
Alma Mater Studiorum · Università di Bologna

CAMPUS DI CESENA
SCUOLA DI INGEGNERIA E ARCHITETTURA

Corso di Laurea Magistrale in Ingegneria e Scienze Informatiche

DESIGN AND IMPLEMENTATION
OF AN ANONYMOUS PEER-TO-PEER

IAAS CLOUD

Tesi di Laurea in Sicurezza delle Reti

Relatore:
GABRIELE D’ANGELO

Correlatori:
MORENO MARZOLLA
STEFANO ZACCHIROLI

Presentata da:
MICHELE AMATI

Sessione III
Anno Accademico 2013-2014

Sommario (Italian)

In questo lavoro tratterò del problema della privacy e dell'anonimato nel

mondo del Cloud Computing. Un mondo che recentemente ha conosciuto

una considerevole espansione e non riguarda più solo le grandi aziende, ma

anche tutte le persone comuni che abbiano un computer o anche solo uno

smartphone. Forse non ne siamo tutti consapevoli, ma quando inviamo una

e-mail attraverso una Web Mail, quando il nostro smartphone esegue il bac-

kup automatico delle foto sul nostro account (Google, Apple, o Microsoft che

sia), quando usiamo una qualsiasi Web Application, noi stiamo sfruttando

dei servizi Cloud. Servizi dei quali, spesso e volentieri, non sappiamo prati-

camente nulla e ai quali a�diamo ciecamente i nostri dati. Possiamo essere

sicuri che il Cloud Service Provider di turno non si prenda troppe libertà?

Che la con�denzialità dei nostri dati non venga, in un modo o nell'altro, vio-

lata? Domande avvalorate dalla recente scoperta delle attività di `spionaggio'

su larga scala ad opera della National Security Agency americana [9][10].

L'anonimato è un modo per raggiungere la privacy, e non è chiaramente

un'invenzione recente, è già stato applicato in passato a cose fondamentali

come ad esempio le comunicazioni. Più il Cloud diventa un'esigenza, più

la possibilità di avere un servizio cloud anonimo diventa importante. Ed

eccoci arrivati al punto, in questo lavoro partirò da un software prototipale

per la costruzione di un'infrastruttura cloud peer-to-peer[5], e farò in modo

di renderlo anonimo attraverso l'utilizzo delle reti di anonimizzazione, co-

me ad esempio Tor[14]. Il risultato sarà dunque un prototipo in grado di

creare un'infrastruttura per servizi cloud nella quale non solo gli utenti sa-

i

ii SOMMARIO (Italian)

ranno anonimi, ma anche tutte le singole componenti della rete (Peers) non

si conosceranno se non attraverso indirizzi �ttizi.

Procederò nel seguente modo: inizialmente mostrerò lo stato dell'arte

per quanto riguarda il Cloud Computing, so�ermandomi sulle di�erenze tra

le architetture più centralizzate adottate dai grandi vendor del settore, e

quella distribuita del prototipo a mia disposizione. Successivamente farò

un confronto tra le reti di anonimizzazione esistenti, approfondendone il più

possibile il funzionamento. A questo riguardo faccio presente che non si tratta

di `strumenti' magici che proteggono la nostra identità sempre e comunque.

Vanno capiti ed usati con giudizio, altrimenti l'unica cosa che si ottiene è un

calo prestazionale, sì, perché a seconda del livello di anonimato desiderato

c'è un prezzo da pagare in termini di risorse e questo porta ad un degrado

più o meno signi�cativo delle prestazioni.

Le prestazioni saranno appunto un elemento che valuterò dopo aver ap-

portato le necessarie modi�che al prototipo, confrontando quelle della versio-

ne originale con quelle della versione anonima. I test che lancerò consisteran-

no nell'esecuzione del prototipo su un certo (grande) numero di macchine,

e nella valutazione dei tempi di esecuzione di alcune operazioni. Per avere

un numero su�cientemente alto di macchine mi rivolgerò ai servizi di Ama-

zon EC2[28]. Attraverso uno script automatizzerò la creazione delle istanze

(macchine), l'avvio dei prototipi, la chiamata alle varie API interessate dai

test e tutte le altre operazioni necessarie. I risultati sono esposti al capitolo

4 nella sezione 4.3.

Introduction

Cloud services are becoming ever more important for everyone's life.

Cloud storage? Web mails? Yes, we don't need to be working in big IT

companies to be surrounded by cloud services. Another thing that's growing

in importance, or at least that should be considered ever more important,

is the concept of privacy. The more we rely on services of which we know

close to nothing about, the more we should be worried about our privacy.

In this work, I will analyze a prototype software based on a peer to peer

architecture for the o�ering of cloud services[5], to see if it's possible to make

it completely anonymous, meaning that not only the users using it will be

anonymous, but also the Peers composing it will not know the real identity

of each others. To make it possible, I will make use of anonymizing networks

like Tor[14].

I will start by studying the state of art of Cloud Computing, by looking

at some real example, followed by analyzing the architecture of the proto-

type, trying to expose the di�erences between its distributed nature and the

somehow centralized solutions o�ered by the famous vendors. After that, I

will get as deep as possible into the working principle of the anonymizing

networks, because they are not something that can just be `applied' mind-

lessly. Some de-anonymizing techniques are very subtle so things must be

studied carefully.

I will then implement the required changes, and test the new anonymized

prototype to see how its performances di�er from those of the standard one.

The prototype will be run on many machines, orchestrated by a tester script

iii

iv INTRODUCTION

that will automatically start, stop and do all the required API calls. As to

where to �nd all these machines, I will make use of Amazon EC2[28] cloud

services and their on-demand instances.

Contents

Sommario (Italian) i

Introduction iii

1 Introduction to cloud computing and anonymizing networks 1

1.1 Cloud computing . 1

1.1.1 Types of service . 2

1.1.2 Deployment models . 3

1.1.3 Classic cloud vs P2P cloud 4

1.2 Anonymizing networks . 9

1.2.1 Introduction to online identity and the importance of

anonymity . 9

1.2.2 Basic principle behind anonymizing networks 12

1.2.3 A comparison of existing anonymizing networks 13

2 Architecture of a P2P anonymous cloud system 19

2.1 Recap of the P2P cloud system architecture 19

2.2 Towards anonymization (what needs to be changed) 22

2.2.1 Obvious problems (direct connections) 23

2.2.2 Hidden problems (leaks) 23

2.3 The �nal P2P anonymous cloud system architecture 32

3 Implementation 35

3.1 JRMI and SOCKS proxy . 36

v

vi CONTENTS

3.2 Other secondary but necessary changes to the code 41

3.3 Setting up the hidden services 42

4 Performance evaluation 45

4.1 Amazon EC2 . 45

4.2 Setting up the tests on EC2 49

4.2.1 Boto . 51

4.2.2 Fabric . 52

4.3 Tests results . 54

Conclusions 63

Bibliography 65

List of Figures

1.1 OpenStack Components Diagram [3] 5

1.2 P2P Cloud System Architecture 7

2.1 P2P Cloud System Architecture (Communication Handler) . . 20

2.2 Example of the simplest API call possible 21

2.3 Communication �ow between two PSS 22

2.4 The Anonymous P2P Cloud System Architecture 33

4.1 Average network initialization times compared 56

4.2 Average time to complete the �rst run-nodes call compared . . 57

4.3 Average time to complete the second run-nodes call compared 59

4.4 Initializations completed without incurring in the timeout,

max is 10 . 60

4.5 (�rst) Run-nodes completed without incurring in the timeout,

max is 10 . 61

4.6 (second) Run-nodes completed without incurring in the time-

out, max is 10 . 61

vii

List of Tables

1.1 Comparison of Tor and I2P Terminology 13

2.1 List of Communications . 25

4.1 Test results - Network initialization time 56

4.2 Test results - First run-nodes execution time 57

4.3 Test results - Second run-nodes execution time 59

ix

Chapter 1

Introduction to cloud computing

and anonymizing networks

In this �rst chapter I'll introduce the basic concepts of Cloud Computing

and of Anonymizing Networks. Both topics are quite wide and complex so

I'll focus mainly on the aspects relevant to my work.

1.1 Cloud computing

As de�ned by the National Institute of Standards and Technology (NIST)

the Cloud is: �A model for enabling ubiquitous, convenient, on-demand net-

work access to a shared pool of con�gurable computing resources (e.g., net-

works, servers, storage, applications, and services) that can be rapidly pro-

visioned and released with minimal management e�ort or service provider

interaction.� [1]

There are many types of Cloud services but they all share the same main

idea that somewhere, somehow, there are computer-related resources that a

user can use through a public interface to carry out his tasks. He can use

them wherever he wants and whenever he wants paying only for what he

uses. Extreme scalability makes it easy to follow the business needs allowing

to get more resources almost instantly and release them as fast as they were

1

2 1. Introduction to cloud computing and anonymizing networks

got when they are not needed anymore, without having to deal with lot of

expensive hardware laying unused and getting old. With this in mind it's

easy to understand why the Cloud business has spread so much and it's still

expanding. The ever improving quality and di�usion of Internet connections

also played a big part in making this possible since Cloud without Internet

is as impossible as real clouds without the sky.

So is Cloud the best solution for everyone? No, the Cloud has require-

ments and downsides too. The main requirement is that the user has to be

able to reach it in a fast and reliable way, which means, he needs an ap-

propriated Internet connection. Most of the other downsides derive by the

fact that the user looses some of the control he has over his process making

use of the Cloud. He can only trust the Cloud Service Provider will do as

written in the Terms of Service (ToS). Most of the times he knows nothing

about how the Cloud System really works behind the public interface, or

even where that system and the user data are located. The more security is

important for the user, the more this aspect of the Cloud gets problematic

because there can't be security as long as one or more parts of the system

are unknown. This issue is partially solved in Private and Hybrid Clouds

described in this document at 1.1.2.

1.1.1 Types of service

Cloud services can be divided into three categories, ordered ascending by

the level of abstraction from the physical resources:

Infrastructure as a Service (IaaS). The user gets remote access to the

fundamental computing resources, e.g. processing, storage, network...

This is the level that leaves the user the most freedom at the cost of an

increased di�culty in handling the whole thing because it's up to him

to install, con�gure and maintain software (and that may include the

Operative System).

Platform as a Service (PaaS). The user gets a platform, which is a soft-

1.1 Cloud computing 3

ware that hides the lower infrastructure level and makes it easier for

the user to build his own service like e.g. allowing software packages

to be installed and con�gured in a graphical drag and drop way. The

user has less freedom than in the IaaS model, but he hasn't to worry

about updates, con�gurations and software compatibility.

Software as a Service (SaaS). The user gets the possibility to use a soft-

ware remotely. He doesn't know what components form it, nor he

knows anything about the lower infrastructure level on which it runs.

There are many commonly used SaaS services we use every day, e.g. all

the cloud storage services, all the web apps used for streaming music

or for managing emails.

1.1.2 Deployment models

Cloud services can also be classi�ed according to the users that can access

them. They can be:

Public. Anyone who can pay for them can use them. It's the most widespread

version.

Private. Usually built by big organizations, they can only be used by a

restricted group of authorized user (that are often members of the or-

ganization that build them).

Community. Similar to the Private one but used by a community made of

organizations that share the same concerns.

Hybrid. A mix of the three above, e.g. part of the Cloud could be Private

and can be used to store/process sensitive data, while the rest could

be Public.

There are many reasons why Clouds that are at least partially Private

are a lot better at security:

4 1. Introduction to cloud computing and anonymizing networks

• As I have already mentioned, having one or more parts of the system

that we don't know how they are built or how they work, makes us

unable to design an appropriate security system. This unknown factor

is lower or zero in Private Clouds. It depends of who own, manage and

operate the Cloud. A Private Cloud is not necessarily owned, managed

and operated by the organization itself, if a third part does it, there

might still be an unknown factor.

