package io, which includes every
utility to be employed for input-output interaction.

• DatasetReader: a class containing methods to read a dataset in
some formats, converting it to the internal bag-of-words model.

• DatasetWriter: a class containing methods to export a dataset,
converting the internal bag-of-words model to some formats.

• ResultReader: a class including utilities to read the result of an
experiment and store it in an instance of class Result.

• ResultWriter: a class including utilities to write an object of class
Result to console, to a file, and so on.

4.1.1.5 Concurrent Architecture

Concurrent Architecture is the macro-part of the framework needed
to perform large-scale analysis. Its structure is shown in the UML
diagram 6 in figure 7, while every class has been implemented in the
package concurrent.

• ITask: a general interface, which will be implemented by any
task representing an analysis to be performed.

• ITaskExecutor<T>: an interface that extends java.lang.Runnable
and that will be implemented by an active entity, called TaskEx-
ecutor.

• TaskExecutor: a class implementing ITaskExecutor<T>. Its in-
stances are active objects whose mission is executing an ITask,
namely carrying an analysis out.

• ITaskExecutorFactory<T>: an interface to be implemented for the
sake of creating new instances of TaskExecutor.

• TaskExecutorFactory: a factory implementing ITaskExecutorFac-
tory<ITask>. This class must create new instances of TaskExecu-
tor.

• FixedContinuousPool<T>: a class representing a thread pool, that
is a set of active entities (TaskExecutor), responsible to perform
analysis. In particular, FixedContinuousPool<T> creates a certain
number of TaskExecutor, sharing a queue containing pending
tasks; then, it waits for their termination.

6 www.uml.org/

84

4.2 markov chain algorithm implementation

• MultithreadedSupport: a class used to handle the FixedContinuous-
Pool<T>. More precisely, MultithreadedSupport has the responsi-
bility to collect tasks in a task queue. Then, it instantiates a
FixedContinuousPool<ITask>, sharing the task queue. Finally, it
waits for the tasks termination. Notice that there is no assump-
tion about the nature of tasks: they could also be heterogeneous,
solely they need to implement ITask. Each diverse task is col-
lected by MultithreadedSupport through a separate method; in
other words, a method is required for any different kind of task
to be executed.

Fig. 7: The figure shows the UML class diagram representing the concurrent
architecture the framework relies on. Notice that ITask is a powerful
abstraction, because the concurrent architecture just depends on it.
In order to perform the analysis denominated Task1, just two things
are required: the first is that Task1 needs to implement ITask, whereas
the second is that a method (called for instance addTask1()) has to be
created in MultithreadedSupport in order to instantiate Task1.

4.2 markov chain algorithm implementation

So far we have seen the basic framework architecture, underlining the
flexibility of the macro-part delegated to handle concurrency, essen-
tial in order to perform large-scale analysis. Now I would like to show
you just an example about how an analysis is carried out and, since
I have already illustrated the mechanism of the basic MCAlgorithm, I
will describe how to conduct an experiment within the just presented

85

framework and implementation

framework.
Let us imagine to have a tool to be exploited in order to launch an
analysis over a dataset. After having loaded two labeled datasets by
means of DatasetReader, one to be used as source domain (i.e. train-
ing set) and the other as target domain (i.e. test set), we could decide
to execute MCAlgorithm with default parameters (a detailed discussion
about parameters calibration will be carried out in the following chap-
ter). The macro-steps that will be performed are:

1. Data pre-processing

2. MCAlgorithm learning phase

3. MCAlgorithm classification phase

4. Results printing

The first thing that should be done by framework is data pre-processing.
Plain text documents are filtered through TextFilters, which applies in
order Tokenizer, PunctuationRemover, NumberRemover, CaseFolder and
StopWordsRemover. Notice that a wordlist should be given in input
to allow StopWordsRemover accomplishing its duty. Contrarily, a de-
fault English wordlist will be used. Once performed those tasks, my
framework starts building two BagOfWords, one for source domain
and another for target domain. First of all, terms appearing both
in source and in target are merged into a unique list and utilized
as Dictionary. After that, term weights can be computed somehow
(for instance, applying some term weighting measures based on term
frequency) and, then, Document can be created. Remind that I have
defined a Document as a list of Couple {termID-weight}. Since both
source and target rely on the same Dictionary, the term index can be
used as termID. Finally, a BagOfWords can be built starting from the
unique Dictionary and the list of Document just created.
Subsequent to pre-processing, both the learning phase and the classi-
fication phase are performed by MCAlgorithm. In the former, MCAlgorithm
takes in input the two BagOdWords representing source domain and
target domain respectively and uses them to build the MCTM, rely-
ing on weights inside each Document and following the procedure
described in 3.2.1. Afterwards, the MCTM is used in the latter to per-
form the classification phase according to what stated in 3.2.2. At the
end, a Result is outputted and can be printed either to console or to a
file by using ResultWriter.
Notice that, according to the concurrent architecture illustrated be-
fore, these four macro-steps are included in a task implementing ITask
interface. This task is added to the pending task queue through a
method defined in MultithrededSupport, which is also responsible to
start the analysis process. Remember that if some parameters have to
be tested, many instances of the same task can be created and a cer-

86

4.2 markov chain algorithm implementation

tain number of threads is fielded in order to execute every pending
task in the task queue.

87

5

A N A LY S I S A N D R E S U LT S

This chapter shows the analysis that have been performed in order
to test the methods presented in chapter 3, in both Single-Domain
and Cross-Domain Sentiment Classification. Firstly, I will introduce
the datasets used. Subsequently, analysis will be discussed in detail,
explaining the reasons behind the execution of some tests and how
modifications can affect results. Moreover, other experiments that
have not been performed due to time constraints will be mentioned,
illustrating how they are thought to be helpful to further improve
performance.

5.1 data sources

In this work three different data sources have been analyzed. The
first is from Pan et al [55]. It contains a collection of Amazon reviews
about Books (B), DVDs (D), Electronics (E) and Kitchen appliances
(K). This collection has been used for testing performance in both pa-
pers I will cite in this dissertation to compare results, namely Cross-
Domain Sentiment Classification via Spectral Feature Alignment, referred
as SFA, a work presented by Pan et al. [55] in 2010 and Automatically
extracting polarity-bearing topics for cross-domain sentiment classification,
referred as PBT, introduced by He et al. [56] in 2011. The second
and the third datasets have been provided by Telematic Engineering
Department at Charles III University of Madrid. They both include com-
ments retrieved from Facebook pages, respectively related to the en-
ergy company Repsol and the air company Iberia.

5.1.1 Amazon dataset

As previously mentioned, the first dataset is from Pan et al [55]. It
contains a collection of Amazon reviews about Books (B), DVDs (D),
Electronics (E) and Kitchen appliances (K). For each domain, we have
a set of 2000 pre-classified reviews, 1000 having a positive polarity
and 1000 having a negative polarity. Reviews are written in plain
English, thus we need performing some data pre-processing steps
before starting experiments, applying the filters illustrated in chapter
4. In particular, the following tasks have been done:

89

analysis and results

1. Tokenization, which involves the split of terms by whitespaces.

2. Punctuation removal, which consists in discarding commas, dots,
semicolons, and so on.

3. Number removal, which lies in removing numbers.

4. Case-folding, where every token is reduced to lower case.

5. Stop words removal, which allows to eliminate words that ap-
pear pervasively. This task is highly relevant, because words
occurring in every document regardless its polarity do not add
useful information to the classification process. On the contrary,
these terms could even perturb results; so it is a good practice
to discard them. In literature there are a lot of pre-compiled
stopword-lists (or stoplists), but they have to be used carefully.
In fact, words as negative verbs like couldn’t, isn’t, aren’t, and so
on, are often included in those stoplists. However, while in Text
Classification problems this is almost always irrelevant, in Doc-
ument Sentiment Classification discarding them is a big issue,
because they usually overturn sentence polarity. In accordance
with this, stopwords like negative verbs have been maintained
during the analysis.

Since in the Amazon collection there are four domains, we can form
12 cross-domain problems, such as B → D, B → E, B → K, D → B,
D → E, D → K, E → B, E → D, E → K, K → B, K → D and
K → E. Due to time constraints, I excluded from the analysis the
reviews about Kitchen appliances, so I just focused on 6 cross-domain
problems, namely B→ D, D → B, B→ E, E→ B, D → E, E→ D.

5.1.2 Iberia and Repsol datasets

The second and the third analyzed data sources have been provided
by Telematic Engineering Department at Charles III University of Madrid.
Iberia and Repsol contain comments from the official Facebook pages
of the Spanish air company and of the Spanish energy company re-
spectively. Iberia (I) is composed of 1693 comments, 287 having pos-
itive polarity, 516 having negative polarity and 890 having neutral
polarity. Instead, Repsol (R) comprises 1001 comments, of which 180
positive, 236 negative and 585 neutral. The most relevant difference
with respect to the Amazon datasets is that both these data sources
are written in Spanish. For every experiment performed, I did the
same pre-processing tasks executed for the Amazon datasets analy-
sis, with the only obvious difference that in this case we need Spanish
stoplists.