• The isolation level is maximum. Isolation level is a `measure' of how

good the shared resources are kept separated among the multiple users

of the Cloud. In a Public Cloud our data might be stored on the same

physical machine where the software of a malicious user is running,

trying to break the virtual isolation to reach others data.

• The chance of getting malicious insiders is much lower since the access

to the cloud is restricted.

1.1.3 Classic cloud vs P2P cloud

The architecture of a Cloud System can be designed in many di�erent

ways. Vendors often refuse to show how their systems are designed but we

can look at one of the many Open Source projects to get an idea. An example

is OpenStack.

�OpenStack is a cloud operating system that controls large pools of com-

pute, storage, and networking resources throughout a datacenter, all man-

aged through a dashboard [...]� [2]. In the OpenStack architecture we can

�nd the following components:

Horizon. Is the dashboard through which users can administrate the system

by doing API-Calls.

Heat. Is a template-based orchestrator. Templates are �les that describe

speci�c cloud applications (resources and con�gurations).

1.1 Cloud computing 5

Nova. The computing module.

Glance. Provides and manages disk images.

Swift. An unstructured data storage system.

Neutron. Manages networking and network interface devices.

Cinder. Manages persistent storage.

Keystone. Manages identities and permissions.

Figure 1.1: OpenStack Components Diagram [3]

In �gure 1.1 we can also see the concept of Region, which is a way to

point out the physical location of parts of the system. It can be useful if we

want to be sure some sensitive data do not leave the country, or to implement

fault tolerance.

OpenStack makes large use of virtualization, Nova works with virtual

CPUs (VCPUs), Neutron uses virtual network interfaces, Cinder works with

virtual disk volumes. Virtualization is essential for the `rapid provision' prop-

erty of the cloud.

To be able to use more than a physical machine, to create a cluster on

which OpenStack runs, one or more nodes have to become Cloud Controller.

6 1. Introduction to cloud computing and anonymizing networks

In the OpenStack documentation is written that: �The cloud controller pro-

vides the central management system for OpenStack deployments. Typically,

the cloud controller manages authentication and sends messages to all the

systems through a message queue.� [4] In other words, Cloud Controllers

provide the required coordination.

Getting deep on how OpenStack (or other similar Cloud System) works

is out of the scope of this work. I mentioned it just to be able to show the

di�erences between a `classical' architecture and a P2P architecture. The im-

portant points to keep in mind are: modularity, virtualization and hierarchy

between the machines forming the system.

The concept of Peer to Peer (P2P) was born before the Cloud. P2P

denotes those architectures where the software entities that take part to

the system are somehow connected (e.g. Internet) and are `peer', with no

centralized control and/or hierarchy. How exactly this entities communicate

and how can they work together to produce some kind of result is up to

the speci�c application. P2P architectures usually o�er great scalability, can

make use of many low-power heterogeneous machines and are often great

at fault tolerance but are also harder to design due to the di�erent way

coordination must be achieved. Recently some work has being done to design

a Cloud system that uses a P2P architecture, from now on I'll take as an

example of such work the thesis Progettazione e Sviluppo di un Sistema Cloud

P2P (Design and Implementation of a P2P Cloud System) [5] [6] by Michele

Tamburini.

We will call Node or Peer an instance of the P2P Cloud System software

running on a machine. There can be more than one node on a single physical

machine but it would not make much sense in a real scenario. The nodes

are connected by an overlay network1 upon a standard routed network like

the Internet. Coordination among nodes is achieved in a completely decen-

tralized way, by decisions taken locally in each node with the local available

1Overlay Network: a network build on top of another network where links between

nodes can be logical or virtual and correspond to paths on the `real' underling network.

1.1 Cloud computing 7

information. The users can request the cloud's resources through a public in-

terface that aims to be as close as possible to the one o�ered by the `standard'

cloud systems.

Figure 1.2: P2P Cloud System Architecture as designed by Michele Tamburini [7]. The

white components are those that have not been implemented in the prototype attached to

his thesis.

Let's take a closer look at his architecture, from the bottom to the top

(Figure: 1.2) we have:

Peer Sampling Service (PSS). Since the number of nodes forming the

cloud could be very high, it's not possible for each node to keep a

list of the addresses of all the other nodes. This is where the PSS

come in use. Every node keeps a partial view, a small list with the

8 1. Introduction to cloud computing and anonymizing networks

addresses of few other nodes. The PSS uses a gossip algorithm to

periodically exchange information regarding the partial view with other

nodes (contained in the partial view), and uses them to update the

content of the local partial view itself. This way every partial view

will behave like a random subset of all the nodes in the network. Given

that the time between taking samples is high enough, picking a random

node from the partial view will be like picking a random node from all

the nodes in the network.

Slicing Service. It allows to get a slice (a subset) of nodes that match some

kind of query, like e.g. those that are best at computing.

Aggregation Service. Using the PSS and a gossip algorithm, it allows each

node to get global knowledge by exchanging local information with

other nodes, e.g. if every node is assigned a number, it's possible for

each node to compute the average of the values of all nodes in the net-

work just by exchanging information with other nodes and changing

their own value to the average of it and the value of the other node.

Again, getting deep on how it works is not the purpose of this docu-

ment, see Gossip-Based Aggregation in Large Dynamic Networks [8] for

a more detailed description of this issue.

Bootstraping Service. It's used to get sub-clouds by creating overlay net-

works (di�erent from those created by the PSS). It uses the T-Man

gossip algorithm.

System Modules. The Monitoring System is a resource monitor, it knows

how many free and busy resources we have. The Storage System takes

care of the storage. The Dispatcher System is of some interest to us

because among other tasks it handles and dispatches communications,

something we will have to look at in deep when we'll talk about how

to anonymize the system.

Interface Modules. It includes all the APIs that the user will be able to

1.2 Anonymizing networks 9

call to use the system.

1.2 Anonymizing networks

In this section, I'll talk about anonymity in the Internet world. What

identify an entity on the Internet? What does it mean to be anonymous?

Why should we want it, we have nothing to hide isn't it? We'll see Anonymiz-

ing Networks as tools that could help us reach a certain degree of anonymity

and we'll use them later to make the P2P Cloud System anonymous.

1.2.1 Introduction to online identity and the impor-

tance of anonymity

Everything that's connected to the Internet can be uniquely identi�ed

by its IP address2, it's like the Italian Codice Fiscale, or the USA Social

Security Number, it's something we have just for being part of the system

and it's actively required to communicate so we can't just throw it away.

But that's not all, even if we �nd a way to hide it, our identity can still be

inferred by what we do! Just think at this, you have succeeded in crafting

a fake identity and the one you are talking to do not know who you really

are, but then you inadvertently tell him something real about you and he

starts to be suspicious because it does not �t well in your fake identity. He

will start to pay much more attention and everything you do or even how

you look will help him not only understanding that you're not who you said

you are, but it might even be able to narrow it down until he �nds your real

identity.

So, we have to solve both problems, �nd a way to communicate without

2Actually, thanks to the Network Address Translation (NAT), it is possible for two or

more devices to have the same `private' IP and still be able to communicate through the

Internet. NAT maps each packet that passes through it (directed to the Internet) to a

new packet with a di�erent IP (and port numbers) using as the new IP a public unique

one. Responses are also mapped back to the `private' IP.

10 1. Introduction to cloud computing and anonymizing networks

using our real identity, and behave in a way that will not give out any infor-

mation that could betray us. In a system that tolerates anonymity it's not a

problem if the other �nds out that you are trying to hide, but there are also

systems that would just `kick you out'.

But why should we want anonymity? We are not spies or terrorists, so

why should we care? There could be many reasons:

Privacy. It's not the same thing as anonymity but they are strictly related

concepts. Having privacy means being able to do something without

anyone knowing it. Being anonymous means being able to do something

others will notice but will not be able to connect to you. From the user's

(real identity) point of view anonymity imply privacy. The �Nothing

to hide� argument is so frequently used when talking about privacy

and anonymity that it even has a dedicated Wikipedia page [12]. We

might tend to agree with that but think at this example by Adam D.

Moore: �Imagine upon exiting your house one day you �nd a person

searching through your trash painstakingly putting the shredded notes

and documents back together. In response to your stunned silence he

proclaims "you don't have anything to worry about - there is no reason

to hide is there?"� [13]. I'm sure most would dislike such thing, and

that's what happens every day with everyone's online activities.

Freedom of speech. Here in Italy, the freedom of speech is (most of the

time) granted, but think at all the totalitarian regimes around the world

where people risk their life if they say the `wrong thing'.

Anonymous complaints. There could be situations in which we feel we

should report or denounce something but we do not want to be involved.

Hide physical location. Given an IP address it's possible to know where

the machine that's using it is physically located. This allows an attacker

to physically harm that system by e.g. cutting the cables that bring

it power or the Internet connection, or even to totally destroy it. In a

1.2 Anonymizing networks 11

military scenario this is totally possible. Hiding the real IP will prevent

all of this.

Ensure a safe future. This is something most people forget to think of,

actions that are perfectly legit and safe now are not granted to stay

the same in the future! Are you totally sure that the opinion you are

expressing now will not cause you problems, after some years, with the

new `Big Boss' whose opinion will be exactly the opposite of yours?

Any kind of bad things. Anonymity is a feature, it can be used for both

good and bad purposes.

Recently it has emerged that the American's National Security Agency

(NSA) has being spying on every citizen of the world in such a deep way

that no one would have believed it to be possible [9]. They said it is for

protecting themselves from terrorists, and that could be true, but is it all?

And even if it is, is it right that everyone has to pay with his privacy for

it to be possible? How do we know they are not spying on other countries

stealing their industrial secrets? What if they `data-mined' our private data

and knew what we think and what we do and this way they were able to

`manipulate' us? That would be quite easy, it's the daily bread of those who

do marketing. In a single question: Who watches the watchers? No one, or

maybe similar agencies of other countries, but that's of no help to us.

Back to the main topic of this work, communications can already be

anonymized, Internet browsing can already be anonymized but to be able

to do anonymous computation, something like an anonymous cloud system

is needed and P2P architectures are the best starting point because of their

properties (no centralized control, all nodes are peers).

12 1. Introduction to cloud computing and anonymizing networks

1.2.2 Basic principle behind anonymizing networks

For a connection3 between two entities on the Internet to be possible,

one must know the address of the other, and once the connection starts, the

second one learns the address of the �rst one. A basic way to avoid revealing

an entity's real identity is to use a relay. Consider three entities on the

Internet called A, B, and C. If A wants to talk to B without revealing its

identity it can connect to C and tell C to connect to B. C will act as a relay

for the communication between A and B, so that B will think to be talking

with C instead of A. This solves part of the problem, but still A needs to

know B. Let's add a fourth node D. To protect itself but still be able to o�er

its service, B can create a fake identity, an alias that we will call `ServiceB'

and write it somewhere in a public area, something like: �To get ServiceB

you have to ask to node D�. This way, D will act as a relay exactly like C

did. This is a very basic and weak anonymizing strategy, what if C or D were

corrupted4? Real anonymizing networks are a lot more complex.

An interesting concept strictly related to how anonymizing networks works

is that �Anonymity Loves Company� [11]. One may think that reaching

anonymity means being as far as possible from anyone who can see or hear

you but that's wrong! It's easy to spot someone who's isolated, much harder

is to �nd someone dressed as normal as possible in a place full of people.

With the way anonymizing networks work, it's possible to tell if a service

is being accessed by someone (UserA) who's using an anonymizing network,

and it's also possible to tell if someone else (UserB) is using them, but what

makes them safe (or not) is the number of the anonymizing network users.

The more they are, the harder it will be to tell if UserA and UserB are the

same person.

3Here by `connection' I mean a bidirectional communication. The majority of the

connections over the Internet are bidirectional but there are also unidirectional connections

that would not require the receiver to know the sender. Broadcast communications are

also possible and they would not even require the sender to know the receivers.
4Corruption: The target looses its integrity because of unauthorized modi�cations that

make it function in an unintended manner.

1.2 Anonymizing networks 13

1.2.3 A comparison of existing anonymizing networks

At the time of writing, there are only two anonymizing networks famous

enough to be worth looking at: The Onion Router (Tor) [14] and the Invisible

Internet Project (I2P) [15]. They share many similarities but there are also

some fundamental di�erences. I'll start with the things they have in common.

Unfortunately they use di�erent terminology to refer to the same concepts

so it's useful to take a look at the comparison Table 1.1 kindly provided by

the guys of I2P.

Tor I2P

Cell Message

Client Router or Client

Circuit Tunnel

Directory NetDB

Directory Server Flood�ll Router

Entry Guards Fast Peers

Entry Node Inproxy

Exit Node Outproxy

Hidden Service Eepsite or Destination

Hidden Service Descriptor LeaseSet

Introduction Point Inbound Gateway

Node Router

Onion Proxy I2P Tunnel Client *

Relay Router

Rendezvous Point Inbound Gateway + Outbound Endpoint *

Router Descriptor RouterInfo

Server Router

Table 1.1: Comparison of Tor and I2P Terminology [16]. Items marked with `*' are not

an exact match but more of a similar concept.

Both projects start from the idea presented at 1.2.2 of avoiding direct

14 1. Introduction to cloud computing and anonymizing networks

communications, by building a path of nodes through which making them

pass. How they choose the nodes is the �rst notable di�erence between the

two.

In Tor, a client (Onion Proxy - OP) that needs to build a path (Circuit)

asks few special nodes (Directory Servers) for information about the nodes

(Onion Router - OR) in the network, and then it chooses the ones whose

declared performances better suit its needs. Directory Servers are a small

group of well known servers5 that collect signed state information from all

the OR in the network and use them to create a sort of global view of the

network (Directory) which OPs can fetch.

In I2P, the client (I2P Tunnel Client) asks special routers (Flood�ll Router)

that have access to a distributed network database (NetDb) which contains

information equivalent to those of the Tor's Directory, information about the

nodes (Router). The big di�erence is that any node that matches some basic

performance criteria can and will automatically become a Flood�ll Router

making things a lot more distributed and decentralized than Tor's Directory

Servers. Flood�ll Routers collect signed state information from the routers in

the network the same way Directory Servers do with the ORs. Once the path

is created data can be sent. They both make use of encryption to protect

data con�dentiality and here we have another di�erence.

Tor uses a technique called Onion Routing to pack, encrypt and send

data. The name is taken from the onion (vegetable) because of its layered

structure. Every time a message (Cell) has to be sent, the OP encrypts it

a number of times equal to the number of nodes it will cross, using a set

of symmetrical keys created during the circuit creation. Each key is shared

with one of the nodes in the path. It does it in reverse order so that the

outer layer of encryption is the one encrypted with the key of the �rst node,

the second outer layer uses the key of the second node and so on. Every time

5About trusting Directory Servers: �[...] directory servers must be synchronized and

redundant, so that they can agree on a common directory. Clients should only trust this

directory if it is signed by a threshold of the directory servers. [...] Tor only needs a

threshold consensus of the current state of the network.� [17]

1.2 Anonymizing networks 15

the Cell passes through a node, a level of encryption is removed exposing the

information needed to know what's the next hop. The last node removes the

last level and exposes the unencrypted data. This way every node can only

know information regarding the previous and the next hop and even if they

are compromised they can't do much6.

I2P uses Garlic Routing. It can be seen as an evolution of Onion Routing.

The concept of layered encryption is almost the same, what changes is that

the packet that is sent through the tunnel is not made of a single message

like in Tor's Cells but it's a bundle of messages (Cloves) instead. All mes-

sages have to reach the end of the tunnel so there's no reason to keep them

separated, this also makes it harder to carry out tra�c analysis attacks7.

Given that paths creation is hard and time consuming due to the latency

and the multiple use of public key encryption8, both Tor and I2P create them

as soon as they can, before they are actually needed and in a transparent

way to the user. Paths are valid for a certain amount of time then they

expire and must be replaced. The same happens if they just break due to

one or more failing nodes, or if the user wants to change them even if they

are still valid and working. Many di�erent connections can use the same

path. Another big design di�erence is that Tor's Circuits are bidirectional

so one circuit is enough to carry out a communication while I2P's tunnels

are unidirectional so it needs at least an Inbound Tunnel and an Outbound

Tunnel to communicate. This has many implications regarding security and

performance but things gets really complicated and not very useful for my

work so I'm not going to explain them here.

Another thing that's worth focusing on is how Tor and I2P handle the

creations of anonymous services. At 1.2.2, I talked about the fact that, having

two entities A and B, for A to be possible to connect to B, A must know

6Unless almost every node is compromised or the attacker controls both the entry and

exit node.
7Attacks based on trying to infer information by looking at the data (patterns, timings)

even if it's encrypted and unreadable.
8Used to create the set of shared symmetrical keys.

16 1. Introduction to cloud computing and anonymizing networks

B. We will now see how B can use Tor or I2P to o�er its services without

exposing itself.

Tor calls them Hidden Services, anyone participating in the Tor network

can create his own hidden services. If `B' wants to host one it will do as

follows:

1. B generates a public key pair that will identify his service.

2. B chooses some nodes in the network that will work as Introduction

Points to its service, then it creates circuits to them. After that it cre-

ates a Descriptor containing information about the introduction points

and its public key, and signs it with its private key. Descriptors are as-

sociated a string name in the form �XYZ.onion� where XYZ is a 16

character name derived from the public key.

3. B uploads this descriptor to the Hidden Service Directory Servers (HS-

Dirs).

Now the service is advertised, to reach it `A' needs to know the .onion

address and will do as follows:

1. A downloads B's descriptor from the HSDirs.

2. A chooses a node in the network that will serve as a Rendezvous Point

(RP) and builds a circuit to it9.

3. A connects to one of B's introduction points and instructs it to tell B

to meet A at the RP.

4. If B wants to talk to A, it will build a circuit to the RP.

5. A and B can now communicate through the RP.

9Actually, the RP is also provided with a rendezvous cookie by A, to be able to recognize

B later. The same cookie is passed to B through one of its introduction points.

1.2 Anonymizing networks 17

In I2P we have something similar but without the Rendezvous Point and

the centralized (redundant) HSDirs. When the service takes the form of a web

server it is called EEPsite but it's also possible to host other types of services.

Things are a bit easier to understand compared to Tor because of the concept

of the Inbound Tunnels. What Tor does by choosing introduction points and

creating circuits to them, in I2P is done be creating one or more Inbound

Tunnels. The node of the tunnel that's further away from where the service

is hosted (Inbound Gateway) is like a Tor's introduction point. To advertise

a service, the hosting node publishes a LeaseSet (like Tor's descriptors) in the

NetDb through a Flood�ll Router. Every LeaseSet is identi�ed by an address

made of 516 Base6410 characters that can also be expressed in Base32 in the

form �{52 chars}.b32.i2p�. Anyone in the I2P network that wants to access

the EEPsite have to know the address and use it to get the LeaseSet from

the NetDb. It can then simply connect to one of the Inbound Tunnels listed

in the LeaseSet through one of his Outbound Tunnels.

There are two big di�erences between Tor and I2P yet to be discussed.

The �rst one regards what types of tra�c can actually pass through them.

Tor has been designed to work with Transmission Control Protocol (TCP)

streams and can't in any way carry User Datagram Protocol (UDP) packets.

UDP support has been theorized and would require some deep design change

but the bigger problem is that it would be possible to tell if someone is using

UDP and this would make UDP users easy to deanonymize because soon

after the change, UDP users will be very few compared to the TCP users.

I2P does not su�er from this problem and can carry both UDP and TCP.

The last di�erence I'll describe is about the communications between some-

one who's inside the anonymizing network and another one who's outside, in

the `normal' Internet. In Tor, ORs can be con�gured to relay communica-

tions only with other nodes inside the network or also with anyone outside.

Those who can relay communications with the outside Internet are called

10It is a binary-to-text encoding scheme. Binary data is divided into groups of six bits

and than encoded using the Base64 index table [18].

18 1. Introduction to cloud computing and anonymizing networks

Exit Nodes, it's up to every OR to decide if they want to be exit nodes or

not11. In I2P, exit nodes (OutProxies) are special nodes running a di�erent

application, hosted by volunteers, and there are very very few of those. A

standard I2P node only relay communications inside the I2P network. This

makes communicating with the outside Internet very slow and unreliable,

I2P's goal are intra-communications.

Back to the main purpose of this document, If I had to choose one for

building the Anonymous P2P Cloud System I would choose Tor. It has a

much larger pool of users and it has been studied a lot more than I2P so

we can assume it's more secure. But the good news is, I don't really have

to choose!12 Given that they both need connections to be `routed' to a

local proxy (luckily the same type of proxy) and that they both use string

addresses that are handled entirely by the proxy, I can design the system to

be independent from the speci�c anonymizing network. In Chapter 2, I'll

give a better idea of how the system is designed.

11Being an exit node can be very dangerous because its real IP is what the outside

Internet sees so if a Tor user does something bad the exit node is the one who'll be

blamed.
12Unfortunately, during the implementation phase I've encountered a limitation in I2P

support for SOCKS that made it impossible for the prototype to work with it without

some important modi�cation, so I'll just go on with Tor.

Chapter 2

Architecture of a P2P anonymous

cloud system

Now that I have introduced the two fundamental components (anonymiz-

ing networks and P2P cloud architecture), we can start to see how they can

be brought together to create a P2P cloud architecture in which the peers

do not know the real identity of each other.

2.1 Recap of the P2P cloud system architec-

ture

In order to facilitate the comprehension of the anonymizing process, I will

now get back to Figure 1.2 and propose a di�erent version of it, this time

built around the Communication Handler 1 component. For now, I will just

ignore the parts that were not implemented in the prototype.

Every module of the node that is interested in receiving messages, creates

a personal Network Manager and registers it to the Message Dispatcher of

the Communication Handler.

1In Figure 1.2 it's not shown but it's the core component that handles communications,

almost every other component uses it.

19

20 2. Architecture of a P2P anonymous cloud system

Figure 2.1: P2P Cloud System Architecture scheme focused on the communications.

As we can see in Figure 2.1, applications and users interact with the sys-

tem through a set of APIs. The APIs send messages to the Communication

Handler of a node that will function as an entry point for the cloud system.

This node is not special, it's not important what node is chosen to be the

entry point. Once the API message reaches the Communication Handler, it

searches through the registered Network Managers and forwards the message

to the appropriated one. In case of API messages, the appropriate module

is the Dispatcher System.

In Figure 2.2 we can see a simple API call that has no consequences on

the node, and just returns some information. It's also possible for API calls

to alter the structure of the node they are sent to, by adding or removing

modules (also called services). A good example of such behavior is the API

2.1 Recap of the P2P cloud system architecture 21

Figure 2.2: Example of the simplest API call possible. Communication Handler (CH),

Dispatch System (DS), Peer Sampling Service (PSS), Aggregation Service (AGG).

RunNodes, that tries to create a sub-cloud with a certain topology2 using the

Bootstraping Service that it adds to the node.

API calls are communications between the nodes and something that is

outside of the cloud. There are also a lot of communications between nodes

of the cloud. In Figure 2.3 we can see the communication between two PSS

modules of di�erent nodes.

Intra-cloud communications represent the majority of the communica-

tions. They are mostly generated by the gossip algorithms that power the

basic cloud services. By design, gossip algorithms need to frequently ex-

2The arrangement of the nodes in the sub-cloud. Depending on the way they are

connected, they can form various topologies e.g. Star, Ring, Mash, Tree... [19]

22 2. Architecture of a P2P anonymous cloud system

Figure 2.3: Communication �ow between two PSS.

change (or at least push or pull) information. How frequently is not �xed,

a reasonable range can go from less than a second to half a minute, it re-

ally depends on the speci�c algorithm and the desired performances, not to

mention the performances of the means of communication (like the Internet

connection speed and latency).