90

5.2 planned tests

5.2 planned tests

Tests have been split into several parts, each one described in a differ-
ent section in this chapter as follows:

1. At the beginning, the basic algorithm parametrization was tested
over Amazon datasets, taking into account the problem of as-
signing initial term weights in documents. In this phase, I will
also show you experiments relying on document expansion, in
accordance with the variants already introduced in chapter 3.

2. In the second part, a detailed analysis looking for the best set
of features t1, ..., tk to be used in all methods will be shown. For
this purpose, another aforementioned variant of MCAlgorithm,
called MCRanking, will be presented. This study about dictio-
nary, orthogonal to MCAlgorithm, is necessary to enhance the Sen-
timent Classification task performance.

3. Then, I will present experiments over another discussed vari-
ant, called Multi-Source approach, which relies on a completely
different idea of what a cross-domain problem is.

4. Subsequently, I would like to show you some single-domain
analysis, where my algorithm reaches promising results in com-
parison with other approaches.

5. The last section will briefly illustrate tests and results over Iberia
and Repsol datasets.

Every test over Amazon datasets has been performed by splitting the
2000 instances into 1600 (80%) to be used for training (i.e. when the
dataset is employed as source domain) and 400 (20%) to be used for
test (i.e. when the dataset is employed as target domain). This split
percentage is the same utilized in the aforementioned papers and, as
a consequence, it allows comparing results with the state of the art.
Unless otherwise stated, the metric used to establish how much a
result is relevant is classification accuracy, which should be theoret-
ically computed for every different category. However, in a 2-class
problem where categories are c1 and c2 accuracy is acctot=accc1=accc2 .
Therefore, we simply indicate it as acc, computed as follows:

acc =
tp + tn

tp + tn + f p + f n
(64)

where tp is the number of true positives, tn is the number of true
negatives, f p is the number of false positives, f n is the number of
false negatives. A better understanding of what tp, tn, f p, f n are is
given in table 8.

91

analysis and results

Assigned category Real category
tp ci ci
tn cj cj
fp ci cj
fn cj ci

Table 8: This table explains the meaning of true positives (tp), true
negatives (tn), false positives (f p) and false negatives (f n).
tp, tr, f p and f n have to be related to a particular class. ci is
the class to which we are referring, whereas cj stands for any
other category.

5.3 testing the basic algorithm parametrization

In this section, some tests involving the basic parameters of the al-
gorithm will be performed. As we said while we were describing
MCAlgorithm, the most relevant parameter is how to assign term weights
wd

ti
useful to build the MCTM. Nevertheless, other considerations

could affect performance as well, like for example extending the pre-
processing phase by applying well-known techniques like stemming
or lemmatization. Finally, also experiments regarding MCDocExpMCTM ,
MCMCTMExp and MCDocExpwd will be discussed here. Explaining bet-
ter, this phase of tests aims to tune the basic MCAlgorithm, taking into
account also little variations like document expansion. Afterwards,
the algorithm will be compared with both SFA and PBT.

5.3.1 Term weighting

Term weighting consists in assigning scores to terms so that the most
relevant terms must have higher scores and the least relevant terms
must have lower scores. There exists a lot of well-known techniques
that have been studied over the years. For this analysis, I compared
four term weighting (TW) techniques, namely TFrel , Log1+TF, NormalMI

and NormalOR, the last two of which were introduced by Deng et al.
in [9]. Formally, let ti be a term inside a document d. Let wti be the
weight of ti. Let TFti be the term frequency of ti inside d (i.e. the
number of times ti occurs in d). Then, the first two TW measures are
defined as follows:

TFrel(ti) = wti =
TFti

k
∑

j=1
TFtj

(65)

Log1+TF(ti) = wti = log(1 + TFti) (66)

92

5.3 testing the basic algorithm parametrization

Instead, in both NormalMI and NormalOR, wti is computed as:

wti = ITD(ti, d) · ITS(ti)

where ITD measures the importance of ti inside d and ITS measures
the importance of ti in expressing sentiment. ITD is calculated as

ITD(ti, d) = 0.5 +
0.5 · ti

maxz tz
, tz ∈ d

and ITS is calculated as

ITS(ti) = max{Measure(ti, Dpos
train), Measure(ti, Dneg

train)}

where in turn Measure is Mutual Information (MI) in the case of
NormalMI and Odds Ratio (OR) in the case of NormalOR. Moreover,
let nc

ti
be the number of documents belonging to class c that contain

ti, and let nc
ti

be the number of documents belonging to class c that
do not contain ti. In accordance with this, MI is computed as

MI(ti, Dc
train) = log

nc
ti
· (|Dpos

train|+ |D
neg
train|)

(npos
ti

+ nneg
ti

) · |Dc
train|

(67)

and OR is computed as

OR(ti, Dc
train) = log

nc
ti
· (|Dpos

train|+ |D
neg
train| − |Dc

train| − nc
ti
)

(|Dc
train| − nc

ti
) · nc

ti

(68)

The dictionary of features used for this analysis is

Dict = {tk|DFtk ≥ 50}

where DFtk is the Document Frequency of the term tk, defined as
follows:

DFtk = ∑
dtk∈Dtrain∪Dtest

1

where dtk is a document containing tk. This parameter is not dis-
cussed here, because the whole following section is about analysis
involving the dictionary of features calibration. Similarly, for this
experiment also the Porter stemmer [58] was used, but it will be illus-
trated later.
The results of the utilization of these four measures into the standard
MCAlgorithm have been reported in table 9, where we could see that
TFrel and Log1+TF achieve comparable performance. However, since
TFrel is better than Log1+TF on average, hereinafter we will always use
that TW measure in the following experiments. The reason why both
NormalMI and NormalOR do not perform well has to be found into
their complexity. In fact, they already model term relationships and,
moreover, they do this in a supervised way, because both MI and
OR take into account categories. This could be a problem, because
MCAlgorithm itself is designed to accomplish this task. So, in spite of
being proved useful in [9], NormalMI and NormalOR do not fit well
with MCAlgorithm.

93

analysis and results

TFrel Log1+TF NormalMI NormalOR

B→ D 79.93% 75.08% 49.95% 49.95%
D→ B 78.58% 78.43% 50.00% 50.00%
B→ E 71.99% 69.08% 49.97% 49.97%
E→ B 68.23% 68.93% 50.03% 50.03%
D→ E 72.64% 75.99% 49.97% 49.97%
E→ D 72.84% 71.99% 52.63% 51.48%

Average 74.04% 73.25% 50.43% 50.23%

Table 9: This table shows the accuracy of MCAlgorithm, by using Porter
stemmer, DFmin = 50 and changing the way term weights
have been computed.

5.3.2 Stemming vs lemmatization

Another important consideration is related to the kind of features
used. Linguistic processes like stemming and lemmatization have
been proved helpful in improving performance of Text Mining algo-
rithms. Hence, I compared these two widely used techniques, repeat-
ing the previous experiment. Concerning stemming, I made use of an
implementation 1 of the well-known Porter stemmer [58]. On the other
hand, for lemmatization I relied on the online tool Adorner 2. While
stemming and lemmatization are general techniques, the implemen-
tations used are just suitable for English.
The tests I performed are available in table 10, where we could see
that, to this end, stemming is more useful in comparison with lemma-
tization. The motivation behind this outcome is quite simple, just
think that stemming assembles many related words into the same
stem, usually more than lemmatization. Since it is likely that those
clustered words have the same polarity, assembling them is a good
way to walk in order to extract their semantics. As a consequence of
this analysis, subsequent experiments will rely on stemming.

5.3.3 Document and MCTM expansion

In chapter 3 I introduced some variants of the standard MCAlgorithm,
such as for instance MCDocExpMCTM and MCMCTM. I would like to
remind that the former involves just test documents expansion dur-
ing the classification phase of the algorithm, whilst in the latter both
training set and test set are expanded, for the sake of building an
augmented MCTM during the learning phase. Consequently, no-
tice that MCDocExpMCTM and MCMCTM can be combined, since they
involve two different phases of the algorithm. Any possible combi-

1 http://tartarus.org/martin/PorterStemmer/
2 http://devadorner.northwestern.edu/maserver/

94

5.3 testing the basic algorithm parametrization

Stemming Lemmatization
B→ D 79.93% 77.24%
D→ B 78.58% 76.51%
B→ E 71.99% 71.82%
E→ B 68.23% 67.02%
D→ E 72.64% 71.88%
E→ D 72.84% 72.52%

Average 74.04% 72.83%

Table 10: This table shows the accuracy of MCAlgorithm, by using
DFmin = 50, TW = TFrel and comparing Porter stemmer with
Adorner lemmatizer for English language.