Every communication between two nodes follows the same pattern: local

module �> local Communication Handler �> remote Communication Han-

dler �> remote module. Replies, if needed, can use the same connection (the

one initialized by the remote node) or can also take the form of a second com-

munication, similar to the �rst one but in the reverse order. If it was not yet

clear, the Communication Handler is the core point of every communication

and that's why I'll focus on it to anonymize the system.

2.2 Towards anonymization (what needs to be

changed)

So, once again, to anonymize the system we will have to look at every

connection and make sure they are redirected to pass through the anonymiz-

ing network. We will also have to check that the data sent through those

2.2 Towards anonymization (what needs to be changed) 23

connections do not reveal anything that could help an attacker in the de-

anonymization process.

2.2.1 Obvious problems (direct connections)

That's the easy part. Normally, this task would require to �nd every

point in every module where a communication is needed and change it to use

the anonymizing network. But wait, we have the Communication Handler

where every connection leaves and enters the node so we only need to make

one `big' change there and we are done3!

For such a modi�cation to be possible, we also need to make a little change

at how the nodes identify themselves. Prior to this change, every node was

identi�ed by a Name and an Address. The Name is not that important, it is

used to distinguish the nodes if there are two or more on the same machine

(and for other minor things). The Address is the public real identity of the

node, it can be directly an IP address or a domain name, and we can no

longer use it if we want to make the system anonymous. From now on, every

node is identi�ed by a Name (unchanged) and a Fake Address.

One last thing. The communications originated by the APIs, used by

the applications and the users, do not pass through a `local' Communication

Handler. So we have to reproduce the same changes we made to the Com-

munication Handler to them, in order to make them use the anonymizing

network.

2.2.2 Hidden problems (leaks)

Much harder to spot are the possible information leaks. They can be

everywhere and do not necessarily be limited to a single communication. A

communication can leak just a little useless piece of information, but lots of

pieces can be brought together to get an ever increasing chance of successful

3Atually, we still need to look at every point in every module where connections are

initialized to �nd possible leaks. See 2.2.2.

24 2. Architecture of a P2P anonymous cloud system

guessing. Information can also be obtained by combining the pieces of com-

munication of di�erent modules. Timing and communications order can also

lead to leaks.

Before starting to look for leaks it is useful to de�ne exactly what is

our threat model and who could be the attacker. We are trying to design

an architecture for anonymous computation, our main asset (that we must

defend) is the anonymity of the nodes and of the users. The threats we are

interested in are those caused by the possible �aws in the design, that if

exploited would result in the de-anonymization of one or more entities of our

system. We don't care if a node willingly gives out information. What we

care is if there's something in the design that someone could use to obtain

information that are not supposed to be exposed. Here I will also assume

that the implementation will be perfect and bug free.

The attacker could be someone outside the cloud (user), or someone inside

the cloud (malicious node). Given that there will be no centralization and

peers will be anonymous, it will be very hard to detect and remove a malicious

node so the chances of that happening is much higher than in other more

standard clouds. I'm now going to list and analyze all the communications

of the basic modules of the system and of the APIs, results are summed up

in Table 2.1. While the basic modules (PSS, BS, AGG) could be analyzed

in a purely theoretical way, the APIs are more implementation dependent

so I'll use those that are implemented in the prototype. A brief description

of the APIs (scripts and algorithms) will follow, but I suggest to see [5] for

more details.

All the APIs have a script part and an algorithm part. The script part

is the one executed outside the cloud and contains the instructions to start

a communication with a node. The algorithm part is what's executed inside

the node (thus inside the cloud) after it receives the corresponding script

communication. Scripts names are lower case words separated by under-

scores, algorithms names contain the same words of the corresponding script

2.2 Towards anonymization (what needs to be changed) 25

but they use CamelCase4 style.

Module Detail Action Loop Leaks

API (script) run_nodes send / receive NO minor

API (script) terminate_nodes send / receive NO minor

API (script) add_new_nodes send / receive NO minor

API (script) describe_instances send / receive NO NO

API (script) monitor_instances send NO NO

API (script) unmonitor_instances send NO NO

API (algorithm) RunNodes send NO minor

API (algorithm) TerminateNodes send NO NO

API (algorithm) AddNewNodes send NO minor

API (algorithm) DescribeInstances send NO NO

API (algorithm) MonitorInstances send NO NO

API (algorithm) UnmonitorInstances send NO NO

PSS gossip-active send / receive YES medium

PSS gossip-passive send / receive YES medium

BS gossip-active send / receive YES minor

BS gossip-passive send / receive YES minor

AGG gossip-active send / receive YES NO

AGG gossip-passive send / receive YES NO

SS gossip-passive send / receive YES medium

SS gossip-passive send / receive YES medium

Table 2.1: A list of all the communications of the system, with their type and threat

level.

run_nodes. It connects to a node and asks it to create a sub-cloud with a

certain name and a certain size. Then it waits for one response from

the node that served as an entry point to the cloud, and for a number

4It consists of writing compound words such that each next word or abbreviation begins

with a capital letter [20].

26 2. Architecture of a P2P anonymous cloud system

of other responses equal to size from the nodes that have formed the

sub-cloud. The only information an attacker could get from this is

the number of free nodes5, because the system will return an error if

there are not enough nodes to create the sub-cloud. An attacker could

just keep trying bigger sizes until he gets the error. This assuming the

system does not limit the number of nodes anyone can get.

RunNodes. Executed on a node, it uses the local PSS to get the required

number of (free) nodes and then it tells them to join the sub-cloud by

starting their BS modules. The only interesting information I can think

of here, comes from the ability to check if a node is free or it's already

part of a sub-cloud.

terminate_nodes. It connects to a node participating in a sub-cloud and

asks it to remove one or more nodes from that sub-cloud. The leak-level

of this, depends mostly on the verbosity of the errors. If the system

returns an error in case the contacted node is not in a sub-cloud or/and

if one or more nodes to remove are not there, the attacker could �nd

out if a node is in use and what other nodes it is linked to.

TerminateNodes. It sends a message to the nodes to be removed, basically

telling them that they have been removed, and also it sends messages

to the remaining nodes telling them to update their views after the

other nodes removal. I don't think there's anything that could leak

here.

add_new_nodes. Almost like run_nodes, but instead of creating a new

sub-cloud it adds nodes to an existing one. Same leaks implications.

AddNewNodes. Almost like RunNodes, but instead of creating a new sub-

cloud it adds nodes to an existing one. Same leaks implications.

5Nodes that are not participating in any sub-cloud.

2.2 Towards anonymization (what needs to be changed) 27

describe_instances. It connects to a node and asks it its sub-cloud id and

its neighbors. An error is returned if the node is not part of a sub-cloud.

Well, this one doesn't need to be exploited to give out information.

DescribeInstances. It just gathers the required local information and sends

them to whom who asked for them.

monitor_instances. It connects to a node and asks it to start its `monitor-

ing system' that uses the AGG to estimate the total number of nodes

in the cloud. No leaks here as far as I know.

MonitorInstances. Starts polling the AGG module to estimate the total

number of nodes in the cloud. No undesired leaks here.

unmonitor_instances. Opposite of monitor_instances.

UnmonitorInstances. Opposite of MonitorInstances.

In no way I consider this analysis complete. This APIs are too `rough',

too much di�erent from those of a real usable cloud system so it's not worth

spending time on them since even a small change will lead to completely

di�erent leak situation. On the contrary, the basic modules are quite `stable':

PSS

In Algorithm 1 we can see the algorithm used by the PSS. For a detailed

explanation see [21], but to us the only important things to know are the

following. There are two threads6, an active one that starts the communi-

cations and a passive one that waits for them. In every PSS module there

are both the active and the passive threads. Every loop, the active thread

chooses a peer to communicate with from the local partial view, and sends

it a subset of its view. This subset is made of random peers chosen among

all but the H oldest peers. In the most frequently used con�guration (push

+ pull), the active thread also awaits for the receiver to send it its subset,

6Independent logical control �ow.

28 2. Architecture of a P2P anonymous cloud system

obtained in the same way. Then they both merge their view with the ob-

tained subset (method select), following certain rules to remove duplicates

and older nodes, and also giving priority to the peers contained in the subset

(parameter S of the algorithm controls the priority).

Algorithm 1 The Peer Sampling Service Algorithm [21].

(a) Active Thread
1: loop

2: wait(T time units)

3: p ← view.selectPeer()

4: if push then

5: // 0 is the initial age

6: bu�er ← ((MyAddress,0))

7: view.permute()

8: move oldest H items to the end of view

9: bu�er.append(view.head(c/2-1))

10: send bu�er to p

11: else

12: // empty view to trigger response

13: send (null) to p

14: end if

15: if pull then

16: receive bu�erp from p

17: view.select(c,H,S,bu�erp)

18: end if

19: view.increaseAge()

20: end loop

(b) Passive Thread
1: loop

2: receive bu�erp from p

3: if pull then

4: // 0 is the initial age

5: bu�er ← ((MyAddress,0))

6: view.permute()

7: move oldest H items to the end of view

8: bu�er.append(view.head(c/2-1))

9: send bu�er to p

10: end if

11: view.select(c,H,S,bu�erp)

12: view.increaseAge()

13: end loop

I can see a leak threat here. A node that has just exchanged its peers

information with another node, knows some of the peers that the other node

is likely to be still `using'. This piece of information alone is not that useful

but it could be used together with something else, like e.g. asking that node

to create a sub-cloud soon after the exchange will probably lead to the sub-

cloud having at least one of the known peers. Luckily, this works only for a

very limited time after the exchange.

BS

In Algorithm 2 we can see the T-Man algorithm used by the BS module.

For the detailed explanation see [22]. As with the PSS there are an active

2.2 Towards anonymization (what needs to be changed) 29

and a passive thread, and both are needed in every node. Given a set of

nodes (in our case, the nodes of a sub-cloud), every node will run the BS

module and will keep a partial view7 containing a sub-set of the nodes of the

sub-cloud. Continuous exchanging, and sorting of the nodes of the partial

views with a certain rank function, leads to the creation of a speci�c network

topology dependent of the function. The active thread selects a peer among

the peers of its view that it prefers the most (according to the rank function),

and sends it the �rst m peers of its view sorted by the same function to be

those that it will prefers the most. Then it waits for the receiver node to do

the same and `reply' with its m entries. Finally they both merge their views

with the received list of peers.

Algorithm 2 The T-Man Algorithm [22].

(a) Active Thread
1: loop

2: wait(T time units)

3: // select rand. among �rst N ranked descriptors

4: p ← view.selectPeer(N,rank(myDescriptor,view))

5: bu�er ← merge(view,{myDescr})

6: bu�er ← rank(p,bu�er)

7: send �rst m entries of bu�er to p

8: receive bu�erp from p

9: view ← merge(bu�erp,view)

10: end loop

(b) Passive Thread
1: loop

2: receive bu�erq from q

3: bu�er ← merge(view,{myDescriptor})

4: bu�er ← rank(q,bu�er)

5: send �rst m entries of bu�er to q

6: view ← merge(bu�erq ,view)

7: end loop

About the possible leaks, the rank function itself is revealing, but as long

as it is chosen in a way that we don't care what it reveals, there should be

no problems. To be honest, I can't think of a function that would be of any

use in our case8 and that also reveals something we would want to avoid

revealing.

7Not to be confused with the partial view of the PSS. The concept is very similar but

they are not the same `object'.
8A ranking based on latency could have revealed something about the locations of the

nodes, but the anonymizing network's onion/garlic routing �attens out latency.

30 2. Architecture of a P2P anonymous cloud system

AGG

In Algorithm 3 we can see the basic aggregation algorithm that allows

each node to get to know some global property by just continuously updating

their local values based on other nodes values. Again we have an active and

a passive thread, the active one gets a neighbor from the PSS and send it its

value. The passive thread gets it and sends back its value. Finally they both

update their local values. How exactly they compute the updated value de-

pends on the type of aggregation they are trying to achieve. For the detailed

explanation about gossip-based aggregation see [8]. The aggregated value

itself tells something about the system but it's supposed to be something we

want the nodes to know or we would not be calculating it. I can't see any

problem here.