MCAlgorithm MCDocExpMCTM MCMCTM MCDocExpMCTM ∪MCMCTM

B→ D 79.93% 76.68% 78.48% 76.18%
D→ B 78.58% 72.12% 78.98% 70.82%
B→ E 71.99% 69.48% 70.54% 69.38%
E→ B 68.23% 67.13% 67.93% 66.33%
D→ E 72.64% 71.39% 72.19% 71.24%
E→ D 72.84% 69.33% 72.29% 69.48%

Average 74.04% 71.02% 73.40% 70.57%

Table 11: This table shows the accuracy of MCAlgorithm and some of
its variants, namely MCDocExpMCTM and MCMCTM, by using
Porter stemmer, DFmin = 50, TW = TFrel and T = 4.

nation should be investigated. To perform those tests, whose results
have been reported in table 11, I set T=4 without calibrating the pa-
rameter, because I thought this could be a meaningful number of
iterations for document expansion. The outcome of this investigation
suggests that the simplest method, i.e. the standard MCAlgorithm with-
out document expansion, is the best one. This is not surprising in my
opinion and the motivation is closely related to what I said regard-
ing the poor performance of term weighting measures like NormalMI

and NormalOR. In fact, document expansion deals with the idea of
extracting relationships between semantically related words, just like
those TW measures do trying to find connections between terms and
categories. But once again, term-term and term-class relationships
have been already modeled by MCAlgorithm, which has proved to be
negatively affected by the attempt of improving this capability.

5.3.4 Document expansion by means of words distance

The previous tests suggest that document expansion could not to
be an useful approach in order to improve MCAlgorithm performance.

95

analysis and results

MCAlgorithm MCDocExpwd

B→ D 79.93% 75.43%
D→ B 78.58% 77.07%
B→ E 71.99% 67.53%
E→ B 68.23% 67.23%
D→ E 72.64% 73.94%
E→ D 72.84% 72.49%

Average 74.04% 72.28%

Table 12: This table shows the comparison between the standard
MCAlgorithm and one of its variants designed for document
expansion, that is MCDocExpwd . Other parameters used for
this analysis are Porter stemmer, DFmin = 50, TW = TFrel
and T = 4. The results display the accuracy reached by the
employed algorithm.

Nevertheless, I believe that the idea behind document expansion by
means of words distance (illustrated in chapter 3) is interesting and,
as a consequence, can be worthy to assay it. I would like to remind
that the goal is finding the distance between the words inside a doc-
ument and all other terms in the whole corpus, giving to the new
encountered words a weight that decreases by augmenting the dis-
tance. The main difference between this expansion method and the
previous ones is that, in this case, terms initially in the document have
higher weights than semantically related words. Of course, expand-
ing document by distance is meaningless if we do not create a second
MCTM like in MCMCTM. The reason why we need to do this is that,
in this expansion process, initial term weights are substituted with
those of stationary distribution and, therefore, the newer ones model
a posterior probability distribution while the elders represent a prior
probability distribution. The outcome in table 12 shows that results
are comparable regarding certain couples source-target, whereas this
approach is worse than the standard MCAlgorithm in other cases and
on average. Again, this confirms that document expansion by adding
semantically related terms cannot help the original Markov Chain
based algorithm I propose in this dissertation.

5.3.5 First comparison: MCAlgorithm vs SFA and PBT

After these analyses we could make a comparison between the cur-
rent best version of the MCAlgorithm and the state of the art. Remind
that the current best version of the MCAlgorithm has the following pa-
rameters:

• Porter stemmer utilization, apart from the standard pre-processing
tasks

96

5.4 analysis of the words dictionary

MCAlgorithm SFA PBT
B→ D 79.93% 81.50% 81.00%
D→ B 78.58% 78.00% 79.00%
B→ E 71.99% 72.50% 78.00%
E→ B 68.23% 75.00% 73.50%
D→ E 72.64% 77.00% 79.00%
E→ D 72.84% 77.50% 76.00%

Average 74.04% 76.92% 77.75%

Table 13: This table shows the comparison of MCAlgorithm with both
SFA and PBT. The parameters used for MCAlgorithm are Porter
stemmer, DFmin = 50, TW = TFrel . Each entry represents the
classification accuracy reached by an algorithm on a certain
couple source-target.

• TW = TFrel

• DFmin = 50

In literature, the two best working methods for Document Sentiment
Classification are Cross-Domain Sentiment Classification via Spectral Fea-
ture Alignment, written by Pan et al. [55], and Automatically extract-
ing polarity-bearing topics for cross-domain sentiment classification, intro-
duced by He et al. [56]. As previously stated, I will refer to these
works as SFA and PBT respectively. Furthermore, remind that both
in those papers and in my analysis, algorithms performance have
been tested over the Amazon datasets by using 1600 instances for
source domain and 400 for target domain, due to comparison pur-
poses. The comparison is shown in table 13, where we could see that
accuracy values are comparable regarding B → D and D → B. In-
stead, MCAlgorithm is outperformed by both SFA and PBT in all other
source-target couples (apart from B→ E in comparison with SFA).

5.4 analysis of the words dictionary

In the last section, we have seen that MCAlgorithm performance is not
as good as those of SFA and PBT. Furthermore, variants incorporat-
ing document expansion cannot help improving my method. I have
already pointed out that accuracy is comparable regarding B → D
and D → B, whereas performance is very poor every time Electronics
is involved. We could think that this outcome is related to the nature
of terms in reviews, in accordance with the fact that Books and DVDs
are more similar than either Books and Electronics on the one hand
or DVDs and Electronics on the other hand. In fact, while in the first
couple it is likely that words used to connote positive and negative
sentiments are alike, the same does not hold in general if considering

97

analysis and results

MCAlgorithm MCCommFeat

B→ D 79.93% 79.50%
D→ B 78.58% 79.00%
B→ E 71.99% 68.75%
E→ B 68.23% 68.75%
D→ E 72.64% 72.43%
E→ D 72.84% 70.25%

Average 74.04% 73.11%

Table 14: This table shows the comparison between MCAlgorithm and
MCCommFeat. The parameters of the former are Porter stem-
mer, TW = TFrel and DFmin = 50, while in the latter the
last parameter becomes DFmin = 25 and a constraint is
added, namely only common words between source and
target must be in dictionary.

a review of an electronic product. This consideration could imply a
greater difficulty in MCAlgorithm while aligning polarity words belong-
ing to completely different domains. Therefore, a targeted analysis of
the dictionary is necessary, because selecting the best feature set is
the key to enhance classification accuracy. So in this section we will
look at the analysis performed in order to choose the best dictionary
of features, which should help increasing classification performance.

5.4.1 Testing common and domain specific features

The first analysis performed consists in keeping just common words
between source and target. The idea behind this experiment is to by-
pass the inter-domains alignment problem. Since all domain specific
features have been discarded, to avoid considering just few terms, I
set DFmin = 25 instead of DFmin = 50 in this case. In table 14 we
could see the comparison between the standard MCAlgorithm and the
just described variant, referred as MCCommFeat. Contrary to what I ex-
pected, performance does not improve, even if the number of selected
features is between 800 and 900 in any source-target couple. Appar-
ently, there are some domain specific terms that could ease sentiment
classification. Therefore, I executed another analysis, by selecting the
most frequent 2000 common features, 1000 source specific features
and 1000 target specific features. However, the results reported in
table 15, where MC4KFeat indicates this new variant, say that neither
this attempt is useful to enhance accuracy.

98

5.4 analysis of the words dictionary

MCAlgorithm MC4KFeat

B→ D 79.93% 73.68%
D→ B 78.58% 77.69%
B→ E 71.99% 69.00%
E→ B 68.23% 68.50%
D→ E 72.64% 69.00%
E→ D 72.84% 69.75%

Average 74.04% 71.27%

Table 15: This table shows the comparison between MCAlgorithm and
MC4KFeat. The parameters of the former are Porter stemmer,
TW = TFrel and DFmin = 50, while in the latter the last pa-
rameter is substituted by introducing the constraint that the
most frequent 2000 common features, 1000 source specific
features and 1000 target specific features must be kept.

5.4.2 Testing supervised term weighting techniques

So far we have just tried performing feature selection (FS) by means
of an unsupervised technique, that is Document Frequency. On the
other hand, plenty of supervised measures have been developed by
researchers during the years. Before I showed the use of supervised
term weighting techniques just for the sake of assigning weights to
terms. However, some of those techniques might be employed to ac-
complish feature selection, keeping just terms closely connected with
classes. In particular, for this purpose I evaluated the most relevant
terms according to the score given by Information Gain (IG), Gain Ra-
tio (GR), Chi-Squared (CHI2) and a variant of Relevance Frequency
(RFvar). I defined those measures as a function of a, b, c and d, like it
was suggested by Lan et al. in [59], where:

• a is the number of documents in the positive category which
contain this term

• b is the number of documents in the positive category which do
not contain this term

• c is the number of documents in the negative category which
contain this term

• d is the number of documents in the negative category which
do not contain this term

99

analysis and results

In accordance with this definition, if N is the number of document in
the collection, the aforementioned measures can be expressed in the
following way:

IG =
a
N
· log

a · N
(a + c) · (a + b)

+
b
N
· log

b · N
(b + d) · (a + b)

+

+
c
N
· log

c · N
(a + c) · (c + d)

+
d
N
· log

d · N
(b + d) · (c + d)

(69)

GR =
IG

− (a+b)
N · log (a+b)

N − (c+d)
N · log (c+d)

N

(70)

CHI2 = N · (a · d− b · c)2

(a + c) · (b + d) · (a + b) · (c + d)
(71)

RFvar = log(2 +
a
c
) · log(2 +

c
a
) (72)

5.4.2.1 An interesting remark

Obviously, supervised methods have to be used only on the training
set, because we could not know in advance test set labels. Instead,
if this was feasible, we could select the perfect (i.e. ideal) feature
set, which would enhance performance as much as possible. Due to
this reason, the accuracy reachable with MCAlgorithm considering as
dictionary the perfect feature set can be seen as an upper bound to
the classification accuracy achievable with my algorithm. Thus, I an-
alyzed this ideal case, assuming that categories of documents belong-
ing to the test set are known and trying to extract the best feature set
through applying a supervised technique. For this experiment I used
just IG, keeping the best 250 terms according to the IG score, then I
performed sentiment classification through MCAlgorithm. In order to
validate results, 10 random partitions containing 1600 documents for
training set and 400 documents for test set have been chosen. The
average output of this analysis, referred as MCUB

Algorithm, is reported in
table 16, along with the previous best experiment (MCAlgorithm), SFA
and PBT. This trial states that, in the ideal case, my algorithm would
achieve an accuracy 5− 6% higher than the state of the art methods.
Further tests I did, which have not been reported for time and space
reasons, reveal that on average 98% of the 250 features selected be-
long to the training set and, as a consequence, could be retrieved in a
supervised way. Moreover, discarding the remaining 2% of features,
non-retrievable because we could not know in advance test set labels,
and executing the analysis again, accuracy does not change signifi-
cantly. This unequivocally proves that MCAlgorithm just needs a good
feature selection process in order to outperform both SFA and PBT.

100

5.4 analysis of the words dictionary

MCAlgorithm MCUB
Algorithm SFA PBT

B→ D 79.93% 86.03% 81.50% 81.00%
D→ B 78.58% 86.30% 78.00% 79.00%
B→ E 71.99% 83.44% 72.50% 78.00%
E→ B 68.23% 78.17% 75.00% 73.50%
D→ E 72.64% 83.07% 77.00% 79.00%
E→ D 72.84% 80.17% 77.50% 76.00%

Average 74.04% 82.86% 76.92% 77.75%

Table 16: This table shows the accuracy of MCAlgorithm in comparison
with its upper bound MCUB

Algorithm and with the state of the
art. MCUB

Algorithm have been computed by keeping the best
250 terms according to the IG score and applying the stan-
dard MCAlgorithm. MCUB

Algorithm results have been averaged on
10 random partitions containing 1600 documents for train-
ing set and 400 documents for test set.

5.4.2.2 Testing IG, GR, CHI2 and RFvar

Hereinafter, due to the previous consideration about the potential
capability of my Markov Chain based algorithm, I will try finding a
FS method able to extract the needed feature set. At the beginning,
I basically choose features from the training set based on supervised
measures, possibly adding other different features by selecting from
the test set all terms having a certain DFmin (evaluated on the test set
itself). Many parameters have been taken into account, such as the
measure used to assign a score to features in source domain (Msource),
the number of features in source domain to be retrieved (NFsource) and
the minimum Document Frequency value used to select features from
target domain (DFtarget

min). The parameter Msource could be embodied by
various supervised techniques, such as IG, GR, CHI2, RFvar, possibly
multiplied by LogDFmin, with

LogDFmin = log(1 + DFmin)

where in turn DFmin could be computed over the training set (DFs
min),

over the test set (DFt
min) or over their union (DFu

min). Similarly, NFsource

could be equal to 250, 500, 750, 1000 or ALL, where ALL stands for
every feature belonging to the source domain having a score higher
than 0. Finally, DFtarget

min could be 5, 10 or INF, where INF means that
no feature must be added different from those extracted from source
domain.
Every possible combination of parameters was tested but, due to
space limit, only the best configurations have been reported in ta-
ble 17, where each result is named in the same way of the feature
selection method applied. All names have the form Msource-NFsource-
DFtarget

min . Tests indicate an average enhancement of performance in

101

analysis and results

MCAlgorithm
IG_LogDFs

min-
250-INF

CHI2_LogDFs
min-

250-INF
SFA PBT

B→ D 79.93% 78.52% 78.52% 81.50% 81.00%
D→ B 78.58% 78.89% 80.35% 78.00% 79.00%
B→ E 71.99% 72.21% 72.09% 72.50% 78.00%
E→ B 68.23% 72.56% 71.79% 75.00% 73.50%
D→ E 72.64% 74.74% 75.52% 77.00% 79.00%
E→ D 72.84% 73.67% 72.73% 77.50% 76.00%

Average 74.04% 75.10% 75.17% 76.92% 77.75%

Table 17: This table shows the accuracy of MCAlgorithm to which
a feature selection method was previously applied. In
IG_LogDFs

min-250-INF, scores have been computed by
means of IG · LogDFs

min, keeping the best 250 features be-
longing to the source, while no feature belonging just to the
target has been maintained. Similarly in CHI2_LogDFs

min-
250-INF, with the only exception that scores have been com-
puted by means of CHI2 · LogDFs

min.

comparison with the basic MCAlgorithm, where feature selection was
performed just by considering DFmin = 50. Nevertheless, the im-
provement is not enough to bridge the gap with the literature.

5.4.3 Testing opinion words

Another attempt we could do involves the utilization of opinion wordlists,
namely lists of general words that are known to have a certain po-
larity. The English wordlist used in this dissertation, proposed by
Liu in [60], contains 2003 positive words and 4780 negative words.
I tested these opinion words (OW) both using just them as feature
and combining them with the previous mentioned FS methods. In
the latter case, two ways of blending OW and FS have been consid-
ered, namely intersection and union, but the second one gives better
performance. In table 18 and in figure 8, we could find various tests:
one where the only features selected are OW, referred as OW, and
others where the union between OW and FS has been used to build
the dictionary. Alike the preceding tests, these methods are referred
as Msource-NFsource-DFtarget

min -un (notice that the suffix un means that a
union between the two mentioned FS techniques has been used). The
performance of MCAlgorithm using just OW as features demonstrates
their utility. However, many opinion words were being retrieved by
FS methods as well. It is for this reason that accuracy does not in-
crease enough to outperform the state of the art.

102

5.4 analysis of the words dictionary

OW
CHI2_LogDFs

min-
500-INF-un

GR-250-
INF-un

GR-500-
INF-un

SFA PBT

B→ D 79.20% 79.75% 81.00% 84.00% 81.50% 81.00%
D→ B 79.15% 80.75% 80.75% 80.00% 78.00% 79.00%
B→ E 73.93% 73.18% 70.93% 71.43% 72.50% 78.00%
E→ B 70.10% 70.75% 70.50% 67.50% 75.00% 73.50%
D→ E 73.18% 74.44% 74.75% 71.50% 77.00% 79.00%
E→ D 71.43% 72.00% 73.75% 71.50% 77.50% 76.00%

Average 74.50% 75.15% 75.28% 74.32% 76.92% 77.75%

Table 18: This table shows the accuracy of MCAlgorithm to which a fea-
ture selection method was previously applied. OW states
that only opinion words have been selected as features. In
all others, apart from opinion words, other features have
been selected according to scores assigned by a FS method.
In CHI2_LogDFs

min-250-INF-un, scores have been computed
by means of CHI2 · LogDFs

min, keeping the best 250 features
belonging to the source, while no feature belonging just to
the target has been maintained. Similarly in GR-250-INF-
un, with only exception that scores have been computed by
means of GR. Again, in GR-500-INF-un scores have been
computed by means of GR, but this time keeping the best
500 features belonging to the source.

103

analysis and results

Fig. 8: The figure shows a comparison between some proposed methods com-
bining opinion words with other FS techniques on the one hand and
SFA and PBT on the other hand.