Algorithm 3 The Gossip-Based Aggregation Algorithm [8].

(a) Active Thread
1: loop

2: wait(T time units)

3: q ← getNeighbor()

4: send sp to q

5: sq ← receive(q)

6: sp ← update(sp,sq)

7: end loop

(b) Passive Thread
1: loop

2: sq ← receive(*)

3: send sp to sender(sq)

4: sp ← update(sp,sq)

5: end loop

SS

The Slicing Service, not yet implemented in the prototype but worth men-

tioning because of its possible leaks. Given a set of nodes, we might want to

group them into slices with certain characteristics e.g. network bandwidth,

processing power, storage capacity... To do so in a decentralized way we need

every node to be able to place itself in the correct slice, but this implies that

the nodes must be able to tell how good they are at something (e.g. pro-

cessing power) compared to the others. A solution has been proposed [23]:

it relies on an algorithm that's quite similar to the one used by the PSS,

with the di�erence that every peer descriptor contains also a pair of values

2.2 Towards anonymization (what needs to be changed) 31

[attribute; random-number] where attribute is the value of the characteris-

tic we are considering, while random-number is a uniform random number

generated over a �xed interval. The goal for the nodes, is to exchange the

random numbers in a way that the position of the numbers in the �xed in-

terval re�ects the position of the nodes holding them in a hypothetical list of

nodes sorted by the value of the attribute. As an example, let's say we are

trying to slice the nodes based on their processing power. If a node ends up

with number 1 in the interval [1;9], it means that it is very bad at processing

and it belongs to the slice of the lowest processing power nodes. Slices them-

selves have to be de�ned, they might be something like: poor [1;3], average

[4;6], good [7;9]. This is great but how are the numbers exchanged? We

can see that in Algorithm 4, at line 8. The active thread has just obtained

some new fresh peers the same way the PSS would have done, and now it

searches them to �nd one, such that exchanging its random number with

it would improve the `sorting'. There is an improvement if the inequality

(attributeremote − attributelocal)(randomremote − randomlocal) < 0 is satis�ed.

Algorithm 4 The Newscast Sorting Protocol [23].

(a) Active Thread
1: loop

2: wait(T time units)

3: p ← random peer from view

4: bu�er ← view ∪ {myAddress,ts,xq ,rq}

5: send bu�er to p

6: receive bu�erp from p

7: view ← youngest c entries of bu�erp ∪ view

8: i← peer from view such that (xi-xq)(ri-rq)<0

9: send (xq ,rq) to i

10: rq ← ri from i

11: end loop

(b) Passive Thread
1: loop

2: receive bu�erq from q

3: bu�er ← view ∪ {myAddress,ts,xp,rp}

4: send bu�er to q

5: view ← youngest c entries of bu�erq ∪ view

6: end loop

ts = time stamp

x = attribute value

r = random value

A possible leak here is that every node gets to know the values of the

attribute of other nodes. Such values cannot be correlated to the nodes' real

identities most of the times, but in case of few exceptional node that are a

lot better (or worse) than the other, it might be possible. Let's say that the

cloud is made of 1000 nodes, but only 10 have over 100GBps bandwidth.

An attacker that knows the 1000 real machines but does not know the as-

32 2. Architecture of a P2P anonymous cloud system

sociation between fake and real identities, could use the attribute values to

make a guess. The more the attribute's value is uncommon, the less real

machines candidates remain, thus the easier the guessing will be. Of course,

the assumption that the attacker knows most of the cloud's real machines is

unrealistic. The two proposed anonymizing networks can't hide the fact that

someone is using them, but it should not be possible to know that they are

being used to anonymize this cloud system9.

Other security threats

Those are all the leaks I was able to �nd, I can't really be sure that there

aren't any other. Unfortunately, there's not a particular way to �nd them

other than thinking of how you would attack your own system. Obviously,

assuming that the `leak-resistance' of the basic system is good, it will be up

to the designer of any future modules to ensure their safeness.

I would also like to point out that I've only talked about the security

threats that could have resulted in the de-anonymization of the nodes. There

are a lot of other security problems that should be resolved before this system

could really be used. I'll just spend few words about the most important

one. Without any kind of authentication, anyone can inject in the cloud an

arbitrary number of modi�ed nodes to do all kind of bad things e.g. poisoning

the PSSs with false data, `sponsoring' some nodes while totally cutting down

the communications with others and much much more.

2.3 The �nal P2P anonymous cloud system ar-

chitecture

After all that's been told, Figure 2.4 should not be a surprise. The previ-

ous architecture was already almost ready to be anonymized, and just needed

9Unless some heavy tra�c analysis is done and some classic pattern of the cloud system

(like e.g. using the timing of the gossip algorithms) is found.

2.3 The �nal P2P anonymous cloud system architecture 33

the addition of the anonymizing component. The leaks I've found are not

serious enough to justify any major changes, but they should be kept in mind

when developing future modules.

Figure 2.4: The Anonymous P2P Cloud System Architecture.

Chapter 3

Implementation

We will now see how the proposed changes have been implemented. This

chapter is divided in two main parts. The �rst one shows the changes in

the Java code of the prototype, the second one regards the creation of the

fake identity (Hidden Service) using the tools provided by the anonymizing

network (Tor).

To make it easier to compare the performances of the anonymous system

with those of the non-anonymous version, I've implemented it in a way that

allows switching the `anonymity mode' �ag on or o�. When the �ag is set

to o�, the system behaves like it did before the changes. It's not possible

at the moment to have some node that are anonymous and some that are

not, but it would not make much sense. Every nodes would still need to

run Tor even if they are not anonymous to be able to talk with anonymous

nodes. Anonymous node would still need to use Tor also for connections with

non-anonymous node or they could be easily de-anonymized. The only direct

connection in such an hybrid system would be between two non-anonymous

nodes. Performance-wise, this could make some sense, but the rest of the

system would still need to be re-designed to allow users to choose if they

want to use all the cloud or only the anonymous part. I'm not going to carry

on with this idea in this work.

35

36 3. Implementation

3.1 JRMI and SOCKS proxy

The prototype uses Java Remote Method Invocation (JRMI) to carry out

communications. Using JRMI it is possible to bind Java objects to `keys' in a

way that anyone requiring the objects could get them just by connecting and

providing the right key. This sounds easy but there are quite a few problems

in getting it to work with �rewalls, NATs and hidden services, and I'm now

going to explain you why. The complete process of binding and retrieving an

object using JRMI is as follows:

1. The RMI Registry must be created specifying the port at which it will

listen.

2. Anyone (Java program) wanting to sign up an object to the RMI Reg-

istry must export it, connect to the Registry (be it remote or local)

and bind the exported object to a key. The object must be serializ-

able. Once an object is exported, it is associated an RMI Server that

will listen at a port automatically chosen by the JRMI system. RMI

Registry and RMI Servers can be (and often are) on the same machine

but could also be on di�erent machines.

3. Anyone (Java program) wanting to retrieve the object, must connect to

the RMI Registry and provide the key. Then the RMI Registry points

the client to the RMI Server hosting the required object. The client

can then connect to it and interact with said object.

The biggest problem here is the creation of the RMI Servers at random

ports. In any realistic scenario there will surely be �rewalls and NATs that

will need to be con�gured to allow incoming connections to certain ports. But

you can't open ports you do not know. Luckily there is a way to manually

assign ports to RMI Servers by giving a pair of socket factories to the object

during the exportation phase. One socket factory will be used to create the

RMI Server, while the second one will be passed down by the RMI Registry

to the client that will use it to connect to the RMI Server. This way it

3.1 JRMI and SOCKS proxy 37

will work, but what if we have to bind more than one object? What if it's

not possible to know how many objects we will be needing at any certain

given time? That's exactly the case of the prototype I'm modifying. What

I've ended up doing has been deciding a pool of ten known ports. Every

time a new object needs to be exported, a small algorithm looks for a free

port among those of the well known pool. If there are no ports available,

an exception is thrown. The pool has been sized to make it unlikely that a

single node will need to host more than that many objects (ten) at the same

time.

Another minor problem with JRMI is that when you export an object

you must do so having in mind who will need it, or more precisely, where

will the users be. If the intended user is remote, then the object must be

exported with a socket able to connect to the server from remote. If you need

an object to be accessible from both local and remote then you have very few

options: you can duplicate the object and bind the former con�gured with a

`remote-able' socket and the latter with a `local-able' socket, or you can use

just a remote one and hope the underling system will be smart enough to

connect locally even if the socket tells otherwise. Things get worse with Tor

and the need of sockets that must talk with the local SOCKS proxy. In this

case, in no way the system will be able to see that the RMI Server is local,

and the connection will be forced to pass through Tor anyway.

A small note about performances. As we've seen, for a node to interact

with a remote object, two connections are needed, the �rst to the RMI Reg-

istry, the second to the RMI Server. This will surely impact performances,

especially in anonymous mode, because the increase in latency will be paid

twice. There's really few I can do about it, the system should be re-designed

not to use JRMI, but the time at my disposal does not allow me to do it.

Back to how the prototype works, every machine hosting a node has to

run an RMI Registry. In case of multiple nodes on the same machine (but

that's not going to happen) they will all use the same RMI Registry. Com-

38 3. Implementation

munications start by connecting to the remote1 RMI Registry, then a well

known key is provided and the reference to the remote node's Communica-

tion Server is obtained. The sender can now put its message in the remote

Communication Server (think of it like a mailbox) by connecting to the RMI

Server hosting it. When a new message arrives, the Message Dispatcher

awakes and dispatches it to the appropriated module.

In practice, what we have to do to anonymize the system is change the

way the connections to the remote RMI Registry and RMI Servers are done,

to make them pass through Tor. Connections to the RMI Registry are done

using the java.rmi.registry.LocateRegistry [24] class. Connections to the RMI

Servers are implicit and occur whenever interacting with the remote object.

Here's an example:

// Connecting to the remote registry

Registry registry = LocateRegistry.getRegistry(hostname, port);

// Retrieving a reference to the remote object (Communication Server)

CommSrvRemoteAPI remoteCommServer = (CommSrvRemoteAPI) registry.lookup(key);

// Delivering the message (Implicit connection to the RMI Server)

remoteCommServer.receiveMessage(msg);

Code 3.1 Connecting to a registry, getting and using a remote object. hostname is the

real identity of the remote machine, port is the number of the port at which the RMI

Registry is listening, key is a string that identify the Communication Server, msg is the

message to be delivered.

The way Tor uses to interface with applications is a SOCKS2 proxy. We

will see how to con�gure it at Section 3.3 when we'll talk about the Hidden

Services. Here the Java code modi�ed to use the proxy:

1Most of the times it's remote, but it could also be local if there are multiple nodes on

the same machine.
2Socket Secure (SOCKS), it's a (de facto) standard for circuit-level gateways [25].

3.1 JRMI and SOCKS proxy 39

/**

* Returns the registry hosted locally.

*/

public static Registry getLocalRegistry() throws RemoteException {

return LocateRegistry.getRegistry("localhost", RMI_REGISTRY_PORT, null);

}

/**

* Returns the registry hosted at hostName.