5.4.4 Adding feature selection ranking to the MCTM

Careful readers might have noticed that, until now, many supervised
FS methods have been applied, but just to choose the feature set to
be used in the standard MCAlgorithm. However, since every FS method
produces a feature ranking, we could consider scores as relevance
factors. In fact, the more score is high the more the corresponding
feature will be important for sentiment classification. Therefore, we
could think adding this ranking in MCAlgorithm, in particular multiply-
ing the initial term weight by its rank when constructing the MCTM,
as proposed by equation 62 in chapter 3. According to this little
modification in the model, the same tests performed both with and
without employing opinion words have been repeated. With respect
to previous experiments, a suffix rank is added to distinguish these
attempts. The outcome in table 19 evidences good accuracy values,
better than previous ones and comparable with the state of the art.
Moreover, we could notice that there is not a variant which always
outperforms the others. Therefore, being these techniques little vari-
ants of the same general algorithm, this proves the stability of the ba-
sic MCAlgorithm. In fact, despite not having found yet the ideal feature
set, which as we have seen would allow my algorithm outperforming
both SFA and PBT, accuracy is never under a certain threshold. In
other words, variance between one test and another is not significant
on average.

104

5.4 analysis of the words dictionary

RFvar_LogDFs
min-

1000-INF-rank

GR-500-
INF-un-

rank

IG_LogDFs
min-

250-INF-
rank

CHI2-
250-INF-

rank
SFA PBT

B→ D 82.25% 79.75% 78.00% 76.92% 81.50% 81.00%
D→ B 82.50% 80.50% 78.89% 78.79% 78.00% 79.00%
B→ E 70.93% 73.68% 72.47% 74.80% 72.50% 78.00%
E→ B 70.50% 72.25% 73.33% 71.65% 75.00% 73.50%
D→ E 71.68% 74.75% 75.52% 79.21% 77.00% 79.00%
E→ D 73.25% 72.50% 73.92% 73.91% 77.50% 76.00%

Average 75.19% 75.57% 75.36% 75.88% 76.92% 77.75%

Table 19: This table shows the accuracy of MCAlgorithm. Term weights
have been modified multiplying them by the rank returned
from the applied FS method. Features belonging just to
the target have never been maintained. In RFvar_LogDFs

min-
1000-INF-rank, scores have been computed by means of
RFvar · LogDFs

min, keeping the best 1000 features belong-
ing to the source. Similarly, in IG_LogDFs

min-250-INF-rank
scores have been computed by means of IG · LogDFs

min,
keeping the best 250 features belonging to the source. In
GR-500-INF-un-rank, opinion words have been retrieved
and scores have been computed by means of GR, keeping
the best 500 features belonging to the source. Finally, in
CHI2-250-INF-rank scores have been calculated by means
of CHI2, keeping the best 250 features belonging to the
source.

105

analysis and results

Fig. 9: The figure shows a comparison between some proposed methods on
the one hand and SFA and PBT on the other hand. The proposed
techniques analyzed here make use of opinion words and a supervised
FS method to build the dictionary of terms to be used for classification.
Then, a term weighting proportional to the feature selection ranking
is applied while constructing the MCTM.

5.5 testing multi-source approach

An unusual way to deal with a Cross-Domain Sentiment Classifica-
tion problem is the Multi-Source approach, introduced in chapter 3.
Remind that the idea consists in having more than just one source
domain that can be exploited in order to build the MCTM. The aim is
creating a more general model taking into account features extracted
from possibly completely different domains. In this fashion, when
considering a diverse domain, it should be simpler mapping its do-
main specific terms to other words already in the model and, as a
consequence, it should be simpler classifying target documents. It is
important to note that this variant of MCAlgorithm, referred as MCMS,
is not comparable with neither SFA nor PBT, since it is a conceptu-
ally different approach to Cross-Domain Sentiment Classification.
In order to test the method, the same experiments I have shown until
now regarding the standard Cross-Domain Sentiment Classification
approach have been reproduced. Since we are considering Books,
DVDs and Electronics, there are only three cross-domain problems,
namely BD → E, BE → D and DE → B. I would like to remind
that the classification phase could be performed not only in the typi-
cal way, but also as explained by relation 63. I will refer to the latter
way by adding the suffix comb in any presented variant employing it.
The best attempts are shown in table 20, where we could see that GR

106

5.6 analysis in single-domain sentiment classification

GR-250-INF-
rank-comb

GR-250-INF-
rank

RFvar_LogDFs
min-

250-5-rank-comb
RFvar_LogDFs

min-
250-5-rank

BD→ E 73.68% 73.18% 68.00% 67.50%
BE→ D 74.44% 74.69% 78.50% 78.75%
DE→ B 75.69% 75.69% 75.50% 76.75%
Average 74.60% 74.52% 74.00% 74.33%

Table 20: This table shows the performance of MCMS. Several FS
methods have been used to choose the dictionary, but the
best results are those with GR and RFvar · LogDFs

min, always
with 250 terms. RFvar relies on more than 250 features, be-
cause DFtarget

min = 5 is applied as well. Furthermore, all the
best working variants make use of the supervised ranking
while constructing the MCTM. Finally, classification is pos-
sibly performed by combining posterior class probabilities.

and RFvar achieve comparable performance on average. Nevertheless,
variance is lower when using GR rather than RFvar.
Differently from what I expected, the Multi-Source approach does
not enhance performance with respect to the standard Cross-Domain
Sentiment Classification procedure, probably because of its complex-
ity.

5.6 analysis in single-domain sentiment classification

The same analysis performed in Cross-Domain Sentiment Classifica-
tion have been repeated in Single-Domain Sentiment Classification.
For the sake of evaluating performance, MCAlgorithm has been com-
pared again with SFA and PBT, because in those papers have been
also reported accuracy values over Books, DVDs, Electronics and
Kitchen appliances in Single-Domain DSC. Once more, Kitchen ap-
pliances has been excluded from the analysis. The best results are
visible at a glance in figure 10, whereas accuracy values are shown
in table 21. The first thing that catches the eye is the supervised FS
method employed: Gain Ratio is always the best working. Along this,
another important factor is the usage of opinion words. On the other
hand, features ranking affects performance, but not in a significant
way. Anyway, my methods are completely aligned with the state of
the art.
The most important consideration to be done is that my algorithm
is absolutely general. In other words, without changing anything,
just repeating the same analysis already carried out in the context of
Cross-Domain DSC, performance are aligned with both SFA and PBT
baselines, namely in Single-Domain Sentiment Classification. Fur-
ther analysis might confirm these promising results in 2-classes DSC.

107

analysis and results

GR-250-INF-
un

GR-250-INF-
un-rank

GR-500-INF-
un-rank

SFA PBT

Books 82.00% 81.00% 80.75% 81.40% 79.96%
DVDs 84.25% 85.00% 85.00% 82.55% 81.32%

Electronics 81.25% 82.50% 83.25% 84.60% 83.61%
Average 82.50% 82.83% 83.00% 82.85% 81.63%

Table 21: This table shows the performance of some variants of
MCAlgorithm in Single-Domain Sentiment Classification. To
accomplish this experiment, both opinion words and super-
vised FS methods have been taken into account. Moreover,
apart from GR-250-INF-un, also feature ranking has been
used to assign weights while constructing the MCTM.

Moreover, it should be appropriate to test the algorithm also in a n-
classes DSC problem, in order to extend its already large applicability.

Fig. 10: The figure compares some variants of MCAlgorithm with both SFA
and PBT, in a Single-Domain Sentiment Classification context. As
immediately visible, results are approximately the same.

5.7 testing repsol and iberia

After having compared some variants of MCAlgorithm with SFA and
PBT, their performance have been evaluated over Iberia and Repsol
as well. Remember that both datasets have been provided by the
Telematic Engineering Department at Charles III University of Madrid and,
therefore, comparisons with other approaches are not feasible. Re-
mind also that both these datasets contain comments that people
wrote on Facebook in Spanish language. This has several negative
impacts on performance: firstly, comments are shorter than reviews

108

5.7 testing repsol and iberia

on average and it is not rare to find also sentences composed of single
terms. Secondly, they are written in Spanish and, even if my method
is language independent, Porter stemmer cannot be utilized. Despite
the fact in Spanish some stemming algorithms are available, they have
not been used in the analysis due to time limit. On the other hand,
an opinion wordlist suggested in [61] have been used to execute some
tests. Moreover, what could affect more the performance is the pres-
ence of 3 class labels: positive, negative and neutral. Finally, F1-measure
is used instead of accuracy because the former is more suitable when
analyzing DSC with more than two classes. In fact, even if a classi-
fier could have a good accuracy, F1-measure could not to be good as
much, because of the poor performance in one of the n classes. This is
particularly true when there is skewness among classes. F1-measure
is defined as follows:

F1−measure =
2 · precision · recall
precision + recall

(73)

where precision is defined as

precision =
tp

tp + f p
(74)

and recall is defined as

recall =
tp

tp + f n
(75)

In table 22 and in figure 11 are shown the best results the variants
of my algorithm achieve in Single-Domain Sentiment Classification.
Since the number of instances is lower in Iberia and Repsol than in
Amazon, the chosen split percentage between training set and test set
is 66%-33%, in order to have a reasonable number of documents to be
tested. As expected, general performance is not so good, regardless
the FS method, the number of terms retrieved and the usage of the
opinion wordlist. In particular, OWs achieve the worst F1-measure if
used alone in the FS process.
Further analysis might include a stemming technique, as previously
suggested. Another possible strategy could be making use of a Nat-
ural Language Processing technique like Part-Of-Speech tagging to
mark terms up by their corresponding parts of speech. In this way, it
would be possible to define term weights also considering this aspect,
which will be important above all due to the shortness of comments.
At the end, it is likely that performance would enhance if a better FS
method could be found.

The same experiments have been repeated also in Cross-Domain
Sentiment Classification. Of course, there are just two cross-domain
problems manageable, such as R → I and I → R. Again, we could
see the best analysis in table 23 and in figure 12. At a first glance
we might notice that, both here and in Single-Domain DSC, the best

109

analysis and results

OW
GR-250-
INF-un

GR-500-
INF-un

IG-ALL-3
CHI2_LogDFs

min-
500-INF-un

Iberia 58.52% 59.15% 60.43% 60.08% 62.20%
Repsol 53.41% 60.69% 61.64% 60.80% 62.94%

Average 55.97% 59.92% 61.04% 60.44% 62.57%

Table 22: This table shows the comparison between some variants of
MCAlgorithm in Single-Domain Sentiment Classification over
Iberia and Repsol datasets. We could see that F1-measures
are approximately the same, regardless the particular FS
method, the exact number of features and the usage of opin-
ion words. OWs do not help so much in enhancing results.

Fig. 11: The figure shows the comparison between some variants of
MCAlgorithm in Single-Domain Sentiment Classification over Iberia
and Repsol datasets. F1-measure is the metric used for the compari-
son.

performing FS methods are the same. Another thing I would like
to point out is that I → R always achieves better F1-measures than
R → I, regardless the parameters employed. Probably, the reason
why this happens is that, since in Repsol we only have 1001 docu-
ments, less than 700 instances used as training set are not enough
to build a good model. On the other hand, in Iberia we have 1693
documents and, therefore, more than 1000 have been utilized as train-
ing set. Nevertheless, performance is generally quite poor regarding
these Spanish datasets, especially in comparison with the Amazon
ones. For the sake of enhancing results, further analysis should be
done, according to what previously said talking about Single-Domain
DSC tests.

110

5.7 testing repsol and iberia

OW
GR-250-
INF-un

GR-500-
INF-un

IG-ALL-3
CHI2_LogDFs

min-
500-INF-un

R→ I 41.68% 42.61% 45.42% 48.39% 46.19%
I→ R 48.17% 49.09% 50.82% 55.04% 50.86%

Average 44.93% 45.85% 48.12% 51.72% 48.53%

Table 23: This table shows the comparison between some variants of
MCAlgorithm in Cross-Domain Sentiment Classification over
Iberia and Repsol datasets. Notice that F1-measures are al-
ways better over I → R than over R→ I.

Fig. 12: The figure shows the comparison between some variants of
MCAlgorithm in Cross-Domain Sentiment Classification over Iberia
and Repsol datasets. F1-measure is the metric used for the compari-
son.

111

C O N C L U S I O N S

This dissertation focuses on Document Sentiment Classification, both
in single-domain and in cross-domain tasks. In the latter, the biggest
problem consists in bridging the gap between source domain and
target domain, which often express semantically related concepts by
means of different terms. This trouble has induced some researchers
to develop complex techniques, such as clustering, feature augmen-
tation algorithms, hierarchical thesaurus, and so on, for the sake of
aligning two domains. Furthermore, after having reduced the inter-
domains gap, a classification algorithm is always needed to perform
Sentiment Classification. On the other hand, this work proposes a
unique model to deal with both problems, based on the mathematical
theory of Markov Chains. This choice is worthy because a mathemat-
ical theory guarantees to easily control the soundness of the entire
approach and, moreover, Markov Chains have been proved useful in
many scientific works.
New algorithms have been introduced based on Markov Chains. Ba-
sically, the idea these novel techniques rely on is modeling term-term
relationships. Each connection weight is higher the more two terms
co-occur in documents and the more they are relevant. In such a way,
simply adding class labels in the model, we could also link terms
with categories and exploit this information to perform classification.
At the same time, connections between terms allow aligning dissim-
ilar domains. The only assumption needed is that source and target
must have some terms in common, which is a reasonable hypoth-
esis because there are a lot of domain independent words used to
express sentiment, such as good, bad, and so on. Firsts experiments
show good performance in cross-domain, but not as much as the
state of the art. Other advanced variants have been employed in or-
der to improve performance. On the one side, document expansion
by means of Markov Chain Stationary Distribution has been proved
not being useful. Furthermore, a multi-source approach to Document
Sentiment Classification, where more than one source domain is uti-
lized in the learning phase in order to increase the number of com-
mon terms, does not help as well. Probably, the reason why both
techniques do not work well is due to their complexity, which adds
noise to the algorithm rather than incrementing its classification ca-
pability. On the other side, an enhancement of performance can be
achieved thanks to a good feature selection process. Three strategies
that could aid the sentiment classification process have been tried.
The first one involves the usage of an opinion wordlist, including
well-known polarity words. The second one is the application of a su-

113

analysis and results

pervised features selection technique, which enables to choose terms
that can positively affect the categorization. The last one consists in
exploiting the ranking returned by those feature selection methods, in
order to change term weights inside the Markov Chain Transition Ma-
trix, so that they are proportional to their ranking. Combining these
three variants, it is possible to achieve results comparable with the
state of the art in 2-classes Cross-Domain Document Sentiment Clas-
sification. In particular, the last two mentioned are enough, because
the supervised feature selection process already chooses the majority
of polarity terms. The same experiments have been carried out in
single-domain contexts too. Again, results are comparable with the
literature, confirming the algorithm capability. Finally, analysis in a
3-classes context shows not so good performance. The first motiva-
tion is that the two datasets analyzed contain very short comments.
The second one is that they are written in Spanish and no stemming
algorithm has been used due to time limit.
An advantage of the method proposed in this dissertation is simplic-
ity, because the same model allows both bridging source-target gap
and executing classification. What is more, few parameters are re-
quired to be calibrated. Apart from being simpler than previous ap-
proaches, another killer feature is generality. Firstly, the algorithm is
language independent, since it is just based on term co-occurrences.
Then, it works well both in single-domain and in cross-domain prob-
lems.
A performed analysis has demonstrated that an adequate feature se-
lection method is the bottle neck, because it could potentially allow
the proposed algorithm outperforming earlier approaches. Therefore,
further analysis could focus on trying to extract the best feature set. A
possible way to walk is adapting the technique illustrated by Domeni-
coni et al. in [62], which iteratively refined target category represen-
tation in Cross-Domain Text Categorization context, to the feature
selection process. A different alternative consists in introducing also
bigram features, namely features composed of two terms. Since it is
feasible to find words like not and good in a sentence, bigrams might
help because for example not_good expresses a completely different
polarity from good. Another future work regards extending the valid-
ity of results to n-classes Document Sentiment Classification, perform-
ing a more detailed analysis to deeply understand the reason behind
the lack of performance in 3-classes datasets. Furthermore, due to
its generality, the model could theoretically be applied to Text Cate-
gorization. So, it would be interesting to investigate its applicability
in this context too. Finally, another possibility is trying to extend
the consideration done in this dissertation regard Regular Markov
Models to Hidden Markov Models, exploiting their greater expres-
sive power.

114

B I B L I O G R A P H Y

[1] PANG, Bo; LEE, Lillian. Opinion mining and sentiment analysis.
Foundations and trends in information retrieval, 2008, 2.1-2: 1-
135.

[2] JINDAL, Nitin; LIU, Bing. Identifying comparative sentences in
text documents. In: Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in informa-
tion retrieval. ACM, 2006. p. 244-251.

[3] LI, Fangtao; HUANG, Minlie; ZHU, Xiaoyan. Sentiment Analysis
with Global Topics and Local Dependency. In: AAAI. 2010.

[4] DAVE, Kushal; LAWRENCE, Steve; PENNOCK, David M. Min-
ing the peanut gallery: Opinion extraction and semantic classifica-
tion of product reviews. In: Proceedings of the 12th international
conference on World Wide Web. ACM, 2003. p. 519-528.

[5] PALTOGLOU, Georgios; THELWALL, Mike. A study of informa-
tion retrieval weighting schemes for sentiment analysis. In: Pro-
ceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics. Association for Computational Linguistics,
2010. p. 1386-1395.