*/

public static Registry getRemoteRegistry(String hostName) throws RemoteException {

// This two vars will be set depending on the state of ANONYMITY_ON

RMIClientSocketFactory socketFactory = null;

int port = 0;

if (!ANONYMITY_ON) {

// Direct

socketFactory = null;

port = RMI_REGISTRY_PORT;

}

else {

// Anonymous, a factory that will provide sockets that will use the given proxy

socketFactory = new RMIClientSocketFactory() {

@Override

public Socket createSocket(String host, int port) throws IOException {

// Local proxy data

SocketAddress proxyAddr = new InetSocketAddress("localhost", TOR_PORT);

Proxy proxy = new Proxy(Proxy.Type.SOCKS, proxyAddr);

Socket socket = new Socket(proxy);

socket.connect(new InetSocketAddress(host, port));

return socket;

}

};

port = RMI_REGISTRY_HIDDEN_PORT;

}

// Having socketFactory == null behaves like not having it at all

return LocateRegistry.getRegistry(hostName, port, socketFactory);

}

Code 3.2 Connecting to a RMI Registry, be it local, direct remote, or behind

a hidden service. hostName can be an IP/domain name or an onion address,

RMI_REGISTRY_PORT is the number of the port at which the real RMI Registry

is listening, RMI_REGISTRY_HIDDEN_PORT is the number of the port of the hidden

service linked to the real RMI Registry, TOR_PORT is the number of the port of the

local Tor SOCKS proxy.

40 3. Implementation

/**

* Returns a socket connected using the appropriate settings.

*/

public Socket createSocket(String host, int port) throws IOException

{

Socket socket;

if (!ANONIMITY_ON) {

// Direct

socket = new Socket();

socket.connect(new InetSocketAddress(host, port));

}

else {

// Anonymous

SocketAddress proxyAddr = new InetSocketAddress("localhost", TOR_PORT);

Proxy proxy = new Proxy(Proxy.Type.SOCKS, proxyAddr);

socket = new Socket(proxy);

socket.connect(new InetSocketAddress(host, hPort));

}

return socket;

}

Code 3.3 A piece of code from the client socket factory used to export objects. Depending

on the anonymity mode in use, host could be an IP/domain name or an onion address,

port is the number of the port at which the real RMI Server is running, hPort is the port

of the remote Tor Hidden Service , TOR_PORT is the number of the port of the local

Tor SOCKS proxy.

Another modi�cation I've done regards the API scripts and their param-

eters. The original prototype used the Java networking APIs to get the IP

address of the local node, this address was included in the requests done by

the node and allowed the receiving nodes to know whom to reply to. Obvi-

ously this can't be done anymore, the fake identity must be provided instead

of the IP address, but there's no Java API to get it. Using Tor, such fake

address can be found in a �le (we'll see it better at Section 3.3), in I2P it's

on a local con�guration web page. In both cases it's not easy to get it in an

automatic way, especially considering that there could be many anonymous

node on the same host, thus many fake identities. Since this is just an imple-

mentation problem and it does not add much value to my work, I've opted

3.2 Other secondary but necessary changes to the code 41

for the easier solution, that is, the fake identity must be provided as an input

parameter in all the scripts.

// Old version

$./startNode.sh −n <node_name>

// New version

$./startNode.sh −n <node_name> −hostname <address>

Code 3.4 Example of the new hostname parameter. The address could be the real address

or the fake address, depending on the anonymity mode in use (on/o�).

3.2 Other secondary but necessary changes to

the code

What I've shown in Section 3.1 are just the most meaningful changes.

There were lots of other minor modi�cations spread all around the prototype

that needed to be done in order for it to work. The most important one

regards the fact that the prototype used only IP addresses. If there were

any hostnames in the initial partial views of the nodes, they were resolved

as soon as possible and only the resulting IP were saved. That's impossible

with onion addresses. An onion address is at some point resolved to an IP

but that link is valid only for a short amount of time. Also, the `resolution'

of the onion address has to be done by Tor, not by a standard Domain Name

System (DNS) query3.

Fixing this has not been `hard', but it took quite a bit of time because

even if the high-level architecture was well documented, the code documen-

tation relied only on Javadoc4 comments. Don't get me wrong, Javadoc is

great, but it does not help a lot if you are interested in something like: �nd-

3DNS queries of onion addresses is one of the most frequent and easiest way to get

de-anonymized. They are not encrypted so a attacker can see what onion addresses a user

is connecting to.
4The (de facto) standard for documenting Java classes by formatting comments follow-

ing a certain set of rules.

42 3. Implementation

ing all the places where an IP is stored, understanding how such IPs are

set and how they are used. In addition, the project makes large use of the

practice of marshalling5 and sending runnable6 objects so that they are ex-

ecuted somewhere else. This opens up new design possibilities but it also

lowers the code comprehensibility, requiring you to �rst understand where

and under what circumstances it will be executed. What I ended up doing

has been searching the code around the parts where I knew a connection was

likely to be necessary, also I've searched the whole project for keywords like

�hostname�, �address�, �Inet4Address�7. Once I've found and understood all

those parts I decided that the best solution would have been to keep strings

with hostnames (domain names or onion addresses) instead of IPs, moving

the resolution process to right before they are needed. Applying this also

took quite a bit of time because every changed part brought the necessity to

do other minor modi�cations on the parts that depended on them and so on,

I'm sure you know what I'm talking about.

To sum it up, I've changed every part of the system that used an IP to

use an hostname instead. Address resolution (be it a standard domain name

or an onion address) is done on the �y when needed. This will probably

adversely a�ect performances but as far as I know there's no way to avoid

it. Note that it's still possible to use IP addresses to identify nodes in the

non-anonymous mode just by inserting them as strings, Java is smart enough

to recognize an IP in string form, assuming it's well formed.

3.3 Setting up the hidden services

Assuming Tor is correctly installed and working on the hosting machine,

to create an hidden service we'll do the following. Locate the torrc Tor

con�guration �le. Its location depends on the operative system we are using

5The process of transforming the memory representation of an object to a data format

suitable for storage or transmission [27].
6Objects that are intended to be executed by a thread.
7The Java type for IPv4 addresses.

3.3 Setting up the hidden services 43

and on how we installed Tor. This topic is covered extensively in Tor's

documentation [26] so I will not explain it here. Once located, edit it and

add the lines:

HiddenServiceDir /path/to/a/directory

HiddenServicePort fake_port real_address:real_port

Code 3.5 An example of part of a torrc �le. HiddenServiceDir is the directory where

important �les of the hidden services are stored. HiddenServicePort de�nes a mapping

between the real service and the hidden service.

For it to work, it's not important what HiddenServiceDir is chosen as long

as the Tor process can read/write in it. But since that directory contains

very important �les that must remain secret, attention must be paid to who

can access it. When Tor is �rst started after editing the torrc �le, a key

pair is created for each hidden service and the private key is stored in the

�le private_key in the HiddenServiceDir. That key must remain secret or

someone else could impersonate the hidden service. A �le called hostname

containing a short summary of the public key is also generated, the content

of that �le is the fake identity, the address others will use to connect to the

hidden service. This one can (should) be given out.

duskgytldkxiuqc6.onion

Code 3.6 An example of hostname �le.

About the HiddenServicePort, the fake_port is the one used together

with the fake address to connect to the hidden service. Let's say our fake

port is 81, the connection to the hidden registry would be:

LocateRegistry.getRegistry("duskgytldkxiuqc6.onion", 81, socketFact);

Code 3.7 Connecting to a hidden registry.

Tor takes care to `redirect' the connection to the real service, that in our

case is hosted locally, let's say at port 8181. A torrc �le con�gured this way

44 3. Implementation

would look like:

HiddenServicePort 81 127.0.0.1:8181

Code 3.8 Another example of torrc �le.

Chapter 4

Performance evaluation

In this chapter, we will see how the modi�ed prototype has been tested.

Tests are aimed at showing how much di�erence (if any) there is between the

performances of the standard version and those of the anonymous version.

To run the tests we will need a lot of machines on which to run our prototype,

and the easiest way to get and orchestrate them is to make use of a cloud

service. Do not get confused about it, the fact that we will use a cloud service

has nothing to do with our cloud system, we need it just for the tests. It

would have been the same1 if we could have had access to many personal

computers around the world instead of using a cloud service.

4.1 Amazon EC2

As you could have guessed by the title of this section, we will use Amazon

EC2[28]. The reason is that it's one of the most used, thus it's easy to

�nd documentations, examples and frameworks for many languages. Google

Cloud[29] or OpenStack[2] based solutions would have worked too. The basic

idea is that I will ask Amazon to give me a certain number of machines

1The possibility of running many instances of the exact same machine (including �rewall

settings) makes it actually a lot easier for the system to work, than just using random

computers. But that's just a matter of compatibility and con�gurations, apart from that

there would be no di�erences.

45

46 4. Performance evaluation

(virtual machines) which I will control through Secure Shell2 (SSH). I will

also write a script that will orchestrate those machines to do the tests by

starting, stopping and calling the prototype's APIs. Quite simple isn't it?

Yes the concept is simple, but realizing it is not. Keep in mind that EC2

services are not free, every resource has a cost that depends on the type,

power, location, and of course on the amount of time you will use it. A

`trial and error' brute-force approach would have been quite costly so I had

to spend some time exploring all possible solutions, in order to minimize the

cost of each resource.

So, what resources are we talking about? The minimum number of re-

sources that every machine has to have to be useful for our tests is four, and

they are:

Instances. An instance is a virtual machine, with a certain computational

power and memory. Amazon EC2 lets you choose among several `tiers'

of instances[31], each one with a di�erent combination of CPU and

RAM. You cannot build an instance with an arbitrary CPU and RAM,

you are bound to choose a tier. Since our prototype needs very few

resources we will go for the lowest tier possible, which at the moment

of writing is the t2.micro3. Obviously, an instance also needs a volume

(virtual disk) from which to load the operative system. Every tier

has support for some types of volume, but the volumes themselves are

stand-alone resources and we will talk about them later. An instance

can go through several states[32], the most important ones are: Stopped,

Running, Terminated. A stopped instance does not cost anything, it's

just a mere bunch of settings, it does not consume any real resources.

Once completely started, the instance will be in the running state and

2It's a network protocol that allows the creation of a secure channel between a client

and a server[30]. One of its most common uses is remote command execution, and that's

exactly what I will use it for.
3The t2.micro tier comes with a single virtual CPU 2.5GHz, 1GB of RAM, support

only EBS volumes, has `Low to Moderate' network performances and can only be used

with HVM AMIs[31].

4.1 Amazon EC2 47

you will start to pay for it. Costs are counted on an hourly basis,

which means that you will be charged for every hour the instance will

be running. It's also important to know that you will pay for a full hour

even if you use it for just a minute, one hour is the minimum unit of

time. The `hours counter' will start every time the instance is started

so if you stop and start it many times within an hour you will pay a

full hour for every time the instance was started. This has in�uenced

the design of the tests a lot. The �nal state, terminated, is reached

when the user choose to permanently destroy the instance.

Volumes. Volumes are virtual storage devices. They can be divided in two

main categories: the ephemeral ones (Instance Store[33]) and the per-

sistent ones (Elastic Block Storage[34]). All data inside Instance Store

(IS) volumes are permanently lost when the related instance is stopped

or terminated, while Elastic Block Storage (EBS) volumes can live on

without being attached to a running instance. The main cost factor

of volumes is how big they are, you pay for the number of Gigabyte

reserved to you. Note that if you have a 100GB disk with just 1GB

used, you will still pay for all the 100GB so choosing the right size is

important. The t2.micro instances tier that I will use supports only

EBS root volumes so I don't really have a choice here.

AMI. AMI stands for Amazon Machine Image[35], it's the standard used by

Amazon for boot-able disk images. Inside an AMI there's an operative

system and any possible software that the creator of the AMI decided

to put in it. AMIs and Volumes are strictly related, every AMI is bound

to a speci�c type of volume. EBS-backed AMIs will run only on EBS

volumes, while IS-backed ones will need IS volumes. When an instance

is started using an AMI, an appropriated volume will be created. Note

that who creates the AMI also decide the size of the disk, and you'll

be forced to have a disk of at least that size. Creating an AMI from

scratch is possible but quite complicated, the best way to go is often to

48 4. Performance evaluation

start from an existing AMI and modify it to your needs. Once you're

done with the modi�cations you can use an Amazon tool to make a

new AMI from what you ended up with. Another important thing

to know is that Amazon EC2 supports two types of virtualization[36]:

Paravirtualization[37] (PV) and Hardware-assisted virtualization, also

called Hardware virtual machine[38] (HVM). Each tier of instances may

support one or both of them, while AMIs are made to support only

one of them. To make it all work you must choose an AMI with the

virtualization type supported by the tier you want to use. The t2.micro

tier only supports HVM instances and that caused me some troubles

because the Debian4 AMI[39] I decided to use only support PV. I solved

using an experimental version5 of the Debian AMI. Last but not least

important thing to know about AMIs is that they have a cost. Most

of it comes form the operative system they contain, but can also come

from the rest of the software and/or from the possibility to get o�cial

support. Unix based AMIs are mostly free and I didn't have to use any

shareware software so I totally avoided AMI related costs.