[6] TAN, Songbo; WANG, Yuefen; CHENG, Xueqi. Combining learn-
based and lexicon-based techniques for sentiment detection with-
out using labeled examples. In: Proceedings of the 31st annual
international ACM SIGIR conference on Research and develop-
ment in information retrieval. ACM, 2008. p. 743-744.

[7] QIU, Likun, et al. Selc: a self-supervised model for sentiment
classification. In: Proceedings of the 18th ACM conference on In-
formation and knowledge management. ACM, 2009. p. 929-936.

[8] MELVILLE, Prem; GRYC, Wojciech; LAWRENCE, Richard D. Sen-
timent analysis of blogs by combining lexical knowledge with
text classification. In: Proceedings of the 15th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining.
ACM, 2009. p. 1275-1284.

[9] DENG, Zhi-Hong; LUO, Kun-Hu; YU, Hong-Liang. A study of
supervised term weighting scheme for sentiment analysis. Expert
Systems with Applications, 2014, 41.7: 3506-3513.

[10] WU, Haibing; GU, Xiaodong. Reducing Over-Weighting in Su-
pervised Term Weighting for Sentiment Analysis.

115

Bibliography

[11] AUE, A.; GAMON M. Customizing sentiment classifiers to new
domains: a case study. In Proceedings of Recent Advances in Nat-
ural Language Processing (RANLP-2005), 2005.

[12] BOLLEGALA, Danushka; WEIR, David; CARROLL, John. Cross-
domain sentiment classification using a sentiment sensitive the-
saurus. Knowledge and Data Engineering, IEEE Transactions on,
2013, 25.8: 1719-1731.

[13] BLITZER, J.; DREDZE M.; PEREIRA F. Biographies, bollywood,
boomboxes and blenders: Domain adaptation for sentiment clas-
sification. In Proceedings of Annual Meeting of the Association
for Computational Linguistics (ACL-2007), 2007.

[14] PAN, Sinno Jialin, et al. Cross-domain sentiment classification
via spectral feature alignment. In: Proceedings of the 19th inter-
national conference on World wide web. ACM, 2010. p. 751-760.

[15] YANG, Hui; CALLAN, Jamie; SI, Luo. Knowledge Transfer and
Opinion Detection in the TREC 2006 Blog Track. In: TREC. 2006.

[16] TABOADA, Maite, et al. Lexicon-based methods for sentiment
analysis. Computational linguistics, 2011, 37.2: 267-307.

[17] TURNEY, Peter D. Thumbs up or thumbs down?: semantic ori-
entation applied to unsupervised classification of reviews. In: Pro-
ceedings of the 40th annual meeting on association for computa-
tional linguistics. Association for Computational Linguistics, 2002.
p. 417-424.

[18] GREENGRASS, Ed. Information retrieval: A survey. 2000.

[19] HOENKAMP, Eduard, et al. An effective approach to verbose
queries using a limited dependencies language model. Springer
Berlin Heidelberg, 2009.

[20] LANGVILLE, Amy N.; MEYER, Carl D. A survey of eigenvector
methods for web information retrieval. SIAM review, 2005, 47.1:
135-161.

[21] WEI, Xing; CROFT, W. Bruce. LDA-based document models for
ad-hoc retrieval. In: Proceedings of the 29th annual international
ACM SIGIR conference on Research and development in informa-
tion retrieval. ACM, 2006. p. 178-185.

[22] MILLER, David RH; LEEK, Tim; SCHWARTZ, Richard M. A hid-
den Markov model information retrieval system. In: Proceedings
of the 22nd annual international ACM SIGIR conference on Re-
search and development in information retrieval. ACM, 1999. p.
214-221.

116

Bibliography

[23] SARUKKAI, Ramesh R. Link prediction and path analysis using
markov chains. Computer Networks, 2000, 33.1: 377-386.

[24] MITTENDORF, Elke; SCHÄUBLE, Peter. Document and passage
retrieval based on hidden Markov models. In: SIGIR’94. Springer
London, 1994. p. 318-327.

[25] QIU, Liwen. Markov models of search state patterns in a hyper-
text information retrieval system. Journal of the American Society
for Information Science, 1993, 44.7: 413-427.

[26] PAGE, Lawrence, et al. The PageRank citation ranking: Bringing
order to the web. 1999.

[27] JIN, Wei; HO, Hung Hay; SRIHARI, Rohini K. OpinionMiner: a
novel machine learning system for web opinion mining and ex-
traction. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 2009.
p. 1195-1204.

[28] XU, Jinxi; WEISCHEDEL, Ralph. Cross-lingual information re-
trieval using hidden Markov models. In: Proceedings of the 2000

Joint SIGDAT conference on Empirical methods in natural lan-
guage processing and very large corpora: held in conjunction
with the 38th Annual Meeting of the Association for Computa-
tional Linguistics-Volume 13. Association for Computational Lin-
guistics, 2000. p. 95-103.

[29] PAN, Yi-Cheng; LEE, Hung-Yi; LEE, Lin-Shan. Interactive spo-
ken document retrieval with suggested key terms ranked by a
Markov decision process. Audio, Speech, and Language Process-
ing, IEEE Transactions on, 2012, 20.2: 632-645.

[30] CAO, Guihong; NIE, Jian-Yun; BAI, Jing. Using markov
chains to exploit word relationships in information retrieval. In:
Large Scale Semantic Access to Content (Text, Image, Video,
and Sound). LE CENTRE DE HAUTES ETUDES INTERNA-
TIONALES D’INFORMATIQUE DOCUMENTAIRE, 2007. p. 388-
402.

[31] XU, Rong, et al. Combining text classification and hidden
Markov modeling techniques for structuring randomized clinical
trial abstracts. In: AMIA Annual Symposium Proceedings. Amer-
ican Medical Informatics Association, 2006. p. 824.

[32] YI, Kwan; BEHESHTI, Jamshid. A hidden Markov model-based
text classification of medical documents. Journal of Information
Science, 2008.

117

Bibliography

[33] MEI, Qiaozhu, et al. Topic sentiment mixture: modeling facets
and opinions in weblogs. In: Proceedings of the 16th international
conference on World Wide Web. ACM, 2007. p. 171-180.

[34] ZHOU, Xueyuan; LI, Chunping. Text Classification by Markov
Random Walks with Reward. In: DMIN. 2005. p. 275-278.

[35] NASUKAWA, Tetsuya; YI, Jeonghee. Sentiment analysis: Captur-
ing favorability using natural language processing. In: Proceed-
ings of the 2nd international conference on Knowledge capture.
ACM, 2003. p. 70-77.

[36] VIEIRA, Adrián Seara; IGLESIAS, Eva Lorenzo; DIZ, Lourdes
Borrajo. Study and application of Hidden Markov Models in sci-
entific text classification.

[37] FRASCONI, Paolo; SODA, Giovanni; VULLO, Alessandro. Hid-
den markov models for text categorization in multi-page docu-
ments. Journal of Intelligent Information Systems, 2002, 18.2-3:
195-217.

[38] LI, Kairong; CHEN, Guixiang; CHENG, Jilin. Research on hid-
den markov model-based text categorization process. Interna-
tional Journal of Digital Content Technology and its Application,
2011, 5.6: 244-251.

[39] YI, Kwan; BEHESHTI, Jamshid. A text categorization model
based on Hidden Markov models. In: Proceedings of the 31st
Annual Conference of the Canadian Association for Information
Science. 2003. p. 275-287.

[40] LI, Jin; YUE, Kun; LIU, WeiYi. An adaptive Markov model for
text categorization. In: Intelligent System and Knowledge Engi-
neering, 2008. ISKE 2008. 3rd International Conference on. IEEE,
2008. p. 802-807.

[41] LI, Fang; DONG, Tao. Text Categorization Based on Semantic
Cluster-Hidden Markov Models. In: Advances in Swarm Intelli-
gence. Springer Berlin Heidelberg, 2013. p. 200-207.

[42] WREN, Jonathan D., et al. Markov model recognition and clas-
sification of DNA/protein sequences within large text databases.
Bioinformatics, 2005, 21.21: 4046-4053.

[43] NEUMANN, Marion; AHMADI, Babak; KERSTING, Kristian.
Markov Logic Sets: Towards Lifted Information Retrieval Using
PageRank and Label Propagation. In: AAAI. 2011.

[44] ZHANG, Hua-Ping, et al. Chinese lexical analysis using hier-
archical hidden markov model. In: Proceedings of the second
SIGHAN workshop on Chinese language processing-Volume 17.
Association for Computational Linguistics, 2003. p. 63-70.

118

Bibliography

[45] MILBRETT, Jessica L. Aspect and Sentiment Unification Model
for Online Review Analysis. 2011.

[46] MORENCY, Louis-Philippe; MIHALCEA, Rada; DOSHI, Payal.
Towards multimodal sentiment analysis: Harvesting opinions
from the web. In: Proceedings of the 13th international confer-
ence on multimodal interfaces. ACM, 2011. p. 169-176.

[47] GHOSE, Udayan; RAI, C. S.; SINGH, Yogesh. Application of
Markov Process Model and Entropy Analysis in Data Classifi-
cation and Information Retrieval. International Journal on Com-
puter Science and Engineering, 2010, 2.3.

[48] BENOIT, G. Weighted Markov chains and graphic state nodes
for information retrieval. Proceedings of the American Society for
Information Science and Technology, 2002, 39.1: 115-123.

[49] MORENCY, L.; QUATTONI, Ariadna; DARRELL, Trevor. Latent-
dynamic discriminative models for continuous gesture recog-
nition. In: Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on. IEEE, 2007. p. 1-8.

[50] JINDAL, Nitin; LIU, Bing. Mining comparative sentences and
relations. In: AAAI. 2006. p. 1331-1336.

[51] CHOUDHURY, Monojit, et al. Investigation and modeling of the
structure of texting language. International Journal of Document
Analysis and Recognition (IJDAR), 2007, 10.3-4: 157-174.

[52] AUSTIN, Tom, et al. Introducing the High-Performance Work-
place: Improving Competitive Advantage and Employee Impact.
Gartner Research, 16th May, 2005.

[53] BERRY, Michael W. Survey of text mining. Computing Reviews,
2004, 45.9: 548.

[54] GUPTA, Vishal; LEHAL, Gurpreet S. A survey of text mining
techniques and applications. Journal of emerging technologies in
web intelligence, 2009, 1.1: 60-76.

[55] PAN, Sinno Jialin, et al. Cross-domain sentiment classification
via spectral feature alignment. In: Proceedings of the 19th inter-
national conference on World wide web. ACM, 2010. p. 751-760.

[56] HE, Yulan; LIN, Chenghua; ALANI, Harith. Automatically ex-
tracting polarity-bearing topics for cross-domain sentiment clas-
sification. In: Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language
Technologies-Volume 1. Association for Computational Linguis-
tics, 2011. p. 123-131.

119

Bibliography

[57] BOLLEGALA, Danushka; WEIR, David; CARROLL, John. Using
multiple sources to construct a sentiment sensitive thesaurus for
cross-domain sentiment classification. In: Proceedings of the 49th
Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies-Volume 1. Association for Com-
putational Linguistics, 2011. p. 132-141.

[58] PORTER, Martin F. An algorithm for suffix stripping. Program,
1980, 14.3: 130-137.

[59] LAN, Man, et al. Supervised and traditional term weighting
methods for automatic text categorization. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 2009, 31.4: 721-735.

[60] LIU, Bing. Sentiment analysis and opinion mining. Synthesis
Lectures on Human Language Technologies, 2012, 5.1: 1-167.

[61] MOLINA-GONZÁLEZ, M. Dolores, et al. Semantic orientation
for polarity classification in Spanish reviews. Expert Systems with
Applications, 2013, 40.18: 7250-7257.

[62] DOMENICONI, Giacomo, et al. Cross-domain Text Classifica-
tion through Iterative Refining of Target Categories Representa-
tions.

[63] PAN, Sinno Jialin; YANG, Qiang. A survey on transfer learning.
Knowledge and Data Engineering, IEEE Transactions on, 2010,
22.10: 1345-1359.

[64] JOACHIMS, Thorsten. Text categorization with support vector
machines: Learning with many relevant features. Springer Berlin
Heidelberg, 1998.

[65] DUMAIS, Susan, et al. Inductive learning algorithms and repre-
sentations for text categorization. In: Proceedings of the seventh
international conference on Information and knowledge manage-
ment. ACM, 1998. p. 148-155.

[66] YANG, Yiming; LIU, Xin. A re-examination of text categorization
methods. In: Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in information
retrieval. ACM, 1999. p. 42-49.

[67] SEBASTIANI, Fabrizio. Machine learning in automated text cat-
egorization. ACM computing surveys (CSUR), 2002, 34.1: 1-47.

[68] MERKL, Dieter. Text classification with self-organizing maps:
Some lessons learned. Neurocomputing, 1998, 21.1: 61-77.

[69] KOHONEN, Teuvo, et al. Self organization of a massive doc-
ument collection. Neural Networks, IEEE Transactions on, 2000,
11.3: 574-585.

120

Bibliography

[70] WEIGEND, Andreas S.; WIENER, Erik D.; PEDERSEN, Jan O.
Exploiting hierarchy in text categorization. Information Retrieval,
1999, 1.3: 193-216.

[71] SCOTT, Sam; MATWIN, Stan. Text classification using WordNet
hypernyms. In: Use of WordNet in natural language processing
systems: Proceedings of the conference. 1998. p. 38-44.

[72] GABRILOVICH, Evgeniy; MARKOVITCH, Shaul. Computing
Semantic Relatedness Using Wikipedia-based Explicit Semantic
Analysis. In: IJCAI. 2007. p. 1606-1611.

[73] DAI, Wenyuan, et al. Co-clustering based classification for out-
of-domain documents. In: Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data min-
ing. ACM, 2007. p. 210-219.

[74] XUE, Gui-Rong, et al. Topic-bridged PLSA for cross-domain text
classification. In: Proceedings of the 31st annual international
ACM SIGIR conference on Research and development in infor-
mation retrieval. ACM, 2008. p. 627-634.

[75] LI, Lianghao; JIN, Xiaoming; LONG, Mingsheng. Topic Corre-
lation Analysis for Cross-Domain Text Classification. In: AAAI.
2012.

[76] HOWARD, Ronald A. Dynamic Probabilistic Systems, Volume I:
Markov Models. Courier Corporation, 2012.

[77] KEMENY, John G.; SNELL, J. Laurie. Finite continuous time
Markov chains. Theory of Probability & Its Applications, 1961,
6.1: 101-105.

[78] BLEI, David M.; NG, Andrew Y.; JORDAN, Michael I. Latent
dirichlet allocation. the Journal of machine Learning research,
2003, 3: 993-1022.

[79] RABINER, LAWRENCE R. A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition. PROCEED-
INGS OF THE IEEE, 1989, 77.2: 257.

[80] CHAN, Lois Mai. Cataloging and classification: an introduction.
Scarecrow Press, 2007.

[81] MANNING, Christopher D. Foundations of statistical natural
language processing. MIT press, 1999.

[82] NORRIS, James R. Markov chains. Cambridge university press,
1998.

[83] SERFOZO, Richard. Basics of applied stochastic processes.
Springer Science [?] Business Media, 2009.

121

Bibliography

[84] AGGARWAL, Charu C.; ZHAI, ChengXiang. Mining text data.
Springer Science & Business Media, 2012.

[85] WEST, Douglas Brent, et al. Introduction to graph theory. Upper
Saddle River: Prentice hall, 2001.

[86] BAUM, Leonard E., et al. A maximization technique occurring in
the statistical analysis of probabilistic functions of Markov chains.
The annals of mathematical statistics, 1970, 164-171.

122

	Abstract
	Abstract
	Dedication
	Acknowledgements
	Declaration
	Contents
	List of Figures
	List of Tables
	Acronyms

	Markov Models: an Introduction
	What is a Markov model?
	Regular Markov Models
	Directed Graph Representation
	Transition Matrix Representation
	Beyond Discrete-Time Markov Chains
	Properties
	Applications

	Hidden Markov Models
	Forward-Backward Algorithm
	Viterbi Algorithm
	Baum-Welch Algorithm

	The state of the art
	Information Retrieval
	Markov Model based methods in Information Retrieval

	Text Categorization
	Markov Model based methods in Text Categorization

	Opinion Mining and Sentiment Analysis
	Markov Model based methods in Opinion Mining and Sentiment Analysis

	Cross-Domain Text Categorization
	Document Sentiment Categorization approaches

	The proposed Markov Chain based methods
	A basic Markov model
	The new proposed Markov based algorithm
	The learning phase
	The classification phase

	Markov based algorithm: some variants
	Document expansion by means of Markov Chain Stationary Distribution
	MCTM expansion by means of Markov Chain Stationary Distribution
	Document expansion by means of words distance
	Do connection weights always represent term co-occurrences?
	Multi-Source approach

	Framework and implementation
	The concurrent framework
	Framework architecture

	Markov Chain algorithm implementation

	Analysis and results
	Data sources
	Amazon dataset
	Iberia and Repsol datasets

	Planned tests
	Testing the basic algorithm parametrization
	Term weighting
	Stemming vs lemmatization
	Document and MCTM expansion
	Document expansion by means of words distance
	First comparison: MCAlgorithm vs SFA and PBT

	Analysis of the words dictionary
	Testing common and domain specific features
	Testing supervised term weighting techniques
	Testing opinion words
	Adding feature selection ranking to the MCTM

	Testing Multi-Source approach
	Analysis in Single-Domain Sentiment Classification
	Testing Repsol and Iberia