Network. Every instance has a network interface, it's not exactly `required'

for the instance to exist, but without it, it would not be possible to

connect to it and since it's in the cloud, it would be quite useless6.

My instances will have a public and a private network interface. The

private one will be used to communicate with other instances inside the

same region, the public interface is needed for me to be able to connect

to them from outside the cloud. The cost of networking is determined

by how much data �ows from and into each network interface. A com-

munication between two instances of the same region can be carried out

using the private interface, and costs much less that the tra�c between

4It's a widespread free operative system. It uses the Linux or the FreeBSD kernel, most

of its tools come from the GNU Project[40].
5The exact AMI I started from is the one with the id: ami-698cdf59 [41].
6Instances used for working on big amounts of data, that do not need any input/output,

might make sense even without network interface.

4.2 Setting up the tests on EC2 49

an instance and something on the internet, that must use the public

interface.

Prices for all the resources I've listed are ever changing and can be found

on the Amazon Web Services (AWS) site[42]. Another thing to know is that

users cannot ask for an arbitrary amount of resources. Every account has

default limits[43] that may be lifted by posting an `increase limit request'

to Amazon's support. Those limits are there because, with all the `digital

power' that comes with the relatively cheap cloud resource, an inexperienced

or malicious user could digitally harm someone. Also, it's not that hard to

make mistakes when trying to automate things (like instances creation) and

that may lead to unexpectedly high bills. I �lled a limit increase request,

asking for the possibility to start 1000 t2.micro instances but due to the

`youth' of my account they could only lift my limits up to 50, thus tests will

be done with 50 machines.

4.2 Setting up the tests on EC2

50 machines might not be that much but it's still too much to be handled

manually. We need to automate things to be able to put out some meaningful

tests. Let's see what we need to do with some pseudo-code:

Algorithm 5 Tester script pseudo-code
1: create instances

2: loop

3: parameters ← readParametersFile()

4: if parameters is null then

5: break

6: end if

7: start/restart remote prototypes with parameters

8: start/restart local prototype with parameters

9: start the monitor-instances API and wait for the network to initialize

10: start the �rst run-nodes API

11: start the second run-nodes API

12: end loop

13: terminate instances

50 4. Performance evaluation

We are interested in testing how much time it will take for the network

to initialize (line 9), how much time a request for the creation of a sub-cloud

will take to complete (line 10), and how much time it will take for a second

sub-cloud to form (line 11), when almost half the nodes are already used by

the �rst sub-cloud. All the tests will be done on both the standard and the

anonymous version, we will also see how things change when varying the size

of the local view of the nodes. Parameters, which are: anonymity mode and

view size, will be read from a �le (line 3).

Something that has not yet been written is how the system will bootstrap.

We know that all the nodes are kept together by the overlay formed by the

Peer Sampling Service, making use of the information of the local views.

The problem is that we don't know the addresses of the nodes (be them

IP or .onion) up until run-time, so we can't �ll the views with meaningful

information. The adopted solution consists of using a special node with a

well know IP and .onion address, that will be put in all the views of the other

nodes. It will serve as a linking point for the network and even though it will

be very `busy' soon after it is created, its central position will fade over time

as nodes will start to know each others. This will also be useful for our tests,

because the special node will naturally function as a barrier for the whole

network. We can start all the other nodes whenever we want, knowing that

they will stay isolated until the central node is started. The best place for

this central node to be, is the same machine where the tester will be running.

The tester will start the local well known node after all the other nodes will

be ready, and will start counting the time from that moment. The network

will be considered initialized when the API monitor-instances will report an

estimated number of nodes in the network, close enough to the real number7.

Back to the pseudo-code, we can think of it as the union of three dif-

ferent parts: managing the instances, managing the execution of the remote

7The reason why we don't wait for the exact real number of nodes, is that the estimation

process is not perfect. With a non-trivial number of nodes it will probably never stabilize

on the exact value. Not to mention that nodes may crash, and even if we could estimate

it perfectly, just one dead node would cause us to wait forever.

4.2 Setting up the tests on EC2 51

commands on them, and managing the local prototype and the API calls on

it. The last one is quite easy with some bash scripting, but the other two

might prove more challenging. Still they are quite common needs so there

exist a lot of frameworks to ease our work. After some studies I've decided

to use Python language for my tester, since two of the best and most used

frameworks to do the things I just wrote up here are for Python, and it's full

of useful examples on the Internet.

4.2.1 Boto

Boto[44] is a powerful Python framework for interacting with Amazon's

EC2 APIs. I will use it for the creation/termination of the instances and for

retrieving information about them, such as their status and their hostname.

The hostname will be used for executing remote commands as we will see

later at 4.2.2. Here an example of instances creation with boto:

conn = boto.ec2.connect_to_region("us-west-2", pro�le_name="michele.amati")

res = conn.run_instances(image_id="ami-15240025",

min_count=49,

max_count=49,

key_name=KEY_PAIR_NAME,

security_groups=[SECURITY_GROUP_NAME],

instance_type="t2.micro",

monitoring_enabled=False,

disable_api_termination=False,

instance_initiated_shutdown_behavior="terminate",

client_token=ONE_TIME_TOKEN,

dry_run=False)

Code 4.1 An example of instances creation. First we get a connection to the Amazon's

region in which we want to start the instances, then we specify how do we want them.

Important parameters are: the id of the AMI, the number of instances we want, the

cryptographic key pair that we will use to access them, the security group (�rewall

settings), the type of instances, and what should they do when they are shutdown.

For Boto to work, it must be con�gured with the credentials of the user's

AWS account. They are not those used to log into Amazon's services, but

52 4. Performance evaluation

special ones created expressly for EC2 using the AWS web console. They

must be placed in the �le:

> cat /home/user/.aws/credentials

[michele.amati]

aws_access_key_id = XXXXXXXXXXXXXXXXXXXX

aws_secret_access_key = XX

Code 4.2 The credentials con�guration �le.

If the call at Code 4.1 succeeds, we obtain what they call a `reservation',

which is like a set of instances. Obviously the call might also fails, for con-

�guration errors, something wrong at Amazon's side or simply because the

resources we are asking for are not available, exceptions must be handled.

Also remember that even if Boto is great, you still need to know what you're

doing, because nothing prevents you from forming invalid requests, like trying

to ask for an instance with an impossible con�guration.

4.2.2 Fabric

The Fabric[45] Python framework will help us executing the remote com-

mands needed to start/restart the prototypes on all the instances. Another

option would have been to terminate and re-create them every time (with

the prototype starting automatically at boot) but considering the way costs

are calculated it is much better to keep the instances up and just restart the

prototypes. The main advantage of using Fabric instead of other lower level

SSH libraries like Paramiko[46], is that Fabric allows you to do the following:

give it a task (command to be executed) and a list of hosts, it will automat-

ically execute the task on all host, with the desired degree of parallelism.

Errors must be handles somehow, because with remote calls there are lots

of things that might go wrong, but still the overall management of remote

executions is much simpli�ed.

4.2 Setting up the tests on EC2 53

@parallel(pool_size=5)

def reset_prototype_task(commands):

tmp = ""

for cmd in commands:

tmp = tmp + "{}{}".format(cmd, ";")

return run(tmp)

results = execute(reset_prototype_task, commands, hosts=hostnames)

Code 4.3 Example of remote command execution with Fabric. The list of hostname is

obtained using Boto, the commands are just strings chained with the `;' character that

will cause them to be executed in order, always waiting for the previous one to terminate.

The @parallel annotation tells Fabric that it can execute a maximum of 5 commands in

parallel.

To be able to connect to the various hosts Fabric must be given the

appropriated credentials, that might be a user and a password or a private key

�le. Amazon forces you to use the latter for SSH connections, remember the

KEY_PAIR_NAME parameter that we set during the instances creation?

That's what it is used for. Here at Code 4.4 are some other settings that

might be worth looking at, especially when working with many hosts.

Automatically accept hosts fingerprint

env.reject_unknown_hosts = False

Ignore hosts to which connections are impossible

env.skip_bad_hosts = True

Try connecting X time before giving up

env.connection_attempts = 3

Do not abort execution if something on some host fails

env.warn_only = True

The user to use

env.user = "admin"

The path to the private key file

env.key_�lename = ["/path/to/the/privatekey.pem"]

Code 4.4 Useful Fabric settings when dealing with multiple hosts.

54 4. Performance evaluation

4.3 Tests results

Tests have been run with the following sets of parameters:

{

anonymity_mode: o�

view_size: 20%

},

{

anonymity_mode: o�

view_size: 50%

},

{

anonymity_mode: o�

view_size: 90%

},

{

anonymity_mode: tor

view_size: 20%

},

{

anonymity_mode: tor

view_size: 50%

},

{

anonymity_mode: tor

view_size: 90%

}

Code 4.5 The anonymity mode `o�' means the standard version, while `tor' is the

anonymous version. The size of the view is expressed as a percentage of the total number

of nodes. Each one of the six tests has been executed ten times.

The initial idea was to consider the network initialized when the estimated

number of nodes reaches a value as close as possible to the real number of

nodes. But during the �rst tests with a number of nodes (50) larger than

the one used for developing/debugging (5), I realized that such estimated

value was quite unstable. I ended up accepting as `good' any value in the

range [RNN − RNN ∗ 0.3;RNN + RNN ∗ 0.3], where RNN is the real

number of nodes. That's a pretty `generous' range, but still sometimes it's not

large enough and the prototype fails to stabilize. So, I consider the network

4.3 Tests results 55

initialized if the monitoring API gives me �ve consecutive values in that

range. I must admit that I came out with that `�ve' with no theory proven

reason, I just saw that less than �ve causes the prototype to be considered

stabilized too soon most of the times, while more than �ve has a great chance

to lead to a never ending stabilization process. This stabilization problem has

quite bad consequences for all the tests. It makes them considerably longer

(thus more expensive) but can also false the results, because subsequent calls

(run-nodes) might fail if they are done on a not yet completely initialized

network.

About the run-nodes API, I've made the calls ask for forming sub-clouds

of size determined by: MIN(RNN ∗ 0.45, V S), where V S is the size of the

views. The reason why each call cannot get more than 45% of the network

is that nodes might crash or become unreachable, so leaving out 10% of the

nodes makes the tests more likely to complete. Also, limiting them to the

size of the views makes the �rst call able to complete without having to wait

for the Peer Sampling Service to change the view, allowing us to make some

potentially interesting considerations in the performances comparison phase.

In the following pages I've reported the results. Please note that tests

can fail to yield a result, leaving us with missing values. This can cause

calculations like: average and standard deviation, to be done on sets of values

of di�erent sizes.

56 4. Performance evaluation

Parameters Completed AVG(s) DEV(s) MIN(s) MAX(s)

o�, 20% 10/10 141.13 55.37 85.07 225.19

tor, 20% 3/10 330.29 70.06 280.26 415.37

o�, 50% 10/10 104.58 48.66 50.04 220.18

tor, 50% 2/10 377.83 17.67 365.33 390.32

o�, 90% 10/10 179.16 98.26 65.05 335.28

tor, 90% 1/10 175.15 − 175.15 175.15

Table 4.1: The time taken for the network to initialize

0 50 100 150 200 250 300 350 400

20%

50%

90%

141.13

104.58

179.16

330.29

377.83

175.15

Time (seconds)

V
ie
w
si
ze

o�

tor

Figure 4.1: Average network initialization times compared

As we can see, the anonymous version takes more than twice the time

used by the standard version. About the results with the 90% view size,

they are very close, but consider that only 1 out of 10 anonymous version

tests completed successfully, and that might have been a very lucky case.

The timeout is set at 500 seconds so if we considered the failed tests as tests

that would have required more than 500 seconds to complete, we will get a

much higher average, in line with the results of the tests taken with the other

two view sizes.

4.3 Tests results 57

Parameters Completed AVG(s) DEV(s) MIN(s) MAX(s)

o�, 20% 10/10 1.80 0.42 1.00 2.01

tor, 20% 9/10 227.57 28.29 198.21 284.31

o�, 50% 10/10 2.00 0.01 2.00 2.01

tor, 50% 9/10 536.12 48.36 496.53 641.67

o�, 90% 10/10 10.51 14.97 2.00 49.05

tor, 90% 9/10 563.26 35.27 526.56 620.66

Table 4.2: The time taken for the �rst run-nodes to complete

0 100 200 300 400 500 600

20%

50%

90%

1.8

2

10.51

227.57

536.12

563.26

Time (seconds)

V
ie
w
si
ze

o�

tor

Figure 4.2: Average time to complete the �rst run-nodes call compared

The di�erence between the two versions is even higher in the �rst run-

nodes tests. The prototype looks for a new node to add to the sub-cloud

only when the previous node has replied (positively or negatively), so, even

assuming that all the contacted nodes will be able to join, the last node will

be contacted only after `paying' two time the latency for each previous node.

Remember also that we are using JRMI that alone doubles the number of

connections required to carry out a single communication, resulting in the

latency been paid four times for each node. The standard prototype uses

58 4. Performance evaluation

the EC2 internal network with an average latency of 1ms, so every node will

`cost' less than 5ms. The anonymous version's latency really depends on the

Tor network status, and might go from 300ms to 1500ms. If we consider an

average of 900ms, than every node would required 3600ms to join. This alone

cannot explain the huge amount of time taken by the anonymous version.

The only other thing I can think of is that the high amount of failures in

determining if the network was initialized or not (in the anonymous version),

might have lead to the start of the run-nodes without the network being

totally initialized. Thus the assumption that the �rst run-nodes would have

had all the information required ready in the view would be true only for the

standard version.

4.3 Tests results 59

Parameters Completed AVG(s) DEV(s) MIN(s) MAX(s)

o�, 20% 10/10 3.30 1.16 2.00 5.01

tor, 20% 10/10 247.16 24.01 210.20 292.31

o�, 50% 8/10 12.26 9.70 5.00 34.04

tor, 50% 7/10 929.54 156.33 757.74 1179.25

o�, 90% 10/10 70.77 77.90 3.00 168.18

tor, 90% 8/10 822.58 70.78 708.69 894.86

Table 4.3: The time taken for the second run-nodes to complete

0 100 200 300 400 500 600 700 800 900 1,000

20%

50%

90%

3.3

12.26

70.77

247.16

929.54

822.58

Time (seconds)

V
ie
w
si
ze

o�

tor

Figure 4.3: Average time to complete the second run-nodes call compared

The second run-nodes behaves almost like the �rst one, just with bigger

numbers for both versions, which is easily explained by the fact that the

number of `free' nodes is less. An interesting thing to notice is that the

20% view size anonymous version test doesn't di�er that much from the

same test of the �rst run-nodes. This might be another sign that most

of the anonymous tests started doing the run-nodes without been properly

initialized, because having in the views nodes that are already in the �rst

sub-cloud (thus cannot take part in the second) should behave almost like

60 4. Performance evaluation

having the fake non-existing nodes used to �ll the �xed-size views prior to

their complete initialization.

0 1 2 3 4 5 6 7 8 9 10 11

20%

50%

90%

10

10

10

3

2

1

Time (seconds)

V
ie
w
si
ze

o�

tor

Figure 4.4: Initializations completed without incurring in the timeout, max is 10

The results seem to suggest that increasing the time limit for the ini-

tialization might help, but during some preliminary tests (not reported in

this document) without any kind of timeout, I've seen it failing to stabilize

most of the times, even after three time the current timeout. I've checked

the code that does the estimation and it seems to be implemented correctly,

according to [8]. I suspect that the epochs length might not be optimal for

Tor's latency.

4.3 Tests results 61

0 1 2 3 4 5 6 7 8 9 10 11

20%

50%

90%

10

10

10

9

9

9

Time (seconds)

V
ie
w
si
ze

o�

tor

Figure 4.5: (�rst) Run-nodes completed without incurring in the timeout, max is 10

0 1 2 3 4 5 6 7 8 9 10 11

20%

50%

90%

10

8

10

10

7

8

Time (seconds)

V
ie
w
si
ze

o�

tor

Figure 4.6: (second) Run-nodes completed without incurring in the timeout, max is 10

Conclusions

We wanted to see if it were possible to create an infrastructure-level soft-

ware for the o�ering of anonymous cloud services, starting from an existing

prototype based on a peer-to-peer architecture. We did it, the prototype

has been successfully adapted and now it's anonymous. Performances has

been tested and they are worse that expected. There where good reasons to

think of a decrease in performances, starting from the intrinsic delay of the

anonymizing networks, followed by the use of Java Remote Method Invoca-

tion (that doubles connections), but still I wouldn't have thought them to

be that bad.

Another thing to notice is that the original prototype was (and still is)

not very failure resistant. There are many situations in which, if something

goes wrong, the whole system will hang. Due to the way it is implemented it

would be hard and quite time consuming to `�x' it, and since my work is not

about the cloud system itself but just its anonymization, I could not spend

time in doing it. This instability might have been the cause of some of the

failed tests.

About the tests part, studying Amazon EC2 took a lot of time, almost

1/3 of the time I had. When I started, I knew close to nothing about it, and

even if now I can't surely be called an expert, I can say that I know what I'm

doing. I might have spent that time better, like in improving the prototype,

but knowing that there would have been costs, especially considering that

the �rst idea was to test it with 1000 instances, made me wanted to be very

sure of what I was doing.

63

64 CONCLUSIONS

My personal opinion is that any future development of this project should

start by revisiting the core of the prototype communications, to substitute

the Java Remote Method Invocation with something more `direct'. Soon

after that I would advise to try improving its resilience to failures or at least

design some kind of fall-back mechanism to avoid ending up in inconsistent

states.

Bibliography

[1] National Institute of Standards and Technology, The NIST De�nition of

Cloud Computing, NIST Special Publication 800-145, Peter Mell, Tim-

othy Grance, September 2011

[2] OpenStack cloud operating system, website, www.openstack.org

[3] File:Components Diagram.png, wiki.openstack.org, website, https://

wiki.openstack.org/wiki/File:Components_Diagram.png

[4] OpenStack Operations Guide, October 28 - 2014, 3. Designing for Cloud

Controllers and Cloud Management, page 33

[5] Progettazione e Sviluppo di un Sistema Cloud P2P, Michele Tamburini,

2010-2011, thesis

[6] Design and Implementation of a P2P Cloud System, Ozalp Babaoglu,

Moreno Marzolla, Michele Tamburini, Technical Report UBLCS-2011-

10, September 2011, Department of Computer Science, University of

Bologna

[7] Diagramma dell'architettura a livelli interna al nodo (Node's internal

architecture diagram), Progettazione e Sviluppo di un Sistema Cloud

P2P, Michele Tamburini, 2010-2011, thesis, page 69

[8] Gossip-Based Aggregation in Large Dynamic Networks, M. Jelasity, Al-

berto Montresor, and Ozalp Babaoglu

65

66 BIBLIOGRAPHY

[9] How the NSA Almost Killed the Internet, Steven Levy,

01/07/14, web article, http://www.wired.com/2014/01/

how-the-us-almost-killed-the-internet/

[10] Glenn Greenwald - No Place To Hide, website, http:

//glenngreenwald.net/

[11] Anonymity Loves Company: Usability and the Network E�ect, Roger

Dingledine, Nick Mathewson, The Free Haven Project, January 2 - 2005

[12] Nothing to hide argument, Wikipedia, https://en.wikipedia.org/

wiki/Nothing_to_hide_argument

[13] Privacy Rights: Moral and Legal Foundations, Adam D. Moore, page

203

[14] Tor Project: Anonymity Online, website, https://www.torproject.

org/

[15] The Invisible Internet Project, website, https://geti2p.net/

[16] I2P Compared to Tor, Comparison of Tor and I2P Terminology, https:

//geti2p.net/en/comparison/tor

[17] Tor: The Second-Generation Onion Router, 6.3 Directory Servers, page

11, Roger Dingledine, Nick Mathewson, Paul Syverson

[18] The Base16, Base32, and Base64 Data Encodings, RFC 4648

[19] Network topology, website, http://en.wikipedia.org/wiki/

Network_topology

[20] CamelCase, website, http://en.wikipedia.org/wiki/CamelCase

[21] Gossip-Based Peer Sampling, M. Jelasity, Spyros Voulgaris, Rachid

Guerraoui, Anne-Marie Kermarrec, Maarten Van Steen, 2007, Article

8 / 5

BIBLIOGRAPHY 67

[22] T-MAN: Gossip-based fast overlay topology construction, M. Jelasity,

Alberto Montresor, Ozalp Babaoglu, April 2009

[23] Ordered Slicing of Very Large-Scale Overlay Networks, M. Jelasity -

University of Bologna - Italy, Anne-Marie Kermarrec - INRIA/IRISA -

Rennes - France

[24] java.rmi.registry.LocateRegistry, Oracle Java documentation, web-

site, https://docs.oracle.com/javase/7/docs/api/java/rmi/

registry/LocateRegistry.html

[25] SOCKS Protocol Version 5, RFC 1928, March 1996, https://www.

ietf.org/rfc/rfc1928.txt

[26] Tor FAQ, website, https://www.torproject.org/docs/faq.html.en#

torrc

[27] Marshalling, website, http://en.wikipedia.org/wiki/Marshalling_

%28computer_science%29

[28] Amazon EC2, website, http://aws.amazon.com/ec2/

[29] Google Cloud Platform, website, https://cloud.google.com/

[30] Secure Shell (SSH), website, http://en.wikipedia.org/wiki/

Secure_Shell

[31] Instance Types, website, http://aws.amazon.com/ec2/

instance-types/

[32] Instance Lifecycle, website, http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/ec2-instance-lifecycle.html

[33] Instance Storage, website, http://docs.aws.amazon.com/AWSEC2/

latest/UserGuide/InstanceStorage.html

[34] Elastic Block Storage, website, http://aws.amazon.com/ebs/

68 BIBLIOGRAPHY

[35] Amazon Machine Image, website, http://docs.aws.amazon.com/

AWSEC2/latest/UserGuide/AMIs.html

[36] EC2 Supported Virtualization Types, website, http://docs.aws.

amazon.com/AWSEC2/latest/UserGuide/virtualization_types.

html

[37] Paravirtualization, website, http://en.wikipedia.org/wiki/

Paravirtualization

[38] Hardware Virtual Machine, website, http://en.wikipedia.org/wiki/

Hardware-assisted_virtualization

[39] Debian AMI on the AWS Marketplace, website, https:

//aws.amazon.com/marketplace/pp/B00AA27RK4/ref=sp_mpg_

product_title/178-2204224-4541844?ie=UTF8&sr=0-2

[40] Debian, website, https://www.debian.org/

[41] Jessie AMI, website, https://wiki.debian.org/Cloud/

AmazonEC2Image/Jessie

[42] EC2 Pricing, website, http://aws.amazon.com/ec2/pricing/

[43] AWS Account Limits, website, http://docs.aws.amazon.com/

general/latest/gr/aws_service_limits.html

[44] Boto, website, https://boto.readthedocs.org/en/latest/

[45] Fabric, website, http://www.fabfile.org/

[46] Paramiko, website, http://www.paramiko.org/

